#### Sample records for representation zeta functions

1. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, _q) and PGL(2, _q)

International Nuclear Information System (INIS)

Roche, Ph.

2016-01-01

We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, _q) and PGL(2, _q). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

2. Bernoulli numbers and zeta functions

CERN Document Server

Arakawa, Tsuneo; Kaneko, Masanobu

2014-01-01

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of ...

3. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q})

Energy Technology Data Exchange (ETDEWEB)

Roche, Ph., E-mail: philippe.roche@univ-montp2.fr [Université Montpellier 2, CNRS, L2C, IMAG, Montpellier (France)

2016-03-15

We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q}). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

4. Lectures on zeta functions over finite fields

OpenAIRE

Wan, Daqing

2007-01-01

These are the notes from the summer school in G\\"ottingen sponsored by NATO Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields that took place in 2007. The aim was to give a short introduction on zeta functions over finite fields, focusing on moment zeta functions and zeta functions of affine toric hypersurfaces.

5. Mayer Transfer Operator Approach to Selberg Zeta Function

DEFF Research Database (Denmark)

Momeni, Arash; Venkov, Alexei

. In a special situation the dynamical zeta function is defined for a geodesic flow on a hyperbolic plane quotient by an arithmetic cofinite discrete group. More precisely, the flow is defined for the corresponding unit tangent bundle. It turns out that the Selberg zeta function for this group can be expressed...... in terms of a Fredholm determinant of a classical transfer operator of the flow. The transfer operator is defined in a certain space of holomorphic functions and its matrix representation in a natural basis is given in terms of the Riemann zeta function and the Euler gamma function....

6. Multifractal and higher-dimensional zeta functions

International Nuclear Information System (INIS)

Véhel, Jacques Lévy; Mendivil, Franklin

2011-01-01

In this paper, we generalize the zeta function for a fractal string (as in Lapidus and Frankenhuijsen 2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (New York: Springer)) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function ζ(q, s) yield the usual multifractal spectrum of the measure. The presence of complex poles for ζ(q, s) indicates oscillations in the continuous partition function of the measure, and thus gives more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R n , the modified zeta function yields asymptotic information about both the 'box' counting function of the set and the n-dimensional volume of the ε-dilation of the set

7. Heat kernels and zeta functions on fractals

International Nuclear Information System (INIS)

Dunne, Gerald V

2012-01-01

On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

8. Lectures on the Riemann zeta function

CERN Document Server

Iwaniec, H

2014-01-01

The Riemann zeta function was introduced by L. Euler (1737) in connection with questions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper results about the prime numbers by considering the zeta function in the complex variable. The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on a critical line in the complex plane, is one of the most important unsolved problems in modern mathematics. The present book consists of two parts. The first part covers classical material about the zeros of the Riemann zeta function with applications to the distribution of prime numbers, including those made by Riemann himself, F. Carlson, and Hardy-Littlewood. The second part gives a complete presentation of Levinson's method for zeros on the critical line, which allows one to prove, in particular, that more than one-third of non-trivial zeros of zeta are on the critical line. This approach and some results concerning integrals of Dirichlet polynomials are new. Th...

9. Zeta function methods and quantum fluctuations

International Nuclear Information System (INIS)

Elizalde, Emilio

2008-01-01

A review of some recent advances in zeta function techniques is given, in problems of pure mathematical nature but also as applied to the computation of quantum vacuum fluctuations in different field theories, and specially with a view to cosmological applications

10. New inequalities for the Hurwitz zeta function

We establish various new inequalities for the Hurwitz zeta function. Our results generalize some known results ... mention here two of them: The first is the evaluation by Kolbig [10] of integrals of the form. Rm(μ, υ) = ∫ ∞. 0 e. −μttυ−1 log m t dt,.

11. The semi-simple zeta function of quaternionic Shimura varieties

CERN Document Server

Reimann, Harry

1997-01-01

This monograph is concerned with the Shimura variety attached to a quaternion algebra over a totally real number field. For any place of good (or moderately bad) reduction, the corresponding (semi-simple) local zeta function is expressed in terms of (semi-simple) local L-functions attached to automorphic representations. In an appendix a conjecture of Langlands and Rapoport on the reduction of a Shimura variety in a very general case is restated in a slightly stronger form. The reader is expected to be familiar with the basic concepts of algebraic geometry, algebraic number theory and the theory of automorphic representation.

12. Fractal diffusion coefficient from dynamical zeta functions

Energy Technology Data Exchange (ETDEWEB)

Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)

2006-03-10

Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

13. Fractal diffusion coefficient from dynamical zeta functions

International Nuclear Information System (INIS)

2006-01-01

Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

14. Crossing the entropy barrier of dynamical zeta functions

International Nuclear Information System (INIS)

Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F.

1992-01-01

Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.)

15. Crossing the entropy barrier of dynamical zeta functions

Energy Technology Data Exchange (ETDEWEB)

Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

1992-01-01

Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

16. Zeta-function regularization of the quantum fluctuations around the Yang-Mills pseudoparticle

International Nuclear Information System (INIS)

1977-01-01

The hypersphere stereographic projection and the zeta-function regularization procedure are used to compute the one loop correction around the Yang-Mills pseudoparticle with scalars and fermions in an arbitrary representation of the SU(2) gauge group. (Auth.)

17. Ten physical applications of spectral zeta functions

CERN Document Server

Elizalde, Emilio

1995-01-01

Zeta-function regularization is a powerful method in perturbation theory. This book is meant as a guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice (e.g. Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking). The formulas some of which are new can be used for accurate numerical calculations. The book is to be considered as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice.

18. Riemann zeta function from wave-packet dynamics

DEFF Research Database (Denmark)

Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

2010-01-01

We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

19. Ten physical applications of spectral zeta functions

CERN Document Server

Elizalde, Emilio

2012-01-01

Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice. Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, inclu...

20. Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions

OpenAIRE

Biane, P.; Pitman, J.; Yor, M.

1999-01-01

This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann's zeta function which are related to these laws.

1. Zeta functions and regularized determinants related to the Selberg trace formula

DEFF Research Database (Denmark)

Momeni, Arash; Venkov, Alexei

determinants of one dimensional Schroedinger operator for harmonic oscillator. We decompose the determinant of the automorphic Laplacian into a product of the determinants where each factor is a determinant representation of a zeta function related to Selberg's trace formula. Then we derive an identity...... connecting the determinants of the automorphic Laplacians on different Riemannian surfaces related to the arithmetical groups. Finally, by using the Jacquet-Langlands correspondence we connect the determinant of the automorphic Laplacian for the unit group of quaternions to the product of the determinants......For a general Fuchsian group of the first kind with an arbitrary unitary representation we define the zeta functions related to the contributions of the identity, hyperbolic, elliptic and parabolic conjugacy classes in Selberg's trace formula. We present Selberg's zeta function in terms...

2. Functional equation for the Mordell-Tornheim multiple zeta-function

OpenAIRE

Okamoto, Takuya; Onozuka, Tomokazu

2016-01-01

We show a relation between the Mordell-Tornheim multiple zeta-function and the confluent hypergeometric function, and using it, we give the functional equation for the Mordell-Tornheim multiple zeta-function. In the double case, the functional equation includes the known functional equation for the Euler-Zagier double zeta-function.

3. On calculation of zeta function of integral matrix

Czech Academy of Sciences Publication Activity Database

Janáček, Jiří

2009-01-01

Roč. 134, č. 1 (2009), s. 49-58 ISSN 0862-7959 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : Epstein zeta function * integral lattice * Riemann theta function Subject RIV: BA - General Mathematics

4. Dynamical zeta functions for piecewise monotone maps of the interval

CERN Document Server

Ruelle, David

2004-01-01

Consider a space M, a map f:M\\to M, and a function g:M \\to {\\mathbb C}. The formal power series \\zeta (z) = \\exp \\sum ^\\infty _{m=1} \\frac {z^m}{m} \\sum _{x \\in \\mathrm {Fix}\\,f^m} \\prod ^{m-1}_{k=0} g (f^kx) yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval [0,1]. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of \\zeta (z) and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of (M,f,g).

5. Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations

CERN Document Server

Ichinose, T

2004-01-01

We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\

6. Zeta-function approach to Casimir energy with singular potentials

International Nuclear Information System (INIS)

Khusnutdinov, Nail R.

2006-01-01

In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

7. Lecture notes: string theory and zeta-function

Energy Technology Data Exchange (ETDEWEB)

Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: toppan@cbpf.br

2001-11-01

These lecture notes are based on a revised and LaTexed version of the Master thesis defended at ISAS. The research part being omitted, they included a review of the bosonic closed string a la Polyakov and of the one-loop background field method of quantisation defined through the zeta-function. In an appendix some basic features of the Riemann zeta-function are also reviewed. The pedagogical aspects of the material here presented are particularly emphasized. These notes are used, together with the Scherk's article in Rev. Mod. Phys. and the first volume of the Polchinski book, for the mini-course on String Theory (16-hours of lectures) held at CBPF. In this course the Green-Schwarz-Witten two-volumes book is also used for consultative purposes. (author)

8. Relating zeta functions of discrete and quantum graphs

Science.gov (United States)

Harrison, Jonathan; Weyand, Tracy

2018-02-01

We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.

9. Zeta functional equation on Jordan algebras of type II

International Nuclear Information System (INIS)

Kayoya, J.B.

2003-10-01

Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)

10. Evaluation of spectral zeta-functions with the renormalization group

International Nuclear Information System (INIS)

Boettcher, Stefan; Li, Shanshan

2017-01-01

We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)

11. A zeta function approach to the semiclassical quantization of maps

International Nuclear Information System (INIS)

Smilansky, Uzi.

1993-11-01

The quantum analogue of an area preserving map on a compact phase space is a unitary (evolution) operator which can be represented by a matrix of dimension L∝ℎ -1 . The semiclassical theory for spectrum of the evolution operator will be reviewed with special emphasize on developing a dynamical zeta function approach, similar to the one introduced recently for a semiclassical quantization of hamiltonian systems. (author)

12. Zeta Function Expression of Spin Partition Functions on Thermal AdS3

Directory of Open Access Journals (Sweden)

Floyd L.Williams

2015-07-01

Full Text Available We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.

13. Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions

International Nuclear Information System (INIS)

Rudaz, S.

1990-01-01

Asymptotic series for the Hurwitz zeta function, its derivative, and related functions (including the Riemann zeta function of odd integer argument) are derived as an illustration of a simple, direct method of broad applicability, inspired by the calculus of finite differences

14. The Riemann zeta-function theory and applications

CERN Document Server

Ivic, Aleksandar

2003-01-01

""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim

15. Fluctuations of quantum fields via zeta function regularization

International Nuclear Information System (INIS)

Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio

2002-01-01

Explicit expressions for the expectation values and the variances of some observables, which are bilinear quantities in the quantum fields on a D-dimensional manifold, are derived making use of zeta function regularization. It is found that the variance, related to the second functional variation of the effective action, requires a further regularization and that the relative regularized variance turns out to be 2/N, where N is the number of the fields, thus being independent of the dimension D. Some illustrating examples are worked through. The issue of the stress tensor is also briefly addressed

16. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

International Nuclear Information System (INIS)

Hatsuda, Yasuyuki

2015-03-01

The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

17. Exploring the Riemann zeta function 190 years from Riemann's birth

CERN Document Server

Nikeghbali, Ashkan; Rassias, Michael

2017-01-01

This book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography.

18. The Stokes phenomenon and the Lerch zeta function

Directory of Open Access Journals (Sweden)

R. B. Paris

2016-05-01

Full Text Available We examine the exponentially improved asymptotic expansion of the Lerch zeta function $L(\\lambda,a,s=\\sum_{n=0}^\\infty \\exp (2\\pi ni\\lambda/(n+a^s$ for large complex values of $a$, with $\\lambda$ and $s$ regarded as parameters. It is shown that an infinite number of subdominant exponential terms switch on across the Stokes lines $\\arg\\,a=\\pm\\fs\\pi$. In addition, it is found that the transition across the upper and lower imaginary $a$-axes is associated, in general, with unequal scales. Numerical calculations are presented to confirm the theoretical predictions.

19. Justification of the zeta-function renormalization in rigid string model

International Nuclear Information System (INIS)

Nesterenko, V.V.; Pirozhenko, I.G.

1997-01-01

A consistent procedure for regularization of divergences and for the subsequent renormalization of the string tension is proposed in the framework of the one-loop calculation of the interquark potential generated by the Polyakov-Kleinert string. In this way, a justification of the formal treatment of divergences by analytic continuation of the Riemann and Epstein-Hurwitz zeta-functions is given. A spectral representation for the renormalized string energy at zero temperature is derived, which enables one to find the Casimir energy in this string model at nonzero temperature very easy

20. On Montgomery's pair correlation conjecture to the zeros of Riedmann zeta function

OpenAIRE

Li, Pei

2005-01-01

In this thesis, we are interested in Montgomery's pair correlation conjecture which is about the distribution of.the spacings between consecutive zeros of the Riemann Zeta function. Our goal is to explain and study Montgomery's pair correlation conjecture and discuss its connection with the random matrix theory. In Chapter One, we will explain how to define the Ftiemann Zeta function by using the analytic continuation. After this, several classical properties of the Ftiemann Zeta function wil...

1. Certain Subclasses of Analytic and Bi-Univalent Functions Involving Double Zeta Functions

OpenAIRE

Siregar, Saibah; Raman, Sintuja

2012-01-01

In the present paper, we introduce two new subclasses of the functions class Σ of bi-univalent functions involving double zeta functions in the open unit disc U={z:zEC, |z|<1}. The estimates on the coefficients |a2| and |a3| for functions in these new subclasses of the function class Σ are obtained in our investigation.

2. Generalized Riemann zeta-function regularization and Casimir energy for a piecewise uniform string

International Nuclear Information System (INIS)

Li Xinzhou; Shi Xin; Zhang Jianzu.

1990-12-01

The generalized zeta-function techniques will be utilized to investigate the Casimir energy for the transverse oscillations of a piecewise uniform closed string. We find that zeta-function regularization method can lead straightforwardly to a correct result. (author). 6 refs

3. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

International Nuclear Information System (INIS)

Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

1992-01-01

In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

4. On the $a$-points of the derivatives of the Riemann zeta function

OpenAIRE

Onozuka, Tomokazu

2016-01-01

We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T 5. Zeta function of self-adjoint operators on surfaces of revolution International Nuclear Information System (INIS) Lu, Tianshi; Jeffres, Thalia; Kirsten, Klaus 2015-01-01 In this article we analyze the zeta function for the Laplace operator on a surface of revolution. A variety of boundary conditions, separated and unseparated, are considered. Formulas for several residues and values of the zeta function as well as for the determinant of the Laplacian are obtained. The analysis is based upon contour integration techniques in combination with a WKB analysis of solutions of related initial value problems. (paper) 6. Instabilities of the zeta-function regularization in the presence of symmetries International Nuclear Information System (INIS) Rasetti, M. 1980-01-01 The zeta-function regularization method requires the calculation of the spectrum-generating function zeta sub(M) of a generic real, elliptic, self-adjoint differential operator on a manifold M. An asymptotic expansion for zeta sub(M) is given for the class of all symmetric spaces of rank 1, sufficient to compute its Mellin transform and deduce the regularization of the corresponding quadratic path integrals. The summability properties of the generalized zeta-function introduce physical instabilities in the system as negative specific heat. The technique (and the instability as well) is shown to hold - under the assumed symmetry properties - in any dimension (preserving both the global and local properties of the manifold, as opposed to the dimensional regularization, where one adds extra flat dimensions only). (author) 7. Zeta functions for the spectrum of the non-commutative harmonic oscillators CERN Document Server Ichinose, T 2004-01-01 This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in \\cite{PW1, 2}. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at$s=1$, and further that it has a zero at all non-positive even integers, i.e. at$s=0$and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator. 8. Selberg zeta functions and transfer operators an experimental approach to singular perturbations CERN Document Server Fraczek, Markus Szymon 2017-01-01 This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spac... 9. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions Science.gov (United States) Cristadoro, Giampaolo 2006-03-01 Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. 10. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution Science.gov (United States) Elizalde, Emilio 2012-07-01 A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented. 11. Effective action for scalar fields and generalized zeta-function regularization International Nuclear Information System (INIS) Cognola, Guido; Zerbini, Sergio 2004-01-01 Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effective action for a scalar field defined in the ultrastatic manifold RxH 3 /Γ, H 3 /Γ being the finite volume, noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormalization group equations are derived 12. Critical dimension of bosonic string theory and zeta-function regularization International Nuclear Information System (INIS) Vanzo, L.; Zerbini, S.; Istituto Nazionale di Fisica Nucleare, Povo 1988-01-01 A derivation of the critical dimension of the Polyakov bosonic string is presented. It is based on the use of the anholonomic formalism, a ghost-anti-ghost symmetric action, zeta-function regularization and the Seeley method of pseudo-differential operators. (orig.) 13. Dynamical zeta functions and dynamical determinants for hyperbolic maps a functional approach CERN Document Server Baladi, Viviane 2018-01-01 The spectra of transfer operators associated to dynamical systems, when acting on suitable Banach spaces, contain key information about the ergodic properties of the systems. Focusing on expanding and hyperbolic maps, this book gives a self-contained account on the relation between zeroes of dynamical determinants, poles of dynamical zeta functions, and the discrete spectra of the transfer operators. In the hyperbolic case, the first key step consists in constructing a suitable Banach space of anisotropic distributions. The first part of the book is devoted to the easier case of expanding endomorphisms, showing how the (isotropic) function spaces relevant there can be studied via Paley–Littlewood decompositions, and allowing easier access to the construction of the anisotropic spaces which is performed in the second part. This is the first book describing the use of anisotropic spaces in dynamics. Aimed at researchers and graduate students, it presents results and techniques developed since the beginning of... 14. Averages of ratios of the Riemann zeta-function and correlations of divisor sums Science.gov (United States) Conrey, Brian; Keating, Jonathan P. 2017-10-01 Nonlinearity has published articles containing a significant number-theoretic component since the journal was first established. We examine one thread, concerning the statistics of the zeros of the Riemann zeta function. We extend this by establishing a connection between the ratios conjecture for the Riemann zeta-function and a conjecture concerning correlations of convolutions of Möbius and divisor functions. Specifically, we prove that the ratios conjecture and an arithmetic correlations conjecture imply the same result. This provides new support for the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. Our main theorem generalises a recent calculation pertaining to the special case of two-over-two ratios. 15. Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2) Energy Technology Data Exchange (ETDEWEB) Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy) 2015-12-15 We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension. 16. Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum International Nuclear Information System (INIS) Barkhofen, S; Faure, F; Weich, T 2014-01-01 In many non-integrable open systems in physics and mathematics, resonances have been found to be surprisingly ordered along curved lines in the complex plane. In this article we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for three-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is directly related to a clustering of the classical length spectrum on multiples of a base length. Finally, this link is used to construct new examples where several different structures of resonance chains coexist. (paper) 17. Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2) International Nuclear Information System (INIS) Matassa, Marco 2015-01-01 We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension 18. Unusual poles of the {zeta}-functions for some regular singular differential operators Energy Technology Data Exchange (ETDEWEB) Falomir, H [IFLP, Departamento de Fisica-Facultad de Ciencias Exactas, UNLP, CC 67 (1900) La Plata (Argentina); Muschietti, M A [Departamento de Matematica-Facultad de Ciencias Exactas, UNLP, CC 172 (1900) La Plata (Argentina); Pisani, P A G [IFLP, Departamento de Fisica-Facultad de Ciencias Exactas, UNLP, CC 67 (1900) La Plata (Argentina); Seeley, R [University of Massachusetts at Boston, Boston, MA 02125 (United States) 2003-10-03 We consider the resolvent of a system of first-order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of {lambda} which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding {zeta}- and {eta}-functions are also discussed. 19. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions CERN Document Server Lapidus, Michel L; Žubrinić, Darko 2017-01-01 This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f... 20. Statistical properties of the zeros of zeta functions - beyond the Riemann case International Nuclear Information System (INIS) Bogomolny, E.; Leboeuf, P. 1993-09-01 The statistical distribution of the zeros of Dirichlet L-functions is investigated both analytically and numerically. Using the Hardy-Littlewood conjecture about the distribution of primes it is shown that the two-point correlation function of these zeros coincides with that for eigenvalues of the Gaussian unitary ensemble of random matrices, and that the distributions of zeros of different L-functions are statistically independent. Applications of these results to Epstein's zeta functions are shortly discussed. (authors) 30 refs., 3 figs., 1 tab 1. Effects on functional groups and zeta potential of SAP1pulsed electric field technology. Science.gov (United States) Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia 2017-01-01 SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry. 2. Applications of Wirtinger Inequalities on the Distribution of Zeros of the Riemann Zeta-Function Directory of Open Access Journals (Sweden) Saker SamirH 2010-01-01 Full Text Available On the hypothesis that the th moments of the Hardy -function are correctly predicted by random matrix theory and the moments of the derivative of are correctly predicted by the derivative of the characteristic polynomials of unitary matrices, we establish new large spaces between the zeros of the Riemann zeta-function by employing some Wirtinger-type inequalities. In particular, it is obtained that which means that consecutive nontrivial zeros often differ by at least 6.1392 times the average spacing. 3. Functional representations of integrable hierarchies International Nuclear Information System (INIS) Dimakis, Aristophanes; Mueller-Hoissen, Folkert 2006-01-01 We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which 'functional representations' of particular hierarchies (such as KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as 'noncommutative' analogues of 'Fay identities' for the KP hierarchy 4. Fractional parts and their relations to the values of the Riemann zeta function KAUST Repository Alabdulmohsin, Ibrahim 2017-09-06 A well-known result, due to Dirichlet and later generalized by de la Vallée–Poussin, expresses a relationship between the sum of fractional parts and the Euler–Mascheroni constant. In this paper, we prove an asymptotic relationship between the summation of the products of fractional parts with powers of integers on the one hand, and the values of the Riemann zeta function, on the other hand. Dirichlet’s classical result falls as a particular case of this more general theorem. 5. Fractional parts and their relations to the values of the Riemann zeta function KAUST Repository Alabdulmohsin, Ibrahim 2017-01-01 A well-known result, due to Dirichlet and later generalized by de la Vallée–Poussin, expresses a relationship between the sum of fractional parts and the Euler–Mascheroni constant. In this paper, we prove an asymptotic relationship between the summation of the products of fractional parts with powers of integers on the one hand, and the values of the Riemann zeta function, on the other hand. Dirichlet’s classical result falls as a particular case of this more general theorem. 6. Bernoulli Polynomials, Fourier Series and Zeta Numbers DEFF Research Database (Denmark) Scheufens, Ernst E 2013-01-01 Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent... 7. Euler Polynomials, Fourier Series and Zeta Numbers DEFF Research Database (Denmark) Scheufens, Ernst E 2012-01-01 Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series.... 8. Multiple zeta functions and double wrapping in planar N=4 SYM Science.gov (United States) Leurent, Sébastien; Volin, Dmytro 2013-10-01 Using the FiNLIE solution of the AdS/CFT Y-system, we compute the anomalous dimension of the Konishi operator in planar N=4 SYM up to eight loops, i.e. up to the leading double wrapping order. At this order a non-reducible Euler-Zagier sum, ζ1,2,8, appears for the first time. We find that at all orders in perturbation, every spectral-dependent quantity of the Y-system is expressed through multiple Hurwitz zeta functions, hence we provide a Mathematica package to manipulate these functions, including the particular case of Euler-Zagier sums. Furthermore, we conjecture that only Euler-Zagier sums can appear in the answer for the anomalous dimension at any order in perturbation theory. We also resum the leading transcendentality terms of the anomalous dimension at all orders, obtaining a simple result in terms of Bessel functions. Finally, we demonstrate that exact Bethe equations should be related to an absence of poles condition that becomes especially non-trivial at double wrapping. 9. Uncoupling of T Cell Receptor Zeta Chain Function during the Induction of Anergy by the Superantigen, Staphylococcal Enterotoxin A Directory of Open Access Journals (Sweden) William D. Cornwell 2010-06-01 Full Text Available Staphylococcus aureus enterotoxins have immunomodulatory properties. In this study, we show that Staphylococcal enterotoxin A (SEA induces a strong proliferative response in a murine T cell clone independent of MHC class II bearing cells. SEA stimulation also induces a state of hypo-responsiveness (anergy. We characterized the components of the T cell receptor (TCR during induction of anergy by SEA. Most interestingly, TCR zeta chain phosphorylation was absent under SEA anergizing conditions, which suggests an uncoupling of zeta chain function. We characterize here a model system for studying anergy in the absence of confounding costimulatory signals. 10. Igusa's$p-Adic local zeta function and the monodromy conjecture for non-degenerate surface singularities CERN Document Server Bories, Bart 2016-01-01 In 2011 Lemahieu and Van Proeyen proved the Monodromy Conjecture for the local topological zeta function of a non-degenerate surface singularity. The authors start from their work and obtain the same result for Igusa's p-adic and the motivic zeta function. In the p-adic case, this is, for a polynomial f\\in\\mathbf{Z}[x,y,z] satisfying f(0,0,0)=0 and non-degenerate with respect to its Newton polyhedron, we show that every pole of the local p-adic zeta function of f induces an eigenvalue of the local monodromy of f at some point of f^{-1}(0)\\subset\\mathbf{C}^3 close to the origin. Essentially the entire paper is dedicated to proving that, for f as above, certain candidate poles of Igusa's p-adic zeta function of f, arising from so-called B_1-facets of the Newton polyhedron of f, are actually not poles. This turns out to be much harder than in the topological setting. The combinatorial proof is preceded by a study of the integral points in three-dimensional fundamental parallelepipeds. Together with the work of L... 11. Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques International Nuclear Information System (INIS) Kantowski, R.; Milton, K.A. 1987-01-01 The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out 12. Functional representations for quantized fields International Nuclear Information System (INIS) Jackiw, R. 1988-01-01 This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators 13. Representations of Multiple-Valued Logic Functions CERN Document Server Stankovic, Radomir S 2012-01-01 Compared to binary switching functions, multiple-valued functions offer more compact representations of the information content of signals modeled by logic functions and, therefore, their use fits very well in the general settings of data compression attempts and approaches. The first task in dealing with such signals is to provide mathematical methods for their representation in a way that will make their application in practice feasible.Representation of Multiple-Valued Logic Functions is aimed at providing an accessible introduction to these mathematical techniques that are necessary for ap 14. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu NARCIS (Netherlands) Dyall, K.G.; Gomes, A.S.P.; Visscher, L. 2010-01-01 Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the lanthanide elements La-Lu. The basis sets include SCF exponents for the occupied spinors and for the 6p shell, exponents of correlating functions for the valence shells (4f, 5d and 6s) and the 15. L-functions and the oscillator representation CERN Document Server Rallis, Stephen 1987-01-01 These notes are concerned with showing the relation between L-functions of classical groups (*F1 in particular) and *F2 functions arising from the oscillator representation of the dual reductive pair *F1 *F3 O(Q). The problem of measuring the nonvanishing of a *F2 correspondence by computing the Petersson inner product of a *F2 lift from *F1 to O(Q) is considered. This product can be expressed as the special value of an L-function (associated to the standard representation of the L-group of *F1) times a finite number of local Euler factors (measuring whether a given local representation occurs in a given oscillator representation). The key ideas used in proving this are (i) new Rankin integral representations of standard L-functions, (ii) see-saw dual reductive pairs and (iii) Siegel-Weil formula. The book addresses readers who specialize in the theory of automorphic forms and L-functions and the representation theory of Lie groups. N 16. A novel conductivity mechanism of highly disordered carbon systems based on an investigation of graph zeta function Science.gov (United States) Matsutani, Shigeki; Sato, Iwao 2017-09-01 In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general. 17. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites. Science.gov (United States) Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen 2004-05-18 Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process. 18. Understanding Linear Functions and Their Representations Science.gov (United States) Wells, Pamela J. 2015-01-01 Linear functions are an important part of the middle school mathematics curriculum. Students in the middle grades gain fluency by working with linear functions in a variety of representations (NCTM 2001). Presented in this article is an activity that was used with five eighth-grade classes at three different schools. The activity contains 15 cards… 19. Weighted -Integral Representations of -Functions in Directory of Open Access Journals (Sweden) Arman H. Karapetyan 2012-01-01 Full Text Available For 1-functions , given in the complex space , integral representations of the form =(−( are obtained. Here, is the orthogonal projector of the space 2{;−||||(} onto its subspace of entire functions and the integral operator appears by means of explicitly constructed kernel Φ which is investigated in detail. 20. More on zeta-function regularization of high-temperature expansions International Nuclear Information System (INIS) Actor, A. 1987-01-01 A recent paper using the Riemann ζ-function to regularize the (divergent) coefficients occurring in the high-temperature expansions of one-loop thermodynamic potentials is extended. This method proves to be a powerful tool for converting Dirichlet-type series Σ m a m (x i )/m s into power series in the dimensionless parameters x i . The coefficients occurring in the power series are (proportional to) ζ-functions evaluated away from their poles - this is where the regularization occurs. High-temperature expansions are just one example of this highly-nontrivial rearrangement of Dirichlet series into power series form. We discuss in considerable detail series in which a m (x i ) is a product of trigonometric, algebraic and Bessel function factors. The ζ-function method is carefully explained, and a large number of new formulae are provided. The means to generalize these formulae are also provided. Previous results on thermodynamic potentials are generalized to include a nonzero constant term in the gauge potential (time component) which can be used to probe the electric sector of temperature gauge theories. (author) 1. Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on a zeta function technique International Nuclear Information System (INIS) Lim, S C; Teo, L P 2007-01-01 We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors 2. On functional representations of the conformal algebra Energy Technology Data Exchange (ETDEWEB) Rosten, Oliver J. 2017-07-15 Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.) 3. Elliptic hypergeometric functions and the representation theory International Nuclear Information System (INIS) Spiridonov, V.P. 2011-01-01 Full text: (author)Elliptic hypergeometric functions were discovered around ten years ago. They represent the top level known generalization of the Euler beta integral and Euler-Gauss 2 F 1 hypergeometric function. In general form they are defined by contour integrals involving elliptic gamma functions. We outline the structure of the simplest examples of such functions and discuss their relations to the representation theory of the classical Lie groups and their various deformations. In one of the constructions elliptic hypergeometric integrals describe purely group-theoretical objects having the physical meaning of superconformal indices of four-dimensional supersymmetric gauge field theories 4. 'Syncing' Up with the Quinn-Rand-Strogatz Constant: Hurwitz-ZetaFunctions in Non-Linear physics Energy Technology Data Exchange (ETDEWEB) Durgin, Natalie J.; Garcia, Sofia M.; Flournoy, Tamara; Bailey,David H. 2007-12-01 This work extends the analytical and computationalinvestigation of the Quinn-Rand-Strogatz (QRS) constants from non-linearphysics. The QRS constants (c1, c2, ..., cN) are found in a Winfreeoscillator mean-field system used to examine the transition of coupledoscillators as they lose synchronization. The constants are part of anasymptotic expansion of a function related to the oscillatorsynchronization. Previous work used high-precision software packages toevaluate c1 to 42 decimal-digits, which made it possible to recognize andprove that c1 was the root of a certain Hurwitz-zeta function. Thisallowed a value of c2 to beconjectured in terms of c1. Therefore thereis interest in determining the exact values of these constants to highprecision in the hope that general relationships can be establishedbetween the constants and the zeta functions. Here, we compute the valuesof the higher order constants (c3, c4) to more than 42-digit precision byextending an algorithm developed by D.H. Bailey, J.M. Borwein and R.E.Crandall. Several methods for speeding up the computation are exploredand an alternate proof that c1 is the root of a Hurwitz-zeta function isattempted. 5. String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups International Nuclear Information System (INIS) Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio 2012-01-01 This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review) 6. Special functions and the theory of group representations CERN Document Server Vilenkin, N Ja 1968-01-01 A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group SU(2), and the hypergeometric function and representations of the group SL(2,R), as well as many other classes of special functions. 7. On integral representation, relaxation and homogenization for unbounded functionals International Nuclear Information System (INIS) Carbone, L.; De Arcangelis, R. 1997-01-01 A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given 8. Helping Students-Connect Functions and Their Representations Science.gov (United States) Moore-Russo, Deborah; Golzy, John B. 2005-01-01 The description about the changed instruction to encourage student exploration of the graphical and then the algebraic representations of functions is presented, which enables the students to understand how the graph, equation, and table of a function are related. The activity addresses both the Learning Principle and the Connection standard and… 9. Unified double- and single-sided homogeneous Green's function representations Science.gov (United States) Wapenaar, Kees; van der Neut, Joost; Slob, Evert 2016-06-01 In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval. 10. Orthogonal functions, discrete variable representation, and generalized gauss quadratures DEFF Research Database (Denmark) Schneider, B. I.; Nygaard, Nicolai 2002-01-01 in the original representation. This has been exploited in bound-state, scattering, and time-dependent problems using the so-called, discrete variable representation (DVR). At the core of this approach is the mathematical three-term recursion relationship satisfied by the classical orthogonal functions...... functions, this is not the case. However, they may be computed in a stable numerical fashion, via the recursion. In essence, this is an application of the well-known Lanczos recursion approach. Once the recursion coefficients are known, it is possible to compute the points and weights of quadratures on... 11. New Bessel-type function associated with SU(3) representation International Nuclear Information System (INIS) Tanimura, N.; Tanimura, O. 1990-01-01 A new set of functions that are given by the coefficients of the character expansion of the single-link action in the SU(3) lattice-gauge theory is studied. The function is specified by the indices λ and μ of the SU(3) representation of the Young tableau. From the Schwinger-Dyson variational method the recursion relations among the functions are derived. By combining the recursion relation and the relation of the differentiation, the linear differential equation of the sixth order for the function is derived. The properties of the function are discussed in detail in comparison with the functions in the SU(2) group 12. A novel integral representation for the Adler function International Nuclear Information System (INIS) Nesterenko, A V; Papavassiliou, J 2006-01-01 New integral representations for the Adler D-function and the R-ratio of the electron-positron annihilation into hadrons are derived in the general framework of the analytic approach to QCD. These representations capture the nonperturbative information encoded in the dispersion relation for the D-function, the effects due to the interrelation between spacelike and timelike domains, and the effects due to the nonvanishing pion mass. The latter plays a crucial role in this analysis, forcing the Adler function to vanish in the infrared limit. Within the developed approach the D-function is calculated by employing its perturbative approximation as the only additional input. The obtained result is found to be in reasonable agreement with the experimental prediction for the Adler function in the entire range of momenta 0 ≤ Q 2 < ∞ 13. Processes and Reasoning in Representations of Linear Functions Science.gov (United States) Adu-Gyamfi, Kwaku; Bossé, Michael J. 2014-01-01 This study examined student actions, interpretations, and language in respect to questions raised regarding tabular, graphical, and algebraic representations in the context of functions. The purpose was to investigate students' interpretations and specific ways of working within table, graph, and the algebraic on notions fundamental to a… 14. Wigner function and Schroedinger equation in phase-space representation International Nuclear Information System (INIS) Chruscinski, Dariusz; Mlodawski, Krzysztof 2005-01-01 We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation 15. A knowledge representation view on biomedical structure and function. Science.gov (United States) Schulz, Stefan; Hahn, Udo 2002-01-01 In biomedical ontologies, structural and functional considerations are of outstanding importance, and concepts which belong to these two categories are highly interdependent. At the representational level both axes must be clearly kept separate in order to support disciplined ontology engineering. Furthermore, the biaxial organization of physical structure (both by a taxonomic and partonomic order) entails intricate patterns of inference. We here propose a layered encoding of taxonomic, partonomic and functional aspects of biomedical concepts using description logics. PMID:12463912 16. Multiple zeta values and application to the Lacunary recurrence formulas of Bernoulli numbers International Nuclear Information System (INIS) Chen, Y-H 2008-01-01 This paper obtains a recurrence related to multiple zeta function, which generalizes the Newton recurrence for multiple zeta values for period 1. Moreover, we obtain some new Lacunary recurrence formulas of Bernoulli numbers 17. Partition function of free conformal fields in 3-plet representation Energy Technology Data Exchange (ETDEWEB) Beccaria, Matteo [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento & INFN,Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom) 2017-05-10 Simplest examples of AdS/CFT duality correspond to free CFTs in d dimensions with fields in vector or adjoint representation of an internal symmetry group dual in the large N limit to a theory of massless or massless plus massive higher spins in AdS{sub d+1}. One may also study generalizations when conformal fields belong to higher dimensional representations, i.e. carry more than two internal symmetry indices. Here we consider the case of the 3-fundamental (“3-plet”) representation. One motivation is a conjectured connection to multiple M5-brane theory: heuristic arguments suggest that it may be related to an (interacting) CFT of 6d (2,0) tensor multiplets in 3-plet representation of large N symmetry group that has an AdS{sub 7} dual. We compute the singlet partition function Z on S{sup 1}×S{sup d−1} for a free field in 3-plet representation of U(N) and analyse its novel large N behaviour. The large N limit of the low temperature expansion of Z which is convergent in the vector and adjoint cases here is only asymptotic, reflecting the much faster growth of the number of singlet operators with dimension, indicating a phase transition at very low temperature. Indeed, while the critical temperatures in the vector (T{sub c}∼N{sup γ}, γ>0) and adjoint (T{sub c}∼1) cases are finite, we find that in the 3-plet case T{sub c}∼(log N){sup −1}, i.e. it approaches zero at large N. We discuss some details of large N solution for the eigenvalue distribution. Similar conclusions apply to higher p-plet representations of U(N) or O(N) and also to the free p-tensor theories invariant under [U(N)]{sup p} or [O(N)]{sup p} with p≥3. 18. Applications of zeta functions and other spectral functions in mathematics and physics: a special issue in honour of Stuart Dowker's 75th birthday Applications of zeta functions and other spectral functions in mathematics and physics: a special issue in honour of Stuart Dowker's 75th birthday Science.gov (United States) Dowker, Fay; Elizalde, Emilio; Kirsten, Klaus 2012-09-01 . Chapter 5 is devoted to the image and inversion methods and I must have read this closely as there are lots of marginal notes...' The second principle can be read off from the following quote: 'After reading Eddington circa 1960 it was clear to me (and others of course) there is a strong analogy (at least) between gravitation and electromagnetism ... (His work has very strongly influenced me.) So I played a game of asking for the gravitational analogues of existing electromagnetic concepts. The basic analogue is between field strength/charge and curvature/spin... [in that] ...spin, in general relativity, plays the passive role that charge plays in electromagnetism in the sense that it is the spin-curvature coupling that knocks a particle off a geodesic.' It is quite amazing how much of Stuart's work can be traced back to these principles. This is briefly explained in the following by describing some of his most important works. His most cited work [7] fits this bill and can be seen as doing what Julian Schwinger did in [8], for a constant electromagnetic field in the gravitational setting. In more detail he noticed Schulman's work on propagators on the three sphere [9], which he extended to Lie groups; see [10, 11]. He then noticed that having exact propagators, work like Schwinger's could be done and de Sitter space was a natural 'curved' candidate. The paper is best known for the mathematical technique introduced, namely for the zeta function method much used since for the computation of singular quantum field theoretic quantities like effective actions and the Casimir energy. The motivation for introducing this scheme goes back to reading an article of I M Gel'fand about some number theory problem involving zeta functions, image sums, propagators etc. How could an object occurring with other objects physicists were using all the time not be useful? It turned out to be very useful, although in this paper the method was only introduced but actually not used! This is 19. Orthogonal functions, discrete variable representation, and generalized gauss quadratures DEFF Research Database (Denmark) Schneider, B. I.; Nygaard, Nicolai 2002-01-01 in the original representation. This has been exploited in bound-state, scattering, and time-dependent problems using the so-called, discrete variable representation (DVR). At the core of this approach is the mathematical three-term recursion relationship satisfied by the classical orthogonal functions......, the distinction between spectral and grid approaches becomes blurred. In fact, the two approaches can be related by a similarity transformation. By the exploitation of this idea, calculations can be considerably simplified by removing the need to compute difficult matrix elements of the Hamiltonian...... functions, this is not the case. However, they may be computed in a stable numerical fashion, via the recursion. In essence, this is an application of the well-known Lanczos recursion approach. Once the recursion coefficients are known, it is possible to compute the points and weights of quadratures on... 20. Classical representation of wave functions for integrable systems International Nuclear Information System (INIS) Kay, Kenneth G. 2004-01-01 Classical exact (CE) wave functions are certain integral representations of energy eigenfunctions that are parameterized in terms of the motion of the corresponding classical system in a semiclassically relevant way. When applied to systems for which they are not exact, such expressions serve as semiclassical approximations. Previous work identified CE wave functions for a number of specific systems and established their semiclassical usefulness. This paper explores the degree to which such representations can be found for more general systems. It is shown that CE wave functions exist, in principle, for bound states of an arbitrary integrable system that are confined to a single classically allowed region. Evidence is presented that CE representations also exist for more general states of such a system that are unbound, or that extend over more than one allowed region. The CE expressions are not unique: an innumerable variety exists for each such system. The existence proof provides a formal method for constructing CE expressions by Fourier transforming certain superpositions of energy eigenstates. The parameterization in terms of the classical motion is achieved by identifying certain quantities in these superpositions as classical action and angle variables. The semiclassical relevance of this identification is ensured by imposing some mild conditions on the coefficients in the superposition. This procedure for parameterizing exact wave functions in terms of classical variables indicates a basic relationship between the quantum and classical descriptions of states. The method of constructing CE wave functions introduced in the proof is shown to be consistent with a number of previously obtained CE formulas and is used to derive two new, closed-form, CE expressions. A simple numerical example is presented to illustrate the semiclassical application of one of these expressions and to further verify the physical significance of the classical parameterization 1. Representation National Research Council Canada - National Science Library Little, Daniel 2006-01-01 ...). The reason this is so is due to hierarchies that we take for granted. By hierarchies I mean that there is a layer of representation of us as individuals, as military professional, as members of a military unit and as citizens of an entire nation... 2. Relationship between the Wigner function and the probability density function in quantum phase space representation International Nuclear Information System (INIS) Li Qianshu; Lue Liqiang; Wei Gongmin 2004-01-01 This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed 3. On Parameter Differentiation for Integral Representations of Associated Legendre Functions Directory of Open Access Journals (Sweden) Howard S. Cohl 2011-05-01 Full Text Available For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C{−1,1}→C given by f(z=z/((z+1^{1/2}(z−1^{1/2}. 4. Representation Science.gov (United States) 2006-09-01 two weeks to arrive. Source: http://beergame.mit.edu/ Permission Granted – MIT Supply Chain Forum 2005 Professor Sterman –Sloan School of...Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html Rules of Engagement The MIT Beer Game Simulation 04-04 Slide Number 10 Professor...Sterman –Sloan School of Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html What is the Significance of Representation 5. Representation of subharmonic functions in a half-plane International Nuclear Information System (INIS) Malyutin, K G; Sadik, N 2007-01-01 The theory of subharmonic functions of finite order is based to a considerable extent on integral formulae. In the present paper representations are obtained for subharmonic functions in the upper half-plane with more general growth γ(r) than finite order. The main result can be stated as follows. Let γ(r) be a growth function such that either lnγ(r) is a convex function of ln r or the lower order of γ(r) is infinite. Then for each proper subharmonic function v of growth γ(r) there exist an unbounded set R of positive numbers and a family (u R :R element of R) of proper subharmonic functions in the upper half-plane C + such that 1) the full measures of the u R in the discs |z|≤R are equal to the full measure of the function v-u R →0 uniformly on compact subsets of C + as R→∞, R element of R; 3) the function family {u R :R element of R} satisfies the growth constraints uniformly in R, that is, T(r,u R )≤Aγ(Br)/r, where A and B are constants and T(r, · ) is the growth characteristic. Bibliography: 16 titles. 6. From Fourier Series to Rapidly Convergent Series for Zeta(3) DEFF Research Database (Denmark) Scheufens, Ernst E 2011-01-01 The article presents a mathematical study which investigates the exact values of the Riemann zeta (ζ) function. It states that exact values can be determined from Fourier series for periodic versions of even power functions. It notes that using power series for logarithmic functions on this such ......The article presents a mathematical study which investigates the exact values of the Riemann zeta (ζ) function. It states that exact values can be determined from Fourier series for periodic versions of even power functions. It notes that using power series for logarithmic functions... 7. Representation of functions as the Post-Widder inversion operator of generalized functions Directory of Open Access Journals (Sweden) R. P. Manandhar 1984-01-01 Full Text Available A study is made of the Post-Widder inversion operator to a class of generalized functions in the sense of distributional convergence. Necessary and sufficient conditions are proved for a given function to have the representation as the rth operate of the Post-Widder inversion operator of generalized functions. Some representation theorems are also proved. Certain results concerning the testing function space and its dual are established. A fundamental theorem regarding the existence of the real inversion operator (1.6 with r=0 is proved in section 4. A classical inversion theory for the Post-Widder inversion operator with a few other theorems which are fundamental to the representation theory is also developed in this paper. 8. SYMBOLIC LANDSCAPE OF CONSCIOUSNESS: MAN BETWEEN REPRESENTATIONALISM, FUNCTIONALISM AND RELATIVISM Directory of Open Access Journals (Sweden) P. V. Kretov 2017-12-01 Full Text Available Purpose. The aim of the study is to clarify the changed interpretation of symbol in the context of the ontological turn in cultural anthropology and philosophical anthropology and their correlation with the functioning of the semantic field of culture, and in particular with religious symbols. The paper also considers an epistemological-ideological positions of representationalism, functionalism and relativism with respect to philosopheme of symbol. Methodology. The authors implemented theoretical and conceptual analysis in synchronic and diachronic aspects, the methodology of comparative consideration of the character within the analytical and existential paradigms in the 20th century philosophy. Originality. The work presents the study of correlation between aspect consideration of the nature and specific character in representationalism, functionalism and relativism within the philosophical projects of the cognitive position. The authors substantiated the position of symbol ontologization in the contemporary cultural and philosophical anthropology and the importance of convergence of the symbol concept and philosopheme with the concepts of an object and a thing. They fixed the value of the ontological turn in cultural anthropology for philosophical anthropology. The authors specifically examined the correlation between the declared symbol interpretation, project of object-oriented ontology and the modern philosophy of science. They substantiated ontological concept of symbolic landscape of modern philosophical anthropology, social philosophy and philosophy of mind. The symbol and religious symbolism have the significant importance for human identity, the symbol is considered to be the tool of human’s self-knowledge. Conclusions. The paper outlines the specific character of existence of symbol philosopheme in communicative field of modern man, the social media space, in particular the role of religious symbols for the construction of 9. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors. Science.gov (United States) Taupin, J L; Anderson, P 1994-12-01 The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization. 10. String operator formalism and functional intergal in the holomorphic representation International Nuclear Information System (INIS) Losev, A.S.; Morozov, A.Yu.; Rislyj, A.A.; Shatashvili, S.L. 1989-01-01 Connection between the continual integral over open Riemann surfaces and the operator formalism on closed Riemann surfaces is discussed. States of the operator formalism are the holomorphic representation of the continual integral 11. N-representability of the Jastrow wave function pair density of the lowest-order. Science.gov (United States) Higuchi, Katsuhiko; Higuchi, Masahiko 2017-08-08 Conditions for the N-representability of the pair density (PD) are needed for the development of the PD functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated from the Jastrow wave function within the lowest order. These conditions are used as the constraints on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable correlation function is also presented. 12. Closed-Form Representations of the Density Function and Integer Moments of the Sample Correlation Coefficient Directory of Open Access Journals (Sweden) Serge B. Provost 2015-07-01 Full Text Available This paper provides a simplified representation of the exact density function of R, the sample correlation coefficient. The odd and even moments of R are also obtained in closed forms. Being expressed in terms of generalized hypergeometric functions, the resulting representations are readily computable. Some numerical examples corroborate the validity of the results derived herein. 13. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation. Science.gov (United States) Wapenaar, Kees 2017-06-01 A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only. 14. Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Science.gov (United States) Lex, Heiko; Weigelt, Matthias; Knoblauch, Andreas; Schack, Thomas 2012-12-01 The aim of our study was to explore whether or not different types of learners in a sensorimotor task possess characteristically different cognitive representations. Participants' sensorimotor adaptation performance was measured with a pointing paradigm which used a distortion of the visual feedback in terms of a left-right reversal. The structure of cognitive representations was assessed using a newly established experimental method, the Cognitive Measurement of Represented Directions. A post hoc analysis revealed inter-individual differences in participants' adaptation performance, and three different skill levels (skilled, average, and poor adapters) have been defined. These differences in performance were correlated with the structure of participants' cognitive representations of movement directions. Analysis of these cognitive representations revealed performance advantages for participants possessing a global cognitive representation of movement directions (aligned to cardinal movement axes), rather than a local representation (aligned to each neighboring direction). Our findings are evidence that cognitive representation structures play a functional role in adaptation performance. 15. Wind models for zeta Orionis International Nuclear Information System (INIS) Olson, G.L. 1979-01-01 Several models for the winds of O stars have been proposed to explain the unexpected presence of high ionization potential ions such as N +4 and O +5 . Lamers and Snow (1978) proposed that the winds of stars showing N V and O VI lines have elevated temperatures near 4 +- 2 x 10 5 K while cooler stars with anomalous Si IV lines have Tsub(e) approximately 7+-3 x 10 4 K. Alternately, Cassinelli and Olson (1978, CO) and Olson (1978) have explained the presence of these ions by showing that a thin corona at the base of a cool wind (Tsub(e) < approximately Tsub(eff)) can produce these ions by the Auger photoionization process where a single X-ray photon causes the ejection of two electrons. A third possibility is that the winds are at only slightly elevated temperatures (40 000 to 60 000K) and photoionization in an optically thick wind produces the unexpected ions. The present analysis tests the ability of these three wind models to fit the observations of zeta Orionis A 09.7 Ib. (Auth.) 16. Time evolution of the Wigner function in the entangled-state representation International Nuclear Information System (INIS) Fan Hongyi 2002-01-01 For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained 17. Sum-over-histories representation for the causal Green function of free scalar field theory International Nuclear Information System (INIS) Rudolph, O. 1993-10-01 A set of Green functions G α (x-y), α element of [0, 2π], for free scalar field theory is introduced, varying between the Hadamard Green function Δ 1 (x-y) triple bond 0vertical stroke {φ(x), φ(y)}vertical stroke 0> and the causal Green function G π (x-y)=iΔ(x-y) triple bond [φ(x), φ(y)]. For every α element of [0, 2π] a path-integral representation for G α is obtained both in the configuration space and in the phase space of the classical relativistic particle. Especially setting α=π a sum-over-histories representation for the causal Green function is obtained. Furthermore using BRST theory an alternative path-integral representation for G α is presented. From these path integral representations the composition laws for the G α 's are derived using a modified path decomposition expansion. (orig.) 18. Weighted Anisotropic Integral Representations of Holomorphic Functions in the Unit Ball of Directory of Open Access Journals (Sweden) Arman Karapetyan 2010-01-01 Full Text Available We obtain weighted integral representations for spaces of functions holomorphic in the unit ball and belonging to area-integrable weighted -classes with “anisotropic” weight function of the type ∏=1(1−|1|2−|2|2−⋯−||2, =(1,2,…,∈. The corresponding kernels of these representations are estimated, written in an integral form, and even written out in an explicit form (for =2. 19. Feynman amplitude and the Meijer's function. A unified representation for divergent and convergent graphs Energy Technology Data Exchange (ETDEWEB) Kucheryavyi, V I 1974-12-31 A parametric alpha -representation of Feynman amplitude for any spinor graph, which is expressed in terms of the Meijer's G functions, is obtained. This representation is valid both for divergent and convergent graphs. The available ChisholmNakanishi-Symanzik alpha -representation for convergent scalar graph turns out to be a special of the formula obtained. Besides that, the expression has a number of useful features. This representation automatically removes the infrared divergencies connected with zero photon mass. The expression has a form in which the scale-invariant terms are explicitly separated from the terms breaking the invariance. It is shown by considering the simplest graphs of quantum electrodynamics that this representation keeps gauge invariance and Ward's identity for renormalized amplitudes. (auth) 20. Categorization and Representation of Functional Decomposition by Experts National Research Council Canada - National Science Library Melancon, Paul W 2008-01-01 ...), System Modeling Language (SySML), and Integration Definition for Function Modeling (IDEF0). A discussion is presented on advantages and limitations of describing and using functions by means of graphical formatting... 1. Status of the zeta(8.3) International Nuclear Information System (INIS) Lowe, S.T. 1985-05-01 Results are presented from 22.1 pb -1 of UPSILON(1S) data, taken with the Crystal Ball detector at DORIS. These data were taken to further explore the zeta(8.3) signal originally seen in 10.4 pb -1 of UPSILON(1S) data. No evidence for the zeta is observed in this new sample. Data quality checks and possible explanations are discussed 2. Representation of Gaussian semimartingales with applications to the covariance function DEFF Research Database (Denmark) Basse-O'Connor, Andreas 2010-01-01 stationary Gaussian semimartingales and their canonical decomposition. Thirdly, we give a new characterization of the covariance function of Gaussian semimartingales, which enable us to characterize the class of martingales and the processes of bounded variation among the Gaussian semimartingales. We... 3. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality. Science.gov (United States) Thakur, Deepika; Jain, Ashay; Ghoshal, Gargi; Shivhare, U S; Katare, O P 2017-07-01 β-Carotene, abundant majorly in carrot, pink guava yams, spinach, kale, sweet potato, and palm oil, is an important nutrient for human health due to its scavenging action upon reactive free radicals wherever produced in the body. Inclusion of liposoluble β-carotene in foods and food ingredients is a challenging aspect due to its labile nature and low absorption from natural sources. This fact has led to the application of encapsulation of β-carotene to improve stability and bioavailability. The present work was aimed to fabricate microcapsules (MCs) of β-carotene oily dispersion using the complex coacervation technique with casein (CA) and guar gum (GG) blend. The ratio of CA:GG was found to be 1:0.5 (w/v) when optimized on the basis of zeta potential-yield stress phenomenon. These possessed a higher percentage yield (71.34 ± 0.55%), lower particle size (176.47 ± 4.65 μm), higher encapsulation efficiency (65.95 ± 5.33%), and in general, a uniform surface morphology was observed with particles showing optimized release behavior. Prepared MCs manifested effective and controlled release (up to 98%) following zero-order kinetics which was adequately explained by the Korseymer-Peppas model. The stability of the freeze-dried MCs was established in simulated gastrointestinal fluids (SGF, SIF) for 8 h. Antioxidant activity of the MCs was studied and revealed the retention of the functional architecture of β-carotene in freeze-dried MCs. Minimal photolytic degradation upon encapsulation of β-carotene addressed the challenge regarding photo-stability of β-carotene as confirmed via mass spectroscopy. 4. Infinite-component conformal fields. Spectral representation of the two-point function International Nuclear Information System (INIS) Zaikov, R.P.; Tcholakov, V. 1975-01-01 The infinite-component conformal fields (with respect to the stability subgroup) are considered. The spectral representation of the conformally invariant two-point function is obtained. This function is nonvanishing as/lso for one ''fundamental'' and one infinite-component field 5. Representations of l-p-i functionals in gauge field theories International Nuclear Information System (INIS) Bordag, M.; Kaschluhn, L.; Matveev, V.A.; Robaschik, D. 1981-01-01 A representation of the functions which solve by construction the Slavnov-Taylor identities and contain independent coefficient functions is given. These solutions show the different role of the gauge field which acts in some respect as an ordinary field. The Slavnov-Taylor identities are solved for axial gauge conditions in non-Abelian gauge field theory and in quantum electrodynamics 6. A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions Directory of Open Access Journals (Sweden) Tomás Pérez Becerra 2018-01-01 Full Text Available Using a bounded bilinear operator, we define the Henstock-Stieltjes integral for vector-valued functions; we prove some integration by parts theorems for Henstock integral and a Riesz-type theorem which provides an alternative proof of the representation theorem for real functions proved by Alexiewicz. 7. What Does a Graphical Representation Mean for Students at the Beginning of Function Teaching? Science.gov (United States) Yavuz, Ilyas 2010-01-01 This study examines how students in the early stages of learning about the concept of functions, describe a curve and, in particular, evaluate the appropriateness of their argument about the representation of a function. Students are offered a message game which is related to a curve drawn on a coordinate system, representing an "imaginary… 8. Zeros da função zeta de Riemann e o teorema dos números primos OpenAIRE Oliveira, Willian Diego [UNESP 2013-01-01 We studied various properties of the Riemann’s zeta function. Three proofs of the Prime Number Theorem were provides. Classical results on zero-free region of the zeta function, as well as their relation to the error term in the Prime Number Theorem, were studied in details Estudamos várias propriedades da função zeta de Riemann. Três provas do Teorema dos Números Primos foram fornecidas. Resultados clássicos sobre regiões livres de zeros da função zeta, bem como sua relação com o termo do... 9. Fresnel representation of the Wigner function: an operational approach. Science.gov (United States) Lougovski, P; Solano, E; Zhang, Z M; Walther, H; Mack, H; Schleich, W P 2003-07-04 We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996) 10. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation Science.gov (United States) 2008-02-01 be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique 11. Sum-over-histories representation for the causal Green function of free scalar field theory International Nuclear Information System (INIS) Rudolph, O. 1995-01-01 A set of Green functions scrG α (x-y), α element-of[0,2π] for free scalar field theory is introduced, varying between the Hadamard Green function Δ 1 (x-y)==left-angle 0|{cphi(x),cphi(y)}|0 right-angle and the causal Green function scrG π (x-y)=iΔ(x-y)==[cphi(x),cphi(y)]. For every α element-of[0,2π] a path integral representation for scrG α is obtained both in configuration space and in the phase space of the classical relativistic particle. Setting α=π a sum-over-histories representation for the causal Green function is obtained. Furthermore, a reduced phase space integral representation for the scrG α 's is stated and an alternative BRST path integral representation for scrG α is presented. From these path integral representations the composition laws for the scrG α 's are derived using a modified path decomposition expansion 12. Unified double- and single-sided homogeneous Green’s function representations Science.gov (United States) van der Neut, Joost; Slob, Evert 2016-01-01 In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983 13. Wigner function and the probability representation of quantum states Directory of Open Access Journals (Sweden) Man’ko Margarita A. 2014-01-01 Full Text Available The relation of theWigner function with the fair probability distribution called tomographic distribution or quantum tomogram associated with the quantum state is reviewed. The connection of the tomographic picture of quantum mechanics with the integral Radon transform of the Wigner quasidistribution is discussed. The Wigner–Moyal equation for the Wigner function is presented in the form of kinetic equation for the tomographic probability distribution both in quantum mechanics and in the classical limit of the Liouville equation. The calculation of moments of physical observables in terms of integrals with the state tomographic probability distributions is constructed having a standard form of averaging in the probability theory. New uncertainty relations for the position and momentum are written in terms of optical tomograms suitable for directexperimental check. Some recent experiments on checking the uncertainty relations including the entropic uncertainty relations are discussed. 14. The representation of spacetime through steep time functions Science.gov (United States) Minguzzi, Ettore 2018-02-01 In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid for globally hyperbolic Lorentzian spacetimes. 15. Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions International Nuclear Information System (INIS) Khabibullin, Bulat N 2009-01-01 Let Λ={λ k } be a sequence of points in the complex plane C and f a non-trivial entire function of finite order ρ and finite type σ such that f=0 on Λ. Upper bounds for functions such as the Weierstrass-Hadamard canonical product of order ρ constructed from the sequence Λ are obtained. Similar bounds for meromorphic functions are also derived. These results are used to estimate the radius of completeness of a system of exponentials in C. Bibliography: 26 titles. 16. Multidimensional digital image representations using generalized Kaiser-Bessel window functions. Science.gov (United States) Lewitt, R M 1990-10-01 Inverse problems that require the solution of integral equations are inherent in a number of indirect imaging applications, such as computerized tomography. Numerical solutions based on discretization of the mathematical model of the imaging process, or on discretization of analytic formulas for iterative inversion of the integral equations, require a discrete representation of an underlying continuous image. This paper describes discrete image representations, in n-dimensional space, that are constructed by the superposition of shifted copies of a rotationally symmetric basis function. The basis function is constructed using a generalization of the Kaiser-Bessel window function of digital signal processing. The generalization of the window function involves going from one dimension to a rotationally symmetric function in n dimensions and going from the zero-order modified Bessel function of the standard window to a function involving the modified Bessel function of order m. Three methods are given for the construction, in n-dimensional space, of basis functions having a specified (finite) number of continuous derivatives, and formulas are derived for the Fourier transform, the x-ray transform, the gradient, and the Laplacian of these basis functions. Properties of the new image representations using these basis functions are discussed, primarily in the context of two-dimensional and three-dimensional image reconstruction from line-integral data by iterative inversion of the x-ray transform. Potential applications to three-dimensional image display are also mentioned. 17. On a Modeling of Online User Behavior Using Function Representation Directory of Open Access Journals (Sweden) Pavel Pesout 2012-01-01 Full Text Available Understanding the online user system requirements has become very crucial for online services providers. The existence of many users and services leads to different users’ needs. The objective of this presented piece of work is to explore the algorithms of how to optimize providers supply with proposing a new way to represent user requirements as continuous functions depending on time. We address the problems of the prediction the of system requirements and reducing model complexity by creating the typical user behavior profiles. 18. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGK{zeta} by attenuating its association with importins Energy Technology Data Exchange (ETDEWEB) Okada, Masashi; Hozumi, Yasukazu [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Ichimura, Tohru [Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Tanaka, Toshiaki; Hasegawa, Hiroshi; Yamamoto, Masakazu; Takahashi, Nobuya [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Iseki, Ken [Department of Emergency and Critical Care Medicine, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Yagisawa, Hitoshi [Laboratory of Biological Signaling, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297 (Japan); Shinkawa, Takashi; Isobe, Toshiaki [Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Goto, Kaoru, E-mail: kgoto@med.id.yamagata-u.ac.jp [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan) 2011-12-10 Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGK{zeta}, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGK{zeta}. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGK{zeta} binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGK{zeta} and NAP1Ls prohibits nuclear import of DGK{zeta} because binding of NAP1Ls to DGK{zeta} blocks import carrier proteins, Qip1 and NPI1, to interact with DGK{zeta}, leading to cytoplasmic tethering of DGK{zeta}. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGK{zeta} and provide a clue to examine functional significance of its translocation under pathological conditions. 19. 77 FR 72975 - Zeta Cypermethrin; Pesticide Tolerances Science.gov (United States) 2012-12-07 ... for quantifying risks, there is no increase in hazard with increasing dosing duration. Therefore, the... exposure models in the dietary exposure analysis and risk assessment for zeta-cypermethrin in drinking... the dietary exposure model. For acute dietary risk assessment, the water concentration value of 3.77... 20. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2 Science.gov (United States) Bentalha, Zine el abidine 2018-06-01 Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented. 1. Vladimir I Arnold - Collected Works Representations of Functions, Celestial Mechanics, and KAM Theory 1957-1965 CERN Document Server Arnold, Vladimir I; Khesin, Boris 2010-01-01 Vladimir Arnold is one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This first volume of his Collected Works focuses on representations of functions, celestial mechanics, and KAM theory. 2. Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory International Nuclear Information System (INIS) Gamboa, J. 1989-08-01 Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt 3. An Integral Representation of Standard Automorphic L Functions for Unitary Groups Directory of Open Access Journals (Sweden) Yujun Qin 2007-01-01 Full Text Available Let F be a number field, G a quasi-split unitary group of rank n. We show that given an irreducible cuspidal automorphic representation π of G(A, its (partial L function LS(s,π,σ can be represented by a Rankin-Selberg-type integral involving cusp forms of π, Eisenstein series, and theta series. 4. Representation of the three-body Coulomb Green's function in parabolic coordinates: paths of integration International Nuclear Information System (INIS) Zaytsev, S A 2010-01-01 The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation. 5. Tracing Growth of Teachers' Classroom Interactions with Representations of Functions in the Connected Classroom Science.gov (United States) Morton, Brian Lee The purpose of this study is to create an empirically based theoretic model of change of the use and treatment of representations of functions with the use of Connected Classroom Technology (CCT) using data previously collected for the Classroom Connectivity in Promoting Mathematics and Science Achievement (CCMS) project. Qualitative analysis of videotapes of three algebra teachers' instruction focused on different categories thought to influence teaching representations with technology: representations, discourse, technology, and decisions. Models for rating teachers low, medium, or high for each of these categories were created using a priori codes and grounded methodology. A cross case analysis was conducted after the completion of the case studies by comparing and contrasting the three cases. Data revealed that teachers' decisions shifted to incorporate the difference in student ideas/representations made visible by the CCT into their instruction and ultimately altered their orientation to mathematics teaching. The shift in orientation seemed to lead to the teachers' growth with regards to representations, discourse, and technology. 6. Representations of complex functions, means on the regular n-gon and applications to gravitational potential International Nuclear Information System (INIS) Bang, D; Elmabsout, B 2003-01-01 We present a method to analytically compute means of functions on regular n-gons and to study cyclic quantities of the complex variable. To achieve this, we construct representations of complex functions and compact expressions of their mean based on the use of a scalar product. Applied in the field of celestial mechanics, this method leads to results concerning gravitational potential and relative equilibrium composed by nested polygons 7. The design and performance of ZETA Energy Technology Data Exchange (ETDEWEB) Butt, E P; Carruthers, R; Mitchell, J T.D.; Pease, R S; Thonemann, P C [U.K. Atomic Energy Authority, AERE Harwell (United Kingdom); Bird, M A; Blears, J; Hartill, E R [Metropolitan Vickers Electrical Co. Ltd., Trafiord Park, Manchester 17 (United Kingdom) 1958-07-01 ZETA is an experimental apparatus for studying the pinched ring discharge as a possible method of producing controlled thermonuclear power. The principle of this method is that the self-magnetic field of the discharge current isolates the plasma from the walls of the discharge tube. The present paper reports the principal mechanical and electrical parameters, the performance as an electrical circuit, and our present knowledge of the physical characteristics of the plasma. 8. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures International Nuclear Information System (INIS) Zu-Guo, Yu; Qian-Jun, Xiao; Long, Shi; Jun-Wu, Yu; Anh, Vo 2010-01-01 Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos game representation (CGR) of randomly-linked functional protein sequences, then propose the use of the recurrent iterated function systems (RIFS) in fractal theory to simulate the measure based on their chaos game representations. This method helps to extract some features of functional protein sequences, and furthermore the biological functions of these proteins. Then multifractal analysis of the measures based on the CGRs of randomly-linked functional protein sequences are performed. We find that the CGRs have clear fractal patterns. The numerical results show that the RIFS can simulate the measure based on the CGR very well. The relative standard error and the estimated probability matrix in the RIFS do not depend on the order to link the functional protein sequences. The estimated probability matrices in the RIFS with different biological functions are evidently different. Hence the estimated probability matrices in the RIFS can be used to characterise the difference among linked functional protein sequences with different biological functions. From the values of the D q curves, one sees that these functional protein sequences are not completely random. The D q of all linked functional proteins studied are multifractal-like and sufficiently smooth for the C q (analogous to specific heat) curves to be meaningful. Furthermore, the D q curves of the measure μ based on their CGRs for different orders to link the functional protein sequences are almost identical if q ≥ 0. Finally, the C q curves of all linked functional proteins resemble a classical phase transition at a critical point. (cross-disciplinary physics and related areas of science and technology) 9. Wigner functions for noncommutative quantum mechanics: A group representation based construction Energy Technology Data Exchange (ETDEWEB) Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada) 2015-12-15 This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only. 10. Cognitive representations of sexual self differ as a function of gender and sexual debut. Science.gov (United States) Lindgren, Kristen P; Schacht, Rebecca L; Mullins, Peter M; Blayney, Jessica A 2011-02-01 This research evaluated the association between gender and sexual debut (initial sexual intercourse) and indirect measures of sexuality. A sample of 440 U.S. college students (pre-sexual debut: 144 women, 153 men; post-sexual debut: 49 women, 94 men) completed the Sexual Self-Schema Scale (SSSS), which assessed cognitive representations about sexual aspects of oneself, and three Implicit Association Tests (IAT), which measured the strength of the associations between the concepts of self + sex, women + sex, and men + sex. Results replicated previous findings that (1) men more strongly associated self + sex and women + sex than did women, and (2) men and women had similarly strong associations of men + sex. Post-sexual debut women's self + sexual and women + sexual associations were stronger than pre-sexual debut women's. Men's associations did not differ significantly as a function of sexual debut. Post-sexual debut women's SSSS scores were more direct, more romantic, and less conservative than pre-sexual debut women's. Post-sexual debut men's SSSS scores were more aggressive and more open-minded than pre-sexual debut men's. Sexual debut appeared to be associated with sexualized and sexually liberal cognitive representations in women and, to a lesser extent, sexually liberal and aggressive cognitive representations in men. Findings were consistent with theories of cognitive consistency and provide preliminary evidence that sexual debut status was associated with differing cognitive representations. 11. Crossmodal representation of a functional robotic hand arises after extensive training in healthy participants. Science.gov (United States) Marini, Francesco; Tagliabue, Chiara F; Sposito, Ambra V; Hernandez-Arieta, Alejandro; Brugger, Peter; Estévez, Natalia; Maravita, Angelo 2014-01-01 The way in which humans represent their own bodies is critical in guiding their interactions with the environment. To achieve successful body-space interactions, the body representation is strictly connected with that of the space immediately surrounding it through efficient visuo-tactile crossmodal integration. Such a body-space integrated representation is not fixed, but can be dynamically modulated by the use of external tools. Our study aims to explore the effect of using a complex tool, namely a functional prosthesis, on crossmodal visuo-tactile spatial interactions in healthy participants. By using the crossmodal visuo-tactile congruency paradigm, we found that prolonged training with a mechanical hand capable of distal hand movements and providing sensory feedback induces a pattern of interference, which is not observed after a brief training, between visual stimuli close to the prosthesis and touches on the body. These results suggest that after extensive, but not short, training the functional prosthesis acquires a visuo-tactile crossmodal representation akin to real limbs. This finding adds to previous evidence for the embodiment of functional prostheses in amputees, and shows that their use may also improve the crossmodal combination of somatosensory feedback delivered by the prosthesis with visual stimuli in the space around it, thus effectively augmenting the patients' visuomotor abilities. © 2013 Published by Elsevier Ltd. 12. An analysis of the accuracy of an initial value representation surface hopping wave function in the interaction and asymptotic regions International Nuclear Information System (INIS) Sergeev, Alexey; Herman, Michael F. 2006-01-01 The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schroedinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method 13. Integrated module inverter using a zeta DC-DC converter with feedforward MPPT (Maximum Power Point Tracking) control; Inversor modulo integrado utilizando um conversor CC-CC zeta com controle MPPT feedforward Energy Technology Data Exchange (ETDEWEB) Lopez, Henrique Fioravanti Miguel 2009-08-15 This work presents the study and development of a processing power system that could be used in the connection of renewable energy sources to commercial power grid. The system consists of a ZETA converter associated with a bridge inverter operating at low frequency. The Zeta converter, operating in discontinuous conduction mode (DCM), plays the main role in this arrangement, producing a rectified sinusoidal current waveform synchronized with the electric grid. The function of the full-bridge inverter, connected in cascade with the Zeta converter, is to reverse every 180 deg the current generated by the Zeta converter. Initially it presents the analysis of the Zeta converter operating in DCM, as well as a design criterion. Following by the control strategy and the experimental results for the proposed system are presented and discussed. (author) 14. Zeta potential in colloid science principles and applications CERN Document Server Hunter, Robert J; Rowell, R L 2013-01-01 Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu 15. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians Energy Technology Data Exchange (ETDEWEB) Kowalski, K., E-mail: karol.kowalski@pnnl.gov; Bhaskaran-Nair, K.; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States) 2014-09-07 In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function. 16. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians Energy Technology Data Exchange (ETDEWEB) Kowalski, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Bhaskaran-Nair, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA 2014-09-07 In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N - 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N - 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. Finally, as a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function. 17. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians International Nuclear Information System (INIS) Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A. 2014-01-01 In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function 18. GrDHP: a general utility function representation for dual heuristic dynamic programming. Science.gov (United States) Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V 2015-03-01 A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach. 19. Integral-functional representation of mass operator of quasiparticles interacting with polarizational phonons at T = 0 K International Nuclear Information System (INIS) Tkach, M.V. 2002-01-01 The integral-functional representation of mass operator of spinless quasiparticles interacting with polarizational phonons at T = 0 K is obtained for the first time. This representation is equivalent to the infinite branched integral fraction. It does not depend on the binding force and effectively takes into account the many phonon processes 20. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate Energy Technology Data Exchange (ETDEWEB) Opanchuk, B.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn VIC 3122 (Australia) 2013-04-15 We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors. 1. Momentum-space representation of Green's functions with modified dispersion on ultrastatic space-time International Nuclear Information System (INIS) Rinaldi, Massimiliano 2007-01-01 We consider Green's functions associated to a scalar field propagating on a curved, ultrastatic background, in the presence of modified dispersion relations. The usual proper-time DeWitt-Schwinger procedure to obtain a series representation of Green's functions is doomed to failure because of higher order spatial derivatives in the Klein-Gordon operator. We show how to overcome this difficulty by considering a preferred frame, associated to a unit timelike vector. With respect to this frame, we can express Green's functions as an integral over all frequencies of a space-dependent function. The latter can be expanded in momentum space, as a series with geometric coefficients similar to the DeWitt-Schwinger ones. By integrating over all frequencies, we finally find the expansion of Green's function up to four derivatives of the metric tensor. The relation with the proper-time formalism is also discussed 2. Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery. Directory of Open Access Journals (Sweden) Cornelia Frank Full Text Available Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers (N = 52 practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only. 3. Nonparametric Information Geometry: From Divergence Function to Referential-Representational Biduality on Statistical Manifolds Directory of Open Access Journals (Sweden) Jun Zhang 2013-12-01 Full Text Available Divergence functions are the non-symmetric “distance” on the manifold, Μθ, of parametric probability density functions over a measure space, (Χ,μ. Classical information geometry prescribes, on Μθ: (i a Riemannian metric given by the Fisher information; (ii a pair of dual connections (giving rise to the family of α-connections that preserve the metric under parallel transport by their joint actions; and (iii a family of divergence functions ( α-divergence defined on Μθ x Μθ, which induce the metric and the dual connections. Here, we construct an extension of this differential geometric structure from Μθ (that of parametric probability density functions to the manifold, Μ, of non-parametric functions on X, removing the positivity and normalization constraints. The generalized Fisher information and α-connections on M are induced by an α-parameterized family of divergence functions, reflecting the fundamental convex inequality associated with any smooth and strictly convex function. The infinite-dimensional manifold, M, has zero curvature for all these α-connections; hence, the generally non-zero curvature of M can be interpreted as arising from an embedding of Μθ into Μ. Furthermore, when a parametric model (after a monotonic scaling forms an affine submanifold, its natural and expectation parameters form biorthogonal coordinates, and such a submanifold is dually flat for α = ± 1, generalizing the results of Amari’s α-embedding. The present analysis illuminates two different types of duality in information geometry, one concerning the referential status of a point (measurable function expressed in the divergence function (“referential duality” and the other concerning its representation under an arbitrary monotone scaling (“representational duality”. 4. Wettability Studies Using Zeta Potential Measurements Directory of Open Access Journals (Sweden) Ghada Bassioni 2015-01-01 Full Text Available Wettability studies have been carried out on reservoir rocks using different techniques such as the Amott-Harvey method, the USBM method, and the contact angle method, all with limitations. In this study, the wettability is studied by discussing the surface charge using zeta potential measurements. The study relies on the finding that carbonated reservoir rocks, consisting of CaCO3 mainly, are positively charged and their surface has the potential to adsorb significant quantities of anions. Moreover, heavy fractions such as asphaltenes are reported to remain afloat depending on dispersive forces present in the oil and its various fractions. Experiments are carried out on aqueous limestone suspension with the addition of crude oil. The experiment is repeated with the use of polymeric inhibitors, A and B. The zeta potential is found to alter depending on the sequence of polymeric inhibitor in oil/water addition. The inhibitor is found to adsorb on the limestone surface, with a net negative charge, causing repulsion between crude oil and the inhibitor and, hence, preventing the deposition of heavy fractions and particularly asphaltenes. This study gives a comprehensive insight on the mechanism of polymeric inhibitor interaction with the surface and the effect of wettability on its performance. 5. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements. Science.gov (United States) Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M 2017-08-01 Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution. 6. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. Science.gov (United States) Tao, Guohua; Miller, William H 2011-07-14 An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations. 7. Basic hypergeometric functions and covariant spaces for even-dimensional representations of Uq[osp(1/2) International Nuclear Information System (INIS) Aizawa, N; Chakrabarti, R; Mohammed, S S Naina; Segar, J 2007-01-01 Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and is observed that they may be expressed in terms of the Q-Hahn polynomials. We next investigate representations of the quantum supergroup OSp q (1/2) which are not well defined in the classical limit. Employing the universal T-matrix, the representation matrices are obtained explicitly, and found to be related to the little Q-Jacobi polynomials. Characteristically, the relation Q = -q is satisfied in all cases. Using the Clebsch-Gordan coefficients derived here, we construct new noncommutative spaces that are covariant under the coaction of the even-dimensional representations of the quantum supergroup OSp q (1/2) 8. Functional organization and visual representations in human ventral lateral prefrontal cortex Directory of Open Access Journals (Sweden) Annie Wai Yiu Chan 2013-07-01 Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex. 9. No functional role of attention-based rehearsal in maintenance of spatial working memory representations. Science.gov (United States) Belopolsky, Artem V; Theeuwes, Jan 2009-10-01 The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations. 10. Representation of Probability Density Functions from Orbit Determination using the Particle Filter Science.gov (United States) Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell 2012-01-01 Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA. 11. Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian Science.gov (United States) Bender, Carl M.; Brody, Dorje C. 2018-04-01 The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction. 12. The multiple zeta value data mine Energy Technology Data Exchange (ETDEWEB) Buemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Broadhurst, D.J. [Open Univ., Milton Keynes (United Kingdom). Physics and Astronomy Dept.; Vermaseren, J.A.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); NIKHEF, Amsterdam (Netherlands) 2009-07-15 We provide a data mine of proven results for multiple zeta values (MZVs) of the form {zeta}(s{sub 1},s{sub 2},..,s{sub k}) = sum {sup {infinity}}{sub n{sub 1}}{sub >n{sub 2}}{sub >...>n{sub k}}{sub >0} {l_brace}1/(n{sub 1}{sup s{sub 1}}..n{sub k}{sup s{sub k}}){r_brace} with weight w = sum {sup K}{sub i=1}s{sub i} and depth k and for Euler sums of the form sum {sup {infinity}}{sub n{sub 1}}{sub >n{sub 2}}{sub >...>n{sub k}}{sub >0} {l_brace}({epsilon}{sub 1}{sup n{sub 1}}..{epsilon}{sub 1}{sup n{sub k}})/(n{sub 1}{sup s{sub 1}}..n{sub k}{sup s{sub k}}){r_brace} with signs {epsilon}{sub i} = {+-} 1. Notably, we achieve explicit proven reductions of all MZVs with weights w{<=}22, and all Euler sums with weights w{<=}12, to bases whose dimensions, bigraded by weight and depth, have sizes in precise agreement with the Broadhurst. Kreimer and Broadhurst conjectures. Moreover, we lend further support to these conjectures by studying even greater weights (w{<=}30), using modular arithmetic. To obtain these results we derive a new type of relation for Euler sums, the Generalized Doubling Relations. We elucidate the ''pushdown'' mechanism, whereby the ornate enumeration of primitive MZVs, by weight and depth, is reconciled with the far simpler enumeration of primitive Euler sums. There is some evidence that this pushdown mechanism finds its origin in doubling relations. We hope that our data mine, obtained by exploiting the unique power of the computer algebra language FORM, will enable the study of many more such consequences of the double-shuffle algebra of MZVs, and their Euler cousins, which are already the subject of keen interest, to practitioners of quantum field theory, and to mathematicians alike. (orig.) 13. Identifying thematic roles from neural representations measured by functional magnetic resonance imaging. Science.gov (United States) Wang, Jing; Cherkassky, Vladimir L; Yang, Ying; Chang, Kai-Min Kevin; Vargas, Robert; Diana, Nicholas; Just, Marcel Adam 2016-01-01 The generativity and complexity of human thought stem in large part from the ability to represent relations among concepts and form propositions. The current study reveals how a given object such as rabbit is neurally encoded differently and identifiably depending on whether it is an agent ("the rabbit punches the monkey") or a patient ("the monkey punches the rabbit"). Machine-learning classifiers were trained on functional magnetic resonance imaging (fMRI) data evoked by a set of short videos that conveyed agent-verb-patient propositions. When tested on a held-out video, the classifiers were able to reliably identify the thematic role of an object from its associated fMRI activation pattern. Moreover, when trained on one subset of the study participants, classifiers reliably identified the thematic roles in the data of a left-out participant (mean accuracy = .66), indicating that the neural representations of thematic roles were common across individuals. 14. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions. Science.gov (United States) Pan, Feng; Tao, Guohua 2013-03-07 Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF. 15. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum Energy Technology Data Exchange (ETDEWEB) Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S. [Dept. of Neurology D4, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan); Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. [Dept. of Radiology, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan) 2003-03-01 Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.) 16. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum International Nuclear Information System (INIS) Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S.; Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. 2003-01-01 Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.) 17. On complex-valued deautoconvolution of compactly supported functions with sparse Fourier representation International Nuclear Information System (INIS) Bürger, Steven; Flemming, Jens; Hofmann, Bernd 2016-01-01 Convergence rates results for the Tikhonov regularization of nonlinear ill-posed operator equations are missing, even for a Hilbert space setting, if a range type source condition fails and if moreover nonlinearity conditions of tangential cone type cannot be shown. This situation applies for a deautoconvolution problem in complex-valued L 2 -spaces over finite real intervals, occurring in a slightly generalized version in laser optics. For this problem we show that the lack of applicable convergence rates results can be overcome under the assumption that the solution of the operator equation has a sparse Fourier representation. Precisely, we derive a variational source condition for that case, which implies a convergence rate immediately. The surprising observation is that a sparsity assumption imposed on the solution leads to success, although the used norm square is not known to be a sparsity promoting penalty in the Tikhonov functional. (paper) 18. Functional integral representation of the nuclear many-body grand partition function International Nuclear Information System (INIS) Kerman, A.K.; Troudet, T. 1984-01-01 A local functional integral formulation of the nuclear many-body problem is proposed which is a generalization of the method previously developed. Its most interesting feature is that it allows an expansion of the many-body evolution operator around any arbitrary mean-field which takes into account the pairing correlations between the nucleons. This is explicitly illustrated for the nuclear many-body grand partition function for which special attention is paid to the static temperature-dependent Hartree-Fock-Bogolyubov (H.F.B.) approximation. Indeed, the temperature-dependent H.F.B. configuration appears to be the optimal choice from a variational point of view among all the possible independent quasi-particle motion approximations. An analytic approximation of the energy level density rho (E,A) is given using explicitly the arbitrariness in the choice of the mean-field and a possible numerical application is proposed. Finally, a new compact formulation of our functional integral that might be useful for future Monte Carlo calculations is proposed 19. Functional classification of protein structures by local structure matching in graph representation. Science.gov (United States) Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo 2018-03-31 As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society. 20. On the path integral representation of the Wigner function and the Barker–Murray ansatz International Nuclear Information System (INIS) Sels, Dries; Brosens, Fons; Magnus, Wim 2012-01-01 The propagator of the Wigner function is constructed from the Wigner–Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) , we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation. -- Highlights: ► We derive the quantum mechanical propagator of the Wigner function in the path integral representation. ► We show that the Barker–Murray ansatz is incomplete, explain the error and provide an alternative. ► An example of a Monte Carlo simulation of the semiclassical path integral is included. 1. Linear representation of algebras with non-associative operations which are satisfy in the balanced functional equations International Nuclear Information System (INIS) Ehsani, Amir 2015-01-01 Algebras with a pair of non-associative binary operations (f, g) which are satisfy in the balanced quadratic functional equations with four object variables considered. First, we obtain a linear representation for the operations, of this kind of binary algebras (A,f,g), over an abelian group (A, +) and then we generalize the linear representation of operations, to an algebra (A,F) with non-associative binary operations which are satisfy in the balanced quadratic functional equations with four object variables. (paper) 2. The multiple zeta value data mine International Nuclear Information System (INIS) Buemlein, J.; Broadhurst, D.J. 2009-07-01 We provide a data mine of proven results for multiple zeta values (MZVs) of the form ζ(s 1 ,s 2 ,..,s k ) = sum ∞ n 1 >n 2 >...>n k >0 {1/(n 1 s 1 ..n k s k )} with weight w = sum K i=1 s i and depth k and for Euler sums of the form sum ∞ n 1 >n 2 >...>n k >0 {(ε 1 n 1 ..ε 1 n k )/(n 1 s 1 ..n k s k )} with signs ε i = ± 1. Notably, we achieve explicit proven reductions of all MZVs with weights w≤22, and all Euler sums with weights w≤12, to bases whose dimensions, bigraded by weight and depth, have sizes in precise agreement with the Broadhurst. Kreimer and Broadhurst conjectures. Moreover, we lend further support to these conjectures by studying even greater weights (w≤30), using modular arithmetic. To obtain these results we derive a new type of relation for Euler sums, the Generalized Doubling Relations. We elucidate the ''pushdown'' mechanism, whereby the ornate enumeration of primitive MZVs, by weight and depth, is reconciled with the far simpler enumeration of primitive Euler sums. There is some evidence that this pushdown mechanism finds its origin in doubling relations. We hope that our data mine, obtained by exploiting the unique power of the computer algebra language FORM, will enable the study of many more such consequences of the double-shuffle algebra of MZVs, and their Euler cousins, which are already the subject of keen interest, to practitioners of quantum field theory, and to mathematicians alike. (orig.) 3. The role of patients' illness representations in coping and functioning with Addison's disease. OpenAIRE Heijmans, M. 1999-01-01 Objective: To examine the relationship between illness representations, coping behaviour and adaptive outcome in patients with Addison's disease (AD). Design: Cross-sectional. Following Leventhal's self-regulation model (Leventhal, Meyer & Nerenz, 1980), it was hypothesized that illness representations are directly associated with coping and, via coping, with adaptive outcome. Method: The illness representations held by 63 patients with a diagnosis of Addison's disease were explored using a q... 4. Evaluation of integrals with hypergeometric and logarithmic functions Directory of Open Access Journals (Sweden) Sofo Anthony 2018-02-01 Full Text Available We provide an explicit analytical representation for a number of logarithmic integrals in terms of the Lerch transcendent function and other special functions. The integrals in question will be associated with both alternating harmonic numbers and harmonic numbers with positive terms. A few examples of integrals will be given an identity in terms of some special functions including the Riemann zeta function. In general none of these integrals can be solved by any currently available mathematical package. 5. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations Science.gov (United States) Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A. 2018-02-01 Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary. 6. A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties International Nuclear Information System (INIS) Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F 2009-01-01 A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations 7. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. Science.gov (United States) Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I 2018-03-07 Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. 8. Zeta potential of Polish copper-bearing shale in the absence and presence of flotation frothers Directory of Open Access Journals (Sweden) Mengsu Peng 2014-09-01 Full Text Available In this paper, zeta potential as a function of pH of copper-bearing shale, which is mined in Poland by KGHM, was investigated. The measurements were conducted in water and aqueous solutions of selected flotation frothers. It was established that for investigated copper-bearing shale, after dispersion in water, the isoelectric point (IEP occurs at pH=3.5. Addition of frothers decreased the IEP on the pH scale and the IEP for butanol was 1.93, for MIBC 2.90 and for eicosaethylene glycol hexadecyl ether (C16E20 2.76. In the case of introducing frothers changed, the zeta potential becomes less negative. An empirical equation, having two adjustable parameters, was used in the paper to approximate the course of the zeta potential-pH curve. The equation showed a very good approximation of the zeta potential of the investigated shale either in water or frother aqueous solutions. 9. Involvement of proteasomal subunits zeta and iota in RNA degradation. Science.gov (United States) Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P 1997-01-01 We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855 10. Towards automated human gait disease classification using phase space representation of intrinsic mode functions Science.gov (United States) Pratiher, Sawon; Patra, Sayantani; Pratiher, Souvik 2017-06-01 A novel analytical methodology for segregating healthy and neurological disorders from gait patterns is proposed by employing a set of oscillating components called intrinsic mode functions (IMF's). These IMF's are generated by the Empirical Mode Decomposition of the gait time series and the Hilbert transformed analytic signal representation forms the complex plane trace of the elliptical shaped analytic IMFs. The area measure and the relative change in the centroid position of the polygon formed by the Convex Hull of these analytic IMF's are taken as the discriminative features. Classification accuracy of 79.31% with Ensemble learning based Adaboost classifier validates the adequacy of the proposed methodology for a computer aided diagnostic (CAD) system for gait pattern identification. Also, the efficacy of several potential biomarkers like Bandwidth of Amplitude Modulation and Frequency Modulation IMF's and it's Mean Frequency from the Fourier-Bessel expansion from each of these analytic IMF's has been discussed for its potency in diagnosis of gait pattern identification and classification. 11. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations. Science.gov (United States) Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M 2014-10-01 Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. 12. Spectrum response estimation for deep-water floating platforms via retardation function representation Science.gov (United States) Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin 2017-08-01 The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures. 13. Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system Directory of Open Access Journals (Sweden) O.V.Patsahan 2006-01-01 Full Text Available Based on the method of collective variables (CV with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the n-th particle correlation functions of the reference system which is presented as a m-component system of "colour" hard spheres of the same diameter. A two-component model is considered in more detail. In this case the recurrence formulas for the correlation functions are found. A general case of a m-component inhomogeneous system of the "colour" hard spheres is also analysed. 14. The role of patients' illness representations in coping and functioning with Addison's disease. NARCIS (Netherlands) Heijmans, M. 1999-01-01 Objective: To examine the relationship between illness representations, coping behaviour and adaptive outcome in patients with Addison's disease (AD). Design: Cross-sectional. Following Leventhal's self-regulation model (Leventhal, Meyer & Nerenz, 1980), it was hypothesized that illness 15. Positive-definite functions and unitary representations of locally compact groups in a Hilbert space International Nuclear Information System (INIS) Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M. 1977-08-01 It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology 16. Importance sampling and histogrammic representations of reactivity functions and product distributions in Monte Carlo quasiclassical trajectory calculations International Nuclear Information System (INIS) Faist, M.B.; Muckerman, J.T.; Schubert, F.E. 1978-01-01 The application of importance sampling as a variance reduction technique in Monte Carlo quasiclassical trajectory calculations is discussed. Two measures are proposed which quantify the quality of the importance sampling used, and indicate whether further improvements may be obtained by some other choice of importance sampling function. A general procedure for constructing standardized histogrammic representations of differential functions which integrate to the appropriate integral value obtained from a trajectory calculation is presented. Two criteria for ''optimum'' binning of these histogrammic representations of differential functions are suggested. These are (1) that each bin makes an equal contribution to the integral value, and (2) each bin has the same relative error. Numerical examples illustrating these sampling and binning concepts are provided 17. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval Science.gov (United States) Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost 2016-04-01 Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down. 18. The log-linear response function of the bounded number-line task is unrelated to the psychological representation of quantity. Science.gov (United States) Cohen, Dale J; Quinlan, Philip T 2018-02-01 The bounded number-line task has been used extensively to assess the numerical competence of both children and adults. One consistent finding has been that young children display a logarithmic response function, whereas older children and adults display a more linear response function. Traditionally, these log-linear functions have been interpreted as providing a transparent window onto the nature of the participants' psychological representations of quantity (termed here a direct response strategy). Here we show that the direct response strategy produces the log-linear response function regardless of whether the psychological representation of quantity is compressive or expansive. Simply put, the log-linear response function results from task constraints rather than from the psychological representation of quantities. We also demonstrate that a proportion/subtraction response strategy produces response patterns that almost perfectly correlate with the psychological representation of quantity. We therefore urge researchers not to interpret the log-linear response pattern in terms of numerical representation. 19. Applications of the representation of the Heisenberg-Euler Lagrangian by means of special functions International Nuclear Information System (INIS) Valluri, S.R.; Lamm, D.R.; Mielniczuk, W.J. 1993-01-01 A convenient series representation for the real part of the Heisenberg-Euler Lagrangian density of quantum electrodynamics for arbitrary nonvanishing electric fields, E, and magnetic fields, B, has been previously provided by Mielniczuk. Using this representation, numerical information for the Lagrangian is presented for the range 0 cr ≤ 5 and 0 cr ≤ 10 (subscript cr stands for critical) with the electric and magnetic fields parallel and E cr ∼ 1.7 X 10 16 V cm -1 and B cr ∼ 4.4 X 10 13 G. It was found that for a fixed electric field, the Lagrangian is monotonically increasing with increasing magnetic field strength. However, for a fixed magnetic field, the Lagrangian exhibits a positively valued maximum before turning monotonically decreasing with increasing electric field strength. Further, the series representation is extended to the case of vanishing electric or magnetic field. Numerical results for these special cases are in very close agreement with previous results, which indicated a maximum value for the Lagrangian density for B = 0 at E/E cr ∼ 3. Also, the techniques developed for deriving the real part of the Heisenberg-Euler Lagrangian are applied to the imaginary part to deduce a similar, convenient series representation that agrees with the previous results derived by others for the special case of a vanishing magnetic field. Possible applications of this Lagrangian to quantum chromodynamics are discussed. This series representation will be of use in calculations of a quantum-electrodynamical field energy density in the absence of real charges, and for calculations of polarization and magnetization of the vacuum. More accurate calculations of the cross-section scattering of light by light in the presence of a constant, homogeneous magnetic and (or) electric field are possible with the aid of this series representation. (author) 20. Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics Directory of Open Access Journals (Sweden) Marcos Moshinsky 2008-07-01 Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism. 1. No functional role of attention-based rehearsal in maintenance of spatial working memory representations NARCIS (Netherlands) Belopolsky, A.V.; Theeuwes, J. 2009-01-01 The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental 2. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 1: Zeta-potential Directory of Open Access Journals (Sweden) Milanović Dragan B. 2009-01-01 Full Text Available The aim of this work is the investigation of zeta-potential of the mineral scheelite from mine 'Rudnik', located in central Serbia. Electrophoresis measurements using zeta-meter were carried out on four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the zeta-potential of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. The results obtained reveal the importance of proper choice of water as well as the type of reagents for flotation processes. 3. Trait-based representation of hydrological functional properties of plants in weather and ecosystem models Directory of Open Access Journals (Sweden) Ashley M. Matheny 2017-02-01 Full Text Available Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings were both feasible and functional for early model generations, in light of the pace at which our knowledge of functional ecology, ecosystem demographics, and vegetation-climate feedbacks has advanced and the ever growing demand for enhanced model performance, these groupings have become antiquated and are identified as a key source of model uncertainty. The newest wave of model development is centered on shifting the vegetation paradigm away from plant functional types (PFTs and towards flexible trait-based representations. These models seek to improve errors in ecosystem fluxes that result from information loss due to over-aggregation of dissimilar species into the same functional class. We advocate the importance of the inclusion of plant hydraulic trait representation within the new paradigm through a framework of the whole-plant hydraulic strategy. Plant hydraulic strategy is known to play a critical role in the regulation of stomatal conductance and thus transpiration and latent heat flux. It is typical that coexisting plants employ opposing hydraulic strategies, and therefore have disparate patterns of water acquisition and use. Hydraulic traits are deterministic of drought resilience, response to disturbance, and other demographic processes. The addition of plant hydraulic properties in models may not only improve the simulation of carbon and water fluxes but also vegetation population distributions. 4. Influence of synthesis parameters on iron nanoparticle size and zeta potential Science.gov (United States) Goldstein, Nikki; Greenlee, Lauren F. 2012-03-01 Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents. 5. Influence of synthesis parameters on iron nanoparticle size and zeta potential Energy Technology Data Exchange (ETDEWEB) Goldstein, Nikki; Greenlee, Lauren F., E-mail: lauren.greenlee@nist.gov [National Institute of Standards and Technology, Materials Reliability Division (United States) 2012-03-15 Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO{sub 4}{center_dot}7H{sub 2}O or FeCl{sub 3}), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents. 6. Influence of synthesis parameters on iron nanoparticle size and zeta potential International Nuclear Information System (INIS) Goldstein, Nikki; Greenlee, Lauren F. 2012-01-01 Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO 4 ·7H 2 O or FeCl 3 ), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents. 7. Zeta Functions, Renormalization Group Equations, and the Effective Action International Nuclear Information System (INIS) Hochberg, D.; Perez-Mercader, J.; Molina-Paris, C.; Visser, M. 1998-01-01 We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum field theories. copyright 1998 The American Physical Society 8. Zeta-potential of fouled thin film composite membrane Energy Technology Data Exchange (ETDEWEB) Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering 1999-10-01 The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author) 9. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions Science.gov (United States) Lee, Gibbeum; Cho, Yeunwoo 2018-01-01 A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions. 10. Evaluation of fitting functions for the representation of an O(3P)+H2 potential energy surface. I International Nuclear Information System (INIS) Wagner, A.F.; Schatz, G.C.; Bowman, J.M. 1981-01-01 The DIM surface of Whitlock, Muckerman, and Fisher for the O( 3 P)+H 2 system is used as a test case to evaluate the usefulness of a variety of fitting functions for the representation of potential energy surfaces. Fitting functions based on LEPS, BEBO, and rotated Morse oscillator (RMO) forms are examined. Fitting procedures are developed for combining information about a small portion of the surface and the fitting function to predict where on the surface more information must be obtained to improve the accuracy of the fit. Both unbiased procedures and procedures heavily biased toward the saddle point region of the surface are investigated. Collinear quasiclassical trajectory calculations of the reaction rate constant and one and three dimensional transition state theory rate constant calculations are performed and compared for selected fits and the exact DIM test surface. Fitting functions based on BEBO and RMO forms are found to give quite accurate results 11. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures Science.gov (United States) Liu, Zhangjun; Liu, Zenghui 2018-06-01 This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness. 12. Vertex operator representation of the soliton tau functions in the An(1) Toda models by dressing transformations International Nuclear Information System (INIS) Belich, H.; Cuba, G.; Paunov, R. 1997-12-01 Affine Toda theories based on simple Lie algebras G are known to posses soliton solutions. Toda solitons has been found by Olive, Turok and Underwood within the group-theoretical approach to the integrable field equations. Single solitons are created by exponentials of special elements of the underlying affine Lie algebra which diagonalize the adjoint action of the principal Heisenberg subalgebra. When G is simply laced and level one representations are considered, the generators of the affine Lie algebra are expressed in terms of the principal Heisenberg oscillators. This representation is known as vertex operator construction. It plays a crucial role in the string theory as well as in the conformal field theory. Alternatively, solitons can be generated from the vacuum by dressing transformations. The problem to relate dressing symmetry to the vertex operator representation of the tau functions for the sine-Gordon model was previously considered by Babelon and Bernard. In the present paper, we extend this relation for arbitrary A (1) n Toda field theory. (author) 13. Hearing the music of the primes: auditory complementarity and the siren song of zeta International Nuclear Information System (INIS) Berry, M V 2012-01-01 A counting function for the primes can be rendered as a sound signal whose harmonies, spanning the gamut of musical notes, are the Riemann zeros. But the individual primes cannot be discriminated as singularities in this ‘music’, because the intervals between them are too short. Conversely, if the prime singularities are detected as a series of clicks, the Riemann zeros correspond to frequencies too low to be heard. The sound generated by the Riemann zeta function itself is very different: a rising siren howl, which can be understood in detail from the Riemann–Siegel formula. (fast track communication) 14. Structure and representation of correlation functions and the density matrix for a statistical wave field in optics International Nuclear Information System (INIS) Sudarshan, E.C.G.; Mukunda, N. 1978-03-01 A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two-point function identification of the excited modes in the wave field is found. The relative simplicity of the higher order correlation functions emerges as a by-product and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices aand of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited. 28 references 15. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers. Science.gov (United States) Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli 2012-07-21 We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers. 16. Representation of the radiative strength functions in the practical model of cascade gamma decay International Nuclear Information System (INIS) Vu, D.C.; Sukhovoj, A.M.; Mitsyna, L.V.; Zeinalov, Sh.; Jovancevic, N.; Knezevic, D.; Krmar, M.; Dragic, A. 2016-01-01 The developed in Dubna practical model of the cascade gamma decay of neutron resonance allows one, from the fitted intensities of the two-step cascades, to obtain parameters both of level density and of partial widths of emission of nuclear reaction products. In the presented variant of the model a part of phenomenological representations is minimized. Analysis of new results confirms the previous finding that dynamics of interaction between Fermi- and Bose-nuclear states depends on the form of the nucleus. It also follows from the ratios of densities of vibrational and quasi-particle levels that this interaction exists at least up to the binding neutron energy and probably differs for nuclei with varied parities of nucleons. [ru 17. Strange statistics, braid group representations and multipoint functions in the N-component model International Nuclear Information System (INIS) Lee, H.C.; Ge, M.L.; Couture, M.; Wu, Y.S. 1989-01-01 The statistics of fields in low dimensions is studied from the point of view of the braid group B n of n strings. Explicit representations M R for the N-component model, N = 2 to 5, are derived by solving the Yang-Baxter-like braid group relations for the statistical matrix R, which describes the transformation of the bilinear product of two N-component fields under the transposition of coordinates. When R 2 not equal to 1 the statistics is neither Bose-Einstein nor Fermi-Dirac; it is strange. It is shown that for each N, the N + 1 parameter family of solutions obtained is the most general one under a given set of constraints including charge conservation. Extended Nth order (N > 2) Alexander-Conway relations for link polynomials are derived. They depend nonhomogeneously only on one of the N + 1 parameters. The N = 3 and 4 ones agree with those previously derived 18. The Role of Representations in Executive Function: Investigating a Developmental Link Between Flexibility and Abstraction Directory of Open Access Journals (Sweden) Maria eKharitonova 2011-11-01 Full Text Available Young children often perseverate, engaging in previously correct, but no longer appropriate behaviors. One account posits that such perseveration results from the use of stimulus-specific representations of a situation, which are distinct from abstract, generalizable representations that support flexible behavior. Previous findings supported this account, demonstrating that only children who flexibly switch between rules could generalize their behavior to novel stimuli. However, this link between flexibility and generalization might reflect general cognitive abilities, or depend upon similarities across the measures or their temporal order. The current work examined these issues by testing the specificity and generality of this link. In two experiments with three-year-old children, flexibility was measured in terms of switching between rules in a card-sorting task, while abstraction was measured in terms of selecting which stimulus did not belong in an odd-one-out task. The link between flexibility and abstraction was general across (1 abstraction dimensions similar to or different from those in the card-sorting task and (2 abstraction tasks that preceded or followed the switching task. Good performance on abstraction and flexibility measures did not extend to all cognitive tasks, including an IQ measure, and dissociated from children’s ability to gaze at the correct stimulus in the odd-one-out task, suggesting that the link between flexibility and abstraction is specific to such measures, rather than reflecting general abilities that affect all tasks. We interpret these results in terms of the role that developing prefrontal cortical regions play in processes such as working memory, which can support both flexibility and abstraction. 19. Does Mother's Rather than Father's Attachment Representation Contribute to the Adolescent's Attachment Representation? Commentary on: "Maternal Adult Attachment Interview (AAI) Collected During Pregnancy Predicts Reflective Functioning in AAIs from their First-Born Children 17 Years Later" Science.gov (United States) Spangler, Gottfried 2016-01-01 In this commentary, Spangler evaluates the Steele, Perez, Segal, and Steele report that arguede that reflective functioning in adolescence could not be predicted by quality of early infant attachment, but was associated with maternal (but not paternal) attachment representation, assessed before the adolescents' birth. Assuming that parental… 20. Potencial zeta de sulfatos de de bario y de estroncio OpenAIRE Delgado M., Edgar 2010-01-01 Por medio de la electroforesis se determinó las movilidades electroforéticas y los potenciales zeta del sulfato de bario a 25,0 °C como función de la fuerza iónica de NaCI, así como del Sulfato de estroncio en función de la fuerza iónica del cloruro de sodio y del pH. Se encontró que el amento de la fuerza iónica de NaCI causa un cambio del Potencial Zeta negativo del sulfato de estroncio a positivo con valor cero a aprox. 0,06 de fuerza iónica. El P.Z. del sulfato de estroncio es positivo... 1. Representation of mathematical expectation of symmetrical functionals in the particle transport theory International Nuclear Information System (INIS) Uchajkin, V.V. 1977-01-01 The two-dimensional functional is used to show that the mathematical expectation of symmetrical functionals may be represented as a nonlinear functional obtained from the solution of the Boltzman equations (Green's function). For the highest moments of additive detector readings, which are a particular case of symmetrical functionals, a similar result was obtained by the author previously when he studied particles transport with and without multiplication. In physical terms such a concept is conditioned by the absence of moving particles with one another, the assumption of which is the basis of the linear transport theory 2. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software Science.gov (United States) Parks, Kelsey 2010-01-01 Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts. 3. Memory Contextualization: The Role of Prefrontal Cortex in Functional Integration across Item and Context Representational Regions. Science.gov (United States) Zhang, Wei; van Ast, Vanessa A; Klumpers, Floris; Roelofs, Karin; Hermans, Erno J 2018-04-01 Memory recall is facilitated when retrieval occurs in the original encoding context. This context dependency effect likely results from the automatic binding of central elements of an experience with contextual features (i.e., memory "contextualization") during encoding. However, despite a vast body of research investigating the neural correlates of explicit associative memory, the neural interactions during encoding that predict implicit context-dependent memory remain unknown. Twenty-six participants underwent fMRI during encoding of salient stimuli (faces), which were overlaid onto unique background images (contexts). To index subsequent context-dependent memory, face recognition was tested either in intact or rearranged contexts, after scanning. Enhanced face recognition in intact relative to rearranged contexts evidenced successful memory contextualization. Overall subsequent memory effects (brain activity predicting whether items were later remembered vs. forgotten) were found in the left inferior frontal gyrus (IFG) and right amygdala. Effective connectivity analyses showed that stronger context-dependent memory was associated with stronger coupling of the left IFG with face- and place-responsive areas, both within and between participants. Our findings indicate an important role for the IFG in integrating information across widespread regions involved in the representation of salient items and contextual features. 4. Generating relations of multi-variable Tricomi functions of two indices using Lie algebra representation Directory of Open Access Journals (Sweden) Nader Ali Makboul Hassan 2014-01-01 Full Text Available This paper is an attempt to stress the usefulness of the multi-variable special functions. In this paper, we derive certain generating relations involving 2-indices 5-variables 5-parameters Tricomi functions (2I5V5PTF by using a Lie-algebraic method. Further, we derive certain new and known generating relations involving other forms of Tricomi and Bessel functions as applications. 5. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials Science.gov (United States) Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F. 2017-09-01 The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls. 6. Functional and Behavioral Product Information Representation and Consistency Validation for Collaboration in Product Lifecycle Activities Science.gov (United States) Baysal, Mehmet Murat 2012-01-01 Information models that represent the function, assembly and behavior of artifacts are critical in the conceptual development of a product and its evaluation. Much research has been conducted in this area; however, existing models do not relate function, behavior and structure in a comprehensive and consistent way. In this work, NIST's Core… 7. Some integral representations and limits for (products of) the parabolic cylinder function NARCIS (Netherlands) Veestraeten, D. 2016-01-01 Recently, [Veestraeten D. On the inverse transform of Laplace transforms that contain (products of) the parabolic cylinder function. Integr Transf Spec F 2015;26:859-871] derived inverse Laplace transforms for Laplace transforms that contain products of two parabolic cylinder functions by exploiting 8. On- and off-shell Jost functions and their integral representations Indian Academy of Sciences (India) interaction. The above equation involves certain tedious indefinite integrals. To circumvent these difficulties in analytical calculations, the irregular Green's function for Coulomb–. Yamaguchi potential is expressed in terms of pure Coulomb irregular Green's function and their integral transforms as. G(I )(r, r ) = GC(I)(r, r ) +. 9. Time-domain representation of frequency-dependent foundation impedance functions Science.gov (United States) Safak, E. 2006-01-01 Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method. 10. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation. Science.gov (United States) Tao, Guohua; Miller, William H 2012-09-28 An efficient time-dependent (TD) Monte Carlo (MC) importance sampling method has recently been developed [G. Tao and W. H. Miller, J. Chem. Phys. 135, 024104 (2011)] for the evaluation of time correlation functions using the semiclassical (SC) initial value representation (IVR) methodology. In this TD-SC-IVR method, the MC sampling uses information from both time-evolved phase points as well as their initial values, and only the "important" trajectories are sampled frequently. Even though the TD-SC-IVR was shown in some benchmark examples to be much more efficient than the traditional time-independent sampling method (which uses only initial conditions), the calculation of the SC prefactor-which is computationally expensive, especially for large systems-is still required for accepted trajectories. In the present work, we present an approximate implementation of the TD-SC-IVR method that is completely prefactor-free; it gives the time correlation function as a classical-like magnitude function multiplied by a phase function. Application of this approach to flux-flux correlation functions (which yield reaction rate constants) for the benchmark H + H(2) system shows very good agreement with exact quantum results. Limitations of the approximate approach are also discussed. 11. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge Science.gov (United States) Harle, Marissa; Towns, Marcy H. 2012-01-01 Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis… 12. Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction International Nuclear Information System (INIS) Gao, Xiankun; Cui, Yan; Hu, Jianjun; Xu, Guangyin; Yu, Yongchang 2016-01-01 Highlights: • Lambert W-function based exact representation (LBER) is presented for double diode model (DDM). • Fitness difference between LBER and DDM is verified by reported parameter values. • The proposed LBER can better represent the I–V and P–V characteristics of solar cells. • Parameter extraction difference between LBER and DDM is validated by two algorithms. • The parameter values extracted from LBER are more accurate than those from DDM. - Abstract: Accurate modeling and parameter extraction of solar cells play an important role in the simulation and optimization of PV systems. This paper presents a Lambert W-function based exact representation (LBER) for traditional double diode model (DDM) of solar cells, and then compares their fitness and parameter extraction performance. Unlike existing works, the proposed LBER is rigorously derived from DDM, and in LBER the coefficients of Lambert W-function are not extra parameters to be extracted or arbitrary scalars but the vectors of terminal voltage and current of solar cells. The fitness difference between LBER and DDM is objectively validated by the reported parameter values and experimental I–V data of a solar cell and four solar modules from different technologies. The comparison results indicate that under the same parameter values, the proposed LBER can better represent the I–V and P–V characteristics of solar cells and provide a closer representation to actual maximum power points of all module types. Two different algorithms are used to compare the parameter extraction performance of LBER and DDM. One is our restart-based bound constrained Nelder-Mead (rbcNM) algorithm implemented in Matlab, and the other is the reported R_c_r-IJADE algorithm executed in Visual Studio. The comparison results reveal that, the parameter values extracted from LBER using two algorithms are always more accurate and robust than those from DDM despite more time consuming. As an improved version of DDM, the 13. Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence Directory of Open Access Journals (Sweden) Veerle Neyens 2017-08-01 Full Text Available According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory. 14. Systemic functional grammar in natural language generation linguistic description and computational representation CERN Document Server Teich, Elke 1999-01-01 This volume deals with the computational application of systemic functional grammar (SFG) for natural language generation. In particular, it describes the implementation of a fragment of the grammar of German in the computational framework of KOMET-PENMAN for multilingual generation. The text also presents a specification of explicit well-formedness constraints on syntagmatic structure which are defined in the form of typed feature structures. It thus achieves a model of systemic functional grammar that unites both the strengths of systemics, such as stratification, functional diversification 15. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways OpenAIRE Mi, Huaiyu; Guo, Nan; Kejariwal, Anish; Thomas, Paul D. 2006-01-01 PANTHER is a freely available, comprehensive software system for relating protein sequence evolution to the evolution of specific protein functions and biological roles. Since 2005, there have been three main improvements to PANTHER. First, the sequences used to create evolutionary trees are carefully selected to provide coverage of phylogenetic as well as functional information. Second, PANTHER is now a member of the InterPro Consortium, and the PANTHER hidden markov Models (HMMs) are distri... 16. Algorithms for Some Euler-Type Identities for Multiple Zeta Values Directory of Open Access Journals (Sweden) Shifeng Ding 2013-01-01 Full Text Available Multiple zeta values are the numbers defined by the convergent series ζ(s1,s2,…,sk=∑n1>n2>⋯>nk>0(1/n1s1 n2s2⋯nksk, where s1, s2, …, sk are positive integers with s1>1. For k≤n, let E(2n,k be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. The well-known result E(2n,2=3ζ(2n/4 was extended to E(2n,3 and E(2n,4 by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers E(2n,k and then gave a direct formula for E(2n,k for arbitrary k≤n. In this paper we apply a technique introduced by Granville to present an algorithm to calculate E(2n,k and prove that the direct formula can also be deduced from Eisenstein's double product. 17. Introducing Algebra through the Graphical Representation of Functions: A Study among LD Students Science.gov (United States) Sauriol, Jennifer 2013-01-01 This longitudinal study evaluates the impact of a new Algebra 1 course at a High School for language-based learning-disabled (LD) students. The new course prioritized the teaching of relationship graphs and functions as an introduction to algebra. Across three studies, the dissertation documents and evaluates the progress made by LD high school… 18. THE ADVANTAGES OF THE DISTRIBUTION FUNCTION AS A METHOD OF GRAPHICAL REPRESENTATION OF THE ECONOMIC STRUCTURE OF SOCIETY Directory of Open Access Journals (Sweden) V. A. Kapitanov 2018-01-01 Full Text Available The aim of the paper is to compare three different methods of graphical representation of the inequality: using frequency polygons, Lorentz curves and distribution functions. It is shown that for the representation of real (i.e. incomplete data, the last is most appropriate. The method of investigation consists in verifying the conformity of the method of graphical representation of inequality to the following three requirements:1. Insensitivity of the method to the quantization of data.2. Sensitivity to the width of the entire range of income from zero to income of the richest person provided that information about the wealthy members of society might be incomplete.3. Visibility. The curve, describing the inequality must have characteristic points (extremes, bends so that it can be somehow identified. The presence of features in the economic structure of society must be reflected in the qualitative behavior of the curves. The demand is caused by the necessity to draw a conclusion about the mechanism of the movement of goods in society, which led to the appearance of a curve of exactly this form.The work analyzed direct data on the incomes of Russian citizens published by ROSSTAT (Federal State Statistics Service, Forbes magazine and the Federal Tax Service, indirect data on incomes determined by the distribution of car prices (from two independent sources and real estate, as well as data from the Credit Suisse Research Institute about property inequality in Russia. The following main conclusions were made. The course of the curves that characterize the real distribution of the population by income, suggests that in society there is only one mechanism for the movement of goods. This is a mechanism of rank exchange, in which the interaction of rich and poor economic agents is characterized by a shift in market prices in favor of the rich and the greater, the more resources the latter has.The frequency polygons (and therefore the histograms do not 19. Introduction of an Elementary Method to Express\\zeta(2n+1)$in Terms of$\\zeta(2k)$with$k\\geq 1$OpenAIRE Fujii, Kazuyuki; Suzuki, Tatsuo 2008-01-01 In this note we give the most elementary method (as far as we know) to express$\\zeta(2n+1)$in terms of$\\{\\zeta(2k)|k\\geq 1\\}. The method is based on only some elementary works by Leonhard Euler, so it is very instructive to non-experts or students. 20. Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function OpenAIRE Kerstens, Kristiaan; Mounier, Amine; Van de Woestyne, Ignace 2008-01-01 The literature suggests that investors prefer portfolios based on mean, variance and skewness rather than portfolios based on mean-variance (MV) criteria solely. Furthermore, a small variety of methods have been proposed to determine mean-variance-skewness (MVS) optimal portfolios. Recently, the shortage function has been introduced as a measure of efficiency, allowing to characterize MVS optimalportfolios using non-parametric mathematical programming tools. While tracing the MV portfolio fro... 1. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD Energy Technology Data Exchange (ETDEWEB) Wissel, S. 2006-10-15 In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T{sub c}. Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T{sub c} at nearly zero quark masses. At 1.24 T{sub c}, the occurrence of topological effects, a sign for the presence of a still broken U(1){sub A} symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T{sub c} cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.) 2. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD International Nuclear Information System (INIS) Wissel, S. 2006-10-01 In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.) 3. Can theories of visual representation help to explain asymmetries in amygdala function? OpenAIRE McMenamin, Brenton W.; Marsolek, Chad J. 2013-01-01 Emotional processing differs between the left and right hemispheres of the brain, and functional differences have been reported more specifically between the left amygdala and right amygdala, subcortical structures heavily implicated in emotional processing. However, the empirical pattern of amygdalar asymmetries is inconsistent with extant theories of emotional asymmetries. Here we review this discrepancy, and we hypothesize that hemispheric differences in visual object processing help to ex... 4. Potencial zeta de sulfatos de de bario y de estroncio Directory of Open Access Journals (Sweden) Edgar Delgado M. 2010-06-01 Full Text Available Por medio de la electroforesis se determinó las movilidades electroforéticas y los potenciales zeta del sulfato de bario a 25,0 °C como función de la fuerza iónica de NaCI, así como del Sulfato de estroncio en función de la fuerza iónica del cloruro de sodio y del pH. Se encontró que el amento de la fuerza iónica de NaCI causa un cambio del Potencial Zeta negativo del sulfato de estroncio a positivo con valor cero a aprox. 0,06 de fuerza iónica. El P.Z. del sulfato de estroncio es positivo a pH inferiores a aprox. 2,5 y negativo a pH superiores. El sulfato de bario presenta P.Z. negativas a fuerza iónicas de NaCI inferiores a aprox. 0.06 y PZ positivos a fuerzas iónicas mayores 5. Measuring the zeta potential. The relationships with sandstone fineness Directory of Open Access Journals (Sweden) de Luxán, M. P. 1989-09-01 Full Text Available The application of the zeta potential technique in the area of construction materials and Portland cement is quite recent. The initial research work involved the study of cement suspensions or suspensions of one of the components of cement, such as alite, tricalcium alumínate, in the presence of additives and, more specifically, superplasticizers. The studies of this sort were extended with the mixing of active additions into cement (fly ashes, etc.. The present study discusses the application of siliceous materials (sandstone as a basis of the research into the behaviour of sandstone mortars containing repair products. La aplicación de la técnica del potencial zeta en el campo de los materiales de construcción y del cemento portland es muy reciente. Las primeras investigaciones se refieren al estudio de suspensiones de cemento o de alguno de sus compuestos que lo forman como alita, aluminato tricálcico, en presencia de aditivos y, más concretamente, de superfluidificantes. Con la incorporación de adiciones activas al cemento (cenizas volantes,... se amplían los estudios de este tipo de cementos. En este trabajo se considera la aplicación a los materiales silíceos (arenisca como base para la investigación del comportamiento de los morteros de arenisca conteniendo productos de reparación. 6. Shared Action Spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action Directory of Open Access Journals (Sweden) Giovanni ePezzulo 2013-11-01 Full Text Available The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to incorporate information relative to the other actor(s, similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. 7. Analytical representation of time correlation functions and application to relaxation problems; Representation analytique des fonctions de correlation temporelle et application a des problemes de relaxation Energy Technology Data Exchange (ETDEWEB) Dupuis, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, departement de physico-chimie, services des isotopes stables 1971-07-01 Two analytical representations of the Laplace transform of the time autocorrelation of a dynamical variable, namely the moment expansion and Mori's continued fraction expansion, are investigated from the point of view of structure and convergence properties, and the relation between them is established. The general theory is applied first to a dynamical model exactly solvable, the isotopic impurity in a linear chain of coupled harmonic oscillators, and then to two stochastic models recently introduced by Gordon for the rotational diffusion of molecules. In the latter case, the continued fraction expansion yields simple analytical expressions for the infrared absorption band shapes, showing that these models contain all the features of observed shapes in compressed gases, liquids and solutions. (author) [French] Deux representations analytiques de la transformee de Laplace de la fonction d'autocorrelation temporelle d'une variable dynamique, le developpement en moments et le developpement en fraction continue recemment introduit par Mori, sont etudiees du point de vue de leurs proprietes de structure et de convergence, en meme temps que la relation qui existe entre elles est etablie. La theorie generale est appliquee, d'une part, a un modele dynamique exactement soluble, celui d'une particule isotopique dans une chaine lineaire d'oscillateurs harmoniques couples, et, d'autre part, a deux modeles stochastiques recemment proposes par Gordon pour la diffusion rotationnelle des molecules. Dans ce dernier cas, la voie de la fraction continue fournit des expressions analytiques simples pour les formes de bande d'absorption infrarouge, montrant que ces modeles possedent les caracteristiques des formes observees dans les gaz comprimes, les liquides ou les solutions. (auteur) 8. Representation Elements of Spatial Thinking Science.gov (United States) Fiantika, F. R. 2017-04-01 This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation. 9. FINITE MARKOV CHAINS IN THE MODEL REPRESENTATION OF THE HUMAN OPERATOR ACTIVITY IN QUASI-FUNCTIONAL ENVIRONMENT Directory of Open Access Journals (Sweden) M. V. Serzhantova 2016-05-01 Full Text Available Subject of Research. We analyze the problems of finite Markov chains apparatus application for simulating a human operator activity in the quasi-static functional environment. It is shown that the functional environment stochastic nature is generated by a factor of interval character of human operator properties. Method. The problem is solved in the class of regular (recurrent finite Markov chains with three states of the human operator: with a favorable, median and unfavorable combination of the values of mathematical model parameters of the human operator in a quasi-static functional environment. The finite Markov chain is designed taking into account the factors of human operator tiredness and interval character of parameters of the model representation of his properties. The device is based on the usage of mathematical approximation of the standard curve of the human operator activity performance during work shift. The standard curve of the human operator activity performance is based on the extensive research experience of functional activity of the human operator with the help of photos of the day, his action timing and ergonomic generalizations. Main Results. The apparatus of regular finite Markov chains gave the possibility to evaluate correctly the human operator activity performance in a quasi-static functional environment with the use of the main information component of these chains as a vector of final probabilities. In addition, we managed to build an algorithmic basis for estimating the stationary time (time study for transit of human operator from arbitrary initial functional state into a state corresponding to a vector of final probabilities for a used chain after it reaches the final state based on the analysis of the eigenvalues spectrum of the matrix of transition probabilities for a regular (recurrent finite Markov chain. Practical Relevance. Obtained theoretical results are confirmed by illustrative examples, which 10. Do Women Really have More Bilateral Language Representation than Men?: A Meta-Analysis of Functional Imaging Studies Science.gov (United States) Sommer, Iris E. C.; Aleman, Andre; Bouma, Anke; Kahn, Rene S. 2004-01-01 Sex differences in cognition are consistently reported, men excelling in most visuospatial tasks and women in certain verbal tasks. It has been hypothesized that these sex differences in cognition results from a more bilateral pattern of language representation in women than in men. This bilateral pattern of language representation in women is… 11. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles. Science.gov (United States) Kwak, Dong-Heui; Kim, Mi-Sug 2015-01-01 The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF. 12. A Possible Massive Asteroid Belt Around\\zeta$Lep CERN Document Server Chen Chuan Hung 2001-01-01 We have used the Keck I telescope to image at 11.7 microns and 17.9 microns the dust emission around zeta Lep, a main sequence A-type star at 21.5 pc from the Sun with an infrared excess. The excess is at most marginally resolved at 17.9 microns. The dust distance from the star is probably less than or equal to 6 AU, although some dust may extend to 9 AU. The mass of observed dust is \\~10^22 g. Since the lifetime of dust particles is about 10,000 years because of the Poytning-Robertson effect, we robustly estimate at least 4 10^26 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ~300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system. 13. The Extension of Quality Function Deployment Based on 2-Tuple Linguistic Representation Model for Product Design under Multigranularity Linguistic Environment Directory of Open Access Journals (Sweden) Ming Li 2012-01-01 Full Text Available Quality function deployment (QFD is a customer-driven approach for product design and development. A QFD analysis process includes a series of subprocesses, such as determination of the importance of customer requirements (CRs, the correlation among engineering characteristics (ECs, and the relationship between CRs and ECs. Usually more than group of one decision makers are involved in the subprocesses to make the decision. In most decision making problems, they often provide their evaluation information in the linguistic form. Moreover, because of different knowledge, background, and discrimination ability, decision makers may express their linguistic preferences in multigranularity linguistic information. Therefore, an effective approach to deal with the multi-granularity linguistic information in QFD analysis process is highly needed. In this study, the QFD methodology is extended with 2-tuple linguistic representation model under multi-granularity linguistic environment. The extended QFD methodology can cope with multi-granularity linguistic evaluation information and avoid the loss of information. The applicability of the proposed approach is demonstrated with a numerical example. 14. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations Directory of Open Access Journals (Sweden) Jian Ou 2017-03-01 Full Text Available The extensive applications of multi-function radars (MFRs have presented a great challenge to the technologies of radar countermeasures (RCMs and electronic intelligence (ELINT. The recently proposed cognitive electronic warfare (CEW provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR. With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity. 15. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations. Science.gov (United States) Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping 2017-03-19 The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity. 16. Poetic representation DEFF Research Database (Denmark) Wulf-Andersen, Trine Østergaard 2012-01-01 , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social... 17. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Science.gov (United States) Kirby, Brian J; Hasselbrink, Ernest F 2004-01-01 This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration. 18. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials Science.gov (United States) Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O. 2017-06-01 In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes. 19. Zeta potentials in the flotation of oxide and silicate minerals. Science.gov (United States) Fuerstenau, D W; Pradip 2005-06-30 Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems. 20. Detection of interstellar (C-13)N toward Zeta Ophiuchi International Nuclear Information System (INIS) Crane, P.; Hegyi, D.J. 1988-01-01 Observations of a diffuse interstellar cloud toward Zeta Oph, obtained with resolution 100,000-150,000 near the 3874.608-A R(0) line of (C-12)N using a coude echelle spectrograph on the 1.4-m telescope at ESO during 1984 and 1985, are reported. Data from 54 20-min runs were fitted to Gaussian line shapes using the line center, depth, and width of the R(0) and R(1) lines of (C-12)N and the line center and depth of the R(0) line of (C-13)N as fitting parameters. The (C-13)N R(0) line, with equivalent width 0.190 + or - 0.020 mA, was detected 173.7 + or - 0.8 mA to the red of (C-12)N R(0); the corresponding isotope abundance ratio, (C-12)N/(C-13)N = 47.3 + 5.5 or -4.4, is shown to be in good agreement with previous measurements for CH(+) (Hawkins et al., 1985). 13 references 1. Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies NARCIS (Netherlands) Sommer, IEC; Aleman, A; Bouma, A; Kahn, RS Sex differences in cognition are consistently reported, men excelling in most visuospatial tasks and women in certain verbal tasks. It has been hypothesized that these sex differences in cognition results from a more bilateral pattern of language representation in women than in men. This bilateral 2. Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences. Science.gov (United States) Arena, Simona; D'Ambrosio, Chiara; Vitale, Monica; Mazzeo, Fiorella; Mamone, Gianfranco; Di Stasio, Luigia; Maccaferri, Marco; Curci, Pasquale Luca; Sonnante, Gabriella; Zambrano, Nicola; Scaloni, Andrea 2017-06-06 -DIGE-based comparative analysis of the albumin/globulin fraction from durum wheat caryopses at six developmental stages was performed to describe the dynamic subproteomic changes associated with grain development. Quantitative variations of 217 differentially proteins demonstrated that highly affected are the functional categories of carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division, which displayed a general over-representation, consistently with concomitant occurrence of grain size increase and starch/protein reserve accumulation. Bioinformatics revealed a complex protein network centered mainly at enzymes involved in carbon and protein metabolism. Differentially represented proteins and corresponding functional categories highly resembled those previously identified as variable in developing bread wheat grain. This suggests that the main differences in kernel hardness between durum and bread wheat probably do not depend on proteomic changes in corresponding albumins/globulins, but on other specific factors affecting the interaction between the starch granules and the endosperm protein matrix in the kernel. Copyright © 2017 Elsevier B.V. All rights reserved. 3. Mexsyco project: representation of power plan control-instrumentation functions. Bibliographical analysis and conclusions; Projet Mexsyco: representation des fonctions de controle-commande des centrales. Analyse bibliographique et conclusions Energy Technology Data Exchange (ETDEWEB) Brunet, M 1994-03-01 The study covered in this paper is designed to review the current situation in terms of functional analysis, in order to find a functional analysis method for mechanical parts able to serve as a substrate for expressing operating safety constraints, time-related performance or any other tag of function description. This paper comprises three parts: The first is devoted to general notions of the formats used by the various functional analyses. It attempts to explain the three types of format: behavioural, structural and functional. It tackles the notions of trees and bottom-up and top-down approaches. It proposes examining the link between the expected functions of the systems and the hardware supporting these functions. It attempts to make a distinction between operators and operands enabling the notion of object to be linked to that of the three types of format seen above. It ends with a reminder of the distinction between semi-formal and formal. The second part analyses the current situation of functional analysis of the mechanical and control-instrumentation parts of power production plants, through a bibliographical search. The results of this second part are however disappointing. The purpose of the third part of the study is a prototype format built up from the considerations of the first two parts. This format meets our requirements better than those of the bibliographical analysis, but it could doubtless be improved: application of this format to RCV highlights its advantages, but also underlines the improvements needed. Given the deadlines of the Mexsyco project, the decision was taken to suspend development of this format for the time being and use a method currently being produced and based on use of the current functional breakdown (basic plant systems) and of a modular tree-structure representation of the control-instrumentation of a basic plant system. (author). 12 refs., 4 annexes. 4. Influence of surface conductivity on the apparent zeta potential of calcite. Science.gov (United States) Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe 2016-04-15 Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved. 5. Quiver representations CERN Document Server Schiffler, Ralf 2014-01-01 This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed. 6. Additive and polynomial representations CERN Document Server Krantz, David H; Suppes, Patrick 1971-01-01 Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz 7. Representational Machines DEFF Research Database (Denmark) Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research.... 8. Group representations CERN Document Server Karpilovsky, G 1994-01-01 This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory 9. Value Representations DEFF Research Database (Denmark) Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves 2011-01-01 Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations... 10. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization Science.gov (United States) Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J. 2017-12-01 We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M). 11. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke? Science.gov (United States) Lüdemann-Podubecká, Jitka; Nowak, Dennis Alexander 2016-10-01 Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. A standardized review of the pertinent literature was performed. We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual. Copyright © 2016 Elsevier Ltd. All rights reserved. 12. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. Science.gov (United States) Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E 2015-08-08 activity of positively charged [60]fullerene derivatives against bacterial cells required their direct interaction. The following zeta potential inversion on the bacterial cells surface was observed as an early stage of toxicity mechanism that violates the membrane-associated energetic functions. The novel data about interrelations between physicochemical parameters and toxic properties of amphiphilic [60]fullerene derivatives make possible predicting their behavior in aquatic environment and their activity against bacterial cells. 13. Fredholm's minors of arbitrary order: their representations as a determinant of resolvents and in terms of free fermions and an explicit formula for their functional derivative International Nuclear Information System (INIS) Feinberg, Joshua 2004-01-01 We study the Fredholm minors associated with a Fredholm equation of the second type. We present a couple of new linear recursion relations involving the nth and (n - 1)th minors, whose solution is a representation of the nth minor as an n x n determinant of resolvents. The latter is given a simple interpretation in terms of a path integral over non-interacting fermions. We also provide an explicit formula for the functional derivative of a Fredholm minor of order n with respect to the kernel. Our formula is a linear combination of the nth and the (n ± 1)th minors 14. Composition dependence of the thermodynamic activity and lattice parameter of zeta nickel-indium International Nuclear Information System (INIS) Bhattacharya, B.; Masson, D.B. 1976-01-01 The vapor pressure of indium over six alloys in the zeta phase of the nickel-indium system was measured by the method of atomic absorption. Values of thermodynamic activity were calculated from the vapor pressure, and partial heat and entropy of indium were calculated from the temperature coefficients. The lattice parameters of the hexagonal B8 2 unit cell of all alloys were calculated from X-ray diffraction powder patterns. It was found that the a lattice parameter passed through a minimum at the same composition that the excess chemical potential showed a sharp change of slope, when graphed as a function of composition. These effects were similar to those observed previously which have been attributed to overlap by the Fermi surface of a Brillouin zone face. In the present case they were attributed to overlap of the Fermi surface across faces tentatively identified as the [110] faces of the Brillouin zone of the B8 2 structure. The influence of substitutional disorder was also considered as a cause of the thermodynamic effects, but this was rejected because it does not explain the minimum in lattice parameter. (Auth.) 15. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. Science.gov (United States) Ge, Zhenpeng; Wang, Yi 2017-04-20 Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler. 16. The massless two-loop two-point function International Nuclear Information System (INIS) Bierenbaum, I.; Weinzierl, S. 2003-01-01 We consider the massless two-loop two-point function with arbitrary powers of the propagators and derive a representation from which we can obtain the Laurent expansion to any desired order in the dimensional regularization parameter ε. As a side product, we show that in the Laurent expansion of the two-loop integral only rational numbers and multiple zeta values occur. Our method of calculation obtains the two-loop integral as a convolution product of two primitive one-loop integrals. We comment on the generalization of this product structure to higher loop integrals. (orig.) 17. Representational Thickness DEFF Research Database (Denmark) Mullins, Michael Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... representation? How is virtual reality used in public participation and how do virtual environments affect participatory decision making? How does VR thus affect the physical world of built environment? Given the practical collaborative possibilities of immersive technology, how can they best be implemented... 18. Local Zeta Functions, Functional Equations and Pseudodifferential Operators Over p-adic Fields OpenAIRE Casas Sánchez, Oscar Francisco 2014-01-01 Esta tesis está dedicada al estudio de dos problemas: el primero es el estudio de los núcleos de Riesz asociados a formas cuadráticas elíptica de dimensiones 4 y 2, y sus aplicaciones en la construcción de soluciones fundamentales para operadores seudodiferenciales. El segundo problema es el estudio de ecuaciones seudodiferenciales de tipo parabólico con coeficientes variables en dimensión 4 19. The influence of zeta potential and yield stress on the filtration characteristics of a magnesium hydroxide simulant International Nuclear Information System (INIS) Biggs, Simon; Nabi, Rafiq; Poole, Colin; Patel, Ashok 2007-01-01 In the UK, irradiated fuels from Magnox reactors are often stored in water-filled ponds under alkaline conditions, so as to minimise corrosion of fuel cladding. This is important to prevent or reduce leakage of soluble fission products and actinides to the pond water. A variety of intermediate level wastes derived from Magnox materials are stored at power stations. Under these alkaline conditions, various species of magnesium are formed, of which magnesium hydroxide is the dominant material. The particle-fluid interactions are significant for the design and operation of facilities for hydraulic retrieval, filtration, dewatering and ion exchange treatment of fuel storage pond water and stored wet Magnox wastes. Here we describe a study of particulate properties and filtration characteristics of oxide particle simulants under laboratory conditions. Cake and medium resistance data were correlated across a range of pH conditions with electro-acoustic zeta potential and shear yield stress measurements, as a function of particle volume fractions. The influence of zeta potential on filtration properties arises directly from the interaction of particles within the sediment cake. (authors) 20. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip Science.gov (United States) Ranjit, N. K.; Shit, G. C. 2017-09-01 This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy). 1. Fredholm determinant representation of quantum correlation function for Sine-Gordon at special value of coupling constant International Nuclear Information System (INIS) Itoyama, H.; Korepin, V.E.; Thacker, H.B. 1992-01-01 In this paper, correlation functions of the Sine-Gordon model (which is equivalent of the Massive-Thirring model) are considered at the free fermion point. The authors derive a determinant formula for local correlation functions of the Sine-Gordon model, starting form Bethe ansatz wave function. Kernel of integral operator is trigonometric version of the one for Impenetrable Bosons 2. An induced current method for measuring zeta potential of electrolyte solution-air interface. Science.gov (United States) Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing 2014-02-15 This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved. 3. The static response function in Kohn-Sham theory: An appropriate basis for its matrix representation in case of finite AO basis sets International Nuclear Information System (INIS) Kollmar, Christian; Neese, Frank 2014-01-01 The role of the static Kohn-Sham (KS) response function describing the response of the electron density to a change of the local KS potential is discussed in both the theory of the optimized effective potential (OEP) and the so-called inverse Kohn-Sham problem involving the task to find the local KS potential for a given electron density. In a general discussion of the integral equation to be solved in both cases, it is argued that a unique solution of this equation can be found even in case of finite atomic orbital basis sets. It is shown how a matrix representation of the response function can be obtained if the exchange-correlation potential is expanded in terms of a Schmidt-orthogonalized basis comprising orbitals products of occupied and virtual orbitals. The viability of this approach in both OEP theory and the inverse KS problem is illustrated by numerical examples 4. Do ferns and lycophytes function as medicinal plants? A study of their low representation in traditional pharmacopoeias. Science.gov (United States) Reinaldo, Rafael Corrêa Prota dos Santos; Santiago, Augusto César Pessôa; Medeiros, Patrícia Muniz; Albuquerque, Ulysses Paulino 2015-12-04 Ethnobotany is becoming an important tool for understanding how traditional medical systems are organized and which variables affect their structure and dynamics. However, some phenomena observed in ethnobotanical studies led us to question whether such phenomena are real or methodological artifacts. The small proportion of ferns and lycophytes in ethnobotanical surveys of medicinal plants is one such phenomenon, and its causes should be identified using different approach levels. The present study aimed to clarify the reasons for a low representation of these two groups in studies of medicinal plants. The present study considered the following hypotheses: 1) ferns and lycophytes are little represented in different ethnobotanical studies because of inadequate data collection methods to record these species; 2) ferns and lycophytes are little represented because of the local perception of their low therapeutic efficacy; and 3) species of ferns and lycophytes are represented in local pharmacopoeias in proportion to the size of their families. We chose rural communities from Chapada do Araripe, Northeast Brazil to test our hypotheses. Data on the medicinal plant repertoires of the communities and on the perceived therapeutic efficacy of ferns were obtained using two different methods, semi-structured interviews associated with free lists and a checklist interview, both applied to local specialists. The resulting data were analyzed differently for each test. In addition, data regarding the total flora x medicinal flora ratio were obtained with a floristic survey and accessing data banks from previous studies performed by our research team. All hypotheses were confirmed, showing that all three factors contributed to the low representation of these plant groups as medicinal resources. The present study showed that free-list interviews are not a good method to access traditional knowledge of medicinal ferns and lycophytes and that the use of visual stimuli can help the 5. Independent-cluster parametrizations of wave functions in model field theories. 1. Introduction to their holomorphic representations International Nuclear Information System (INIS) Arponen, J.S.; Bishop, R.F. 1991-01-01 The configuration-interaction method (CIM), normal coupled-cluster method (NCCM), and extended coupled-cluster method (ECCM) form a rather natural hierarchy of formulations of increasing sophistication for describing interacting systems of quantum-mechanical particles or fields. They are denoted generically as independent-cluster (IC) parameterizations in a view of the way in which they incorporate the many-body correlations via sets of amplitudes that describe the various correlated clusters within the interacting system as mutually independent entities. They differ primarily by the way in which they incorporate the exact locality and separability properties. Each method is shown to provide, in principle, an exact mapping of the original quantum-mechanical problem into a corresponding classical Hamiltonian mechanics in terms of a set of multiconfigurational canonical field amplitudes. In perturbation-theoretic terms the IC methods incorporate infinite classes of diagrams at each order of approximation. The diagrams differ in their connectivity or linkedness properties. The structure of the ECCM in particular makes it capable of describing such phenomena as phase transitions, spontaneous symmetry breaking , and topological states. The authors address such fundamentally important questions as the existence and convergence properties of the three IC parameterizations by formulating the holomorphic representation of each one for the class of single-mode bosonic field theories which include the anharmonic oscillators 6. Application of the zeta potential for stationary phase characterization in ion chromatography. Science.gov (United States) Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina 2013-01-01 Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 7. On the Potential of Functional Modeling Extensions to the CIM for Means-Ends Representation and Reasoning DEFF Research Database (Denmark) Heussen, Kai; Kullmann, Daniel 2010-01-01 Engineering is the art of making complicated things work. There are few things an engineer can’t do. Explaining his work to a computer may be one of them. This paper introduces Functional Modeling with Multilevel Flow Models as an information modeling approach that explicitly relates the functions... 8. Compact Representation for Specific Heat of Interacting Fermion Systems in Terms of Fully Renormalized Matsubara Green Function OpenAIRE Miyake, Kazumasa; Tsuruta, Atsushi 2015-01-01 On the basis of the Luttinger-Ward formalism for the thermodynamic potential, the specific heat of single-component interacting fermion systems with fixed chemical potential is compactly expressed in terms of the fully renormalized Matsubara Green function. 9. The grand partition function Z (α,β) of a quantum system is studied, using diagrammatic representations of the perturbation expansion International Nuclear Information System (INIS) Dominicis, C. de 1961-01-01 The grand partition function Z (α,β) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z (α,β) takes a form where, besides trivial dependences, α and β only appear through a statistical factor F k - = [1 + e -α+βε k 0 -βW k ] -1 . W k is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z (α,β) under variations of F k - . The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [fr 10. Computability and Representations of the Zero Set NARCIS (Netherlands) P.J. Collins (Pieter) 2008-01-01 htmlabstractIn this note we give a new representation for closed sets under which the robust zero set of a function is computable. We call this representation the component cover representation. The computation of the zero set is based on topological index theory, the most powerful tool for finding 11. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells Directory of Open Access Journals (Sweden) Sathish ePeriyasamy 2013-12-01 Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells. 12. Explicit Hilbert-space representations of atomic and molecular photoabsorption spectra: Computational studies of Stieltjes-Tchebycheff functions International Nuclear Information System (INIS) Hermann, M.R.; Langhoff, P.W. 1983-01-01 Explicit Hilbert-space techniques are reported for construction of the discrete and continuum Schroedinger states required in atomic and molecular photoexcitation and/or photoionization studies. These developments extend and clarify previously described moment-theory methods for determinations of photoabsorption cross sections from discrete basis-set calculations to include explicit construction of underlying wave functions. The appropriate Stieltjes-Tchebycheff excitation and ionization functions of nth order are defined as Radau-type eigenstates of an appropriate operator in an n-term Cauchy-Lanczos basis. The energies of these states are the Radau quadrature points of the photoabsorption cross section, and their (reciprocal) norms provide the corresponding quadrature weights. Although finite-order Stieltjes-Tchebycheff functions are L 2 integrable, and do not have asymptotic spatial tails in the continuous spectrum, the Radau quadrature weights nevertheless provide information for normalization in the conventional Dirac delta-function sense. Since one Radau point can be placed anywhere in the spectrum, appropriately normalized convergent approximations to any of the discrete or continuum Schroedinger states are obtained from the development. Connections with matrix partitioning methods are established, demonstrating that nth-order Stieltjes-Tchebycheff functions are optical-potential solutions of the matrix Schroedinger equation in the full Cauchy-Lanczos basis 13. Multiple representations in physics education CERN Document Server Duit, Reinders; Fischer, Hans E 2017-01-01 This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementati... 14. Multiscale representation of generating and correlation functions for some models of statistical mechanics and quantum field theory International Nuclear Information System (INIS) O'Carroll, M. 1993-01-01 The author considers models of statistical mechanics and quantum field theory (in the Euclidean formulation) which are treated using renormalization group methods and where the action is a small perturbation of a quadratic action. The author obtains multiscale formulas for the generating and correlation functions after n renormalization group transformations which bring out the relation with the nth effective action. The author derives and compares the formulas for different RGs. The formulas for correlation functions involve (1) two propagators which are determined by a sequence of approximate wave function renormalization constants and renormalization group operators associated with the decomposition into scales of the quadratic form and (2) field derivatives of the nth effective action. For the case of the block field open-quotes δ-functionclose quotes RG the formulas are especially simple and for asymptotic free theories only the derivatives at zero field are needed; the formulas have been previously used directly to obtain bounds on correlation functions using information obtained from the analysis of effective actions. The simplicity can be traced to an open-quotes orthogonality-of-scalesclose quotes property which follows from an implicit wavelet structure. Other commonly used RGs do not have the open-quotes orthogonality of scalesclose quotes property. 19 refs 15. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs Science.gov (United States) Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena 2018-05-01 In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext. 16. Broadway teatrites näeb Denzel Washingtoni ja Catherine Zeta-Jonesi / Andres Laasik Index Scriptorium Estoniae Laasik, Andres, 1960-2016 2010-01-01 New Yorgis välja antud Tony teatriauhinna pälvisid filminäitlejad Denzel Washington, Catherine Zeta-Jones ja Scarlett Johansson. Parim lavale naasnud näidend - "Piirdeaed", parim uus näidend - draama "Punane", mis räägib läti päritolu maalikunstnikust Mark Rothkost. Parim muusikal - "Memphis" 17. "Armastuse retsepti" tippkokk Zeta Jones ei oska muna keeta / Triin Tael Index Scriptorium Estoniae Tael, Triin 2007-01-01 Scott Hicksi romantiline komöödiafilm "Armastuse retsept" ("No Reservations"), mille peaosas Walesist pärit näitlejanna Catherine Zeta Jones. Näitlejanna muljeid oma rolliks ettevalmistustest, mille hulka käis ka praktika pärisrestoranis 18. Boundary Conditions for the Maintenance of Memory by PKM[zeta] in Neocortex Science.gov (United States) Shema, Reul; Hazvi, Shoshi; Sacktor, Todd C.; Dudai, Yadin 2009-01-01 We report here that ZIP, a selective inhibitor of the atypical protein kinase C isoform PKM[zeta], abolishes very long-term conditioned taste aversion (CTA) associations in the insular cortex of the behaving rat, at least 3 mo after encoding. The effect of ZIP is not replicated by a general serine/threonine protein kinase inhibitor that is… 19. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ... African Journals Online (AJOL) Zeta potential is a scientific term for electrokinetic potential in colloidal systems which has a major effect on the various properties of nano-drug delivery systems. Presently, colloidal nano-carriers are growing at a remarkable rate owing to their strong potential for overcoming old challenges such as poor drug solubility and ... 20. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ... African Journals Online (AJOL) The zeta potential (ZP) of colloidal systems and nano-medicines, as well as their particle size exert a major effect on the various properties of nano-drug delivery systems. Not only the stability of dosage forms and their release rate are affected but also their circulation in the blood stream and absorption into body membranes ... 1. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite. Science.gov (United States) Fahami, Abbas; Beall, Gary W; Betancourt, Tania 2016-02-01 Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved. 2. Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model Directory of Open Access Journals (Sweden) Nikolay M. Bogoliubov 2009-04-01 Full Text Available The basic model of the non-equilibrium low dimensional physics the so-called totally asymmetric exclusion process is related to the 'crystalline limit' (q → ∞ of the SU_q(2 quantum algebra. Using the quantum inverse scattering method we obtain the exact expression for the time-dependent stationary correlation function of the totally asymmetric simple exclusion process on a one dimensional lattice with the periodic boundary conditions. 3. Functional Organization of the Parahippocampal Cortex: Dissociable Roles for Context Representations and the Perception of Visual Scenes. Science.gov (United States) Baumann, Oliver; Mattingley, Jason B 2016-02-24 The human parahippocampal cortex has been ascribed central roles in both visuospatial and mnemonic processes. More specifically, evidence suggests that the parahippocampal cortex subserves both the perceptual analysis of scene layouts as well as the retrieval of associative contextual memories. It remains unclear, however, whether these two functional roles can be dissociated within the parahippocampal cortex anatomically. Here, we provide evidence for a dissociation between neural activation patterns associated with visuospatial analysis of scenes and contextual mnemonic processing along the parahippocampal longitudinal axis. We used fMRI to measure parahippocampal responses while participants engaged in a task that required them to judge the contextual relatedness of scene and object pairs, which were presented either as words or pictures. Results from combined factorial and conjunction analyses indicated that the posterior section of parahippocampal cortex is driven predominantly by judgments associated with pictorial scene analysis, whereas its anterior section is more active during contextual judgments regardless of stimulus category (scenes vs objects) or modality (word vs picture). Activation maxima associated with visuospatial and mnemonic processes were spatially segregated, providing support for the existence of functionally distinct subregions along the parahippocampal longitudinal axis and suggesting that, in humans, the parahippocampal cortex serves as a functional interface between perception and memory systems. Copyright © 2016 the authors 0270-6474/16/362536-07$15.00/0.

4. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

Science.gov (United States)

Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

2008-03-03

Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

5. Attention and Representational Momentum

OpenAIRE

Hayes, Amy; Freyd, Jennifer J

1995-01-01

Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

6. The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation of meromorphic functions there

International Nuclear Information System (INIS)

Kudasheva, E G; Khabibullin, Bulat N

2009-01-01

Let D be the unit disc in the complex plane C and H a class of holomorphic functions in D distinguished by a restriction on their growth in a neighbourhood of the boundary of the disc which is stated in terms of weight functions of moderate growth. Some results which describe the sequences of zeros for holomorphic functions in classes H of this type are obtained. The weight functions defining H are not necessarily radial; however the results obtained are new even in the case of radial constraints. Conditions for meromorphic functions in D ensuring that they can be represented as a ratio of two functions in H sharing no zeros are investigated. Bibliography: 28 titles.

7. The inner representation of the external world - from conditioned reflexes to high level mental functions in the light of Nobel Prizes

Directory of Open Access Journals (Sweden)

Szilágyi T.

2014-12-01

Full Text Available In this paper the seminal results of the 2014 Nobel Prize in Physiology or Medicine Laureates are presented. First, a historical review of the development of our knowledge is provided along with the major paradigm shifts, by looking at the Nobel prizes awarded in the field of neuroscience in the last 110 years. We outline the major discoveries that were necessary for humankind to pass through the road leading to the remarkable understanding of high level mental functions, which led to this year’s Nobel Prize award. Next, the ground breaking discoveries of this year Nobel laureates are presented, which provide insights how neural representations of the environment are formed in the association cortices. These cortical areas are many synapses away from sensory receptors and motor outputs, and their activity do not reflect directly the activation patterns of the receptor population, but depends more strongly on intrinsic cortical computations. We also present how ensembles of specialized cells work together to compute complex cognitive functions and behaviour.

8. Explicit constructions of automorphic L-functions

CERN Document Server

Gelbart, Stephen; Rallis, Stephen

1987-01-01

The goal of this research monograph is to derive the analytic continuation and functional equation of the L-functions attached by R.P. Langlands to automorphic representations of reductive algebraic groups. The first part of the book (by Piatetski-Shapiro and Rallis) deals with L-functions for the simple classical groups; the second part (by Gelbart and Piatetski-Shapiro) deals with non-simple groups of the form G GL(n), with G a quasi-split reductive group of split rank n. The method of proof is to construct certain explicit zeta-integrals of Rankin-Selberg type which interpolate the relevant Langlands L-functions and can be analyzed via the theory of Eisenstein series and intertwining operators. This is the first time such an approach has been applied to such general classes of groups. The flavor of the local theory is decidedly representation theoretic, and the work should be of interest to researchers in group representation theory as well as number theory.

9. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

International Nuclear Information System (INIS)

Fahami, Abbas; Beall, Gary W.; Betancourt, Tania

2016-01-01

Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl"− and F"− substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

10. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

Energy Technology Data Exchange (ETDEWEB)

Fahami, Abbas, E-mail: fahami@txstate.edu [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Beall, Gary W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Betancourt, Tania [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)

2016-02-01

Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl{sup −} and F{sup −} substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

11. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

Science.gov (United States)

Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

2008-01-01

Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

12. Electroosmotic flow of Phan-Thien-Tanner fluids at high zeta potentials: An exact analytical solution

Science.gov (United States)

Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar

2018-06-01

We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.

13. Functional Representation for the Born-Oppenheimer Diagonal Correction and Born-Huang Adiabatic Potential Energy Surfaces for Isotopomers of H3

International Nuclear Information System (INIS)

Mielke, Steven L.; Schwenke, David; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.

2009-01-01

Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H3 were performed at 1397 symmetry-unique configurations using the Born-Huang approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH2 mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm-1 for the H3, DH2, and MuH2 isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein we choose the CCI potential energy surface, the uncertainties of which (∼0.01 kcal/mol) are much smaller than the magnitude of the BODC. FORTRAN routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics.

14. Two-step superresolution approach for surveillance face image through radial basis function-partial least squares regression and locality-induced sparse representation

Science.gov (United States)

Jiang, Junjun; Hu, Ruimin; Han, Zhen; Wang, Zhongyuan; Chen, Jun

2013-10-01

Face superresolution (SR), or face hallucination, refers to the technique of generating a high-resolution (HR) face image from a low-resolution (LR) one with the help of a set of training examples. It aims at transcending the limitations of electronic imaging systems. Applications of face SR include video surveillance, in which the individual of interest is often far from cameras. A two-step method is proposed to infer a high-quality and HR face image from a low-quality and LR observation. First, we establish the nonlinear relationship between LR face images and HR ones, according to radial basis function and partial least squares (RBF-PLS) regression, to transform the LR face into the global face space. Then, a locality-induced sparse representation (LiSR) approach is presented to enhance the local facial details once all the global faces for each LR training face are constructed. A comparison of some state-of-the-art SR methods shows the superiority of the proposed two-step approach, RBF-PLS global face regression followed by LiSR-based local patch reconstruction. Experiments also demonstrate the effectiveness under both simulation conditions and some real conditions.

15. Integral Representations of the Catalan Numbers and Their Applications

Directory of Open Access Journals (Sweden)

Feng Qi

2017-08-01

Full Text Available In the paper, the authors survey integral representations of the Catalan numbers and the Catalan–Qi function, discuss equivalent relations between these integral representations, supply alternative and new proofs of several integral representations, collect applications of some integral representations, and present sums of several power series whose coefficients involve the Catalan numbers.

16. Factorizations and physical representations

International Nuclear Information System (INIS)

Revzen, M; Khanna, F C; Mann, A; Zak, J

2006-01-01

A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the decomposition of M into prime numbers. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related representations termed q 1 q 2 representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter representation each quantum number varies in a subspace that is associated with one of the prime numbers that make up M

17. Team Action Imagery and Team Cognition: Imagery of Game Situations and Required Team Actions Promotes a Functional Structure in Players' Representations of Team-Level Tactics.

Science.gov (United States)

Frank, Cornelia; Linstromberg, Gian-Luca; Hennig, Linda; Heinen, Thomas; Schack, Thomas

2018-02-01

A team's cognitions of interpersonally coordinated actions are a crucial component for successful team performance. Here, we present an approach to practice team action by way of imagery and examine its impact on team cognitions in long-term memory. We investigated the impact of a 4-week team action imagery intervention on futsal players' mental representations of team-level tactics. Skilled futsal players were assigned to either an imagery training group or a no imagery training control group. Participants in the imagery training group practiced four team-level tactics by imagining team actions in specific game situations for three times a week. Results revealed that the imagery training group's representations were more similar to that of an expert representation after the intervention compared with the control group. This study indicates that team action imagery training can have a significant impact on players' tactical skill representations and thus order formation in long-term memory.

18. Values of the polygamma functions at rational arguments

International Nuclear Information System (INIS)

Choi, Junesang; Cvijovic, Djurdje

2007-01-01

Gauss in 1812, in his celebrated memoir on the hypergeometric series, presented a remarkable formula for the psi (or digamma) function, ψ(z), at rational arguments z, which can be expressed in terms of elementary functions. Davis in 1935 extended Gauss's result to the polygamma functions ψ (n) (z) (n element of N) by using a known series representation of ψ (n) (z) in an elementary yet technical way. Koelbig in 1996, in his CERN technical report, also gave two extensions to ψ (n) (z) by using the series definition of polylogarithm function and the above-known series representation. Here we aim at deriving general formulae expressing ψ (n) (z) (n element of N 0 ) as rational arguments in terms of other functions, which will be obtained in two ways. In addition, several special cases are also considered and, as a by-product of our main results, we derive, in a simple and unified manner, all formulae given by Gauss, Davis and Koelbig. Finally, it should be noted that all our results, in view of the relationship between ψ (n) (z) and the Hurwitz zeta function, ζ(s, a), could be rewritten in the representation of ζ(s, a)

19. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

Science.gov (United States)

Johnson

1999-01-01

The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

20. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

NARCIS (Netherlands)

Los, Alrik Pieter

2007-01-01

Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the

1. Fractal geometry and number theory complex dimensions of fractal strings and zeros of zeta functions

CERN Document Server

Lapidus, Michael L

1999-01-01

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo­ metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di­ mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref­ erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap­ pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which ...

2. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

OpenAIRE

2014-01-01

Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration) through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a k...

3. Synergism of the method of characteristic, R-functions and diffusion solution for accurate representation of 3D neutron interactions in research reactors using the AGENT code system

International Nuclear Information System (INIS)

Hursin, Mathieu; Xiao Shanjie; Jevremovic, Tatjana

2006-01-01

This paper summarizes the theoretical and numerical aspects of the AGENT code methodology accurately applied for detailed three-dimensional (3D) multigroup steady-state modeling of neutron interactions in complex heterogeneous reactor domains. For the first time we show the fine-mesh neutron scalar flux distribution in Purdue research reactor (that was built over forty years ago). The AGENT methodology is based on the unique combination of the three theories: the method of characteristics (MOC) used to simulate the neutron transport in two-dimensional (2D) whole core heterogeneous calculation, the theory of R-functions used as a mathematical tool to describe the true geometry and fuse with the MOC equations, and one-dimensional (1D) higher-order diffusion correction of 2D transport model to account for full 3D heterogeneous whole core representation. The synergism between the radial 2D transport and the 1D axial transport (to take into account the axial neutron interactions and leakage), called the 2D/1D method (used in DeCART and CHAPLET codes), provides a 3D computational solution. The unique synergism between the AGENT geometrical algorithm capable of modeling any current or future reactor core geometry and 3D neutron transport methodology is described in details. The 3D AGENT accuracy and its efficiency are demonstrated showing the eigenvalues, point-wise flux and reaction rate distributions in representative reactor geometries. The AGENT code, comprising this synergism, represents a building block of the computational system, called the virtual reactor. Its main purpose is to perform 'virtual' experiments and demonstrations of various mainly university research reactor experiments

4. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

Directory of Open Access Journals (Sweden)

Gary P Brennan

Full Text Available 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ isoform has been linked to endoplasmic reticulum (ER function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.

5. On the irrationality measure for a q-analogue of \\zeta(2)

Science.gov (United States)

Zudilin, W. V.

2002-08-01

A Liouville-type estimate is proved for the irrationality measure of the quantities \\displaystyle \\zeta_q(2)=\\sum_{n=1}^\\infty\\frac{q^n}{(1-q^n)^2}with q^{-1}\\in\\mathbb Z\\setminus\\{0,\\pm1\\}. The proof is based on the application of a q-analogue of the arithmetic method developed by Chudnovsky, Rukhadze, and Hata and of the transformation group for hypergeometric series-the group-structure approach introduced by Rhin and Viola.

6. Three-dimensional free boundary calculations using a spectral Green's function method

International Nuclear Information System (INIS)

Hirshman, S.P.; van Rij, W.I.; Merkel, P.

1986-01-01

The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented

7. Parts, Cavities, and Object Representation in Infancy

Science.gov (United States)

Hayden, Angela; Bhatt, Ramesh S.; Kangas, Ashley; Zieber, Nicole

2011-01-01

Part representation is not only critical to object perception but also plays a key role in a number of basic visual cognition functions, such as figure-ground segregation, allocation of attention, and memory for shapes. Yet, virtually nothing is known about the development of part representation. If parts are fundamental components of object shape…

8. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

Directory of Open Access Journals (Sweden)

Gunter Rappl

Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

9. Representation in Memory.

Science.gov (United States)

Rumelhart, David E.; Norman, Donald A.

This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

10. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

Energy Technology Data Exchange (ETDEWEB)

Andalaft, E; Vega, R; Correa, M; Araya, R; Loyola, P [Comision Chilena de Energia Nuclear, Santiago (Chile)

1997-02-01

The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs.

11. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

International Nuclear Information System (INIS)

Andalaft, E.; Vega, R.; Correa, M.; Araya, R.; Loyola, P.

1997-01-01

The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

12. Stability of fenbendazole suspensions for veterinary use. Correlation between zeta potential and sedimentation.

Science.gov (United States)

Arias, José L; López-Viota, Margarita; Clares, Beatriz; Ruiz, Ma Adolfina

2008-08-07

In this paper we have carried out a detailed investigation of the stability and redispersibility characteristics of fenbendazole aqueous suspensions, through a thermodynamic and electrokinetic characterization, considering the effect of both pH and ionic strength. The hydrophobic character of the drug, and the surface charge and electrical double-layer thickness play an essential role in the stability of the system, hence the need for a full characterization of fenbendazole. It was found that the drug suspensions displays "delayed" or "hindered" sedimentation, determined by their hydrophobic character and their low zeta potential (indicating a small electrokinetic charge on the particles). The electrostatic repulsion between the particles is responsible for the low sedimentation volume and poor redispersibility of the drug. However, only low concentrations of AlCl(3) induced a significant effect on both the zeta potential and stability of the drug, leading to a "free-layered" sedimentation and a very easy redispersion which could be of great interest in the design of an oral pharmaceutical dosage form for veterinary.

13. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel.

Directory of Open Access Journals (Sweden)

Yan Chen

Full Text Available Preharvest sprouting reduces the maize quality and causes a significant yield loss in maize production. vp-wl2 is a Mutator (Mu-induced viviparous mutant in maize, causing white or pale yellow kernels, dramatically reduced carotenoid and ABA content, and a high level of zeta-carotene accumulation. Here, we reported the cloning of the vp-wl2 gene using a modified digestion-ligation-amplification method (DLA. The results showed that an insertion of Mu9 in the first intron of the zeta-carotene desaturase (ZDS gene results in the vp-wl2 mutation. Previous studies have suggested that ZDS is likely the structural gene of the viviparous9 (vp9 locus. Therefore, we performed an allelic test using vp-wl2 and three vp9 mutants. The results showed that vp-wl2 is a novel allele of the vp9 locus. In addition, the sequences of ZDS gene were identified in these three vp9 alleles. The vp-wl2 mutant gene was subsequently introgressed into four maize inbred lines, and a viviparous phenotype was observed with yield losses from 7.69% to 13.33%.

14. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement

Science.gov (United States)

Low, Y. J.; Lau, S. W.

2017-06-01

Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

15. Preon representations and composite models

International Nuclear Information System (INIS)

Kang, Kyungsik

1982-01-01

This is a brief report on the preon models which are investigated by In-Gyu Koh, A. N. Schellekens and myself and based on complex, anomaly-free and asymptotically free representations of SU(3) to SU(8), SO(4N+2) and E 6 with no more than two different preons. Complete list of the representations that are complex anomaly-free and asymptotically free has been given by E. Eichten, I.-G. Koh and myself. The assumptions made about the ground state composites and the role of Fermi statistics to determine the metaflavor wave functions are discussed in some detail. We explain the method of decompositions of tensor products with definite permutation properties which has been developed for this purpose by I.-G. Koh, A.N. Schellekens and myself. An example based on an anomaly-free representation of the confining metacolor group SU(5) is discussed

16. ABJM Wilson loops in arbitrary representations

Energy Technology Data Exchange (ETDEWEB)

Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

2013-06-15

We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

17. ABJM Wilson loops in arbitrary representations

International Nuclear Information System (INIS)

Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

2013-06-01

We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

18. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

Energy Technology Data Exchange (ETDEWEB)

Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Yun Gi [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Shin, Jeon-Soo [Department of Microbiology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Hoguen, E-mail: hkyonsei@yuhs.ac [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of)

2012-07-27

Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

19. ZETA POTENTIAL AND COLOR INVESTIGATIONS OF VEGETABLE OIL BASED EMULSIONS AS ECO-FRIENDLY LUBRICANTS

Directory of Open Access Journals (Sweden)

ROMICĂ CREŢU

2017-06-01

Full Text Available In the past 10 years, the need for biodegradable lubricants has been more and more emphasized. The use of vegetable oils as lubricants offers several advantages. The vegetable oils are biodegradable; thus, the environmental pollution is minimal either during or after their use. The aim of this paper is to presents a preliminary study concerning the influence of some preparation conditions on the stability of vegetable oil-in-water (O/W emulsions as eco-friendly lubricants stabilized by nonionic surfactant. In this context, vegetable oil-in-water emulsions characteristics where assessed using microscopically observation and zeta potential. In addition, the color of these emulsions can be evaluated. It can be observed that the emulsions tend to stabilize in time.

20. Relations between elliptic multiple zeta values and a special derivation algebra

International Nuclear Information System (INIS)

Broedel, Johannes; Matthes, Nils; Schlotterer, Oliver

2016-01-01

We investigate relations between elliptic multiple zeta values (eMZVs) and describe a method to derive the number of indecomposable elements of given weight and length. Our method is based on representing eMZVs as iterated integrals over Eisenstein series and exploiting the connection with a special derivation algebra. Its commutator relations give rise to constraints on the iterated integrals over Eisenstein series relevant for eMZVs and thereby allow to count the indecomposable representatives. Conversely, the above connection suggests apparently new relations in the derivation algebra. Under https://tools.aei.mpg.de/emzv we provide relations for eMZVs over a wide range of weights and lengths. (paper)

1. Cellular internalization of polycation-coated microparticles and its dependence on their zeta potential

Science.gov (United States)

Kato, Noritaka; Kondo, Ryosuke

2018-03-01

By applying microparticles to HeLa cells, the number of particles adhered on the cell and that of the ones internalized in the cells were evaluated. Three-dimensional tomographic images of the cells with the particles were obtained by multiphoton excitation laser scanning microscopy, and the adhered and internalized particles were counted separately. When the surface charge of the particles was reversed from negative to positive by coating the particles with polycations, both numbers significantly increased owing to the electrostatic attraction between the cells and the polycation-coated particles. Four different positively charged particles were prepared using four different polycations, and the numbers of adhered and internalized particles were compared. Our results suggest that these numbers depended on the zeta potential rather than the molecular structure of the polycation.

2. Understanding representations in design

DEFF Research Database (Denmark)

Bødker, Susanne

1998-01-01

Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work situations...... and computer applications. It suggests that representations are primarily containers of ideas and that representation is situated at the same time as representations are crossing boundaries between various design and use activities. As such, representations should be carriers of their own contexts regarding...

3. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study.

Science.gov (United States)

Akselrod, Michel; Martuzzi, Roberto; Serino, Andrea; van der Zwaag, Wietske; Gassert, Roger; Blanke, Olaf

2017-10-01

Primary somatosensory cortex (S1) processes somatosensory information and is composed of multiple subregions. In particular, tactile information from the skin is encoded in three subregions, namely Brodmann areas (BAs) 3b, 1 and 2, with each area representing a complete map of the contralateral body. Although, much is known about the somatotopic organization of the hand in human S1, less research has been carried out regarding the somatotopic maps of the foot and leg in S1. Moreover, a latero-medial S1 organization along the superior part of the postcentral gyrus has been reported when moving from hip to toes, yet to date there is no study investigating leg/foot maps within the different subregions of S1. Using ultra-high field MRI (7T), we mapped six cortical representations of the lower limb (hip to toes) at the single subject level and performed this analysis separately for BAs 3b, 1 and 2. Analyzing the BOLD responses associated with tactile stimulations of the mapped foot and leg regions on each side, we quantified the extent and the strength of activation to determine somatotopic organization. In addition, we investigated whether each mapped representation also responded to the stimulation of other body parts (i.e. response selectivity) and conducted dissimilarity analysis relating these anatomical and functional properties of S1 to the physical structure of the lower limbs. Our data reveal somatotopy for the leg, but not for the foot in all investigated BAs, with large inter-subject variability. We found only minor differences between the properties of the three investigated BAs, suggesting that S1 maps for the lower limbs differ from those described for the hand. We also describe greater extent/strength of S1 activation for the big toe representation (compared to the other mapped representations) within all BAs, suggesting a possible homology between the first digit of upper and lower extremity in humans, and report different patterns of selectivity in the

4. Technology Focus: Multi-Representational Approaches to Equation Solving

Science.gov (United States)

Garofalo, Joe; Trinter, Christine

2009-01-01

Most mathematical functions can be represented in numerous ways. The main representations typically addressed in school, often referred to as "the big three," are graphical, algebraic, and numerical representations, but there are others as well (e.g., diagrams, words, simulations). These different types of representations "often illuminate…

5. Statistical representation of quantum states

Energy Technology Data Exchange (ETDEWEB)

Montina, A [Dipartimento di Fisica, Universita di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Italy)

2007-05-15

In the standard interpretation of quantum mechanics, the state is described by an abstract wave function in the representation space. Conversely, in a realistic interpretation, the quantum state is replaced by a probability distribution of physical quantities. Bohm mechanics is a consistent example of realistic theory, where the wave function and the particle positions are classically defined quantities. Recently, we proved that the probability distribution in a realistic theory cannot be a quadratic function of the quantum state, in contrast to the apparently obvious suggestion given by the Born rule for transition probabilities. Here, we provide a simplified version of this proof.

6. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy.

Science.gov (United States)

Dittrich, Maria; Sibler, Sabine

2005-06-15

In order to clarify the role of picocyanobacteria in aquatic biogeochemical processes (e.g., calcite precipitation), cell surface properties need to be investigated. An experimental study of the cell surface characteristics of two Synechococcus-type unicellular autotrophic picocyanobacterial strains was carried out. One strain was isolated from Lake Plon and contained phycocyanin, the other strain came from Lago Maggiore and was rich in phycoerythrin. Potentiometric titrations were conducted to determine the different types of sites present on the bacteria cell walls. Infrared spectroscopy allowed characterization of the various functional groups (RNH(2), RCOOH, ROH, RPO(2)) and investigations of zeta potential provided insight into the isoelectrical points of the strains. Titrations reveal three distinct sites on the bacterial surfaces of phycocyanin- and phycoerythrin-rich strains with pK values of 4.8+/-0.3/5.0+/-0.2, 6.6+/-0.2/6.7+/-0.4, and 8.8+/-0.1/8.7+/-0.2, corresponding to carboxyl, phosphate, and amine groups with surface densities of 2.6+/-0.4/7.4+/-1.6 x 10(-4), 1.9+/-0.5/4.4+/-0.8 x 10(-4), and 2.5+/-0.4/4.8+/-0.7 x 10(-4) mol/g of dry bacteria. The deprotonation constants are similar to those of bacterial strains and site densities are also within an order of magnitude of other strains. The phycoerythrin-rich strain had a higher number of binding sites than the phycocyanin-rich strain. The results showed that picocyanobacteria may adsorb either calcium cations or carbonate anions and therefore strongly influence the biogeochemical cycling of calcite in pelagic systems.

7. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

International Nuclear Information System (INIS)

Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

2007-01-01

Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

8. Embedded data representations

DEFF Research Database (Denmark)

Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

2017-01-01

We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...

9. Group and representation theory

CERN Document Server

2017-01-01

This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

10. Introduction to representation theory

CERN Document Server

Etingof, Pavel; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex

2011-01-01

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a "holistic" introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic k...

11. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems

International Nuclear Information System (INIS)

Selmani, Atiða; Kallay, Nikola; Preočanin, Tajana; Lützenkirchen, Johannes

2014-01-01

We have carried out surface and zeta-potential measurements on AgCl and AgBr single crystals. As for particle systems we find that, surprisingly and previously unnoted, the zeta-potential exhibits pH-dependence, while the surface potential does not. A possible interpretation of these observations is the involvement of water ions in the interfacial equilibria and in particular, stronger affinity of the hydroxide ion compared to the proton. The pH-dependence of the zeta-potential can be suppressed at sufficiently high silver concentrations, which agrees with previous measurements in particle systems where no pH-dependence was found at high halide ion concentrations. The results suggest a subtle interplay between the surface potential determining the halide and silver ion concentrations, and the water ions. Whenever the charge due to the halide and silver ions is sufficiently high, the influence of the proton/hydroxide ion on the zeta-potential vanishes. This might be related to the water structuring at the relevant interfaces which should be strongly affected by the surface potential. Another interesting observation is accentuation of the assumed water ion effect on the zeta-potential at the flat single crystal surfaces compared to the corresponding silver halide colloids. Previous generic MD simulations have indeed predicted that hydroxide ion adsorption is accentuated on flat/rigid surfaces. A thermodynamic model for AgI single crystals was developed to describe the combined effects of iodide, silver and water ions, based on two independently previously published models for AgI (that only consider constituent and background electrolyte ions) and inert surfaces (that only consider water and background electrolyte ions). The combined model correctly predicts all the experimentally observed trends. (paper)

12. Covariant representations of nuclear *-algebras

International Nuclear Information System (INIS)

Moore, S.M.

1978-01-01

Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

13. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

Science.gov (United States)

Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

2014-09-28

We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped

14. On the issue of the {zeta} series convergence and loop corrections in the generation of observable primordial non-Gaussianity in slow-roll inflation: I. The bispectrum

Energy Technology Data Exchange (ETDEWEB)

Cogollo, Heiner R S; Rodriguez, Yeinzon; Valenzuela-Toledo, Cesar A, E-mail: heiner.sarmiento@ciencias.uis.edu.co, E-mail: yeinzon.rodriguez@uan.edu.co, E-mail: cavalto@ciencias.uis.edu.co [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia)

2008-08-15

We show in this paper that it is possible to attain very high, including observable, values for the level of non-Gaussianity f{sub NL} associated with the bispectrum B{sub {zeta}} of the primordial curvature perturbation {zeta}, in a subclass of small-field slow-roll models of inflation with canonical kinetic terms. Such a result is obtained by taking care of loop corrections both in the spectrum P{sub {zeta}} and in the bispectrum B{sub {zeta}}. Sizable values for f{sub NL} arise even if {zeta} is generated during inflation. Five issues are considered when constraining the available parameter space: (1) We must ensure that we are in a perturbative regime so that the {zeta} series expansion, and its truncation, are valid. (2) We must apply the correct condition for the (possible) loop dominance in B{sub {zeta}} and/or P{sub {zeta}}. (3) We must satisfy the spectrum normalization condition. (4) We must satisfy the spectral tilt constraint. (5) We must have enough inflation to solve the horizon problem.

15. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

International Nuclear Information System (INIS)

Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi

2005-01-01

Phospholipase C-zeta (PLCζ), a strong candidate of the egg-activating sperm factor, causes intracellular Ca 2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCζ. Changes in the localization of expressed PLCζ were investigated by tagging with a fluorescent protein. PLCζ began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCζ in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCζ was recognized in every embryo up to blastocyst. Thus, PLCζ exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca 2+ oscillations in early embryogenesis

16. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

Directory of Open Access Journals (Sweden)

Jena B. Hales

2015-01-01

Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

17. Perancangan Zeta Converter yang dilengkapi Power Factor Correction pada Aplikasi Pengaturan Kecepatan Motor Brushless DC

Directory of Open Access Journals (Sweden)

2017-01-01

Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.

18. Tc Trends and Terrestrial Planet Formation: The Case of Zeta Reticuli

Science.gov (United States)

Adibekyan, Vardan; Delgado-Mena, Elisa; Figueira, Pedro; Sousa, Sergio; Santos, Nuno; Faria, Joao; González Hernández, Jonay; Israelian, Garik; Harutyunyan, Gohar; Suárez-Andrés, Lucia; Hakobyan, Artur

2016-11-01

During the last decade astronomers have been trying to search for chemical signatures of terrestrial planet formation in the atmospheres of the hosting stars. Several studies suggested that the chemical abundance trend with the condensation temperature, Tc, is a signature of rocky planet formation. In particular, it was suggested that the Sun shows 'peculiar' chemical abundances due to the presence of the terrestrial planets in our solar-system. However, the rocky material accretion or the trap of rocky materials in terrestrial planets is not the only explanation for the chemical 'peculiarity' of the Sun, or other Sun-like stars with planets. In this talk I madea very brief review of this topic, and presented our last results for the particular case of Zeta Reticuli binary system: A very interesting and well-known system (known in science fiction and ufology as the world of Grey Aliens, or Reticulans) where one of the components hosts an exo-Kuiper belt, and the other component is a 'single', 'lonely' star.

19. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

CERN Document Server

Griffin, Elizabeth

2015-01-01

The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

20. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Cells

Directory of Open Access Journals (Sweden)

Jonathan C.W. Edwards

2016-09-01

Full Text Available It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with meaning, interpretation or significance (semantic content. It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity. The concept of representations-as-input emphasises the need for a ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an

1. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors.

Science.gov (United States)

Braren, Stephen H; Drapala, Damian; Tulloch, Ingrid K; Serrano, Peter A

2014-01-01

Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

2. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects Protein Kinase M zeta (PKMζ, dopamine, and glutamate receptors

Directory of Open Access Journals (Sweden)

Stephen H Braren

2014-12-01

Full Text Available Methamphetamine (MA is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg on working memory using the radial 8-arm maze (RAM across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1, dopamine transporter (DAT and tyrosine hydroxylase (TH; and memory markers, protein kinase M zeta (PKMζ and protein kinase C zeta (PKCζ. Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

3. Representations and Relations

Czech Academy of Sciences Publication Activity Database

Koťátko, Petr

2014-01-01

Roč. 21, č. 3 (2014), s. 282-302 ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

4. Wigner's Symmetry Representation Theorem

Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

5. Boundary representation modelling techniques

CERN Document Server

2006-01-01

Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

6. Polynomial representations of GLn

CERN Document Server

Green, James A; Erdmann, Karin

2007-01-01

The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

7. Polynomial representations of GLN

CERN Document Server

Green, James A

1980-01-01

The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

8. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

Science.gov (United States)

Hilton, Annette; Nichols, Kim

2011-11-01

Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

9. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

Science.gov (United States)

Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.;

2014-01-01

Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions

10. Science.gov (United States)

Owens, C L; Nash, G R; Hadler, K; Fitzpatrick, R S; Anderson, C G; Wall, F

2018-06-01

Rare earth elements (REE) are critical to a wide range of technologies ranging from mobile phones to wind turbines. Processing and extraction of REE minerals from ore bodies is, however, both challenging and relatively poorly understood, as the majority of deposits contain only limited enrichment of REEs. An improved understanding of the surface properties of the minerals is important in informing and optimising their processing, in particular for separation by froth flotation. The measurement of zeta potential can be used to extract information regarding the electrical double layer, and hence surface properties of these minerals. There are over 34 REE fluorcarbonate minerals currently identified, however bastnäsite, synchysite and parisite are of most economic importance. Bastnäsite-(Ce), the most common REE fluorcarbonate, supplies over 50% of the world's REE. Previous studies of bastnäsite have showed a wide range of surface behaviour, with the iso-electric point (IEP), being measured between pH values of 4.6 and 9.3. In contrast, no values of IEP have been reported for parisite or synchysite. In this work, we review previous studies of the zeta potentials of bastnäsite to investigate the effects of different methodologies and sample preparation. In addition, measurements of zeta potentials of parisite under water, collector and supernatant conditions were conducted, the first to be reported. These results showed an iso-electric point for parisite of 5.6 under water, with a shift to a more negative zeta potential with both collector (hydroxamic and fatty acids) and supernatant conditions. The IEP with collectors and supernatant was <3.5. As zeta potential measurements in the presence of reagents and supernatants are the most rigorous way of determining the efficiency of a flotation reagent, the agreement between parisite zeta potentials obtained here and previous work on bastnäsite suggests that parisite may be processed using similar reagent schemes to

11. Procedural Media Representation

OpenAIRE

Henrysson, Anders

2002-01-01

We present a concept for using procedural techniques to represent media. Procedural methods allow us to represent digital media (2D images, 3D environments etc.) with very little information and to render it photo realistically. Since not all kind of content can be created procedurally, traditional media representations (bitmaps, polygons etc.) must be used as well. We have adopted an object-based media representation where an object can be represented either with a procedure or with its trad...

12. Water-level representation by men and women as a function of rod-and-frame test proficiency and visual and postural information.

Science.gov (United States)

Robert, M; Ohlmann, T

1994-01-01

In the water-level task, it has been repeatedly shown that, compared with men, women more often fail to represent the surface of a liquid as horizontal regardless of the tilt of the container. An attempt was made to reduce this robust gender gap through the manipulation of relevant upright references conveyed both by the position of the stimuli and the posture of the subject. It was reasoned that bringing the women to focus on such gravitational references through postural adjustment might help their performance equal that of men, thus shedding some light on the nature of the difficulty they experience in the standard setting. A lesser effect was anticipated among men. However, the results showed that, even after controlling for proficiency in the correlated visuospatial situation of the rod-and-frame test, the performance of men always surpassed that of women. Irrespective of gender, water-level representation on vertical sheets was unaffected by the subject's posture, whereas it improved when horizontal sheets were coupled with the most unstable posture. Whereas the persistence of the yet-unaccounted-for gender difference was underscored, the contributions of visual and postural cues issued at arm and full-body levels were discussed.

13. Neural Representations of Physics Concepts.

Science.gov (United States)

Mason, Robert A; Just, Marcel Adam

2016-06-01

We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.

14. Knowledge representation and use. II. Representations

Energy Technology Data Exchange (ETDEWEB)

Lauriere, J L

1982-03-01

The use of computers is less and less restricted to numerical and data processing. On the other hand, current software mostly contains algorithms on universes with complete information. The paper discusses a different family of programs: expert systems are designed as aids in human reasoning in various specific areas. Symbolic knowledge manipulation, uncertain and incomplete deduction capabilities, natural communication with humans in non-procedural ways are their essential features. This part is mainly a reflection and a debate about the various modes of acquisition and representation of human knowledge. 32 references.

15. The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI

DEFF Research Database (Denmark)

Churchill, Nathan William; Madsen, Kristoffer Hougaard; Mørup, Morten

2016-01-01

flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension......The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize...... brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables....

16. Reduced Zeta potential through use of cationic adhesion promoter for improved resist process performance and minimizing material consumption

Science.gov (United States)

Hodgson, Lorna; Thompson, Andrew

2012-03-01

This paper presents the results of a non-HMDS (non-silane) adhesion promoter that was used to reduce the zeta potential for very thin (proprietary) polymer on silicon. By reducing the zeta potential, as measured by the minimum sample required to fully coat a wafer, the amount of polymer required to coat silicon substrates was significantly reduced in the manufacture of X-ray windows used for high transmission of low-energy X-rays. Moreover, this approach used aqueous based adhesion promoter described as a cationic surface active agent that has been shown to improve adhesion of photoresists (positive, negative, epoxy [SU8], e-beam and dry film). As well as reducing the amount of polymer required to coat substrates, this aqueous adhesion promoter is nonhazardous, and contains non-volatile solvents.

17. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.

Science.gov (United States)

Yan, Deguang; Nguyen, Nam-Trung; Yang, Chun; Huang, Xiaoyang

2006-01-14

We have demonstrated a transient micro particle image velocimetry (micro-PIV) technique to measure the temporal development of electroosmotic flow in microchannels. Synchronization of different trigger signals for the laser, the CCD camera, and the high-voltage switch makes this measurement possible with a conventional micro-PIV setup. Using the transient micro-PIV technique, we have further proposed a method on the basis of inertial decoupling between the particle electrophoretic motion and the fluid electroosmotic flow to determine the electrophoretic component in the particle velocity and the zeta potential of the channel wall. It is shown that using the measured zeta potentials, the theoretical predictions agree well with the transient response of the electroosmotic velocities measured in this work.

18. Exploring the Structure of Spatial Representations

Science.gov (United States)

Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

2016-01-01

It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

19. Relationship between phospholipase C-zeta, semen parameters, and chromatin status.

Science.gov (United States)

Tavalaee, Marziyeh; Kiani-Esfahani, Abbas; Nasr-Esfahani, Mohammad H

2017-08-01

The need for additional tests to complement basic sperm analysis in clinics is well appreciated. In this regard, a number of tests such as sperm DNA integrity test as a tool in diagnosis and treatment of infertility are suggested. But recent studies have focused on main sperm factors involved in oocyte activation such as phospholipase C-zeta (PLCζ) that initiate intracellular Ca 2+ signaling and embryogenesis. Therefore, this study aimed to investigate the relationship between PLCζ, basic semen parameters, sperm DNA fragmentation (SDF), and protamine deficiency in men with normal (n=32) and abnormal (n=23) semen parameters. Unlike SDF and protamine deficiency, as negative factors related to fertility, the mean value of PLCζ as positive factor related to infertility was significantly lower in men with abnormal semen parameters compared to men with normal semen parameters. Significant correlations were also observed between sperm concentration, motility, and abnormal morphology with the percentage of PLCζ positive spermatozoa. In addition, logistic regression analysis revealed that sperm morphology is more predictive than sperm motility and concentration for PLCζ presence. In addition, a statistically significant negative relationship was observed between the percentage of PLCζ positive spermatozoa and SDF. These findings suggested during ICSI, selection of sperm based on morphology has a profound effect on its ability to induce oocyte activation based on the likelihood of PLCζ expression. Therefore, assessment of PLCζ as an index for fertilization potential of a semen sample in men with severe teratozoospermia may define individuals who are candidates for artificial oocyte activation (AOA) and may avoid failed fertilization post ICSI.

20. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension

Science.gov (United States)

Lamberty, Andrée; Franks, Katrin; Braun, Adelina; Kestens, Vikram; Roebben, Gert; Linsinger, Thomas P. J.

2011-12-01

The Institute for Reference Materials and Measurements has organised an interlaboratory comparison (ILC) to allow the participating laboratories to demonstrate their proficiency in particle size and zeta potential measurements on monomodal aqueous suspensions of silica nanoparticles in the 10-100 nm size range. The main goal of this ILC was to identify competent collaborators for the production of certified nanoparticle reference materials. 38 laboratories from four different continents participated in the ILC with different methods for particle sizing and determination of zeta potential. Most of the laboratories submitted particle size results obtained with centrifugal liquid sedimentation (CLS), dynamic light scattering (DLS) or electron microscopy (EM), or zeta potential values obtained via electrophoretic light scattering (ELS). The results of the laboratories were evaluated using method-specific z scores, calculated on the basis of consensus values from the ILC. For CLS (13 results) and EM (13 results), all reported values were within the ±2 | z| interval. For DLS, 25 of the 27 results reported were within the ±2 | z| interval, the two other results were within the ±3 | z| interval. The standard deviations of the corresponding laboratory mean values varied between 3.7 and 6.5%, which demonstrates satisfactory interlaboratory comparability of CLS, DLS and EM particle size values. From the received test reports, a large discrepancy was observed in terms of the laboratory's quality assurance systems, which are equally important for the selection of collaborators in reference material certification projects. Only a minority of the participating laboratories is aware of all the items that are mandatory in test reports compliant to ISO/IEC 17025 (ISO General requirements for the competence of testing and calibration laboratories. International Organisation for Standardization, Geneva, 2005b). The absence of measurement uncertainty values in the reports, for

1. Epoetin zeta in the management of anemia associated with chronic kidney disease, differential pharmacology and clinical utility

Directory of Open Access Journals (Sweden)

Davis-Ajami ML

2014-04-01

Full Text Available Mary Lynn Davis-Ajami,1 Jun Wu,2 Katherine Downton,3 Emilie Ludeman,3 Virginia Noxon4 1Organizational Systems and Adult Health, University of Maryland School of Nursing, Baltimore, MD, USA; 2South Carolina College of Pharmacy, University of South Carolina, Greenville, SC, USA; 3Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, USA; 4Department of Clinical Pharmacy and Outcomes Science, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA Abstract: Epoetin zeta was granted marketing authorization in October 2007 by the European Medicines Agency as a recombinant human erythropoietin erythropoiesis-stimulating agent to treat symptomatic anemia of renal origin in adult and pediatric patients on hemodialysis and adults on peritoneal dialysis, as well as for symptomatic renal anemia in adult patients with renal insufficiency not yet on dialysis. Currently, epoetin zeta can be administered either subcutaneously or intravenously to correct for hemoglobin concentrations ≤10 g/dL (6.2 mmol/L or with dose adjustment to maintain hemoglobin levels at desired levels not in excess of 12 g/dL (7.5 mmol/L. This review article focuses on epoetin zeta indications in chronic kidney disease, its use in managing anemia of renal origin, and discusses its pharmacology and clinical utility. Keywords: biosimilar, chronic kidney disease, epoetin alfa, erythropoiesis, renal anemia, Retacrit®

2. Zeta potential study of Sb2S3 nanoparticles synthesized by a facile polyol method in various surfactants

Science.gov (United States)

2018-05-01

In the present work, we report the successful synthesis of stibnite Sb2S3 nanoparticles (NPs) by a facile polyol method using various surfactant. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy and Zeta potential. Rietveld refinement of XRD data confirms the single phase orthorhombic crystal structure of stibnite Sb2S3. Presence of six obvious Raman modes further confirmed their stoichiometric formation. Effect of different surfactants on the surface charge of Sb2S3 NPs was studied using Zeta potential measurement in deionized water at different pH values. They reveal that these NPs are more stable when it was synthesized in presence of EDTA than that of CTAB or without surfactant samples with high zeta potential. The isoelectronic point was found at pH = 6.4 for pure sample, 3.5 and 7.2 for CTAB and not found for EDTA Sb2S3 samples. This information can be useful for many industrial applications like pharmaceuticals, ceramics, waste water treatment and medicines.

3. Towards the Development of Global Nano-Quantitative Structure–Property Relationship Models: Zeta Potentials of Metal Oxide Nanoparticles

Directory of Open Access Journals (Sweden)

Andrey A. Toropov

2018-04-01

Full Text Available Zeta potential indirectly reflects a charge of the surface of nanoparticles in solutions and could be used to represent the stability of the colloidal solution. As processes of synthesis, testing and evaluation of new nanomaterials are expensive and time-consuming, so it would be helpful to estimate an approximate range of properties for untested nanomaterials using computational modeling. We collected the largest dataset of zeta potential measurements of bare metal oxide nanoparticles in water (87 data points. The dataset was used to develop quantitative structure–property relationship (QSPR models. Essential features of nanoparticles were represented using a modified simplified molecular input line entry system (SMILES. SMILES strings reflected the size-dependent behavior of zeta potentials, as the considered quasi-SMILES modification included information about both chemical composition and the size of the nanoparticles. Three mathematical models were generated using the Monte Carlo method, and their statistical quality was evaluated (R2 for the training set varied from 0.71 to 0.87; for the validation set, from 0.67 to 0.82; root mean square errors for both training and validation sets ranged from 11.3 to 17.2 mV. The developed models were analyzed and linked to aggregation effects in aqueous solutions.

4. Investigation on Fuzzy Logic Based Centralized Control in Four-Port SEPIC/ZETA Bidirectional Converter for Photovoltaic Applications

Directory of Open Access Journals (Sweden)

VENMATHI, M.

2016-02-01

Full Text Available In this paper, a new four-port DC-DC converter topology is proposed to interface renewable energy sources and the load along with the energy storage device. The proposed four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC converter comprises an isolated output port with two unidirectional and one bidirectional input ports. This converter topology is obtained by the fusion of SEPIC/ZETA BDC and full-bridge converter. This converter topology ensures the non-reversal of output voltage hence it is preferred mostly for battery charging applications. In this work, photovoltaic (PV source is considered and the power balance in the system is achieved by means of distributed maximum power point tracking (DMPPT in the PV ports. The centralized controller is implemented using fuzzy logic controller (FLC and the performance is compared with conventional proportional integral (PI controller. The results offer useful information to obtain the desired output under line and load regulations. Experimental results are also provided to validate the simulation results.

5. Spectral representation in stochastic quantization

International Nuclear Information System (INIS)

Nakazato, Hiromichi.

1988-10-01

A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)

6. Operator representations of frames

DEFF Research Database (Denmark)

Christensen, Ole; Hasannasab, Marzieh

2017-01-01

of the properties of the operator T requires more work. For example it is a delicate issue to obtain a representation with a bounded operator, and the availability of such a representation not only depends on the frame considered as a set, but also on the chosen indexing. Using results from operator theory we show......The purpose of this paper is to consider representations of frames {fk}k∈I in a Hilbert space ℋ of the form {fk}k∈I = {Tkf0}k∈I for a linear operator T; here the index set I is either ℤ or ℒ0. While a representation of this form is available under weak conditions on the frame, the analysis...... that by embedding the Hilbert space ℋ into a larger Hilbert space, we can always represent a frame via iterations of a bounded operator, composed with the orthogonal projection onto ℋ. The paper closes with a discussion of an open problem concerning representations of Gabor frames via iterations of a bounded...

7. Masking of the CD3 gamma di-leucine-based motif by zeta is required for efficient T-cell receptor expression

DEFF Research Database (Denmark)

Lauritsen, Jens Peter H; Bonefeld, Charlotte Menné; von Essen, Marina

2004-01-01

containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced...... TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine...

8. Hohenberg-Kohn theorem and non-V-representable densities

International Nuclear Information System (INIS)

Englisch, H.; Englisch, R.

1983-01-01

In the density-functional formalism of Hohenberg and Kohn, the variation is only allowed over the one-particle densities which are pure-state-V-representable (PS-V-representable). Levy and Lieb proved that not every ensemble-V-representable (E-V-representable) density is PS-V-representable. Since we show that the Hohenberg-Kohn formalism can be extended to a variation over E-V-representable densities for degenerated ground states, Levy's and Lieb's result is not a counterexample to the universality of the Hohenberg-Kohn theorem. The question whether every N-representable density is E-V-representable has remained open so far. Presenting examples of non-E-V-representable densities we answer this question in the negative. Thus the value of Levy's functional for the calculation of ground-state energies is obvious, since this functional only requires the N-representability of the densities. Therefore we transfer two approaches for the calculation of excited-state energies into the framework of Levy's formalism. (orig.)

9. Mobilities and Representations

DEFF Research Database (Denmark)

Thelle, Mikkel

2017-01-01

to consider how they and their peers are currently confronting representations of mobility. This is particularly timely given the growing academic focus on practices, material mediation, and nonrepresentational theories, as well as on bodily reactions, emotions, and feelings that, according to those theories......As the centerpiece of the eighth T2M yearbook, the following interview about representations of mobility signals a new and exciting focus area for Mobility in History. In future issues we hope to include reviews that grapple more with how mobilities have been imagined and represented in the arts......, literature, and film. Moreover, we hope the authors of future reviews will reflect on the ways they approached those representations. Such commentaries would provide valuable methodological insights, and we hope to begin that effort with this interview. We have asked four prominent mobility scholars...

10. Memetics of representation

Directory of Open Access Journals (Sweden)

Roberto De Rubertis

2012-06-01

Full Text Available This article will discuss about the physiological genesis of representation and then it will illustrate the developments, especially in evolutionary perspective, and it will show how these are mainly a result of accidental circumstances, rather than of deliberate intention of improvement. In particular, it will be argue that the representation has behaved like a meme that has arrived to its own progressive evolution coming into symbiosis with the different cultures in which it has spread, and using in this activity human work “unconsciously”. Finally it will be shown how in this action the geometry is an element key, linked to representation both to construct images using graphics operations and to erect buildings using concrete operations.

11. Post-representational cartography

Directory of Open Access Journals (Sweden)

Rob Kitchin

2010-03-01

Full Text Available Over the past decade there has been a move amongst critical cartographers to rethink maps from a post-representational perspective – that is, a vantage point that does not privilege representational modes of thinking (wherein maps are assumed to be mirrors of the world and automatically presumes the ontological security of a map as a map, but rather rethinks and destabilises such notions. This new theorisation extends beyond the earlier critiques of Brian Harley (1989 that argued maps were social constructions. For Harley a map still conveyed the truth of a landscape, albeit its message was bound within the ideological frame of its creator. He thus advocated a strategy of identifying the politics of representation within maps in order to circumnavigate them (to reveal the truth lurking underneath, with the ontology of cartographic practice remaining unquestioned.

12. Introduction to computer data representation

CERN Document Server

Fenwick, Peter

2014-01-01

Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and 'universal' or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic repre

13. Representation Discovery using Harmonic Analysis

CERN Document Server

2008-01-01

Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

14. 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in Head and Neck cancer cells

International Nuclear Information System (INIS)

Macha, Muzafar A; Matta, Ajay; Chauhan, SS; Siu, KW Michael; Ralhan, Ranju

2010-01-01

15. Path integral representations on the complex sphere

Energy Technology Data Exchange (ETDEWEB)

Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

2007-08-15

In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

16. Path integral representations on the complex sphere

International Nuclear Information System (INIS)

Grosche, C.

2007-08-01

In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

17. On the spinor representation

Energy Technology Data Exchange (ETDEWEB)

Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

2017-07-15

A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)

18. On phase-space representations of quantum mechanics using

space representations of quantum mechanics using Glauber coherent states. DIÓGENES CAMPOS. Research Article Volume 87 Issue 2 August ... Keywords. Phase-space quantum mechanics, coherent states, Husimi function, Wigner function ...

19. Mental Representation and Motor Imagery Training

Directory of Open Access Journals (Sweden)

Thomas eSchack

2014-05-01

Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

20. Clinical Trials Using Anti-CD19/CD28/CD3zeta CAR Gammaretroviral Vector-transduced Autologous T Lymphocytes KTE-C19

Science.gov (United States)

NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying anti-cd19/cd28/cd3zeta car gammaretroviral vector-transduced autologous t lymphocytes kte-c19.

1. Going beyond representational anthropology

DEFF Research Database (Denmark)

Winther, Ida Wentzel

Going beyond representational anthropology: Re-presenting bodily, emotional and virtual practices in everyday life. Separated youngsters and families in Greenland Greenland is a huge island, with a total of four high-schools. Many youngsters (age 16-18) move far away from home in order to get...

2. Reflection on Political Representation

DEFF Research Database (Denmark)

Kusche, Isabel

2017-01-01

This article compares how Members of Parliament in the United Kingdom and Ireland reflect on constituency service as an aspect of political representation. It differs from existing research on the constituency role of MPs in two regards. First, it approaches the question from a sociological viewp...

Directory of Open Access Journals (Sweden)

Andreja Cirila Škufca

2003-09-01

Full Text Available In this article we are presenting the results of the comparison study on social representations and causal attributions about cancer. We compared a breast cancer survivors group and control group without own experience of cancer of their own. Although social representations about cancer differ in each group, they are closely related to the concept of suffering, dying and death. We found differences in causal attribution of cancer. In both groups we found a category of risky behavior, which attributes a responsibility for a disease to an individual. Besides these factors we found predominate stress and psychological influences in cancer survivors group. On the other hand control group indicated factors outside the ones control e.g. heredity and environmental factors. Representations about a disease inside person's social space are important in co-shaping the individual process of coping with own disease. Since these representations are not always coherent with the knowledge of modern medicine their knowledge and appreciation in the course of treatment is of great value. We find the findingss of applied social psychology important as starting points in the therapeutic work with patients.

4. The Problem of Representation

Science.gov (United States)

Tervo, Juuso

2012-01-01

In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…

5. Women and political representation.

Science.gov (United States)

Rathod, P B

1999-01-01

A remarkable progress in women's participation in politics throughout the world was witnessed in the final decade of the 20th century. According to the Inter-Parliamentary Union report, there were only eight countries with no women in their legislatures in 1998. The number of women ministers at the cabinet level worldwide doubled in a decade, and the number of countries without any women ministers dropped from 93 to 48 during 1987-96. However, this progress is far from satisfactory. Political representation of women, minorities, and other social groups is still inadequate. This may be due to a complex combination of socioeconomic, cultural, and institutional factors. The view that women's political participation increases with social and economic development is supported by data from the Nordic countries, where there are higher proportions of women legislators than in less developed countries. While better levels of socioeconomic development, having a women-friendly political culture, and higher literacy are considered favorable factors for women's increased political representation, adopting one of the proportional representation systems (such as a party-list system, a single transferable vote system, or a mixed proportional system with multi-member constituencies) is the single factor most responsible for the higher representation of women.

6. Stochastic Analysis of Gaussian Processes via Fredholm Representation

Directory of Open Access Journals (Sweden)

Tommi Sottinen

2016-01-01

Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

7. Action simulation: time course and representational mechanisms

Science.gov (United States)

Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

2013-01-01

The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

8. Representational momentum in memory for pitch.

Science.gov (United States)

Freyd, J J; Kelly, M H; DeKay, M L

1990-11-01

When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

9. In defense of abstract conceptual representations.

Science.gov (United States)

Binder, Jeffrey R

2016-08-01

An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

10. Wigner representation in scattering problems

International Nuclear Information System (INIS)

Remler, E.A.

1975-01-01

The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger

11. Spectral Approaches to Learning Predictive Representations

Science.gov (United States)

2012-09-01

representation and a value function. In practice, we would like to be able to find a good set of features, without prior knowledge of the system model. Kolter ...http://www.cs.ucr.edu/ eamonn/TSDMA/index.html. 7.1 [55] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares temporal

12. Internal Representational Models of Attachment Relationships.

Science.gov (United States)

Crittenden, Patricia M.

This paper outlines several properties of internal representational models (IRMs) and offers terminology that may help to differentiate the models. Properties of IRMs include focus, memory systems, content, cognitive function, "metastructure," quality of attachment, behavioral strategies, and attitude toward attachment. An IRM focuses on…

13. κ-Minkowski representations on Hilbert spaces

International Nuclear Information System (INIS)

Agostini, Alessandra

2007-01-01

The algebra of functions on κ-Minkowski noncommutative space-time is studied as algebra of operators on Hilbert spaces. The representations of this algebra are constructed and classified. This new approach leads to a natural construction of integration in κ-Minkowski space-time in terms of the usual trace of operators

14. Representations in Calculus: Two Contrasting Cases.

Science.gov (United States)

Aspinwall, Leslie; Shaw, Kenneth L.

2002-01-01

Illustrates the contrasting thinking processes of two beginning calculus students' geometric and analytic schemes for the derivative function. Suggests that teachers can enhance students' understanding by continuing to demonstrate how different representations of the same mathematical concept provide additional information. (KHR)

15. Cuts of Feynman Integrals in Baikov representation

International Nuclear Information System (INIS)

2017-01-01

Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman Integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

16. Cuts of Feynman Integrals in Baikov representation

Energy Technology Data Exchange (ETDEWEB)

Frellesvig, Hjalte; Papadopoulos, Costas G. [Institute of Nuclear and Particle Physics, NCSR ‘Demokritos’,P.O. Box 60037, Agia Paraskevi, 15310 (Greece)

2017-04-13

Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman Integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

17. Coordinating different representations in the hippocampus

Czech Academy of Sciences Publication Activity Database

Kelemen, Eduard; Fenton, A.A.

2016-01-01

Roč. 129, Mar 2016 (2016), s. 50-59 ISSN 1074-7427 R&D Projects: GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : dynamic functional grouping * multiple representations * cognitive control * hippocampus * overdispersion Subject RIV: FH - Neurology Impact factor: 3.543, year: 2016

18. The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion; La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudies en utilisant des representations diagrammatiques du developpement en serie des perturbations

Energy Technology Data Exchange (ETDEWEB)

Dominicis, C. de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

1961-07-01

The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z ({alpha},{beta}) takes a form where, besides trivial dependences, {alpha} and {beta} only appear through a statistical factor F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z ({alpha},{beta}) under variations of F{sub k}{sup -}. The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [French] La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudiee en utilisant des representations diagrammatiques du developpement en serie des perturbations. Pour un systeme de fermions on peut, par des resommations adequates, sans approximations mais sous reserve d'une 'hypothese de regularite', mettre Log Z ({alpha},{beta}) sous une forme ou, en dehors de dependances triviales, {alpha} et {beta} n'interviennent que par l'intermediaire d'un facteur statistique F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} est ici un potentiel self-consistant (reel) generalise a tous les ordres et peut etre defini par une condition de stationnarite de Log Z ({alpha},{beta}) pour des variations de F{sub k}{sup -}. Les grandeurs thermodynamiques prennent une forme analogue aux expressions que LANDAU a introduites pour les liquides de FERMI. A la limite de la temperature nulle (et pour un

19. The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion; La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudies en utilisant des representations diagrammatiques du developpement en serie des perturbations

Energy Technology Data Exchange (ETDEWEB)

Dominicis, C de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

1961-07-01

The grand partition function Z ({alpha},{beta}) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z ({alpha},{beta}) takes a form where, besides trivial dependences, {alpha} and {beta} only appear through a statistical factor F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z ({alpha},{beta}) under variations of F{sub k}{sup -}. The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [French] La grande fonction de partition Z ({alpha},{beta}) d'un systeme quantique est etudiee en utilisant des representations diagrammatiques du developpement en serie des perturbations. Pour un systeme de fermions on peut, par des resommations adequates, sans approximations mais sous reserve d'une 'hypothese de regularite', mettre Log Z ({alpha},{beta}) sous une forme ou, en dehors de dependances triviales, {alpha} et {beta} n'interviennent que par l'intermediaire d'un facteur statistique F{sub k}{sup -} = [1 + e{sup -{alpha}}{sup +{beta}}{sup {epsilon}{sub k}{sup 0}}{sup -{beta}}{sup W{sub k}}]{sup -1}. W{sub k} est ici un potentiel self-consistant (reel) generalise a tous les ordres et peut etre defini par une condition de stationnarite de Log Z ({alpha},{beta}) pour des variations de F{sub k}{sup -}. Les grandeurs thermodynamiques prennent une forme analogue aux expressions que LANDAU a introduites pour les liquides de FERMI. A la limite de la temperature nulle (et pour un systeme isotrope) on retrouve terme a terme les

20. Standard model of knowledge representation

Science.gov (United States)

Yin, Wensheng

2016-09-01

Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

1. Constructing visual representations

DEFF Research Database (Denmark)

Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

2014-01-01

tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations......The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...

2. Naturalising Representational Content

Science.gov (United States)

Shea, Nicholas

2014-01-01

This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661

3. Knowledge Representation and Ontologies

Science.gov (United States)

Grimm, Stephan

Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

4. Europe representations in textbooks

OpenAIRE

Brennetot , Arnaud

2011-01-01

This EuroBroadMap working paper presents an analysis of textbooks dealing with the representations of Europe and European Union. In most of these textbooks from secondary school, the teaching of the geography of Europe precedes the evocation of the EU. Europe is often depicted as a given object, reduced to a number of structural aspects (relief, climate, demography, traditional cultures, economic activities, etc.) whose only common point is their location within conventional boundaries. Such ...

5. Non-Representational Theory

DEFF Research Database (Denmark)

Jensen, Ole B.

2016-01-01

Dette kapitel gennemgår den såkaldte ”Non-Representational Theory” (NRT), der primært er kendt fra den Angelsaksiske humangeografi, og som særligt er blevet fremført af den engelske geograf Nigel Thrift siden midten af 2000 årtiet. Da positionen ikke kan siges at være specielt homogen vil kapitlet...

6. Harmonic Analysis and Group Representation

CERN Document Server

Figa-Talamanca, Alessandro

2011-01-01

This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

7. Pioneers of representation theory

CERN Document Server

Curtis, Charles W

1999-01-01

The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductor...

8. Cohen-Macaulay representations

CERN Document Server

Leuschke, Graham J

2012-01-01

This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Au...

9. Schroedinger representation in quantum field theory

International Nuclear Information System (INIS)

Luescher, M.

1985-01-01

Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

10. Schrodinger representation in renormalizable quantum field theory

International Nuclear Information System (INIS)

Symanzik, K.

1983-01-01

The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward

11. Uncovering Mental Representations with Markov Chain Monte Carlo

Science.gov (United States)

Sanborn, Adam N.; Griffiths, Thomas L.; Shiffrin, Richard M.

2010-01-01

A key challenge for cognitive psychology is the investigation of mental representations, such as object categories, subjective probabilities, choice utilities, and memory traces. In many cases, these representations can be expressed as a non-negative function defined over a set of objects. We present a behavioral method for estimating these…

12. A representation independent propagator. Pt. 1. Compact Lie groups

International Nuclear Information System (INIS)

Tome, W.A.

1995-01-01

Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)

13. Coordinate, Momentum and Dispersion operators in Phase space representation

International Nuclear Information System (INIS)

Rakotoson, H.; Raoelina Andriambololona; Ranaivoson, R.T.R.; Raboanary, R.

2017-07-01

The aim of this paper is to present a study on the representations of coordinate, momentum and dispersion operators in the framework of a phase space representation of quantum mechanics that we have introduced and studied in previous works. We begin in the introduction section with a recall about the concept of representation of operators on wave function spaces. Then, we show that in the case of the phase space representation the coordinate and momentum operators can be represented either with differential operators or with matrices. The explicit expressions of both the differential operators and matrices representations are established. Multidimensional generalization of the obtained results are performed and phase space representation of dispersion operators are given.

14. Features of common representations of suiciders in young people

Directory of Open Access Journals (Sweden)

I. B. Bovina

2013-04-01

Full Text Available We discuss the first phase results of a research project dedicated to study of suicide representations in youth. In the framework of structural approach to social representations, we study features of structure and content of social representations of suiciders in two groups of young people (the criterion for group allocation was their acquaintance with people who has suicide attempts. Our sample (N = 106 consisted of representatives of several youth groups (students and working youths with specialized secondary, higher or incomplete higher education, aged 18 to 35 years (M = 23,48 years, SD = 4,36 years: 67 women and 39 men. The 1st group includes respondents personally acquainted with suicide attempters (44 respondents, the 2nd group – respondents without such experience. The subject of research were common representations of suiciders. We tested assumptions about the specificity of protective functions of social representations, as well as consistency of representations in the two groups of respondents.

15. Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations.

Science.gov (United States)

Laun, Joachim; Vilela Oliveira, Daniel; Bredow, Thomas

2018-02-22

Consistent basis sets of double- and triple-zeta valence with polarization quality for the fifth period have been derived for periodic quantum-chemical solid-state calculations with the crystalline-orbital program CRYSTAL. They are an extension of the pob-TZVP basis sets, and are based on the full-relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2-SVP and def2-TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self-consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob-DZVP and pob-TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

16. Fractional derivative of the Hurwitz ζ-function and chaotic decay to zero

Directory of Open Access Journals (Sweden)

C. Cattani

2016-01-01

Full Text Available In this paper the fractional order derivative of a Dirichlet series, Hurwitz zeta function and Riemann zeta function is explicitly computed using the Caputo fractional derivative in the Ortigueira sense. It is observed that the obtained results are a natural generalization of the integer order derivative. Some interesting properties of the fractional derivative of the Riemann zeta function are also investigated to show that there is a chaotic decay to zero (in the Gaussian plane and a promising expression as a complex power series.

17. Zeta potential and Raman studies of PVP capped Bi2S3 nanoparticles synthesized by polyol method

Science.gov (United States)

Tarachand, Sathe, Vasant G.; Okram, Gunadhor S.

2018-05-01

Here we report the synthesis and characterisation of polyvinylpyrrolidone (PVP) capped Bi2S3 nanoparticles via one step catalyst-free polyol method. Raman spectroscopy, dynamic light scattering and zeta potential analysis were performed on it. Rietveld refinement of powder XRD of PVP capped samples confirmed the formation of single phase orthorhombic Bi2S3 for all PVP capped samples. The presence of eight obvious Raman modes further confirmed the formation of stoichiometric Bi2S3. Dynamic light scattering (DLS) studies show a clear increase in hydrodynamic diameter for samples made with increasing PVP concentration. Particle size obtained from DLS and XRD (using Scherrer's formula) combine with change in full width half maxima of Raman modes collectively suggest overall improvement in crystallinity and quality of product on introducing PVP. In zeta potential (ζ) measurement, steric hindrance of carbon chains plays very crucial role and a systematic reduction of ζ value is observed for samples made with decreasing PVP concentration. An isoelectric point is obtained for sample made with low PVP (1g). Present results are likely to open a window for its medical and catalytic applications.

18. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a key factor for assessing the efficiency of coagulation-flocculation processes based on the optimum dosages and windows for polyelectrolytes coagulation-flocculation effectiveness. In this paper, strategic pH variations allowed the prediction of the dosage of polyelectrolyte on wastewater from real electroplating baths, including the isoelectric point (IEP of the dispersions of water and commercial polyelectrolytes used in typical semiconductor industries. The results showed that there is a difference between polyelectrolyte demand required for the removal of suspended solids, turbidity, and organic matter from wastewater (23.4 mg/L and 67 mg/L, resp.. It was also concluded that the dose of polyelectrolytes and coagulation-flocculation window to achieve compliance with national and international regulations as EPA in USA and SEMARNAT in Mexico is influenced by the physicochemical characteristics of the dispersions and treatment conditions (pH and polyelectrolyte dosing strategy.

19. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

Science.gov (United States)

2016-04-20

Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

20. Categorification and higher representation theory

CERN Document Server

Beliakova, Anna

2017-01-01

The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

1. Modeling of gas condensates properties using continuous distribution functions for the characterization of the plus fraction; Modelisation des proprietes thermodynamiques des gaz a condensat par representation de la fraction lourde a laide de fonctions de distribution

Energy Technology Data Exchange (ETDEWEB)

Sportisse, M.

1996-12-20

The modeling of thermodynamic behaviour for gas condensates is not yet satisfactory and it involves an adjustment of thermodynamic models. We propose here a fitting based on the characterization of the plus fraction using three continuous distribution functions associated to the following families: n-alkanes, n-alkylbenzenes and poly-aromatics. No continuous thermodynamic model is used and PVT calculations are made with the Peng-Robinson equation of state. For poly-aromatics, a simple correlation of {l_brace} T{sub c}, P{sub c}, {omega} {r_brace} is given. The parameters of the distributions are fitted in order to improve the accuracy of the liquid deposit curve calculation. A continuous minimization by simulated annealing has been used to avoid local minima. Good results on fitting PVT properties have been obtained with more than twenty gas condensates from different areas. Moreover, the prediction of tank liquid and heavy-plus fraction densities are given with an average deviation of 1.2 % and 3.6 %. Tests on temperature extrapolation show that our modeling yields a good representation of pressure and temperature influence on gas condensates behaviour. (author) 89 refs.

2. Representation of the Divine

DEFF Research Database (Denmark)

Loddegaard, Anne

2012-01-01

out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...... Satan episode in Under Satan’s Sun is neither a break with the seriousness nor with the realism of the Catholic novel. On the basis of Tvetan Todorov’s definition of the traditional fantastic tale, the analysis shows that only the beginning of the fantastic episode follows Todorov’s definition...

3. Representation of the Divine

DEFF Research Database (Denmark)

Loddegaard, Anne

2009-01-01

out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...... Satan episode in Under Satan’s Sun is neither a break with the seriousness nor with the realism of the Catholic novel. On the basis of Tvetan Todorov’s definition of the traditional fantastic tale, the analysis shows that only the beginning of the fantastic episode follows Todorov’s definition...

4. Representations of commonsense knowledge

CERN Document Server

Davis, Ernest

1990-01-01

Representations of Commonsense Knowledge provides a rich language for expressing commonsense knowledge and inference techniques for carrying out commonsense knowledge. This book provides a survey of the research on commonsense knowledge.Organized into 10 chapters, this book begins with an overview of the basic ideas on artificial intelligence commonsense reasoning. This text then examines the structure of logic, which is roughly analogous to that of a programming language. Other chapters describe how rules of universal validity can be applied to facts known with absolute certainty to deduce ot

5. Between Representation and Eternity

DEFF Research Database (Denmark)

Atzbach, Rainer

2016-01-01

This paper seeks to explore how prayer and praying practice are reflected in archaeological sources. Apart from objects directly involved in the personal act of praying, such as rosaries and praying books, churches and religious foundations played a major role in the medieval system of intercession....... At death, an indi- vidual’s corpse and burial primarily reflect the social act of representation during the funeral. The position of the arms, which have incorrectly been used as a chronological tool in Scandinavia, may indicate an evolution from a more collective act of prayer up to the eleventh century...

6. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

Science.gov (United States)

2016-11-01

Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

7. Multiscale wavelet representations for mammographic feature analysis

Science.gov (United States)

Laine, Andrew F.; Song, Shuwu

1992-12-01

This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

8. Green's function representations for seismic interferometry

NARCIS (Netherlands)

Wapenaar, C.P.A.; Fokkema, J.T.

2006-01-01

The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered

9. Social Representations of Intelligence

Directory of Open Access Journals (Sweden)

Elena Zubieta

2016-02-01

Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions.

10. Diabatic and adiabatic representations for atomic collision processes

International Nuclear Information System (INIS)

Delos, J.B.; Thorson, W.R.

1979-01-01

A consistent general definition of diabatic representations has not previously been given, even though many practical examples of such representations have been constructed for specific problems. Such a definition is provided in this paper. Beginning with a classical trajectory formulation, we describe the form and behavior of velocity-dependent couplings in slow collisions, including the effects of electron-translation factors (ETF's). We compare the couplings arising from atomic representations and atomic ETF's with those arising from molecular representations and ''switching function'' ETF's. We show that a unique set of switching functions makes the two descriptions identical in their effects. We then show that an acceptable general definition of a diabatic representation is provided by the condition P+A=0, where P is the usual nonadiabatic coupling matrix and A represents corrections to it arising from electron translation factors (ETF's). Two distinct types of diabatic representation result, depending on the definition taken for A. States that undergo no deformation are called F diabatic; those that have no velocity-dependent couplings are called M diabatic. Finally, we discuss the properties of representations that are partially diabatic and partially adiabatic, and we give some rules for the construction of representations that should be nearly optimal for describing many types of collision processes

11. RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup

DEFF Research Database (Denmark)

Jin, Emma Yu; Nebel, M. E.

2016-01-01

that the corresponding conditional probabilities behave according to a polymer-zeta probability model. We show that even if some of the structural parameters exhibit an almost realistic behavior on average, the expected shape of a folding in that model must be assumed to highly differ from those observed in nature. More...... sparsification) may reduce the runtime to n2 on average, assuming that nucleotides of distance d form a hydrogen bond (i.e. are paired) with probability (Formula Presented.) for some constants b > 0, c > 1. The latter is called the polymer-zeta model and plays a crucial role in speeding up the above mentioned...... algorithm. In this paper we discuss the application of the polymer-zeta property for the analysis of sparsification, showing that it must be applied conditionally on first and last positions to pair. Afterwards, we will investigate the combinatorics of RNA secondary structures assuming...

12. On push-forward representations in the standard gyrokinetic model

International Nuclear Information System (INIS)

Miyato, N.; Yagi, M.; Scott, B. D.

2015-01-01

Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear

13. On push-forward representations in the standard gyrokinetic model

Energy Technology Data Exchange (ETDEWEB)

Miyato, N., E-mail: miyato.naoaki@jaea.go.jp; Yagi, M. [Japan Atomic Energy Agency, 2-116 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Scott, B. D. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

2015-01-15

Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.

14. Parental representations of transsexuals.

Science.gov (United States)

Parker, G; Barr, R

1982-06-01

The parental representations of 30 male-to-female transsexuals were rated using a measure of fundamental parental dimensions and shown to be of acceptable validity as a measure both of perceived and actual parental characteristics. Scores on that measure were compared separately against scores returned by matched male and female controls. The transsexuals did not differ from the male controls in their scoring of their mothers but did score their fathers as less caring and more overprotective. These differences were weaker for the comparisons made against the female controls. Item analyses suggested that the greater paternal "overprotection" experienced by transsexuals was due to their fathers being perceived as offering less encouragement to their sons' independence and autonomy. Several interpretations of the findings are considered.

15. Computer aided surface representation

Energy Technology Data Exchange (ETDEWEB)

Barnhill, R.E.

1990-02-19

The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

16. The representation of neutron polarization

International Nuclear Information System (INIS)

Byrne, J.

1979-01-01

Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

17. Sinusoidal Representation of Acoustic Signals

Science.gov (United States)

Honda, Masaaki

Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

18. Failure to synthesize the human T-cell CD3-zeta chain and its consequence for the T-cell receptor-CD3 complex expression

DEFF Research Database (Denmark)

Geisler, C; Kuhlmann, J; Plesner, T

1989-01-01

components, the human T-cell tumour line Jurkat was chemically mutagenized followed by negative selection with F101.01 (a monoclonal antibody against the TcR-CD3 complex), and cloning. Growing clones were analysed for TcR-CD3 expression by immunofluorescence. One clone, J79, was found to express greatly...... diminished levels of TcR-CD3. This clone produced all the TcR-CD3 components except the CD3-zeta, as demonstrated by metabolic labelling and immunoprecipitation followed by one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. These data indicate that the CD3-zeta determines...

19. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

Science.gov (United States)

Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

2009-12-30

We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

20. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.

Science.gov (United States)

Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin

2018-05-01

Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.

1. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

Energy Technology Data Exchange (ETDEWEB)

Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

1996-07-07

We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

2. Adsorbed polymers in aqueous media. The relation between zeta-potential, layer thickness and ionic strength

NARCIS (Netherlands)

Cohen Stuart, M.A.; Mulder, J.W.

1985-01-01

Streaming potentials for glass capillaries with and without adsorbed poly(vinyl pyrrolidone) were used to determine the thickness of the adsorbed polymer layer. It was found that the thickness determined in this way is a strong function of the ionic strength of the solution. The results are compared

3. Representations of Lie algebras and partial differential equations

CERN Document Server

Xu, Xiaoping

2017-01-01

This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

4. Profile of biology prospective teachers’ representation on plant anatomy learning

Science.gov (United States)

Ermayanti; Susanti, R.; Anwar, Y.

2018-04-01

This study aims to obtaining students’ representation ability in understanding the structure and function of plant tissues in plant anatomy course. Thirty students of The Biology Education Department of Sriwijaya University were involved in this study. Data on representation ability were collected using test and observation. The instruments had been validated by expert judgment. Test scores were used to represent students’ ability in 4 categories: 2D-image, 3D-image, spatial, and verbal representations. The results show that students’ representation ability is still low: 2D-image (40.0), 3D-image (25.0), spatial (20.0), and verbal representation (45.0). Based on the results of this study, it is suggested that instructional strategies be developed for plant anatomy course.

5. Non-commutative flux representation for loop quantum gravity

Science.gov (United States)

Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.

2011-09-01

The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.

6. Social representations and normative beliefs of aging.

Science.gov (United States)

Torres, Tatiana de Lucena; Camargo, Brigido Vizeu; Boulsfield, Andréa Barbará; Silva, Antônia Oliveira

2015-12-01

This study adopted the theory of social representations as a theoretical framework in order to characterize similarities and differences in social representations and normative beliefs of aging for different age groups. The 638 participants responded to self-administered questionnaire and were equally distributed by sex and age. The results show that aging is characterized by positive stereotypes (knowledge and experience); however, retirement is linked to aging, but in a negative way, particularly for men, involving illness, loneliness and disability. When age was considered, it was verified that the connections with the representational elements became more complex for older groups, showing social representation functionality, largely for the elderly. Adulthood seems to be preferred and old age is disliked. There were divergences related to the perception of the beginning of life phases, especially that of old age. Work was characterized as the opposite of aging, and it revealed the need for actions intended for the elderly and retired workers, with post-retirement projects. In addition, it suggests investment in public policies that encourage intergenerational contact, with efforts to reduce intolerance and discrimination based on age of people.

7. Unilateral vestibular loss impairs external space representation.

Directory of Open Access Journals (Sweden)

Liliane Borel

Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

8. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

Science.gov (United States)

Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

1989-01-01

The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

9. Artificial limb representation in amputees.

Science.gov (United States)

van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

2018-05-01

The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.

10. Wavelet representation of the nuclear dynamics

Energy Technology Data Exchange (ETDEWEB)

Jouault, B.; Sebille, F.; Mota, V. de la

1997-12-31

The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.

11. Conceptual spatial representations for indoor mobile robots

OpenAIRE

Zender, Henrik; Mozos, Oscar Martinez; Jensfelt, Patric; Kruijff, Geert-Jan M.; Wolfram, Burgard

2008-01-01

We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following ﬁndings in cognitive psychology, our model is composed of layers representing maps at diﬀerent levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporate...

12. Wavelet representation of the nuclear dynamics

International Nuclear Information System (INIS)

Jouault, B.; Sebille, F.; Mota, V. de la.

1997-01-01

The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)

13. Two problems from the theory of semiotic control models. I. Representations of semiotic models

Energy Technology Data Exchange (ETDEWEB)

Osipov, G S

1981-11-01

Two problems from the theory of semiotic control models are being stated, in particular the representation of models and the semantic analysis of themtheory of semiotic control models are being stated, in particular the representation of models and the semantic analysis of them. Algebraic representation of semiotic models, covering of representations, their reduction and equivalence are discussed. The interrelations between functional and structural characteristics of semiotic models are investigated. 20 references.

14. A unified development of several techniques for the representation of random vectors and data sets

Science.gov (United States)

Bundick, W. T.

1973-01-01

Linear vector space theory is used to develop a general representation of a set of data vectors or random vectors by linear combinations of orthonormal vectors such that the mean squared error of the representation is minimized. The orthonormal vectors are shown to be the eigenvectors of an operator. The general representation is applied to several specific problems involving the use of the Karhunen-Loeve expansion, principal component analysis, and empirical orthogonal functions; and the common properties of these representations are developed.

15. Visual perception and verbal descriptions as sources for generating mental representations: Evidence from representational neglect.

Science.gov (United States)

Denis, Michel; Beschin, Nicoletta; Logie, Robert H; Della Sala, Sergio

2002-03-01

In the majority of investigations of representational neglect, patients are asked to report information derived from long-term visual knowledge. In contrast, studies of perceptual neglect involve reporting the contents of relatively novel scenes in the immediate environment. The present study aimed to establish how representational neglect might affect (a) immediate recall of recently perceived, novel visual layouts, and (b) immediate recall of novel layouts presented only as auditory verbal descriptions. These conditions were contrasted with reports from visual perception and a test of immediate recall of verbal material. Data were obtained from 11 neglect patients (9 with representational neglect), 6 right hemisphere lesion control patients with no evidence of neglect, and 15 healthy controls. In the perception, memory following perception, and memory following layout description conditions, the neglect patients showed poorer report of items depicted or described on the left than on the right of each layout. The lateralised error pattern was not evident in the non-neglect patients or healthy controls, and there was no difference among the three groups on immediate verbal memory. One patient showed pure representational neglect, with ceiling performance in the perception condition, but with lateralised errors for memory following perception or following verbal description. Overall, the results indicate that representational neglect does not depend on the presence of perceptual neglect, that visual perception and visual mental representations are less closely linked than has been thought hitherto, and that visuospatial mental representations have similar functional characteristics whether they are derived from visual perception or from auditory linguistic descriptive inputs.

16. Congruence properties of induced representations

DEFF Research Database (Denmark)

Mayer, Dieter; Momeni, Arash; Venkov, Alexei

In this paper we study representations of the projective modular group induced from the Hecke congruence group of level 4 with Selberg's character. We show that the well known congruence properties of Selberg's character are equivalent to the congruence properties of the induced representations...

17. Factorial representations of path groups

International Nuclear Information System (INIS)

Albeverio, S.; Hoegh-Krohn, R.; Testard, D.; Vershik, A.

1983-11-01

We give the reduction of the energy representation of the group of mappings from I = [ 0,1 ], S 1 , IRsub(+) or IR into a compact semi simple Lie group G. For G = SU(2) we prove the factoriality of the representation, which is of type III in the case I = IR

18. Using Integer Manipulatives: Representational Determinism

Science.gov (United States)

Bossé, Michael J.; Lynch-Davis, Kathleen; Adu-Gyamfi, Kwaku; Chandler, Kayla

2016-01-01

Teachers and students commonly use various concrete representations during mathematical instruction. These representations can be utilized to help students understand mathematical concepts and processes, increase flexibility of thinking, facilitate problem solving, and reduce anxiety while doing mathematics. Unfortunately, the manner in which some…

19. Knowledge Representation: A Brief Review.

Science.gov (United States)

Vickery, B. C.

1986-01-01

Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…

20. International agreements on commercial representation

OpenAIRE

Slanař, Jan

2014-01-01

The purpose of the thesis is to describe the possibilities for fixing the position of a company in the market through contracts for commercial representation with a focus to finding legal and economic impact on the company that contracted for exclusive representation.

1. Scientific Representation and Science Learning

Science.gov (United States)

2014-01-01

In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

2. A generalized wavelet extrema representation

Energy Technology Data Exchange (ETDEWEB)

1995-10-01

The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallats original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

3. Islam and Media Representations

Directory of Open Access Journals (Sweden)

Mohamed Bensalah

2006-04-01

Full Text Available For the author of this article, the media’s treatment of Islam has raised numerous polymorphous questions and debates. Reactivated by the great scares of current events, the issue, though an ancient one, calls many things into question. By way of introduction, the author tries to analyse the complex processes of elaboration and perception of the representations that have prevailed during the past century. In referring to the semantic decoding of the abundant colonial literature and iconography, the author strives to translate the extreme xenophobic tensions and the identity crystallisations associated with the current media orchestration of Islam, both in theWest and the East. He then evokes the excesses of the media that are found at the origin of many amalgams wisely maintained between Islam, Islamism and Islamic terrorism, underscoring their duplicity and their willingness to put themselves, consciously, in service to deceivers and directors of awareness, who are very active at the heart of the politico-media sphere. After levelling a severe accusation against the harmful drifts of the media, especially in times of crisis and war, the author concludes by asserting that these tools of communication, once they are freed of their masks and invective apparatuses, can be re-appropriated by new words and bya true communication between peoples and cultures.

4. Chemical thermodynamic representation of

International Nuclear Information System (INIS)

Lindemer, T.B.; Besmann, T.M.

1984-01-01

The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base

5. Target Antigen Density Governs the Efficacy of Anti-CD20-CD28-CD3 zeta Chimeric Antigen Receptor-Modified Effector CD8(+) T Cells

NARCIS (Netherlands)

Watanabe, Keisuke; Terakura, Seitaro; Martens, Anton C.; van Meerten, Tom; Uchiyama, Susumu; Imai, Misa; Sakemura, Reona; Goto, Tatsunori; Hanajiri, Ryo; Imahashi, Nobuhiko; Shimada, Kazuyuki; Tomita, Akihiro; Kiyoi, Hitoshi; Nishida, Tetsuya; Naoe, Tomoki; Murata, Makoto

2015-01-01

The effectiveness of chimeric Ag receptor (CAR)-transduced T (CAR-T) cells has been attributed to supraphysiological signaling through CARs. Second-and later-generation CARs simultaneously transmit costimulatory signals with CD3 zeta signals upon ligation, but may lead to severe adverse effects

6. Determination of zeta-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis

Czech Academy of Sciences Publication Activity Database

Voráčová, Ivona; Klepárník, Karel; Lišková, Marcela; Foret, František

2015-01-01

Roč. 36, č. 6 (2015), s. 867-874 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : CE * LIF * zeta-potential * quantum dots Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

7. The Koslowski-Sahlmann representation: quantum configuration space

Science.gov (United States)

2014-09-01

The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.

8. Effect of Tannic Acid on the zeta Potential, Sorption, and Surface Free Energy in the Process of Dyeing of Leacril with a Cationic Dye.

Science.gov (United States)

Espinosa-Jiménez; Giménez-Martín; Ontiveros-Ortega

1998-11-01

The behavior of the surface free energy in the process of dyeing Leacril pretreated with tannic acid and subsequently dyeing with the cationic dye Rhodamine B has been studied. Also the electrokinetic behavior of these systems has been analyzed by studying the zeta potential, which has been obtained by means of the streaming potential technique. Values more significative of the zeta potential of these systems have been obtained using the three models of capillaries existing in the literature. The qualitative behavior of the zeta potential is the same for the three models of capillaries tested in this paper. These models are those of Goring and Mason, Biefer and Mason, and Chang and Robertson. The zeta potential of the systems analyzed is negative in the range of concentration of the dye in the liquid phase from 10(-6) to ca. 10(-4) M of dye. In the range of low concentrations (from 10(-6) to ca. 10(-5) M of dye) the zeta potential of the system untreated Leacril/Rhodamine B increases in absolute value due to increasing hydrophobic attractions between both the hydrophobic chains of the dye and the Leacril fibers in aqueous media. In the system Leacril treated with tannic acid/Rhodamine B, this increase is also due to the presence of hydrogen bonding between the phenolic hydroxyl groups of the tannic acid and the sulfonate and sulfate end groups of Leacril fibers. For concentrations of dye between 10(-5) and 10(-4) M of dye in solution, the zeta potential decreases in absolute value due to the electrostatic attractions between the groups negatively charged in the fiber and the cation of the dye. The zeta potential changes its sign at the highest concentrations of dye used in this work. The adsorption of Rhodamine B onto both untreated Leacril and Leacril treated with tannic acid is favored by the increasing temperature of adsorption. The behavior of the components of the surface free energy obtained by the thin-layer wicking technique led us to consider that the

9. Studies on representation of the Lorentz group and gauge theory

International Nuclear Information System (INIS)

Hanitriarivo, R.

2002-01-01

This work is focused on studies about the representation of the Lorentz group and gauge theory. The mathematical tools required for the different studies are presented, as well as for the representation of the Lorentz group and for the gauge theory. Representation of the Lorentz group gives the possible types of fields and wave functions that describe particles: fermions are described by spinors and bosons are described by scalar or vector. Each of these entities (spinors, scalars, vectors) are characterized by their behavior under the action of Lorentz transformations.Gauge theory is used to describe the interactions between particles. [fr

10. A high-level product representation for automatic design reasoning

Energy Technology Data Exchange (ETDEWEB)

Kroll, E.; Qamar, Z.; Mohammad, R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.

1994-12-31

A high-level product representation has been developed and implemented, using features for part description and mating conditions between features for the relationships among parts. The underlying ideas are that features are necessary for effective design representation; that spatial and functional relationships among parts of an assembly are best expressed through mating conditions; that assembly features of a part may, at times, be different from its manufacturing features; and that a good representation should be natural, intelligent, comprehensive, and integrated with a visual display. Some new mating conditions have been defined and classified. Several problems concerning the use of features with mating conditions are discussed.

11. Compact representations for the design of quantum logic

CERN Document Server

Niemann, Philipp

2017-01-01

This book discusses modern approaches and challenges of computer-aided design (CAD) of quantum circuits with a view to providing compact representations of quantum functionality. Focusing on the issue of quantum functionality, it presents Quantum Multiple-Valued Decision Diagrams (QMDDs – a means of compactly and efficiently representing and manipulating quantum logic. For future quantum computers, going well beyond the size of present-day prototypes, the manual design of quantum circuits that realize a given (quantum) functionality on these devices is no longer an option. In order to keep up with the technological advances, methods need to be provided which, similar to the design and synthesis of conventional circuits, automatically generate a circuit description of the desired functionality. To this end, an efficient representation of the desired quantum functionality is of the essence. While straightforward representations are restricted due to their (exponentially) large matrix descriptions and other de...

12. Tur\\'an type inequalities for regular Coulomb wave functions

OpenAIRE

Baricz, Árpád

2015-01-01

Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.

13. Mental Representations in Art Discourse

Directory of Open Access Journals (Sweden)

Katja Sudec

2014-03-01

Full Text Available The paper starts by examining the content included in the museum environment, where I write about the type of relations that emerge in a museum or artistic setting. This is followed by an observation of a social act (socialising and a chapter on the use of food in an artistic venue. At the end, I address art education via the format that I developed at the 6th Berlin Biennale. This is followed by an overview of the cognitive model of the fort-da game based on Freud’s theory via two discourse models. Here, I address discourse on art works in the form of a lecture or reading, where the art space is fictitiously present, and then move on to discuss discourse on art works in real, “present” art space. This is followed by a section on actions (Handlungen in German and methods supporting the fort-da model. The last part of the article examines the issue of “mental representations”, defining and explaining the function of mental representations with regard to the target audience of the blind and visually impaired.

14. H{sub 2} EXCITATION STRUCTURE ON THE SIGHTLINES TO {delta} SCORPII AND {zeta} OPHIUCI: FIRST RESULTS FROM THE SUB-ORBITAL LOCAL INTERSTELLAR CLOUD EXPERIMENT

Energy Technology Data Exchange (ETDEWEB)

France, Kevin; Nell, Nicholas; Kane, Robert; Green, James C. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Burgh, Eric B. [SOFIA/USRA, NASA Ames Research Center, M/S N232-12, Moffett Field, CA 94035 (United States); Beasley, Matthew, E-mail: kevin.france@colorado.edu [Planetary Resources, Inc., 93 S Jackson St 50680, Seattle, WA 98104-2818 (United States)

2013-07-20

We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070 A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of {eta} Uma, {alpha} Vir, {delta} Sco, and {zeta} Oph were obtained during a 2013 April 21 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material toward {delta} Sco and {zeta} Oph. Our spectra indicate a factor of two lower total N(H{sub 2}) than previously reported for {delta} Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H{sub 2}) = 1.5 Multiplication-Sign 10{sup 19} cm{sup -2} on the {delta} Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n{sub H} = 56 cm{sup -3}. Our observations of the bulk of the molecular sightline toward {zeta} Oph are consistent with previous measurements (N(H{sub 2}) Almost-Equal-To 3 Multiplication-Sign 10{sup 20} cm{sup -2} at T{sub 01}(H{sub 2}) = 66 K and T{sub exc} = 350 K). However, we detect significantly more rotationally excited H{sub 2} toward {zeta} Oph than previously observed. We infer a cloud density in the rotationally excited component of n{sub H} Almost-Equal-To 7600 cm{sup -3} and suggest that the increased column densities of excited H{sub 2} are a result of the ongoing interaction between {zeta} Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally excited H{sub 2} molecules observed by the Hubble Space Telescope.

15. [The effect of goal framing on the activation of affective representations].

Science.gov (United States)

Takehashi, Hiroki; Karasawa, Kaori

2007-10-01

Guided by regulatory focus theory, this study examined the effects of goal framing on the subjective experience of affect and the accessibility of affective representations. Study I examined lay persons' beliefs concerning the relationship between goal framing and certain kinds of affective experiences. The results indicated that a promotion focus was associated with happiness and disappointment, whereas a prevention focus was associated with relaxation and tension. Study 2 examined the effect of goal framing on the activation of affective representations, and found that a promotion focus activated both gain-related representations (happy and disappointment) and loss-related representations (relaxation and tension), whereas a prevention focus activated only loss-related representations. These results suggest that goal framing activates particular affective representations, and the activated affective representations may influence the interpretation of positive or negative experiences. The discussion considered the function of the activation of affective representations as a mediator between goal framing and its cognitive and behavioral consequences.

16. Narrative representations of caregivers and emotion dysregulation as predictors of maltreated children's rejection by peers.

Science.gov (United States)

Shields, A; Ryan, R M; Cicchetti, D

2001-05-01

This study examined whether maltreated children were more likely than nonmaltreated children to develop poor-quality representations of caregivers and whether these representations predicted children's rejection by peers. A narrative task assessing representations of mothers and fathers was administered to 76 maltreated and 45 nonmaltreated boys and girls (8-12 years old). Maltreated children's representations were more negative/constricted and less positive/coherent than those of nonmaltreated children. Maladaptive representations were associated with emotion dysregulation, aggression, and peer rejection, whereas positive/coherent representations were related to prosocial behavior and peer preference. Representations mediated maltreatment's effects on peer rejection in part by undermining emotion regulation. Findings suggest that representations of caregivers serve an important regulatory function in the peer relationships of at-risk children.

17. Biosynthesis and characterization of cadmium sulfide nanoparticles – An emphasis of zeta potential behavior due to capping

International Nuclear Information System (INIS)

Sankhla, Aryan; Sharma, Rajeshwar; Yadav, Raghvendra Singh; Kashyap, Diwakar; Kothari, S.L.; Kachhwaha, S.

2016-01-01

Biological approaches have been amongst the most promising protocols for synthesis of nanomaterials. In this study, Cadmium sulfide nanoparticles (CdS NPs) were synthesized by incubating their precursor salts with Escherichia coli and zeta potential (ζ-potential) measurement with varying pH was carried out to evaluate stability of the colloidal dispersion. Formation of CdS NPs was studied in synchrony with microbial growth. TEM analysis confirmed the uniform distribution of NPs. Average size (5 ± 0.4 nm) and electron diffraction pattern revealed polycrystalline cubic crystal phase of these nanoparticles. X-ray diffractogram ascertained the formation of CdS nanoparticles with phase formation and particle size distribution in accordance with the particle size obtained from TEM. Absorption edge of biosynthesized CdS NPs showed a blue shift at ∼400 nm in comparison to their bulk counterpart. A hump at 279 nm indicated presence of biomolecules in the solution in addition to the particles. FT-IR spectrum of capped CdS NPs showed peaks of protein. This confirms adsorption of protein molecules on nanoparticle surface. They act as a capping agent hence responsible for the stability of NPs. The enhanced stability of the particles was confirmed by Zeta potential analysis. The presence of charge on the surface of capped CdS NPs gave a detail understanding of dispersion mechanism and colloidal stability at the NP interface. This stability study of biosynthesized semiconductor nanoparticles utilizing microbial cells had not been done in the past by any research group providing an impetus for the same. Surface area of capped CdS NPs and bare CdS NPs were found to be 298 ± 2.65 m 2 /g and 117 ± 2.41 m 2 /g respectively. A possible mechanism is also proposed for the biosynthesis of CdS NPs. - Highlights: • Synthesis of CdS NPs utilizing reproducible molecular machinery viz. Escherichia coli biomass. • Uniform and Polydispersed NPs with high surface area and

18. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

Directory of Open Access Journals (Sweden)

Safi, B.

2011-09-01

Full Text Available This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC. When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.

En el presente trabajo se ha analizado la posibilidad de utilizar los lodos procedentes de embalses como adición en la fabricación del hormigón autocompactante (HAC. Con la calcinación, estos materiales se vuelven más reactivos debido a la transformación en metacaolín, del caolín que forma parte de su composición. Las materias primas empleadas en esta investigación son: cemento Pórtland, lodos de embalse calcinados y escorias granuladas de horno alto. Se prepararon pastas de cemento con mezclas que contenían dos o tres de estos materiales. El porcentaje de reemplazo de los lodos calcinados osciló entre el 10 y el 20 % en peso del cemento, mientras que el de la escoria fue del 30 % en peso de la mezcla. Se llevaron a cabo ensayos reológicos y de potencial zeta para evaluar el comportamiento electrocinético y reológico de las distintas pastas. De acuerdo con los resultados obtenidos, una vez calcinados, los lodos de embalse son aprovechables como adición al cemento con destino a la preparación de HAC.

19. Biosynthesis and characterization of cadmium sulfide nanoparticles – An emphasis of zeta potential behavior due to capping

Energy Technology Data Exchange (ETDEWEB)

Sankhla, Aryan, E-mail: aaryansankhla@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur, 302015 (India); Sharma, Rajeshwar; Yadav, Raghvendra Singh [Centre for Converging Technologies, University of Rajasthan, Jaipur, 302015 (India); Kashyap, Diwakar [Department of Biological Chemistry, Ariel University, Ariel, 40700 (Israel); Kothari, S.L. [Institute of Biotechnology, Amity University, Jaipur, 303002 (India); Kachhwaha, S. [Department of Botany, University of Rajasthan, Jaipur, 302004 (India)

2016-02-15

Biological approaches have been amongst the most promising protocols for synthesis of nanomaterials. In this study, Cadmium sulfide nanoparticles (CdS NPs) were synthesized by incubating their precursor salts with Escherichia coli and zeta potential (ζ-potential) measurement with varying pH was carried out to evaluate stability of the colloidal dispersion. Formation of CdS NPs was studied in synchrony with microbial growth. TEM analysis confirmed the uniform distribution of NPs. Average size (5 ± 0.4 nm) and electron diffraction pattern revealed polycrystalline cubic crystal phase of these nanoparticles. X-ray diffractogram ascertained the formation of CdS nanoparticles with phase formation and particle size distribution in accordance with the particle size obtained from TEM. Absorption edge of biosynthesized CdS NPs showed a blue shift at ∼400 nm in comparison to their bulk counterpart. A hump at 279 nm indicated presence of biomolecules in the solution in addition to the particles. FT-IR spectrum of capped CdS NPs showed peaks of protein. This confirms adsorption of protein molecules on nanoparticle surface. They act as a capping agent hence responsible for the stability of NPs. The enhanced stability of the particles was confirmed by Zeta potential analysis. The presence of charge on the surface of capped CdS NPs gave a detail understanding of dispersion mechanism and colloidal stability at the NP interface. This stability study of biosynthesized semiconductor nanoparticles utilizing microbial cells had not been done in the past by any research group providing an impetus for the same. Surface area of capped CdS NPs and bare CdS NPs were found to be 298 ± 2.65 m{sup 2}/g and 117 ± 2.41 m{sup 2}/g respectively. A possible mechanism is also proposed for the biosynthesis of CdS NPs. - Highlights: • Synthesis of CdS NPs utilizing reproducible molecular machinery viz. Escherichia coli biomass. • Uniform and Polydispersed NPs with high surface area

20. Semiclassical propagation: Hilbert space vs. Wigner representation

Science.gov (United States)

Gottwald, Fabian; Ivanov, Sergei D.

2018-03-01

A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.