WorldWideScience

Sample records for reported arthropod-borne disease

  1. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-06-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war.Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war.Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients.Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  2. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-08-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war. Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war. Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients. Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  3. Arthropod-Borne Diseases: The Camper's Uninvited Guests.

    Science.gov (United States)

    Juckett, Gregory

    2015-08-01

    Arthropod-borne diseases are a major problem whenever outdoor activities bring arthropods and people into contact. The arthropods discussed here include arachnids (ticks) and insects. Most arthropod bites and stings are minor, with the notable exception being bee-sting anaphylaxis. Ticks cause the most disease transmission. Key hard tick vectors include black-legged (Ixodes), dog (Dermacentor), and lone star (Amblyomma) ticks, which transmit Lyme and various rickettsial diseases. Insect repellents, permethrin sprays, and proper tick inspection reduce this risk significantly. Lyme disease and the milder southern-tick-associated rash illness (STARI) are characterized by the erythema migrans rash followed, in the case of Lyme disease, by early, disseminated, and late systemic symptoms. Treatment is with doxycycline or ceftriaxone. Indefinite treatment of "chronic Lyme disease" based on subjective symptoms is not beneficial. Rickettsial diseases include ehrlichiosis, anaplasmosis, and Rocky Mountain spotted fever, which are characterized by fever, headache, and possible rash and should be empirically treated with doxycycline while awaiting laboratory confirmation. Tularemia is a bacterial disease (Francisella) spread by ticks and rabbits and characterized by fever and adenopathy. Treatment is with gentamicin or streptomycin. Babesiosis is a protozoal disease, mimicking malaria, that causes a self-limited flu-like disease in healthy hosts but can be life threatening with immune compromise. Treatment is with atovaquone and azithromycin. Other tick-related conditions include viral diseases (Powassan, Colorado tick fever, heartland virus), tick-borne relapsing fever (Borrelia), and tick paralysis (toxin). Mosquitoes, lice, fleas, and mites are notable for their annoying bites but are increasingly significant disease vectors even in the United States.

  4. Arthropod-borne disease in Canada: A clinician’s perspective from the ‘Cold Zone’

    OpenAIRE

    Artsob, Harvey

    2000-01-01

    Arthropod-borne diseases do not occur commonly in Canada. Nevertheless, Canadians run the risk of contracting certain infections within the country during arthropod season, as well as when travelling abroad. Therefore, it is important that clinicians are aware of the possible occurrence of arthropod-borne diseases, and consider them in their differential diagnoses. The present review is divided into two sections: arthropod-borne diseases or disease agents documented in Canada, and imported ar...

  5. Emerging arthropod-borne diseases of companion animals in Europe.

    Science.gov (United States)

    Beugnet, Frederic; Marié, Jean-Lou

    2009-08-26

    Vector-borne diseases are caused by parasites, bacteria or viruses transmitted by the bite of hematophagous arthropods (mainly ticks and mosquitoes). The past few years have seen the emergence of new diseases, or re-emergence of existing ones, usually with changes in their epidemiology (i.e. geographical distribution, prevalence, and pathogenicity). The frequency of some vector-borne diseases of pets is increasing in Europe, i.e. canine babesiosis, granulocytic anaplasmosis, canine monocytic ehrlichiosis, thrombocytic anaplasmosis, and leishmaniosis. Except for the last, these diseases are transmitted by ticks. Both the distribution and abundance of the three main tick species, Rhipicephalus sanguineus, Dermacentor reticulatus and Ixodes ricinus are changing. The conditions for such changes involve primarily human factors, such as travel with pets, changes in human habitats, social and leisure activities, but climate changes also have a direct impact on arthropod vectors (abundance, geographical distribution, and vectorial capacity). Besides the most known diseases, attention should be kept on tick-borne encephalitis, which seems to be increasing in western Europe, as well as flea-borne diseases like the flea-transmitted rickettsiosis. Here, after consideration of the main reasons for changes in tick vector ecology, an overview of each "emerging" vector-borne diseases of pets is presented.

  6. Epidemiology and control of malaria and other arthropod born diseases

    Directory of Open Access Journals (Sweden)

    F. J. López-Antuñano

    1992-01-01

    Full Text Available Malaria and other arthropod born diseases remain a serious public health problem affecting the lives and health of certain social groups when the two basic strategies to control fail due to : (1 the lack of effective chemoprophylaxis/chemotherapy or the rapid development of drug resistance of the infectious agents and (2 the ineffectiveness of pesticides or the arthropod vectors develop resistance to them. These situations enhances the need for the design and implementation of other alternatives for sustainable health programmes. The application of the epidemiological methods is essential not only for analyzing the relevant data for the understanding of the biological characteristics of the infectious agents, their reservoirs and vectors and the methods for their control, but also for the assessment of the human behaviour, the environmental, social and economic factors involved in disease transmission and the capacity of the health systems to implement interventions for both changes in human behaviour and environmental management to purpose guaranteed prevention and control of malaria and other arthropod born diseases with efficiency, efficacy and equity. This paper discuss the evolution of the malaria arthropod diseases programmes in the American Region and the perspectives for their integration into health promotion programs and emphasis is made in the need to establish solid basis in the decision-making process for the selection of intervention strategies to remove the risk factors determining the probability to get sick or die from ABDs. The implications of the general planning and the polices to be adopted in an area should be analyzed in the light of programme feasibility at the local level, in the multisectoral context specific social groups and taking in consideration the principles of stratification and equity

  7. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, B.E.; Barzon, L.; Pijlman, G.P.; Fuente, J. de la; Rizzoli, A.; Wammes, L.J.; Takken, W.; Rij, R.P. van; Papa, A.

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex

  8. Arthropod Innate Immune Systems and Vector-Borne Diseases

    OpenAIRE

    Baxter, Richard H. G.; Contet, Alicia; Krueger, Kathryn

    2017-01-01

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins ...

  9. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, Byron E.; Barzon, Luisa; Pijlman, Gorben P.; Fuente, de la José; Rizzoli, Annapaola; Wammes, Linda J.; Takken, Willem; Rij, van Ronald P.; Papa, Anna

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex

  10. Arthropod borne diseases in Italy: from a neglected matter to an emerging health problem

    Directory of Open Access Journals (Sweden)

    Roberto Romi

    2010-12-01

    Full Text Available In medical entomology, "Arthropod Borne Diseases", or "Vector Borne Diseases" (VBD are intended as a group of human and animal infections caused by different pathogen organisms (protozoa, helminthes, bacteria and viruses transmitted by the bite of a bloodsucking insect or arachnid. It is commonly known that the infectious diseases transmitted by Arthropods are mainly affecting tropical and subtropical countries, nevertheless some of them were or are still common also in the northern hemisphere, where they are usually maintained under control. VBD still represent some of the most important public health problems in the endemic areas but are becoming source of concern for developed countries too. Since the last decades of the past century, a number of VBD has been spreading geographically, being recorded for the first time in areas outside their original range. This phenomenon is strictly related to the peculiar epidemiological characteristics of these diseases, that are considered the most susceptible to climatic, environmental and socioeconomic changes. This article is a short overview of the VBD endemic and emerging in Italy. The possibility that some exotic vectors and/or pathogens could be introduced and become established in Italy is also discussed.

  11. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Directory of Open Access Journals (Sweden)

    Satya Kalluri

    2007-10-01

    Full Text Available Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  12. The effects of global change on the threat of exotic arthropods and arthropod-borne pathogens to livestock in the United States.

    Science.gov (United States)

    George, John E

    2008-12-01

    Arthropod-borne diseases are an important part of the group of foreign animal diseases that command attention from federal, state, and local animal health authorities in the United States because of the potential for adverse local and regional animal health impacts and also because of possible losses of export markets. Diseases of concern are listed by the US Animal Health Association and also by the Office International des Epizooties. Global change is causing the emergence of newly recognized diseases and altering enzootic and epizootic circumstances for known disease problems. Selected examples of arthropod-borne diseases of importance are discussed in terms of their potential for introduction, spread, and impact on livestock and human health in the United States.

  13. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  14. Vector borne diseases

    OpenAIRE

    Melillo Fenech, Tanya

    2010-01-01

    A vector-borne disease is one in which the pathogenic microorganism is transmitted from an infected individual to another individual by an arthropod or other agent. The transmission depends upon the attributes and requirements of at least three different Iiving organisms : the pathologic agent which is either a virus, protozoa, bacteria or helminth (worm); the vector, which is commonly an arthropod such as ticks or mosquitoes; and the human host.

  15. An Overview of Animal Models for Arthropod-Borne Viruses.

    Science.gov (United States)

    Reynolds, Erin S; Hart, Charles E; Hermance, Meghan E; Brining, Douglas L; Thangamani, Saravanan

    2017-06-01

    Arthropod-borne viruses (arboviruses) have continued to emerge in recent years, posing a significant health threat to millions of people worldwide. The majority of arboviruses that are pathogenic to humans are transmitted by mosquitoes and ticks, but other types of arthropod vectors can also be involved in the transmission of these viruses. To alleviate the health burdens associated with arbovirus infections, it is necessary to focus today's research on disease control and therapeutic strategies. Animal models for arboviruses are valuable experimental tools that can shed light on the pathophysiology of infection and will enable the evaluation of future treatments and vaccine candidates. Ideally an animal model will closely mimic the disease manifestations observed in humans. In this review, we outline the currently available animal models for several viruses vectored by mosquitoes, ticks, and midges, for which there are no standardly available vaccines or therapeutics.

  16. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  17. A Nod to disease vectors: mitigation of pathogen sensing by arthropod saliva

    Czech Academy of Sciences Publication Activity Database

    Sakhon, O. S.; Severo, M. S.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2013-01-01

    Roč. 4, OCT 2013 (2013), a308 ISSN 1664-302X Institutional support: RVO:60077344 Keywords : nod-like receptors * inflammasome * vector-borne pathogens * vector-borne diseases * arthropod saliva * salivary proteins Subject RIV: EC - Immunology Impact factor: 3.941, year: 2013

  18. International Network for Capacity Building for the Control of Emerging Viral Vector-Borne Zoonotic Diseases: Arbo-Zoonet

    NARCIS (Netherlands)

    Ahmed, J.; Bouloy, M.; Ergonul, O.; Fooks, A.R.; Paweska, J.; Chevalier, V.; Drosten, C.; Moormann, R.J.M.; Tordo, N.; Vatansever, Z.; Calistri, P.; Estrada-Pena, A.; Mirazimi, A.; Unger, H.; Yin, H.; Seitzer, U.

    2009-01-01

    Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different

  19. Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin.

    Science.gov (United States)

    Bernard, Quentin; Jaulhac, Benoit; Boulanger, Nathalie

    2014-05-01

    The skin is a critical barrier between hosts and pathogens in arthropod-borne diseases. It harbors many resident cells and specific immune cells to arrest or limit infections by secreting inflammatory molecules or by directly killing pathogens. However, some pathogens are able to use specific skin cells and arthropod saliva for their initial development, to hide from the host immune system, and to establish persistent infection in the vertebrate host. A better understanding of the initial mechanisms taking place in the skin should allow the development of new strategies to fight these vector-borne pathogens that are spread worldwide and are of major medical importance.

  20. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    Science.gov (United States)

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  1. Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens.

    Science.gov (United States)

    Sparagano, Olivier; George, David; Giangaspero, Annunziata; Špitalská, Eva

    2015-09-30

    Geographic spread of parasites and pathogens poses a constant risk to animal health and welfare, particularly given that climate change is expected to potentially expand appropriate ranges for many key species. The spread of deleterious organisms via trade routes and human travelling is relatively closely controlled, though represents only one possible means of parasite/pathogen distribution. The transmission via natural parasite/pathogen movement between geographic locales, is far harder to manage. Though the extent of such movement may be limited by the relative inability of many parasites and pathogens to actively migrate, passive movement over long distances may still occur via migratory hosts. This paper reviews the potential role of migrating birds in the transfer of ectoparasites and pathogens between geographic locales, focusing primarily on ticks. Bird-tick-pathogen relationships are considered, and evidence provided of long-range parasite/pathogen transfer from one location to another during bird migration events. As shown in this paper not only many different arthropod species are carried by migrating birds but consequently these pests carry many different pathogens species which can be transmitted to the migrating birds or to other animal species when those arthropods are dropping during these migrations. Data available from the literature are provided highlighting the need to understand better dissemination paths and disease epidemiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different.

    Science.gov (United States)

    Ogden, Nick H; Lindsay, L Robbin

    2016-08-01

    There has been considerable debate as to whether global risk from vector-borne diseases will be impacted by climate change. This has focussed on important mosquito-borne diseases that are transmitted by the vectors from infected to uninfected humans. However, this debate has mostly ignored the biological diversity of vectors and vector-borne diseases. Here, we review how climate and climate change may impact those most divergent of arthropod disease vector groups: multivoltine insects and hard-bodied (ixodid) ticks. We contrast features of the life cycles and behaviour of these arthropods, and how weather, climate, and climate change may have very different impacts on the spatiotemporal occurrence and abundance of vectors, and the pathogens they transmit. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Regulation of the Immune Response to α-Gal and Vector-borne Diseases.

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Mateos-Hernández, Lourdes; Pérez-Cruz, Magdiel; Valdés, James J; Mera, Isabel G Fernández de; Villar, Margarita; de la Fuente, José

    2015-10-01

    Vector-borne diseases (VBD) challenge our understanding of emerging diseases. Recently, arthropod vectors have been involved in emerging anaphylactic diseases. In particular, the immunoglobulin E (IgE) antibody response to the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-gal) following a tick bite was associated with allergies to red meat, cetuximab, and gelatin. By contrast, an anti-α-gal IgM antibody response was shown to protect against mosquito-borne malaria. Herein, we highlight the interplay between the gut microbiota, vectors, transmitted pathogens, and the regulation of the immune response as a model to understand the protective or allergic effect of α-gal. Establishing the source of α-gal in arthropod vectors and the immune response to vector bites and transmitted pathogens will be essential for diagnosing, treating, and ultimately preventing these emerging anaphylactic and other vector-borne diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Public health pests. Arthropods and rodents as causative disease agents as well as reservoirs and vectors of pathogens].

    Science.gov (United States)

    Faulde, M; Freise, J

    2014-05-01

    Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.

  5. Arthropod-borne flaviviruses and RNA interference : seeking new approaches for antiviral therapy

    NARCIS (Netherlands)

    Diosa-Toro, Mayra; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2013-01-01

    Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the

  6. Molecular survey of arthropod-borne pathogens in sheep keds (Melophagus ovinus), Central Europe.

    Science.gov (United States)

    Rudolf, Ivo; Betášová, Lenka; Bischof, Vlastimil; Venclíková, Kristýna; Blažejová, Hana; Mendel, Jan; Hubálek, Zdeněk; Kosoy, Michael

    2016-10-01

    In the study, we screened a total of 399 adult sheep keds (Melophagus ovinus) for the presence of RNA and DNA specific for arboviral, bacterial, and protozoan vector-borne pathogens. All investigated keds were negative for flaviviruses, phleboviruses, bunyaviruses, Borrelia burgdorferi, Rickettsia spp., Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," and Babesia spp. All ked pools were positive for Bartonella DNA. The sequencing of the amplified fragments of the gltA and 16S-23S rRNA demonstrated a 100 % homology with Bartonella melophagi previously isolated from a sheep ked and from human blood in the USA. The identification of B. melophagi in sheep keds in Central Europe highlights needs extending a list of hematophagous arthropods beyond ticks and mosquitoes for a search of emerging arthropod-borne pathogens.

  7. International network for capacity building for the control of emerging viral vector-borne zoonotic diseases: ARBO-ZOONET.

    Science.gov (United States)

    Ahmed, J; Bouloy, M; Ergonul, O; Fooks, Ar; Paweska, J; Chevalier, V; Drosten, C; Moormann, R; Tordo, N; Vatansever, Z; Calistri, P; Estrada-Pena, A; Mirazimi, A; Unger, H; Yin, H; Seitzer, U

    2009-03-26

    Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different domestic and wild animals and in humans, posing a threat to public health because of their epidemic and zoonotic potential. In recent decades, the geographical distribution of these diseases has expanded. Outbreaks of WNF have already occurred in Europe, especially in the Mediterranean basin. Moreover, CCHF is endemic in many European countries and serious outbreaks have occurred, particularly in the Balkans, Turkey and Southern Federal Districts of Russia. In 2000, RVF was reported for the first time outside the African continent, with cases being confirmed in Saudi Arabia and Yemen. This spread was probably caused by ruminant trade and highlights that there is a threat of expansion of the virus into other parts of Asia and Europe. In the light of global warming and globalisation of trade and travel, public interest in emerging zoonotic diseases has increased. This is especially evident regarding the geographical spread of vector-borne diseases. A multi-disciplinary approach is now imperative, and groups need to collaborate in an integrated manner that includes vector control, vaccination programmes, improved therapy strategies, diagnostic tools and surveillance, public awareness, capacity building and improvement of infrastructure in endemic regions.

  8. Community diversity of mosquitoes and their microbes across different habitats endemic for West Nile Virus and other arthropod-borne diseases

    Science.gov (United States)

    Liu, R.; Bennett, S. N.; Thongsripong, P.; Chandler, J. S.

    2013-12-01

    Mosquitoes have long been vectors for disease, and humans, birds, and other vertebrates have served their role as hosts in the transmission cycle of arthropod-borne viruses. In California, there are several mosquito species that act as vectors, transmitting such disease agents as Western equine and St. Louis encephalitis viruses, filarial nematodes, Plasmodium (which causes malaria), and West Nile virus (WNV). Last year (2012-2013), California had over 450 reported cases of West Nile Virus in humans (http://westnile.ca.gov/). To begin to understand mosquitoes and their role in the bay area as vectors of diseases, including West Nile Virus, we trapped mosquitoes from various sites and examined their microbiomes, including bacteria, fungi, viruses, and eukaryotes. Study sites were in Marin, San Mateo, and San Francisco counties, in areas that represented, respectively, rural, suburban, and urban habitats. The mosquitoes were identified through morphological characteristics, and verified molecularly by sequencing of the cytochrome oxidase I (COI) gene extracted from a leg. Most mosquitoes were collected from San Mateo and Mill Valley and were identified as Culiseta incidens. Data from traditional culture-based and next-generation 454 sequencing methods applied to mosquito whole bodies, representing their microbiomes, will be discussed, to determine how mosquito and microbial diversity varies across sites sampled in the San Francisco Bay area.

  9. Laboratory containment practices for arthropod vectors of human and animal pathogens.

    Science.gov (United States)

    Tabachnick, Walter J

    2006-03-01

    Arthropod-borne pathogens have an impact on the health and well-being of humans and animals throughout the world. Research involving arthropod vectors of disease is often dependent on the ability to maintain the specific arthropod species in laboratory colonies. The author reviews current arthropod containment practices and discusses their importance from public health and ecological perspectives.

  10. Emergence of Arthropod Transmitted infections in Kennel Dogs

    Directory of Open Access Journals (Sweden)

    Javed Jameel

    Full Text Available Changing scenario of climate resulting from global warming and adversity of nature has also resulted in emergence and re-emergence of diseases transmitted by arthropods. Increasing trends of population growth of dogs has increased the chance of disease transmission due to readily available susceptible host. Babesiosis and Hepatozoonosis and Ehrlichiosis are the main arthropod borne diseases of dogs prevalent in India. The present article explains the importance of these arthropod transmitted infections in kennel dogs, research progress and reason for their emergence in the present scenario. [Vet. World 2011; 4(11.000: 522-528

  11. The wild life of tick-borne pathogens

    NARCIS (Netherlands)

    Hofmeester, Tim R.

    2016-01-01

    Diseases that are transmitted by arthropod vectors from animal hosts to humans – so called zoonotic vector-borne diseases – have increased in incidence in the last decades. In North America and Europe, tick-borne pathogens cause the majority of vector-borne diseases, including Lyme borreliosis

  12. Medical Entomology: A Reemerging Field of Research to Better Understand Vector-Borne Infectious Diseases.

    Science.gov (United States)

    Laroche, Maureen; Bérenger, Jean-Michel; Delaunay, Pascal; Charrel, Remi; Pradines, Bruno; Berger, Franck; Ranque, Stéphane; Bitam, Idir; Davoust, Bernard; Raoult, Didier; Parola, Philippe

    2017-08-15

    In the last decade, the Chikungunya and Zika virus outbreaks have turned public attention to the possibility of the expansion of vector-borne infectious diseases worldwide. Medical entomology is focused on the study of arthropods involved in human health. We review here some of the research approaches taken by the medical entomology team of the University Hospital Institute (UHI) Méditerranée Infection of Marseille, France, with the support of recent or representative studies. We propose our approaches to technical innovations in arthropod identification and the detection of microorganisms in arthropods, the use of arthropods as epidemiological or diagnostic tools, entomological investigations around clinical cases or within specific populations, and how we have developed experimental models to decipher the interactions between arthropods, microorganisms, and humans. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  14. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.

    Science.gov (United States)

    Dantas-Torres, Filipe; Otranto, Domenico

    2016-01-01

    Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Canine vector-borne diseases in Brazil

    Science.gov (United States)

    Dantas-Torres, Filipe

    2008-01-01

    Canine vector-borne diseases (CVBDs) are highly prevalent in Brazil and represent a challenge to veterinarians and public health workers, since some diseases are of great zoonotic potential. Dogs are affected by many protozoa (e.g., Babesia vogeli, Leishmania infantum, and Trypanosoma cruzi), bacteria (e.g., Anaplasma platys and Ehrlichia canis), and helminths (e.g., Dirofilaria immitis and Dipylidium caninum) that are transmitted by a diverse range of arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies. This article focuses on several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance) of CVBDs in Brazil and discusses research gaps to be addressed in future studies. PMID:18691408

  16. Canine vector-borne diseases in Brazil

    Directory of Open Access Journals (Sweden)

    Dantas-Torres Filipe

    2008-08-01

    Full Text Available Abstract Canine vector-borne diseases (CVBDs are highly prevalent in Brazil and represent a challenge to veterinarians and public health workers, since some diseases are of great zoonotic potential. Dogs are affected by many protozoa (e.g., Babesia vogeli, Leishmania infantum, and Trypanosoma cruzi, bacteria (e.g., Anaplasma platys and Ehrlichia canis, and helminths (e.g., Dirofilaria immitis and Dipylidium caninum that are transmitted by a diverse range of arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies. This article focuses on several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance of CVBDs in Brazil and discusses research gaps to be addressed in future studies.

  17. The wild life of tick-borne pathogens

    OpenAIRE

    Hofmeester, Tim R.

    2016-01-01

    Diseases that are transmitted by arthropod vectors from animal hosts to humans – so called zoonotic vector-borne diseases – have increased in incidence in the last decades. In North America and Europe, tick-borne pathogens cause the majority of vector-borne diseases, including Lyme borreliosis and tick-borne encephalitis. The pathogens causing these diseases are transmitted by tick species within the Ixodes ricinus complex. These are generalist ticks that have a multi-year lifecycle with thre...

  18. Implication of haematophagous arthropod salivary proteins in host-vector interactions.

    Science.gov (United States)

    Fontaine, Albin; Diouf, Ibrahima; Bakkali, Nawal; Missé, Dorothée; Pagès, Frédéric; Fusai, Thierry; Rogier, Christophe; Almeras, Lionel

    2011-09-28

    The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that are liable to improve host protection against vector-borne diseases.

  19. Report on seed born diseases in organic seed and propagation material

    OpenAIRE

    Micheloni, C.; Plakolm, G.; Schärer, H.

    2007-01-01

    The key questions which will be addressed in this report are: • Are seed born diseases an important factor that prevents seed companies from producing organic seeds and organic farmers from using them? • Which seed treatments are available in organic farming? Which treatments are or will be acceptable? To which degree are they effective? • Are the thresholds for seed born diseases different among Member States? Can this cause unfair competition among farmers and seed producers? • ...

  20. Oak Tree Canker Disease Supports Arthropod Diversity in a Natural Ecosystem

    Directory of Open Access Journals (Sweden)

    Yong-Bok Lee

    2014-03-01

    Full Text Available Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp. and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease.

  1. Internet-based biosurveillance methods for vector-borne diseases: Are they novel public health tools or just novelties?

    Science.gov (United States)

    Pollett, Simon; Althouse, Benjamin M; Forshey, Brett; Rutherford, George W; Jarman, Richard G

    2017-11-01

    Internet-based surveillance methods for vector-borne diseases (VBDs) using "big data" sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such "digital disease detection" methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of "digital epidemiology." We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD.

  2. Internet-based biosurveillance methods for vector-borne diseases: Are they novel public health tools or just novelties?

    Directory of Open Access Journals (Sweden)

    Simon Pollett

    2017-11-01

    Full Text Available Internet-based surveillance methods for vector-borne diseases (VBDs using "big data" sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such "digital disease detection" methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of "digital epidemiology." We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD.

  3. Seasonal drivers of the epidemiology of arthropod-borne viruses in Australia.

    Directory of Open Access Journals (Sweden)

    Jemma L Geoghegan

    2014-11-01

    Full Text Available Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts. However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses: bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-surveillance data of 180 sentinel herds between 2004-2012, we compared seasonal parameters across latitudes, ranging from the tropical north (-10°S to the more temperate south (-40°S. This analysis revealed marked differences in seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the average number of seroconversions have a strong geographical component, which likely reflect patterns of vector abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that will enable better risk predictions.

  4. Arthropod borne disease: the leading cause of fever in pregnancy on the Thai-Burmese border.

    Directory of Open Access Journals (Sweden)

    Rose McGready

    2010-11-01

    Full Text Available Fever in pregnancy is dangerous for both mother and foetus. In the 1980's malaria was the leading cause of death in pregnant women in refugee camps on the Thai-Burmese border. Artemisinin combination therapy has significantly reduced the incidence of malaria in the population. The remaining causes of fever in pregnancy are not well documented.Pregnant women attending antenatal care, where weekly screening for malaria is routine, were invited to have a comprehensive clinical and laboratory screen if they had fever. Women were admitted to hospital, treated and followed up weekly until delivery. A convalescent serum was collected on day 21. Delivery outcomes were recorded.Febrile episodes (n = 438 occurred in 5.0% (409/8,117 of pregnant women attending antenatal clinics from 7-Jan-2004 to 17-May-2006. The main cause was malaria in 55.5% (227/409. A cohort of 203 (49.6% of 409 women had detailed fever investigations and follow up. Arthropod-borne (malaria, rickettsial infections, and dengue and zoonotic disease (leptospirosis accounted for nearly half of all febrile illnesses, 47.3% (96/203. Coinfection was observed in 3.9% (8/203 of women, mostly malaria and rickettsia. Pyelonephritis, 19.7% (40/203, was also a common cause of fever. Once malaria, pyelonephritis and acute respiratory illness are excluded by microscopy and/or clinical findings, one-third of the remaining febrile infections will be caused by rickettsia or leptospirosis. Scrub and murine typhus were associated with poor pregnancy outcomes including stillbirth and low birth weight. One woman died (no positive laboratory tests.Malaria remains the leading cause of fever in pregnancy on the Thai-Burmese border. Scrub and murine typhus were also important causes of fever associated with poor pregnancy outcomes. Febrile pregnant women on the Thai-Burmese border who do not have malaria, pyelonephritis or respiratory tract infection should be treated with azithromycin, effective for typhus

  5. [Tick-borne diseases].

    Science.gov (United States)

    Tissot Dupont, H; Raoult, D

    1993-05-01

    Due to their worldwide distribution, from hottest to coldest climates, and due to their behaviour, ticks are capable of transmitting numerous human and animal bacterial viral or parasitous diseases. Depending on the disease, they play the role of biological vector or intermediate host. In France, six tick borne diseases are of epidemiologic importance. Q fever (not often tick-borne), Mediterranean Spotted Fever, Lyme disease, Turalemia (human and animal), Babesiosis and Tick-borne Viral Encephalitis.

  6. Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera.

    Science.gov (United States)

    Hornok, Sándor; Estók, Péter; Kováts, Dávid; Flaisz, Barbara; Takács, Nóra; Szőke, Krisztina; Krawczyk, Aleksandra; Kontschán, Jenő; Gyuranecz, Miklós; Fedák, András; Farkas, Róbert; Haarsma, Anne-Jifke; Sprong, Hein

    2015-08-28

    Bats are among the most eco-epidemiologically important mammals, owing to their presence in human settlements and animal keeping facilities. Roosting of bats in buildings may bring pathogens of veterinary-medical importance into the environment of domestic animals and humans. In this context bats have long been studied as carriers of various pathogen groups. However, despite their close association with arthropods (both in their food and as their ectoparasites), only a few molecular surveys have been published on their role as carriers of vector-borne protozoa. The aim of the present study was to compensate for this scarcity of information. Altogether 221 (mostly individual) bat faecal samples were collected in Hungary and the Netherlands. The DNA was extracted, and analysed with PCR and sequencing for the presence of arthropod-borne apicomplexan protozoa. Babesia canis canis (with 99-100% homology) was identified in five samples, all from Hungary. Because it was excluded with an Ixodidae-specific PCR that the relevant bats consumed ticks, these sequences derive either from insect carriers of Ba. canis, or from the infection of bats. In one bat faecal sample from the Netherlands a sequence having the highest (99%) homology to Besnoitia besnoiti was amplified. These findings suggest that some aspects of the epidemiology of canine babesiosis are underestimated or unknown, i.e. the potential role of insect-borne mechanical transmission and/or the susceptibility of bats to Ba. canis. In addition, bats need to be added to future studies in the quest for the final host of Be. besnoiti.

  7. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector Borne Diseases: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Berlin L. Londono-Renteria

    2016-09-01

    Full Text Available Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regards to infectious disease, particularly during immune responses to vector-borne diseases such as malaria, filariasis or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.

  8. Canine and feline vector-borne diseases in Italy: current situation and perspectives

    Directory of Open Access Journals (Sweden)

    Dantas-Torres Filipe

    2010-01-01

    Full Text Available Abstract In Italy, dogs and cats are at risk of becoming infected by different vector-borne pathogens, including protozoa, bacteria, and helminths. Ticks, fleas, phlebotomine sand flies, and mosquitoes are recognized vectors of pathogens affecting cats and dogs, some of which (e.g., Anaplasma phagocytophilum, Borrelia burgdorferi, Dipylidium caninum, Leishmania infantum, Dirofilaria immitis, and Dirofilaria repens are of zoonotic concern. Recent studies have highlighted the potential of fleas as vectors of pathogens of zoonotic relevance (e.g., Rickettsia felis in this country. While some arthropod vectors (e.g., ticks and fleas are present in certain Italian regions throughout the year, others (e.g., phlebotomine sand flies are most active during the summer season. Accordingly, control strategies, such as those relying on the systematic use of acaricides and insecticides, should be planned on the basis of the ecology of both vectors and pathogens in different geographical areas in order to improve their effectiveness in reducing the risk of infection by vector-borne pathogens. This article reviews the current situation and perspectives of canine and feline vector-borne diseases in Italy.

  9. Household Arthropod Allergens in Korea

    Science.gov (United States)

    Jeong, Kyoung Yong

    2009-01-01

    Arthropods are important in human health, which can transmit pathogens to humans, parasitize, or produce important allergens. Allergy prevalence becomes higher in Korea recently as well as other developed countries in contrast to a decrease of infectious diseases. Allergic diseases caused by household arthropods have increased dramatically during the last few decades since human beings spend more their time for indoor activities in modernized life style. Household arthropods are one of the most common causes of allergic diseases. Biological characterization of household arthropods and researches on their allergens will provide better understanding of the pathogenesis of allergic diseases and suggest new therapeutic ways. Therefore, studies on arthropods of allergenic importance can be considered one of the major research areas in medical arthropodology and parasitology. Here, the biology of several household arthropods, including house dust mites and cockroaches, the 2 most well known arthropods living indoor together with humans worldwide, and characteristics of their allergens, especially the research activities on these allergens performed in Korea, are summarized. PMID:19885330

  10. Rodent-borne diseases and their public health importance in Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Rabiee

    2018-04-01

    Full Text Available Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran.We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID, and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50% parasitic diseases, 13 (38% bacterial diseases, and 4 (12% viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases, Mus musculus (14 diseases, Rattus rattus (13 diseases, Meriones persicus (7 diseases, Apodemus spp. (5 diseases, Tatera indica (4 diseases, Meriones libycus (3 diseases, Rhombomys opimus (3 diseases, Cricetulus migratorius (3 diseases, and Nesokia indica (2 diseases.The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases.

  11. Rodent-borne diseases and their public health importance in Iran

    Science.gov (United States)

    Mahmoudi, Ahmad; Siahsarvie, Roohollah; Kryštufek, Boris; Mostafavi, Ehsan

    2018-01-01

    Background Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran. Methodology/Principal finding We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID), and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50%) parasitic diseases, 13 (38%) bacterial diseases, and 4 (12%) viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases), Mus musculus (14 diseases), Rattus rattus (13 diseases), Meriones persicus (7 diseases), Apodemus spp. (5 diseases), Tatera indica (4 diseases), Meriones libycus (3 diseases), Rhombomys opimus (3 diseases), Cricetulus migratorius (3 diseases), and Nesokia indica (2 diseases). Conclusions/Significance The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases. PMID:29672510

  12. Tick-borne disease.

    Science.gov (United States)

    Bratton, Robert L; Corey, Ralph

    2005-06-15

    Tick-borne diseases in the United States include Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, tularemia, babesiosis, Colorado tick fever, and relapsing fever. It is important for family physicians to consider these illnesses when patients present with influenza-like symptoms. A petechial rash initially affecting the palms and soles of the feet is associated with Rocky Mountain spotted fever, whereas erythema migrans (annular macule with central clearing) is associated with Lyme disease. Various other rashes or skin lesions accompanied by fever and influenza-like illness also may signal the presence of a tick-borne disease. Early, accurate diagnosis allows treatment that may help prevent significant morbidity and possible mortality. Because 24 to 48 hours of attachment to the host are required for infection to occur, early removal can help prevent disease. Treatment with doxycycline or tetracycline is indicated for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. In patients with clinical findings suggestive of tick-borne disease, treatment should not be delayed for laboratory confirmation. If no symptoms follow exposure to tick bites, empiric treatment is not indicated. The same tick may harbor different infectious pathogens and transmit several with one bite. Advising patients about prevention of tick bites, especially in the summer months, may help prevent exposure to dangerous vector-borne diseases.

  13. Clear Resin Casting of Arthropods of Medical Importance for Use in Educational and Outreach Activities

    Science.gov (United States)

    Bejcek, Justin R; Curtis-Robles, Rachel; Riley, Michael; Brundage, Adrienne; Hamer, Gabriel L

    2018-01-01

    Abstract Arthropod-related morbidity and mortality represent a major threat to human and animal health. An important component of reducing vector-borne diseases and injuries is training the next generation of medical entomologists and educating the public in proper identification of arthropods of medical importance. One challenge of student training and public outreach is achieving a safe mounting technique that allows observation of morphological characteristics, while minimizing damage to specimens that are often difficult to replace. Although resin-embedded specimens are available from commercial retailers, there is a need for a published protocol that allows entomologists to economically create high-quality resin-embedded arthropods for use in teaching and outreach activities. We developed a detailed protocol using readily obtained equipment and supplies for creating resin-embedded arthropods of many species for use in teaching and outreach activities. PMID:29718496

  14. Emerging mosquito-borne viruses: transmission and modulation of host defence

    NARCIS (Netherlands)

    Fros, J.J.

    2015-01-01

    Summary

    Two highly pathogenic arthropod-borne (arbo)viruses, West Nile virus (WNV) and chikungunya virus (CHIKV), recently (re-)emerged in both Europe and the Americas. This resulted in large-scale epidemics of severe encephalitic and arthritogenic human disease,

  15. [Tick borne diseases].

    Science.gov (United States)

    Holzer, B R

    2005-11-01

    It is known for many years that tick-borne diseases have worldwide a high economical impact on farming industry and veterinary medicine. But only in the last twenty years the importance of such diseases were notified in human medicine by the medical community and the public with emerging of the tick borne encephalitis virus and the description of Borrelia burgdorferi. It is often forgotten that many other infectious agents as bacteria, virus, Rickettsia or protozoa can be transmitted by ticks. Such diseases are rarely diagnosed in Europe either they are overlooked and misdiagnosed or they are connected with special professional activities. The development of new regions for tourism with different out door activities (adventure trips, trekking, hunting) leads to an exposure to different tick borne diseases, which are often misdiagnosed.

  16. Spatial and Temporal Distribution of Lyme Disease Infected Ticks in the Texas-Mexico Border Region

    Science.gov (United States)

    Lyme disease (LD) is the most prevalent arthropod-borne infection in the United States, with 33,097 cases of LD reported to the Centers for Disease Control and Prevention (CDC) in 2011. The disease is transmitted to a mammalian host by Ixodes ticks infected with Borrelia burgdorferi. Efforts to unde...

  17. The ecological foundations of transmission potential and vector-borne disease in urban landscapes.

    Science.gov (United States)

    LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z

    2015-07-01

    Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain

  18. Tick Talk: Tick-borne Diseases of South Dakota.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay

    2017-09-01

    In addition to being a nuisance, ticks can carry disease. This article presents a brief review of ticks and associated tick-borne disease relevant to South Dakota and surrounding regions. Tick-borne diseases of special relevance in South Dakota include tularemia, Rocky Mountain spotted fever, and Lyme disease. A number of others may also be encountered in the state as well. Prompt treatment of suspected cases is important to ensure a successful recovery, and tick-avoidance measures can reduce the risks of acquiring them. Most of these conditions are nationally reportable infectious diseases. Copyright© South Dakota State Medical Association.

  19. The Discovery of Arthropod-Specific Viruses in Hematophagous Arthropods: An Open Door to Understanding the Mechanisms of Arbovirus and Arthropod Evolution?

    Science.gov (United States)

    Calisher, Charles H; Higgs, Stephen

    2018-01-07

    The discovery of an odd virus from hematophagous arthropods 40 years ago by Stollar and Thomas described cell fusing agent virus in cells derived from Aedes aegypti mosquitoes. Then came the report of Kamiti River virus from Ae. macintoshi in 1999, followed by worldwide reports of the discovery of other viruses of mosquitoes, ticks, and midges that replicate only in arthropods and not in vertebrates or in vertebrate cells. These viruses (now totaling at least 64 published) have genomes analogous to viruses in various families that include arboviruses and nonarboviruses. It is likely that some of these viruses have been insufficiently studied and may yet be shown to infect vertebrates. However, there is no doubt that the vast majority are restricted to arthropods alone and that they represent a recently recognized clade. Their biology, modes of transmission, worldwide distribution (some have been detected in wild-caught mosquitoes in both Asia and the United States, for example), molecular characteristics of their genomes, and potential for becoming vertebrate pathogens, or at least serving as virus reservoirs, are fascinating and may provide evidence useful in understanding virus evolution. Because metagenomics studies of arthropods have shown that arthropod genomes are the sources of arthropod virus genomes, further studies may also provide insights into the evolution of arthropods. More recently, others have published excellent papers that briefly review discoveries of arthropod viruses and that characterize certain genomic peculiarities, but, to now, there have been no reviews that encompass all these facets. We therefore anticipate that this review is published at a time and in a manner that is helpful for both virologists and entomologists to make more sense and understanding of this recently recognized and obviously important virus group. This review focuses specifically on arthropod viruses in hematophagous arthropods.

  20. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...... role in disease patterns, it is evident that transmission potential is governed by a complex of factors, including socio-economy, health-care capacity and ecology. In Denmark, malaria and leishmaniasis are unlikely to become public health problems, whereas the potential for tick-borne illnesses may...

  1. Emerging Vector-Borne Diseases - Incidence through Vectors.

    Science.gov (United States)

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  2. A review of trends in the distribution of vector-borne diseases: is international trade contributing to their spread?

    Science.gov (United States)

    de La Rocque, S; Balenghien, T; Halos, L; Dietze, K; Claes, F; Ferrari, G; Guberti, V; Slingenbergh, J

    2011-04-01

    It is difficult to determine the part that international trade has played in the expansion of vector-borne diseases, because of the multitude of factors that affect the transformation of habitats and the interfaces between vectors and hosts. The introduction of pathogens through trade in live animals or products of animal origin, as well as the arrival of arthropod vectors, is probably quite frequent but the establishment of an efficient transmission system that develops into a disease outbreak remains the exception. In this paper, based on well-documented examples, the authors review the ecological and epidemiological characteristics of vector-borne diseases that may have been affected in their spread and change of distribution by international trade. In addition, they provide a detailed analysis of the risks associated with specific trade routes and recent expansions of vector populations. Finally, the authors highlight the importance, as well as the challenges, of preventive surveillance and regulation. The need for improved monitoring of vector populations and a readiness to face unpredictable epidemiological events are also emphasised, since this will require rapid reaction, not least in the regulatory context.

  3. Air travel and vector-borne disease movement.

    Science.gov (United States)

    Tatem, A J; Huang, Z; Das, A; Qi, Q; Roth, J; Qiu, Y

    2012-12-01

    Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework provides the first steps towards an ultimate goal of adaptive management based on near real time flight data and vector-borne disease surveillance.

  4. Dengue: an arthropod-borne disease of global importance.

    NARCIS (Netherlands)

    Mairuhu, A.T.; Wagenaar, J.; Brandjes, D.P.; Gorp, E. van

    2004-01-01

    Dengue viruses cause a variable spectrum of disease that ranges from an undifferentiated fever to dengue fever to the potentially fatal dengue shock syndrome. Due to the increased incidence and geographical distribution of dengue in the last 50 years, dengue is becoming increasingly recognised as

  5. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...... not available for most diseases. Promising preventive methods, including long-lasting impregnated bed-nets and tents, are available. War has been an impetus for disclosing life-cycles of vector-borne diseases and for control methods; peace, reconciliation and poverty reduction are required to achieve lasting...

  6. Medical Surveillance Monthly Report. Volume 17, Number 5, May 2010

    Science.gov (United States)

    2010-05-01

    associated Lyme disease Malaria Chlamydia Gonorrhea Syphilis Cold c Heatc Q Fever Tuberculosis 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010...Chlamydia Gonorrhea Syphilis Cold c Heatc Q Fever Tuberculosis 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009...5 16 22 5 5 Reporting location Arthropod-borne Sexually transmitted Environmental Travel associated Lyme disease Malaria Chlamydia Gonorrhea

  7. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...

  8. Molecular entomology: analyzing tiny molecules to answer big questions about disease vectors and their biology

    Science.gov (United States)

    The entomologists at the Arthropod-Borne Animal Diseases Research Unit at USDA-Agricultural Research Service are tasked with protecting the nation’s livestock from domestic, foreign and emerging vector-borne diseases. To accomplish this task, a vast array of molecular techniques are being used in pr...

  9. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1980-01-01

    Progress and current status are reported for research projects concerned with mineral element and nutrient dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer analogs of nutrients. This year, emphasis has been placed on field work in which soil arthropod population size and nutrients inputs were varied experimentally. The presence of microarthropods in field microcosms increased the mineralization of N and P in each case, but rates were not correlated with arthropod densities. Experiments recently started are using both arthropod and microfloral inhibitors, in open systems on the forest floor, with the objective of quantifying arthropod enhancement of microbial immobilization of nutrients

  10. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1981-January 31, 1983

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1982-01-01

    Progress is reported for research projects on nutrient dynamics during terrestrial decomposition, as influenced by soil arthropods. Radioactive tracers are used as analogs of nutrients, to measure material movement along food chains and dynamics of processes during decomposition. Forest floor systems from which arthropods were excluded, or in which microfloral activity was depressed, trapped incoming nutrients from canopy throughfall at different rates. Faunal stimulation of microfloral activities could not be demonstrated, but drought conditions disturbed the experiment. Turnover measurements for radionuclides in collembolans are also reported, and compared with information on mites and other arthropods

  11. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1980-01-01

    Recent progress and current status are reported for research concerned with mineral element dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition systems, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer techniques with radioactive analogs of nutrients. Experimental measurement of radioactive tracer excretion and nutrient element pools are reported for soil microarthropods, using new methods of counting and microprobe elemental analysis. Research on arthropod-fungal relations is utilizing high-efficiency extraction followed by dissection of 13 x 13 cm soil blocks. A two-component excretion model is reported for Cobalt-60 in earthworms (Eisenia foetida), demonstrating that no assimilation of cobalt occurs from the mineral soil fraction but is entirely from organic matter. Collection of data sets on soil arthropod communities and abundances is completed

  12. Engaging scientists: An online survey exploring the experience of innovative biotechnological approaches to controlling vector-borne diseases.

    Science.gov (United States)

    Boëte, Christophe; Beisel, Uli; Reis Castro, Luísa; Césard, Nicolas; Reeves, R Guy

    2015-08-10

    Pioneering technologies (e.g., nanotechnology, synthetic biology or climate engineering) are often associated with potential new risks and uncertainties that can become sources of controversy. The communication of information during their development and open exchanges between stakeholders is generally considered a key issue in their acceptance. While the attitudes of the public to novel technologies have been widely considered there has been relatively little investigation of the perceptions and awareness of scientists working on human or animal diseases transmitted by arthropods. Consequently, we conducted a global survey on 1889 scientists working on aspects of vector-borne diseases, exploring, under the light of a variety of demographic and professional factors, their knowledge and awareness of an emerging biotechnology that has the potential to revolutionize the control of pest insect populations. Despite extensive media coverage of key developments (including releases of manipulated mosquitoes into human communities) this has in only one instance resulted in scientist awareness exceeding 50% on a national or regional scale. We document that awareness of pioneering releases significantly relied on private communication sources that were not equally accessible to scientists from countries with endemic vector-borne diseases (dengue and malaria). In addition, we provide quantitative analysis of the perceptions and knowledge of specific biotechnological approaches to controlling vector-borne disease, which are likely to impact the way in which scientists around the world engage in the debate about their value. Our results indicate that there is scope to strengthen already effective methods of communication, in addition to a strong demand by scientists (expressed by 79.9% of respondents) to develop new, creative modes of public engagement.

  13. Arthropods as a source of new RNA viruses.

    Science.gov (United States)

    Bichaud, L; de Lamballerie, X; Alkan, C; Izri, A; Gould, E A; Charrel, R N

    2014-12-01

    The discovery and development of methods for isolation, characterisation and taxonomy of viruses represents an important milestone in the study, treatment and control of virus diseases during the 20th century. Indeed, by the late-1950s, it was becoming common belief that most human and veterinary pathogenic viruses had been discovered. However, at that time, knowledge of the impact of improved commercial transportation, urbanisation and deforestation, on disease emergence, was in its infancy. From the late 1960s onwards viruses, such as hepatitis virus (A, B and C) hantavirus, HIV, Marburg virus, Ebola virus and many others began to emerge and it became apparent that the world was changing, at least in terms of virus epidemiology, largely due to the influence of anthropological activities. Subsequently, with the improvement of molecular biotechnologies, for amplification of viral RNA, genome sequencing and proteomic analysis the arsenal of available tools for virus discovery and genetic characterization opened up new and exciting possibilities for virological discovery. Many recently identified but "unclassified" viruses are now being allocated to existing genera or families based on whole genome sequencing, bioinformatic and phylogenetic analysis. New species, genera and families are also being created following the guidelines of the International Committee for the Taxonomy of Viruses. Many of these newly discovered viruses are vectored by arthropods (arboviruses) and possess an RNA genome. This brief review will focus largely on the discovery of new arthropod-borne viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Vector-borne disease intelligence: Strategies to deal with disease burden and threats

    Directory of Open Access Journals (Sweden)

    Marieta eBraks

    2014-12-01

    Full Text Available Owing to the complex nature of vector-borne diseases, whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of vector-borne diseases. Knowledge on the presence and distribution of vectors and the pathogens they transmit is vital to a risk assessment process to permit effective early warning, surveillance and control of vector-borne diseases. Upon accepting this reality, public health authorities face the phenomenon of an exponential rise in the number of possible surveillance targets and how to decide which are essential. Here, . we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance and context-based surveillance for EU member states to tailor the best surveillance strategy for control of vector-borne diseases in their geographic region. By classifying the surveillance structure into 5 different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for vector-borne diseases entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure.

  15. Emerging Vector-Borne Diseases.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay; Nair, Dilip

    2016-10-01

    Several mosquito-borne viral infections have recently emerged in North America; West Nile virus is the most common in the United States. Although West Nile virus generally causes a self-limited, flulike febrile illness, a serious neuroinvasive form may occur. Dengue is the most common vector-borne viral disease worldwide, and it has been a significant public health threat in the United States since 2009. Known as breakbone fever for its severe myalgias and arthralgias, dengue may cause a hemorrhagic syndrome. Chikungunya also causes flulike febrile illness and disabling arthralgias. Although meningoencephalitis may occur with chikungunya, bleeding is uncommon. Symptoms of Zika virus infection are similar to those of dengue, but milder. Zika virus increases the risk of fetal brain abnormalities, including microcephaly, if a pregnant woman is infected. Zika virus is spread through Aedes albopictus mosquito bites, is transmitted sexually, and may rarely spread nonsexually from person to person. Diagnosis of these vectorborne infections is clinical and serologic, and treatment is supportive. Other, well-established vector-borne diseases are also important. Ehrlichiosis is a tick-borne bacterial disease that presents as a nonspecific syndrome of fever, headache, malaise, and myalgias. It is diagnosed via blood smear testing, with confirmatory serology. Ehrlichiosis is treated with doxycycline. Rickettsial infections are transmitted by fleas, mites, and ticks, and severity ranges from mild to life threatening. Rocky Mountain spotted fever, the most significant rickettsial infection, is primarily a clinical diagnosis that presents as fever, headache, myalgias, petechial rash, and tick exposure. Doxycycline is effective for rickettsial infections if administered promptly. Vector avoidance strategies are critical to the prevention of all of these infections.

  16. Atopic diseases in twins born after assisted reproduction

    DEFF Research Database (Denmark)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten Ohm

    2012-01-01

    Jäderberg I, Thomsen SF, Kyvik KO, Skytthe A, Backer V. Atopic diseases in twins born after assisted reproduction. Paediatric and Perinatal Epidemiology 2012; 26: 140-145. We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted...... reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression...... and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0...

  17. Emerging vector borne diseases – incidence through vectors

    Directory of Open Access Journals (Sweden)

    Sara eSavic

    2014-12-01

    Full Text Available Vector borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowdays, in intercontinetal countries, there is a struggle with emerging diseases which have found their way to appear through vectors. Vector borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector borne infectious diseases and disease outbreaks. It could affect the range and popultion of pathogens, host and vectors, transmission season, etc. Reliable surveilance for diseases that are most likely to emerge is required. Canine vector borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, erlichiosis, leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fudamental role at primeraly prevention and then treatment of vector borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases.During a four year period, from 2009-2013, a total number of 551 dog samples were analysed for vector borne diseases (borreliosis, babesiosis, erlichiosis, anaplasmosis, dirofilariosis and leishmaniasis in routine laboratory work. The analysis were done by serological tests – ELISA for borreliosis, dirofilariosis and leishmaniasis, modified Knott test for dirofilariosis and blood smear for babesiosis, erlichiosis and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on avarege more then half of the samples

  18. Atopic diseases in twins born after assisted reproduction.

    Science.gov (United States)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten O; Skytthe, Axel; Backer, Vibeke

    2012-03-01

    We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0.773 respectively) compared with children born after spontaneous conception. Assisted reproduction did not modify the heritability of atopic diseases. This study does not support an association between assisted reproduction and development of atopic diseases. This result must be confirmed in subsequent studies, preferably of singleton populations. © 2011 Blackwell Publishing Ltd.

  19. Surveillance of vector-borne diseases in Germany: trends and challenges in the view of disease emergence and climate change.

    Science.gov (United States)

    Jansen, Andreas; Frank, Christina; Koch, Judith; Stark, Klaus

    2008-12-01

    The changing epidemiology of vector-borne diseases represents a growing threat to human health. Contemporary surveillance systems have to adapt to these changes. We describe temporal trends and geographic origins of vector-borne diseases in Germany with regard to strengths of existing disease surveillance and to areas marked for improvement. We focused on hantavirus infection (endemic in Germany), chikungunya fever (recently emerging in Europe) and dengue fever (imported from tropical regions), representing important subgroups of vector-borne infections. Routine surveillance data on demographics, origin of infection and the date of reporting were analysed. From 2001 through 2007, 3,005 symptomatic hantavirus infections, and 85 cases of chikungunya fever were reported, similarly 1,048 cases of dengue fever in 2002 through 2007. The geographic origin of hantavirus infection was reported for 95.5% of all cases (dengue virus, 98.4%; chikungunya virus, 100%). Hantavirus infections were acquired in Germany in 97.6% of cases (n = 2800). In 2007, there was a marked increase of hantavirus cases, mainly in areas known to be endemic for hantavirus. In 2006, imported cases of chikungunya fever primarily returned from several islands of the Indian Ocean, while the majority of imported cases in 2007 came from India. The reported number of dengue fever cases have increased since 2004. Thailand contributed the largest proportion of cases (17-43% in individual years), followed by India, Brazil and Indonesia. Surveillance of notifiable vector-borne diseases in Germany is able to timely detect spatial and temporal changes of autochthonous an imported infections. Geographic and temporal data obtained by routine surveillance served as a basis for public health recommendations. In addition to surveillance of vector-borne infections in humans, nationwide monitoring programs and inventory techniques for emerging and reemerging vectors and for wildlife disease are warranted.

  20. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  1. Comparative Programs for Arthropod, Disease and Weed Management in New York Organic Apples

    Directory of Open Access Journals (Sweden)

    Arthur Agnello

    2017-09-01

    Full Text Available Organic apple production in the eastern US is small and is mostly based on existing varieties, which are susceptible to scab, and rootstocks, which are susceptible to fire blight. This requires numerous sprays per year of various pesticides to produce acceptable fruit. From 2014 to 2016, we tested different arthropod, disease and weed management programs in an advanced tall spindle high-density production system that included disease-resistant cultivars and rootstocks, in an organic research planting of apples in Geneva, New York. Arthropod and disease management regimens were characterized as Advanced Organic, Minimal Organic, or Untreated Control. Results varied by year and variety, but, in general, the Advanced program was more effective than the Minimal program in preventing damage from internal-feeding Lepidoptera, plum curculio, and obliquebanded leafroller, and less effective than the Minimal program against damage by foliar insects. Both organic programs provided comparable control of sooty blotch, cedar apple rust, and fire blight, with some variability across cultivars and years. The advanced selection CC1009 and Modi seemed to possess complete resistance to cedar apple rust, while Pristine had partial resistance. For weed control, bark chip mulch, organic soap sprays, and limonene sprays tended to be most effective, while mechanical tillage and flame weeding had lower success.

  2. Management of soil-borne diseases of organic vegetables

    Directory of Open Access Journals (Sweden)

    Shafique Hafiza Asma

    2016-07-01

    Full Text Available With the rising awareness of the adverse effects of chemical pesticides, people are looking for organically grown vegetables. Consumers are increasingly choosing organic foods due to the perception that they are healthier than those conventionally grown. Vegetable crops are vulnerable to a range of pathogenic organisms that reduce yield by killing the plant or damaging the product, thus making it unmarketable. Soil-borne diseases are among the major factors contributing to low yields of organic produce. Apart from chemical pesticides there are several methods that can be used to protect crops from soil-borne pathogens. These include the introduction of biocontrol agents against soil-borne plant pathogens, plants with therapeutic effects and organic soil amendments that stimulate antagonistic activities of microorganisms to soil-borne diseases. The decomposition of organic matter in soil also results in the accumulation of specific compounds that may be antifungal or nematicidal. With the growing interest in organic vegetables, it is necessary to find non chemical means of plant disease control. This review describes the impact of soil-borne diseases on organic vegetables and methods used for their control.

  3. Vector-borne diseases

    DEFF Research Database (Denmark)

    More, Simon J.; Bicout, Dominique; Bøtner, Anette

    2017-01-01

    After a request from the Europea n Commission, EFSA’s Panel on Animal Health and Welfaresummarised the main characteristics of 36 vector-borne disease s (VBDs) in 36 web-based storymaps.The risk of introduction in the EU through movement of livestock or pets was assessed for eac h of the36 VBDs......-agents for which the rate of introduction wasestimated to be very low, no further asse ssments were made. Due to the uncertainty related to someparameters used for the risk assessment or the instable or unpredictability disease situation in some ofthe source regions, it is recommended to update the assessment when...

  4. Arthropods (http://www.iaees.org/publications/journals/arthropods/online-version.asp

    Directory of Open Access Journals (Sweden)

    arthropods@iaees.org

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  5. Co-infection with arthropod-borne pathogens in domestic cats.

    Science.gov (United States)

    André, Marcos Rogério; Filgueira, Kilder Dantas; Calchi, Ana Cláudia; Sousa, Keyla Carstens Marques de; Gonçalves, Luiz Ricardo; Medeiros, Vitor Brasil; Ximenes, Poliana Araújo; Lelis, Ivana Cristina Nunes Gadelha; Meireles, Maria Vanuza Nunes de; Machado, Rosangela Zacarias

    2017-01-01

    The role of several feline vector-borne pathogens (FVBP) as a cause of disease in cats has not been clearly determined. In fact, with the exception of Bartonella spp. and hemoplasmas, FVBP in cats has not been clearly determined in Brazil yet. The present study aimed at identifying, by using molecular methods, the presence of FVBP in three cats showing non-specific clinical signs and inclusions suggestive of hemoparasites in blood smears. Cytauxzoon felis, 'Candidatus Mycoplasma haemominutum', Ehrlichia sp. closely related to Ehrlichia canis, and Anaplasma sp. closely related to Anaplasma phagocytophilum were detected in blood samples from two out of three sampled cats. Both cats positive for multiple FVBP did not show hematological and biochemical abnormalities. The present work emphasizes the need for molecular confirmation of co-infection by multiple FVBP in cats presenting non-specific clinical signs and inclusions resembling hemoparasites in blood smears.

  6. Co-infection with arthropod-borne pathogens in domestic cats

    Directory of Open Access Journals (Sweden)

    Marcos Rogério André

    2017-11-01

    Full Text Available Abstract The role of several feline vector-borne pathogens (FVBP as a cause of disease in cats has not been clearly determined. In fact, with the exception of Bartonella spp. and hemoplasmas, FVBP in cats has not been clearly determined in Brazil yet. The present study aimed at identifying, by using molecular methods, the presence of FVBP in three cats showing non-specific clinical signs and inclusions suggestive of hemoparasites in blood smears. Cytauxzoon felis, ‘Candidatus Mycoplasma haemominutum’, Ehrlichia sp. closely related to Ehrlichia canis, and Anaplasma sp. closely related to Anaplasma phagocytophilum were detected in blood samples from two out of three sampled cats. Both cats positive for multiple FVBP did not show hematological and biochemical abnormalities. The present work emphasizes the need for molecular confirmation of co-infection by multiple FVBP in cats presenting non-specific clinical signs and inclusions resembling hemoparasites in blood smears.

  7. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

    Science.gov (United States)

    Foley, Desmond H; Wilkerson, Richard C; Birney, Ian; Harrison, Stanley; Christensen, Jamie; Rueda, Leopoldo M

    2010-02-18

    Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

  8. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  9. Climate change and vector-borne diseases of public health significance.

    Science.gov (United States)

    Ogden, Nicholas H

    2017-10-16

    There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change. © Crown copyright 2017.

  10. Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods.

    Science.gov (United States)

    Benedict, Mark Q; Burt, Austin; Capurro, Margareth L; De Barro, Paul; Handler, Alfred M; Hayes, Keith R; Marshall, John M; Tabachnick, Walter J; Adelman, Zach N

    2018-01-01

    Versatile molecular tools for creating driving transgenes and other invasive genetic factors present regulatory, ethical, and environmental challenges that should be addressed to ensure their safe use. In this article, we discuss driving transgenes and invasive genetic factors that can potentially spread after their introduction into a small proportion of individuals in a population. The potential of invasive genetic factors to increase their number in natural populations presents challenges that require additional safety measures not provided by previous recommendations regarding accidental release of arthropods. In addition to providing physical containment, invasive genetic factors require greater attention to strain management, including their distribution and identity confirmation. In this study, we focus on insects containing such factors with recommendations for investigators who are creating them, institutional biosafety committees charged with ensuring safety, funding agencies providing support, those managing insectaries handling these materials who are responsible for containment, and other persons who will be receiving insects-transgenic or not-from these facilities. We give specific examples of efforts to modify mosquitoes for mosquito-borne disease control, but similar considerations are relevant to other arthropods that are important to human health, the environment, and agriculture.

  11. Tick-borne pathogen – Reversed and conventional discovery of disease

    Directory of Open Access Journals (Sweden)

    Ellen eTijsse Klasen

    2014-07-01

    Full Text Available Molecular methods have increased the number of known microorganisms associated with ticks significantly. Some of these newly identified microorganisms are readily linked to human disease while others are yet unknown to cause human disease. The face of tick-borne disease discovery has changed with more diseases now being discovered in a ‘reversed way’, detecting disease cases only years after the tick-borne microorganism was first discovered. Compared to the conventional discovery of infectious diseases, this order of discoveries presents researchers with new challenges. Especially estimating public health risks of such agents is challenging, as case definitions and diagnostic procedures may initially be missing. We discuss the advantages and shortcomings of molecular methods, serology, epidemiological studies that might be used to study some fundamental questions regarding newly identified tick-borne diseases. With increased tick-exposure and improved detection methods, more tick-borne microorganisms will be added to the list of pathogens causing disease in humans in future.

  12. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods.

    Science.gov (United States)

    Fischhoff, Ilya R; Keesing, Felicia; Ostfeld, Richard S

    2017-01-01

    Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  13. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae (strain F52 does not reduce non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Ilya R Fischhoff

    Full Text Available Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control. Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray, habitat (lawn vs. forest, and treatment (Met52 vs. control, versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  14. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era: a review

    Directory of Open Access Journals (Sweden)

    Márcia Aparecida Sperança

    2007-06-01

    Full Text Available Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.

  15. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era--a review.

    Science.gov (United States)

    Sperança, Márcia Aparecida; Capurro, Margareth Lara

    2007-06-01

    Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.

  16. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1983-01-01

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported

  17. Health outcomes of children born to mothers with chronic kidney disease: a pilot study

    Directory of Open Access Journals (Sweden)

    Indrani Banerjee

    2010-05-01

    Full Text Available This study aimed to study the health of children born to mothers with chronic kidney disease. Twenty-four children born to mothers with chronic kidney disease were compared with 39 matched control children born to healthy mothers without kidney disease. The well-being of each child was individually assessed in terms of physical health, neurodevelopment and psychological health. Families participating with renal disease were more likely to be from lower socio-economic backgrounds. Significantly fewer vaginal deliveries were reported for mothers with renal disease and their infants were more likely to experience neonatal morbidity. Study and control children were comparable for growth parameters and neurodevelopment as assessed by the Griffiths scales. There was no evidence of more stress amongst mothers with renal disease or of impaired bonding between mother and child when compared to controls. However, there was evidence of greater externalizing behavioral problems in the group of children born to mothers with renal disease. Engaging families in such studies is challenging. Nonetheless, families who participated appreciated being asked. The children were apparently healthy but there was evidence in this small study of significant antenatal and perinatal morbidity compared to controls. Future larger multi-center studies are required to confirm these early findings.

  18. Major vectors and vector-borne diseases in small ruminants in Ethiopia: A systematic review.

    Science.gov (United States)

    Asmare, Kassahun; Abayneh, Takele; Sibhat, Berhanu; Shiferaw, Dessie; Szonyi, Barbara; Krontveit, Randi I; Skjerve, Eystein; Wieland, Barbara

    2017-06-01

    Vector-borne diseases are among major health constraints of small ruminant in Ethiopia. While various studies on single vector-borne diseases or presence of vectors have been conducted, no summarized evidence is available on the occurrence of these diseases and the related vectors. This systematic literature review provides a comprehensive summary on major vectors and vector-borne diseases in small ruminants in Ethiopia. Search for published and unpublished literature was conducted between 8th of January and 25th of June 2015. The search was both manual and electronic. The databases used in electronic search were PubMed, Web of Science, CAB Direct and AJOL. For most of the vector-borne diseases, the summary was limited to narrative synthesis due to lack of sufficient data. Meta-analysis was computed for trypanosomosis and dermatophilosis while meta-regression and sensitivity analysis was done only for trypanososmosis due to lack of sufficient reports on dermatophilosis. Owing emphasis to their vector role, ticks and flies were summarized narratively at genera/species level. In line with inclusion criteria, out of 106 initially identified research reports 43 peer-reviewed articles passed the quality assessment. Data on 7 vector-borne diseases were extracted at species and region level from each source. Accordingly, the pooled prevalence estimate of trypanosomosis was 3.7% with 95% confidence interval (CI) 2.8, 4.9), while that of dermatophilosis was 3.1% (95% CI: 1.6, 6.0). The in-between study variance noted for trypanosomosis was statistically significant (pparasitic presence in blood was documented for babesiosis (3.7% in goats); and anaplasmosis (3.9% in sheep). Serological evidence was retrieved for bluetongue ranging from 34.1% to 46.67% in sheep, and coxiellosis was 10.4% in goats. There was also molecular evidence on the presence of theileriosis in sheep (93%, n=160) and goats (1.9%, n=265). Regarding vectors of veterinary importance, 14 species of ticks in

  19. Madagascar Conservation & Development

    African Journals Online (AJOL)

    www.journalmcd.com

    have important implications for vector - born diseases at the reserve. Arthropod - borne disease agents have been reported in lemurs (Uilenberg 1970, Uilenberg et al. 1972). Haemaphysalis lemuris may be a vector of Babesia cheirogalei and B. propitheci and H. simplex may serve as a vector for B. brygooi (Uilenberg et al.

  20. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective.

    Directory of Open Access Journals (Sweden)

    Abdullah Inci

    2016-12-01

    Full Text Available The importance of tick-borne diseases is increasing all over the world, including Turkey. Global warming, environmental and ecological changes and the existence of suitable habitats increase the impact of ticks and result in frequent emergence or re-emergence of tick-borne diseases (TBDs with zoonotic characteristics. In Turkey, almost 19 TBDs have been reported in animals and men, involving four protozoa (babesiosis, theileriosis, cytauxzoonosis, hepatozoonosis, one filarial nematode (acanthocheilonemasis, ten bacterial agents (anaplasmosis, ehrlichiosis, aegyptianellosis, tick-borne typhus, Candidatus Rickettsia vini, Lyme borreliosis, tick-borne relapsing fever [TBRF], tularaemia, bartonellosis, and hemoplasmosis, and four viral infections (tick-borne encephalitis [TBE], Crimean-Congo Haemorrhagic Fever [CCHF], louping-ill [LI], and lumpy skin disease [LSD]. The growing number of TBD cases, in particular the fatal viral epidemics in humans, have led to increased public awareness and concern against TBDs in recent years. The World Health Organization (WHO has developed a new political concept, called the "One Health" initiative, which is especially relevant for developing strategies against tick infestations and TBD control in humans and animals. It would be beneficial for Turkey to adopt this new strategy and establish specific research and control programs in coordination with international organizations like WHO, the World Organization for Animal Health (OIE, the Food and Agriculture Organization (FAO, the Centers for Disease Control and Prevention (CDC, and the European Center for Disease Prevention and Control (ECDC to combat TBDs based on the "One Health Initiative" concept. In this article, we review the occurrence of primary TBDs in man and animals in Turkey in light of the "One Health" perspective.

  1. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Science.gov (United States)

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  2. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...

  3. Floral diversity increases beneficial arthropod richness and decreases variability in arthropod community composition.

    Science.gov (United States)

    Bennett, Ashley B; Gratton, Claudio

    2013-01-01

    Declines in species diversity resulting from anthropogenic alterations of the environment heighten the need to develop management strategies that conserve species and ecosystem services. This study examined how native plant species and their diversity influence the abundance and richness of beneficial arthropods, a functionally important group that provides ecosystem services such as pollination and natural pest suppression. Beneficial arthropods were sampled in replicated study plots containing native perennials planted in one-, two-, and seven-species mixtures. We found plant diversity had a positive impact on arthropod richness but not on arthropod abundance. An analysis of arthropod community composition revealed that each flower species attracted a different assemblage of beneficial arthropods. In addition, the full seven-species mixture also attracted a distinct arthropod community compared to single-species monocultures. Using a multivariate approach, we determined whether arthropod assemblages in two- and seven-species plots were additive and could be predicted based on assemblages from their component single-species plots. On average, assemblages in diverse plots were nonadditive when compared to assemblages predicted using single-species plots. Arthropod assemblages in two-species plots most closely resembled those of only one of the flower species in the mixture. However, the arthropod assemblages in seven-species plots, although statistically deviating from the expectation of an additive model, more closely resembled predicted communities compared to the assemblages found in two-species plots, suggesting that variability in arthropod community composition decreased as planting diversity increased. Our study demonstrates that careful selection of plants in managed landscapes can augment beneficial arthropod richness and support a more predictable arthropod community, suggesting that planning and design efforts could shape arthropod assemblages in natural

  4. Mapping of courses on vector biology and vector-borne diseases systems: time for a worldwide effort

    Science.gov (United States)

    Casas, Jérôme; Lazzari, Claudio; Insausti, Teresita; Launois, Pascal; Fouque, Florence

    2016-01-01

    Major emergency efforts are being mounted for each vector-borne disease epidemiological crisis anew, while knowledge about the biology of arthropods vectors is dwindling slowly but continuously, as is the number of field entomologists. The discrepancy between the rates of production of knowledge and its use and need for solving crises is widening, in particular due to the highly differing time spans of the two concurrent processes. A worldwide web based search using multiple key words and search engines of onsite and online courses in English, Spanish, Portuguese, French, Italian and German concerned with the biology of vectors identified over 140 courses. They are geographically and thematically scattered, the vast majority of them are on-site, with very few courses using the latest massive open online course (MOOC) powerfulness. Over two third of them is given in English and Western Africa is particularity poorly represented. The taxonomic groups covered are highly unbalanced towards mosquitoes. A worldwide unique portal to guide students of all grades and levels of expertise, in particular those in remote locations, is badly needed. This is the objective a new activity supported by the Special Programme for Research and Training in Tropical Diseases (TDR). PMID:27759770

  5. Differences in the self-reported racism experiences of US-born and foreign-born Black pregnant women

    OpenAIRE

    Dominguez, Tyan Parker; Strong, Emily Ficklin; Krieger, Nancy; Gillman, Matthew W.; Rich-Edwards, Janet W.

    2009-01-01

    Differential exposure to minority status stressors may help explain differences in United States (US)-born and foreign-born Black women’s birth outcomes. We explored self-reports of racism recorded in a survey of 185 US-born and 114 foreign-born Black pregnant women enrolled in Project Viva, a prospective cohort study of pregnant women in Boston, Massachusetts, USA. Self-reported prevalence of personal racism and group racism was significantly higher among US-born than foreign-born Black preg...

  6. An investigation into the prevalence of water borne diseases in ...

    African Journals Online (AJOL)

    Water-borne diseases are the most prevalent infectious diseases in the developing countries especially in new settlements along the river. The present investigation was carried out to assess the prevalence rate of water-borne diseases among people residing near the left bank of River Ravi. This study has a descriptive ...

  7. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  8. Disparities in Chronic Disease Prevalence Among Non-Hispanic Whites: Heterogeneity Among Foreign-Born Arab and European Americans.

    Science.gov (United States)

    Dallo, Florence J; Kindratt, Tiffany B

    2016-12-01

    We estimated and compared the sex- and age-adjusted prevalence of chronic diseases (diagnosis only and comorbidity) among US- and foreign-born whites from Europe and the Arab Nations and examined associations between region of birth and chronic disease. We evaluated 213,644 adults using restricted data from the National Health Interview Survey (2000-2011) by (1) chronic disease diagnosis only (heart disease, asthma, cancer, diabetes, ulcer, or obesity) and (2) comorbidity (none, diagnosis only, comorbid). We used logistic regression to examine associations between region of birth and chronic disease while controlling for confounders. Foreign-born whites from the Arab Nations had a higher prevalence of being diagnosed with ulcer (4 %) compared to US- and European-born whites (2 %). Foreign-born whites from the Arab Nations had a lower prevalence of comorbid cancer (1 %) and ulcer (3 %) yet had higher estimates of comorbid heart disease (18 %), asthma (5 %), and obesity (13 %) when compared to European-born whites (all ps Arab Americans had the highest prevalence of comorbid diabetes (8 %) compared to both European- (5 %) and US-born whites (6 %). In multivariate logistic regression models, Arab Americans had a lower odds of reporting cancer, heart disease, and asthma before and after controlling for covariates. Our study builds on existing literature for Arab Americans as the first study evaluating chronic disease prevalence among foreign-born whites from countries in the Arab League of Nations geographically located in the Middle East. Methodologically robust studies are needed to better understand the influence of acculturation, country of origin, and other characteristics influencing health among foreign-born whites.

  9. Antialarmin effect of tick saliva during the transmission of Lyme disease

    NARCIS (Netherlands)

    Marchal, Claire; Schramm, Frederic; Kern, Aurélie; Luft, Benjamin J.; Yang, Xiaohua; Schuijt, Tim J.; Hovius, Joppe W.; Jaulhac, Benoît; Boulanger, Nathalie

    2011-01-01

    Tick saliva has potent immunomodulatory properties. In arthropod-borne diseases, this effect is largely used by microorganisms to increase their pathogenicity and to evade host immune responses. We show that in Lyme borreliosis, tick salivary gland extract and a tick saliva protein, Salp15, inhibit

  10. Vector-borne disease intelligence: strategies to deal with disease burden and threats

    Czech Academy of Sciences Publication Activity Database

    Braks, M.; Medlock, J. M.; Hubálek, Zdeněk; Hjertqvist, M.; Perrin, Y.; Lancelot, R.; Duchyene, E.; Hendrickx, G.; Stroo, A.; Heyman, P.; Sprong, H.

    2014-01-01

    Roč. 2, č. 280 (2014), s. 280 ISSN 2296-2565 Institutional support: RVO:68081766 Keywords : disease burden * emerging diseases * one health * surveillance * threat * vector-borne diseases Subject RIV: EE - Microbiology, Virology

  11. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1978-01-01

    Progress is reported in projects dealing with radioisotope measurement of nutrient flow in soil arthropod food chains, the role of soil arthropods as regulators of the terrestrial decomposition process, and field projects investigating the response to perturbation by island ecosystems on granitic outcrops. Radioisotopes in combination with system modeling techniques are being used to estimate nutrient flow rates in food chains of soil arthropods, and help to evaluate their impact on the decomposition process. Field work on granitic outcrop ecosystems has been completed. Evaluations of input-output budgets showed that the ecosystems are essentially in balance. They showed a strong resistance component of stability, as opposed to resilience, as far as chemical perturbations and drought are concerned

  12. Assessment of Climate Change and Vector-borne Diseases in the United States

    Science.gov (United States)

    Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.

    2016-12-01

    Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.

  13. Dengue hemorrhagic fever and acute hepatitis: a case report

    Directory of Open Access Journals (Sweden)

    Maria Paula Gomes Mourão

    Full Text Available Dengue fever is the world's most important viral hemorrhagic fever disease, the most geographically wide-spread of the arthropod-born viruses, and it causes a wide clinical spectrum of disease. We report a case of dengue hemorrhagic fever complicated by acute hepatitis. The initial picture of classical dengue fever was followed by painful liver enlargement, vomiting, hematemesis, epistaxis and diarrhea. Severe liver injury was detected by laboratory investigation, according to a syndromic surveillance protocol, expressed in a self-limiting pattern and the patient had a complete recovery. The serological tests for hepatitis and yellow fever viruses were negative. MAC-ELISA for dengue was positive.

  14. Dengue hemorrhagic fever and acute hepatitis: a case report.

    Science.gov (United States)

    Mourão, Maria Paula Gomes; Lacerda, Marcus Vinícius Guimarães de; Bastos, Michele de Souza; Albuquerque, Bernardino Cláudio de; Alecrim, Wilson Duarte

    2004-12-01

    Dengue fever is the world's most important viral hemorrhagic fever disease, the most geographically wide-spread of the arthropod-born viruses, and it causes a wide clinical spectrum of disease. We report a case of dengue hemorrhagic fever complicated by acute hepatitis. The initial picture of classical dengue fever was followed by painful liver enlargement, vomiting, hematemesis, epistaxis and diarrhea. Severe liver injury was detected by laboratory investigation, according to a syndromic surveillance protocol, expressed in a self-limiting pattern and the patient had a complete recovery. The serological tests for hepatitis and yellow fever viruses were negative. MAC-ELISA for dengue was positive.

  15. [Arthropods with vectorial interest in spanish public health].

    Science.gov (United States)

    Bueno Marí, Rubén; Moreno Marí, Josefa; Oltra Moscardó, M Teresa; Jiménez Peydró, Ricardo

    2009-01-01

    Fifteen of the thirty-one Obligatory Communicable Diseases in Spain, exempting those of congenital or neonatal types, can be transmitted by several species of arthropods that are present in our country. Several arthropod orders are the suitable transmitters of tens of bacteria, fungi, virus and protozoa. This fact demands a through of the biology knowledge of these vectors in order to adopt efficient control measures that allow us to reduce the incidence levels of these diseases. Nevertheless, the epidemiological studies shouldn't remain only restricted to the diseases with active transmission cycles in our country. It is necessary to acquire a global vision because of allochton diseases that are perfectly extensible to our territory in the globalization context in which we are situated. All this information is important to know which factors are preventing the disease presence. The aim is to provide the National Epidemiological Surveillance Network with a valuable predictive capacity that allows it to predict the potential arrival of diseases and the consequent strengthening of the spanish Public Health. The goal of this work is to carry out a review of the spanish arthropod fauna with any vectorial interest. The current situation of some of the more important vectorial diseases in our country and the factors related to a resurgence reappearance and/or intensification of those ones are also discussed. Therefore, the study of these inappealable protagonists in our Public Health as an articulatory element in the complex network that any vectorial disease entails is absolutely necessary.

  16. Arthropods in Biological Control

    Science.gov (United States)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vi...

  17. The functional microbiome of arthropods.

    Science.gov (United States)

    Degli Esposti, Mauro; Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.

  18. Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods.

    Science.gov (United States)

    Lamsdell, James C; Stein, Martin; Selden, Paul A

    2013-09-01

    Kodymirus vagans Chlupáč and Havlíček in Sb Geol Ved Paleontol 6:7-20, 1965 is redescribed as an aglaspidid-like arthropod bearing a single pair of enlarged raptorial appendages, which are shown to be the second cephalic appendage. A number of early Palaeozoic arthropods, recognized from predominantly Cambrian Konservat-Lagerstätten, are known to have borne single pairs of large raptorial appendages. They are well established for the iconic yet problematic anomalocarids, the common megacheirans, and the ubiquitous bivalved Isoxys. Further taxa, such as fuxianhuiids and Branchiocaris, have been reported to have single pairs of specialized cephalic appendages, i.e., appendages differentiated from a largely homonomous limbs series, members of which act in metachronal motion. The homology of these raptorial appendages across these Cambrian arthropods has often been assumed, despite differences in morphology. Thus, anomalocaridids, for instance, have long multiarticulate "frontal appendages" consisting of many articles bearing an armature of paired serial spines, while megacheirans and Isoxys have short "great appendages" consisting of few articles with well-developed endites or elongate fingers. Homology of these appendages would require them to belong to the same cephalic segment. We argue based on morphological evidence that, to the contrary, the raptorial appendages of some of these taxa can be shown to belong to different cephalic segments and are the result of convergence in life habits. K. vagans is yet another important example for this, representing an instance for this morphology from a marginal marine environment.

  19. Composition and genomic organization of arthropod Hox clusters.

    Science.gov (United States)

    Pace, Ryan M; Grbić, Miodrag; Nagy, Lisa M

    2016-01-01

    The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum. In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes. The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to support an ancestral arthropod Hox cluster of ten genes with

  20. Tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.

    1976-04-01

    An investigation of the question of tornado-borne missile speeds was carried out, with a view to identify pertinent areas of uncertainty and to estimate credible tornado-borne missile speeds - within the limitations inherent in the present state of the art. The investigation consists of two parts: (1) a study in which a rational model for the missile motion is proposed, and numerical experiments are carried out corresponding to various assumptions on the initial conditions of the missile motion, the structure of the tornado flow, and the aerodynamic properties of the missile; (2) a theoretical and experimental study of tornado-borne missile aerodynamics, conducted by Colorado State Univ. (CSU) to be covered in a separate report by CSU. In the present report, the factors affecting missile motion and their influence upon such motion are examined

  1. DIVERSITY OF SOIL ARTHROPOD IN GREEN BARRIER AREA PT. PUSRI

    Directory of Open Access Journals (Sweden)

    Arif Hidayat

    2016-05-01

    Full Text Available The research was conducted to inventory and identify as well as acknowledge the correlation between vegetation type with soil arthropods in the Green Barrier area of PT Pusri. PT. Pusri green Barrier area is 28 hectares and dominated by 10 types of vegetation, such as, the Angsana (Pterocarpus indicus Wild, Bambu (Bambusa Sp, Beringin (Ficus benyamina, Buah Roda (Hura crepitans L, Jati (Tectona grandis L, Kelampayan (Neolamarckia cadamba , Ketapang (Terminalia catappa L, Mahony (Swietenia macrophylla King, Pulai (Alstonia scholaris, and Sengon (Paraserianthes falcataria L. Soil arthropods were collected by using pit fall traps and funnel barlese-tullgren in every type of vegetation, between July-August 2015. Identification of arthropod genera Identification has been done in Entomology Laboratory of the Agriculture Plant Disease Faculty Sriwijaya University, and analysis of soil organic in the Laboratory of Soil Faculty of Agriculture Sriwijaya University. The results were obtained into 3 classes of soil arthropods belonging to the 10 orders, 28 families and 35 genera. The diversity index value of soil arthropods in various types of vegetation is classified moderately (H= 1-3, and no type of soil arthropods were dominant, mean that soil arthropods with different types spread over in the various types of vegetation in the area of Green Barrier PT. Pusri. Light intensity abiotic factors play an important role in the life of the soil arthropod communities in vegetation Sengon (Paraserianthes falcataria L with a correlation coefficient 1.00 Keywords: soil arthropods, community structure, a biotic factors, Green Barrier PT. Pusri

  2. Insecticide-induced hormesis and arthropod pest management.

    Science.gov (United States)

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  3. Surveillance of Mosquitoes and Selected Arthropod-Borne Viruses in the Context of Milan EXPO 2015

    Directory of Open Access Journals (Sweden)

    Mario Chiari

    2016-07-01

    Full Text Available From 1 May 2015 to 31 October 2015 over 20 million visitors from all over the world visited the Universal Exhibition (EXPO hosted by Milan (Lombardy region, Italy, raising concerns about the possible introduction of mosquito-borne diseases from endemic countries. The entomological surveillance protocol performed in Lombardy over the last three years was implemented in the EXPO area and in the two major regional airports using both Center for Disease Control CO2 and Biogents Sentinel traps. This surveillance aimed to estimate the presence and densities of putative vectors, and also to support investigations, including the vector species involved and area of diffusion, on the local spread of Chikungunya, Dengue and West Nile viruses (WNV by competent vectors. From 3544 mosquitoes belonging to five different species, 28 pools of Culex spp. and 45 pools of Aedes spp. were screened for the presence of WNV, and for both Chikungunya and flaviviruses, respectively. The entomological surveillance highlighted a low density of potential vectors in the surveyed areas and did not reveal the presence of Chikungunya or Dengue viruses in the local competent vectors inside the EXPO area or in the two airports. In addition, the surveillance reported a low density of Culex spp. mosquitoes, which all tested negative for WNV.

  4. Vector-borne diseases: the basic reproduction number R0 and risk maps

    NARCIS (Netherlands)

    Hartemink, N.A.|info:eu-repo/dai/nl/304836699

    2009-01-01

    This thesis deals with the derivation of the basic reproduction number (R0) for vector-borne diseases, in the context of studying the effect of climate change on the risk of emergence diseases. Vector-borne diseases are transmitted from an infected individual to another individual by vectors,

  5. Vectors of rickettsiae in Africa.

    Science.gov (United States)

    Bitam, Idir

    2012-12-01

    Vector-borne diseases are caused by parasites, bacteria, or viruses transmitted by the bites of hematophagous arthropods. In Africa, there has been a recent emergence of new diseases and the re-emergence of existing diseases, usually with changes in disease epidemiology (e.g., geographical distribution, prevalence, and pathogenicity). In Africa, rickettsioses are recognized as important emerging vector-borne infections in humans. Rickettsial diseases are transmitted by different types of arthropods, ticks, fleas, lice, and mites. This review will examine the roles of these different arthropod vectors and their geographical distributions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Survey of spatial distribution of vector-borne disease in ...

    African Journals Online (AJOL)

    Neighborhood dogs may act as reservoirs and disseminators of vector-borne diseases in urban areas. Accordingly, the aim of this study was to ascertain the health status and the vector-borne pathogens infecting dogs living in public areas with high levels of human movement in the city of Curitiba, southern Brazil.

  7. Stigma, discrimination, or symptomatology differences in self-reported mental health between US-born and Somalia-born Black Americans.

    Science.gov (United States)

    Henning-Smith, Carrie; Shippee, Tetyana P; McAlpine, Donna; Hardeman, Rachel; Farah, Farhiya

    2013-05-01

    We examined differences in self-reported mental health (SRMH) between US-born and Somalia-born Black Americans compared with White Americans. We tested how SRMH was affected by stigma toward seeing a mental health provider, discrimination in the health care setting, or symptoms of depression. Data were from a 2008 survey of adults in Minnesota and were limited to US-born and Somalia-born Black and White Americans (n = 938). Somalia-born adults were more likely to report better SRMH than either US-born Black or White Americans. They also reported lower levels of discrimination (18.6%) than US-born Black Americans (33.4%), higher levels of stigma (23.6% vs 4.7%), and lower levels of depressive symptoms (9.1% vs 31.6%). Controlling for stigma, discrimination, and symptomatology, Somalia-born Black Americans reported better SRMH than White and Black Americans (odds ratio = 4.76). Mental health programming and health care providers who focus on Black Americans' mental health might be missing important sources of heterogeneity. It is essential to consider the role of race and ethnicity, but also of nativity, in mental health policy and programming.

  8. First report of Lyme disease in Nepal.

    Science.gov (United States)

    Pun, Sher Bahadur; Agrawal, Sumit; Jha, Santoshananda; Bhandari, Lila Nath; Chalise, Bimal Sharma; Mishra, Abadhesh; Shah, Rajesh

    2018-03-01

    Lyme disease is a tick-borne illness caused by the spirochete Borrelia burgdorferi and is widely reported in the USA, Central Europe, South East Asia and Latin America. Until recently, no scientific report regarding Lyme disease in Nepal had been published. A 32-year-old, previously healthy female visited the hospital with a history of joint pains, fatigue, neck stiffness, tingling sensation and headache. She was initially treated for typhoid fever, brucellosis and malaria, but did not show significant improvement. Doxycycline was prescribed empirically for 3 weeks for the treatment of suspected tick-borne illness. A two-tiered immunoglobulin laboratory testing confirmed Borrelia burgdorferi . She developed post-treatment Lyme disease syndrome after completion of antibiotic therapy. To the best of our knowledge, this is the first report of Lyme disease in Nepal and probably the first documented case of post-treatment Lyme disease syndrome in Asia. Lyme disease might have been overlooked in Nepal and, therefore, patients having clinical signs and symptoms similar to Lyme disease should not be disregarded in differential diagnosis.

  9. Major emerging vector-borne zoonotic diseases of public health importance in Canada.

    Science.gov (United States)

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-06-10

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response.

  10. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes.

    Science.gov (United States)

    Bertone, Matthew A; Leong, Misha; Bayless, Keith M; Malow, Tara L F; Dunn, Robert R; Trautwein, Michelle D

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

  11. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes

    Science.gov (United States)

    Leong, Misha; Bayless, Keith M.; Malow, Tara L.F.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32–211 morphospecies, and 24–128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications. PMID:26819844

  12. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities.

    Science.gov (United States)

    Solórzano Kraemer, Mónica M; Delclòs, Xavier; Clapham, Matthew E; Arillo, Antonio; Peris, David; Jäger, Peter; Stebner, Frauke; Peñalver, Enrique

    2018-05-07

    Amber is an organic multicompound derivative from the polymerization of resin of diverse higher plants. Compared with other modes of fossil preservation, amber records the anatomy of and ecological interactions between ancient soft-bodied organisms with exceptional fidelity. However, it is currently suggested that ambers do not accurately record the composition of arthropod forest paleocommunities, due to crucial taphonomic biases. We evaluated the effects of taphonomic processes on arthropod entrapment by resin from the plant Hymenaea , one of the most important resin-producing trees and a producer of tropical Cenozoic ambers and Anthropocene (or subfossil) resins. We statistically compared natural entrapment by Hymenaea verrucosa tree resin with the ensemble of arthropods trapped by standardized entomological traps around the same tree species. Our results demonstrate that assemblages in resin are more similar to those from sticky traps than from malaise traps, providing an accurate representation of the arthropod fauna living in or near the resiniferous tree, but not of entire arthropod forest communities. Particularly, arthropod groups such as Lepidoptera, Collembola, and some Diptera are underrepresented in resins. However, resin assemblages differed slightly from sticky traps, perhaps because chemical compounds in the resins attract or repel specific insect groups. Ground-dwelling or flying arthropods that use the tree-trunk habitat for feeding or reproduction are also well represented in the resin assemblages, implying that fossil inclusions in amber can reveal fundamental information about biology of the past. These biases have implications for the paleoecological interpretation of the fossil record, principally of Cenozoic amber with angiosperm origin.

  13. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1979-01-01

    Research on soil and litter arthropod food chains, concerning measurement of nutrient flow using radioisotope techniques and investigations of the role of soil arthropods as regulators of the ecosystem-level processes of decomposition and mineralization of nutrients is described. Laboratory measurements of radiotracer turnover by predaceous macroarthropods are reported, as well as the status of research with microarthropod turnover of radioactive tracers. Implications of results are evaluated in context of current understanding of nutrient flows along arthropod food chains. The interactions of soil fauna and mycorrhizal fungi are also under investigation. Field work has been completed on granitic outcrop projects, and a synthesis of results is summarized. Input-output budgets revealed that granitic outcrop island ecosystems are essentially in balance as regards nutrient flows. The ecosystems showed a strong resistance component of stability, as opposed to resilience, following an applied chemical perturbation and a natural one

  14. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1978-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, Jr, D A

    1979-07-15

    Research on soil and litter arthropod food chains, concerning measurement of nutrient flow using radioisotope techniques and investigations of the role of soil arthropods as regulators of the ecosystem-level processes of decomposition and mineralization of nutrients is described. Laboratory measurements of radiotracer turnover by predaceous macroarthropods are reported, as well as the status of research with microarthropod turnover of radioactive tracers. Implications of results are evaluated in context of current understanding of nutrient flows along arthropod food chains. The interactions of soil fauna and mycorrhizal fungi are also under investigation. Field work has been completed on granitic outcrop projects, and a synthesis of results is summarized. Input-output budgets revealed that granitic outcrop island ecosystems are essentially in balance as regards nutrient flows. The ecosystems showed a strong resistance component of stability, as opposed to resilience, following an applied chemical perturbation and a natural one (drought).

  15. Detection of flea-borne Rickettsia species in the Western Himalayan region of India

    Directory of Open Access Journals (Sweden)

    R Chahota

    2015-01-01

    Full Text Available Human infections by various rickettsial species are frequently reported globally. We investigated a flea-borne rickettsial outbreak infecting 300 people in Western Himalayan region of India. Arthropod vectors (ticks and fleas and animal and human blood samples from affected households were analysed by gltA and ompB genes based polymerase chain reaction (PCR. Rat flea (Ceratophyllus fasciatus samples were found harbouring a Rickettsia sp. Phylogenetic analysis based on gltA gene using PHYLIP revealed that the detected Rickettsia sp. has 100% identity with SE313 and RF2125 strains of Rickettsia sp. of flea origin from Egypt and Thai-Myanmar border, respectively and cf1 and 5 strains from fleas and lice from the USA. But, the nucleotide sequence of genetically variable gene ompB of R14 strain was found closely related to cf9 strain, reported from Ctenocephalides felis fleas. These results highlight the public health importance of such newly discovered or less recognised Rickettsia species/strains, harboured by arthropod vectors like fleas.

  16. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  17. Seven challenges for modelling indirect transmission: Vector-borne diseases, macroparasites and neglected tropical diseases

    Directory of Open Access Journals (Sweden)

    T. Déirdre Hollingsworth

    2015-03-01

    Full Text Available Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease.

  18. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases.

    Science.gov (United States)

    Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L

    2015-03-01

    Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses

    Directory of Open Access Journals (Sweden)

    Gilmore D.P.

    2001-01-01

    Full Text Available This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

  20. Arthropod diversity in a tropical forest.

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Guilhaumon, François; Missa, Olivier; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Schmidl, Jürgen; Tishechkin, Alexey K; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jon R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Miller, Scott E; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Leponce, Maurice

    2012-12-14

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.

  1. Bovine Tick-borne Protozoan Diseases: Emerging Threats

    OpenAIRE

    El-Ashker MR

    2013-01-01

    Tick-borne protozoan diseases, Theileriosis and Babesiosis, are major health and management problems of cattle, small ruminants and buffaloes in Africa, Asia and Latin America. Recently, tickborne diseases were ranked high in terms of their impact on poor farming communities in developing countries. Whereas the global economic importance of ticks is particularly high for livestock, there is also a relevant impact on public health in the northern hemisphere.

  2. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    Science.gov (United States)

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible

  3. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1976-01-01

    Progress is described in radioisotope measurement of nutrient element flow in soil-litter arthropod food chains. Two models of accumulation (Goldstein-Elwood, Reichle-Crossley) were tested experimentally and found to yield equivalent predictions of 134 Cs and 85 Sr movement through arthropod populations. Radioisotope retention studies were used to compare trophic strategies of soil tipulids from arctic tundra and temperate forest. Arctic tipulids were found to compensate for low temperatures with enhanced assimilation and slower turnover of nutrients. Electron microprobe analysis is being used to measure elemental content of soil microarthropods. Concentrations as high as 70,000 ppm of Ca are reported for oribatid mites. Improved measurements of input-output nutrient concentrations are reported for island ecosystems on granitic outcrops, which are being subjected to experimental alteration in studies of ecosystem function

  4. A gravity model for the spread of a pollinator-borne plant pathogen.

    Science.gov (United States)

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  5. Opportunity to Improve Public Perceptions of Arthropods and Arthropod-Related Benefits

    Science.gov (United States)

    Harris, Bethany A.; Braman, S. Kristine

    2016-01-01

    The general public may not recognize the value of conserving insects and spiders in home landscapes. We surveyed individuals to assess public perceptions of 10 arthropods--nine common insects and one common spider species--and to determine whether arthropod-related attitudes could be altered. Additionally, we collected data on survey respondent…

  6. The emergence and maintenance of vector-borne diseases in the khyber pakhtunkhwa province, and the federally administered tribal areas of pakistan.

    Science.gov (United States)

    Nieto, Nathan C; Khan, Khalid; Uhllah, Ghufran; Teglas, Mike B

    2012-01-01

    Human populations throughout much of the world are experiencing unprecedented changes in their relationship to the environment and their interactions with the animals with which so many humans are intimately dependent upon. These changes result not only from human induced changes in the climate, but also from population demographic changes due to wars, social unrest, behavioral changes resulting from cultural mixing, and large changes in land-use practices. Each of these social shifts can affect the maintenance and emergence of arthropod vectors disease or the pathogenic organisms themselves. A good example is the country of Pakistan, with a large rural population and developing urban economy, it also maintains a wide diversity of entomological disease vectors, including biting flies, mosquitoes, and ticks. Pathogens endemic to the region include the agents of piroplasmosis, rickettsiosis, spirochetosis, and viral hemorrhagic fevers and encephalitis. The northwestern region of the country, including the Khyber Pakhtunkhwa Province (KPK), formerly the North-West Frontier Provence (NWFP), and the Federally Administered Tribal Areas (FATA) are mountainous regions with a high degree of habitat diversity that has recently undergone a massive increase in human population density due to an immigrating refugee population from neighboring war-torn Afghanistan. Vector-borne diseases in people and livestock are common in KPK and FATA regions due to the limited use of vector control measures and access to livestock vaccines. The vast majority of people in this region live in abject poverty with >70% of the population living directly from production gained in animal husbandry. In many instances whole families live directly alongside their animal counterparts. In addition, there is little to no awareness of the threat posed by ticks and transmission of either zoonotic or veterinary pathogens. Recent emergence of Crimean-Congo hemorrhagic fever virus in rural populations

  7. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    that would increase distance between infectious and susceptible hosts. This can be done very efficiently on a regional scale if the incursion route is well specified. However as the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seems preferable...

  8. Monitoring selected arthropods

    Science.gov (United States)

    R. Chris Stanton; David J. Horn; Foster F. Purrington; John W. Peacock; Eric H. Metzler

    2003-01-01

    Arthropod populations were sampled in four study areas in southern Ohio in 1995 to document patterns of arthropod diversity and establish a baseline dataset for long-term monitoring in mixed-oak forests. Pitfall, Malaise, and blacklight traps were operated in 12 treatment units from May through September. Several insect groups were selected for detailed study due to...

  9. Potential impact of climate change on emerging vector-borne and other infections in the UK.

    Science.gov (United States)

    Baylis, Matthew

    2017-12-05

    Climate is one of several causes of disease emergence. Although half or more of infectious diseases are affected by climate it appears to be a relatively infrequent cause of human disease emergence. Climate mostly affects diseases caused by pathogens that spend part of their lifecycle outside of the host, exposed to the environment. The most important routes of transmission of climate sensitive diseases are by arthropod (insect and tick) vectors, in water and in food. Given the sensitivity of many diseases to climate, it is very likely that at least some will respond to future climate change. In the case of vector-borne diseases this response will include spread to new areas. Several vector-borne diseases have emerged in Europe in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya fever, leishmaniasis, Lyme disease and tick-borne encephalitis. The vectors of these diseases are mosquitoes, sand flies and ticks. The UK has endemic mosquito species capable of transmitting malaria and probably other pathogens, and ticks that transmit Lyme disease. The UK is also threatened by invasive mosquito species known to be able to transmit West Nile, dengue, chikungunya and Zika, and sand flies that spread leishmaniasis. Warmer temperatures in the future will increase the suitability of the UK's climate for these invasive species, and increase the risk that they may spread disease. While much attention is on invasive species, it is important to recognize the threat presented by native species too. Proposed actions to reduce the future impact of emerging vector-borne diseases in the UK include insect control activity at points of entry of vehicles and certain goods, wider surveillance for mosquitoes and sand flies, research into the threat posed by native species, increased awareness of the medical profession of the threat posed by specific diseases, regular risk assessments, and increased preparedness for the occurrence of a disease emergency.

  10. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Marie Aerts

    2012-11-01

    Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  11. Pityriasis Rotunda: A Case Report of Familial Disease in an American-Born Black Patient

    Directory of Open Access Journals (Sweden)

    Emily G. Lefkowitz

    2016-03-01

    Full Text Available Pityriasis rotunda is an uncommon dermatosis with an unusual geographic and racial distribution. The skin disorder is characterized by sharply defined, perfectly circular, scaly patches with no inflammatory changes. Notably, it may be associated with underlying malignancy or chronic infection. We report an uncommon familial case in an American-born female.

  12. Broader prevalence of Wolbachia in insects including potential human disease vectors.

    Science.gov (United States)

    de Oliveira, C D; Gonçalves, D S; Baton, L A; Shimabukuro, P H F; Carvalho, F D; Moreira, L A

    2015-06-01

    Wolbachia are intracellular, maternally transmitted bacteria considered the most abundant endosymbionts found in arthropods. They reproductively manipulate their host in order to increase their chances of being transmitted to the offspring, and currently are being used as a tool to control vector-borne diseases. Studies on distribution of Wolbachia among its arthropod hosts are important both for better understanding why this bacterium is so common, as well as for its potential use as a biological control agent. Here, we studied the incidence of Wolbachia in a broad range of insect species, collected from different regions of Brazil, using three genetic markers (16S rRNA, wsp and ftsZ), which varied in terms of their sensitivity to detect this bacterium. The overall incidence of Wolbachia among species belonging to 58 families and 14 orders was 61.9%. The most common positive insect orders were Coleoptera, Diptera, Hemiptera and Hymenoptera, with Diptera and Hemiptera having the highest numbers of Wolbachia-positive families. They included potential human disease vectors whose infection status has never been reported before. Our study further shows the importance of using quantitative polymerase chain reaction for high-throughput and sensitive Wolbachia screening.

  13. Multi-disease data management system platform for vector-borne diseases.

    Directory of Open Access Journals (Sweden)

    Lars Eisen

    2011-03-01

    Full Text Available Emerging information technologies present new opportunities to reduce the burden of malaria, dengue and other infectious diseases. For example, use of a data management system software package can help disease control programs to better manage and analyze their data, and thus enhances their ability to carry out continuous surveillance, monitor interventions and evaluate control program performance.We describe a novel multi-disease data management system platform (hereinafter referred to as the system with current capacity for dengue and malaria that supports data entry, storage and query. It also allows for production of maps and both standardized and customized reports. The system is comprised exclusively of software components that can be distributed without the user incurring licensing costs. It was designed to maximize the ability of the user to adapt the system to local conditions without involvement of software developers. Key points of system adaptability include 1 customizable functionality content by disease, 2 configurable roles and permissions, 3 customizable user interfaces and display labels and 4 configurable information trees including a geographical entity tree and a term tree. The system includes significant portions of functionality that is entirely or in large part re-used across diseases, which provides an economy of scope as new diseases downstream are added to the system at decreased cost.We have developed a system with great potential for aiding disease control programs in their task to reduce the burden of dengue and malaria, including the implementation of integrated vector management programs. Next steps include evaluations of operational implementations of the current system with capacity for dengue and malaria, and the inclusion in the system platform of other important vector-borne diseases.

  14. Knowledge of Arthropod Carnivory and Herbivory: Factors Influencing Preservice Elementary Teacher's Attitudes and Beliefs toward Arthropods

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2013-01-01

    Human negativity toward arthropods has been well documented but the factors that contribute to this negativity have been elusive. This study explored knowledge of arthropod carnivory and herbivory as possible casual factors that contribute to the negative tendencies preservice elementary teachers have toward most arthropods. Specifically, this…

  15. Possible impact of rising sea levels on vector-borne infectious diseases

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2011-01-01

    Full Text Available Abstract Background Vector-borne infectious diseases are a significant cause of human and animal mortality and morbidity. Modeling studies predict that changes in climate that accompany global warming will alter the transmission risk of many vector-borne infectious diseases in different parts of the world. Global warming will also raise sea levels, which will lead to an increase in saline and brackish water bodies in coastal areas. The potential impact of rising sea levels, as opposed to climate change, on the prevalence of vector-borne infectious diseases has hitherto been unrecognised. Presentation of the hypothesis Mosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas. Testing the hypothesis The demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings. Implications of the hypothesis Rising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly

  16. Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes

    Science.gov (United States)

    Ann E. Hajek; Patrick C. Tobin

    2010-01-01

    Non-indigenous arthropods are increasingly being introduced into new areas worldwide and occasionally they cause considerable ecological and economic harm. Many invasive arthropods particularly pose problems to areas of human habitation and native ecosystems. In these cases, the use of environmentally benign materials, such as host-specific entomopathogens, can be more...

  17. The ecology of ticks and epidemiology of tick-borne viral diseases.

    Science.gov (United States)

    Estrada-Peña, Agustín; de la Fuente, José

    2014-08-01

    A number of tick-borne diseases of humans have increased in incidence and geographic range over the past few decades, and there is concern that they will pose an even greater threat to public health in future. Although global warming is often cited as the underlying mechanism favoring the spread of tick-borne diseases, climate is just one of many factors that determine which tick species are found in a given geographic region, their population density, the likelihood that they will be infected with microbes pathogenic for humans and the frequency of tick-human contact. This article provides basic information needed for microbiologists to understand the many factors that affect the geographic range and population density of ticks and the risk of human exposure to infected ticks. It first briefly summarizes the life cycle and basic ecology of ticks and how ticks and vertebrate hosts interact, then reviews current understanding of the role of climate, sociodemographic factors, agricultural development and changes in human behavior that affect the incidence of tick-borne diseases. These concepts are then illustrated in specific discussions of tick-borne encephalitis and Crimean-Congo hemorrhagic fever. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Management effect on bird and arthropod interaction in suburban woodlands

    Science.gov (United States)

    2011-01-01

    Background Experiments from a range of ecosystems have shown that insectivorous birds are important in controlling the populations of their invertebrate prey. Here, we report on a large field experiment testing the hypothesis that management for enhancing recreational values in suburban woodlands affects the intensity of bird predation on canopy-living arthropods. Bird exclosures were used in two types of management (understory clearance and dense understory) at two foraging heights in oak Quercus robur canopies and the experiment was replicated at two sites. Results The biomass and abundance of arthropods were high on net-enclosed branches but strongly reduced on control branches in both types of management. In woods with dense understory, the effect of bird predation on arthropod abundance was about twice as high as in woods with understory clearance. The effect of bird predation on arthropod biomass was not significantly affected by management. Conclusions Our data provide experimental evidence to support the idea that bird predation on arthropods can be affected by forest management. We suggest that the mechanism is twofold: reduction of bird abundance and shift of foraging behaviour. In urban woodlands, there may be a management trade-off between enhancing recreational values and promoting bird predation rates on arthropods. PMID:21362174

  19. Extremely prematurely born adolescents self-report of anxiety symptoms, and the mothers' reports on their offspring

    DEFF Research Database (Denmark)

    Sømhovd, M J; Esbjørn, B H; Hansen, B M

    2018-01-01

    AIM: To compare anxiety symptoms in adolescents born extremely prematurely to term-born controls. METHODS: We had 96 preterm-born adolescents and 40 term-born controls from Denmark, and their mothers score the adolescents on the Revised Children Anxiety and Depression scale. We analysed group...... differences, cross-informant correlations and relative risks for elevated anxiety symptoms. RESULTS: Self-reported anxiety symptoms did not significantly differ, although the upper confidence limit (95% CI: -3.3 to 5.1) supported an odds ratio of 2 for the preterm-born participants. Mothers of the preterm......-born participants reported higher social anxiety symptoms than did mothers of controls (51.7 versus 46.8, p = 0.001). The relative risk for being above a threshold indicating distressing anxiety was small from self-reports (1.39; p = 0.60). From mother-reports, the relative risk was noticeable but not significant...

  20. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.

    OpenAIRE

    Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A

    2001-01-01

    Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector...

  1. Evaluating the Economic Impact of Quality-Reducing, Seed Borne Diseases: Lessons From Karnal Bunt of Wheat

    OpenAIRE

    Brennan, John P.; Warham, Elizabeth J.; Byerlee, Derek R.; Hernandez, Julio

    1990-01-01

    Estimates of aggregate disease costs can be used for assigning research resources or to evaluate control measures. Most diseases cause production losses, but others affect quality and marketability. Seed-borne diseases also cause problems for the seed production and distribution industry. The aim in this paper is to examine issues relating to the economic impact of a quality-reducing, seed-borne disease, and to highlight differences compared to non-seed-borne diseases affecting yield only. Ec...

  2. Trees as templates for tropical litter arthropod diversity.

    Science.gov (United States)

    Donoso, David A; Johnston, Mary K; Kaspari, Michael

    2010-09-01

    Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.

  3. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates...

  4. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    Science.gov (United States)

    2011-01-01

    The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular

  5. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    Directory of Open Access Journals (Sweden)

    Hongoh Valerie

    2011-12-01

    Full Text Available Abstract The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne

  6. Vector-borne diseases of small companion animals in Namibia: Literature review, knowledge gaps and opportunity for a One Health approach

    Directory of Open Access Journals (Sweden)

    Bruce H. Noden

    2015-11-01

    Full Text Available Namibia has a rich history in veterinary health but little is known about the vector-borne diseases that affect companion dogs and cats. The aim of this review is to summarise the existing published and available unpublished literature, put it into a wider geographical context, and explore some significant knowledge gaps. To date, only two filarial pathogens (Dirofilaria repens and Acanthocheilonema dracunculoides and three tick-borne pathogens (Babesia canis vogeli, Hepatozoon canis and Ehrlichia canis have been reported. Most studies have focused solely on dogs and cats in the urban Windhoek and surrounding areas, with almost nothing reported in rural farming areas, in either the populous northern regions or the low-income urban areas where animal owners have limited access to veterinary services. With the development of several biomedical training programmes in the country, there is now an excellent opportunity to address zoonotic vector-borne diseases through a One Health approach so as to assess the risks to small companion animals as well as diseases of public health importance.

  7. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  8. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  9. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests.

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D N

    2016-11-01

    Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.

  10. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots

    Directory of Open Access Journals (Sweden)

    Ida Bagus Andika

    2016-09-01

    Full Text Available Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  11. A survey of canine tick-borne diseases in India

    Directory of Open Access Journals (Sweden)

    Coleman Glen T

    2011-07-01

    Full Text Available Abstract Background There are few published reports on canine Babesia, Ehrlichia, Anaplasma, Hepatozoon and haemotropic Mycoplasma infections in India and most describe clinical disease in individual dogs, diagnosed by morphological observation of the microorganisms in stained blood smears. This study investigated the occurrence and distribution of canine tick-borne disease (TBD pathogens using a combination of conventional and molecular diagnostic techniques in four cities in India. Results On microscopy examination, only Hepatozoon gamonts were observed in twelve out of 525 (2.3%; 95% CI: 1.2, 4 blood smears. Using polymerase chain reaction (PCR, a total of 261 from 525 dogs (49.7%; 95% CI: 45.4, 54.1 in this study were infected with one or more canine tick-borne pathogen. Hepatozoon canis (30%; 95% CI: 26.0, 34.0 was the most common TBD pathogen found infecting dogs in India followed by Ehrlichia canis (20.6%; 95% CI: 17.2, 24.3, Mycoplasma haemocanis (12.2%; 95% CI: 9.5, 15.3, Anaplasma platys (6.5%; 95% CI: 4.5, 8.9, Babesia vogeli (5.5%, 95% CI: 3.7, 7.8 and Babesia gibsoni (0.2%, 95% CI: 0.01, 1.06. Concurrent infection with more than one TBD pathogen occurred in 39% of cases. Potential tick vectors, Rhipicephalus (most commonly and/or Haemaphysalis ticks were found on 278 (53% of dogs examined. Conclusions At least 6 species of canine tick-borne pathogens are present in India. Hepatozoon canis was the most common pathogen and ticks belonging to the genus Rhipicephalus were encountered most frequently. Polymerase chain reaction was more sensitive in detecting circulating pathogens compared with peripheral blood smear examination. As co-infections with canine TBD pathogens were common, Indian veterinary practitioners should be cognisant that the discovery of one such pathogen raises the potential for multiple infections which may warrant different clinical management strategies.

  12. Association of water-borne diseases morbidity pattern and water ...

    African Journals Online (AJOL)

    1Department of Env ronmental Management and Tox cology, Un vers ty of Agr culture, PMB 2240,. Abeokuta, Ogun .... and a modern sector) that has implications for ... plastered with cement. ..... residents are at–risk of water-borne diseases.

  13. The diversity of arthropods in homes across the United States as determined by environmental DNA analyses.

    Science.gov (United States)

    Madden, Anne A; Barberán, Albert; Bertone, Matthew A; Menninger, Holly L; Dunn, Robert R; Fierer, Noah

    2016-12-01

    We spend most of our lives inside homes, surrounded by arthropods that impact our property as pests and our health as disease vectors and producers of sensitizing allergens. Despite their relevance to human health and well-being, we know relatively little about the arthropods that exist in our homes and the factors structuring their diversity. As previous work has been limited in scale by the costs and time associated with collecting arthropods and the subsequent morphological identification, we used a DNA-based method for investigating the arthropod diversity in homes via high-throughput marker gene sequencing of home dust. Settled dust samples were collected by citizen scientists from both inside and outside more than 700 homes across the United States, yielding the first continental-scale estimates of arthropod diversity associated with our residences. We were able to document food webs and previously unknown geographic distributions of diverse arthropods - from allergen producers to invasive species and nuisance pests. Home characteristics, including the presence of basements, home occupants and surrounding land use, were more useful than climate parameters in predicting arthropod diversity in homes. These noninvasive, scalable tools and resultant findings not only provide the first continental-scale maps of household arthropod diversity, but our analyses also provide valuable baseline information on arthropod allergen exposures and the distributions of invasive pests inside homes. © 2016 John Wiley & Sons Ltd.

  14. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases.

    Science.gov (United States)

    Harrus, S; Baneth, G

    2005-10-01

    In recent years, vector-borne parasitic and bacterial diseases have emerged or re-emerged in many geographical regions causing global health and economic problems that involve humans, livestock, companion animals and wild life. The ecology and epidemiology of vector-borne diseases are affected by the interrelations between three major factors comprising the pathogen, the host (human, animal or vector) and the environment. Important drivers for the emergence and spread of vector-borne parasites include habitat changes, alterations in water storage and irrigation habits, atmospheric and climate changes, immunosuppression by HIV, pollution, development of insecticide and drug resistance, globalization and the significant increase in international trade, tourism and travel. War and civil unrest, and governmental or global management failure are also major contributors to the spread of infectious diseases. The improvement of epidemic understanding and planning together with the development of new diagnostic molecular techniques in the last few decades have allowed researchers to better diagnose and trace pathogens, their origin and routes of infection, and to develop preventive public health and intervention programs. Health care workers, physicians, veterinarians and biosecurity officers should play a key role in future prevention of vector-borne diseases. A coordinated global approach for the prevention of vector-borne diseases should be implemented by international organizations and governmental agencies in collaboration with research institutions.

  15. Human babesiosis – a little-known tick-borne disease

    Directory of Open Access Journals (Sweden)

    Patrycja Gajda

    2015-03-01

    Full Text Available Babesiosis is an infectious, tick-borne disease caused by the parasitic species of Babesia. Transmission via blood transfusion or transplacental infections are much rarer. Most cases of human babesiosis occur in the United States, whereas only single cases have been reported in Europe, including Poland. Anaemia due to erythrocyte haemolysis, which in more severe cases may result in multiple organ dysfunction syndrome and death, particularly in immunocompromised patients, is a typical sign of babesiosis. Immunocompetent patients are asymptomatic or develop mild infection accompanied by fever, osteoarticular pain and erythrocyturia. The diagnostics of babesiosis should be considered in patients with flu-like symptoms who live or are temporarily residing in endemic areas as well as in patients diagnosed with other tick-borne diseases. Final diagnosis should be based on microscopic examination of thin blood smears (Wright or Giemsa staining followed by examination under oil immersion or PCR-based amplification of the babesial genetic material. Treatment with atovaquone and azithromycin or clindamycin and quinine usually allows for a complete recovery and prevents complications. Severe cases of babesiosis require exchange transfusion. The infection is frequently combated by the immune system without the use of antibiotics in patients with mild or asymptomatic babesiosis. The prevention of babesiosis primarily involves protective measures that minimize the exposure to ticks, which are the only source of infection.

  16. Study of the climatic change impact on vector-borne diseases in West Africa: the case of tick-borne borreliosis and malaria

    International Nuclear Information System (INIS)

    Trape, J.F.

    2005-04-01

    Malaria and tick-borne borreliosis are the two first causes of morbidity due to vector-borne diseases in a large part of Sudan-sahelian West Africa. They are also the two tropical diseases which have been the most affected by climatic change in recent years. In the case of tick-borne borreliosis it has been shown in Senegal that the persistence of drought since the years 70 has been associated with a considerable extension of the geographic range of diseases and the vector tick A-sonrai, a species that was in the past limited to the Sahara and Sahel. In the case of malaria, drought has strongly reduced in these same regions of Africa the distribution, abundance and infection rate of Anopheline mosquitoes, but without any significant reduction of the burden of malaria for most populations concerned. The emergence and spread of Plasmodium falciparum resistance to antimalarial drugs only explain part of this phenomenon. (A.L.B.)

  17. Effects of large herbivores on grassland arthropod diversity.

    Science.gov (United States)

    van Klink, R; van der Plas, F; van Noordwijk, C G E Toos; WallisDeVries, M F; Olff, H

    2015-05-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  18. Mineral cycling in soil and litter arthropod food chains. Three-year progress report, November 1, 1980-January 31, 1984

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1984-01-01

    This report summarizes our analysis of trophic dynamics in soil fauna including their impact on the decomposition process, investigation of relationships between soil fauna and microflora, development and testing of models describing these processes, and documentation of rates of movement of nutrients along soil arthropod food chains

  19. Plutonium concentrations in arthropods at a nuclear facility

    International Nuclear Information System (INIS)

    Bly, J.A.; Whicker, F.W.

    1979-01-01

    Arthropods were collected for 239 240 Pu ( 239 Pu) and 238 Pu analysis from three study plots in close proximity to the Rocky Flats nuclear weapons plant and from a site 110 km N-NE of the plant. Mean 239 Pu concentrations in arthropods were 265, 16, 0.7 and 0.5 dis/min g -1 at the three Rocky Flats study plots and at the control site, respectively. Arthropod 239 Pu concentration data were statistically analyzed by season of collection, taxonomic group, and sampling site. Only the collection site differences were significant (α = 0.01) and these were correlated with 239 Pu concentrations in soil. The mean activity ratio of 239 Pu to 238 Pu in arthropods was 52, similar to the value of 51 obtained for soil. The mean ratio of 239 Pu in arthropods to 239 Pu in 0-3 cm soil at Rocky Flats was 9 x 10 -3 . Arthropod biomass and Pu concentration data indicated that only about 10 -8 of the total plutonium inventory is in the arthropod component of the ecosystem. Leafhoppers, grasshoppers and spiders accounted for roughly 80% of the arthropod inventory of 239 Pu. (author)

  20. Mineral cycling in soil and litter arthropod food chains. Progress report, 1985

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1985-01-01

    Research progress in the following areas is briefly summarized: (1) microarthropod effects on microbial immobilization of nutrients during decomposition; and (2) effects of arthropods on decomposition rates of unconfined leaf litter

  1. Serpins in arthropod biology

    OpenAIRE

    Meekins, David A.; Kanost, Michael R.; Michel, Kristin

    2016-01-01

    Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are ...

  2. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model ...... results when index cases were in the vaccinated areas. However, given that the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seem preferable....

  3. Wildlife as reservoirs for vector borne diseases in a warmer Scandinavian climate

    DEFF Research Database (Denmark)

    Bødker, Rene; Kristensen, Birgit

    can be attributed global warming. Some of these new infections have important reservoirs in wild animals and this may affect prevention and control of outbreaks in humans and domestic animals. This may also put wild animals at risk of not just infections but also of control efforts targeted...... of the future risk of outbreaks in the Nordic countries. DTU Veterinary Institute is developing a system for continuous risk assessment of potential spread of exotic insect borne diseases of veterinary and human importance. Mathematical models for selected vector borne diseases are continuously updated...

  4. Sero-prevalence study of bluetongue infection in sheep and goats in ...

    African Journals Online (AJOL)

    Bluetongue is an infectious, a non-contagious, arthropod borne viral disease of ruminants and has been reported from most of the tropical and subtropical regions of the world. Seroprevalence study was carried from July, 2013 to January, 2015 to understand bluetongue virus infection in selected areas of sheep and

  5. Plutonium concentrations in arthropods at a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Bly, J A; Whicker, F W [Colorado State Univ., Fort Collins (USA). Dept. of Radiology and Radiation Biology

    1979-09-01

    Arthropods were collected for /sup 239/ /sup 240/Pu (/sup 239/Pu) and /sup 238/Pu analysis from three study plots in close proximity to the Rocky Flats nuclear weapons plant and from a site 110 km N-NE of the plant. Mean /sup 239/Pu concentrations in arthropods were 265, 16, 0.7 and 0.5 dis/min g/sup -1/ at the three Rocky Flats study plots and at the control site, respectively. Arthropod /sup 239/Pu concentration data were statistically analyzed by season of collection, taxonomic group, and sampling site. Only the collection site differences were significant (..cap alpha.. = 0.01) and these were correlated with /sup 239/Pu concentrations in soil. The mean activity ratio of /sup 239/Pu to /sup 238/Pu in arthropods was 52, similar to the value of 51 obtained for soil. The mean ratio of /sup 239/Pu in arthropods to /sup 239/Pu in 0-3 cm soil at Rocky Flats was 9 x 10/sup -3/. Arthropod biomass and Pu concentration data indicated that only about 10/sup -8/ of the total plutonium inventory is in the arthropod component of the ecosystem. Leafhoppers, grasshoppers and spiders accounted for roughly 80% of the arthropod inventory of /sup 239/Pu.

  6. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  7. Spatial analysis of vector-borne infectious diseases and ecological indicators using GIS and remote sensing

    Science.gov (United States)

    Anh, N. K.; Liou, Y. A.

    2017-12-01

    Ecological and climate indicators play a vital role in defining patterns of human activities and behaviors, such as seasonal features, migration, winter-summer lifestyles, which in turn might be associated with vector-borne disease habitats and transmission risks. Remote sensing has been instrumental in deriving environmental variables and indicators. GIS is shown to be a powerful tool in spatiotemporal visualization and distribution of vector-borne diseases and for analysis of associations between environmental conditions and characteristics of vector-borne habitats. Vietnam is in the sub-tropical climate zone with high humidity and abundant precipitation, while the distribution of precipitation is uneven leading to frequently annual occurrence of drought and flood disasters. Moreover, urban heat island effect is significantly enhanced in urbanized areas in recent years. The increase in the frequency and magnitude of severity of weather extremes that are potentially linked to climate change and anthropogenic processes have highlighted the demand of research into health risk assessment and adaptive capacity. This research focuses on the analysis of physical features of environmental indicators and its association with vector-borne diseases as well as adaptive capacity. The study illustrates how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, promising possibilities of allowing disease early-warning systems with citizen participation platform will be proposed. Keywords: Vector-borne diseases; environmental indicators; remote sensing; GIS; Vietnam.

  8. Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge.

    NARCIS (Netherlands)

    Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; van der Giessen, J.; Kruse, H.

    2010-01-01

    The burden of diseases caused by food-borne pathogens remains largely unknown. Importantly data indicating trends in food-borne infectious intestinal disease is limited to a few industrialised countries, and even fewer pathogens. It has been predicted that the importance of diarrhoeal disease,

  9. Urbanization, land tenure security and vector-borne Chagas disease

    Science.gov (United States)

    Levy, Michael Z.; Barbu, Corentin M.; Castillo-Neyra, Ricardo; Quispe-Machaca, Victor R.; Ancca-Juarez, Jenny; Escalante-Mejia, Patricia; Borrini-Mayori, Katty; Niemierko, Malwina; Mabud, Tarub S.; Behrman, Jere R.; Naquira-Velarde, Cesar

    2014-01-01

    Modern cities represent one of the fastest growing ecosystems on the planet. Urbanization occurs in stages; each stage characterized by a distinct habitat that may be more or less susceptible to the establishment of disease vector populations and the transmission of vector-borne pathogens. We performed longitudinal entomological and epidemiological surveys in households along a 1900 × 125 m transect of Arequipa, Peru, a major city of nearly one million inhabitants, in which the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease, by the insect vector Triatoma infestans, is an ongoing problem. The transect spans a cline of urban development from established communities to land invasions. We find that the vector is tracking the development of the city, and the parasite, in turn, is tracking the dispersal of the vector. New urbanizations are free of vector infestation for decades. T. cruzi transmission is very recent and concentrated in more established communities. The increase in land tenure security during the course of urbanization, if not accompanied by reasonable and enforceable zoning codes, initiates an influx of construction materials, people and animals that creates fertile conditions for epidemics of some vector-borne diseases. PMID:24990681

  10. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect

    Directory of Open Access Journals (Sweden)

    Filipe Dantas-Torres

    2015-12-01

    Full Text Available We have killed wild animals for obtaining food and decimated forests for many reasons. Nowadays, we are burning fossil fuels as never before and even exploring petroleum in deep waters. The impact of these activities on our planet is now visible to the naked eye and the debate on climate change is warming up in scientific meetings and becoming a priority on the agenda of both scientists and policy decision makers. On the occasion of the Impact of Environmental Changes on Infectious Diseases (IECID meeting, held in the 2015 in Sitges, Spain, I was invited to give a keynote talk on climate change, biodiversity, ticks and tick-borne diseases. The aim of the present article is to logically extend my rationale presented on the occasion of the IECID meeting. This article is not intended to be an exhaustive review, but an essay on climate change, biodiversity, ticks and tick-borne diseases. It may be anticipated that warmer winters and extended autumn and spring seasons will continue to drive the expansion of the distribution of some tick species (e.g., Ixodes ricinus to northern latitudes and to higher altitudes. Nonetheless, further studies are advocated to improve our understanding of the complex interactions between landscape, climate, host communities (biodiversity, tick demography, pathogen diversity, human demography, human behaviour, economics, and politics, also considering all ecological processes (e.g., trophic cascades and other possible interacting effects (e.g., mutual effects of increased greenhouse gas emissions and increased deforestation rates. The multitude of variables and interacting factors involved, and their complexity and dynamism, make tick-borne transmission systems beyond (current human comprehension. That is, perhaps, the main reason for our inability to precisely predict new epidemics of vector-borne diseases in general.

  11. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    Science.gov (United States)

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  12. Plants and arthropods: friends or foes ?

    NARCIS (Netherlands)

    Kant, M.; Williams, M.

    2011-01-01

    Plants are the most abundant terrestrial food sources, and arthropods (insects and arachnids) their most abundant consumers. For this reason plants are heavily defended by thorns, thick impervious coverings, and extraordinary toxins. However, plant fitness also depends upon alliances with arthropods

  13. Simulating the spread of malaria using a generic transmission model for mosquito-borne infectious diseases

    Science.gov (United States)

    Kon, Cynthia Mui Lian; Labadin, Jane

    2016-06-01

    Malaria is a critical infection caused by parasites which are spread to humans through mosquito bites. Approximately half of the world's population is in peril of getting infected by malaria. Mosquito-borne diseases have a standard behavior where they are transmitted in the same manner, only through vector mosquito. Taking this into account, a generic spatial-temporal model for transmission of multiple mosquito-borne diseases had been formulated. Our interest is to reproduce the actual cases of different mosquito-borne diseases using the generic model and then predict future cases so as to improve control and target measures competently. In this paper, we utilize notified weekly malaria cases in four districts in Sarawak, Malaysia, namely Kapit, Song, Belaga and Marudi. The actual cases for 36 weeks, which is from week 39 in 2012 to week 22 in 2013, are compared with simulations of the generic spatial-temporal transmission mosquito-borne diseases model. We observe that the simulation results display corresponding result to the actual malaria cases in the four districts.

  14. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1977-01-01

    Progress has been made in two sub-projects related to the radioisotope measurement of nutrient flow in soil arthropod food chains and the influence of soil arthropods as regulators of decomposition in ecological systems. Radioisotopes were utilized to evaluate models describing nutrient accumulation by arthropods. Radionuclide turnover rates and nutrient contents of microarthropods are being measured. A field experiment in granitic outcrop areas is nearing completion. This work will describe nutrient input-output budgets for island ecosystems which occur on outcrops. Experimental perturbations are being used to evaluate importance of ecosystem components in system maintenance

  15. RSS (http://www.iaees.org/publications/journals/arthropods/rss.xml

    Directory of Open Access Journals (Sweden)

    Arthropods (ISSN 2224-4255

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  16. Evaluation of Arthropod Diversity and Abundance in Contrasting ...

    African Journals Online (AJOL)

    This study was conducted to determine the abundance and diversity of soil arthropods in Anua and Ekpri Nsukara farmland communities, Uyo, Nigeria from September to November, 2012. Soil arthropods were sampled using pitfall trap. A total of 707 Individuals of soil arthropods were encountered during the study period.

  17. Tick-borne encephalitis: a disease neglected by travel medicine.

    Science.gov (United States)

    Haditsch, Martin; Kunze, Ursula

    2013-01-01

    Tick-borne encephalitis (TBE) is a vector-borne disease that is primarily transmitted to humans by infected ticks and causes infection of the central nervous system. Clinical presentations range from meningitis to encephalitis with or without myelitis, and infection may result in death or long-term neurological sequelae. TBE is endemic in regions of at least 27 European as well as in some Asian countries. Infection and disease, however, can be averted successfully by tick-bite prevention and active vaccination. The risk of infection has shifted from daily life and occupational exposure to leisure-time activities, including travelling. Outdoor activities during the tick season with contact with nature increase the risk of tick bites. Although the number of travel-associated cases is unknown, it is certainly under-estimated because there is hardly any awareness of TBE in non-endemic countries. Therefore, the majority of cases remain undiagnosed, also because of the lack of diagnostic serology, as there is no routine screening for TBE in non-endemic regions. Because of the increasing number of travellers from TBE non-endemic to endemic regions, and in view of the fact that TBE was included in the list of notifiable diseases in the European Union in September 2012, this disease needs to become an important issue in travel medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Prevention of vector transmitted diseases with clove oil insect repellent.

    Science.gov (United States)

    Shapiro, Rochel

    2012-08-01

    Vector repellent is one element in the prevention of vector-borne diseases. Families that neglect protecting their children against vectors risk their children contracting illnesses such as West Nile virus, eastern equine encephalitis, Lyme disease, malaria, dengue hemorrhagic fever, yellow fever, babesiosis, Crimean-Congo hemorrhagic fever, Rocky Mountain spotted fever, Southern tick-associated rash illness, ehrlichiosis, tick-borne relapsing fever, tularemia, and other insect and arthropod related diseases (CDC, 2011). Identification of families at risk includes screening of the underlying basis for reluctance to apply insect repellent. Nurses and physicians can participate in a positive role by assisting families to determine the proper prophylaxis by recommending insect repellent choices that are economical, safe, and easy to use. A holistic alternative might include the suggestion of clove oil in cases where families might have trepidations regarding the use of DEET on children. This article will explore the safety and effectiveness of clove oil and its use as an insect repellent. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available BACKGROUND: Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. PRINCIPAL FINDINGS: In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum. The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. CONCLUSIONS: To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.

  20. Epidemicity thresholds for water-borne and water-related diseases.

    Science.gov (United States)

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Neonatal hyperthyroidism in a premature infant born to a mother with Grave's disease].

    Science.gov (United States)

    Nicaise, C; Gire, C; Brémond, V; Minodier, P; Soula, F; d'Ercole, C; Palix, C

    2000-05-01

    Neonatal thyrotoxicosis is most commonly due to transplacental transfer of maternal thyroid-stimulating hormone receptor antibodies (TRAb). Bioassay of thyrotropin receptor antibodies may help to determine the risk for neonatal hyperthyroidism. Thyrotoxicosis developed in a premature infant born to a mother with Graves' disease, with a low level of TRAb by bioassay. The infant was treated with carbimazole for two months, until TRAb had disappeared. Bioassay TRAb is not always reliable for predicting the development of neonatal hyperthyroidism in infants born to mothers with Graves' disease. Thyroid function should be measured in all these neonates.

  2. Comparative Risk Analysis of Two Culicoides-Borne Diseases in Horses

    NARCIS (Netherlands)

    Faverjon, C.; Leblond, A.; Lecollinet, S.; Bødker, R.; Koeijer, de A.A.; Fischer, E.A.J.

    2017-01-01

    African horse sickness (AHS) and equine encephalosis (EE) are Culicoides-borne viral diseases that could have the potential to spread across Europe if introduced, thus being potential threats for the European equine industry. Both share similar epidemiology, transmission patterns and geographical

  3. Transmission scenarios of major vector-borne diseases in Colombia, 1990-2016

    Directory of Open Access Journals (Sweden)

    Julio César Padilla

    2017-03-01

    Conclusions: Persistent epidemic and endemic transmission of vector-borne diseases in urban and rural settings in Colombia was observed mainly in the case of malaria, dengue, leishmaniasis and Chagas disease. Such transmission was focused and had variable intensity patterns. On the other hand, the conditions that have favored the emergence of new arboviruses persist.

  4. An attempt of rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister ®

    Directory of Open Access Journals (Sweden)

    Barbara Oczko-Grzesik

    2013-12-01

    Full Text Available Ticks are reservoir and transmission vectors of many bacteria, viruses and parasites, which are pathogenic for humans. Early and correct tick removal is crucial as prevention of tick-borne diseases. The aim of the study is an attempt at rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister®. In practice, it should enable people to use Tick Twister® in all circumstances contributing to the improvement of efficiency in tick-borne diseases prevention, and as a result, to a decrease in their frequency and after effects.

  5. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review.

    Science.gov (United States)

    Palaniyandi, M

    2012-12-01

    There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.

  6. Dynamical behavior of an epidemic model for a vector-borne disease with direct transmission

    International Nuclear Information System (INIS)

    Cai Liming; Li Xuezhi; Li Zhaoqiang

    2013-01-01

    An epidemic model of a vector-borne disease with direct transmission is investigated. The reproduction number (R 0 ) of the model is obtained. Rigorous qualitative analysis of the model reveals the presence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium (DFE) coexists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in the standard incidence model. The phenomenon shows that the classical epidemiological requirement of having the reproduction number less than unity is no longer sufficient, although necessary, for effectively controlling the spread of some vector-borne diseases in a community. The backward bifurcation phenomenon can be removed by substituting the standard incidence with a bilinear mass action incidence. By using Lyapunov function theory and LaSalle invariance principle, it is shown that the unique endemic equilibrium for the model with a mass action incidence is globally stable if the reproduction number R mass is greater than one in feasible region. This suggests that the use of standard incidence in modelling some vector-borne diseases with direct transmission results in the presence of backward bifurcation. Numerical simulations analyze the effect of the direct transmission and the disease-induced death rate on dynamics of the disease transmission, and also verify our analyzed results.

  7. Cross-species transmission of honey bee viruses in associated arthropods.

    Science.gov (United States)

    Levitt, Abby L; Singh, Rajwinder; Cox-Foster, Diana L; Rajotte, Edwin; Hoover, Kelli; Ostiguy, Nancy; Holmes, Edward C

    2013-09-01

    There are a number of RNA virus pathogens that represent a serious threat to the health of managed honey bees (Apis mellifera). That some of these viruses are also found in the broader pollinator community suggests the wider environmental spread of these viruses, with the potential for a broader impact on ecosystems. Studies on the ecology and evolution of these viruses in the arthropod community as a whole may therefore provide important insights into these potential impacts. We examined managed A. mellifera colonies, nearby non-Apis hymenopteran pollinators, and other associated arthropods for the presence of five commonly occurring picorna-like RNA viruses of honey bees - black queen cell virus, deformed wing virus, Israeli acute paralysis virus, Kashmir bee virus and sacbrood virus. Notably, we observed their presence in several arthropod species. Additionally, detection of negative-strand RNA using strand-specific RT-PCR assays for deformed wing virus and Israeli acute paralysis virus suggests active replication of deformed wing virus in at least six non-Apis species and active replication of Israeli acute paralysis virus in one non-Apis species. Phylogenetic analysis of deformed wing virus also revealed that this virus is freely disseminating across the species sampled in this study. In sum, our study indicates that these viruses are not specific to the pollinator community and that other arthropod species have the potential to be involved in disease transmission in pollinator populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Survey of Ground Dwelling Arthropods Associated with Two Habitat ...

    African Journals Online (AJOL)

    Survey of Ground Dwelling Arthropods Associated with Two Habitat Types in the Jos ... in the mean abundance of ground dwelling arthropods in relation to taxa. ... Food availability and vegetation cover were found to be critical to arthropods ...

  9. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  10. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    Science.gov (United States)

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Environmental statistical modelling of mosquito vectors at different geographical scales

    NARCIS (Netherlands)

    Cianci, D.

    2015-01-01

    Vector-borne diseases are infections transmitted by the bite of infected arthropod vectors, such as mosquitoes, ticks, fleas, midges and flies. Vector-borne diseases pose an increasingly wider threat to global public health, both in terms of people affected and their geographical spread. Mosquitoes

  12. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  13. Food-borne disease and climate change in the United Kingdom.

    Science.gov (United States)

    Lake, Iain R

    2017-12-05

    This review examined the likely impact of climate change upon food-borne disease in the UK using Campylobacter and Salmonella as example organisms. Campylobacter is an important food-borne disease and an increasing public health threat. There is a reasonable evidence base that the environment and weather play a role in its transmission to humans. However, uncertainty as to the precise mechanisms through which weather affects disease, make it difficult to assess the likely impact of climate change. There are strong positive associations between Salmonella cases and ambient temperature, and a clear understanding of the mechanisms behind this. However, because the incidence of Salmonella disease is declining in the UK, any climate change increases are likely to be small. For both Salmonella and Campylobacter the disease incidence is greatest in older adults and young children. There are many pathways through which climate change may affect food but only a few of these have been rigorously examined. This provides a high degree of uncertainty as to what the impacts of climate change will be. Food is highly controlled at the National and EU level. This provides the UK with resilience to climate change as well as potential to adapt to its consequences but it is unknown whether these are sufficient in the context of a changing climate.

  14. Advanced megaesophagus (Group III secondary to vector-borne Chagas disease in a 20-month-old infant

    Directory of Open Access Journals (Sweden)

    Anis Rassi

    2012-04-01

    Full Text Available The authors report the case of a female infant with Group III (or Grade III megaesophagus secondary to vector-borne Chagas disease, resulting in severe malnutrition that reversed after surgery (Heller technique. The infant was then treated with the antiparasitic drug benznidazole, and the infection was cured, as demonstrated serologically and parasitologically. After follow-up of several years without evidence of disease, with satisfactory weight and height development, the patient had her first child at age 23, in whom serological tests for Chagas disease yielded negative results. Thirty years after the initial examination, the patient's electrocardiogram, echocardiogram, and chest radiography remained normal.

  15. Control of vector-borne infectious diseases by human immunity against α-Gal

    Czech Academy of Sciences Publication Activity Database

    Cabezas-Cruz, A.; Valdés, James J.; de la Fuente, J.

    2016-01-01

    Roč. 15, č. 8 (2016), s. 953-955 ISSN 1476-0584 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : microbiota * probiotics * vaccine * α-Gal * vector-borne diseases Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.555, year: 2016

  16. [Socioeconomic costs of food-borne disease using the cost-of-illness model: applying the QALY method].

    Science.gov (United States)

    Shin, Hosung; Lee, Suehyung; Kim, Jong Soo; Kim, Jinsuk; Han, Kyu Hong

    2010-07-01

    This study estimated the annual socioeconomic costs of food-borne disease in 2008 from a societal perspective and using a cost-of-illness method. Our model employed a comprehensive set of diagnostic disease codes to define food-borne diseases with using the Korea National Health Insurance (KNHI) reimbursement data. This study classified the food borne illness as three types of symptoms according to the severity of the illness: mild, moderate, severe. In addition to the traditional method of assessing the cost-of-illness, the study included measures to account for the lost quality of life. We estimated the cost of the lost quality of life using quality-adjusted life years and a visual analog scale. The direct cost included medical and medication costs, and the non-medical costs included transportation costs, caregiver's cost and administration costs. The lost productivity costs included lost workdays due to illness and lost earnings due to premature death. The study found the estimated annual socioeconomic costs of food-borne disease in 2008 were 954.9 billion won (735.3 billion won-996.9 billion won). The medical cost was 73.4 - 76.8% of the cost, the lost productivity cost was 22.6% and the cost of the lost quality of life was 26.0%. Most of the cost-of-illness studies are known to have underestimated the actual socioeconomic costs of the subjects, and these studies excluded many important social costs, such as the value of pain, suffering and functional disability. The study addressed the uncertainty related to estimating the socioeconomic costs of food-borne disease as well as the updated cost estimates. Our estimates could contribute to develop and evaluate policies for food-borne disease.

  17. Serpins in arthropod biology.

    Science.gov (United States)

    Meekins, David A; Kanost, Michael R; Michel, Kristin

    2017-02-01

    Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are expressed as acute-phase serpins in insects upon infection. Parasitoid wasps can downregulate host serpin expression to modulate the host immune system. In addition, examples of serpin activity in development and reproduction in Drosophila have also been discovered. Serpins also function in host-pathogen interactions beyond immunity as constituents of venom in parasitoid wasps and saliva of blood-feeding ticks and mosquitoes. These serpins have distinct effects on immunosuppression and anticoagulation and are of interest for vaccine development. Lastly, the known structures of arthropod serpins are discussed, which represent the serpin inhibitory mechanism and provide a detailed overview of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    Science.gov (United States)

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  19. Arthropod Envenomation in North America.

    Science.gov (United States)

    Erickson, Timothy B; Cheema, Navneet

    2017-05-01

    Arthropods (phylum Arthopoda) account for a higher percentage of morbidity and mortality to humans than do mammalian bites, snake bites, or marine envenomation. They are ubiquitous in domestic dwellings, caves, and campsites and in wilderness settings such as deserts, forests, and lakes. Although arthropods are most intrusive during warmer months, many are active throughout the winter, particularly indoors. Arthropods are also nocturnal and often bite unsuspecting victims while they are sleeping. Encounters with humans are generally defensive, accidental, or reactive. An individual stung by an insect or bitten by an arachnid may experience pain and local swelling, an anaphylactic reaction, or life-threatening toxicity. This review discusses the clinical presentation and latest treatment recommendations for bites and stings from spiders, scorpions, bees, ants, ticks and centipedes of North America. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands

    Science.gov (United States)

    Wendy Moore; Wallace M. Meyer; Jeffrey A. Eble; Kimberly Franklin; John F. Wiens; Richard C. Brusca

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically...

  1. Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity.

    Science.gov (United States)

    Diaz, James H

    2016-03-01

    Most emerging infectious diseases today are arthropod-borne and cannot be prevented by vaccinations. Because insect repellents offer important topical barriers of personal protection from arthropod-borne infectious diseases, the main objectives of this article were to describe the growing threats to public health from emerging arthropod-borne infectious diseases, to define the differences between insect repellents and insecticides, and to compare the efficacies and toxicities of chemical and plant-derived insect repellents. Internet search engines were queried with key words to identify scientific articles on the efficacy, safety, and toxicity of chemical and plant-derived topical insect repellants and insecticides to meet these objectives. Data sources reviewed included case reports; case series; observational, longitudinal, and surveillance studies; and entomological and toxicological studies. Descriptive analysis of the data sources identified the most effective application of insect repellents as a combination of topical chemical repellents, either N-diethyl-3-methylbenzamide (formerly N, N-diethyl-m-toluamide, or DEET) or picaridin, and permethrin-impregnated or other pyrethroid-impregnated clothing over topically treated skin. The insecticide-treated clothing would provide contact-level insecticidal effects and provide better, longer lasting protection against malaria-transmitting mosquitoes and ticks than topical DEET or picaridin alone. In special cases, where environmental exposures to disease-transmitting ticks, biting midges, sandflies, or blackflies are anticipated, topical insect repellents containing IR3535, picaridin, or oil of lemon eucalyptus (p-menthane-3, 8-diol or PMD) would offer better topical protection than topical DEET alone. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  2. A survey of basic reproductive ratios in vector-borne disease transmission modeling

    Science.gov (United States)

    Soewono, E.; Aldila, D.

    2015-03-01

    Vector-borne diseases are commonly known in tropical and subtropical countries. These diseases have contributed to more than 10% of world infectious disease cases. Among the vectors responsible for transmitting the diseases are mosquitoes, ticks, fleas, flies, bugs and worms. Several of the diseases are known to contribute to the increasing threat to human health such as malaria, dengue, filariasis, chikungunya, west nile fever, yellow fever, encephalistis, and anthrax. It is necessary to understand the real process of infection, factors which contribute to the complication of the transmission in order to come up with a good and sound mathematical model. Although it is not easy to simulate the real transmission process of the infection, we could say that almost all models have been developed from the already long known Host-Vector model. It constitutes the main transmission processes i.e. birth, death, infection and recovery. From this simple model, the basic concepts of Disease Free and Endemic Equilibria and Basic Reproductive Ratio can be well explained and understood. Theoretical, modeling, control and treatment aspects of disease transmission problems have then been developed for various related diseases. General construction as well as specific forms of basic reproductive ratios for vector-borne diseases are discusses here.

  3. Role of arthropod communities in bioenergy crop litter decomposition†.

    Science.gov (United States)

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  4. Fleas, hosts and habitat: What can we predict about the spread of vector-borne zoonotic diseases?

    Science.gov (United States)

    Megan M. Friggens

    2010-01-01

    Vector-borne diseases of humans and wildlife are experiencing resurgence across the globe. I examine the dynamics of flea borne diseases through a comparative analysis of flea literature and analyses of field data collected from three sites in New Mexico: The Sevilleta National Wildlife Refuge, the Sandia Mountains and the Valles Caldera National Preserve (VCNP). My...

  5. An analysis of community perceptions of mosquito-borne disease control and prevention in Sint Eustatius, Caribbean Netherlands.

    NARCIS (Netherlands)

    Leslie, Teresa E; Carson, Marianne; Coeverden, Els van; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja

    2017-01-01

    In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti

  6. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1975--October 31, 1976. [/sup 134/Cs, /sup 85/Sr

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, D.A. Jr.

    1976-07-31

    Progress is described in radioisotope measurement of nutrient element flow in soil-litter arthropod food chains. Two models of accumulation (Goldstein-Elwood, Reichle-Crossley) were tested experimentally and found to yield equivalent predictions of /sup 134/Cs and /sup 85/Sr movement through arthropod populations. Radioisotope retention studies were used to compare trophic strategies of soil tipulids from arctic tundra and temperate forest. Arctic tipulids were found to compensate for low temperatures with enhanced assimilation and slower turnover of nutrients. Electron microprobe analysis is being used to measure elemental content of soil microarthropods. Concentrations as high as 70,000 ppm of Ca are reported for oribatid mites. Improved measurements of input-output nutrient concentrations are reported for island ecosystems on granitic outcrops, which are being subjected to experimental alteration in studies of ecosystem function.

  7. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  8. Gray wolf exposure to emerging vector-borne diseases in Wisconsin with comparison to domestic dogs and humans

    Science.gov (United States)

    Jara, Rocio F.; Wydeven, Adrian P.; Samuel, Michael D.

    2016-01-01

    World-wide concern over emerging vector-borne diseases has increased in recent years for both animal and human health. In the United Sates, concern about vector-borne diseases in canines has focused on Lyme disease, anaplasmosis, ehrlichiosis, and heartworm which infect domestic and wild canids. Of these diseases, Lyme and anaplasmosis are also frequently diagnosed in humans. Gray wolves (Canis lupus) recolonized Wisconsin in the 1970s, and we evaluated their temporal and geographic patterns of exposure to these four vector-borne diseases in Wisconsin as the population expanded between 1985 and 2011. A high proportion of the Wisconsin wolves were exposed to the agents that cause Lyme (65.6%) and anaplasma (47.7%), and a smaller proportion to ehrlichiosis (5.7%) and infected with heartworm (9.2%). Wolf exposure to tick borne diseases was consistently higher in older animals. Wolf exposure was markedly higher than domestic dog (Canis familiaris) exposure for all 4 disease agents during 2001–2013. We found a cluster of wolf exposure to Borrelia burgdorferi in northwestern Wisconsin, which overlaps human and domestic dog clusters for the same pathogen. In addition, wolf exposure to Lyme disease in Wisconsin has increased, corresponding with the increasing human incidence of Lyme disease in a similar time period. Despite generally high prevalence of exposure none of these diseases appear to have slowed the growth of the Wisconsin wolf population.

  9. Ebola virus and arthropods: a literature review and entomological consideration on the vector role.

    Science.gov (United States)

    Dutto, M; Bertero, M; Petrosillo, N; Pombi, M; Otranto, D

    2016-10-01

    Ebola virus is a pathogen responsible for a severe disease that affects humans and several animal species. To date, the natural reservoir of this virus is not known with certainty, although it is believed that fruit bats (Chiroptera: Pteropodidae) play an important role in maintaining the virus in nature. Although information on viral transmission from animals to humans is not clear, the role of arthropods has come under suspicion. In this article, we review the potential role of arthropods in spreading Ebola virus, acting as mechanical or biological vectors.

  10. Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes

    Science.gov (United States)

    Biological disease control of soil-borne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized,...

  11. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  12. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  13. Behavioral asymmetries in ticks - Lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues.

    Science.gov (United States)

    Benelli, Giovanni; Romano, Donato; Rocchigiani, Guido; Caselli, Alice; Mancianti, Francesca; Canale, Angelo; Stefanini, Cesare

    2018-02-01

    Ticks are considered among the most dangerous arthropod vectors of disease agents to both humans and animals worldwide. Lateralization contributes to biological fitness in many animals, conferring important functional advantages, therefore studying its role in tick perception would critically improve our knowledge about their host-seeking behavior. In this research, we evaluated if Ixodes ricinus (L.) (Ixodiidae) ticks have a preference in using the right or the left foreleg to climb on a host. We developed a mechatronic device moving a tuft of fox skin with fur as host-mimicking combination of cues. This engineered approach allows to display a realistic combination of both visual and olfactory host-borne stimuli, which is prolonged over the time and standardized for each replicate. In the first experiment, the mechatronic apparatus delivered host-borne cues frontally, to evaluate the leg preference during questing as response to a symmetrical stimulus. In the second experiment, host-borne cues were provided laterally, in an equal proportion to the left and to the right of the tick, to investigate if the host direction affected the questing behavior. In both experiments, the large majority of the tested ticks showed individual-level left-biased questing acts, if compared to the ticks showing right-biased ones. Furthermore, population-level left-biased questing responses were observed post-exposure to host-mimicking cues provided frontally or laterally to the tick. Overall, this is the first report on behavioral asymmetries in ticks of medical and veterinary importance. Moreover, the mechatronic apparatus developed in this research can be exploited to evaluate the impact of repellents on tick questing in highly reproducible standardized conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Stability lies in flowers: Plant diversification mediating shifts in arthropod food webs.

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes Haro

    Full Text Available Arthropod community composition in agricultural landscapes is dependent on habitat characteristics, such as plant composition, landscape homogeneity and the presence of key resources, which are usually absent in monocultures. Manipulating agroecosystems through the insertion of in-field floral resources is a useful technique to reduce the deleterious effects of habitat simplification. Food web analysis can clarify how the community reacts to the presence of floral resources which favour ecosystem services such as biological control of pest species. Here, we reported quantitative and qualitative alterations in arthropod food web complexity due to the presence of floral resources from the Mexican marigold (Tagetes erecta L. in a field scale lettuce community network. The presence of marigold flowers in the field successfully increased richness, body size, and the numerical and biomass abundance of natural enemies in the lettuce arthropod community, which affected the number of links, vulnerability, generality, omnivory rate and food chain length in the community, which are key factors for the stability of relationships between species. Our results reinforce the notion that diversification through insertion of floral resources may assist in preventing pest outbreaks in agroecosystems. This community approach to arthropod interactions in agricultural landscapes can be used in the future to predict the effect of different management practices in the food web to contribute with a more sustainable management of arthropod pest species.

  15. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts.

    Directory of Open Access Journals (Sweden)

    Victoria I Verhoeve

    Full Text Available Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods.

  16. Reducing vector-borne disease by empowering farmers in integrated vector management

    NARCIS (Netherlands)

    Berg, van den H.; Hildebrand, von A.; Ragunathan, V.; Das, P.K.

    2007-01-01

    PROBLEM: Irrigated agriculture exposes rural people to health risks associated with vector-borne diseases and pesticides used in agriculture and for public health protection. Most developing countries lack collaboration between the agricultural and health sectors to jointly address these problems.

  17. Zoonotic and vector borne agents causing disease in adult patients hospitalized due to fever of unknown origin in Thailand

    Directory of Open Access Journals (Sweden)

    Soawapak Hinjoy

    2017-10-01

    Full Text Available Objective: To determine the etiologic agents of fever of unknown origin among populations in agricultural communities and to assess the possible risk factors for zoonotic infections. Methods: Hospitalized patients with fever of unknown origin under physician care were asked to participate and provide blood samples for laboratory tests and screening for endemic diseases at the hospitals. Samples were stored at –80 °C until they were tested at Chulalongkorn University to identify additional pathogens. Results: We were able to identify the etiologic agents in 24.6% of the 463 enrolled patients. Zoonotic and vector borne agents were confirmed in 59 cases (12.7%. Dengue virus (7.3% was the most frequently detected disease followed by scrub typhus (3.2%. There were two cases of comorbidities of scrub typhus and dengue fever. The other six cases of zoonoses were leptospirosis, melioidosis, and Streptococcus suis infections. Patients with zoonotic/vector borne agents noticed rats in their houses and reported having contact with livestock feces more frequently than those patients without zoonotic/vector borne agents. Conclusions: Dengue virus and scrub typhus were mostly detected in the rainy season. During this specific season, clinicians should raise awareness of those diseases when any patients are admitted to the hospital with fever of an unidentified source.

  18. Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems.

    Science.gov (United States)

    Palmer, William J; Jiggins, Francis M

    2015-08-01

    Insects are an important model for the study of innate immune systems, but remarkably little is known about the immune system of other arthropod groups despite their importance as disease vectors, pests, and components of biological diversity. Using comparative genomics, we have characterized the immune system of all the major groups of arthropods beyond insects for the first time--studying five chelicerates, a myriapod, and a crustacean. We found clear traces of an ancient origin of innate immunity, with some arthropods having Toll-like receptors and C3-complement factors that are more closely related in sequence or structure to vertebrates than other arthropods. Across the arthropods some components of the immune system, such as the Toll signaling pathway, are highly conserved. However, there is also remarkable diversity. The chelicerates apparently lack the Imd signaling pathway and beta-1,3 glucan binding proteins--a key class of pathogen recognition receptors. Many genes have large copy number variation across species, and this may sometimes be accompanied by changes in function. For example, we find that peptidoglycan recognition proteins have frequently lost their catalytic activity and switch between secreted and intracellular forms. We also find that there has been widespread and extensive duplication of the cellular immune receptor Dscam (Down syndrome cell adhesion molecule), which may be an alternative way to generate the high diversity produced by alternative splicing in insects. In the antiviral short interfering RNAi pathway Argonaute 2 evolves rapidly and is frequently duplicated, with a highly variable copy number. Our results provide a detailed analysis of the immune systems of several important groups of animals for the first time and lay the foundations for functional work on these groups. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Arthropods in Decomposing Wood of the Atchafalaya River Basin

    Science.gov (United States)

    B.G. Lockaby; B.D. Keeland; John A. Stanturf; M.D. Rice; G. Hodges; R.M. Governo

    2002-01-01

    Changes in arthropod populations (numbers of individuals identified to the family level in most cases) were studied during the decomposition of coarse woody debris (CWD) in the Atchafalaya River Basin of Louisiana. The arthropod study was linked with a CWD decomposition study installed after disturbance by Hurricane Andrew. Arthropod numbers were compared between two...

  20. Gray Wolf Exposure to Emerging Vector-Borne Diseases in Wisconsin with Comparison to Domestic Dogs and Humans.

    Directory of Open Access Journals (Sweden)

    Rocio F Jara

    Full Text Available World-wide concern over emerging vector-borne diseases has increased in recent years for both animal and human health. In the United Sates, concern about vector-borne diseases in canines has focused on Lyme disease, anaplasmosis, ehrlichiosis, and heartworm which infect domestic and wild canids. Of these diseases, Lyme and anaplasmosis are also frequently diagnosed in humans. Gray wolves (Canis lupus recolonized Wisconsin in the 1970s, and we evaluated their temporal and geographic patterns of exposure to these four vector-borne diseases in Wisconsin as the population expanded between 1985 and 2011. A high proportion of the Wisconsin wolves were exposed to the agents that cause Lyme (65.6% and anaplasma (47.7%, and a smaller proportion to ehrlichiosis (5.7% and infected with heartworm (9.2%. Wolf exposure to tick borne diseases was consistently higher in older animals. Wolf exposure was markedly higher than domestic dog (Canis familiaris exposure for all 4 disease agents during 2001-2013. We found a cluster of wolf exposure to Borrelia burgdorferi in northwestern Wisconsin, which overlaps human and domestic dog clusters for the same pathogen. In addition, wolf exposure to Lyme disease in Wisconsin has increased, corresponding with the increasing human incidence of Lyme disease in a similar time period. Despite generally high prevalence of exposure none of these diseases appear to have slowed the growth of the Wisconsin wolf population.

  1. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, Biogeography, Ecology, and Population Genetics of Arthropods of the Madrean Sky Islands.

    Science.gov (United States)

    Moore, Wendy; Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; Wiens, John F; Brusca, Richard C

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains.

  2. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  3. Climate change and Ixodes tick-borne diseases of humans.

    Science.gov (United States)

    Ostfeld, Richard S; Brunner, Jesse L

    2015-04-05

    The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.

  4. [Knowledge of vector-borne diseases (dengue, rickettsiosis and Chagas disease) in physicians].

    Science.gov (United States)

    Lugo-Caballero, César I; Dzul-Rosado, Karla; Dzul-Tut, Irving; Balam-May, Ángel; Zavala-Castro, Jorge

    2017-01-01

    The ecological conditions of Yucatan made it a suitable region for the acquisition of vector-borne diseases such as dengue, rickettsiosis, and Chagas disease. As the epidemiological burden of these diseases shows an alarming increase of severe cases, the early establishment of diagnosis and therapeutics by first-contact physicians is a critical step that is not being fulfilled due to several reasons, including poor knowledge. To determine the level of knowledge related to dengue, Chagas disease, and rickettsiosis among rural first-contact physicians of Yucatan. A survey was applied to 90 first-contact physicians from rural clinics of Yucatan, which included 32 items related to the diagnosis, treatment, and prevention of dengue, rickettsiosis, and Chagas disease. Answers were analyzed by central tendency statistics. Differences were observed among every category, however; diagnosis and therapeutics showed the lower values. Globally, 62.5% of respondents showed moderate knowledge, 37.5% poor knowledge, and 0% adequate knowledge. Results suggest that a strong campaign for a continuous diffusion of knowledge regarding these diseases is needed. In regions with high prevalence of these kinds of diseases, like Yucatan, the impact of these results on the epidemiological burden of these diseases must be evaluated.

  5. Tick-Borne Transmission of Murine Gammaherpesvirus 68

    Directory of Open Access Journals (Sweden)

    Valeria Hajnická

    2017-10-01

    Full Text Available Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68 is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus, the largest biological group of viruses. Currently, African swine fever virus (ASFV is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission

  6. Tick-, Flea-, and Louse-Borne Diseases of Public Health and Veterinary Significance in Nigeria

    Directory of Open Access Journals (Sweden)

    Oluwaseun Oguntomole

    2018-01-01

    Full Text Available Mosquito-borne diseases are common high-impact diseases in tropical and subtropical areas. However, other non-mosquito vector-borne pathogens (VBPs may share their geographic distribution, seasonality, and clinical manifestations, thereby contributing their share to the morbidity and mortality caused by febrile illnesses in these regions. The purpose of this work was to collect and review existing information and identify knowledge gaps about tick, flea-, and louse-borne diseases of veterinary and public health significance in Nigeria. Full-length articles about VBPs were reviewed and relevant information about the vectors, their hosts, geographic distribution, seasonality, and association(s with human or veterinary diseases was extracted. Specific laboratory tools used for detection and identification of VBPs in Nigeria were also identified. A total of 62 original publications were examined. Substantial information about the prevalence and impacts of ticks and fleas on pet and service dogs (18 articles, and livestock animals (23 articles were available; however, information about their association with and potential for causing human illnesses was largely absent despite the zoonotic nature of many of these peri-domestic veterinary diseases. Recent publications that employed molecular methods of detection demonstrated the occurrence of several classic (Ehrlichia canis, Rickettsia africae, Bartonella sp. and emerging human pathogens (R. aeschlimannii, Neoehrlichia mikurensis in ticks and fleas. However, information about other pathogens often found in association with ticks (R. conorii and fleas (R. typhi, R. felis across the African continent was lacking. Records of louse-borne epidemic typhus in Nigeria date to 1947; however, its current status is not known. This review provides an essential baseline summary of the current knowledge in Nigeria of non-mosquito VBPs, and should stimulate improvements in the surveillance of the veterinary and

  7. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  8. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; van Baalen, E-J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones

  9. Newer Vaccines against Mosquito-borne Diseases.

    Science.gov (United States)

    Aggarwal, Anju; Garg, Neha

    2018-02-01

    Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.

  10. Analyzing Arthropods for the Presence of Bacteria

    OpenAIRE

    Andrews, Elizabeth S.

    2013-01-01

    Bacteria within arthropods can be identified using culture-independent methods. This unit describes protocols for surface sterilization of arthropods, DNA extraction of whole bodies and tissues, touchdown PCR amplification using 16S rDNA general bacteria primers and profiling the bacterial community using denaturing gradient gel electrophoresis.

  11. Risk of Childhood Rheumatic and Non-Rheumatic Autoimmune Diseases in Children Born to Women with Systemic Lupus Erythematosus.

    Science.gov (United States)

    Couture, Julie; Bernatsky, Sasha; Scott, Susan; Pineau, Christian A; Vinet, Evelyne

    2018-05-23

    Several autoimmune diseases have familial aggregation and possibly, common genetic predispositions. In a large population-based study, we evaluated if children born to mothers with SLE have an increased risk of rheumatic and non-rheumatic autoimmune diseases, versus children born to mothers without SLE. Using the "Offspring of SLE mothers Registry (OSLER)", we identified children born live to SLE mothers and their matched controls, and ascertained autoimmune diseases based on ≥1 hospitalization or ≥2 physician visits with a relevant diagnostic code. We adjusted for maternal age, education, race/ethnicity, obstetrical complications, calendar birth year, and sex of child. 509 women with SLE had 719 children, while 5824 matched controls had 8493 children. Mean follow-up was 9.1 (SD 5.8) years. Children born to mothers with SLE had similar frequency of rheumatic autoimmune diagnoses (0.14%, 95% CI 0.01, 0.90) versus controls (0.19%, 95% CI 0.11, 0.32). There was a trend towards more non-rheumatic autoimmune diseases in SLE offspring (1.11%, 95% CI 0.52, 2.27) versus controls (0.48%, 95% CI 0.35, 0.66). In multivariate analyses, we did not see a clear increase in rheumatic autoimmune disease (OR 0.71, 95% CI 0.11-4.82) but children born to mothers with SLE had a substantially increased risk of non-rheumatic autoimmune disease versus controls (OR 2.30, 95% CI 1.06-5.03). Although the vast majority of offspring have no autoimmune disease, children born to women with SLE may have an increased risk of non-rheumatic autoimmune diseases, versus controls. Additional studies assessing offspring through to adulthood would be additionally enlightening. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The incidence of bacterial endosymbionts in terrestrial arthropods.

    Science.gov (United States)

    Weinert, Lucy A; Araujo-Jnr, Eli V; Ahmed, Muhammad Z; Welch, John J

    2015-05-22

    Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48-57) of arthropod species are infected with Wolbachia, 24% (CIs: 20-42) with Rickettsia and 13% (CIs: 13-55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks

    NARCIS (Netherlands)

    Hartemink, N.; Vanwambeke, S.O.; Purse, B.V.; Gilbert, M.; Van Dyck, H.

    2015-01-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional

  14. Physical Fitness in Young Adults Born Preterm.

    Science.gov (United States)

    Tikanmäki, Marjaana; Tammelin, Tuija; Sipola-Leppänen, Marika; Kaseva, Nina; Matinolli, Hanna-Maria; Miettola, Satu; Eriksson, Johan G; Järvelin, Marjo-Riitta; Vääräsmäki, Marja; Kajantie, Eero

    2016-01-01

    Young adults born preterm have higher levels of cardiometabolic risk factors than their term-born peers. Muscular and cardiorespiratory fitness have important cardiometabolic and other health benefits. We assessed muscular, cardiorespiratory, and self-rated fitness in preterm-born young adults. We studied unimpaired participants of the ESTER (Ennenaikainen syntymä ja aikuisiän terveys [Preterm Birth and Early-Life Programming of Adult Health and Disease]) birth cohort study at age 23.3 (SD: 1.2) years: 139 born early preterm (EPT; Young adults born EPT (-0.8; 95% confidence interval: -1.5 to -0.1; adjusted for gender, age, and source cohort) and LPT (-0.8; -1.4 to -0.3) performed fewer modified push-ups than controls. Handgrip strength was 23.8 (0.9-46.8) N lower in EPT participants. Cardiorespiratory fitness, measured by submaximal step test, was similar. On a self-rated fitness scale (1-5), the EPT adults reported 0.2 (0.0-0.4) lower scores than controls. After adjustment for early-life confounders, the results remained. They attenuated after further adjustment for mediating factors. Young adults born EPT and LPT had lower muscular fitness than controls, which may predispose them to cardiometabolic and other chronic diseases. Adults born EPT also perceived themselves as less fit than controls. Copyright © 2016 by the American Academy of Pediatrics.

  15. Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf-rollers at different scales.

    Science.gov (United States)

    Vieira, Camila; Romero, Gustavo Q

    2013-07-01

    Ecosystem engineering is a process by which organisms change the distribution of resources and create new habitats for other species via non-trophic interactions. Leaf-rolling caterpillars can act as ecosystem engineers because they provide shelter to secondary users. In this study, we report the influence of leaf-rolling caterpillars on speciose tropical arthropod communities along both spatial scales (leaf-level and plant-level effects) and temporal scales (dry and rainy seasons). We predict that rolled leaves can amplify arthropod diversity at both the leaf and plant levels and that this effect is stronger in dry seasons, when arthropods are prone to desiccation. Our results show that the abundance, richness, and biomass of arthropods within several guilds increased up to 22-fold in naturally and artificially created leaf shelters relative to unaltered leaves. These effects were observed at similar magnitudes at both the leaf and plant scales. Variation in the shelter architecture (funnel, cylinders) did not influence arthropod parameters, as diversity, abundance, orbiomass, but rolled leaves had distinct species composition if compared with unaltered leaves. As expected, these arthropod parameters on the plants with rolled leaves were on average approximately twofold higher in the dry season. Empty leaf rolls and whole plants were rapidly recolonized by arthropods over time, implying a fast replacement of individuals; within 15-day intervals the rolls and plants reached a species saturation. This study is the first to examine the extended effects of engineering caterpillars as diversity amplifiers at different temporal and spatial scales. Because shelter-building caterpillars are ubiquitous organisms in tropical and temperate forests, they can be considered key structuring elements for arthropod communities on plants.

  16. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  17. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    Science.gov (United States)

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-05

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    Science.gov (United States)

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  19. Mortality of nontarget arthropods from an aerial application of pyrethrins.

    Science.gov (United States)

    Kwan, Jonathan A; Novak, Mark G; Hyles, Timothy S; Niemela, Michael K

    2009-06-01

    Mortality of nontarget organisms from an ultra-low volume (ULV) aerial application of pyrethrins (Evergreen EC 60-6) was monitored by collecting arthropods from ground tarps placed at the interface of open and canopy areas. A larger number and greater diversity of arthropods were recovered from tarps in the ULV spray area. The observed mortality was approximately 10-fold greater than in the control area. Kruskal-Wallis tests revealed a significant difference in the abundance and diversity of arthropods collected at treatment and control sites at 1 and 12 h postspray. Arthropods, primarily insects, from the treatment area included representatives from 12 orders and > or = 34 families, as compared to 7 orders and 12 families in the control area. Chironomidae (midges) and Formicidae (ants) were the most commonly represented families, accounting for 61% of the arthropods collected from the treatment area; no large-bodied insects (>8 mm) were recovered. Mortality of sentinel mosquitoes in the treatment and control areas averaged 96% and arthropods.

  20. Detection of Dirofilaria immitis and other arthropod-borne filarioids by an HRM real-time qPCR, blood-concentrating techniques and a serological assay in dogs from Costa Rica.

    Science.gov (United States)

    Rojas, Alicia; Rojas, Diana; Montenegro, Víctor M; Baneth, Gad

    2015-03-23

    Canine filarioids are important nematodes transmitted to dogs by arthropods. Diagnosis of canine filariosis is accomplished by the microscopic identification of microfilariae, serology or PCR for filarial-DNA. The aim of this study was to evaluate a molecular assay for the detection of canine filariae in dog blood, to compare its performance to other diagnostic techniques, and to determine the relationship between microfilarial concentration and infection with other vector-borne pathogens. Blood samples from 146 dogs from Costa Rica were subjected to the detection of canine filarioids by four different methods: the microhematocrit tube test (MCT), Knott's modified test, serology and a high resolution melt and quantitative real-time PCR (HRM-qPCR). Co-infection with other vector-borne pathogens was also evaluated. Fifteen percent of the dogs were positive to Dirofilaria immitis by at least one of the methods. The HRM-qPCR produced distinctive melting plots for the different filarial worms and revealed that 11.6% of dogs were infected with Acanthocheilonema reconditum. The latter assay had a limit of detection of 2.4x10⁻⁴ mf/μl and detected infections with lower microfilarial concentrations in comparison to the microscopic techniques and the serological assay. The MCT and Knott's test only detected dogs with D. immitis microfilaremias above 0.7 mf/μl. Nevertheless, there was a strong correlation between the microfilarial concentration obtained by the Knott's modified test and the HRM-qPCR (r = 0.906, p HRM-qPCR showed the most sensitive and reliable performance in the detection of blood filaroids in comparison to the Knott's modified test, the MCT test and a serological assay.

  1. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G.; Tobe, Stephen S.; Hui, Jerome Ho Lam

    2015-01-01

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. PMID:26112967

  2. Ultra-sensitive chemiluminescence imaging DNA hybridization method in the detection of mosquito-borne viruses and parasites.

    Science.gov (United States)

    Zhang, Yingjie; Liu, Qiqi; Zhou, Biao; Wang, Xiaobo; Chen, Suhong; Wang, Shengqi

    2017-01-25

    Mosquito-borne viruses (MBVs) and parasites (MBPs) are transmitted through hematophagous arthropods-mosquitoes to homoiothermous vertebrates. This study aims at developing a detection method to monitor the spread of mosquito-borne diseases to new areas and diagnose the infections caused by MBVs and MBPs. In this assay, an ultra-sensitive chemiluminescence (CL) detection method was developed and used to simultaneously detect 19 common MBVs and MBPs. In vitro transcript RNA, virus-like particles (VLPs), and plasmids were established as positive or limit of detection (LOD) reference materials. MBVs and MBPs could be genotyped with high sensitivity and specificity. The cut-off values of probes were calculated. The absolute LODs of this strategy to detect serially diluted in vitro transcribed RNAs of MBVs and serially diluted plasmids of MBPs were 10 2 -10 3 copies/μl and 10 1 -10 2 copies/μl, respectively. Further, the LOD of detecting a strain of pre-quantified JEV was 10 1.8 -10 0.8 PFU/ml, fitted well in a linear regression model (coefficient of determination = 0.9678). Ultra-sensitive CL imaging DNA hybridization was developed and could simultaneously detect various MBVs and MBPs. The method described here has the potential to provide considerable labor savings due to its ability to screen for 19 mosquito-borne pathogens simultaneously.

  3. Challenges posed by tick-borne rickettsiae: eco-epidemiology and public health implications.

    Science.gov (United States)

    Eremeeva, Marina E; Dasch, Gregory A

    2015-01-01

    Rickettsiae are obligately intracellular bacteria that are transmitted to vertebrates by a variety of arthropod vectors, primarily by fleas and ticks. Once transmitted or experimentally inoculated into susceptible mammals, some rickettsiae may cause febrile illness of different morbidity and mortality, and which can manifest with different types of exhanthems in humans. However, most rickettsiae circulate in diverse sylvatic or peridomestic reservoirs without having obvious impacts on their vertebrate hosts or affecting humans. We have analyzed the key features of tick-borne maintenance of rickettsiae, which may provide a deeper basis for understanding those complex invertebrate interactions and strategies that have permitted survival and circulation of divergent rickettsiae in nature. Rickettsiae are found in association with a wide range of hard and soft ticks, which feed on very different species of large and small animals. Maintenance of rickettsiae in these vector systems is driven by both vertical and horizontal transmission strategies, but some species of Rickettsia are also known to cause detrimental effects on their arthropod vectors. Contrary to common belief, the role of vertebrate animal hosts in maintenance of rickettsiae is very incompletely understood. Some clearly play only the essential role of providing a blood meal to the tick while other hosts may supply crucial supplemental functions for effective agent transmission by the vectors. This review summarizes the importance of some recent findings with known and new vectors that afford an improved understanding of the eco-epidemiology of rickettsiae; the public health implications of that information for rickettsial diseases are also described. Special attention is paid to the co-circulation of different species and genotypes of rickettsiae within the same endemic areas and how these observations may influence, correctly or incorrectly, trends, and conclusions drawn from the surveillance of

  4. Disturbance in dry coastal dunes in Denmark promotes diversity of plants and arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg

    2015-01-01

    of three disturbance types (burning, trampling and blowouts) on plant and arthropod species richness and composition in dry coastal dunes in Jutland, Denmark. Environmental variables, plant presence–absence and arthropod abundance were measured in 150 1 × 2 m plots along transects in blowouts, burned areas...... on plant and arthropod composition. Indicator species analysis revealed plant and arthropod species indicative for different disturbances. Plant and arthropod species richness and the number of annual plant species generally increased with disturbance, and plant and arthropod richness and composition...... responded differently to different disturbances. Arthropod communities were more diverse in disturbed plots and hosted species often found in early successional habitats of potential conservation value. Disturbance promoted β-diversity, but affected plants more than arthropods, likely because...

  5. Arthropod fauna of the University of Nigeria, Nsukka, Sewage pond ...

    African Journals Online (AJOL)

    A survey of arthropod fauna of the University of Nigeria Nsukka sewage pond was carried out within May and June 2011. The aim was to determine the various arthropod species and its abundance in the sewage pond. The analysis was carried out by two methods, physico-chemical analysis and arthropod faunal studies.

  6. Feeding and the rhodopsin family G-Protein Coupled Receptors (GPCRs in nematodes and arthropods

    Directory of Open Access Journals (Sweden)

    Joao Carlos dos Reis Cardoso

    2012-12-01

    Full Text Available In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologues of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster, suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologues of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  7. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    OpenAIRE

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of systems, including plant- and arthropod-associated microbes, and symbionts as well as antagonists, that selection and adaptation in seemingly two-way interactions between plants and microbes, plants a...

  8. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran.

    Science.gov (United States)

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-06-01

    Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies.

  9. Tick-borne encephalitis (TBE): an underestimated risk…still: report of the 14th annual meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE).

    Science.gov (United States)

    Kunze, Ursula

    2012-06-01

    Today, the risk of getting tick-borne encephalitis (TBE) is still underestimated in many parts of Europe and worldwide. Therefore, the 14th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - a group of neurologists, general practitioners, clinicians, travel physicians, virologists, pediatricians, and epidemiologists - was held under the title "Tick-borne encephalitis: an underestimated risk…still". Among the discussed issues were: TBE, an underestimated risk in children, a case report in two Dutch travelers, the very emotional report of a tick victim, an overview of the epidemiological situation, investigations to detect new TBE cases in Italy, TBE virus (TBEV) strains circulation in Northern Europe, TBE Program of the European Centre for Disease Prevention and Control (ECDC), efforts to increase the TBE vaccination rate in the Czech Republic, positioning statement of the World Health Organization (WHO), and TBE in dogs. To answer the question raised above: Yes, the risk of getting TBE is underestimated in children and adults, because awareness is still too low. It is still underestimated in several areas of Europe, where, for a lack of human cases, TBEV is thought to be absent. It is underestimated in travelers, because they still do not know enough about the risk, and diagnostic awareness in non-endemic countries is still low. Copyright © 2012. Published by Elsevier GmbH. All rights reserved.

  10. The impact of global environmental change on vector-borne disease risk: a modelling study

    Directory of Open Access Journals (Sweden)

    Rachel Lowe, PhD

    2018-05-01

    Full Text Available Background: Vector-borne diseases, such as dengue virus, Zika virus, and malaria, are highly sensitive to environmental changes, including variations in climate and land-surface characteristics. The emergence and spread of vector-borne diseases is also exacerbated by anthropogenic activities, such as deforestation, mining, urbanisation, and human mobility, which alter the natural habitats of vectors and increase vector–host interactions. Innovative epidemiological modelling tools can help to understand how environmental conditions interact with socioeconomic risk factors to predict the risk of disease transmission. In recent years, climate-health modelling has benefited from computational advances in fitting complex mathematical models; increasing availability of environmental, socioeconomic, and disease surveillance datasets; and improved ability to understand and model the climate system. Climate forecasts at seasonal time scales tend to improve in quality during El Niño-Southern Oscillation events in certain regions of the tropics. Thus, climate forecasts provide an opportunity to anticipate potential outbreaks of vector-borne diseases from several months to a year in advance. The aim of this study was to develop a framework to incorporate seasonal climate forecasts in predictive disease models to understand the future risk of vector-borne diseases, with a focus on dengue fever in Latin America. Methods: A Bayesian spatiotemporal model framework that quantifies the extent to which environmental and socioeconomic indicators can explain variations in disease risk was designed to disentangle the effects of climate from other risk factors using multi-source data and random effects, which account for unknown and unmeasured sources of spatial, seasonal, and inter-annual variation. The model was used to provide probabilistic predictions of monthly dengue incidence and the probability of exceeding outbreak thresholds, which were established in

  11. Missed opportunities to prevent tuberculosis in foreign-born persons, Connecticut, 2005-2008.

    Science.gov (United States)

    Guh, A; Sosa, L; Hadler, J L; Lobato, M N

    2011-08-01

    Factors that influence testing for latent tuberculosis infection (LTBI) among foreign-born persons in Connecticut are not well understood. To identify predictors for LTBI testing and challenges related to accessing health care among the foreign-born population in Connecticut. Foreign-born Connecticut residents with confirmed or suspected tuberculosis (TB) disease during June 2005-December 2008 were interviewed regarding health care access and immigration status. Predictors for self-reported testing for LTBI after US entry were determined. Of 161 foreign-born persons interviewed, 48% experienced TB disease within 5 years after arrival. One third (51/156) reported having undergone post-arrival testing for LTBI. Although those with established health care providers were more likely to have reported testing (aOR 4.49, 95%CI 1.48-13.62), only 43% of such persons were tested. Undocumented persons, the majority of whom lacked a provider (53%), were less likely than documented persons to have reported testing (aOR 0.20, 95%CI 0.06-0.67). Hispanic permanent residents (immigrants and refugees) and visitors (persons admitted temporarily) were more likely than non-Hispanics in the respective groups to have reported testing (OR 5.25, 95%CI 1.51-18.31 and OR 7.08, 95%CI 1.30-38.44, respectively). The self-reported rate of testing for LTBI among foreign-born persons in Connecticut with confirmed or suspected TB was low and differed significantly by ethnicity and immigration status. Strategies are needed to improve health care access for foreign-born persons and expand testing for LTBI, especially among non-Hispanic and undocumented populations.

  12. Incidence of Vector-borne Disease and Climate Change: A Study in Semi-arid Algeria

    Science.gov (United States)

    Blakey, T.; Bounoua, L.

    2012-12-01

    Leishmaniases are among the most important emerging and resurging vector-borne diseases, second only to malaria in terms of the number of affected people. Leishmaniases are endemic in 88 countries worldwide and threaten about 350 million people (WHO, 2007). Since the first reported case of zoonotic cutaneous leishmaniasis (ZCL) in Saida, Algeria in 1991, 1,275 cases have been recorded (Makhlouf & Houti, 2010) with the vast majority of study-area cases (99%) reported between the years of 2000 and 2009. An investigation of potential climatic indicators for the apparent shift in disease prevalence was conducted by comparing anomalies in the climate data specific to the local pathogen cycle. It was determined that long term climate trends have resulted in conditions that promote the prevalence of ZCL. Increased precipitation have resulted in greater vegetation and promoted host and vector population growth through a trophic cascade. Increased minimum temperatures have lengthened the annual duration of sandfly activity. Short term variations in maximum temperatures, however show a correlation with disease suppression in the subsequent years. These findings indicate a potential to forecast the risk of ZCL infection through models of the trophic cascade and sandfly population growth.

  13. Sophisticated digestive systems in early arthropods.

    Science.gov (United States)

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  14. Climate change and mosquito-borne diseases in China: a review.

    Science.gov (United States)

    Bai, Li; Morton, Lindsay Carol; Liu, Qiyong

    2013-03-09

    China has experienced noticeable changes in climate over the past 100 years and the potential impact climate change has on transmission of mosquito-borne infectious diseases poses a risk to Chinese populations. The aims of this paper are to summarize what is known about the impact of climate change on the incidence and prevalence of malaria, dengue fever and Japanese encephalitis in China and to provide important information and direction for adaptation policy making. Fifty-five papers met the inclusion criteria for this study. Examination of these studies indicates that variability in temperature, precipitation, wind, and extreme weather events is linked to transmission of mosquito-borne diseases in some regions of China. However, study findings are inconsistent across geographical locations and this requires strengthening current evidence for timely development of adaptive options. After synthesis of available information we make several key adaptation recommendations including: improving current surveillance and monitoring systems; concentrating adaptation strategies and policies on vulnerable communities; strengthening adaptive capacity of public health systems; developing multidisciplinary approaches sustained by an new mechanism of inter-sectional coordination; and increasing awareness and mobilization of the general public.

  15. Climate change and mosquito-borne diseases in China: a review

    Science.gov (United States)

    2013-01-01

    China has experienced noticeable changes in climate over the past 100 years and the potential impact climate change has on transmission of mosquito-borne infectious diseases poses a risk to Chinese populations. The aims of this paper are to summarize what is known about the impact of climate change on the incidence and prevalence of malaria, dengue fever and Japanese encephalitis in China and to provide important information and direction for adaptation policy making. Fifty-five papers met the inclusion criteria for this study. Examination of these studies indicates that variability in temperature, precipitation, wind, and extreme weather events is linked to transmission of mosquito-borne diseases in some regions of China. However, study findings are inconsistent across geographical locations and this requires strengthening current evidence for timely development of adaptive options. After synthesis of available information we make several key adaptation recommendations including: improving current surveillance and monitoring systems; concentrating adaptation strategies and policies on vulnerable communities; strengthening adaptive capacity of public health systems; developing multidisciplinary approaches sustained by an new mechanism of inter-sectional coordination; and increasing awareness and mobilization of the general public. PMID:23497420

  16. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  17. Spatial dynamics of understorey insectivorous birds and arthropods in a southeastern Brazilian Atlantic woodlot

    Directory of Open Access Journals (Sweden)

    MA. Manhães

    Full Text Available Spatial distribution and spatial relationships in capture rates of understorey insectivorous birds and density of arthropods were investigated in a patch of upper montane rain forest in Minas Gerais state, southeastern Brazil, from January to December 2004. The composition of the arthropod fauna collected was similar to that reported for other tropical forests, with predominance of Araneae, Coleoptera, Hymenoptera and Hemiptera non-Heteroptera. A total of 26 bird species were captured, among which the more common were Dysithamnus mentalis, Conopophaga lineata, Platyrinchus mystaceus, Basileuterus culicivorus and Sclerurus scansor. Variation in the bird capture rates among sampling net lines were not correlated with arthropod density. Rather, individual analyses of some bird species suggest that spatial distribution of understorey insectivorous birds is better explained by habitat type.

  18. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  19. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes.

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G; Tobe, Stephen S; Hui, Jerome Ho Lam

    2015-06-25

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the "Broad-Complex" was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor ("Methoprene-tolerant"). Furthermore, the gain of "Phantom" differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Opportunities in Tajikistan to breed wheat varieties resistant to seed-borne diseases and improved baking quality

    OpenAIRE

    Husenov, Bahromiddin

    2013-01-01

    Wheat seed-borne diseases and options for improving baking quality of wheat, as well as the role of genotypes for breeding to achieve high yield and quality are the key issues discussed in this introductory paper. The importance of wheat for Tajikistan and how to achieve food security goals in the country is also elucidated. Wheat seed-borne diseases are caused mostly by fungi. Loose Smut (Ustilago tritici), Common Bunt (Tilletia laevis and T.caries), Karnal Bunt (T.indica), Dwarf Bunt (T....

  1. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  2. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  3. Early Cretaceous arthropods from plattenkalk facies in Mexico

    NARCIS (Netherlands)

    Vega, Francisco J.; Garcia-Barrera, P.; Coutiño, M.; Nyborg, T.; Cifuentes-Ruiz, P.; González-Rodríguez, K.; Martens, A.; Delgado, C.R.; Carbot, G.

    2003-01-01

    Several well-preserved arthropod faunas have been studied in Mexico during the past few years. The purpose of the present note is to outline advances in the study of these arthropods and of their paleoenvironmental implications, from four localities. The age for these localities ranges from the

  4. Canine vector-borne diseases in India: a review of the literature and identification of existing knowledge gaps

    Directory of Open Access Journals (Sweden)

    Coleman Glen T

    2010-04-01

    Full Text Available Abstract Despite the combination of favourable climate for parasites and vectors, and large populations of stray dogs, information concerning the epidemiology, diagnosis and management of canine vector-borne diseases in India is limited. However, with the country's expanding economy and adaptation to western culture, higher expectations and demands are being placed on veterinary surgeons for improved knowledge of diseases and control. This review aims to provide an overview of the current state of knowledge of these diseases in India and identify existing knowledge gaps in the literature which need to be addressed. The available literature on this subject, although limited, suggests that a number of canine vector-borne diseases such as filariasis, babesiosis and ehrlichiosis are endemic throughout India, as diagnosed mostly by morphological methods. Detailed investigations of the epidemiology and zoonotic potential of these pathogens has been neglected. Further study is essential to develop a better understanding of the diversity of canine vector-borne diseases in India, and their significance for veterinary and public health.

  5. R0-modeling as a tool for early warning and surveillance of exotic vector borne diseases in Denmark

    DEFF Research Database (Denmark)

    Bødker, Rene

    2011-01-01

    for predicting permanent establishment of presently exotic diseases, mean temperatures may not predict the true potential for local spread and limited outbreaks resulting from accidental introductions in years with temporary periods of warm weather. DTU-Veterinary Institute is developing a system for continuous...... a truly risk based surveillance system for insect borne diseases. R0 models for many vector borne diseases are simple and the available estimates of model parameters like vector densities and survival rates may be uncertain. The quantitative value of R0 estimated from such models is therefore likely......Modeling the potential transmission intensity of insect borne diseases with climate driven R0 process models is frequently used to assess the potential for veterinary and human infections to become established in non endemic areas. Models are often based on mean temperatures of an arbitrary time...

  6. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis.

    Science.gov (United States)

    Sun, Yi-Cheng; Jarrett, Clayton O; Bosio, Christopher F; Hinnebusch, B Joseph

    2014-05-14

    Yersinia pestis is an arthropod-borne bacterial pathogen that evolved recently from Yersinia pseudotuberculosis, an enteric pathogen transmitted via the fecal-oral route. This radical ecological transition can be attributed to a few discrete genetic changes from a still-extant recent ancestor, thus providing a tractable case study in pathogen evolution and emergence. Here, we determined the genetic and mechanistic basis of the evolutionary adaptation of Y. pestis to flea-borne transmission. Remarkably, only four minor changes in the bacterial progenitor, representing one gene gain and three gene losses, enabled transmission by flea vectors. All three loss-of-function mutations enhanced cyclic-di-GMP-mediated bacterial biofilm formation in the flea foregut, which greatly increased transmissibility. Our results suggest a step-wise evolutionary model in which Y. pestis emerged as a flea-borne clone, with each genetic change incrementally reinforcing the transmission cycle. The model conforms well to the ecological theory of adaptive radiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Vector-borne diseases and the basic reproduction number: a case study of African horse sickness

    NARCIS (Netherlands)

    Lord, C.C.; Woolhouse, M.E.J.; Heesterbeek, J.A.P.; Mellor, P.S.

    1996-01-01

    The basic reproduction number, R0, can be used to determine factors important in the ability of a disease to invade or persist. We show how this number can be derived or estimated for vector-borne diseases with different complicating factors. African horse sickness is a viral disease transmitted

  8. Disease-modeling as a tool for surveillance, foresight and control of exotic vector borne diseases in the Nordic countries

    DEFF Research Database (Denmark)

    Bødker, Rene

    period e.g. a monthly temperature mean. Average monthly temperatures are likely to be suitable for predicting permanent establishment of presently exotic diseases. But mean temperatures may not predict the true potential for local spread or limited outbreaks resulting from accidental introductions...... for continuous risk assessment of the potential for local spread of exotic insect borne diseases of veterinary and human importance. In this system R0-models for various vector borne diseases are continuously updated with spatial temperature data to quantify the present risk of autochthonous cases (R0......>0) and the present risk of epidemics (R0>1) should an infected vector or host be introduced to the area. The continuously updated risk assessment maps function as an early warning system allowing authorities and industry to increase awareness and preventive measures when R0 raises above the level of ‗no possible...

  9. Criteria for the prioritization of public health interventions for climate-sensitive vector-borne diseases in Quebec.

    Directory of Open Access Journals (Sweden)

    Valerie Hongoh

    Full Text Available Prioritizing resources for optimal responses to an ever growing list of existing and emerging infectious diseases represents an important challenge to public health. In the context of climate change, there is increasing anticipated variability in the occurrence of infectious diseases, notably climate-sensitive vector-borne diseases. An essential step in prioritizing efforts is to identify what considerations and concerns to take into account to guide decisions and thus set disease priorities. This study was designed to perform a comprehensive review of criteria for vector-borne disease prioritization, assess their applicability in a context of climate change with a diverse cross-section of stakeholders in order to produce a baseline list of considerations to use in this decision-making context. Differences in stakeholder choices were examined with regards to prioritization of these criteria for research, surveillance and disease prevention and control objectives. A preliminary list of criteria was identified following a review of the literature. Discussions with stakeholders were held to consolidate and validate this list of criteria and examine their effects on disease prioritization. After this validation phase, a total of 21 criteria were retained. A pilot vector-borne disease prioritization exercise was conducted using PROMETHEE to examine the effects of the retained criteria on prioritization in different intervention domains. Overall, concerns expressed by stakeholders for prioritization were well aligned with categories of criteria identified in previous prioritization studies. Weighting by category was consistent between stakeholders overall, though some significant differences were found between public health and non-public health stakeholders. From this exercise, a general model for climate-sensitive vector-borne disease prioritization has been developed that can be used as a starting point for further public health prioritization

  10. Criteria for the prioritization of public health interventions for climate-sensitive vector-borne diseases in Quebec.

    Science.gov (United States)

    Hongoh, Valerie; Gosselin, Pierre; Michel, Pascal; Ravel, André; Waaub, Jean-Philippe; Campagna, Céline; Samoura, Karim

    2017-01-01

    Prioritizing resources for optimal responses to an ever growing list of existing and emerging infectious diseases represents an important challenge to public health. In the context of climate change, there is increasing anticipated variability in the occurrence of infectious diseases, notably climate-sensitive vector-borne diseases. An essential step in prioritizing efforts is to identify what considerations and concerns to take into account to guide decisions and thus set disease priorities. This study was designed to perform a comprehensive review of criteria for vector-borne disease prioritization, assess their applicability in a context of climate change with a diverse cross-section of stakeholders in order to produce a baseline list of considerations to use in this decision-making context. Differences in stakeholder choices were examined with regards to prioritization of these criteria for research, surveillance and disease prevention and control objectives. A preliminary list of criteria was identified following a review of the literature. Discussions with stakeholders were held to consolidate and validate this list of criteria and examine their effects on disease prioritization. After this validation phase, a total of 21 criteria were retained. A pilot vector-borne disease prioritization exercise was conducted using PROMETHEE to examine the effects of the retained criteria on prioritization in different intervention domains. Overall, concerns expressed by stakeholders for prioritization were well aligned with categories of criteria identified in previous prioritization studies. Weighting by category was consistent between stakeholders overall, though some significant differences were found between public health and non-public health stakeholders. From this exercise, a general model for climate-sensitive vector-borne disease prioritization has been developed that can be used as a starting point for further public health prioritization exercises relating to

  11. Microbial control of arthropod pests of tropical tree fruits.

    Science.gov (United States)

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  12. Tick-borne pathogens in ticks collected from birds in Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Chien Kuo

    2017-11-01

    Full Text Available Abstract Background A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Methods Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Results Nineteen ticks (all larvae were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus. A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Conclusion Our study demonstrates the paucity of information on ticks of

  13. Does mosquito control have an effect on mosquito-borne disease? The case of Ross River virus disease and mosquito management in Queensland, Australia.

    Science.gov (United States)

    Tomerini, Deanna M; Dale, Pat E; Sipe, Neil

    2011-03-01

    We examined the relationship between types of mosquito control programs and the mosquito-borne Ross River virus (RRV) disease in Queensland, Australia. Mosquito control information was collected through a survey of the responsible agencies (local governments), and RRV disease notification data were provided by the Queensland state health authority. The study developed a typology of mosquito control programs, based on the approaches used. Based on the analysis of data on RRV disease rates between mosquito control types within 4 climatic regions, each region had different combinations of mosquito control strategies in their programs; there were also general similarities in the relationship between program types and RRV rates between the regions. The long-term RRV disease rates were lower in areas where the mosquito control program included pre-emptive (rather than reactive) surveillance based on an extensive (rather than incomplete) knowledge of mosquito habitats, and where treatment of both saltwater and freshwater habitats (compared to only saltwater habitats, in coastal areas) occurred. The data indicate that mosquito control is an effective public health intervention to reduce mosquito-borne disease; hence, climate change adaptation strategies should ensure that adequate resources are available for effective vector control so as to manage the risk of mosquito-borne diseases.

  14. Ecotoxicological study of insecticide effects on arthropods in common bean.

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  15. An embryological perspective on the early arthropod fossil record.

    Science.gov (United States)

    Chipman, Ariel D

    2015-12-18

    Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.

  16. Vaccination against ticks and the control of ticks and tick-borne disease

    International Nuclear Information System (INIS)

    Willadsen, P.

    2005-01-01

    Economic losses due to ticks and tick-borne disease of livestock fall disproportionately on developing countries. Currently, tick control relies mostly on pesticides and parasite-resistant cattle. Release of a commercial recombinant vaccine against Boophilus microplus in Australia in 1994 showed that anti-tick vaccines are a feasible alternative. For vaccines, it is important to understand the efficacy needed for a beneficial outcome. In this, it is relevant that some tick antigens affect multiple tick species; that existing vaccines could be improved by the inclusion of additional tick antigens; and that vaccination against ticks can have an impact on tick-borne disease. Practically, although recombinant vaccine manufacture involves relatively few steps, issues of intellectual property rights (IPR) and requirements for registration of a product may affect economic viability of manufacture. Hence practical vaccines for the developing world will require both successful science and a creative 'business solution' for delivery in a cost-effective way. (author)

  17. Research Contributing to Improvements in Controlling Florida's Mosquitoes and Mosquito-borne Diseases.

    Science.gov (United States)

    Tabachnick, Walter J

    2016-09-28

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state's mosquito control capabilities. Research with Florida's mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida's east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.

  18. MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors

    Science.gov (United States)

    Dialynas, Emmanuel; Topalis, Pantelis; Vontas, John; Louis, Christos

    2009-01-01

    Background Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the diseases that they transmit. Methodology/Principal Findings The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO allows for a rational and efficient hierarchical search possibility. Conclusions/Significance The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access database for arthropod vectors of disease. PMID:19547750

  19. Composition and Diversity of Soil Arthropods of Rajegwesi Meru Betiri National Park

    Directory of Open Access Journals (Sweden)

    Hasan Zayadi

    2013-09-01

    Full Text Available Meru Betiri National Park (MBNP is one of the nature conservation area that has the potential of flora, fauna, and ecosystems that could develop as a nature-based tourism attraction. The existence of certain indicator species was related to estimation of stress level and disturbance on ecosystem stability for making strategic decisions about the restoration in this area. One of the important indicator species at forest ecosystem were soil arthropods. Aim this research were analyzed composition and diversity of soil arthropods at Rajegwesi, MBNP areas. The methods in this research used pitfall trap, measurement of distribution structure and soil arthropods composition based on the Shannon - Wiener index, Morisita similarity index and Importance Value Index (IVI. The number of families and individuals of soil arthropods found in the coastal area of Rajegwesi consists of 10 order with 21 families (702 individual. The number of individuals of the order Hymenoptera, Coleoptera, Collembola and Araneida was more widely found. Soil arthropods diversity index on each land use indicated that soil arthropod diversity in these areas were moderate. Soil arthropod community of orchards and forest had a similarity of species composition, whereas soil arthropod community of savanna had a similarity of species composition with paddy fields.

  20. Insights into the molecular evolution of peptidase inhibitors in arthropods.

    Science.gov (United States)

    Alonso, Joaquin; Martinez, Manuel

    2017-01-01

    Peptidase inhibitors are key proteins involved in the control of peptidases. In arthropods, peptidase inhibitors modulate the activity of peptidases involved in endogenous physiological processes and peptidases of the organisms with which they interact. Exploring available arthropod genomic sequences is a powerful way to obtain the repertoire of peptidase inhibitors in every arthropod species and to understand the evolutionary mechanisms involved in the diversification of this kind of proteins. A genomic comparative analysis of peptidase inhibitors in species belonging to different arthropod taxonomic groups was performed. The results point out: i) species or clade-specific presence is shown for several families of peptidase inhibitors; ii) multidomain peptidase inhibitors are commonly found in many peptidase inhibitor families; iii) several families have a wide range of members in different arthropod species; iv) several peptidase inhibitor families show species-specific (or clade-specific) gene family expansions; v) functional divergence may be assumed for particular clades; vi) passive expansions may be used by natural selection to fix adaptations. In conclusion, conservation and divergence of duplicated genes and the potential recruitment as peptidase inhibitors of proteins from other families are the main mechanisms used by arthropods to fix diversity. This diversity would be associated to the control of target peptidases and, as consequence, to adapt to specific environments.

  1. Abundance and diversity of soil arthropods in the olive grove ecosystem.

    Science.gov (United States)

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night.

  2. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    Science.gov (United States)

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity.

  3. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests.

    Science.gov (United States)

    Lamarre, Greg P A; Hérault, Bruno; Fine, Paul V A; Vedel, Vincent; Lupoli, Roland; Mesones, Italo; Baraloto, Christopher

    2016-01-01

    Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  4. Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis)measurement.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Cuba, César Augusto Cuba; Hagström, Luciana; Hecht, Mariana Machado; Santana, Camila; Ribeiro, Marcelle; Vital, Tamires Emanuele; Santalucia, Marcelo; Knox, Monique; Obara, Marcos Takashi; Abad-Franch, Fernando; Gurgel-Gonçalves, Rodrigo

    2018-01-09

    Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.

  5. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer-a brief review.

    Science.gov (United States)

    Benelli, Giovanni

    2016-12-01

    Nanobiomedicine and parasitology are facing a number of key challenges, which mostly deal with the paucity of effective preventive and curative tools against mosquito-borne diseases and cancer. In this scenario, the employ of botanical and invertebrate extracts as reducing, stabilizing and capping agents for the synthesis of nanoparticles is advantageous over chemical and physical methods, since it is one-pot, cheap, and does not require high pressure, energy, temperature, or the use of highly toxic chemicals. Considering the overlooked connection between mosquito vector activity and the spread of cancer in USA, this review focused on the current knowledge available about green synthesized nanoparticles with efficacy against mosquito-borne diseases and cancer. Green fabricated metal nanoparticles showed antiplasmodial activity that often encompasses the efficacy of currently marked drugs for malaria treatment. They have been also reported as growth inhibitors against dengue virus (serotype DEN-2), with moderate cytotoxicity on mammalian cells. However, this feature is strongly dependent to the botanical agents employed during nanosynthesis. In addition, green nanoparticles have been successfully used to reduce mosquito young instar populations in the field. The final section focuses on some issues for future research, with special reference to the chemical standardization of the botanical extracts used for nanosynthesis and the potential effects on green fabricated nanoparticles on non-target organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    Science.gov (United States)

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. © 2016 The Authors.

  7. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    Science.gov (United States)

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  8. types and abundance of arthropod fauna in relation to physico ...

    African Journals Online (AJOL)

    DJFLEX

    TYPES AND ABUNDANCE OF ARTHROPOD FAUNA IN RELATION ... The occurrence of arthropods associated with the bottom sediment of Warri River was investigated, and samples were collected ..... to analysis of the vegetation on Danish.

  9. Intra-annual variation of arthropod–plant interactions and arthropod ...

    African Journals Online (AJOL)

    Arthropods are valuable biological indicators owing to strong relationships with primary producers. The supposition that arthropod–plant interactions are constant over seasons was tested using Mantel tests on correlations between these groups. A total of 78 plant species and 108 arthropod families were sampled monthly ...

  10. The role of ecological infrastructure on beneficial arthropods in vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Franin, K.; Barić, B.; Kuštera, G.

    2016-11-01

    Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins) on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive). Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard). Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%); among insects, Coleoptera was the most abundant taxonomic group (10.6%); Neuroptera showed the lowest value (0.88%). Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders) and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46) was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests. (Author)

  11. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  12. Effect of Extracts and Bacteria from Korean Fermented Foods on the Control of Sesame Seed-Borne Fungal Diseases

    Directory of Open Access Journals (Sweden)

    Yong-Ki Kim

    2015-12-01

    Full Text Available In order to control seed-borne diseases, we obtained extracts from commercial fermented food products of Kimchi, Gochujang, Doenjang, Ganjang and Makgeolli and their suppressive effects against seed-borne diseases were studied. In addition, the suppressive effects of bacterial strains isolated from the fermented foods were screened in vitro and in vivo. Among fifty food extracts, twenty food-extracts suppressed more than 92% incidence of seedling rots in vitro and seven food extracts increased 58.3-66.8% of healthy seedling in the greenhouse. Among 218 isolates from the fermented foods, 29 isolates showing high antifungal activity against seven seed-borne fungal pathogens were selected. Among 29 isolates, 13 isolates significantly reduced seedling rot and increased healthy seedlings. Sixteen isolates with high antifungal activity and suppressive effect against sesame seedling rots were identified by 16S rRNA sequencing. Fourteen of sixteen isolates were identified as Bacillus spp. and the other two isolates from Makgeolli were identified as Saccharomyces cerevisiae. It was confirmed that B. amyloliquifaciens was majority in the effective bacterial population of Korean fermented foods. In addition, when the bioformulations of the two selected effective microorganisms, B. amyloliquifacien Gcj2-1 and B. amyloliquifacien Gcj3-1, were prepared in powder forms using bentonite, kaolin, talc and zeolite, talc- and kaolin-bioformulation showed high control efficacy against sesame seed-borne disease, followed by zeolite-bioformulation. Meanwhile control efficacy of each bentonite-bioformulation of B. amyloliquifacien Gcj2-1 and B. amyloliquifacien Gcj3-1 was lower than that of bacterial suspension of them. It was found that the selected effective microorganisms from Korean fermented foods were effective for controlling seed-borne diseases of sesame in vitro and in the greenhouse. We think that Korean fermented food extracts and useful microorganisms

  13. [Population structure of soil arthropod in different age Pinus massoniana plantations].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin

    2013-04-01

    An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (Parthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.

  14. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  15. Exaggerated Arthropod Bite: A Case Report and Review of the Mimics

    Directory of Open Access Journals (Sweden)

    Sagah Ahmed

    2018-01-01

    Full Text Available Exaggerated arthropod bite reactions causing hemorrhagic or necrotic bullous lesions can mimic other serious conditions such as cutaneous anthrax, brown recluse spider bite, and tularemia. A 55- year-old, healthy woman presented to the emergency department with a 3.5-centimeter painless, collapsed hemorrhagic bulla at the left costal margin. She was afebrile and had no systemic symptoms. Laboratory evaluation was unremarkable. She was prescribed silver sulfadiazine cream and mupirocin ointment. The area denuded two days later and the lesion completely healed. This case illustrates the broad differential to be considered when evaluating patients with hemorrhagic bullous lesions.

  16. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts

    Directory of Open Access Journals (Sweden)

    Mika Zagrobelny

    2018-05-01

    Full Text Available Chemical defences are key components in insect–plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are stabilised by a glucoside linkage, which is hydrolysed by the action of β-glucosidase enzymes, resulting in the release of toxic hydrogen cyanide and deterrent aldehydes or ketones. Such a binary system of components that are chemically inert when spatially separated provides an immediate defence against predators that cause tissue damage. Further roles in nitrogen metabolism and inter- and intraspecific communication has also been suggested for cyanogenic glucosides. In arthropods, cyanogenic glucosides are found in millipedes, centipedes, mites, beetles and bugs, and particularly within butterflies and moths. Cyanogenic glucosides may be even more widespread since many arthropod taxa have not yet been analysed for the presence of this class of natural products. In many instances, arthropods sequester cyanogenic glucosides or their precursors from food plants, thereby avoiding the demand for de novo biosynthesis and minimising the energy spent for defence. Nevertheless, several species of butterflies, moths and millipedes have been shown to biosynthesise cyanogenic glucosides de novo, and even more species have been hypothesised to do so. As for higher plant species, the specific steps in the pathway is catalysed by three enzymes, two cytochromes P450, a glycosyl transferase, and a general P450 oxidoreductase providing electrons to the P450s. The pathway for biosynthesis of cyanogenic glucosides in arthropods has most likely been assembled by recruitment of enzymes, which could most easily be adapted to acquire the required catalytic properties for manufacturing these compounds. The scattered phylogenetic distribution of cyanogenic

  17. A status survey of common water-borne diseases in desert city Bikaner (NW Rajasthan, India).

    Science.gov (United States)

    Saxena, M M; Chhabra, Chetna

    2004-03-01

    Water is scarce and, in general, a low quality resource in desert areas and the Indian desert is no exception. With this in view, the present study was taken up to survey the status of common water-borne diseases epidemiological trends in the desert city Bikaner (NW Rajasthan). In the city, 15.5 per cent population and 44.5 per cent families were found to suffer from one or more common water-borne diseases including amoebiasis, diarrhoea, dysentery, jaundice and typhoid. No case of fluorosis was recorded. The highest incidence was that of diarrhoea (5.4 per cent population). The worst affected and safe zones in the city were identified and the trends of different diseases in different zones of the city are discussed. The highest incidence of diseases was noted during summer (58.8 per cent) followed by winter (34.1 per cent) and monsoon (7.0 per cent). Relationship of diseases with population attributes like age, education, economy and family size are also discussed. Attributes for contamination of drinking water have been tried to identify and safety measures suggested.

  18. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    Science.gov (United States)

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal population...

  19. Translating ecology, physiology, biochemistry and molecular biology research to meet grand challenge of tick and tick-borne diseases in North America

    Science.gov (United States)

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The use of science-based technology to diminish the impact of tick-borne diseases should be an active research effort aimed to protect human and animal populations. Here, ...

  20. Using the gravity model to estimate the spatial spread of vector-borne diseases

    NARCIS (Netherlands)

    Barrios, J.M.; Verstraeten, W.W.; Maes, P.; Aerts, J.; Farifteh, J.; Coppin, P.

    2012-01-01

    The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the

  1. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

  2. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  3. From ontology selection and semantic web to the integrated information system of food-borne diseases and food safety

    Science.gov (United States)

    Over the last three decades, the rapid explosion of information and resources on human food-borne diseases and food safety has provided the ability to rapidly determine and interpret the mechanisms of survival and pathogenesis of food-borne pathogens. However, several factors have hindered effective...

  4. R0-modeling as a tool for early warning and surveillance of exotic vector borne diseases in Denmark

    DEFF Research Database (Denmark)

    Bødker, Rene; Kristensen, Birgit; Græsbøll, Kaare

    2011-01-01

    local spread of exotic insect borne diseases of veterinary and human importance. R0 models for various vector borne diseases are continuously updated with spatial temperature data to quantify the present risk of autochthonous cases (R0>0) and the present risk of epidemics (R0>1) in case an infected...... surveillance to these limited periods of potential risk, thus dramatically reducing the number of samples collected and analysed. The risk estimated from the R0 modelling may be combined with the risk of introduction from neighbouring countries and trading partners to generate a truly risk based surveillance......Modelling the potential transmission intensity of insect borne diseases with climate driven R0 process models is frequently used to assess the potential for veterinary and human infections to become established in non endemic areas. Models are often based on mean temperatures of an arbitrary time...

  5. Pinyon pine mortality alters communities of ground-dwelling arthropods

    Science.gov (United States)

    Robert J. Delph; Michael J. Clifford; Neil S. Cobb; Paulette L. Ford; Sandra L. Brantley

    2014-01-01

    We documented the effect of drought-induced mortality of pinyon pine (Pinus edulis Engelm.) on communities of ground-dwelling arthropods. Tree mortality alters microhabitats utilized by ground-dwelling arthropods by increasing solar radiation, dead woody debris, and understory vegetation. Our major objectives were to determine (1) whether there were changes in...

  6. Mechanical transfer of Theileria orientalis: possible roles of biting arthropods, colostrum and husbandry practices in disease transmission.

    Science.gov (United States)

    Hammer, Jade Frederick; Jenkins, Cheryl; Bogema, Daniel; Emery, David

    2016-01-22

    by intravenous inoculation with small volumes of blood and is detectable up to 5 months post-infection. Animals infected by this means may play a significant role in the transmission of the disease by acting as asymptomatic carriers. Other modes of blood transfer, including biting arthropods and colostral transfer are also possible modes of disease transmission.

  7. Arthropods dataset from different genetically modified maize events and associated controls

    Science.gov (United States)

    Pálinkás, Zoltán; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; Kiss, József; North, Samuel; Woodward, Guy; Balog, Adalbert

    2018-02-01

    Arthropods from four genetically modified (GM) maize hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant+herbicide tolerant and coleopteran resistant and herbicide tolerant) and non-GM varieties were sampled during a two-year field assessment. A total number of 363 555 arthropod individuals were collected. This represents the most comprehensive arthropod dataset from GM maize, and together with weed data, is reasonable to determine functional groups of arthropods and interactions between species. Trophic groups identified from both phytophagous and predatory arthropods were previously considered non-target organisms on which possible detrimental effects of Bacillus thuringiensis (Bt) toxins may have been directly (phytophagous species) or indirectly (predators) detected. The high number of individuals and species and their dynamics through the maize growing season can predict that interactions are highly correlational, and can thus be considered a useful tool to assess potential deleterious effects of Bt toxins on non-target organisms, serving to develop biosafety risk hypotheses for invertebrates exposed to GM maize plants.

  8. Diversity And Abundance Of Arthropods At Mbeya University Of Science And Technology Tanzania

    Directory of Open Access Journals (Sweden)

    Fredrick Ojija

    2015-08-01

    Full Text Available Despite the high abundance of arthropods in many terrestrial environments our understanding of their ecological diversity and abundance remain unknown in some habitats. The aim of this study is to assess the abundance diversity and species richness of some arthropods found in grassland and woodland habitats at Mbeya University of Science and Technology in Tanzania. A total of 1719 arthropods belonging to 63 species under 12 orders and 46 families were collected. Parameters such as Shannon index Simpson index Margalef index Evenness index and Sorenson similarity index were used to analyse the diversity of arthropods. Result showed that Hymenoptera 33.101 Coleoptera 28.098 and Orthoptera 17.510 were the most dominant orders whereas the least abundant order were Diptera 0.814 and Scolopendromorpha 0.291. The grassland showed high species richness Margalef index D 6.930 abundance n 1177 Evenness E 0.854 and Shannon diversity H 3.339 of arthropods. The abundance of arthropod groups between grassland and woodland differed significantly p0.05. Sorensen similarity index in both habitats showed 53.5 similarity. Therefore result indicates that the grassland habitat has the potential to support arthropod diversity and act as effective refugia for some arthropods from woodland.

  9. Inbreeding and the evolution of sociality in arthropods.

    Science.gov (United States)

    Tabadkani, Seyed Mohammad; Nozari, Jamasb; Lihoreau, Mathieu

    2012-10-01

    Animals have evolved strategies to optimally balance costs and benefits of inbreeding. In social species, these adaptations can have a considerable impact on the structure, the organization, and the functioning of groups. Here, we consider how selection for inbreeding avoidance fashions the social behavior of arthropods, a phylum exhibiting an unparalleled richness of social lifestyles. We first examine life histories and parental investment patterns determining whether individuals should actively avoid or prefer inbreeding. Next, we illustrate the diversity of inbreeding avoidance mechanisms in arthropods, from the dispersal of individuals to the rejection of kin during mate choice and the production of unisexual broods by females. Then, we address the particular case of haplodiploid insects. Finally, we discuss how inbreeding may drive and shape the evolution of arthropods societies along two theoretical pathways.

  10. Network-level reproduction number and extinction threshold for vector-borne diseases.

    Science.gov (United States)

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  11. Schools as Potential Risk Sites for Vector-Borne Disease Transmission: Mosquito Vectors in Rural Schools in Two Municipalities in Colombia.

    Science.gov (United States)

    Olano, Víctor Alberto; Matiz, María Inés; Lenhart, Audrey; Cabezas, Laura; Vargas, Sandra Lucía; Jaramillo, Juan Felipe; Sarmiento, Diana; Alexander, Neal; Stenström, Thor Axel; Overgaard, Hans J

    2015-09-01

    Dengue and other vector-borne diseases are of great public health importance in Colombia. Vector surveillance and control activities are often focused at the household level. Little is known about the importance of nonhousehold sites, including schools, in maintaining vector-borne disease transmission. The objectives of this paper were to determine the mosquito species composition in rural schools in 2 municipalities in Colombia and to assess the potential risk of vector-borne disease transmission in school settings. Entomological surveys were carried out in rural schools during the dry and rainy seasons of 2011. A total of 12 mosquito species were found: Aedes aegypti, Anopheles pseudopunctipennis, Culex coronator, Cx. quinquefasciatus, and Limatus durhamii in both immature and adult forms; Ae. fluviatilis, Cx. nigripalpus, Cx. corniger, and Psorophora ferox in immature forms only; and Ae. angustivittatus, Haemagogus equinus, and Trichoprosopon lampropus in adult forms only. The most common mosquito species was Cx. quinquefasciatus. Classrooms contained the greatest abundance of adult female Ae. aegypti and Cx. quinquefasciatus. The most common Ae. aegypti breeding sites were containers classified as "others" (e.g., cans), followed by containers used for water storage. A high level of Ae. aegypti infestation was found during the wet season. Our results suggest that rural schools are potentially important foci for the transmission of dengue and other mosquito-borne diseases. We propose that public health programs should be implemented in rural schools to prevent vector-borne diseases.

  12. Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica

    CSIR Research Space (South Africa)

    Sinclair, BJ

    2006-09-01

    Full Text Available . wadei. Arthropods were absent from areas occupied by the large Adelie penguin colony. There was some distinction among arthropod communities of different habitats, with water and a lichen species (indicative of scree slope habitats) ranking...

  13. Hydroclimatic drivers, Water-borne Diseases, and Population Vulnerability in Bengal Delta

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.

    2012-04-01

    Water-borne diarrheal disease outbreaks in the Bengal Delta region, such as cholera, rotavirus, and dysentery, show distinct seasonal peaks and spatial signatures in their origin and progression. However, the mechanisms behind these seasonal phenomena, especially the role of regional climatic and hydrologic processes behind the disease outbreaks, are not fully understood. Overall diarrheal disease prevalence and the population vulnerability to transmission mechanisms thus remain severely underestimated. Recent findings suggest that diarrheal incidence in the spring is strongly associated with scarcity of freshwater flow volumes, while the abundance of water in monsoon show strong positive correlation with autumn diarrheal burden. The role of large-scale ocean-atmospheric processes that tend to modulate meteorological, hydrological, and environmental conditions over large regions and the effects on the ecological states conducive to the vectors and triggers of diarrheal outbreaks over large geographic regions are not well understood. We take a large scale approach to conduct detailed diagnostic analyses of a range of climate, hydrological, and ecosystem variables to investigate their links to outbreaks, occurrence, and transmission of the most prevalent water-borne diarrheal diseases. We employ satellite remote sensing data products to track coastal ecosystems and plankton processes related to cholera outbreaks. In addition, we investigate the effect of large scale hydroclimatic extremes (e.g., droughts and floods, El Nino) to identify how diarrheal transmission and epidemic outbreaks are most likely to respond to shifts in climatic, hydrologic, and ecological changes over coming decades. We argue that controlling diarrheal disease burden will require an integrated predictive surveillance approach - a combination of prediction and prevention - with recent advances in climate-based predictive capabilities and demonstrated successes in primary and tertiary prevention

  14. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    Science.gov (United States)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  15. Reducing the Risk of Tick-Borne Diseases through Smart, Safe and Sustainable Pest Control

    Science.gov (United States)

    Each year PestWise programs form new partnerships to address ongoing and emerging issues. Reducing the risk from ticks and tick-borne disease is an issue of importance and EPA is contributing to a larger federal effort.

  16. Risk based surveillance for vector borne diseases

    DEFF Research Database (Denmark)

    Bødker, Rene

    of samples and hence early detection of outbreaks. Models for vector borne diseases in Denmark have demonstrated dramatic variation in outbreak risk during the season and between years. The Danish VetMap project aims to make these risk based surveillance estimates available on the veterinarians smart phones...... in Northern Europe. This model approach may be used as a basis for risk based surveillance. In risk based surveillance limited resources for surveillance are targeted at geographical areas most at risk and only when the risk is high. This makes risk based surveillance a cost effective alternative...... sample to a diagnostic laboratory. Risk based surveillance models may reduce this delay. An important feature of risk based surveillance models is their ability to continuously communicate the level of risk to veterinarians and hence increase awareness when risk is high. This is essential for submission...

  17. Fluctuations in Availability of Arthropods Correlated with Microchiropteran and Avian Predator Activities

    Directory of Open Access Journals (Sweden)

    I.L. Rautenbach

    1988-10-01

    Full Text Available Aerial arthropods were sampled by driving a standard transect along the riparian forest of the Luvuvhu River, South Africa, to assess hourly and seasonal variations in available biomass. Sampling, with an air-plankton net mounted on a vehicle, was conducted hourly over 48-hour periods during the fullest phase of the moon for each of eight months during 1986/87. Seasonal variation in availability of terrestrial arthropods was assessed by means of six pitfall traps set in the riparian forest. On a daily basis, the available biomass of aerial arthropods was found to increase markedly at and during the two hours following sunset, with a slight peak at or in the two hours preceding dawn. Highest monthly availability was found to correspond with the warm summer rainy season, with a marked increase after the first rains. The peak for terrestrial arthropods was found to occur later in the summer than for aerial arthropods. These patterns of arthropod availability correlate well with the daily activity rhythms and seasonal reproduc- tion of microchiropteran bats and their avian predators.

  18. Presence of Autoimmune Antibody in Chikungunya Infection

    Directory of Open Access Journals (Sweden)

    Wirach Maek-a-nantawat

    2009-01-01

    Full Text Available Chikungunya infection has recently re-emerged as an important arthropod-borne disease in Thailand. Recently, Southern Thailand was identified as a potentially endemic area for the chikungunya virus. Here, we report a case of severe musculoskeletal complication, presenting with muscle weakness and swelling of the limbs. During the investigation to exclude autoimmune muscular inflammation, high titers of antinuclear antibody were detected. This is the report of autoimmunity detection associated with an arbovirus infection. The symptoms can mimic autoimmune polymyositis disease, and the condition requires close monitoring before deciding to embark upon prolonged specific treatment with immunomodulators.

  19. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    Science.gov (United States)

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-06-17

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.

  20. Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care

    Science.gov (United States)

    Briggs, Derek E. G.; Siveter, Derek J.; Siveter, David J.; Sutton, Mark D.

    2016-04-01

    The ˜430-My-old Herefordshire, United Kingdom, Lagerstätte has yielded a diversity of remarkably preserved invertebrates, many of which provide fundamental insights into the evolutionary history and ecology of particular taxa. Here we report a new arthropod with 10 tiny arthropods tethered to its tergites by long individual threads. The head of the host, which is covered by a shield that projects anteriorly, bears a long stout uniramous antenna and a chelate limb followed by two biramous appendages. The trunk comprises 11 segments, all bearing limbs and covered by tergites with long slender lateral spines. A short telson bears long parallel cerci. Our phylogenetic analysis resolves the new arthropod as a stem-group mandibulate. The evidence suggests that the tethered individuals are juveniles and the association represents a complex brooding behavior. Alternative possibilities—that the tethered individuals represent a different epizoic or parasitic arthropod—appear less likely.

  1. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-Borne Diseases

    Science.gov (United States)

    Tabachnick, Walter J.

    2016-01-01

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being. PMID:27690112

  2. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2016-09-01

    Full Text Available Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM, has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.

  3. The emergence and maintenance of vector-borne diseases in the Khyber Pakhtunkhwa Province (KPK and the Federally Administered Tribal Areas (FATA of Pakistan

    Directory of Open Access Journals (Sweden)

    Nathan Christopher Nieto

    2012-07-01

    Full Text Available Human populations throughout much of the world are experiencing unprecedented changes in their relationship to the environment and their interactions with the animals with which so many humans are intimately dependent upon. These changes result not only from human induced changes in the climate, but also from population demographic changes due to wars, social unrest, behavioral changes resulting from cultural mixing, and large changes in land-use practices. Each of these social shifts can affect the maintenance and emergence of arthropod vectors disease or the pathogenic organisms themselves. A good example is the country of Pakistan, with a large rural population and developing urban economy, it also maintains a wide diversity of entomological disease vectors, including biting flies, mosquitoes, and ticks. Pathogens endemic to the region include the agents of piroplasmosis, rickettsiosis, spirocheteosis, and viral hemorrhagic fevers and encephalitis. The northwestern region of the country, including the Khyber Pakhtunkhwa Province (KPK, formerly the North-West Frontier Provence (NWFP, and the Federally Administered Tribal Areas (FATA are mountainous regions with a high degree of habitat diversity that has recently undergone a massive increase in human population density due to an immigrating refugee population from neighboring war-torn Afghanistan. Vector-borne diseases in people and livestock are common in KPK and FATA regions due to the limited use of vector control measures and access to livestock vaccines. The vast majority of people in this region live in abject poverty with >70% of the population living directly from production gained in animal husbandry. In many instances whole families live directly alongside their animal counterparts. In addition, there is little to no awareness of the threat posed by ticks and transmission of either zoonotic or veterinary pathogens. Recent emergence of Crimean-Congo hemorrhagic fever virus in rural

  4. Inventory of arthropods on Sesbania acuelata in the Algerian ...

    African Journals Online (AJOL)

    The present study was carried out at the I.T.D.A.S. (Biskra). It contributes to the inventory and knowledge of arthropods which are successfully infecting a plant newly introduced in Algeria in this case Sesbania acuelata. During the summer of 2016, each month, arthropods are collected using three methods: pitful traps, ...

  5. Evolution of the salivary apyrases of blood-feeding arthropods.

    Science.gov (United States)

    Hughes, Austin L

    2013-09-15

    Phylogenetic analyses of three families of arthropod apyrases were used to reconstruct the evolutionary relationships of salivary-expressed apyrases, which have an anti-coagulant function in blood-feeding arthropods. Members of the 5'nucleotidase family were recruited for salivary expression in blood-feeding species at least five separate times in the history of arthropods, while members of the Cimex-type apyrase family have been recruited at least twice. In spite of these independent events of recruitment for salivary function, neither of these families showed evidence of convergent amino acid sequence evolution in salivary-expressed members. On the contrary, in the 5'-nucleotide family, salivary-expressed proteins conserved ancestral amino acid residues to a significantly greater extent than related proteins without salivary function, implying parallel evolution by conservation of ancestral characters. This unusual pattern of sequence evolution suggests the hypothesis that purifying selection favoring conservation of ancestral residues is particularly strong in salivary-expressed members of the 5'-nucleotidase family of arthropods because of constraints arising from expression within the vertebrate host. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Bacterial food-borne zoonoses.

    Science.gov (United States)

    Thorns, C J

    2000-04-01

    In many countries of the world, bacterial food-borne zoonotic infections are the most common cause of human intestinal disease. Salmonella and Campylobacter account for over 90% of all reported cases of bacteria-related food poisoning world-wide. Poultry and poultry products have been incriminated in the majority of traceable food-borne illnesses caused by these bacteria, although all domestic livestock are reservoirs of infection. In contrast to the enzootic nature of most Salmonella and Campylobacter infections, Salmonella Enteritidis caused a pandemic in both poultry and humans during the latter half of the 20th Century. Salmonella Typhimurium and Campylobacter appear to be more ubiquitous in the environment, colonising a greater variety of hosts and environmental niches. Verocytotoxin-producing Escherichia coli O157 (VTEC O157) also emerged as a major food-borne zoonotic pathogen in the 1980s and 1990s. Although infection is relatively rare in humans, clinical disease is often severe, with a significant mortality rate among the young and elderly. The epidemiology of VTEC O157 is poorly understood, although ruminants, especially cattle and sheep, appear to be the major source of infection. The dissemination of S. Enteritidis along the food chain is fairly well understood, and control programmes have been developed to target key areas of poultry meat and egg production. Recent evidence indicates that these control programmes have been associated with an overall reduction of S. Enteritidis along the food chain. Unfortunately, existing controls do not appear to reduce the levels of Campylobacter and VTEC O157 infections. Future control strategies need to consider variations in the epidemiologies of food-borne zoonotic infections, and apply a quantitative risk analysis approach to ensure that the most cost-effective programmes are developed.

  7. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  8. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns

    Science.gov (United States)

    Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  9. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.

    Directory of Open Access Journals (Sweden)

    Kenichi W Okamoto

    2016-03-01

    Full Text Available Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted. We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even

  10. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  11. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods. Copyright © 2012 Society of Chemical Industry.

  12. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably sized...

  13. The Hunsrück biota: A unique window into the ecology of Lower Devonian arthropods.

    Science.gov (United States)

    Rust, Jes; Bergmann, Alexandra; Bartels, Christoph; Schoenemann, Brigitte; Sedlmeier, Stephanie; Kühl, Gabriele

    2016-03-01

    The approximately 400-million-year old Hunsrück biota provides a unique window into Devonian marine life. Fossil evidence suggests that this biota was dominated by echinoderms and various classes of arthropods, including Trilobita, stem lineage representatives of Euarthropoda, Chelicerata and Eucrustacea, as well as several crown group Chelicerata and Eucrustacea. The Hunsrück biota's exceptional preservation allows detailed reconstructions and description of key-aspects of its fauna's functional morphologies thereby revealing modes of locomotion, sensory perception, and feeding strategies. Morphological and stratigraphic data are used for a critical interpretation of the likely habitats, mode of life and nutritional characteristics of this diverse fauna. Potential predators include pycnogonids and other chelicerates, as well as the now extinct stem arthropods Schinderhannes bartelsi, Cambronatus brasseli and Wingertshellicus backesi. Mainly the deposit feeding Trilobita, Marrellomorpha and Megacheira, such as Bundenbachiellus giganteus, represents scavengers. Possibly, opportunistic scavenging was also performed by the afore-mentioned predators. Most of the studied arthropods appear to have been adapted to living in relatively well-illuminated conditions within the photic zone. Fossil evidence for associations amongst arthropods and other classes of metazoans is reported. These associations provide evidence of likely community structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Arthropods and their products as aphrodisiacs--review of literature.

    Science.gov (United States)

    Pajovic, B; Radosavljevic, M; Radunovic, M; Radojevic, N; Bjelogrlic, B

    2012-04-01

    After a short review of impotence, the definitions of erectants and aphrodisiacs are presented. The Authors propose division of arthropods according to the places of effect. The description of particular arthropods with their pictures and nomenclature, is followed by certain or probable mechanisms of achieving the aphrodisiac and sometimes toxic effect, that were available in the literature since 1929 till nowadays. We mention the most usual locations, mainly in Asia, where they are found and consumed, but also, we describe the manner of preparing and intake. The review includes the following arthropods: lobster, Arizona bark scorpion, deathstalker, banana spider, Mediterranean black widow, Burmeister's triatoma, giant water bug, diving-beetle, Korean bug, diaclina, flannel moth, Spanish fly, migratory locust, red wood ant and honeybee.

  15. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase.

    Science.gov (United States)

    Gandara, Ana Caroline Paiva; Torres, André; Bahia, Ana Cristina; Oliveira, Pedro L; Schama, Renata

    2017-03-29

    NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H 2 O 2 . Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H 2 O 2 production is considerably diminished in A. aegypti cells. Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H 2 O 2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many

  16. Risk based surveillance for vector-borne diseases in horses : combining multiple sources of evidence to improve decision making

    NARCIS (Netherlands)

    Faverjon, Céline

    2017-01-01

    Emerging vector-borne diseases are a growing concern, especially for horse populations, which are at particular risk for disease spread. In general, horses travel widely and frequently and, despite the health and economic impacts of equine diseases, effective health regulations and biosecurity

  17. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    Science.gov (United States)

    Robinson, Kathryn M.; Ingvarsson, Pär K.; Jansson, Stefan; Albrectsen, Benedicte R.

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores. PMID:22662190

  18. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  19. Strategies, Research Priorities, and Partnerships for Community IPM to Prevent Tick-Borne Diseases--2011 Conference

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) held the Promoting Community Integrated Pest Management to Prevent Tick-Borne Diseases Conference on March 30th and 31st, 2011 in Arlington, Virginia. Read the meeting summary.

  20. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    Science.gov (United States)

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Genetic shifting: a novel approach for controlling vector-borne diseases.

    Science.gov (United States)

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Vaccines for tick-borne diseases and cost-effectiveness of vaccination : a public health challenge to reduce the diseases’ burden

    NARCIS (Netherlands)

    Smit, Renata; Postma, Maarten J

    Tick-borne encephalitis (TBE) and Lyme borreliosis (LB) are tick-borne diseases (TBDs), and both present an increasing burden worldwide. Vaccination as public health intervention could be the most effective way to reduce this burden. TBE vaccines are available, but vaccines against LB are still in

  3. Behaviors Related to Mosquito-Borne Diseases among Different Ethnic Minority Groups along the China-Laos Border Areas.

    Science.gov (United States)

    Wu, Chao; Guo, Xiaofang; Zhao, Jun; Lv, Quan; Li, Hongbin; McNeil, Edward B; Chongsuvivatwong, Virasakdi; Zhou, Hongning

    2017-10-15

    Background : In China, mosquito-borne diseases are most common in the sub-tropical area of Yunnan province. The objective of this study was to examine behaviors related to mosquito-borne diseases in different ethnic minority groups and different socioeconomic groups of people living in this region. Methods : A stratified two-stage cluster sampling technique with probability proportional to size was used in Mengla County, Xishuangbanna Prefecture, Yunnan. Twelve villages were used to recruit adult (≥18 years old) and eight schools were used for children (related to mosquito-borne diseases was devised. Results : Multiple correspondence analysis (MCA) grouped 20 behaviors into three domains, namely, environmental condition, bed net use behaviors, and repellent use behaviors, respectively. The Han ethnicity had the lowest odds of rearing pigs, their odds being significantly lower than those of Yi and Yao. For bed net use, Dai and other ethnic minority groups were less likely to use bed nets compared to Yi and Yao. The odds of repellent use in the Han ethnicity was lower than in Yi, but higher than in Dai. The Dai group was the most likely ethnicity to use repellents. Farmers were at a higher risk for pig rearing and not using repellents. Education of less than primary school held the lowest odds of pig rearing. Those with low income were at a higher risk for not using bed nets and repellent except in pig rearing. Those with a small family size were at a lower risk for pig rearing. Conclusion : Different ethnic and socioeconomic groups in the study areas require different specific emphases for the prevention of mosquito-borne diseases.

  4. Ecological enrichment in agroecosystems: Utilizing wildflowers to promote beneficial arthropod communities

    Science.gov (United States)

    Beneficial arthropods which provide important ecosystems services have come under threat as a result of intensive agricultural practices and landscape simplification. Engineering diverse heterogeneous agricultural landscapes to provide optimal resources for beneficial arthropods may recover and enha...

  5. Seasonality and structure of the arthropod community in a forested ...

    African Journals Online (AJOL)

    The structure of an arthropod community in the forest floor vegetation was studied in a low altitude (about 700 m a.s.l.) forest valley in the Uluguru Mountains near Morogoro, Tanzania, by monthly sweep net sampling during one year (December 1996-November 1997). The community structure of arthropods changed ...

  6. A two-day-old hyperthyroid neonate with thyroid hormone resistance born to a mother with well-controlled Graves’ disease: a case report

    Directory of Open Access Journals (Sweden)

    Yatsuga Shuichi

    2012-08-01

    Full Text Available Abstract Introduction Resistance to thyroid hormone is a syndrome caused by thyroid hormone receptor β mutations, which are usually inherited in an autosomal-dominant pattern. Case presentation Our patient, a Japanese neonate boy, showed hyperthyroid symptoms at age two days. Although our patient was diagnosed as having resistance to thyroid hormone, his hyperthyroid symptoms continued for two weeks. Therefore, our patient was treated with methimazole and iodine for two weeks from birth, showing no side effects and no symptoms upon treatment. At age 70 days, an R243W mutation in thyroid hormone receptor β was detected in our patient; while absent in his mother, the mutation was present in his father, who never showed any symptoms. Conclusions To the best of our knowledge this is the first case report of a resistance to thyroid hormone in a neonate presenting with hyperthyroid symptoms born to a mother with Graves’ disease and treated with methimazole and iodine. These results suggest that methimazole and iodine may be a good short-term option for treatment.

  7. A GEOSPATIAL ANALYSIS OF THE RELATIONSHIP BETWEEN ENVIRONMENTAL DRIVERS AND VECTOR-BORNE DISEASES

    Directory of Open Access Journals (Sweden)

    MARIA IOANA VLAD-ȘANDRU

    2015-10-01

    Full Text Available A Geospatial Analysis of the Relationship between Environmental Drivers and Vector-Borne Diseases. Human health is profoundly affected by weather and climate. Environmental health is becoming a major preoccupation on a world-wide scale; there is a close correlation between a population’s state of health and the quality of its environment, considering many infectious diseases are at least partly dependent on environmental factors. When we talk about the environment, we realize that it includes and affects fields of action from our daily life. Earth observation from space, with validation from in situ observations, provide a greater understanding of the environment and enable us to monitor and predict key environmental phenomena and events that can affect our livelihoods and health. Even thought, the use of Earth observation is growing in usefulness for a wide variety of uses, it is extremely unlikely that Earth Observation will be able to detect infectious diseases directly. Instead, Earth observation can be used to detect high NDVI index (and possibly attribute the high surface chlorophyll concentration to a particular disease, and help predict the movement of the agents carrying vector-borne disease. Many diseases need certain temperature and moisture conditions to breed. The primary objective of analyzing environmental health risk and vulnerabilities is to support the Development Regions to strengthen their capacity to assess, visualize and analyze health risks and incorporate the results of this analysis in a health risk map for disaster risk reduction, emergency preparedness and response plans. At the same time, such an analysis applied in health, allows starting the collection and homogenization of baseline data, information and maps to help health authorities and decision makers to take informed decisions in times of crises. Informational Health Platform would be used for the integration of data coming from different sources in order to

  8. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods.

    Science.gov (United States)

    Sterkel, Marcos; Oliveira, José Henrique M; Bottino-Rojas, Vanessa; Paiva-Silva, Gabriela O; Oliveira, Pedro L

    2017-08-01

    Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. ArthropodaCyc: a CycADS powered collection of BioCyc databases to analyse and compare metabolism of arthropods.

    Science.gov (United States)

    Baa-Puyoulet, Patrice; Parisot, Nicolas; Febvay, Gérard; Huerta-Cepas, Jaime; Vellozo, Augusto F; Gabaldón, Toni; Calevro, Federica; Charles, Hubert; Colella, Stefano

    2016-01-01

    Arthropods interact with humans at different levels with highly beneficial roles (e.g. as pollinators), as well as with a negative impact for example as vectors of human or animal diseases, or as agricultural pests. Several arthropod genomes are available at present and many others will be sequenced in the near future in the context of the i5K initiative, offering opportunities for reconstructing, modelling and comparing their metabolic networks. In-depth analysis of these genomic data through metabolism reconstruction is expected to contribute to a better understanding of the biology of arthropods, thereby allowing the development of new strategies to control harmful species. In this context, we present here ArthropodaCyc, a dedicated BioCyc collection of databases using the Cyc annotation database system (CycADS), allowing researchers to perform reliable metabolism comparisons of fully sequenced arthropods genomes. Since the annotation quality is a key factor when performing such global genome comparisons, all proteins from the genomes included in the ArthropodaCyc database were re-annotated using several annotation tools and orthology information. All functional/domain annotation results and their sources were integrated in the databases for user access. Currently, ArthropodaCyc offers a centralized repository of metabolic pathways, protein sequence domains, Gene Ontology annotations as well as evolutionary information for 28 arthropod species. Such database collection allows metabolism analysis both with integrated tools and through extraction of data in formats suitable for systems biology studies.Database URL: http://arthropodacyc.cycadsys.org/. © The Author(s) 2016. Published by Oxford University Press.

  10. Neonicotinoid insecticides negatively affect performance measures of non‐target terrestrial arthropods: a meta‐analysis

    Science.gov (United States)

    Main, Anson; Webb, Elisabeth B.; Goyne, Keith W.; Mengel, Doreen C.

    2018-01-01

    Neonicotinoid insecticides are currently the fastest‐growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non‐target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta‐analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.

  11. Arthropods and passerine birds in coniferous forest. The impact of acidification and needle-loss

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, B. [Goeteborg Univ., Dept. of Zoology, Sect. of Animal Ecology, Goeteborg (Sweden)

    1995-12-31

    The micro-habitat structure on coniferous trees changes as a result of needle-loss. This structural change in the vegetation may affect arthropods living in spruce Picea abies by indirect mechanisms, e.g. altered relations between prey and predators. The impact of acidification and needle-loss on some tree-living arthropods and passerine birds is reviewed. New information about the taxonomic composition of spiders in relation to needle density in a field experiments is reported. The main combined findings from the review and field experiments are: 1) Acid precipitation may be toxic because of high H{sup +} concentrations. However, simulated acid rain (pH 4.0) did not reduce the growth rate of a spruce-living spider. There is a present no evidence of toxic effect on arthropods at this level of pH. 2) Experiments in the field and laboratory and data from natural populations suggested that spruce-living arthropods are affected by the needle density of branches. These data showed a positive correlation between needle density and spider abundance. However, a large-scale field experiment could not confirm this relationship. 3) The interaction between bird predation and needle density was examined in a large-scale field experiment. There were strong negative effects of bird predation on arthropod abundance. Moreover, the taxonomic composition among spiders changed as a result of bird predation: raptorial spiders increased their relative abundance whereas sheetweb spiders decreased their relative abundance when bird predation was excluded. There were also some cases of bird predation/needle density interactions. In the absence of bird predation, the needle density affected the spider size distribution: large spiders were more common on needle-sparse branches than on needle-dens ones. The species composition was affected by similar interactions, e.g. bird predation effects on crab spiders (Thomisidae) were found on needle-sparse branches only. (Abstract Truncated)

  12. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns.

    Directory of Open Access Journals (Sweden)

    Assaf Anyamba

    Full Text Available We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  13. Role of Arthropods in Maintaining Soil Fertility

    Directory of Open Access Journals (Sweden)

    Thomas W. Culliney

    2013-09-01

    Full Text Available In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites. The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. The burrowing by arthropods, particularly the subterranean network of tunnels and galleries that comprise termite and ant nests, improves soil porosity to provide adequate aeration and water-holding capacity below ground, facilitate root penetration, and prevent surface crusting and erosion of topsoil. Also, the movement of particles from lower horizons to the surface by ants and termites aids in mixing the organic and mineral fractions of the soil. The feces of arthropods are the basis for the formation of soil aggregates and humus, which physically stabilize the soil and increase its capacity to store nutrients.

  14. Food choice of Antarctic soil arthropods clarified by stable isotope signatures

    NARCIS (Netherlands)

    Bokhorst, S.F.; Ronfort, C.; Huiskes, A.H.L.; Convey, P.; Aerts, R.A.M.

    2007-01-01

    Antarctic soil ecosystems are amongst the most simplified on Earth and include only few soil arthropod species, generally believed to be opportunistic omnivorous feeders. Using stable isotopic analyses, we investigated the food choice of two common and widely distributed Antarctic soil arthropod

  15. Richness and composition of gall-inducing arthropods at Coiba National Park, Panama

    OpenAIRE

    Nieves-Aldrey, José Luis; Enrique Medianero, Alicia Ibáñez

    2008-01-01

    Interest in studying galls and their arthropods inducers has been growing rapidly in the last two decades. However, the Neotropical region is probably the least studied region for gall-inducing arthropods. A study of the richness and composition of gall-inducing arthropods was carried out at Coiba National Park in the Republic of Panama. Field data come from samples obtained between August 1997 and September 1999, with three (two-week long) more intensive samplings. Seventeen sites, represent...

  16. Chikungunya virus-like particle vaccine

    NARCIS (Netherlands)

    Metz, S.W.H.

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus (family Togaviridae) and is the causative agent of chikungunya fever. This disease is characterised by the sudden onset of high fever and long-lasting arthritic disease. First identified in Tanzania in 1952,

  17. DNA Microarray Analysis of Human Monocytes Early Response Genes upon Infection with Rickettsia rickettsii

    National Research Council Canada - National Science Library

    Chao, Chien-Chung

    2004-01-01

    Rickettsia are arthropod-borne bacteria which have caused diseases that have had a military impact by sweeping through troops and incapacitating them, such as the so called Trench Fevers of World War I and II...

  18. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  19. Influence of crop management practices on bean foliage arthropods.

    Science.gov (United States)

    Pereira, J L; Picanço, M C; Pereira, E J G; Silva, A A; Jakelaitis, A; Pereira, R R; Xavier, V M

    2010-12-01

    Crop management practices can affect the population of phytophagous pest species and beneficial arthropods with consequences for integrated pest management. In this study, we determined the effect of no-tillage and crop residue management on the arthropod community associated with the canopy of common beans (Phaseolus vulgaris L.). Abundance and species composition of herbivorous, detritivorous, predaceous and parasitoid arthropods were recorded during the growing seasons of 2003 and 2004 in Coimbra County, Minas Gerais State, Brazil. Arthropod diversity and guild composition were similar among crop management systems, but their abundance was higher under no-tillage relative to conventional cultivation and where residues from the preceding crop were maintained in the field. Thirty-four arthropod species were recorded, and those most representative of the impact of the crop management practices were Hypogastrura springtails, Empoasca kraemeri and Circulifer leafhoppers, and Solenopsis ants. The infestation levels of major insect-pests, especially leafhoppers (Hemiptera: Cicadellidae), was on average seven-fold lower under no-tillage with retention of crop residues relative to the conventional system with removal of residues, whereas the abundance of predatory ants (Hymenoptera: Formicidae) and springtails (Collembola: Hypogastruridae) were, respectively, about seven- and 15-fold higher in that treatment. Importantly, a significant trophic interaction among crop residues, detritivores, predators and herbivores was observed. Plots managed with no-tillage and retention of crop residues had the highest bean yield, while those with conventional cultivation and removal of the crop residues yielded significantly less beans. This research shows that cropping systems that include zero tillage and crop residue retention can reduce infestation by foliar insect-pests and increase abundance of predators and detritivores, thus having direct consequences for insect pest management.

  20. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses.

    Science.gov (United States)

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-29

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution.

  1. Behaviors Related to Mosquito-Borne Diseases among Different Ethnic Minority Groups along the China-Laos Border Areas

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2017-10-01

    Full Text Available Background: In China, mosquito-borne diseases are most common in the sub-tropical area of Yunnan province. The objective of this study was to examine behaviors related to mosquito-borne diseases in different ethnic minority groups and different socioeconomic groups of people living in this region. Methods: A stratified two-stage cluster sampling technique with probability proportional to size was used in Mengla County, Xishuangbanna Prefecture, Yunnan. Twelve villages were used to recruit adult (≥18 years old and eight schools were used for children (<18 years old. A questionnaire on behaviors and environment variables related to mosquito-borne diseases was devised. Results: Multiple correspondence analysis (MCA grouped 20 behaviors into three domains, namely, environmental condition, bed net use behaviors, and repellent use behaviors, respectively. The Han ethnicity had the lowest odds of rearing pigs, their odds being significantly lower than those of Yi and Yao. For bed net use, Dai and other ethnic minority groups were less likely to use bed nets compared to Yi and Yao. The odds of repellent use in the Han ethnicity was lower than in Yi, but higher than in Dai. The Dai group was the most likely ethnicity to use repellents. Farmers were at a higher risk for pig rearing and not using repellents. Education of less than primary school held the lowest odds of pig rearing. Those with low income were at a higher risk for not using bed nets and repellent except in pig rearing. Those with a small family size were at a lower risk for pig rearing. Conclusion: Different ethnic and socioeconomic groups in the study areas require different specific emphases for the prevention of mosquito-borne diseases.

  2. The function and evolution of Wnt genes in arthropods.

    Science.gov (United States)

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    Science.gov (United States)

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  4. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America.

    Directory of Open Access Journals (Sweden)

    Bethan V Purse

    Full Text Available The enormous global burden of vector-borne diseases disproportionately affects poor people in tropical, developing countries. Changes in vector-borne disease impacts are often linked to human modification of ecosystems as well as climate change. For tropical ecosystems, the health impacts of future environmental and developmental policy depend on how vector-borne disease risks trade off against other ecosystem services across heterogeneous landscapes. By linking future socio-economic and climate change pathways to dynamic land use models, this study is amongst the first to analyse and project impacts of both land use and climate change on continental-scale patterns in vector-borne diseases. Models were developed for cutaneous and visceral leishmaniasis in the Americas-ecologically complex sand fly borne infections linked to tropical forests and diverse wild and domestic mammal hosts. Both diseases were hypothesised to increase with available interface habitat between forest and agricultural or domestic habitats and with mammal biodiversity. However, landscape edge metrics were not important as predictors of leishmaniasis. Models including mammal richness were similar in accuracy and predicted disease extent to models containing only climate and land use predictors. Overall, climatic factors explained 80% and land use factors only 20% of the variance in past disease patterns. Both diseases, but especially cutaneous leishmaniasis, were associated with low seasonality in temperature and precipitation. Since such seasonality increases under future climate change, particularly under strong climate forcing, both diseases were predicted to contract in geographical extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst visceral leishmaniasis contracted slightly more under strong than weak management for carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was relatively insensitive to future

  5. Building a DNA barcode library of Alaska's non-marine arthropods.

    Science.gov (United States)

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  6. A global network for the control of snail-borne disease using satellite surveillance and geographic information systems.

    Science.gov (United States)

    Malone, J B; Bergquist, N R; Huh, O K; Bavia, M E; Bernardi, M; El Bahy, M M; Fuentes, M V; Kristensen, T K; McCarroll, J C; Yilma, J M; Zhou, X N

    2001-04-27

    At a team residency sponsored by the Rockefeller Foundation in Bellagio, Italy, 10-14 April 2000 an organizational plan was conceived to create a global network of collaborating health workers and earth scientists dedicated to the development of computer-based models that can be used for improved control programs for schistosomiasis and other snail-borne diseases of medical and veterinary importance. The models will be assembled using GIS methods, global climate model data, sensor data from earth observing satellites, disease prevalence data, the distribution and abundance of snail hosts, and digital maps of key environmental factors that affect development and propagation of snail-borne disease agents. A work plan was developed for research collaboration and data sharing, recruitment of new contributing researchers, and means of access of other medical scientists and national control program managers to GIS models that may be used for more effective control of snail-borne disease. Agreement was reached on the use of compatible GIS formats, software, methods and data resources, including the definition of a 'minimum medical database' to enable seamless incorporation of results from each regional GIS project into a global model. The collaboration plan calls for linking a 'central resource group' at the World Health Organization, the Food and Agriculture Organization, Louisiana State University and the Danish Bilharziasis Laboratory with regional GIS networks to be initiated in Eastern Africa, Southern Africa, West Africa, Latin America and Southern Asia. An Internet site, www.gnosisGIS.org, (GIS Network On Snail-borne Infections with special reference to Schistosomiasis), has been initiated to allow interaction of team members as a 'virtual research group'. When completed, the site will point users to a toolbox of common resources resident on computers at member organizations, provide assistance on routine use of GIS health maps in selected national disease control

  7. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoasucs destructans.

    Science.gov (United States)

    Vanderwolf, Karen J; Malloch, David; McAlpine, Donald F

    2016-04-22

    The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.

  8. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoascus destructans

    Science.gov (United States)

    Vanderwolf, Karen J.; Malloch, David; McAlpine, Donald F.

    2016-01-01

    The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve. PMID:27110827

  9. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoasucs destructans

    Directory of Open Access Journals (Sweden)

    Karen J. Vanderwolf

    2016-04-01

    Full Text Available The introduction of Pseudogymnoascus destructans (Pd to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans. Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.

  10. Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M; Manginell, Ronald P; Moorman, Matthew W; Xiao, Xiaoyin; Edwards, Thayne L.; Anderson, John Moses; Pfeifer, Kent Bryant; Branch, Darren W.; Wheeler, David Roger; Polsky, Ronen; Lopez, DeAnna M.; Ebel, Gregory D.; Prasad, Abhishek N.; Brozik, James A.; Rudolph, Angela R.; Wong, Lillian P.

    2013-09-01

    Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis of acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project.

  11. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  12. Vector-borne Infections

    Centers for Disease Control (CDC) Podcasts

    2011-04-18

    This podcast discusses emerging vector-borne pathogens, their role as prominent contributors to emerging infectious diseases, how they're spread, and the ineffectiveness of mosquito control methods.  Created: 4/18/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/27/2011.

  13. Climate change and vector-borne diseases: what are the implications for public health research and policy?

    OpenAIRE

    Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes

    2015-01-01

    Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address t...

  14. Towards an integrated approach in surveillance of vector-borne diseases in Europe

    Science.gov (United States)

    2011-01-01

    Vector borne disease (VBD) emergence is a complex and dynamic process. Interactions between multiple disciplines and responsible health and environmental authorities are often needed for an effective early warning, surveillance and control of vectors and the diseases they transmit. To fully appreciate this complexity, integrated knowledge about the human and the vector population is desirable. In the current paper, important parameters and terms of both public health and medical entomology are defined in order to establish a common language that facilitates collaboration between the two disciplines. Special focus is put on the different VBD contexts with respect to the current presence or absence of the disease, the pathogen and the vector in a given location. Depending on the context, whether a VBD is endemic or not, surveillance activities are required to assess disease burden or threat, respectively. Following a decision for action, surveillance activities continue to assess trends. PMID:21967706

  15. Bioinformatics in new generation flavivirus vaccines

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); P. Koraka (Penelope); B.E.E. Martina (Byron)

    2010-01-01

    textabstractFlavivirus infections are the most prevalent arthropod-borne infections world wide, often causing severe disease especially among children, the elderly, and the immunocompromised. In the absence of effective antiviral treatment, prevention through vaccination would greatly reduce

  16. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types

    Directory of Open Access Journals (Sweden)

    Johann G. Zaller

    2014-10-01

    Full Text Available Climate change scenarios for Central Europe predict less frequent but heavier rainfalls and longer drought periods during the growing season. This is expected to alter arthropods in agroecosystems that are important as biocontrol agents, herbivores or food for predators (e.g. farmland birds. In a lysimeter facility (totally 18 3-m2-plots, we experimentally tested the effects of long-term past vs. prognosticated future rainfall variations (15% increased rainfall per event, 25% more dry days according to regionalized climate change models from the Intergovernmental Panel on Climate Change (IPCC on aboveground arthropods in winter wheat (Triticum aestivum L. cultivated at three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem. Soil types were established 17 years and rainfall treatments one month before arthropod sampling; treatments were fully crossed and replicated three times. Aboveground arthropods were assessed by suction sampling, their mean abundances (± SD differed between April, May and June with 20 ± 3 m-2, 90 ± 35 m-2 and 289 ± 93 individuals m-2, respectively. Averaged across sampling dates, future rainfall reduced the abundance of spiders (Araneae, -47%, cicadas and leafhoppers (Auchenorrhyncha, -39%, beetles (Coleoptera, -52%, ground beetles (Carabidae, -41%, leaf beetles (Chrysomelidae, -64%, spring tails (Collembola, -58%, flies (Diptera, -73% and lacewings (Neuroptera, -73% but increased the abundance of snails (Gastropoda, +69%. Across sampling dates, soil types had no effects on arthropod abundances. Arthropod diversity was neither affected by rainfall nor soil types. Arthropod abundance was positively correlated with weed biomass for almost all taxa; abundance of Hemiptera and of total arthropods was positively correlated with weed density. These detrimental effects of future rainfall varieties on arthropod taxa in wheat fields can potentially alter arthropod-associated agroecosystem services.

  17. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Hansen, Immo A; Szuter, Elise M; Drake, Lisa L; Burnett, Denielle L; Attardo, Geoffrey M

    2014-10-01

    Aquaporins (AQPs) are proteins that span plasma membranes allowing the movement of water and small solutes into or out of cells. The type, expression levels and activity of AQPs play a major role in the relative permeability of each cell to water or other solutes. Research on arthropod AQPs has expanded in the last 10 years due to the completion of several arthropod genome projects and the increased availability of genetic information accessible through other resources such as de novo transcriptome assemblies. In particular, there has been significant advancement in elucidating the roles that AQPs serve in relation to the physiology of blood-feeding arthropods of medical importance. The focus of this review is upon the significance of AQPs in relation to hematophagy in arthropods. This will be accomplished via a narrative describing AQP functions during the life history of hematophagic arthropods that includes the following critical phases: (1) Saliva production necessary to blood feeding, (2) Intake and excretion of water during blood digestion, (3) Reproduction and egg development and (4) Off-host environmental stress tolerance. The concentration on these phases will highlight known vulnerabilities in the biology of hematophagic arthropods that could be used to develop novel control strategies as well as research topics that have yet to be examined.

  18. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages.

    Science.gov (United States)

    Jockusch, Elizabeth L

    2017-09-01

    Jointed, segmented appendages are a key innovation of arthropods. The subsequent diversification of these appendages, both along the body axis and across taxa, has contributed to the evolutionary success of arthropods. Both developmental and fossil data are informative for understanding how these transitions occurred. Comparative analyses help to pinpoint the developmental novelties that distinguish arthropod appendages from the lobopodous appendages of other panarthropods, and that distinguish different appendage types. The fossil record of stem group arthropods is diverse and preserves intermediate steps in these evolutionary transitions, including some that cannot be directly inferred based on extant taxa. These lead to hypotheses that can be tested with comparative developmental data, as well as to reinterpretations of developmental results. One developmental novelty of arthropods is the reiterated deployment of the joint formation network, which divides the appendages into segments. The fossil record raises questions about how this joint formation network was first deployed, given the contrasting morphologies of appendages in stem group versus extant arthropods. The fossil record supports a character tree for appendage diversification showing progressive individuation of appendages in an anterior-to-posterior sequence. However, to date, developmental evidence provides at best limited support for this character tree. Recent interpretations of the fossil record suggest that the labrum of extant arthropods is a greatly reduced protocerebral appendage pair; this hypothesis is consistent with the extensive shared developmental patterning of the labrum and jointed appendages. Reciprocal illumination from fossils and developmental patterning in a phylogenetic context both makes sense of some results and helps motivates questions for future research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative

  19. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-06-27

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Changes in soil temperature during prescribed burns impact local arthropod communities

    Science.gov (United States)

    Verble-Pearson, Robin; Perry, Gad

    2016-04-01

    As wildfires increase in severity and intensity globally, the development of methods to assess their effects on soils is of increasing importance. We examined soil arthropod communities in the southern United States and estimated their abundance, species richness, and composition in areas recently impacted by prescribed burns. In addition, we placed thermal probes in soils and correlated soil temperatures to arthropod responses. Longer fire residence times resulted in greater soil heating which resulted in decreases in arthropod abundance and species richness and shifts in species composition. We believe that these results may be useful in developing tools to assess fire effects on soil systems.

  1. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? The Path to a Dengue Vaccine: Learning from Human Natural Dengue Infection Studies and Vaccine Trials.

    Science.gov (United States)

    de Silva, Aravinda M; Harris, Eva

    2018-06-01

    Dengue virus (DENV) is the most common arthropod-borne viral disease of humans. Although effective vaccines exist against other flaviviral diseases like yellow fever and Japanese encephalitis, dengue vaccine development is complicated by the presence of four virus serotypes and the possibility of partial immunity enhancing dengue disease severity. Several live attenuated dengue vaccines are being tested in human clinical trials. Initial results are mixed, with variable efficacy depending on DENV serotype and previous DENV exposure. Here, we highlight recent discoveries about the human antibody response to DENV and propose guidelines for advancing development of safe and effective dengue vaccines. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases

    OpenAIRE

    Walter J. Tabachnick

    2016-01-01

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state?s mosquito control capabilities. Research with Florida?s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida?s east coast. This strategy, called Rotational Impoundment Management (RIM...

  3. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    Science.gov (United States)

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster

    Science.gov (United States)

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect transmitted infectious diseases. The fact that many viruses carry...

  5. Enhancing resource availability in agro-ecosystems for beneficial arthropods through floral provisioning

    Science.gov (United States)

    There has been a decline in beneficial arthropods (insects and spiders) including pollinators because of habitat destruction and intense management practices. Enhancing landscapes with additional floral and other non-crop habitats has the potential to attract pollinators, and predatory arthropods wh...

  6. Influence of hardwood midstory and pine species on pine bole arthropods

    Science.gov (United States)

    Christopher S. Collins; Richard N. Conner; Daniel Saenz

    2002-01-01

    Arthropod density on the boles of loblolly pines (Pinus taeda) was compared between a stand with and stand without hardwood midstory and between a stand of loblolly and shortleaf pines (P. echinata) in the Stephen E Austin Experimental Forest, Nacogdoches Co., Texas, USA from September 1993 through July 1994. Arthropod density was...

  7. Vector-Borne Infections in Tornado-Displaced and Owner-Relinquished Dogs in Oklahoma, USA.

    Science.gov (United States)

    Barrett, Anne W; Little, Susan E

    2016-06-01

    To determine the prevalence of infection with vector-borne agents in a cross-section of dogs from Oklahoma, where canine vector-borne diseases are common, blood samples were evaluated through serology and molecular analysis. Antibodies reactive to Ehrlichia spp., Rickettsia rickettsii, R. montanensis, and "R. amblyommii" were detected in 10.5% (11/105), 74.3% (78/105), 58.1% (61/105), and 55.2% (58/105) of dogs, respectively. Presence of spotted fever group Rickettsia spp. DNA was identified in 13.1% (8/61) of shelter dogs but not in any pet dogs (0/44). DNA of "R. amblyommii" was confirmed by sequencing, constituting the first report of this agent in a naturally infected dog. Antigen of Dirofilaria immitis was detected in 10.5% (11/105) and 16.2% (17/105) of samples before and after heat treatment, respectively. In total, 87.6% (92/105) of the dogs had evidence of infection with at least one vector-borne disease agent, confirming high risk of exposure to multiple vector-borne disease agents, several of which are zoonotic.

  8. Zika virus infection: Past and present of another emerging vector-borne disease.

    Science.gov (United States)

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  9. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases

    Czech Academy of Sciences Publication Activity Database

    de la Fuente, J.; Contreras, M.; Estrada-Peňa, A.; Cabezas Cruz, Alejandro

    2017-01-01

    Roč. 35, č. 38 (2017), s. 5089-5094 ISSN 0264-410X Institutional support: RVO:60077344 Keywords : tick * vaccine * immunology * tick-borne diseases * risk * omics Subject RIV: EC - Immunology OBOR OECD: Immunology Impact factor: 3.235, year: 2016

  10. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    Science.gov (United States)

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  11. The importance of being urgent: The impact of surveillance target and scale on mosquito-borne disease control

    Directory of Open Access Journals (Sweden)

    Samantha R. Schwab

    2018-06-01

    Full Text Available With the emergence or re-emergence of numerous mosquito-borne diseases in recent years, effective methods for emergency vector control responses are necessary to reduce human infections. Current vector control practices often vary significantly between different jurisdictions, and are executed independently and at different spatial scales. Various types of surveillance information (e.g. number of human infections or adult mosquitoes trigger the implementation of control measures, though the target and scale of surveillance vary locally. This patchy implementation of control measures likely alters the efficacy of control.We modeled six different scenarios, with larval mosquito control occurring in response to surveillance data of different types and at different scales (e.g. across the landscape or in each patch. Our results indicate that: earlier application of larvicide after an escalation of disease risk achieves much greater reductions in human infections than later control implementation; uniform control across the landscape provides better outbreak mitigation than patchy control application; and different types of surveillance data require different levels of sensitivity in their collection to effectively inform control measures. Our simulations also demonstrate a potential logical fallacy of reactive, surveillance-driven vector control: measures stop being implemented as soon as they are deemed effective. This false sense of security leads to patchier control efforts that will do little to curb the size of future vector-borne disease outbreaks. More investment should be placed in collecting high quality information that can trigger early and uniform implementation, while researchers work to discover more informative metrics of human risk to trigger more effective control. Keywords: Zika control, Epidemiological surveillance, Disease surveillance, Mosquito control, Vector-borne disease control, Epidemiological modeling

  12. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-08-10

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries.

  13. EFFECT OF WATER BORNE DISEASES ON INDIAN ECONOMY: A COST- BENEFIT ANALYSIS

    Directory of Open Access Journals (Sweden)

    PATHAK Hemant

    2015-06-01

    Full Text Available This paper expressed the effect of water borne diseases, risk assessment and potential consequences on Indian economy. In Indian sub-continent higher burden of waterborne diseases due to a deteriorating public drinking water distribution system, increasing numbers of unregulated private water systems, and a limited, passive waterborne disease surveillance system. This shows that degraded water quality can contribute to water scarcity as it limits its availability for both human use and for the ecosystem. It isn’t cheap to treat water so that it is safe to drink. But it also isn’t cheap to treat everyone who becomes ill during a waterborne illness outbreak. As the level of protection becomes more effective, the cost of water treatment generally rises, as well. Unfortunately, government agencies generally attempt to minimize costs while the health effects have not been properly assessed.

  14. [Lyme disease--clinical manifestations and treatment].

    Science.gov (United States)

    Stock, Ingo

    2016-05-01

    Lyme disease (Lyme borreliosis) is a systemic infectious disease that can present in a variety of clinical manifestations. The disease is caused by a group of spirochaetes--Borrelia burgdorferi sensu lato or Lyme borrelia--that are transmitted to humans by the bite of Ixodes ticks. Lyme disease is the most common arthropode-borne infectious disease in many European countries including Germany. Early localized infection is typically manifested by an erythema migrans skin lesion, in rarer cases as a borrelial lymphocytoma. The most common early disseminated manifestation is (early) neuroborreliosis. In adults, neuroborreliosis appears typically as meningoradiculoneuritis. Neuroborreliosis in children, however, is typically manifested by meningitis. In addition, multiple erythema migrans lesions and Lyme carditis occur relatively frequently. The most common manifestation oflate Lyme disease is Lyme arthritis. Early manifestations (and usually also late manifestations) of Lyme disease can be treated successfully by application of suitable antibacterial agents. For the treatment of Lyme disease, doxycycline, certain penicillins such as amoxicillin and some cephalosporins (ceftriaxone, cefotaxime, cefuroxime axetil) are recommended in current guidelines. A major challenge is the treatment of chronic, non-specific disorders, i. e., posttreatment Lyme disease syndrome and "chronic Lyme disease". Prevention of Lyme disease is mainly accomplished by protecting against tick bites. Prophylactic administration of doxycycline after tick bites is generally not recommended in Germany. There is no vaccine available for human beings.

  15. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus

    NARCIS (Netherlands)

    Palatini, U.; Miesen, P.; Carballar-Lejarazu, R.; Ometto, L.; Rizzo, E.; Tu, Z.; Rij, R.P. van; Bonizzoni, M.

    2017-01-01

    BACKGROUND: Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of

  16. Cross-sectional survey of health management and prevalence of vector-borne diseases, endoparasites and ectoparasites in Samoan dogs.

    Science.gov (United States)

    Carslake, R J; Hill, K E; Sjölander, K; Hii, S F; Prattley, D; Acke, E

    2017-12-01

    To determine the prevalence of selected canine vector-borne diseases (Leishmania infantum, Anaplasma spp., Ehrlichia canis, Borrelia burgdorferi and Dirofilaria immitis) and endo- and ectoparasites in Samoan dogs presenting for surgical sterilisation and to report on the general health management of the dogs. This study was a prospective serological cross-sectional survey. Management data were obtained for 242 dogs by interview with their owners. Blood samples were collected from 237 dogs and screened for the canine vector-borne diseases using point-of-care qualitative ELISA assays. Anaplasma spp. positive samples were screened by PCR and sequenced for species identification. Rectal faecal samples were collected from 204 dogs for faecal flotation and immunofluorescent antibody tests were performed for Giardia and Cryptosporidium spp. on a subset of 93 faecal samples. The skin and coat of 221 dogs were examined for presence of ectoparasites. The D. immitis antigen was detected in 46.8% (111/237) of dogs. Seroprevalence of Anaplasma spp. was 8.4% (20/237); A. platys was confirmed by PCR. Prevalence of hookworm was 92.6% (185/205) and Giardia was 29.0% (27/93). Ectoparasites were detected on 210/221 (95.0%) of dogs examined and 228/242 dogs (94.2%) had previously never received any preventative medication. There was a very high prevalence of D. immitis, hookworm and external parasites in Samoan dogs, and prophylactic medication is rarely administered. This is the first report confirming A. platys in Samoa and the South Pacific islands. The public health implications of poor management of the dogs should be considered and investigated further. © 2017 Australian Veterinary Association.

  17. Cascading effect of economic globalization on human risks of scrub typhus and tick-borne rickettsial diseases.

    Science.gov (United States)

    Kuo, Chi-Chien; Huang, Jing-Lun; Shu, Pei-Yun; Lee, Pei-Lung; Kelt, Douglas A; Wang, Hsi-Chieh

    2012-09-01

    The increase in global travel and trade has facilitated the dissemination of disease vectors. Globalization can also indirectly affect vector-borne diseases through the liberalization of cross-border trade, which has far-reaching, worldwide effects on agricultural practices and may in turn influence vectors through the modification of the ecological landscape. While the cascading effect of economic globalization on vector-borne diseases, sometimes acting synergistically with regional agricultural policy, could be substantial and have significant economic, agricultural, and public health implications, research into this remains very limited. We evaluated how abandonment of rice paddies in Taiwan after joining the World Trade Organization, along with periodic plowing, an agricultural policy to reduce farm pests in abandoned fields can unexpectedly influence risks to diseases transmitted by ticks and chiggers (larval trombiculid mites), which we collected from their small-mammal hosts. Sampling was limited to abandoned (fallow) and plowed fields due to the challenge of trapping small mammals in flooded rice paddies. Striped field mice (Apodemus agrarius) are the main hosts for both vectors. They harbored six times more ticks and three times more chiggers in fallow than in plowed plots. The proportion of ticks infected with Rickettsia spp. (etiologic agent of spotted fever) was three times higher in fallow plots, while that of Orientia tsutsugamushi (scrub typhus) in chiggers was similar in both treatments. Fallow plots had more ground cover and higher vegetation than plowed ones. Moreover, ticks and chiggers in both field types were dominated by species known to infest humans. Because ticks and chiggers should exhibit very low survival in flooded rice paddies, we propose that farm abandonment in Taiwan, driven by globalization, may have inadvertently led to increased risks of spotted fever and scrub typhus. However, periodic plowing can unintentionally mitigate vector

  18. Modeling the spread of vector-borne diseases on bipartite networks.

    Directory of Open Access Journals (Sweden)

    Donal Bisanzio

    Full Text Available BACKGROUND: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network. METHODOLOGY/PRINCIPAL FINDINGS: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution. CONCLUSIONS/SIGNIFICANCE: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.

  19. Predator localization by sensory hairs in free-swimming arthropods

    Science.gov (United States)

    Takagi, Daisuke; Hartline, Daniel K.

    2016-11-01

    Free-swimming arthropods such as copepods rely on minute deflections of cuticular hairs (or "setae") for local flow sensing that is needed to detect food and escape from predators. We present a simple hydrodynamic model to analyze how the location, speed, and size of an approaching distant predator can be inferred from local flow deformation alone. The model informs suitable strategies of escape from an imminent predatory attack. The sensory capabilities of aquatic arthropods could inspire the design of flow sensors in technological applications.

  20. Arthropod pattern theory and Cambrian trilobites

    NARCIS (Netherlands)

    Sundberg, Frederick A.

    1995-01-01

    An analysis of duplomere (= segment) distribution within the cephalon, thorax, and pygidium of Cambrian trilobites was undertaken to determine if the Arthropod Pattern Theory (APT) proposed by Schram & Emerson (1991) applies to Cambrian trilobites. The boundary of the cephalon/thorax occurs within

  1. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  2. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  3. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  4. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  5. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  6. Watershed clearcutting and canopy arthropods

    Science.gov (United States)

    Barbara C. Reynolds; Timothy D. Schowalter; D.A. Crossley

    2014-01-01

    The southern Appalachian forests are home to myriad species of insects, spiders, and other arthropods. There are more than 4,000 invertebrate species know in the Great Smoky Mountains National Park , and easily a thousand insect species in the Coweeta basin alone. The forest environment, with its favorable microclimates and structural diversity, offers a large variety...

  7. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Science.gov (United States)

    Farrell, Kelly Anne; Harpole, W Stanley; Stein, Claudia; Suding, Katharine N; Borer, Elizabeth T

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  8. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  9. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    Science.gov (United States)

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.

  10. Effects of weed harrowing frequency on beneficial arthropods, plants and crop yield

    DEFF Research Database (Denmark)

    Navntoft, Søren; Kristensen, Kristian; Johnsen, Ib

    2016-01-01

    * Weed harrowing is an alternative to herbicides but it may have negative effects on epigaeic arthropods. We assessed the effects of frequent (four) versus two harrowings during the growing season on the density and diversity of generalist arthropods and the weed flora. Collection by flooding was...

  11. LiDAR-based Prediction of Arthropod Abundance at the Southern Slopes of Mt. Kilimanjaro

    Science.gov (United States)

    Ziegler, Alice

    2017-04-01

    LiDAR (Light Detection And Ranging) is a remote sensing technology that offers high-resolution three-dimensional information about the covered area. These three-dimensional datasets were used in this work to derive structural parameters of the vegetation to predict the abundance of eight different arthropod assemblages with several models. For the model training of each arthropod assemblage, different versions (extent, filters) of the LiDAR datasets were provided and evaluated. Furthermore the importance of each of the LiDAR-derived structural parameters for each model was calculated. The best input dataset and structural parameters were used for the prediction of the abundance of arthropod assemblages. The analyses of the prediction results across seven different landuse types and the eight arthropod assemblages exposed, that for the arthropod assemblages, LiDAR-based predictions were in general best feasible for "Orthoptera" (average R2 (coefficient of determination) over all landuses: 0.14), even though the predictions for the other arthropod assemblages reached values of the same magnitude. It was also found that the landuse type "disturbed forest" showed the best results (average R2 over all assemblages: 0.20), whereas "home garden" was the least predictable (average R2 over all assemblages: 0.04). Differenciated by arthropod-landuse pairs, the results showed distinct differences and the R2 values diverged clearly. It was shown, that when model settings were optimized for only one arthropod taxa, values for R2 could reach values up to 0.55 ("Orthoptera" in "disturbed forest"). The analysis of the importance of each structural parameter for the prediction revealed that about one third of the 18 used parameters were always among the most important ones for the prediction of all assemblages. This strong ranking of parameters implied that focus for further research needs to be put on the selection of predictor variables.

  12. Soil and Foliar Arthropod Abundance and Diversity in Five Cropping Systems in the Coastal Plains of North Carolina.

    Science.gov (United States)

    Adams, Paul R; Orr, David B; Arellano, Consuelo; Cardoza, Yasmin J

    2017-08-01

    Soil and foliar arthropod populations in agricultural settings respond to environmental disturbance and degradation, impacting functional biodiversity in agroecosystems. The objective of this study was to evaluate system level management effects on soil and foliar arthropod abundance and diversity in corn and soybean. Our field experiment was a completely randomized block design with three replicates for five farming systems which included: Conventional clean till, conventional long rotation, conventional no-till, organic clean till, and organic reduced till. Soil arthropod sampling was accomplished by pitfall trapping. Foliar arthropod sampling was accomplished by scouting corn and sweep netting soybean. Overall soil arthropod abundance was significantly impacted by cropping in corn and for foliar arthropods in soybeans. Conventional long rotation and organic clean till systems were highest in overall soil arthropod abundance for corn while organic reduced till systems exceeded all other systems for overall foliar arthropod abundance in soybeans. Foliar arthropod abundance over sampling weeks was significantly impacted by cropping system and is suspected to be the result of in-field weed and cover crop cultivation practices. This suggests that the sum of management practices within production systems impact soil and foliar arthropod abundance and diversity and that the effects of these systems are dynamic over the cropping season. Changes in diversity may be explained by weed management practices as sources of disturbance and reduced arthropod refuges via weed reduction. Furthermore, our results suggest agricultural systems lower in management intensity, whether due to organic practices or reduced levels of disturbance, foster greater arthropod diversity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Vector-borne disease surveillance in livestock populations: a critical review of literature recommendations and implemented surveillance (BTV-8) in five European countries

    DEFF Research Database (Denmark)

    Dórea, Fernanda C.; Elbers, Armin R.W.; Hendrikx, Pascal

    2016-01-01

    Preparedness against vector-borne threats depends on the existence of a long-term, sustainable surveillance of vector-borne disease and their relevant vectors. This work reviewed the availability of such surveillance systems in five European countries (Denmark, France, The Netherlands, Sweden and...

  14. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  15. Relationship between land use pattern and the structure and diversity of soil meso-micro arthropod community.

    Science.gov (United States)

    Zhang, Limin; Zhang, Xueping; Cui, Wei

    2014-05-01

    Soil arthropod communities can provide valuable information regarding the impacts of human disturbances on ecosystem structure. Our study evaluated the structure, composition and diversity of soil meso-micro arthropod communities, in six different vegetation types and assessed the impacts of human activity. A completely randomized design, including 3 replicates from 6 sites (mowing steppe, natural grassland, severe degradation grassland, farmland, artificial shelter forest, and wetland) was used. Soil samples from the depth of 0 to 20 cm were collected during May, July, and September 2007. Soil meso-micro arthropod were separated using the Tullgren funnels method, and were identified and counted. Soil pH value, organic matter, and total nitrogen were measured in topsoil (0-20 cm) from each site. A total of 5,602 soil meso-micro arthropod individuals were collected, representing 4 classes, 14 orders, and 57 families. Most soil arthropods were widely distributed; however, some species appeared to be influenced by environment variables, and might serve as bioindicators of adverse human impacts. Canonical correspondence analysis indicated the soil arthropod distribution in the severely degraded grassland, mowing steppe, farmland, and shelter forest differed from the natural grassland. Arthropod density and diversity were greatest in May, and the forestland community was the most stable. Because of the vital role soil arthropods have in maintaining a healthy ecosystem, mechanisms to maintain their abundance and diversity should be further evaluated.

  16. The status of tularemia in Europe in a one-health context: a review.

    Science.gov (United States)

    Hestvik, G; Warns-Petit, E; Smith, L A; Fox, N J; Uhlhorn, H; Artois, M; Hannant, D; Hutchings, M R; Mattsson, R; Yon, L; Gavier-Widen, D

    2015-07-01

    The bacterium Francisella tularensis causes the vector-borne zoonotic disease tularemia, and may infect a wide range of hosts including invertebrates, mammals and birds. Transmission to humans occurs through contact with infected animals or contaminated environments, or through arthropod vectors. Tularemia has a broad geographical distribution, and there is evidence which suggests local emergence or re-emergence of this disease in Europe. This review was developed to provide an update on the geographical distribution of F. tularensis in humans, wildlife, domestic animals and vector species, to identify potential public health hazards, and to characterize the epidemiology of tularemia in Europe. Information was collated on cases in humans, domestic animals and wildlife, and on reports of detection of the bacterium in arthropod vectors, from 38 European countries for the period 1992-2012. Multiple international databases on human and animal health were consulted, as well as published reports in the literature. Tularemia is a disease of complex epidemiology that is challenging to understand and therefore to control. Many aspects of this disease remain poorly understood. Better understanding is needed of the epidemiological role of animal hosts, potential vectors, mechanisms of maintenance in the different ecosystems, and routes of transmission of the disease.

  17. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission

    Directory of Open Access Journals (Sweden)

    Guégan Jean-François

    2008-10-01

    Full Text Available Abstract Background Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Results Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Conclusion Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.

  18. Phoretic Arthropods of the Red Imported Fire Ant in Central Louisiana.

    Science.gov (United States)

    John Moser; Stacy Blomquist

    2011-01-01

    More than 4,665 phoretic arthropods comprising29species were collected from alates of the red imported fire ant, Solenopsis inoicta Buren, preparing to fly from nests in Pineville, LA. A wide variety of taxonomic groups were represented, including two insect and 17 mite families. Most arthropods fell into two classes: 1) those that may be truly phoretic with more than...

  19. The Evolution of Arthropod Body Plans: Integrating Phylogeny, Fossils, and Development-An Introduction to the Symposium.

    Science.gov (United States)

    Chipman, Ariel D; Erwin, Douglas H

    2017-09-01

    The last few years have seen a significant increase in the amount of data we have about the evolution of the arthropod body plan. This has come mainly from three separate sources: a new consensus and improved resolution of arthropod phylogeny, based largely on new phylogenomic analyses; a wealth of new early arthropod fossils from a number of Cambrian localities with excellent preservation, as well as a renewed analysis of some older fossils; and developmental data from a range of model and non-model pan-arthropod species that shed light on the developmental origins and homologies of key arthropod traits. However, there has been relatively little synthesis among these different data sources, and the three communities studying them have little overlap. The symposium "The Evolution of Arthropod Body Plans-Integrating Phylogeny, Fossils and Development" brought together leading researchers in these three disciplines and made a significant contribution to the emerging synthesis of arthropod evolution, which will help advance the field and will be useful for years to come. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  1. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    Science.gov (United States)

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  2. Evolution in plant populations as a driver of ecological changes in arthropod communities

    Science.gov (United States)

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  3. Small risk of developing symptomatic tick-borne diseases following a tick bite in the Netherlands

    Directory of Open Access Journals (Sweden)

    Hofhuis Agnetha

    2011-02-01

    Full Text Available Abstract Background In The Netherlands, the incidence of Lyme borreliosis is on the rise. Besides its causative agent, Borrelia burgdorferi s.l., other potential pathogens like Rickettsia, Babesia and Ehrlichia species are present in Ixodes ricinus ticks. The risk of disease associated with these microorganisms after tick-bites remains, however, largely unclear. A prospective study was performed to investigate how many persons with tick-bites develop localized or systemic symptoms and whether these are associated with tick-borne microorganisms. Results In total, 297 Ixodes ricinus ticks were collected from 246 study participants who consulted a general practitioner on the island of Ameland for tick bites. Ticks were subjected to PCR to detect DNA of Borrelia burgdorferi s.l., Rickettsia spp., Babesia spp. or Ehrlichia/Anaplasma spp.. Sixteen percent of the collected ticks were positive for Borrelia burgdorferi s.l., 19% for Rickettsia spp., 12% for Ehrlichia/Anaplasma spp. and 10% for Babesia spp.. At least six months after the tick bite, study participants were interviewed on symptoms by means of a standard questionnaire. 14 out of 193 participants (8.3% reported reddening at the bite site and 6 participants (4.1% reported systemic symptoms. No association between symptoms and tick-borne microorganisms was found. Attachment duration ≥24 h was positively associated with reddening at the bite site and systemic symptoms. Using logistic regression techniques, reddening was positively correlated with presence of Borrelia afzelii, and having 'any symptoms' was positively associated with attachment duration. Conclusion The risk of contracting acute Lyme borreliosis, rickettsiosis, babesiosis or ehrlichiosis from a single tick bite was

  4. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Science.gov (United States)

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  5. Zoonotic aspects of vector-borne infections.

    Science.gov (United States)

    Failloux, A-B; Moutailler, S

    2015-04-01

    Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.

  6. Fauna of ground-dwelling arthropods in vineyards of Zadar County (Croatia

    Directory of Open Access Journals (Sweden)

    Kristijan Franin

    2016-12-01

    Full Text Available Farming practices as well as land-use management have a great impact on biodiversity and composition of ground-dwelling arthropods. In this study, abundance and diversity of spiders and epigeic soil insects in three vineyards in Zadar County (Croatia were researched. In each vineyard 16 pitfall traps were placed, 4 in one row at the distance of 3 m. Samples were taken every fifteen days from the beginning of May till the end of October in 2014. A total of 469 individuals belonging to 6 orders and 23 families were collected. Significant differences were found among arthropod orders. The most abundant taxonomic group was Hymenoptera (38.8%, followed by Coleoptera (31.98% and Araneae (27.93%. The highest number of specimens (232 was recorded in the integrated vineyard, whereas in the conventional vineyard on karst only 63 individuals were found. However, these results showed significant differences in arthropod assemblage between integrated and conventional vineyards. Richness and diversity (Shannon Diversity Index were highest in the integrated vineyard (2.36 as opposed to the conventional vineyard Zaton (2.23. Our results confirmed the importance of ground cover, in the particular weeds, on arthropod abundance and diversity.

  7. Protection of Military Personnel Against Vector-Borne Diseases: A Review of Collaborative Work of the Australian and US Military Over the Last 30 Years.

    Science.gov (United States)

    Frances, Stephen P; Edstein, Michael D; Debboun, Mustapha; Shanks, G Dennis

    2016-01-01

    Australian and US military medical services have collaborated since World War II to minimize vector-borne diseases such as malaria, dengue, and scrub typhus. In this review, collaboration over the last 30 years is discussed. The collaborative projects and exchange scientist programs have resulted in mutually beneficial outcomes in the fields of drug development and personal protection measures against vector-borne diseases.

  8. Arthropod evolution and development: recent insights from chelicerates and myriapods.

    Science.gov (United States)

    Leite, Daniel J; McGregor, Alistair P

    2016-08-01

    Research on arthropod genetics and development has added much to our understanding of animal evolution. While this work has mainly focused on insects, a growing body of research on the less studied myriapods and chelicerates is providing important new insights into arthropod genomics and development. Multiple chelicerate lineages have a high incidence of gene duplication, which is suggestive of large-scale and even whole genome duplications. Furthermore, the duplication and divergence of genes is associated with the evolution of appendage morphology and other phenotypes in chelicerates and myriapods. Recent studies of these arthropods have also helped to understand the evolution and development of segmented bodies. Further research on chelicerate and myriapod models as well as species from other orders of these subphyla has great potential to expand our understanding of the evolution of animal genomes and development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluation of haemato-biochemical and oxidative indices in naturally infected concomitant tick borne intracellular diseases in dogs

    Directory of Open Access Journals (Sweden)

    Kalyan Sarma

    2015-01-01

    Full Text Available Objective: To explore haemato-biochemical and oxidative stress indices due to concomitant tick borne intracellular diseases in dogs presented at Referral Veterinary Polyclinic, Indian Veterinary Research Institute, Bareilly during May 2010 to May 2012. Methods: Microscopy of Giemsa blood smear and ELISA test (SNAP 4D伊 were carried out in suspected cases to confirm haemo-parasitic infection. Blood and serum samples were analyzed for oxidative stress indices and haemato-biochemical changes. All the ailing conditions were recorded to investigate the clinical pattern of concomitant tick borne diseases. Ultrasonographic study was carried out to obtain the hepatic involvement. Results: Examination of 3 650 dogs revealed that 2.77% dog were positive for various tick borne diseases, out of which 21.78% were with concomitant infection. Clinical symptoms were noted with overall mean clinical score of 9.95依0.30. Ultrasonographic examination revealed hepatomegaly, distension of gall bladder, and ascites. Haemato-biochemical evaluation confirmed anaemia, leucopenia, thrombocytopenia, hypoproteinemia, hypoalbuminemia, hyperglobulinemia and hyperbilirubinemia with increased serum alanine amino transferase, alkaline phosphatase and gamma-glutamyl transpeptidase in concomitant infected dogs. The lipid peroxidation level of concomitant infection was significantly higher (P<0.05 than healthy group whereas superoxide dismutase, glutathione-reduced and catalase activity in concomitant infected group were decreased. Conclusions: The severity of infection was more pronounced in dogs harboring Ehrlichia, Babesia and Hepatozoon and the oxidative stress may have a pathophysiological role in concomitant infection in dogs.

  10. Role of antibodies in controlling dengue virus infection

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Wilschut, Jan C.; Smit, Jolanda M.

    The incidence and disease burden of arthropod-borne flavivirus infections have dramatically increased during the last decades due to major societal and economic changes, including massive urbanization, lack of vector control, travel, and international trade. Specifically, in the case of dengue virus

  11. The Dutch strain of BTV-8 in white-tailed deer

    Science.gov (United States)

    Bluetongue virus (BTV), family Reoviridae, genus Orbivirus, contains ten double stranded RNA segments encoding at least ten viral proteins. Bluetongue (BT) is an arthropod-borne disease; transmission to ruminants, including cattle, sheep, goats, and deer species by bites of species of Culicoides. In...

  12. Sero-epidemiological survey on bovine tick-borne diseases in the Lesser Antilles

    International Nuclear Information System (INIS)

    Camus, E.; Maran, M.; Montenegro-James, S.; Accipe, A.

    1998-01-01

    As part of a tick-borne disease control programme in the Lesser Antilles, studies were undertaken to determine the prevalence of cowdriosis, babesiosis and anaplasmosis in an effort to determine what the impact of tick eradication would be. The epidemiological situation for bovine babesiosis and anaplasmosis is unstable in all the islands of the Lesser Antilles, but the clinical cases are only recorded in imported breeds, which represent less than 5% of the cattle population. The native cattle population react as if naturally resistant. When the A. variegatum tick eradication campaign begins, it will be necessary, by the end of the acaricide treatment regime, to immunize all the imported cattle born during that period, and possibly all of the seronegative imported cattle already on the islands. Both Antigua and Guadeloupe have a long history of infestation with the tick and both have experienced clinical cases of cowdriosis. On the other islands, less than 6% of the sera were positive and this correlates well also with an apparent absence of clinical cases of cowdriosis. (author)

  13. Removal of the microorganisms from water. Part 1: Introduction, water-borne disease and the microorganisms involved.

    CSIR Research Space (South Africa)

    Duuren, FR

    1967-01-01

    Full Text Available coccosis Infectious hepatitis Lepto. spirosis Paratyphoid fever Poliomye? lids Schistoso miasis Shigellosis Taeniasis and Cysticer cosis Tularemia Typhoid fever Fun gal Wide clinical F. nte nc Intestinal Sub cutaneous Liver... in the spread (this) disease. Forward strides taken since, in sanitation and water ply practice, have all but eliminated the incidence of ~h major water-borne diseases as cholera and typhoid er in the western world. The improvements which ye been effected...

  14. Determinants of successful arthropod eradication programs

    Science.gov (United States)

    Patrick C. ​Tobin; John M. Kean; David Maxwell Suckling; Deborah G. McCullough; Daniel A. Herms; Lloyd D. Stringer

    2014-01-01

    Despite substantial increases in public awareness and biosecurity systems, introductions of non-native arthropods remain an unwelcomed consequence of escalating rates of international trade and travel. Detection of an established but unwanted nonnative organism can elicit a range of responses, including implementation of an eradication program. Previous studies have...

  15. Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, Aafke M. [Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)], E-mail: a.schipper@science.ru.nl; Wijnhoven, Sander [Centre for Sustainable Management of Resources, Institute for Science, Innovation and Society, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, Monitor Taskforce, P.O. Box 140, 4400 AC Yerseke (Netherlands); Leuven, Rob S.E.W.; Ragas, Ad M.J.; Jan Hendriks, A. [Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)

    2008-01-15

    Soil metal concentrations, inundation characteristics and abundances of 14 arthropod taxa were investigated in a moderately contaminated lowland floodplain along the Rhine River and compared to the hinterland. Internal metal concentrations were determined for the orders of Coleoptera (beetles) and Araneida (spiders) and were related to soil concentrations. The floodplain was characterized by larger arthropod abundance than the hinterland, in spite of recurrent inundations and higher soil metal concentrations. Most arthropod taxa showed increasing abundance with decreasing distance to the river channel and increasing average inundation duration. For Cd, Cu, Pb and Zn, significant relations were found between arthropod concentrations and concentrations in soil. Significant relations were few but positive, indicating that increasing soil concentrations result in increasing body burdens in arthropods. For arthropod-eating vertebrates, these results might imply that larger prey availability in the floodplain coincides with higher metal concentrations in prey, possibly leading to increased exposure to metal contamination. - Recurrent floodplain inundations affect terrestrial arthropod numbers and metal contamination levels.

  16. Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River

    International Nuclear Information System (INIS)

    Schipper, Aafke M.; Wijnhoven, Sander; Leuven, Rob S.E.W.; Ragas, Ad M.J.; Jan Hendriks, A.

    2008-01-01

    Soil metal concentrations, inundation characteristics and abundances of 14 arthropod taxa were investigated in a moderately contaminated lowland floodplain along the Rhine River and compared to the hinterland. Internal metal concentrations were determined for the orders of Coleoptera (beetles) and Araneida (spiders) and were related to soil concentrations. The floodplain was characterized by larger arthropod abundance than the hinterland, in spite of recurrent inundations and higher soil metal concentrations. Most arthropod taxa showed increasing abundance with decreasing distance to the river channel and increasing average inundation duration. For Cd, Cu, Pb and Zn, significant relations were found between arthropod concentrations and concentrations in soil. Significant relations were few but positive, indicating that increasing soil concentrations result in increasing body burdens in arthropods. For arthropod-eating vertebrates, these results might imply that larger prey availability in the floodplain coincides with higher metal concentrations in prey, possibly leading to increased exposure to metal contamination. - Recurrent floodplain inundations affect terrestrial arthropod numbers and metal contamination levels

  17. Response to an emerging vector-borne disease: surveillance and preparedness for Schmallenberg virus.

    Science.gov (United States)

    Roberts, H C; Elbers, A R W; Conraths, F J; Holsteg, M; Hoereth-Boentgen, D; Gethmann, J; van Schaik, G

    2014-10-15

    Surveillance for new emerging animal diseases from a European perspective is complicated by the non-harmonised approach across Member States for data capture, recording livestock populations and case definitions. In the summer of 2011, a new vector-borne Orthobunyavirus emerged in Northern Europe and for the first time, a coordinated approach to horizon scanning, risk communication, data and diagnostic test sharing allowed EU Member States to develop early predictions of the disease, its impact and risk management options. There are many different systems in place across the EU for syndromic and scanning surveillance and the differences in these systems have presented epidemiologists and risk assessors with concerns about their combined use in early identification of an emerging disease. The emergence of a new disease always will raise challenging issues around lack of capability and lack of knowledge; however, Schmallenberg virus (SBV) gave veterinary authorities an additional complex problem: the infection caused few clinical signs in adult animals, with no indication of the possible source and little evidence about its spread or means of transmission. This paper documents the different systems in place in some of the countries (Germany and the Netherlands) which detected disease initially and predicted its spread (to the UK) and how information sharing helped to inform early warning and risk assessment for Member States. Microarray technology was used to identify SBV as a new pathogen and data from the automated cattle milking systems coupled with farmer-derived data on reporting non-specific clinical signs gave the first indications of a widespread issue while the UK used meteorological modelling to map disease incursion. The coordinating role of both EFSA and the European Commission were vital as are the opportunities presented by web-based publishing for disseminating information to industry and the public. The future of detecting emerging disease looks more

  18. Noninsect Arthropods in Popular Music

    Directory of Open Access Journals (Sweden)

    Joseph R. Coelho

    2011-05-01

    Full Text Available The occurrence of noninsect arthropods in popular music was examined in order to explore human attitudes toward these species, especially as compared to insects. Crustaceans were the most commonly referenced taxonomic group in artist names, album titles and cover art, followed by spiders and scorpions. The surprising prevalence of crustaceans may be related to the palatability of many of the species. Spiders and scorpions were primarily used for shock value, as well as totemic qualities of strength and ferocity. Spiders were the most abundant group among song titles, perhaps because of their familiarity to the general public. Three noninsect arthropod album titles were found from the early 1970s, then none appear until 1990. Older albums are difficult to find unless they are quite popular, and the resurgence of albums coincides with the rise of the internet. After 1990, issuance of such albums increased approximately linearly. Giant and chimeric album covers were the most common of themes, indicating the use of these animals to inspire fear and surprise. The lyrics of select songs are presented to illustrate the diversity of sentiments present, from camp spookiness to edibility.

  19. Noninsect Arthropods in Popular Music.

    Science.gov (United States)

    Coelho, Joseph R

    2011-05-26

    The occurrence of noninsect arthropods in popular music was examined in order to explore human attitudes toward these species, especially as compared to insects. Crustaceans were the most commonly referenced taxonomic group in artist names, album titles and cover art, followed by spiders and scorpions. The surprising prevalence of crustaceans may be related to the palatability of many of the species. Spiders and scorpions were primarily used for shock value, as well as totemic qualities of strength and ferocity. Spiders were the most abundant group among song titles, perhaps because of their familiarity to the general public. Three noninsect arthropod album titles were found from the early 1970s, then none appear until 1990. Older albums are difficult to find unless they are quite popular, and the resurgence of albums coincides with the rise of the internet. After 1990, issuance of such albums increased approximately linearly. Giant and chimeric album covers were the most common of themes, indicating the use of these animals to inspire fear and surprise. The lyrics of select songs are presented to illustrate the diversity of sentiments present, from camp spookiness to edibility.

  20. Immunological responses to parasitic arthropods.

    Science.gov (United States)

    Baron, R W; Weintraub, J

    1987-03-01

    Parasitic arthropods are responsible for enormous economic losses to livestock producers throughout the world. These production losses may range from simple irritation caused by biting and non-biting flies to deaths and/or damage to carcass, fleece, or skin resulting from attack by myiasis flies. The estimated costs of these losses are colossal but even these usually include only direct losses and ignore those associated with pesticide application. In the USA alone (in 1976), these losses were conservatively estimated at more than 650 million US dollars. The long term use of chemical control measures for these pests has resulted in many serious problems including residues in meat and milk products, rapid development of insecticide resistance, the destruction of non-target organisms, environmental pollution, and mortality and morbidity of livestock. These concerns have prompted researchers to seek alternative methods of arthropod control, including the artificial induction of immunity. In this review, R. W. Baron and J. Weintraub discuss several examples of ectoparasites that can induce immunological resistance in the host, including Sarcoptes and Demodex mites, the sheep ked (Melophagus ovinus), Anopluran lice and myiasis-causing flies such as Hypoderma.

  1. Is the risk for soil arthropods covered by new data requirements under the EU PPP Regulation No. 1107/2009?

    Science.gov (United States)

    Kohlschmid, E; Ruf, D

    2016-12-01

    Testing of effects on earthworms and non-target foliar arthropods is an integral part of the ecotoxicological risk assessment for the authorization of plant protection products. According to the new data requirements, which came into force in 2014 for active substances and in 2016 for plant protection products, the chronic earthworm toxicity test with Eisenia fetida based on reproductive, growth, and behavioral effects instead of the acute earthworm toxicity test based on mortality, has to be conducted routinely. Additional testing of effects on soil arthropods (Folsomia candida, Hyposaspis aculeifer) is required if the risk assessment of foliar applications raises concerns regarding non-target foliar arthropods (Aphidius rhopalosiphi, Typhlodromus pyri) or if the product is applied directly on or into the soil. Thus, it was investigated whether the sublethal earthworm endpoint is more sensitive than the sublethal soil arthropod endpoint for different types of pesticides and whether the risk assessment for non-target arthropods would trigger the testing of effects on soil arthropods in the cases where soil arthropods are more sensitive than earthworms. Toxicity data were obtained from Swiss ecotoxicological database, EFSA Conclusions and scientific literature. For insecticides and herbicides, no general conclusion regarding differences in sensitivity of either earthworms or soil arthropods based on sublethal endpoints were possible. For fungicides, the data indicated that in general, earthworms seemed to be more sensitive than soil arthropods. In total, the sublethal F. candida or H. aculeifer endpoint was lower than the sublethal E. fetida endpoint for 23 (34 %) out of 68 active substances. For 26 % of these 23 active substances, testing of soil arthropods would not have been triggered due to the new data requirement. These results based on sublethal endpoints show that earthworms and soil arthropods differ in sensitivity toward certain active substances and

  2. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  3. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic.

    Science.gov (United States)

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-19

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment.

  4. Cardiovascular disease risk factor profiles of 263,356 older Australians according to region of birth and acculturation, with a focus on migrants born in Asia.

    Directory of Open Access Journals (Sweden)

    Shuyu Guo

    Full Text Available Risk factors for cardiovascular disease (CVD, such as obesity, diabetes, hypertension and physical inactivity, are common in Australia, but the prevalence varies according to cultural background. We examined the relationship between region of birth, measures of acculturation, and CVD risk profiles in immigrant, compared to Australian-born, older Australians. Cross-sectional data from 263,356 participants aged 45 and over joining the population-based 45 and Up Study cohort from 2006-2008 were used. Prevalence ratios for CVD risk factors in Australian- versus overseas-born participants were calculated using modified Poisson regression, adjusting for age, sex and socioeconomic factors and focusing on Asian migrants. The association between time resident in Australia and age at migration and CVD risk factors in Asian migrants was also examined. Migrants from Northeast (n = 3,213 and Southeast Asia (n = 3,942 had lower levels of overweight/obesity, physical activity and female smoking than Australian-born participants (n = 199,356, although differences in prevalence of overweight/obesity were sensitive to body-mass-index cut-offs used. Compared to Australian-born participants, migrants from Northeast Asia were 20-30% less likely, and from Southeast Asia 10-20% more likely, to report being treated for hypertension and/or hypercholesterolaemia; Southeast Asian migrants were 40-60% more likely to report diabetes. Northeast Asian-born individuals were less likely than Australian-born to have 3 or more CVD risk factors. Diabetes, treated hypertension and hypercholesterolaemia occurred at relatively low average body-mass-index in Southeast Asian migrants. The CVD risk factor profiles of migrants tended to approximate those of Australian-born with increasing acculturation, in both favourable (e.g., increased physical activity and unfavourable directions (e.g., increased female smoking. Minimizing CVD risk in migrant populations may be achieved through

  5. Canine babesiosis in northern Portugal and molecular characterization of vector-borne co-infections

    Science.gov (United States)

    2010-01-01

    Background Protozoa and bacteria transmitted by arthropods, including ticks and phlebotomine sand flies, may cause a wide range of canine vector-borne diseases. Dogs can be simultaneously or sequentially infected with multiple pathogens. Canine babesiosis caused by Babesia canis canis and Babesia canis vogeli is known to occur in Portugal. This study assessed, by means of blood smear examination, PCR and DNA nucleotide sequencing, the presence of Babesia spp. and co-infecting agents Leishmania, Anaplasma/Ehrlichia and Hepatozoon in 45 dogs from northern Portugal clinically suspected of babesiosis. Results Forty-four dogs (98%) had infection with B. canis canis and one with B. canis vogeli. Co-infections were detected in nine animals (20%). Eight dogs were found infected with two vector-borne agents: six with B. canis canis and Leishmania infantum; one with B. canis canis and Ehrlichia canis; and one with B. canis canis and Hepatozoon canis. Another dog was infected with three vector-borne pathogens: B. canis vogeli, E. canis and L. infantum. Overall, L. infantum was found in seven (16%), E. canis in two (4%), and H. canis in one (2%) out of the 45 dogs with babesiosis. Almost 90% of the 45 cases of canine babesiosis were diagnosed in the colder months of October (18%), November (27%), December (20%), February (13%) and March (9%). Co-infections were detected in February, March, April, May, October and November. Twenty-two (50%) out of 44 dogs infected with B. canis were found infested by ticks including Dermacentor spp., Ixodes spp. and Rhipicephalus sanguineus. Mortality (9%) included two co-infected dogs that died spontaneously and two with single infections that were euthanized. Conclusions Babesia canis canis is the main etiological agent of canine babesiosis in northern Portugal. A higher sensitivity of Babesia spp. detection was obtained with PCR assays, compared to the observation of blood smears. Twenty percent of the dogs were co-infected with L. infantum

  6. Canine babesiosis in northern Portugal and molecular characterization of vector-borne co-infections

    Directory of Open Access Journals (Sweden)

    Machado João

    2010-04-01

    Full Text Available Abstract Background Protozoa and bacteria transmitted by arthropods, including ticks and phlebotomine sand flies, may cause a wide range of canine vector-borne diseases. Dogs can be simultaneously or sequentially infected with multiple pathogens. Canine babesiosis caused by Babesia canis canis and Babesia canis vogeli is known to occur in Portugal. This study assessed, by means of blood smear examination, PCR and DNA nucleotide sequencing, the presence of Babesia spp. and co-infecting agents Leishmania, Anaplasma/Ehrlichia and Hepatozoon in 45 dogs from northern Portugal clinically suspected of babesiosis. Results Forty-four dogs (98% had infection with B. canis canis and one with B. canis vogeli. Co-infections were detected in nine animals (20%. Eight dogs were found infected with two vector-borne agents: six with B. canis canis and Leishmania infantum; one with B. canis canis and Ehrlichia canis; and one with B. canis canis and Hepatozoon canis. Another dog was infected with three vector-borne pathogens: B. canis vogeli, E. canis and L. infantum. Overall, L. infantum was found in seven (16%, E. canis in two (4%, and H. canis in one (2% out of the 45 dogs with babesiosis. Almost 90% of the 45 cases of canine babesiosis were diagnosed in the colder months of October (18%, November (27%, December (20%, February (13% and March (9%. Co-infections were detected in February, March, April, May, October and November. Twenty-two (50% out of 44 dogs infected with B. canis were found infested by ticks including Dermacentor spp., Ixodes spp. and Rhipicephalus sanguineus. Mortality (9% included two co-infected dogs that died spontaneously and two with single infections that were euthanized. Conclusions Babesia canis canis is the main etiological agent of canine babesiosis in northern Portugal. A higher sensitivity of Babesia spp. detection was obtained with PCR assays, compared to the observation of blood smears. Twenty percent of the dogs were co

  7. [Climate change - a pioneer for the expansion of canine vector-borne diseases?].

    Science.gov (United States)

    Krämer, F; Mencke, N

    2011-01-01

    Vector-transmitted diseases are one of the major contributors to the global burden of disease in humans and animals. Climate change is consistently held responsible for the spread of parasitic acarid and insect vectors such as ticks, fleas, sand flies and mosquitoes, and their transmitted pathogens (in the case of the dog the so-called canine vector-borne diseases [CVBD]). Currently, there is only insufficient data available to prove whether climate change is a major driving force for vector and disease expansion, but the evidence is growing. Other reasons, such as ecological, demographic and socio-economic factors, e.g. pet travel into and pet import from endemic areas, also play a role in this development. Apart from all the controversial discussion of the factors leading to vector and disease expansion, preventative measures should include dog owners' education as they are responsible for individual parasite protection as well as for the minimisation of adverse risk behaviour, e.g. regarding pet travel. Broad-spectrum vector control should be practised by using parasiticides that repel and kill blood feeders in order to minimize the risk of CVBD-pathogen transmission.

  8. Temporal variation in the arthropod community of desert riparian habitats with varying amounts of saltcedar (Tamarix ramosissima)

    Science.gov (United States)

    Durst, S.L.; Theimer, T.C.; Paxton, E.H.; Sogge, M.K.

    2008-01-01

    We used Malaise traps to examine the aerial arthropod community in riparian habitats dominated by native willow, exotic saltcedar, or a mixture of these two tree species in central Arizona, USA. Over the course of three sampling periods per year in 2003 and 2004, native habitats had significantly greater diversity (Shannon-Wiener) and supported different arthropod communities compared to exotic habitats, while mixed habitats were intermediate in terms of diversity and supported an arthropod community statistically indistinguishable from the exotic site. The composition of arthropod communities varied significantly between the two years, and there was an approximately two-fold difference in richness and diversity. Overall, we documented complex interactions indicating that differences among the arthropod communities of riparian habitats may be driven not only by the composition of native and exotic tree species making up these habitats, but also by year and season of arthropod sampling.

  9. Modification and application of a leaf blower-vac for field sampling of arthropods

    NARCIS (Netherlands)

    Zou, Yi; Telgen, van Mario D.; Chen, Junhui; Xiao, Haijun; Kraker, de Joop; Bianchi, Felix J.J.A.; Werf, van der Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure,

  10. Pre-travel advice concerning vector-borne diseases received by travelers prior to visiting Cuzco, Peru.

    Science.gov (United States)

    Mejia, Christian R; Centeno, Emperatriz; Cruz, Briggitte; Cvetkovic-Vega, Aleksandar; Delgado, Edison; Rodriguez-Morales, Alfonso J

    2016-01-01

    Peru is an increasingly popular tourist destination that poses a risk to travelers due to endemic vector-borne diseases (VBDs). The objective of our study was to determine which factors are associated with receiving pre-travel advice (PTA) for VBDs among travelers visiting Cuzco, Peru. A cross-sectional secondary analysis based on data from a survey among travelers departing Cuzco at Alejandro Velazco Astete International Airport during the period January-March 2012 was conducted. From the 1819 travelers included in the original study, 1717 were included in secondary data analysis. Of these participants, 42.2% received PTA and 2.9% were informed about vector-borne diseases, including yellow fever (1.8%), malaria (1.6%) and dengue fever (0.1%). Receiving information on VBDs was associated with visiting areas endemic to yellow fever and dengue fever in Peru. The only disease travelers received specific recommendations for before visiting an endemic area for was yellow fever. Only 1 in 30 tourists received information on VBD prevention; few of those who traveled to an endemic area were warned about specific risks for infectious diseases prior to their trip. These important findings show that most tourists who travel to Peru do not receive PTA for the prevention of infectious and VBD, which can affect not only the travelers but their countries of origin as well. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  11. Seasonal Distribution and Diversity of Ground Arthropods in Microhabitats Following a Shrub Plantation Age Sequence in Desertified Steppe

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  12. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  13. Dengue: a trilogy of people, mosquitoes and the virus. Current epidemiology and pathogenesis in (non-)endemic settings

    NARCIS (Netherlands)

    Thai, K.T.D.

    2012-01-01

    Dengue consists of a spectrum of disease manifestations caused by four serotypes of Dengue virus, the most prevalent arthropod-borne virus affecting humans in the tropics and subtropics. The incidence of dengue and its geographical distribution have increased dramatically in the past 6 decades.

  14. Comparison of arthropod prey of red-cockaded woodpeckers on the boles of long-leaf and loblolly pines

    Science.gov (United States)

    Scott Horn; James L. Hanula

    2002-01-01

    Red-cockaded woodpeckers (Picoides borealis) forage on the boles of most southern pines. Woodpeckers may select trees based on arthropod availability, yet no published studies have evaluated differences in arthropod abundance on different species of pines. We used knockdown insecticides to sample arthropods on longleaf (Pinus palustris...

  15. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention

    OpenAIRE

    Weaver, Scott C.

    2013-01-01

    Arthropod-borne viruses (arboviruses) mainly infect people via direct spillover from enzootic cycles. However, dengue, chikungunya, and yellow fever viruses have repeatedly initiated urban transmission cycles involving human amplification and peridomestic mosquito vectors to cause major epidemics. Here, I review these urban emergences and potential strategies for their prevention and control.

  16. Genomic Diversification in Strains of Rickettsia felis Isolated from Different Arthropods

    Science.gov (United States)

    Gillespie, Joseph J.; Driscoll, Timothy P.; Verhoeve, Victoria I.; Utsuki, Tadanobu; Husseneder, Claudia; Chouljenko, Vladimir N.; Azad, Abdu F.; Macaluso, Kevin R.

    2015-01-01

    Rickettsia felis (Alphaproteobacteria: Rickettsiales) is the causative agent of an emerging flea-borne rickettsiosis with worldwide occurrence. Originally described from the cat flea, Ctenocephalides felis, recent reports have identified R. felis from other flea species, as well as other insects and ticks. This diverse host range for R. felis may indicate an underlying genetic variability associated with host-specific strains. Accordingly, to determine a potential genetic basis for host specialization, we sequenced the genome of R. felis str. LSU-Lb, which is an obligate mutualist of the parthenogenic booklouse Liposcelis bostrychophila (Insecta: Psocoptera). We also sequenced the genome of R. felis str. LSU, the second genome sequence for cat flea-associated strains (cf. R. felis str. URRWXCal2), which are presumably facultative parasites of fleas. Phylogenomics analysis revealed R. felis str. LSU-Lb diverged from the flea-associated strains. Unexpectedly, R. felis str. LSU was found to be divergent from R. felis str. URRWXCal2, despite sharing similar hosts. Although all three R. felis genomes contain the pRF plasmid, R. felis str. LSU-Lb carries an additional unique plasmid, pLbaR (plasmid of L. bostrychophila associated Rickettsia), nearly half of which encodes a unique 23-gene integrative conjugative element. Remarkably, pLbaR also encodes a repeats-in-toxin-like type I secretion system and associated toxin, heretofore unknown from other Rickettsiales genomes, which likely originated from lateral gene transfer with another obligate intracellular parasite of arthropods, Cardinium (Bacteroidetes). Collectively, our study reveals unexpected genomic diversity across three R. felis strains and identifies several diversifying factors that differentiate facultative parasites of fleas from obligate mutualists of booklice. PMID:25477419

  17. Use of irradiation to control infectivity of food-borne parasites

    International Nuclear Information System (INIS)

    1993-01-01

    Food-borne parasitic diseases are common throughout the world, pose significant health problems and cause economic losses in terms of agricultural commodities and human productivity. The diseases usually occur through consumption of raw or partially cooked foods with are infected by various parasites (e.g. tapeworms, roundworms, flukes, parasitic protozoa, etc.). The problem is significant in developing countries where the population has the habit of consuming raw food of animal origin. Available data, with the exception of data on Trichinella spiralis, a parasitic nematode, were insufficient for the use of irradiation technology to control food-borne parasites. Therefore, a Co-ordinated Research Programme (CRP) on the Use of Irradiation to Control Infectivity of Food-Borne Parasites was implemented by the FAO/IAEA in 1986. The results of the work carried out over five years (1986-1991) by twelve researchers participating in the programme, have established conclusively the potential for application of food irradiation in the control of liver flukes, tapeworms, roundworms, trichinosis, toxoplasmosis, etc. This report includes the conclusions and recommendations of the participants concerning the results obtained and need for further research. Refs, figs and tabs

  18. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  19. What the Clock Tells the Eye: Lessons from an Ancient Arthropod

    OpenAIRE

    Battelle, B.-A.

    2013-01-01

    Circadian changes in visual sensitivity have been observed in a wide range of species, vertebrates, and invertebrates, but the processes impacted and the underlying mechanisms largely are unexplored. Among arthropods, effects of circadian signals on vision have been examined in most detail in the lateral compound eye (LE) of the American horseshoe crab, Limulus polyphemus, a chelicerate arthropod. As a consequence of processes influenced by a central circadian clock, Limulus can see at night ...

  20. Indirect effects of rodents on arthropods in a Scandinavian boreal forest

    OpenAIRE

    Malá, Barbora

    2016-01-01

    Rodents in boreal forest are an important component of food webs. Their role as drivers of the boreal forest ecosystem is debated. As herbivores they affect plant communities and alter qualities of plants. Consequently availability of food resources for other herbivorous species is altered. In my thesis I studied whether rodents indirectly influence communities of arthropods via plant resources. It is assumed that phytophagous arthropods respond to changes in plant resources by different feed...

  1. Effects of urban sprawl on arthropod communities in peri-urban farmed landscape in Shenbei New District, Shenyang, Liaoning Province, China.

    Science.gov (United States)

    Bian, Zhen-Xing; Wang, Shuai; Wang, Qiu-Bing; Yu, Miao; Qian, Feng-Kui

    2018-01-08

    Peri-urban farmland provides a diversity of ecological services. However, it is experiencing increasing pressures from urban sprawl. While the effects of land use associated with farming on arthropod assemblages has received increasing attention, most of this research has been conducted by comparing conventional and organic cropping systems. The present study identifies the effects of urban sprawl and the role of non-cropped habitat in defining arthropod diversity in peri-urban farmed landscapes. Multi-scale arthropod data from 30 sampling plots were used with linear-mixed models to elucidate the effects of distance from urban areas (0-13 km; 13-25 km and >25 km, zones I, II, and III, respectively) on arthropods. Results showed that urban sprawl, disturbed farm landscapes, and disturbance in non-cropped habitats had negative effects on arthropods, the latter requiring arthropods to re-establish annually from surrounding landscapes via dispersal. While arthropod species richness showed no obvious changes, arthropod abundance was lowest in zone II. Generally, patch density (PD), Shannon diversity index (SHDI), and aggregate index (AI) of non-cropped habitat were major drivers of changes in arthropod populations. This study contributes to identifying the effects of urban sprawl on arthropod diversity and documenting the multiple functions of farm landscapes in peri-urban regions.

  2. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks.

    Science.gov (United States)

    Hartemink, Nienke; Vanwambeke, Sophie O; Purse, Bethan V; Gilbert, Marius; Van Dyck, Hans

    2015-11-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical-statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource-based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector-borne pathogens is explored and illustrated with the case of bluetongue virus, a midge-transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  3. Effects of a Major Tree Invader on Urban Woodland Arthropods

    Science.gov (United States)

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  4. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    Directory of Open Access Journals (Sweden)

    Sascha Buchholz

    Full Text Available Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia, which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera; 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.

  5. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    Science.gov (United States)

    Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.

  6. Temporal Dynamics of Arthropods on Six Tree Species in Dry Woodlands on the Caribbean Island of Puerto Rico

    Science.gov (United States)

    Beltrán, William; Wunderle, Joseph M.

    2014-01-01

    Abstract The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis–Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L. , Bucida buceras L. , Pithecellobium dulce , and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora , (Swartz) De Candolle, Pi. dulce , Leucaena leucocephala , and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable. PMID:25502036

  7. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  8. Physical conditions affecting pyrethroid toxicity in arthropods

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect

  9. Mapping the basic reproduction number (Ro) for vector-borne diseases: A case study on bluetongue virus.

    NARCIS (Netherlands)

    Hartemink, N.; Purse, B.V.; Meiswinkel, R.; Brown, H.E.; Koeijer, de A.A.; Elbers, A.R.W.; Boender, G.J.; Rogers, D.J.; Heesterbeek, J.A.P.

    2009-01-01

    Geographical maps indicating the value of the basic reproduction number, R0, can be used to identify areas of higher risk for an outbreak after an introduction. We develop a methodology to create R0 maps for vector-borne diseases, using bluetongue virus as a case study. This method provides a tool

  10. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Power, Deborah M

    2014-01-01

    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.

  11. "Bugs on Bugs": An Inquiry-Based, Collaborative Activity to Learn Arthropod & Microbial Biodiversity

    Science.gov (United States)

    Lampert, Evan C.; Morgan, Jeanelle M.

    2015-01-01

    Diverse communities of arthropods and microbes provide humans with essential ecosystem goods and services. Arthropods are the most diverse and abundant macroscopic animals on the planet, and many remain to be discovered. Much less is known about microbial diversity, despite their importance as free-living species and as symbionts. We created…

  12. Oxygen as a driver of early arthropod micro-benthos evolution.

    Directory of Open Access Journals (Sweden)

    Mark Williams

    Full Text Available BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2 of modern normoxic seawater is 21 kPa (air-equilibrated water, a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2 levels. The PO(2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian oxygen-levels that increased the PO(2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2. Ostracods became the numerically

  13. Quality of Cancer Care Among Foreign-Born and US-Born Patients With Lung or Colorectal Cancer

    DEFF Research Database (Denmark)

    Nielsen, Signe Smith; He, Yulei; Ayanian, John Z.

    2010-01-01

      BACKGROUND: Disparities in care have been documented for foreign-born cancer patients in the United States. However, few data are available regarding patients with lung and colorectal cancer. In the current study, the authors assessed whether patient-reported quality and receipt of recommended...... from 2003 through 2005. Logistic regression was used to assess the association between nativity and patient-reported quality of care and receipt of recommended treatments (adjuvant chemotherapy for stage III colon cancer, adjuvant chemotherapy and radiotherapy for stage II/III rectal cancer......, and curative surgery for stage I/II non-small cell lung cancer). The authors also assessed whether language explained any differences in care by nativity. RESULTS: Overall, 46% of patients reported excellent care, but foreign-born patients were less likely than US-born patients to report excellent quality...

  14. Arthropods affecting the human eye.

    Science.gov (United States)

    Panadero-Fontán, Rosario; Otranto, Domenico

    2015-02-28

    Ocular infestations by arthropods consist in the parasitization of the human eye, either directly (e.g., some insect larvae causing ophthalmomyiasis) or via arthropods feeding on lachrymal/conjunctival secretions (e.g., some eye-seeking insects, which also act as vectors of eye pathogens). In addition, demodicosis and phthiriasis may also cause eye discomfort in humans. Ophthalmomyiasis by larvae of the families Oestridae, Calliphoridae and Sarcophagidae, are frequent causative agents of human ocular infestations. Over the last decades, the extensive use of macrocyclic lactones in cattle has reduced the frequency of infestations by Hypoderma bovis and Hypoderma lineatum (family Oestridae), and consequently, human infestations by these species. A prompt diagnosis of ocular myiasis (e.g., by serological tests) is pivotal for positive prognoses, particularly when the larvae are not detectable during the ophthalmologic examination. Molecular diagnoses may also assist physicians and parasitologists in achieving time-efficient diagnoses of infestations by Oestridae causing myiasis. Finally, due to widespread international travel to exotic destinations, cases of myiasis are increasing in non-endemic areas, therefore requiring physicians to acquire a profound knowledge of the clinical symptoms linked to these infestations to prevent costly, inappropriate treatments or severe complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination.

    Science.gov (United States)

    Walker, M K; Howlett, B G; Wallace, A R; McCallum, J A; Teulon, D A J

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.

  16. Susceptibility of North American white-tailed deer to the Netherlands strain of BTV serotype 8

    Science.gov (United States)

    World-wide there are at least 24 serotypes of bluetongue virus (BTV), a complex non-enveloped virus in the family Reoviridae, genus Orbivirus. Bluetongue (BT) is an arthropod-borne disease of cattle, sheep, goats, and deer and is transmitted by Culicoides biting midges. In 2006, bluetongue serotype ...

  17. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression.

    Science.gov (United States)

    Schellhorn, N A; Bianchi, F J J A; Hsu, C L

    2014-01-01

    Entomophagous arthropods can provide valuable biological control services, but they need to fulfill their life cycle in agricultural landscapes often dominated by ephemeral and disturbed habitats. In this environment, movement is critical to escape from disturbances and to find resources scattered in space and time. Despite considerable research effort in documenting species movement and spatial distribution patterns, the quantification of arthropod movement has been hampered by their small size and the variety of modes of movement that can result in redistribution at different spatial scales. In addition, insight into how movement influences in-field population processes and the associated biocontrol services is limited because emigration and immigration are often confounded with local-scale population processes. More detailed measurements of the habitat functionality and movement processes are needed to better understand the interactions between species movement traits, disturbances, the landscape context, and the potential for entomophagous arthropods to suppress economically important pests.

  18. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico.

    Science.gov (United States)

    Beltrán, William; Wunderle, Joseph M

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis-Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L., Bucida buceras L., Pithecellobium dulce, and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora, (Swartz) De Candolle, Pi. dulce, Leucaena leucocephala, and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. A new reportable disease is born: Taiwan Centers for Disease Control's response to emerging Zika virus infection.

    Science.gov (United States)

    Huang, Angela Song-En; Shu, Pei-Yun; Yang, Chin-Hui

    2016-04-01

    Zika virus infection, usually a mild disease transmitted through the bite of Aedes mosquitos, has been reported to be possibly associated with microcephaly and neurologic complications. Taiwan's first imported case of Zika virus infection was found through fever screening at airport entry in January 2016. No virus was isolated from patient's blood taken during acute illness; however, PCR products showed that the virus was of Asian lineage closely related to virus from Cambodia. To prevent Zika virus from spreading in Taiwan, the Taiwan Centers for Disease Control has strengthened efforts in quarantine and surveillance, increased Zika virus infection diagnostic capacity, implemented healthcare system preparedness plans, and enhanced vector control program through community mobilization and education. Besides the first imported case, no additional cases of Zika virus infection have been identified. Furthermore, no significant increase in the number of microcephaly or Guillain- Barré Syndrome has been observed in Taiwan. To date, there have been no autochthonous transmissions of Zika virus infection. Copyright © 2016. Published by Elsevier B.V.

  20. Arthropods: Vectors of Disease Agents

    Science.gov (United States)

    1994-07-01

    Trypanosoma cruzi Kissing bugs (reduviidsl Enteric diseases Salmonella, Shigella , others Roaches, filth flies, ants, others? *Question marks indicate... monkeys Biological NA Humans Biological 9,957 imported, 4 species 20 congenital, 21 induced, 75 introduced or cryptic Canines Biological NA Coin