WorldWideScience

Sample records for replication studies identified

  1. A Replication by Any Other Name: A Systematic Review of Replicative Intervention Studies

    Science.gov (United States)

    Cook, Bryan G.; Collins, Lauren W.; Cook, Sara C.; Cook, Lysandra

    2016-01-01

    Replication research is essential to scientific knowledge. Reviews of replication studies often electronically search for "replicat*" as a textword, which does not identify studies that replicate previous research but do not self-identify as such. We examined whether the 83 intervention studies published in six non-categorical research…

  2. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  3. Identifying significant temporal variation in time course microarray data without replicates

    Directory of Open Access Journals (Sweden)

    Porter Weston

    2009-03-01

    Full Text Available Abstract Background An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected. Results A temporal test statistic is proposed that is based on the degree to which data are smoothed when fit by a spline function. An algorithm is presented that uses this test statistic together with a false discovery rate method to identify genes whose expression profiles exhibit significant temporal variation. The algorithm is tested on simulated data, and is compared with another recently published replicate-free method. The simulated data consists both of genes with known temporal dependencies, and genes from a null distribution. The proposed algorithm identifies a larger percentage of the time-dependent genes for a given false discovery rate. Use of the algorithm in a study of the estrous cycle in the rat mammary gland resulted in the identification of genes exhibiting distinct circadian variation. These results were confirmed in follow-up laboratory experiments. Conclusion The proposed algorithm provides a new approach for identifying expression profiles with significant temporal variation without relying on replicates. When compared with a recently published algorithm on simulated data, the proposed algorithm appears to identify a larger percentage of time-dependent genes for a given false discovery rate. The development of the algorithm was instrumental in revealing the presence of circadian variation in the virgin rat mammary gland during the estrous cycle.

  4. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20...

  5. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  6. Hierarchical cluster analysis of technical replicates to identify interferents in untargeted mass spectrometry metabolomics.

    Science.gov (United States)

    Caesar, Lindsay K; Kvalheim, Olav M; Cech, Nadja B

    2018-08-27

    Mass spectral data sets often contain experimental artefacts, and data filtering prior to statistical analysis is crucial to extract reliable information. This is particularly true in untargeted metabolomics analyses, where the analyte(s) of interest are not known a priori. It is often assumed that chemical interferents (i.e. solvent contaminants such as plasticizers) are consistent across samples, and can be removed by background subtraction from blank injections. On the contrary, it is shown here that chemical contaminants may vary in abundance across each injection, potentially leading to their misidentification as relevant sample components. With this metabolomics study, we demonstrate the effectiveness of hierarchical cluster analysis (HCA) of replicate injections (technical replicates) as a methodology to identify chemical interferents and reduce their contaminating contribution to metabolomics models. Pools of metabolites with varying complexity were prepared from the botanical Angelica keiskei Koidzumi and spiked with known metabolites. Each set of pools was analyzed in triplicate and at multiple concentrations using ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS). Before filtering, HCA failed to cluster replicates in the data sets. To identify contaminant peaks, we developed a filtering process that evaluated the relative peak area variance of each variable within triplicate injections. These interferent peaks were found across all samples, but did not show consistent peak area from injection to injection, even when evaluating the same chemical sample. This filtering process identified 128 ions that appear to originate from the UPLC-MS system. Data sets collected for a high number of pools with comparatively simple chemical composition were highly influenced by these chemical interferents, as were samples that were analyzed at a low concentration. When chemical interferent masses were removed, technical replicates clustered in

  7. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    2011-02-01

    Full Text Available HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages.Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048.These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages

  8. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10−5). While the association was not genome-wide significant (p<1×10−7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10−6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance These findings suggest that

  9. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places.

    Science.gov (United States)

    van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J

    1998-06-01

    DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.

  10. Addressing the "Replication Crisis": Using Original Studies to Design Replication Studies with Appropriate Statistical Power.

    Science.gov (United States)

    Anderson, Samantha F; Maxwell, Scott E

    2017-01-01

    Psychology is undergoing a replication crisis. The discussion surrounding this crisis has centered on mistrust of previous findings. Researchers planning replication studies often use the original study sample effect size as the basis for sample size planning. However, this strategy ignores uncertainty and publication bias in estimated effect sizes, resulting in overly optimistic calculations. A psychologist who intends to obtain power of .80 in the replication study, and performs calculations accordingly, may have an actual power lower than .80. We performed simulations to reveal the magnitude of the difference between actual and intended power based on common sample size planning strategies and assessed the performance of methods that aim to correct for effect size uncertainty and/or bias. Our results imply that even if original studies reflect actual phenomena and were conducted in the absence of questionable research practices, popular approaches to designing replication studies may result in a low success rate, especially if the original study is underpowered. Methods correcting for bias and/or uncertainty generally had higher actual power, but were not a panacea for an underpowered original study. Thus, it becomes imperative that 1) original studies are adequately powered and 2) replication studies are designed with methods that are more likely to yield the intended level of power.

  11. Statistical correction of the Winner's Curse explains replication variability in quantitative trait genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Cameron Palmer

    2017-07-01

    Full Text Available Genome-wide association studies (GWAS have identified hundreds of SNPs responsible for variation in human quantitative traits. However, genome-wide-significant associations often fail to replicate across independent cohorts, in apparent inconsistency with their apparent strong effects in discovery cohorts. This limited success of replication raises pervasive questions about the utility of the GWAS field. We identify all 332 studies of quantitative traits from the NHGRI-EBI GWAS Database with attempted replication. We find that the majority of studies provide insufficient data to evaluate replication rates. The remaining papers replicate significantly worse than expected (p < 10-14, even when adjusting for regression-to-the-mean of effect size between discovery- and replication-cohorts termed the Winner's Curse (p < 10-16. We show this is due in part to misreporting replication cohort-size as a maximum number, rather than per-locus one. In 39 studies accurately reporting per-locus cohort-size for attempted replication of 707 loci in samples with similar ancestry, replication rate matched expectation (predicted 458, observed 457, p = 0.94. In contrast, ancestry differences between replication and discovery (13 studies, 385 loci cause the most highly-powered decile of loci to replicate worse than expected, due to difference in linkage disequilibrium.

  12. On Scalability and Replicability of Smart Grid Projects—A Case Study

    Directory of Open Access Journals (Sweden)

    Lukas Sigrist

    2016-03-01

    Full Text Available This paper studies the scalability and replicability of smart grid projects. Currently, most smart grid projects are still in the R&D or demonstration phases. The full roll-out of the tested solutions requires a suitable degree of scalability and replicability to prevent project demonstrators from remaining local experimental exercises. Scalability and replicability are the preliminary requisites to perform scaling-up and replication successfully; therefore, scalability and replicability allow for or at least reduce barriers for the growth and reuse of the results of project demonstrators. The paper proposes factors that influence and condition a project’s scalability and replicability. These factors involve technical, economic, regulatory and stakeholder acceptance related aspects, and they describe requirements for scalability and replicability. In order to assess and evaluate the identified scalability and replicability factors, data has been collected from European and national smart grid projects by means of a survey, reflecting the projects’ view and results. The evaluation of the factors allows quantifying the status quo of on-going projects with respect to the scalability and replicability, i.e., they provide a feedback on to what extent projects take into account these factors and on whether the projects’ results and solutions are actually scalable and replicable.

  13. What Should Researchers Expect When They Replicate Studies? A Statistical View of Replicability in Psychological Science.

    Science.gov (United States)

    Patil, Prasad; Peng, Roger D; Leek, Jeffrey T

    2016-07-01

    A recent study of the replicability of key psychological findings is a major contribution toward understanding the human side of the scientific process. Despite the careful and nuanced analysis reported, the simple narrative disseminated by the mass, social, and scientific media was that in only 36% of the studies were the original results replicated. In the current study, however, we showed that 77% of the replication effect sizes reported were within a 95% prediction interval calculated using the original effect size. Our analysis suggests two critical issues in understanding replication of psychological studies. First, researchers' intuitive expectations for what a replication should show do not always match with statistical estimates of replication. Second, when the results of original studies are very imprecise, they create wide prediction intervals-and a broad range of replication effects that are consistent with the original estimates. This may lead to effects that replicate successfully, in that replication results are consistent with statistical expectations, but do not provide much information about the size (or existence) of the true effect. In this light, the results of the Reproducibility Project: Psychology can be viewed as statistically consistent with what one might expect when performing a large-scale replication experiment. © The Author(s) 2016.

  14. Building Evidence in Early Childhood Special Education: A Systematic Review of Replication Intervention Studies

    Science.gov (United States)

    Banerjee, Rashida; Movahedazarhouligh, Sara; Millen, Kaitlyn; Luckner, John L.

    2018-01-01

    Valid and evidence-informed practices are critical to help young children with disabilities and their families with highly effective interventions and instruction to reach their potentials. Replication research is critical for appraising research and identifying evidence-based practices. The purpose of this study was to replicate the methods used…

  15. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication

    Directory of Open Access Journals (Sweden)

    Julianna Han

    2018-04-01

    Full Text Available Summary: The emergence of influenza A viruses (IAVs from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens. : Using a genome-wide CRISPR/Cas9 screen, Han et al. demonstrate that the major hit, the sialic acid transporter SLC35A1, is an essential host factor for IAV entry. In addition, they identify the DNA-binding transcriptional repressor CIC as a negative regulator of cell-intrinsic immunity. Keywords: CRISPR/Cas9 screen, GeCKO, influenza virus, host factors, sialic acid pathway, SLC35A1, Capicua, CIC, cell-intrinsic immunity, H5N1

  16. Three Conceptual Replication Studies in Group Theory

    Science.gov (United States)

    Melhuish, Kathleen

    2018-01-01

    Many studies in mathematics education research occur with a nonrepresentative sample and are never replicated. To challenge this paradigm, I designed a large-scale study evaluating student conceptions in group theory that surveyed a national, representative sample of students. By replicating questions previously used to build theory around student…

  17. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia.

    LENUS (Irish Health Repository)

    Chen, X

    2011-11-01

    We conducted data-mining analyses using the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) and molecular genetics of schizophrenia genome-wide association study supported by the genetic association information network (MGS-GAIN) schizophrenia data sets and performed bioinformatic prioritization for all the markers with P-values ≤0.05 in both data sets. In this process, we found that in the CMYA5 gene, there were two non-synonymous markers, rs3828611 and rs10043986, showing nominal significance in both the CATIE and MGS-GAIN samples. In a combined analysis of both the CATIE and MGS-GAIN samples, rs4704591 was identified as the most significant marker in the gene. Linkage disequilibrium analyses indicated that these markers were in low LD (3 828 611-rs10043986, r(2)=0.008; rs10043986-rs4704591, r(2)=0.204). In addition, CMYA5 was reported to be physically interacting with the DTNBP1 gene, a promising candidate for schizophrenia, suggesting that CMYA5 may be involved in the same biological pathway and process. On the basis of this information, we performed replication studies for these three single-nucleotide polymorphisms. The rs3828611 was found to have conflicting results in our Irish samples and was dropped out without further investigation. The other two markers were verified in 23 other independent data sets. In a meta-analysis of all 23 replication samples (family samples, 912 families with 4160 subjects; case-control samples, 11 380 cases and 15 021 controls), we found that both markers are significantly associated with schizophrenia (rs10043986, odds ratio (OR)=1.11, 95% confidence interval (CI)=1.04-1.18, P=8.2 × 10(-4) and rs4704591, OR=1.07, 95% CI=1.03-1.11, P=3.0 × 10(-4)). The results were also significant for the 22 Caucasian replication samples (rs10043986, OR=1.11, 95% CI=1.03-1.17, P=0.0026 and rs4704591, OR=1.07, 95% CI=1.02-1.11, P=0.0015). Furthermore, haplotype conditioned analyses indicated that the association

  18. Genome-wide mapping of susceptibility to coronary artery disease identifies a novel replicated locus on chromosome 17.

    Directory of Open Access Journals (Sweden)

    Martin Farrall

    2006-05-01

    Full Text Available Coronary artery disease (CAD is a leading cause of death world-wide, and most cases have a complex, multifactorial aetiology that includes a substantial heritable component. Identification of new genes involved in CAD may inform pathogenesis and provide new therapeutic targets. The PROCARDIS study recruited 2,658 affected sibling pairs (ASPs with onset of CAD before age 66 y from four European countries to map susceptibility loci for CAD. ASPs were defined as having CAD phenotype if both had CAD, or myocardial infarction (MI phenotype if both had a MI. In a first study, involving a genome-wide linkage screen, tentative loci were mapped to Chromosomes 3 and 11 with the CAD phenotype (1,464 ASPs, and to Chromosome 17 with the MI phenotype (739 ASPs. In a second study, these loci were examined with a dense panel of grid-tightening markers in an independent set of families (1,194 CAD and 344 MI ASPs. This replication study showed a significant result on Chromosome 17 (MI phenotype; p = 0.009 after adjustment for three independent replication tests. An exclusion analysis suggests that further genes of effect size lambda(sib > 1.24 are unlikely to exist in these populations of European ancestry. To our knowledge, this is the first genome-wide linkage analysis to map, and replicate, a CAD locus. The region on Chromosome 17 provides a compelling target within which to identify novel genes underlying CAD. Understanding the genetic aetiology of CAD may lead to novel preventative and/or therapeutic strategies.

  19. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Zeggini, Eleftheria; Scott, Laura J; Saxena, Richa

    2008-01-01

    analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample......Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published...

  20. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    Science.gov (United States)

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  1. DNA replication origins—where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M.

    2016-01-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. PMID:27542827

  2. DNA replication origins-where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M

    2016-08-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. © 2016 Prioleau and MacAlpine; Published by Cold Spring Harbor Laboratory Press.

  3. X-ray repair replication in L1210 leukemia cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Byfield, J.E.; Bennett, L.R.; Chan, P.Y.M.

    1974-01-01

    Repair replication has been studied in detail in mouse L1210 leukemia cells. A method of identifying and quantitating repair replication using a pre- and postradiation block of normal replication with cytosine arabinoside is illustrated. The method derived does not require isolation of DNA per se and appears to be satisfactory for screening for inhibitors of repair replication. Repair replication can be demonstrated at doses in the 1000-rad range in bromouridine deoxyriboside-substituted cells and at slightly higher doses in nonsubstituted cells. Drugs that are known to bind to DNA inhibit this x-ray-induced repair replication. Drugs with these properties may be identified by the methods described and compared quantitatively in their ability to inhibit this type of x-ray damage. Since these phenomena can be demonstrated for low radiation doses and at drug concentrations attainable in vivo during human cancer chemotherapy this class of anticancer agent may be worthy of closer study. Application to the L1210 leukemia system should permit comparison of in vitro and in vivo drug effects in the context of the extensive in vivo pharmacological data already available for L1210 cells. (U.S.)

  4. Individual and Contextual Factors Influencing Engagement in Learning Activities after Errors at Work: A Replication Study in a German Retail Bank

    Science.gov (United States)

    Leicher, Veronika; Mulder, Regina H.

    2016-01-01

    Purpose: The purpose of this replication study is to identify relevant individual and contextual factors influencing learning from errors at work and to determine if the predictors for learning activities are the same for the domains of nursing and retail banking. Design/methodology/approach: A cross-sectional replication study was carried out in…

  5. Recent advances in the genome-wide study of DNA replication origins in yeast

    Directory of Open Access Journals (Sweden)

    Chong ePeng

    2015-02-01

    Full Text Available DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs. Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genome. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some nonconventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve the replication origins prediction.

  6. Recent advances in the genome-wide study of DNA replication origins in yeast

    Science.gov (United States)

    Peng, Chong; Luo, Hao; Zhang, Xi; Gao, Feng

    2015-01-01

    DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some non-conventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve yeast replication origins prediction. PMID:25745419

  7. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  8. Reproducibility and replicability of rodent phenotyping in preclinical studies.

    Science.gov (United States)

    Kafkafi, Neri; Agassi, Joseph; Chesler, Elissa J; Crabbe, John C; Crusio, Wim E; Eilam, David; Gerlai, Robert; Golani, Ilan; Gomez-Marin, Alex; Heller, Ruth; Iraqi, Fuad; Jaljuli, Iman; Karp, Natasha A; Morgan, Hugh; Nicholson, George; Pfaff, Donald W; Richter, S Helene; Stark, Philip B; Stiedl, Oliver; Stodden, Victoria; Tarantino, Lisa M; Tucci, Valter; Valdar, William; Williams, Robert W; Würbel, Hanno; Benjamini, Yoav

    2018-04-01

    The scientific community is increasingly concerned with the proportion of published "discoveries" that are not replicated in subsequent studies. The field of rodent behavioral phenotyping was one of the first to raise this concern, and to relate it to other methodological issues: the complex interaction between genotype and environment; the definitions of behavioral constructs; and the use of laboratory mice and rats as model species for investigating human health and disease mechanisms. In January 2015, researchers from various disciplines gathered at Tel Aviv University to discuss these issues. The general consensus was that the issue is prevalent and of concern, and should be addressed at the statistical, methodological and policy levels, but is not so severe as to call into question the validity and the usefulness of model organisms as a whole. Well-organized community efforts, coupled with improved data and metadata sharing, have a key role in identifying specific problems and promoting effective solutions. Replicability is closely related to validity, may affect generalizability and translation of findings, and has important ethical implications. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Implications of “too good to be true” for replication, theoretical claims, and experimental design: An example using prominent studies of racial bias

    Directory of Open Access Journals (Sweden)

    Greg Francis

    2016-09-01

    Full Text Available In response to concerns about the validity of empirical findings in psychology, some scientists use replication studies as a way to validate good science and to identify poor science. Such efforts are resource intensive and are sometimes controversial (with accusations of researcher incompetence when a replication fails to show a previous result. An alternative approach is to examine the statistical properties of the reported literature to identify some cases of poor science. This review discusses some details of this process for prominent findings about racial bias, where a set of studies seems too good to be true. This kind of analysis is based on the original studies, so it avoids criticism from the original authors about the validity of replication studies. The analysis is also much easier to perform than a new empirical study. A variation of the analysis can also be used to explore whether it makes sense to run a replication study. As demonstrated here, there are situations where the existing data suggest that a direct replication of a set of studies is not worth the effort. Such a conclusion should motivate scientists to generate alternative experimental designs that better test theoretical ideas.

  10. The Replication Recipe: What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, A.J.; Farach, F.J.; Geller, J.; Giner-Sorolla, R.; Grange, J.A.; Perugini, M.; Spies, J.R.; Veer, A. van 't

    2014-01-01

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  11. The replication recipe : What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, Ap; Farach, Frank J.; Geller, Jason; Giner-Sorolla, Roger; Grange, James A.; Perugini, Marco; Spies, Jeffrey R.; van 't Veer, Anna

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  12. Bayesian evaluation of effect size after replicating an original study

    NARCIS (Netherlands)

    Van Aert, Robbie C M; Van Assen, Marcel A.L.M.

    2017-01-01

    The vast majority of published results in the literature is statistically significant, which raises concerns about their reliability. The Reproducibility Project Psychology (RPP) and Experimental Economics Replication Project (EE-RP) both replicated a large number of published studies in psychology

  13. Replication of kinetoplast minicircle DNA

    International Nuclear Information System (INIS)

    Sheline, C.T.

    1989-01-01

    These studies describe the isolation and characterization of early minicircle replication intermediates from Crithidia fasciculata, and Leishmania tarentolae, the mitochondrial localization of a type II topoisomerase (TIImt) in C. fasciculata, and the implication of the aforementioned TIImt in minicircle replication in L. tarentolae. Early minicircle replication intermediates from C. fasciculata were identified and characterized using isolated kinetoplasts to incorporate radiolabeled nucleotides into its DNA. The pulse-label in an apparent theta-type intermediate chase into two daughter molecules. A uniquely gapped, ribonucleotide primed, knotted molecule represents the leading strand in the model proposed, and a highly gapped molecule represents the lagging strand. This theta intermediate is repaired in vitro to a doubly nicked catenated dimer which was shown to result from the replication of a single parental molecule. Very similar intermediates were found in the heterogeneous population of minicircles of L. tarentolae. The sites of the Leishmania specific discontinuities were mapped and shown to lie within the universally conserved sequence blocks in identical positions as compared to C. fasciculata and Trypanosoma equiperdum

  14. A Sensitive in Vitro High-Throughput Screen To Identify Pan-filoviral Replication Inhibitors Targeting the VP35–NP Interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gai; Nash, Peter J.; Johnson, Britney; Pietzsch, Colette; Ilagan, Ma. Xenia G.; Bukreyev, Alexander; Basler, Christopher F.; Bowlin, Terry L.; Moir, Donald T.; Leung, Daisy W.; Amarasinghe, Gaya K. (WU-MED); (GSU); (Texas-MED); (Microbiotix)

    2017-01-24

    The 2014 Ebola outbreak in West Africa, the largest outbreak on record, highlighted the need for novel approaches to therapeutics targeting Ebola virus (EBOV). Within the EBOV replication complex, the interaction between polymerase cofactor, viral protein 35 (VP35), and nucleoprotein (NP) is critical for viral RNA synthesis. We recently identified a peptide at the N-terminus of VP35 (termed NPBP) that is sufficient for interaction with NP and suppresses EBOV replication, suggesting that the NPBP binding pocket can serve as a potential drug target. Here we describe the development and validation of a sensitive high-throughput screen (HTS) using a fluorescence polarization assay. Initial hits from this HTS include the FDA-approved compound tolcapone, whose potency against EBOV infection was validated in a nonfluorescent secondary assay. High conservation of the NP–VP35 interface among filoviruses suggests that this assay has the capacity to identify pan-filoviral inhibitors for development as antivirals.

  15. Mapping autonomously replicating sequence elements in a 73-kb ...

    Indian Academy of Sciences (India)

    Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm ...

  16. Studies on the mechanism of replication of adenovirus DNA. III. Electron microscopy of replicating DNA

    NARCIS (Netherlands)

    Ellens, D.J.; Sussenbach, J.S.; Jansz, H.S.

    1974-01-01

    Replicating Ad5 DNA was isolated from nuclei of infected KB cells and studied by electron microscopy. Branched as well as unbranched linear intermediates were observed containing extended regions of single-stranded DNA. The relationship between the branched and unbranched structures was studied

  17. A comprehensive family-based replication study of schizophrenia genes

    DEFF Research Database (Denmark)

    Aberg, Karolina A; Liu, Youfang; Bukszár, Jozsef

    2013-01-01

     768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. MAIN OUTCOMES AND MEASURES Case-control status for SCZ. RESULTS Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs...... in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. SETTING Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. PATIENTS We included 11 185 cases and 10...

  18. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    Science.gov (United States)

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Replication of urban innovations - prioritization of strategies for the replication of Dhaka's community-based decentralized composting model.

    Science.gov (United States)

    Yedla, Sudhakar

    2012-01-01

    Dhaka's community-based decentralized composting (DCDC) is a successful demonstration of solid waste management by adopting low-cost technology, local resources community participation and partnerships among the various actors involved. This paper attempts to understand the model, necessary conditions, strategies and their priorities to replicate DCDC in the other developing cities of Asia. Thirteen strategies required for its replication are identified and assessed based on various criteria, namely transferability, longevity, economic viability, adaptation and also overall replication. Priority setting by multi-criteria analysis by applying analytic hierarchy process revealed that immediate transferability without long-term and economic viability consideration is not advisable as this would result in unsustainable replication of DCDC. Based on the analysis, measures to ensure the product quality control; partnership among stakeholders (public-private-community); strategies to achieve better involvement of the private sector in solid waste management (entrepreneurship in approach); simple and low-cost technology; and strategies to provide an effective interface among the complementing sectors are identified as important strategies for its replication.

  20. Autoradiographic studies of chromosome replication during the cell cycle of Streptococcus faecium

    International Nuclear Information System (INIS)

    Higgins, M.L.; Koch, A.L.; Dicker, D.T.; Daneo-Moore, L.

    1986-01-01

    Analysis of the distribution of autoradiographic grains around cells of Streptococcus faecium which had been either continuously or pulse-labeled with tritiated thymidine (mass doubling time, 90 min) showed a non-Poisson distribution even when the distribution of cell sizes in the populations studied was taken into account. These non-Poisson distributions of grains were assumed to reflect the discontinuous nature of chromosome replication. To study this discontinuous process further, an equation was fitted to the grain distribution observed for the pulse-labeled cells that assumed that in any population of cells there were subpopulations in which there were zero, one, or two replicating chromosomes. This analysis predicted an average time for chromosome replication and for the period between completion of rounds of chromosome replication and division of 55 and 43 min, respectively, which were in excellent agreement with estimates made by other techniques. The present investigation extended past studies in indicating that the initiation and completion of rounds of chromosome replication are poorly phased with increases in cell volume and that the amount of chromosome replication may be different in different cell halves

  1. Optorsim: A Grid Simulator for Studying Dynamic Data Replication Strategies

    CERN Document Server

    Bell, William H; Millar, A Paul; Capozza, Luigi; Stockinger, Kurt; Zini, Floriano

    2003-01-01

    Computational grids process large, computationally intensive problems on small data sets. In contrast, data grids process large computational problems that in turn require evaluating, mining and producing large amounts of data. Replication, creating geographically disparate identical copies of data, is regarded as one of the major optimization techniques for reducing data access costs. In this paper, several replication algorithms are discussed. These algorithms were studied using the Grid simulator: OptorSim. OptorSim provides a modular framework within which optimization strategies can be studied under different Grid configurations. The goal is to explore the stability and transient behaviour of selected optimization techniques. We detail the design and implementation of OptorSim and analyze various replication algorithms based on different Grid workloads.

  2. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance.

    Directory of Open Access Journals (Sweden)

    Natalie R Lazar Adler

    Full Text Available Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA. Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE. A single mutant (bpaC was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA, those attenuated for virulence and net intracellular replication (BpaE, the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA. Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors

  3. A Fuzzy Modeling Approach for Replicated Response Measures Based on Fuzzification of Replications with Descriptive Statistics and Golden Ratio

    Directory of Open Access Journals (Sweden)

    Özlem TÜRKŞEN

    2018-03-01

    Full Text Available Some of the experimental designs can be composed of replicated response measures in which the replications cannot be identified exactly and may have uncertainty different than randomness. Then, the classical regression analysis may not be proper to model the designed data because of the violation of probabilistic modeling assumptions. In this case, fuzzy regression analysis can be used as a modeling tool. In this study, the replicated response values are newly formed to fuzzy numbers by using descriptive statistics of replications and golden ratio. The main aim of the study is obtaining the most suitable fuzzy model for replicated response measures through fuzzification of the replicated values by taking into account the data structure of the replications in statistical framework. Here, the response and unknown model coefficients are considered as triangular type-1 fuzzy numbers (TT1FNs whereas the inputs are crisp. Predicted fuzzy models are obtained according to the proposed fuzzification rules by using Fuzzy Least Squares (FLS approach. The performances of the predicted fuzzy models are compared by using Root Mean Squared Error (RMSE criteria. A data set from the literature, called wheel cover component data set, is used to illustrate the performance of the proposed approach and the obtained results are discussed. The calculation results show that the combined formulation of the descriptive statistics and the golden ratio is the most preferable fuzzification rule according to the well-known decision making method, called TOPSIS, for the data set.

  4. Implementing three evidence-based program models: early lessons from the Teen Pregnancy Prevention Replication Study.

    Science.gov (United States)

    Kelsey, Meredith; Layzer, Jean

    2014-03-01

    This article describes some of the early implementation challenges faced by nine grantees participating in the Teen Pregnancy Prevention Replication Study and their response to them. The article draws on information collected as part of a comprehensive implementation study. Sources include site and program documents; program officer reports; notes from site investigation, selection and negotiation; ongoing communications with grantees as part of putting the study into place; and semi-structured interviews with program staff. The issues faced by grantees in implementing evidence-based programs designed to prevent teen pregnancy varied by program model. Grantees implementing a classroom-based curriculum faced challenges in delivering the curriculum within the constraints of school schedules and calendars (program length and size of class). Grantees implementing a culturally tailored curriculum faced a series of challenges, including implementing the intervention as part of the regular school curriculum in schools with diverse populations; low attendance when delivered as an after-school program; and resistance on the part of schools to specific curriculum content. The third set of grantees, implementing a program in clinics, faced challenges in identifying and recruiting young women into the program and in retaining young women once they were in the program. The experiences of these grantees reflect some of the complexities that should be carefully considered when choosing to replicate evidence-based programs. The Teen Pregnancy Prevention replication study will provide important context for assessing the effectiveness of some of the more widely replicated evidence-based programs. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.

  5. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics during...... replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors...... such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment...

  6. Initiation preference at a yeast origin of replication.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  7. Non-replication of genome-wide based associations between common variants in INSIG2 and PFKP and obesity in studies of 18,014 Danes

    DEFF Research Database (Denmark)

    Sandholt, Camilla Helene; Mogensen, Mette S; Borch-Johnsen, Knut

    2008-01-01

    The INSIG2 rs7566605 and PFKP rs6602024 polymorphisms have been identified as obesity gene variants in genome-wide association (GWA) studies. However, replication has been contradictory for both variants. The aims of this study were to validate these obesity-associations through case-control stud......The INSIG2 rs7566605 and PFKP rs6602024 polymorphisms have been identified as obesity gene variants in genome-wide association (GWA) studies. However, replication has been contradictory for both variants. The aims of this study were to validate these obesity-associations through case......-control studies and analyses of obesity-related quantitative traits. Moreover, since environmental and genetic factors may modulate the impact of a genetic variant, we wanted to perform such interaction analyses. We focused on physical activity as an environmental risk factor, and on the GWA identified obesity...

  8. Recommendations for Replication Research in Special Education: A Framework of Systematic, Conceptual Replications

    Science.gov (United States)

    Coyne, Michael D.; Cook, Bryan G.; Therrien, William J.

    2016-01-01

    Special education researchers conduct studies that can be considered replications. However, they do not often refer to them as replication studies. The purpose of this article is to consider the potential benefits of conceptualizing special education intervention research within a framework of systematic, conceptual replication. Specifically, we…

  9. DNA replication after mutagenic treatment in Hordeum vulgare.

    Science.gov (United States)

    Kwasniewska, Jolanta; Kus, Arita; Swoboda, Monika; Braszewska-Zalewska, Agnieszka

    2016-12-01

    The temporal and spatial properties of DNA replication in plants related to DNA damage and mutagenesis is poorly understood. Experiments were carried out to explore the relationships between DNA replication, chromatin structure and DNA damage in nuclei from barley root tips. We quantitavely analysed the topological organisation of replication foci using pulse EdU labelling during the S phase and its relationship with the DNA damage induced by mutagenic treatment with maleic hydrazide (MH), nitroso-N-methyl-urea (MNU) and gamma ray. Treatment with mutagens did not change the characteristic S-phase patterns in the nuclei; however, the frequencies of the S-phase-labelled cells after treatment differed from those observed in the control cells. The analyses of DNA replication in barley nuclei were extended to the micronuclei induced by mutagens. Replication in the chromatin of the micronuclei was rare. The results of simultanous TUNEL reaction to identify cells with DNA strand breaks and the labelling of the S-phase cells with EdU revealed the possibility of DNA replication occurring in damaged nuclei. For the first time, the intensity of EdU fluorescence to study the rate of DNA replication was analysed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... importance of surface topography follows. In general the replication is not perfect and the topography of the plastic part differs from the inverse topography of the mould cavity. It is desirable to be able to control the degree of replication perfection or replication quality. This requires an understanding...... of the physical mechanisms of replication. Such understanding can lead to improved process design and facilitate in-line process quality control with respect to surface properties. The purpose of the project is to identify critical factors that affect topography replication quality and to obtain an understanding...

  11. Evidence for an asthma risk locus on chromosome Xp: a replication linkage study

    DEFF Research Database (Denmark)

    Brasch-Andersen, C; Møller, M U; Haagerup, A

    2008-01-01

    replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample. METHODS: We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22...... studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same.......3, and Xp22.31-p11.4 using additional markers in an independent set of 136 Danish asthmatic sib pair families. RESULTS: Nonparametric multipoint linkage analyses yielded suggestive evidence for linkage to asthma to chromosome Xp21.2 (MLS 2.92) but failed to replicate linkage to chromosomes 1p36.31-p36.21, 5...

  12. Late-replicating X-chromosome: replication patterns in mammalian females

    Directory of Open Access Journals (Sweden)

    Tunin Karen

    2002-01-01

    Full Text Available The GTG-banding and 5-BrdU incorporation patterns of the late-replicating X-chromosome were studied in female dogs and cattle, and compared to human female patterns. The replication patterns of the short arm of the X-chromosomes did not show any difference between human, dog and cattle females. As to the long arm, some bands showed differences among the three studied species regarding the replication kinetics pattern. These differences were observed in a restricted region of the X-chromosome, delimited by Xq11 -> q25 in humans, by Xq1 -> q8 in dogs, and by Xq12 -> q32 in cattle. In an attempt to find out if these differences in the replication kinetics could be a reflection of differences in the localization of genes in that region of the X-chromosome, we used the probe for the human androgen receptor gene (AR localized at Xq12, which is in the region where we observed differences among the three studied species. We did not, however, observe hybridization signals. Our study goes on, using other human probes for genes located in the region Xq11 -> Xq25.

  13. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    Directory of Open Access Journals (Sweden)

    Caroline M Li

    Full Text Available We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE. In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40 origin of DNA replication and the viral large tumor antigen (T-antigen protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA, DNA topoisomerase I (topo I, DNA polymerase δ (Pol δ, DNA polymerase ɛ (Pol ɛ, replication protein A (RPA and replication factor C (RFC. Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  14. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    Science.gov (United States)

    Li, Caroline M; Miao, Yunan; Lingeman, Robert G; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  15. Data from Investigating Variation in Replicability: A “Many Labs” Replication Project

    Directory of Open Access Journals (Sweden)

    Richard A. Klein

    2014-04-01

    Full Text Available This dataset is from the Many Labs Replication Project in which 13 effects were replicated across 36 samples and over 6,000 participants. Data from the replications are included, along with demographic variables about the participants and contextual information about the environment in which the replication was conducted. Data were collected in-lab and online through a standardized procedure administered via an online link. The dataset is stored on the Open Science Framework website. These data could be used to further investigate the results of the included 13 effects or to study replication and generalizability more broadly.

  16. Effectiveness of strategies to increase the validity of findings from association studies: size vs. replication

    Directory of Open Access Journals (Sweden)

    Kallischnigg Gerd

    2010-05-01

    Full Text Available Abstract Background The capacity of multiple comparisons to produce false positive findings in genetic association studies is abundantly clear. To address this issue, the concept of false positive report probability (FPRP measures "the probability of no true association between a genetic variant and disease given a statistically significant finding". This concept involves the notion of prior probability of an association between a genetic variant and a disease, making it difficult to achieve acceptable levels for the FPRP when the prior probability is low. Increasing the sample size is of limited efficiency to improve the situation. Methods To further clarify this problem, the concept of true report probability (TRP is introduced by analogy to the positive predictive value (PPV of diagnostic testing. The approach is extended to consider the effects of replication studies. The formula for the TRP after k replication studies is mathematically derived and shown to be only dependent on prior probability, alpha, power, and number of replication studies. Results Case-control association studies are used to illustrate the TRP concept for replication strategies. Based on power considerations, a relationship is derived between TRP after k replication studies and sample size of each individual study. That relationship enables study designers optimization of study plans. Further, it is demonstrated that replication is efficient in increasing the TRP even in the case of low prior probability of an association and without requiring very large sample sizes for each individual study. Conclusions True report probability is a comprehensive and straightforward concept for assessing the validity of positive statistical testing results in association studies. By its extension to replication strategies it can be demonstrated in a transparent manner that replication is highly effective in distinguishing spurious from true associations. Based on the generalized TRP

  17. Cyclophilin B facilitates the replication of Orf virus.

    Science.gov (United States)

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  18. Registered Replication Report

    DEFF Research Database (Denmark)

    Bouwmeester, S.; Verkoeijen, P. P.J.L.; Aczel, B.

    2017-01-01

    and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed...... the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned...

  19. Genome-wide association study identifies 74 loci associated with educational attainment

    OpenAIRE

    Okbay, Aysu; Beauchamp, Jonathan; Fontana, M.A. (Mark Alan); Lee, James J.; Pers, Tune; Rietveld, C.A. (Cornelius A.); Turley, Patrick; Chen, G.-B. (Guo-Bo); Emilsson, Valur; Meddens, S.F.W. (S. Fleur W.); Oskarsson, S. (Sven); Pickrell, J.K. (Joseph K.); Thom, K. (Kevin); Timshel, P. (Pascal); Vlaming, Ronald

    2016-01-01

    textabstractEducational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 geno...

  20. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  1. Gambling, Risk-Taking, and Antisocial Behavior: A Replication Study Supporting the Generality of Deviance.

    Science.gov (United States)

    Mishra, Sandeep; Lalumière, Martin L; Williams, Robert J

    2017-03-01

    Research suggests that high frequency gambling is a component of the "generality of deviance", which describes the observation that various forms of risky and antisocial behavior tend to co-occur among individuals. Furthermore, risky and antisocial behaviors have been associated with such personality traits as low self-control, and impulsivity, and sensation-seeking. We conducted a replication (and extension) of two previous studies examining whether high frequency gambling is part of the generality of deviance using a large and diverse community sample (n = 328). This study was conducted as a response to calls for more replication studies in the behavioral and psychological sciences (recent systematic efforts suggest that a significant proportion of psychology studies do not replicate). The results of the present study largely replicate those previously found, and in many cases, we observed stronger associations among measures of gambling, risk-taking, and antisocial behavior in this diverse sample. Together, this study provides evidence for the generality of deviance inclusive of gambling (and, some evidence for the replicability of research relating to gambling and individual differences).

  2. Testing the Efficacy of a Tier 2 Mathematics Intervention: A Conceptual Replication Study

    Science.gov (United States)

    Doabler, Christian T.; Clarke, Ben; Kosty, Derek B.; Kurtz-Nelson, Evangeline; Fien, Hank; Smolkowski, Keith; Baker, Scott K.

    2016-01-01

    The purpose of this closely aligned conceptual replication study was to investigate the efficacy of a Tier 2 kindergarten mathematics intervention. The replication study differed from the initial randomized controlled trial on three important elements: geographical region, timing of the intervention, and instructional context of the…

  3. Synthesizing Results from Replication Studies Using Robust Variance Estimation: Corrections When the Number of Studies Is Small

    Science.gov (United States)

    Tipton, Elizabeth

    2014-01-01

    Replication studies allow for making comparisons and generalizations regarding the effectiveness of an intervention across different populations, versions of a treatment, settings and contexts, and outcomes. One method for making these comparisons across many replication studies is through the use of meta-analysis. A recent innovation in…

  4. Trust, trolleys and social dilemmas: A replication study.

    Science.gov (United States)

    Bostyn, Dries H; Roets, Arne

    2017-05-01

    The present manuscript addresses how perceived trustworthiness of cooperative partners in a social dilemma context is influenced by the moral judgments those partners make on Trolley-type moral dilemmas; an issue recently investigated by Everett, Pizarro, and Crockett (2016). The present research comprises 2 studies that were conducted independently, simultaneously with, and incognizant of the Everett studies. Whereas the present studies aimed at investigating the same research hypothesis, a different and more elaborate methodology was used, as such providing a conceptual replication opportunity and extension to the Everett et al. Overall, the present studies clearly confirmed the main finding of Everett et al., that deontologists are more trusted than consequentialists in social dilemma games. Study 1 replicates Everett et al.'s effect in the context of trust games. Study 2 generalizes the effect to public goods games, thus demonstrating that it is not specific to the type of social dilemma game used in Everett et al. Finally, both studies build on these results by demonstrating that the increased trust in deontologists may sometimes, but not always, be warranted: deontologists displayed increased cooperation rates but only in the public goods game and not in trust games. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Risk/protective factors among addicted mothers' offspring: a replication study.

    Science.gov (United States)

    Weissman, M M; McAvay, G; Goldstein, R B; Nunes, E V; Verdeli, H; Wickramaratne, P J

    1999-11-01

    There are few systematic studies of the school-aged offspring of drug-dependent patients, although this information is useful for planning evidence-based prevention programs. We have completed such a study, which we compare to a similar study independently conducted in 1998. In both studies, both the parent and offspring were assessed blindly and independently by direct diagnostic interviews, and parental assessment of offspring was also obtained. The similarity in design and methods between studies provided an opportunity for replication by reanalysis of data. The major findings are a replication in two independently conducted studies of school-aged offspring of opiate- and/or cocaine-addicted mothers of the high rates of any psychiatric disorder (60% in both studies), major depression (20%, 26%), oppositional defiant disorder (ODD) (18%, 23%), conduct disorder (17%, 9%), attention-deficit/hyperactivity disorder (ADHD) (13%, 8%), and substance abuse (5%, 10%) among offspring. Both studies also found high rates of comorbid alcohol abuse, depression, and multiple drugs of abuse in the mothers. We conclude that efforts to replicate findings by analyses of independently conducted studies are an inexpensive way to test the sturdiness of findings that can provide the empirical basis for preventive efforts. Clinically, the data in both studies suggest that both drug dependence and associated psychopathology should be assessed and treated in opiate addicts with young offspring, and the offspring should be monitored for the development of conduct and mood disorders and substance use.

  6. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    Science.gov (United States)

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  8. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Science.gov (United States)

    de Chassey, Benoît; Aublin-Gex, Anne; Ruggieri, Alessia; Meyniel-Schicklin, Laurène; Pradezynski, Fabrine; Davoust, Nathalie; Chantier, Thibault; Tafforeau, Lionel; Mangeot, Philippe-Emmanuel; Ciancia, Claire; Perrin-Cocon, Laure; Bartenschlager, Ralf; André, Patrice; Lotteau, Vincent

    2013-01-01

    Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  9. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Directory of Open Access Journals (Sweden)

    Benoît de Chassey

    Full Text Available Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1 appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  10. Can Coloring Mandalas Reduce Anxiety? A Replication Study

    Science.gov (United States)

    van der Vennet, Renee; Serice, Susan

    2012-01-01

    This experimental study replicated Curry and Kasser's (2005) research that tested whether coloring a mandala would reduce anxiety. After inducing an anxious mood via a writing activity, participants were randomly assigned to three groups that colored either on a mandala design, on a plaid design, or on a blank paper. Anxiety level was measured…

  11. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    Science.gov (United States)

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  12. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  13. Are Psychology Journals Anti-replication? A Snapshot of Editorial Practices

    OpenAIRE

    Martin, G. N.; Clarke, Richard M.

    2017-01-01

    Recent research in psychology has highlighted a number of replication problems in the discipline, with publication bias – the preference for publishing original and positive results, and a resistance to publishing negative results and replications- identified as one reason for replication failure. However, little empirical research exists to demonstrate that journals explicitly refuse to publish replications. We reviewed the instructions to authors and the published aims of 1151 psychology jo...

  14. Can concurrent memory load reduce distraction? A replication study and beyond.

    Science.gov (United States)

    Gil-Gómez de Liaño, Beatriz; Stablum, Franca; Umiltà, Carlo

    2016-01-01

    The effects of concurrent working memory load in attentional processes have been 1 of the most puzzling issues in cognitive psychology. Studies have shown detrimental effects, no effects, and even beneficial effects of working memory load in different attentional tasks. In the present study we attempted to replicate Kim, Kim, and Chun's (2005, Experiment 3b) findings of beneficial effects of concurrent working memory load in a spatial Stroop-like task. In 3 experiments in which our sample was 3 times larger than that in the original Kim et al. study, we could not replicate their findings. The results are discussed in terms of what may have produced the conflicting results, trying to shed light on how working memory load affects attentional tasks. Also, we emphasize the importance of using adequately large samples in cognitive research. Although we acknowledge the relevance of meta-analyses to analyze conflicting results, in the present article we stress (perhaps more important) the power of an essential trademark in science for research development: replicability. (c) 2015 APA, all rights reserved).

  15. Genome-wide association study identifies 74 loci associated with educational attainment

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  16. Who Needs Replication?

    Science.gov (United States)

    Porte, Graeme

    2013-01-01

    In this paper, the editor of a recent Cambridge University Press book on research methods discusses replicating previous key studies to throw more light on their reliability and generalizability. Replication research is presented as an accepted method of validating previous research by providing comparability between the original and replicated…

  17. Being a good nurse and doing the right thing: a replication study.

    Science.gov (United States)

    Catlett, Shelia; Lovan, Sherry R

    2011-01-01

    This qualitative research study, a replication of a study published in 2002, investigated the qualities of a good nurse and the role ethics plays in decision making. After reviewing the limitations of the published work, the current study implemented modifications related to the research questions, sample selection, data collection, and use of software for data analysis. The original study identified seven categories that related to being a good nurse and doing the right thing. In the present study, the use of relational analysis led to the recognition of four categories: (1) personal traits and attributes; (2) technical skills and management of care; (3) work environment and co-workers; and (4) caring and caring behaviors. To understand what it means to be a good nurse and do the right thing is a complex task; however, this research adds to the small amount of empirical data that exists to describe those characteristics.

  18. Mapping yeast origins of replication via single-stranded DNA detection.

    Science.gov (United States)

    Feng, Wenyi; Raghuraman, M K; Brewer, Bonita J

    2007-02-01

    Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.

  19. USP7 is a SUMO deubiquitinase essential for DNA replication

    DEFF Research Database (Denmark)

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment...... is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads...... to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7...

  20. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins.

    Science.gov (United States)

    Milbredt, Sarah; Farmani, Neda; Sobetzko, Patrick; Waldminghaus, Torsten

    2016-10-21

    The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.

  1. DNA Copy-Number Control through Inhibition of Replication Fork Progression

    Directory of Open Access Journals (Sweden)

    Jared T. Nordman

    2014-11-01

    Full Text Available Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.

  2. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia

    DEFF Research Database (Denmark)

    Chen, X; Lee, G; Maher, B S

    2011-01-01

    We conducted data-mining analyses using the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) and molecular genetics of schizophrenia genome-wide association study supported by the genetic association information network (MGS-GAIN) schizophrenia data sets and performed...... bioinformatic prioritization for all the markers with P-values ¿0.05 in both data sets. In this process, we found that in the CMYA5 gene, there were two non-synonymous markers, rs3828611 and rs10043986, showing nominal significance in both the CATIE and MGS-GAIN samples. In a combined analysis of both the CATIE...... in our Irish samples and was dropped out without further investigation. The other two markers were verified in 23 other independent data sets. In a meta-analysis of all 23 replication samples (family samples, 912 families with 4160 subjects; case-control samples, 11¿380 cases and 15¿021 controls), we...

  3. Distributional Replication

    OpenAIRE

    Beare, Brendan K.

    2009-01-01

    Suppose that X and Y are random variables. We define a replicating function to be a function f such that f(X) and Y have the same distribution. In general, the set of replicating functions for a given pair of random variables may be infinite. Suppose we have some objective function, or cost function, defined over the set of replicating functions, and we seek to estimate the replicating function with the lowest cost. We develop an approach to estimating the cheapest replicating function that i...

  4. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians

    DEFF Research Database (Denmark)

    Cho, Yoon Shin; Chen, Chien-Hsiun; Hu, Cheng

    2012-01-01

    We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis...... (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3...

  5. Reproducibility and replicability of rodent phenotyping in preclinical studies

    NARCIS (Netherlands)

    Kafkafi, Neri; Agassi, Joseph; Chesler, Elissa J.; Crabbe, John C.; Crusio, Wim E.; Eilam, David; Gerlai, Robert; Golani, Ilan; Gomez-Marin, Alex; Heller, Ruth; Iraqi, Fuad; Jaljuli, Iman; Karp, Natasha A.; Morgan, Hugh; Nicholson, George; Pfaff, Donald W.; Richter, S. Helene; Stark, Philip B.; Stiedl, Oliver; Stodden, Victoria; Tarantino, Lisa M.; Tucci, Valter; Valdar, William; Williams, Robert W.; Würbel, Hanno; Benjamini, Yoav

    The scientific community is increasingly concerned with the proportion of published “discoveries” that are not replicated in subsequent studies. The field of rodent behavioral phenotyping was one of the first to raise this concern, and to relate it to other methodological issues: the complex

  6. Chromatin Immunoprecipitation of Replication Factors Moving with the Replication Fork

    OpenAIRE

    Rapp, Jordan B.; Ansbach, Alison B.; Noguchi, Chiaki; Noguchi, Eishi

    2009-01-01

    Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization ...

  7. A 4-study replication of the moderating effects of greed on socioeconomic status and unethical behaviour.

    Science.gov (United States)

    Balakrishnan, Anjana; Palma, Paolo A; Patenaude, Joshua; Campbell, Lorne

    2017-01-31

    Four replications of Piff and colleagues' study examined the moderating effects of greed attitudes on the relationship between socio-economic status (SES) and unethical behaviour (Study 7). In the original study, the researchers found that both greed and SES predicted increased propensity to engage in unethical behavior. Furthermore, this association was moderated such that the effects of SES on unethical behaviour were no longer present in the greed prime condition versus the neutral condition. In replication 1 of the original study main effects of greed attitudes and SES were found, but no interaction was found. Main effects for greed emerged in replications 3 and 4. However no main effects for SES or interactions emerged for replications 2-4. A meta-analysis was conducted with all replications and the original study, and found no moderating effect of greed on the relationship between SES and unethical behavior.

  8. A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial

    Directory of Open Access Journals (Sweden)

    C.-W. Shao

    2015-08-01

    Full Text Available Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the “colour change” of the human skeletal remains from wet to dry condition. Then, the “colure change” is used to evaluate the “real” surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The“Lingdao man No.1”, is a well preserved burial of early Neolithic period (8300 B.P. excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by

  9. Replication Catastrophe

    DEFF Research Database (Denmark)

    Toledo, Luis; Neelsen, Kai John; Lukas, Jiri

    2017-01-01

    Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA...... breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication...... checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under...

  10. USP7 is a SUMO deubiquitinase essential for DNA replication

    Science.gov (United States)

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates various aspects of DNA replication. We previously showed that the chromatin around replisomes is rich in SUMO and depleted in Ub, whereas an opposite pattern is observed in mature chromatin. How this SUMO-rich/Ub-low environment is maintained at sites of DNA replication is not known. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Chemical inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced to chromatin away from replisomes. Our findings provide a model to explain the differential accumulation of SUMO and Ub at replication forks, and identify an essential role of USP7 in DNA replication that should be taken into account for the use of USP7 inhibitors as anticancer agents. PMID:26950370

  11. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies...... have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  13. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.

  14. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  15. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences

    International Nuclear Information System (INIS)

    Frappier, L.; Zannis-Hadjopoulos, M.

    1987-01-01

    Twelve clones of origin-enriched sequences (ORS) isolated from early replicating monkey (CV-1) DNA were examined for transient episomal replication in transfected CV-1, COS-7, and HeLa cells. Plasmid DNA was isolated at time intervals after transfection and screened by the Dpn I resistance assay or by the bromodeoxyuridine substitution assay to differentiate between input and replicated DNA. The authors have identified four monkey ORS (ORS3, -8, -9, and -12) that can support plasmid replication in mammalian cells. This replication is carried out in a controlled and semiconservative manner characteristic of mammalian replicons. ORS replication was most efficient in HeLa cells. Electron microscopy showed ORS8 and ORS12 plasmids of the correct size with replication bubbles. Using a unique restriction site in ORS12, we have mapped the replication bubble within the monkey DNA sequence

  16. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  17. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  18. Promotion of Hendra Virus Replication by MicroRNA 146a

    Science.gov (United States)

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  19. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  20. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  1. Replicating distinctive facial features in lineups: identification performance in young versus older adults.

    Science.gov (United States)

    Badham, Stephen P; Wade, Kimberley A; Watts, Hannah J E; Woods, Natalie G; Maylor, Elizabeth A

    2013-04-01

    Criminal suspects with distinctive facial features, such as tattoos or bruising, may stand out in a police lineup. To prevent suspects from being unfairly identified on the basis of their distinctive feature, the police often manipulate lineup images to ensure that all of the members appear similar. Recent research shows that replicating a distinctive feature across lineup members enhances eyewitness identification performance, relative to removing that feature on the target. In line with this finding, the present study demonstrated that with young adults (n = 60; mean age = 20), replication resulted in more target identifications than did removal in target-present lineups and that replication did not impair performance, relative to removal, in target-absent lineups. Older adults (n = 90; mean age = 74) performed significantly worse than young adults, identifying fewer targets and more foils; moreover, older adults showed a minimal benefit from replication over removal. This pattern is consistent with the associative deficit hypothesis of aging, such that older adults form weaker links between faces and their distinctive features. Although replication did not produce much benefit over removal for older adults, it was not detrimental to their performance. Therefore, the results suggest that replication may not be as beneficial to older adults as it is to young adults and demonstrate a new practical implication of age-related associative deficits in memory.

  2. Wine glass size and wine sales: a replication study in two bars.

    Science.gov (United States)

    Pechey, Rachel; Couturier, Dominique-Laurent; Hollands, Gareth J; Mantzari, Eleni; Zupan, Zorana; Marteau, Theresa M

    2017-08-01

    Wine glass size may influence perceived volume and subsequently purchasing and consumption. Using a larger glass to serve the same portions of wine was found to increase wine sales by 9.4% (95% CI 1.9, 17.5) in a recent study conducted in one bar. The current study aimed to replicate this previous work in two other bars using a wider range of glass sizes. To match the previous study, a repeated multiple treatment reversal design, during which wine was served in glasses of the same design but different sizes, was used. The study was conducted in two bars in Cambridge, England, using glass sizes of 300, 370, 510 ml (Bar 1) and 300 and 510 ml (Bar 2). Customers purchased their choice of a 750 ml bottle, or standard UK measures of 125, 175 or 250 ml of wine, each of which was served with the same glass. Bar 1 Daily wine volume (ml) purchased was 10.5% (95% CI 1.0, 20.9) higher when sold in 510 ml compared to 370 ml glasses; but sales were not significantly higher with 370 ml versus 300 ml glasses (6.5%, 95% CI -5.2, 19.6). Bar 2 Findings were inconclusive as to whether daily wine purchased differed when using 510 ml versus 300 ml glasses (-1.1%, 95% CI -12.6, 11.9). These results provide a partial replication of previous work showing that introducing larger glasses (without manipulating portion size) increases purchasing. Understanding the mechanisms by which wine glass size influences consumption may elucidate when the effect can be expected and when not. Trial registration This study is a replication study, based on the procedure set out in the trial registration for the study that it attempts to replicate (ISRCTN registry: ISRCTN12018175).

  3. Genome-wide association study identifies genetic loci associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    2011-03-01

    Full Text Available The existence of multiple inherited disorders of iron metabolism in man, rodents and other vertebrates suggests genetic contributions to iron deficiency. To identify new genomic locations associated with iron deficiency, a genome-wide association study (GWAS was performed using DNA collected from white men aged≥25 y and women≥50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF≤12 µg/L (cases and iron replete controls (SF>100 µg/L in men, SF>50 µg/L in women. Regression analysis was used to examine the association between case-control status (336 cases, 343 controls and quantitative serum iron measures and 331,060 single nucleotide polymorphism (SNP genotypes, with replication analyses performed in a sample of 71 cases and 161 controls from a population of white male and female veterans screened at a US Veterans Affairs (VA medical center. Five SNPs identified in the GWAS met genome-wide statistical significance for association with at least one iron measure, rs2698530 on chr. 2p14; rs3811647 on chr. 3q22, a known SNP in the transferrin (TF gene region; rs1800562 on chr. 6p22, the C282Y mutation in the HFE gene; rs7787204 on chr. 7p21; and rs987710 on chr. 22q11 (GWAS observed P<1.51×10(-7 for all. An association between total iron binding capacity and SNP rs3811647 in the TF gene (GWAS observed P=7.0×10(-9, corrected P=0.012 was replicated within the VA samples (observed P=0.012. Associations with the C282Y mutation in the HFE gene also were replicated. The joint analysis of the HEIRS and VA samples revealed strong associations between rs2698530 on chr. 2p14 and iron status outcomes. These results confirm a previously-described TF polymorphism and implicate one potential new locus as a target for gene identification.

  4. RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability

    Directory of Open Access Journals (Sweden)

    Edwin Chen

    2015-12-01

    Full Text Available JAK2V617F is the most common oncogenic lesion in patients with myeloproliferative neoplasms (MPNs. Despite the ability of JAK2V617F to instigate DNA damage in vitro, MPNs are nevertheless characterized by genomic stability. In this study, we address this paradox by identifying the DNA helicase RECQL5 as a suppressor of genomic instability in MPNs. We report increased RECQL5 expression in JAK2V617F-expressing cells and demonstrate that RECQL5 is required to counteract JAK2V617F-induced replication stress. Moreover, RECQL5 depletion sensitizes JAK2V617F mutant cells to hydroxyurea (HU, a pharmacological inducer of replication stress and the most common treatment for MPNs. Using single-fiber chromosome combing, we show that RECQL5 depletion in JAK2V617F mutant cells impairs replication dynamics following HU treatment, resulting in increased double-stranded breaks and apoptosis. Cumulatively, these findings identify RECQL5 as a critical regulator of genome stability in MPNs and demonstrate that replication stress-associated cytotoxicity can be amplified specifically in JAK2V617F mutant cells through RECQL5-targeted synthetic lethality.

  5. Examining reproducibility in psychology : A hybrid method for combining a statistically significant original study and a replication

    NARCIS (Netherlands)

    Van Aert, R.C.M.; Van Assen, M.A.L.M.

    2018-01-01

    The unrealistically high rate of positive results within psychology has increased the attention to replication research. However, researchers who conduct a replication and want to statistically combine the results of their replication with a statistically significant original study encounter

  6. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

    NARCIS (Netherlands)

    C.E. Elks (Cathy); J.R.B. Perry (John); P. Sulem (Patrick); D.I. Chasman (Daniel); N. Franceschini (Nora); C. He (Chunyan); K.L. Lunetta (Kathryn); J.A. Visser (Jenny); E.M. Byrne (Enda); D.L. Cousminer (Diana); D.F. Gudbjartsson (Daniel); T. Esko (Tõnu); B. Feenstra (Bjarke); J.J. Hottenga (Jouke Jan); D.L. Koller (Daniel); Z. Kutalik (Zoltán); P. Lin (Peng); M. Mangino (Massimo); M. Marongiu (Mara); P.F. McArdle (Patrick); A.V. Smith (Albert Vernon); L. Stolk (Lisette); S. van Wingerden (Sophie); J.H. Zhao (Jing Hua); E. Albrecht (Eva); T. Corre (Tanguy); E. Ingelsson (Erik); C. Hayward (Caroline); P.K. Magnusson (Patrik); S. Ulivi (Shelia); N.M. Warrington (Nicole); L. Zgaga (Lina); H. Alavere (Helene); N. Amin (Najaf); T. Aspelund (Thor); S. Bandinelli (Stefania); I.E. Barroso (Inês); G. Berenson (Gerald); S.M. Bergmann (Sven); H. Blackburn (Hannah); E.A. Boerwinkle (Eric); J.E. Buring (Julie); F. Busonero; H. Campbell (Harry); S.J. Chanock (Stephen); W. Chen (Wei); M. Cornelis (Marilyn); D.J. Couper (David); A.D. Coviello (Andrea); P. d' Adamo (Pio); U. de Faire (Ulf); E.J.C. de Geus (Eco); P. Deloukas (Panagiotis); A. Döring (Angela); D.F. Easton (Douglas); G. Eiriksdottir (Gudny); V. Emilsson (Valur); J.G. Eriksson (Johan); L. Ferrucci (Luigi); A.R. Folsom (Aaron); T. Foroud (Tatiana); M. Garcia (Melissa); P. Gasparini (Paolo); F. Geller (Frank); C. Gieger (Christian); V. Gudnason (Vilmundur); A.S. Hall (Alistair); S.E. Hankinson (Susan); L. Ferreli (Liana); A.C. Heath (Andrew); D.G. Hernandez (Dena); A. Hofman (Albert); F.B. Hu (Frank); T. Illig (Thomas); M.R. Järvelin; A.D. Johnson (Andrew); D. Karasik (David); K-T. Khaw (Kay-Tee); D.P. Kiel (Douglas); T.O. Kilpelänen (Tuomas); I. Kolcic (Ivana); P. Kraft (Peter); L.J. Launer (Lenore); J.S.E. Laven (Joop); S. Li (Shengxu); J. Liu (Jianjun); D. Levy (Daniel); N.G. Martin (Nicholas); M. Melbye (Mads); V. Mooser (Vincent); J.C. Murray (Jeffrey); M.A. Nalls (Michael); P. Navarro (Pau); M. Nelis (Mari); A.R. Ness (Andrew); K. Northstone (Kate); B.A. Oostra (Ben); M. Peacock (Munro); C. Palmer (Cameron); A. Palotie (Aarno); G. Paré (Guillaume); A.N. Parker (Alex); N.L. Pedersen (Nancy); L. Peltonen (Leena Johanna); C.E. Pennell (Craig); P.D.P. Pharoah (Paul); O. Polasek (Ozren); A.S. Plump (Andrew); A. Pouta (Anneli); E. Porcu (Eleonora); T. Rafnar (Thorunn); J.P. Rice (John); S.M. Ring (Susan); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); C. Sala (Cinzia); V. Salomaa (Veikko); S. Sanna (Serena); D. Schlessinger; N.J. Schork (Nicholas); A. Scuteri (Angelo); A.V. Segrè (Ayellet); A.R. Shuldiner (Alan); N. Soranzo (Nicole); U. Sovio (Ulla); S.R. Srinivasan (Sathanur); D.P. Strachan (David); M.L. Tammesoo; E. Tikkanen (Emmi); D. Toniolo (Daniela); K. Tsui (Kim); L. Tryggvadottir (Laufey); J.P. Tyrer (Jonathan); M. Uda (Manuela); R.M. van Dam (Rob); J.B.J. van Meurs (Joyce); P. Vollenweider (Peter); G. Waeber (Gérard); N.J. Wareham (Nick); D. Waterworth (Dawn); H.E. Wichmann (Heinz Erich); G.A.H.M. Willemsen (Gonneke); J.F. Wilson (James); A.F. Wright (Alan); L. Young (Lauren); G. Zhai (Guangju); W.V. Zhuang; L.J. Bierut (Laura); D.I. Boomsma (Dorret); H.A. Boyd (Heather); L. Crisponi (Laura); E.W. Demerath (Ellen); P. Tikka-Kleemola (Päivi); M.J. Econs (Michael); T.B. Harris (Tamara); D. Hunter (David); R.J.F. Loos (Ruth); A. Metspalu (Andres); G.W. Montgomery (Grant); P.M. Ridker (Paul); T.D. Spector (Tim); E.A. Streeten (Elizabeth); K. Stefansson (Kari); U. Thorsteinsdottir (Unnur); A.G. Uitterlinden (André); E. Widen (Elisabeth); J. Murabito (Joanne); K. Ong (Ken); M.N. Weedon (Michael)

    2010-01-01

    textabstractTo identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10 -60) and 9q31.2 (P = 2.2 × 10 -33), we identified 30

  7. ATM supports gammaherpesvirus replication by attenuating type I interferon pathway.

    Science.gov (United States)

    Darrah, Eric J; Stoltz, Kyle P; Ledwith, Mitchell; Tarakanova, Vera L

    2017-10-01

    Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Identification of genes involved in DNA replication of the Autographa californica baculovirus

    NARCIS (Netherlands)

    Kool, M.; Ahrens, C. H.; Goldbach, R. W.; Rohrmann, G. F.; Vlak, J. M.

    1994-01-01

    By use of a transient replication assay, nine genes involved in DNA replication were identified in the genome of the Autographa californica baculovirus. Six genes encoding helicase, DNA polymerase, IE-1, LEF-1, LEF-2, and LEF-3 are essential for DNA replication while three genes encoding P35, IE-2,

  9. The big five as tendencies in situations : A replication study

    NARCIS (Netherlands)

    Hendriks, AAJ

    1996-01-01

    Van Heck, Perugini, Caprara and Froger (1994) report the average generalizability coefficient reflecting the consistent ordering of persons across different situations and different trait markers (items) to be in the order of 0.70. We performed a replication study in which we improved on their

  10. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  11. Efficient Hybrid Detection of Node Replication Attacks in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2017-01-01

    Full Text Available The node replication attack is one of the notorious attacks that can be easily launched by adversaries in wireless sensor networks. A lot of literatures have studied mitigating the node replication attack in static wireless sensor networks. However, it is more difficult to detect the replicas in mobile sensor networks because of their node mobility. Considering the limitations of centralized detection schemes for static wireless sensor networks, a few distributed solutions have been recently proposed. Some existing schemes identified replicated attacks by sensing mobile nodes with identical ID but different locations. To facilitate the discovery of contradictory conflicts, we propose a hybrid local and global detection method. The local detection is performed in a local area smaller than the whole deployed area to improve the meeting probability of contradictory nodes, while the distant replicated nodes in larger area can also be efficiently detected by the global detection. The complementary two levels of detection achieve quick discovery by searching of the replicas with reasonable overhead.

  12. Are Psychology Journals Anti-replication? A Snapshot of Editorial Practices.

    Science.gov (United States)

    Martin, G N; Clarke, Richard M

    2017-01-01

    Recent research in psychology has highlighted a number of replication problems in the discipline, with publication bias - the preference for publishing original and positive results, and a resistance to publishing negative results and replications- identified as one reason for replication failure. However, little empirical research exists to demonstrate that journals explicitly refuse to publish replications. We reviewed the instructions to authors and the published aims of 1151 psychology journals and examined whether they indicated that replications were permitted and accepted. We also examined whether journal practices differed across branches of the discipline, and whether editorial practices differed between low and high impact journals. Thirty three journals (3%) stated in their aims or instructions to authors that they accepted replications. There was no difference between high and low impact journals. The implications of these findings for psychology are discussed.

  13. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    Science.gov (United States)

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  14. A New Replication Norm for Psychology

    Directory of Open Access Journals (Sweden)

    Etienne P LeBel

    2015-10-01

    Full Text Available In recent years, there has been a growing concern regarding the replicability of findings in psychology, including a mounting number of prominent findings that have failed to replicate via high-powered independent replication attempts. In the face of this replicability “crisis of confidence”, several initiatives have been implemented to increase the reliability of empirical findings. In the current article, I propose a new replication norm that aims to further boost the dependability of findings in psychology. Paralleling the extant social norm that researchers should peer review about three times as many articles that they themselves publish per year, the new replication norm states that researchers should aim to independently replicate important findings in their own research areas in proportion to the number of original studies they themselves publish per year (e.g., a 4:1 original-to-replication studies ratio. I argue this simple approach could significantly advance our science by increasing the reliability and cumulative nature of our empirical knowledge base, accelerating our theoretical understanding of psychological phenomena, instilling a focus on quality rather than quantity, and by facilitating our transformation toward a research culture where executing and reporting independent direct replications is viewed as an ordinary part of the research process. To help promote the new norm, I delineate (1 how each of the major constituencies of the research process (i.e., funders, journals, professional societies, departments, and individual researchers can incentivize replications and promote the new norm and (2 any obstacles each constituency faces in supporting the new norm.

  15. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    International Nuclear Information System (INIS)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication

  16. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  17. Owner reports of attention, activity, and impulsivity in dogs: a replication study

    Directory of Open Access Journals (Sweden)

    Iosif Ana-Maria

    2010-01-01

    Full Text Available Abstract Background When developing behaviour measurement tools that use third party assessments, such as parent report, it is important to demonstrate reliability of resulting scales through replication using novel cohorts. The domestic dog has been suggested as a model to investigate normal variation in attention, hyperactivity, and impulsive behaviours impaired in Attention Deficit Hyperactive Disorder (ADHD. The human ADHD Rating Scale, modified for dogs and using owner-directed surveys, was applied in a European sample. We asked whether findings would be replicated utilizing an Internet survey in a novel sample, where unassisted survey completion, participant attitudes and breeds might affect previous findings. Methods Using a slightly modified version of the prior survey, we collected responses (n = 1030, 118 breeds representing 7 breed groups primarily in the United States and Canada. This study was conducted using an Internet survey mechanism. Results Reliability analyses confirmed two scales previously identified for dogs (inattention [IA], hyperactivity-impulsivity [HA-IM]. Models including age, training status, and breed group accounted for very little variance in subscales, with no effect of gender. Conclusions The factor invariance demonstrated in these findings confirms that owner report, using this modified human questionnaire, provides dog scores according to "inattention" and "hyperactivity-impulsivity" axes. Further characterization of naturally occurring variability of attention, activity, and impulsivity in domestic dogs may provide insight into genetic backgrounds underlying behaviours impaired in attention and associated disorders.

  18. Quantitative live imaging of endogenous DNA replication in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Andrew Burgess

    Full Text Available Historically, the analysis of DNA replication in mammalian tissue culture cells has been limited to static time points, and the use of nucleoside analogues to pulse-label replicating DNA. Here we characterize for the first time a novel Chromobody cell line that specifically labels endogenous PCNA. By combining this with high-resolution confocal time-lapse microscopy, and with a simplified analysis workflow, we were able to produce highly detailed, reproducible, quantitative 4D data on endogenous DNA replication. The increased resolution allowed accurate classification and segregation of S phase into early-, mid-, and late-stages based on the unique subcellular localization of endogenous PCNA. Surprisingly, this localization was slightly but significantly different from previous studies, which utilized over-expressed GFP tagged forms of PCNA. Finally, low dose exposure to Hydroxyurea caused the loss of mid- and late-S phase localization patterns of endogenous PCNA, despite cells eventually completing S phase. Taken together, these results indicate that this simplified method can be used to accurately identify and quantify DNA replication under multiple and various experimental conditions.

  19. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson’s disease: a large-scale international study

    Science.gov (United States)

    Elbaz, Alexis; Nelson, Lorene M; Payami, Haydeh; Ioannidis, John P A; Fiske, Brian K; Annesi, Grazia; Belin, Andrea Carmine; Factor, Stewart A; Ferrarese, Carlo; Hadjigeorgiou, Georgios M; Higgins, Donald S; Kawakami, Hideshi; Krüger, Rejko; Marder, Karen S; Mayeux, Richard P; Mellick, George D; Nutt, John G; Ritz, Beate; Samii, Ali; Tanner, Caroline M; Van Broeckhoven, Christine; Van Den Eeden, Stephen K; Wirdefeldt, Karin; Zabetian, Cyrus P; Dehem, Marie; Montimurro, Jennifer S; Southwick, Audrey; Myers, Richard M; Trikalinos, Thomas A

    2013-01-01

    Summary Background A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson’s disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain. Methods Investigators from three Michael J Fox Foundation for Parkinson’s Research-funded genetics consortia—comprising 14 teams—contributed DNA samples from 5526 patients with Parkinson’s disease and 6682 controls, which were genotyped for the 13 SNPs. Most (88%) participants were of white, non-Hispanic descent. We assessed log-additive genetic effects using fixed and random effects models stratified by team and ethnic origin, and tested for heterogeneity across strata. A meta-analysis was undertaken that incorporated data from the original genome-wide study as well as subsequent replication studies. Findings In fixed and random-effects models no associations with any of the 13 SNPs were identified (odds ratios 0·89 to 1·09). Heterogeneity between studies and between ethnic groups was low for all SNPs. Subgroup analyses by age at study entry, ethnic origin, sex, and family history did not show any consistent associations. In our meta-analysis, no SNP showed significant association (summary odds ratios 0·95 to 1.08); there was little heterogeneity except for SNP rs7520966. Interpretation Our results do not lend support to the finding that the 13 SNPs reported in the original genome-wide association study are genetic susceptibility factors for Parkinson’s disease. PMID:17052658

  20. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    Science.gov (United States)

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  2. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22.

    Science.gov (United States)

    Cheng, Fan; Ramos da Silva, Suzane; Huang, I-Chueh; Jung, Jae U; Gao, Shou-Jiang

    2018-02-15

    The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application. IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV

  3. Identification and replication of loci involved in camptothecin-induced cytotoxicity using CEPH pedigrees.

    Directory of Open Access Journals (Sweden)

    Venita Gresham Watson

    2011-05-01

    Full Text Available To date, the Centre d'Etude Polymorphism Humain (CEPH cell line model has only been used as a pharmacogenomic tool to evaluate which genes are responsible for the disparity in response to a single drug. The purpose of this study was demonstrate the model's ability to establish a specific pattern of quantitative trait loci (QTL related to a shared mechanism for multiple structurally related drugs, the camptothecins, which are Topoisomerase 1 inhibitors. A simultaneous screen of six camptothecin analogues for in vitro sensitivity in the CEPH cell lines resulted in cytotoxicity profiles and orders of potency which were in agreement with the literature. For all camptothecins studied, heritability estimates for cytotoxic response averaged 23.1 ± 2.6%. Nonparametric linkage analysis was used to identify a relationship between genetic markers and response to the camptothecins. Ten QTLs on chromosomes 1, 3, 5, 6, 11, 12, 16 and 20 were identified as shared by all six camptothecin analogues. In a separate validation experiment, nine of the ten QTLs were replicated at the significant and suggestive levels using three additional camptothecin analogues. To further refine this list of QTLs, another validation study was undertaken and seven of the nine QTLs were independently replicated for all nine camptothecin analogues. This is the first study using the CEPH cell lines that demonstrates that a specific pattern of QTLs could be established for a class of drugs which share a mechanism of action. Moreover, it is the first study to report replication of linkage results for drug-induced cytotoxicity using this model. The QTLs, which have been identified as shared by all camptothecins and replicated across multiple datasets, are of considerable interest; they harbor genes related to the shared mechanism of action for the camptothecins, which are responsible for variation in response.

  4. A role for the weak DnaA binding sites in bacterial replication origins

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Løbner-Olesen, Anders

    2011-01-01

    DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an ‘AT-rich’ region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed...... between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility...... that bacterial origins might be more alike than previously thought....

  5. Alzheimer's Disease Sequencing Project discovery and replication criteria for cases and controls: Data from a community-based prospective cohort study with autopsy follow-up.

    Science.gov (United States)

    Crane, Paul K; Foroud, Tatiana; Montine, Thomas J; Larson, Eric B

    2017-12-01

    The Alzheimer's Disease Sequencing Project (ADSP) used different criteria for assigning case and control status from the discovery and replication phases of the project. We considered data from a community-based prospective cohort study with autopsy follow-up where participants could be categorized as case, control, or neither by both definitions and compared the two sets of criteria. We used data from the Adult Changes in Thought (ACT) study including Diagnostic and Statistical Manual-IV criteria for dementia status, McKhann et al. criteria for clinical Alzheimer's disease, and Braak and Consortium to Establish a Registry for AD findings on neurofibrillary tangles and neuritic plaques to categorize the 621 ACT participants of European ancestry who died and came to autopsy. We applied ADSP discovery and replication definitions to identify controls, cases, and people who were neither controls nor cases. There was some agreement between the discovery and replication definitions. Major areas of discrepancy included the finding that only 40% of the discovery sample controls had sufficiently low levels of neurofibrillary tangles and neuritic plaques to be considered controls by the replication criteria and the finding that 16% of the replication phase cases were diagnosed with non-AD dementia during life and thus were excluded as cases for the discovery phase. These findings should inform interpretation of genetic association findings from the ADSP. Differences in genetic association findings between the two phases of the study may reflect these different phenotype definitions from the discovery and replication phase of the ADSP. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  6. A study of an adaptive replication framework for orchestrated composite web services.

    Science.gov (United States)

    Mohamed, Marwa F; Elyamany, Hany F; Nassar, Hamed M

    2013-01-01

    Replication is considered one of the most important techniques to improve the Quality of Services (QoS) of published Web Services. It has achieved impressive success in managing resource sharing and usage in order to moderate the energy consumed in IT environments. For a robust and successful replication process, attention should be paid to suitable time as well as the constraints and capabilities in which the process runs. The replication process is time-consuming since outsourcing some new replicas into other hosts is lengthy. Furthermore, nowadays, most of the business processes that might be implemented over the Web are composed of multiple Web services working together in two main styles: Orchestration and Choreography. Accomplishing a replication over such business processes is another challenge due to the complexity and flexibility involved. In this paper, we present an adaptive replication framework for regular and orchestrated composite Web services. The suggested framework includes a number of components for detecting unexpected and unhappy events that might occur when consuming the original published web services including failure or overloading. It also includes a specific replication controller to manage the replication process and select the best host that would encapsulate a new replica. In addition, it includes a component for predicting the incoming load in order to decrease the time needed for outsourcing new replicas, enhancing the performance greatly. A simulation environment has been created to measure the performance of the suggested framework. The results indicate that adaptive replication with prediction scenario is the best option for enhancing the performance of the replication process in an online business environment.

  7. A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia

    DEFF Research Database (Denmark)

    Ingason, Andrés; Giegling, Ina; Cichon, Sven

    2010-01-01

    The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample....... Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both...... as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia....

  8. Broken silence restored-remodeling primes for deacetylation at replication forks

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Groth, Anja

    2011-01-01

    Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation and restorat......Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation...

  9. Rv0004 is a new essential member of the mycobacterial DNA replication machinery.

    Science.gov (United States)

    Mann, Katherine M; Huang, Deborah L; Hooppaw, Anna J; Logsdon, Michelle M; Richardson, Kirill; Lee, Hark Joon; Kimmey, Jacqueline M; Aldridge, Bree B; Stallings, Christina L

    2017-11-01

    DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004's DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes.

  10. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Professional nursing burnout and irrational thinking: a replication study.

    Science.gov (United States)

    Balevre, Park S; Cassells, Julie; Buzaianu, Elena

    2012-01-01

    This expanded (n = 648) replication study examines job-related burnout in practicing nurses in relation to five maladaptive thinking patterns at eight northeast Florida hospitals. Data supported the hypothesis that maladaptive thinking patterns may be related to nurses' burnout thoughts and behaviors. The focus of this research spotlights the individual nurse's thoughts, emotions, and actions and suggests that these burnout tendencies can be mitigated if not changed.

  12. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    Science.gov (United States)

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  13. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    Science.gov (United States)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  14. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.

    Science.gov (United States)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-06-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tracking replicability as a method of post-publication open evaluation

    Directory of Open Access Journals (Sweden)

    Joshua eHartshorne

    2012-03-01

    Full Text Available Recent reports have suggested that many published results are unreliable. To increase the reliability and accuracy of published papers, multiple changes have been proposed, such as changes in statistical methods. We support such reforms. However, we believe that the incentive structure of scientific publishing must change for such reforms to be successful. Under the current system, the quality of individual scientists is judged on the basis of their number of publications and citations, with journals similarly judged via numbers of citations. Neither of these measures takes into account the replicability of the published findings, as false or controversial results are often particularly widely cited. We propose tracking replications as a means of post-publication evaluation, both to help researchers identify reliable findings and to incentivize the publication of reliable results.Tracking replications requires a database linking published studies that replicate one another. As any such database is limited by the number of replication attempts published, we propose establishing an open-access journal dedicated to publishing replication attempts. Data quality of both the database and the affiliated journal would be ensured through a combination of crowd-sourcing and peer review. As reports in the database are aggregated, ultimately it will be possible to calculate replicability scores, which may be used alongside citation counts to evaluate the quality of work published in individual journals. In this paper, we lay out a detailed description of how this system could be implemented, including mechanisms for compiling the information, ensuring data quality, and incentivizing the research community to participate.

  16. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  17. Initiation of DNA replication: functional and evolutionary aspects

    Science.gov (United States)

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  18. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  19. The Utility of EEG in Attention Deficit Hyperactivity Disorder: A Replication Study.

    Science.gov (United States)

    Swatzyna, Ronald J; Tarnow, Jay D; Roark, Alexandra; Mardick, Jacob

    2017-07-01

    The routine use of stimulants in pediatrics has increased dramatically over the past 3 decades and the long-term consequences have yet to be fully studied. Since 1978 there have been 7 articles identifying electroencephalogram (EEG) abnormalities, particularly epileptiform discharges in children with attention deficit hyperactivity disorder (ADHD). Many have studied the prevalence of these discharges in this population with varying results. An article published in 2011 suggests that EEG technology should be considered prior to prescribing stimulants to children diagnosed with ADHD due to a high prevalence of epileptiform discharges. The 2011 study found a higher prevalence (26%) of epileptiform discharges when using 23-hour and sleep-deprived EEGs in comparison with other methods of activation (hyperventilation or photostimulation) and conventional EEG. We sought to replicate the 2011 results using conventional EEG with the added qEEG technologies of automatic spike detection and low-resolution electromagnetic tomography analysis (LORETA) brain mapping. Our results showed 32% prevalence of epileptiform discharges, which suggests that an EEG should be considered prior to prescribing stimulant medications.

  20. Non-replication study of a genome-wide association study for hypertension and blood pressure in African Americans

    Directory of Open Access Journals (Sweden)

    Kidambi Srividya

    2012-04-01

    Full Text Available Abstract Background A recent genome wide association study in 1017 African Americans identified several single nucleotide polymorphisms that reached genome-wide significance for systolic blood pressure. We attempted to replicate these findings in an independent sample of 2474 unrelated African Americans in the Milwaukee metropolitan area; 53% were women and 47% were hypertensives. Methods We evaluated sixteen top associated SNPs from the above genome wide association study for hypertension as a binary trait or blood pressure as a continuous trait. In addition, we evaluated eight single nucleotide polymorphisms located in two genes (STK-39 and CDH-13 found to be associated with systolic and diastolic blood pressures by other genome wide association studies in European and Amish populations. TaqMan MGB-based chemistry with fluorescent probes was used for genotyping. We had an adequate sample size (80% power to detect an effect size of 1.2-2.0 for all the single nucleotide polymorphisms for hypertension as a binary trait, and 1% variance in blood pressure as a continuous trait. Quantitative trait analyses were performed both by excluding and also by including subjects on anti-hypertensive therapy (after adjustments were made for anti-hypertensive medications. Results For all 24 SNPs, no statistically significant differences were noted in the minor allele frequencies between cases and controls. One SNP (rs2146204 showed borderline association (p = 0.006 with hypertension status using recessive model and systolic blood pressure (p = 0.02, but was not significant after adjusting for multiple comparisons. In quantitative trait analyses, among normotensives only, rs12748299 was associated with SBP (p = 0.002. In addition, several nominally significant associations were noted with SBP and DBP among normotensives but none were statistically significant. Conclusions This study highlights the importance of replication to confirm the validity of genome wide

  1. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation.

    Directory of Open Access Journals (Sweden)

    Enrico Sandro Colizzi

    2016-04-01

    Full Text Available In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection.

  2. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation

    DEFF Research Database (Denmark)

    Feng, Yunpeng; Vlassis, Arsenios; Roques, Céline

    2016-01-01

    implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1...

  3. Suggestibility and negative priming: two replication studies.

    Science.gov (United States)

    David, Daniel; Brown, Richard J

    2002-07-01

    Research suggests that inhibiting the effect of irrelevant stimuli on subsequent thought and action (cognitive inhibition) may be an important component of suggestibility. Two small correlation studies were conducted to address the relationship between different aspects of suggestibility and individual differences in cognitive inhibition, operationalized as the degree of negative priming generated by to-be-ignored stimuli in a semantic categorization task. The first study found significant positive correlations between negative priming, hypnotic suggestibility, and creative imagination; a significant negative correlation was obtained between negative priming and interrogative suggestibility, demonstrating the discriminant validity of the study results. The second study replicated the correlation between negative priming and hypnotic suggestibility, using a different suggestibility measurement procedure that assessed subjective experience and hypnotic involuntariness as well as objective responses to suggestions. These studies support the notion that the ability to engage in cognitive inhibition may be an important component of hypnotic responsivity and maybe of other forms of suggestibility.

  4. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication

    International Nuclear Information System (INIS)

    Evans, E.V.A.

    1989-01-01

    The poxvirus, vaccinia, is large DNA virus which replicates in the cytoplasma of the host cell. The virus is believed to encode most or all of the functions required for the temporally regulated transcription and replication of its 186 kilobase genome. Physical and genetic autonomy from the host make vaccinia a useful eukaryotic organism in which to study replication genes and proteins, using a combination of biochemical and genetic techniques. Essential viral functions for replication are identified by conditional lethal mutants that fail to synthesize DNA at the non-permissive temperatures. One such group contains the non-complementing alleles ts17, ts24, ts69 (WR strain). Studies were undertaken to define the phenotype of ts mutants, and to identify and characterize the affected gene and protein. Mutant infection was essentially normal at 32 degree C, but at 39 degree C the mutants did not incorporate 3 H-thymidine into nascent viral DNA or synthesize late viral proteins. If mutant cultures were shifted to non-permissive conditions at the height of replication, DNA synthesis was halted rapidly, implying that the mutants are defective in DNA elongation. The gene affected in the WR mutants and in ts6389, a DNA-minus mutant of the IHD strain, was mapped by marker rescue and corresponds to open reading frame 5 (orfD5) of the viral HindIII D fragment

  5. Replicating a study of collaborative use of mobile phones for photo sharing in a different cultural context

    DEFF Research Database (Denmark)

    Sandoval, Carolina; Montero, Camila; Jokela, Tero

    2014-01-01

    In this paper, we replicate a study of collaborative mobile phone use to share personal photos in groups of collocated people. The replication study was conducted in a different cultural context to check the generalizability of the findings from the original study in terms of the proposed...

  6. Replication Studies: Vocabulary Knowledge in Relation to Memory and Analysis--An Approximate Replication of Milton's (2007) Study on Lexical Profiles and Learning Style

    Science.gov (United States)

    Booth, Paul

    2013-01-01

    This paper presents an approximate replication of Milton's (2007) study on lexical profiles and learning style. Milton investigated the assumption that more frequent words are acquired before less frequent ones. Using a vocabulary recognition test ("X-Lex") to measure vocabulary size, Milton found that L2 English group profiles show…

  7. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.

    Science.gov (United States)

    Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A

    2017-09-15

    Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. De novo identification of replication-timing domains in the human genome by deep learning.

    Science.gov (United States)

    Liu, Feng; Ren, Chao; Li, Hao; Zhou, Pingkun; Bo, Xiaochen; Shu, Wenjie

    2016-03-01

    The de novo identification of the initiation and termination zones-regions that replicate earlier or later than their upstream and downstream neighbours, respectively-remains a key challenge in DNA replication. Building on advances in deep learning, we developed a novel hybrid architecture combining a pre-trained, deep neural network and a hidden Markov model (DNN-HMM) for the de novo identification of replication domains using replication timing profiles. Our results demonstrate that DNN-HMM can significantly outperform strong, discriminatively trained Gaussian mixture model-HMM (GMM-HMM) systems and other six reported methods that can be applied to this challenge. We applied our trained DNN-HMM to identify distinct replication domain types, namely the early replication domain (ERD), the down transition zone (DTZ), the late replication domain (LRD) and the up transition zone (UTZ), using newly replicated DNA sequencing (Repli-Seq) data across 15 human cells. A subsequent integrative analysis revealed that these replication domains harbour unique genomic and epigenetic patterns, transcriptional activity and higher-order chromosomal structure. Our findings support the 'replication-domain' model, which states (1) that ERDs and LRDs, connected by UTZs and DTZs, are spatially compartmentalized structural and functional units of higher-order chromosomal structure, (2) that the adjacent DTZ-UTZ pairs form chromatin loops and (3) that intra-interactions within ERDs and LRDs tend to be short-range and long-range, respectively. Our model reveals an important chromatin organizational principle of the human genome and represents a critical step towards understanding the mechanisms regulating replication timing. Our DNN-HMM method and three additional algorithms can be freely accessed at https://github.com/wenjiegroup/DNN-HMM The replication domain regions identified in this study are available in GEO under the accession ID GSE53984. shuwj@bmi.ac.cn or boxc

  9. On the Social Cost of Distributed Selfish Content Replication

    DEFF Research Database (Denmark)

    Pollatos, Gerasimos G.; Telelis, Orestis A.; Zissimopoulos, Vassilis

    2008-01-01

    We study distributed content replication networks formed voluntarily by selfish autonomous users, seeking access to information objects that originate form distant servers. Each user caters to minimization of its individual access cost by replicating locally (up to constrained storage capacity......) a subset of objects, and accessing the rest form the nearest possible location. We show existence of stable networks by proving existence of pure strategy Nash equilibria for a game-theoretic formulation of this situation. Social (overall) cost of stable networks is measured by the average...... or by the maximum access cost experienced by any user. We study socially most and least expensive stable networks by means of tight bounds on the ratios of the Price of Anarchy and Stability respectively. Although in the worst case the ratios may coincide, we identify cases where they differ significantly. We...

  10. Adaptive scaling of reward in episodic memory: a replication study.

    Science.gov (United States)

    Mason, Alice; Ludwig, Casimir; Farrell, Simon

    2017-11-01

    Reward is thought to enhance episodic memory formation via dopaminergic consolidation. Bunzeck, Dayan, Dolan, and Duzel [(2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 1380-1394] provided functional magnetic resonance imaging (fMRI) and behavioural evidence that reward and episodic memory systems are sensitive to the contextual value of a reward-whether it is relatively higher or lower-as opposed to absolute value or prediction error. We carried out a direct replication of their behavioural study and did not replicate their finding that memory performance associated with reward follows this pattern of adaptive scaling. An effect of reward outcome was in the opposite direction to that in the original study, with lower reward outcomes leading to better memory than higher outcomes. There was a marginal effect of reward context, suggesting that expected value affected memory performance. We discuss the robustness of the reward memory relationship to variations in reward context, and whether other reward-related factors have a more reliable influence on episodic memory.

  11. [Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].

    Science.gov (United States)

    Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F

    2013-01-01

    About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.

  12. Repair replication in replicating and nonreplicating DNA after irradiation with uv light

    Energy Technology Data Exchange (ETDEWEB)

    Slor, H.; Cleaver, J.E.

    1978-06-01

    Ultraviolet light induces more pyrimidine dimers and more repair replication in DNA that replicates within 2 to 3 h of irradiation than in DNA that does not replicate during this period. This difference may be due to special conformational changes in DNA and chromatin that might be associated with semiconservative DNA replication.

  13. Replication of endometriosis-associated single-nucleotide polymorphisms from genome-wide association studies in a Caucasian population.

    Science.gov (United States)

    Sundqvist, J; Xu, H; Vodolazkaia, A; Fassbender, A; Kyama, C; Bokor, A; Gemzell-Danielsson, K; D'Hooghe, T M; Falconer, H

    2013-03-01

    Is it possible to replicate the previously identified genetic association of four single-nucleotide polymorphisms (SNPs), rs12700667, rs7798431, rs1250248 and rs7521902, with endometriosis in a Caucasian population? A borderline association was observed for rs1250248 and endometriosis (P = 0.049). However, we could not replicate the other previously identified endometriosis-associated SNPs (rs12700667, rs7798431 and rs7521902) in the same population. Endometriosis is considered a complex disease, influenced by several genetic and environmental factors, as well as interactions between them. Previous studies have found genetic associations with endometriosis for SNPs at the 7p15 and 2q35 loci in a Caucasian population. Allele frequencies of SNPs were investigated in patients with endometriosis and controls. Blood samples and peritoneal biopsies were taken from a Caucasian female population consisting of 1129 patients with endometriosis and 831 controls. DNA was extracted for genotyping. The study was performed at a University hospital and research laboratories. A weak association with endometriosis (all stages) was observed for rs1250248 (P = 0.049). No significant associations were observed for the SNPs rs12700667, rs7798431 and rs7521902. A non-significant trend towards the association of rs1250248 with moderate/severe endometriosis was observed (odds ratio 1.18, 95% confidence interval 0.97-1.44). The inability to confirm all previous findings may result from differences between populations and type II errors. Our result demonstrates the difficulty of identifying common genetic variants in complex diseases. This study was supported by grants from the Karolinska Institutet and Stockholm City County/Karolinska Institutet (ALF), Stockholm, Sweden, Swedish Medical Research Council (K2007-54X-14212-06-3, K2010-54X-14212-09-3), Stockholm, Sweden, Leuven University Research Council (Onderzoeksraad KU Leuven), the Leuven University Hospitals Clinical Research Foundation

  14. Fowl plague virus replication in mammalian cell-avian erythrocyte heterokaryons: studies concerning the actinomycin D and ultra-violet lig sensitive phase in influenza virus replication

    International Nuclear Information System (INIS)

    Kelly, D.C.; Dimmock, N.J.

    1974-01-01

    The replication of fowl plague virus in BHK and L cells specifically blocked prior to infection with inhibitors of influenza virus replication (actinomycin D and ultraviolet light irradiation) has been studied by the introduction of a metabolically dormant avian erythrocyte nucleus. This permits the synthesis of just the influenza virus nucleoprotein in actinomycin D (but not ultraviolet light) blocked cells. The NP antigen is first detected in the avian erythrocyte nucleus and subsequently in the heterokaryon cytoplasm

  15. Replication Validity of Initial Association Studies: A Comparison between Psychiatry, Neurology and Four Somatic Diseases

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François

    2016-01-01

    Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability

  16. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  17. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  18. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Yuichi Hirata

    Full Text Available Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2 encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.

  19. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

    Science.gov (United States)

    Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori

    2012-01-01

    Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.

  20. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  1. Characterization of the replication timing program of 6 human model cell lines

    Directory of Open Access Journals (Sweden)

    Djihad Hadjadj

    2016-09-01

    Full Text Available During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14, Cayrou et al. (2011 Sep, Picard et al. (2014 May 1 [1–3], and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9, Pope et al. (2014 Nov 20 [5,6]. On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb [7,8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16 [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308, RKO (GSM2111309, HEK 293T (GSM2111310, HeLa (GSM2111311, MRC5-SV (GSM2111312 and K562 (GSM2111313. A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines.

  2. Activation of human herpesvirus replication by apoptosis.

    Science.gov (United States)

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  3. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  4. Conserved elements within the genome of foot-and-mouth disease virus; their influence on viral replication

    DEFF Research Database (Denmark)

    Kjær, Jonas

    -and-mouth disease virus (FMDV) have been identified, e.g. the IRES. Such elements can be crucial for the efficient replication of the genomic RNA. A better understanding of the influence of these elements is required to identify currently unrecognized interactions within the viruses which may be important...... for the development of anti-viral agents. SHAPE analysis of the entire FMDV genome (Poulsen, 2015) has identified three conserved RNA structures within the coding regions for 2B, 3C and 3D (RNA-dependent RNA polymerase) which might have an important role in virus replication. The FMDV 2A peptide, another conserved...... polypeptide. The nature of this “cleavage” has so far not been investigated in the context of the full-length FMDV RNA within cells. The focus of this PhD thesis has been to characterize these elements and their influence on the FMDV replication. In order to fulfil the aims of this thesis a series of studies...

  5. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  6. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  7. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  8. The Alleged Crisis and the Illusion of Exact Replication.

    Science.gov (United States)

    Stroebe, Wolfgang; Strack, Fritz

    2014-01-01

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a "replication crisis" in psychology. Psychologists are encouraged to conduct more "exact" replications of published studies to assess the reproducibility of psychological research. This article argues that the alleged "crisis of replicability" is primarily due to an epistemological misunderstanding that emphasizes the phenomenon instead of its underlying mechanisms. As a consequence, a replicated phenomenon may not serve as a rigorous test of a theoretical hypothesis because identical operationalizations of variables in studies conducted at different times and with different subject populations might test different theoretical constructs. Therefore, we propose that for meaningful replications, attempts at reinstating the original circumstances are not sufficient. Instead, replicators must ascertain that conditions are realized that reflect the theoretical variable(s) manipulated (and/or measured) in the original study. © The Author(s) 2013.

  9. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2016-05-15

    The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature

  10. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  11. A replication and methodological critique of the study "Evaluating drug trafficking on the Tor Network".

    Science.gov (United States)

    Munksgaard, Rasmus; Demant, Jakob; Branwen, Gwern

    2016-09-01

    The development of cryptomarkets has gained increasing attention from academics, including growing scientific literature on the distribution of illegal goods using cryptomarkets. Dolliver's 2015 article "Evaluating drug trafficking on the Tor Network: Silk Road 2, the Sequel" addresses this theme by evaluating drug trafficking on one of the most well-known cryptomarkets, Silk Road 2.0. The research on cryptomarkets in general-particularly in Dolliver's article-poses a number of new questions for methodologies. This commentary is structured around a replication of Dolliver's original study. The replication study is not based on Dolliver's original dataset, but on a second dataset collected applying the same methodology. We have found that the results produced by Dolliver differ greatly from our replicated study. While a margin of error is to be expected, the inconsistencies we found are too great to attribute to anything other than methodological issues. The analysis and conclusions drawn from studies using these methods are promising and insightful. However, based on the replication of Dolliver's study, we suggest that researchers using these methodologies consider and that datasets be made available for other researchers, and that methodology and dataset metrics (e.g. number of downloaded pages, error logs) are described thoroughly in the context of web-o-metrics and web crawling. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    Full Text Available Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB, cAMP/calcium signaling (CRE/CREB, and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  13. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Science.gov (United States)

    Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  14. X-irradiation affects all DNA replication intermediates when inhibiting replication initiation

    International Nuclear Information System (INIS)

    Loenn, U.; Karolinska Hospital, Stockholm

    1982-01-01

    When a human melanoma line was irradiated with 10 Gy, there was, after 30 to 60 min, a gradual reduction in the DNA replication rate. Ten to twelve hours after the irradiation, the DNA replication had returned to near normal rate. The results showed tht low dose-rate X-irradiation inhibits preferentially the formation of small DNA replication intermediates. There is no difference between the inhibition of these replication intermediates formed only in the irradiated cells and those formed also in untreated cells. (U.K.)

  15. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  16. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity

    NARCIS (Netherlands)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-01-01

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA

  17. Prelife catalysts and replicators

    OpenAIRE

    Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Life is based on replication and evolution. But replication cannot be taken for granted. We must ask what there was prior to replication and evolution. How does evolution begin? We have proposed prelife as a generative system that produces information and diversity in the absence of replication. We model prelife as a binary soup of active monomers that form random polymers. ‘Prevolutionary’ dynamics can have mutation and selection prior to replication. Some sequences might have catalytic acti...

  18. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...... on the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the mold...

  19. Replication and robustness in developmental research.

    Science.gov (United States)

    Duncan, Greg J; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J

    2014-11-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key results are robust across estimation methods, data sets, and demographic subgroups. This article makes the case for prioritizing both explicit replications and, especially, within-study robustness checks in developmental psychology. It provides evidence on variation in effect sizes in developmental studies and documents strikingly different replication and robustness-checking practices in a sample of journals in developmental psychology and a sister behavioral science-applied economics. Our goal is not to show that any one behavioral science has a monopoly on best practices, but rather to show how journals from a related discipline address vital concerns of replication and generalizability shared by all social and behavioral sciences. We provide recommendations for promoting graduate training in replication and robustness-checking methods and for editorial policies that encourage these practices. Although some of our recommendations may shift the form and substance of developmental research articles, we argue that they would generate considerable scientific benefits for the field. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  20. The AGIS metric and time of test: A replication study

    OpenAIRE

    Counsell, S; Swift, S; Tucker, A

    2016-01-01

    Visual Field (VF) tests and corresponding data are commonly used in clinical practices to manage glaucoma. The standard metric used to measure glaucoma severity is the Advanced Glaucoma Intervention Studies (AGIS) metric. We know that time of day when VF tests are applied can influence a patient’s AGIS metric value; a previous study showed that this was the case for a data set of 160 patients. In this paper, we replicate that study using data from 2468 patients obtained from Moorfields Eye Ho...

  1. Risk Factors as Major Determinants of Resilience: A Replication Study.

    Science.gov (United States)

    Eshel, Yohanan; Kimhi, Shaul; Lahad, Mooli; Leykin, Dmitry; Goroshit, Marina

    2018-03-16

    The present study was conducted in the context of current concerns about replication in psychological research. It claims that risk factors should be regarded as an integral part of the definition of individual resilience, which should be defined in terms of the balance between individual strength or protective factors, and individual vulnerability or risk factors (IND-SVR). Five independent samples, including 3457 Israeli participants, were employed to determine the effects of resilience promoting and resilience suppressing variables on the IND-SVR index of resilience, and on its two components: recovery from adversity, and distress symptoms. Five path analyses were employed for determining the role of distress symptoms as a measure of psychological resilience, as compared to other indices of this resilience. Results indicated the major role of risk factors (distress symptoms) as an integral component of resilience. This role was generally replicated in the five investigated samples. Risk factors are legitimate, valid, and useful parts of the definition of psychological resilience. Resilience research has shifted away from studying individual risk factors to investigating the process through which individuals overcome the hardships they experience. The present data seem to suggest that this shift should be reexamined.

  2. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  3. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  4. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  5. Genome-wide association study of PR interval in Hispanics/Latinos identifies novel locus at ID2.

    Science.gov (United States)

    Seyerle, Amanda A; Lin, Henry J; Gogarten, Stephanie M; Stilp, Adrienne; Méndez Giráldez, Raul; Soliman, Elsayed; Baldassari, Antoine; Graff, Mariaelisa; Heckbert, Susan; Kerr, Kathleen F; Kooperberg, Charles; Rodriguez, Carlos; Guo, Xiuqing; Yao, Jie; Sotoodehnia, Nona; Taylor, Kent D; Whitsel, Eric A; Rotter, Jerome I; Laurie, Cathy C; Avery, Christy L

    2017-11-10

    PR interval (PR) is a heritable electrocardiographic measure of atrial and atrioventricular nodal conduction. Changes in PR duration may be associated with atrial fibrillation, heart failure and all-cause mortality. Hispanic/Latino populations have high burdens of cardiovascular morbidity and mortality, are highly admixed and represent exceptional opportunities for novel locus identification. However, they remain chronically understudied. We present the first genome-wide association study (GWAS) of PR in 14 756 participants of Hispanic/Latino ancestry from three studies. Study-specific summary results of the association between 1000 Genomes Phase 1 imputed single-nucleotide polymorphisms (SNPs) and PR assumed an additive genetic model and were adjusted for global ancestry, study centre/region and clinical covariates. Results were combined using fixed-effects, inverse variance weighted meta-analysis. Sequential conditional analyses were used to identify independent signals. Replication of novel loci was performed in populations of Asian, African and European descent. ENCODE and RoadMap data were used to annotate results. We identified a novel genome-wide association (PPR at ID2 (rs6730558), which replicated in Asian and European populations (PPR loci to Hispanics/Latinos. Bioinformatics annotation provided evidence for regulatory function in cardiac tissue. Further, for six loci that generalised, the Hispanic/Latino index SNP was genome-wide significant and identical to (or in high linkage disequilibrium with) the previously identified GWAS lead SNP. Our results suggest that genetic determinants of PR are consistent across race/ethnicity, but extending studies to admixed populations can identify novel associations, underscoring the importance of conducting genetic studies in diverse populations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise

  6. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    Science.gov (United States)

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  7. How many bootstrap replicates are necessary?

    Science.gov (United States)

    Pattengale, Nicholas D; Alipour, Masoud; Bininda-Emonds, Olaf R P; Moret, Bernard M E; Stamatakis, Alexandros

    2010-03-01

    Phylogenetic bootstrapping (BS) is a standard technique for inferring confidence values on phylogenetic trees that is based on reconstructing many trees from minor variations of the input data, trees called replicates. BS is used with all phylogenetic reconstruction approaches, but we focus here on one of the most popular, maximum likelihood (ML). Because ML inference is so computationally demanding, it has proved too expensive to date to assess the impact of the number of replicates used in BS on the relative accuracy of the support values. For the same reason, a rather small number (typically 100) of BS replicates are computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is 1 to 2 orders of magnitude faster than previous techniques, while yielding qualitatively comparable support values, making an experimental study possible. In this article, we propose stopping criteria--that is, thresholds computed at runtime to determine when enough replicates have been generated--and we report on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of our proposed criteria. We run our tests on 17 diverse real-world DNA--single-gene as well as multi-gene--datasets, which include 125-2,554 taxa. We find that our stopping criteria typically stop computations after 100-500 replicates (although the most conservative criterion may continue for several thousand replicates) while producing support values that correlate at better than 99.5% with the reference values on the best ML trees. Significantly, we also find that the stopping criteria can recommend very different numbers of replicates for different datasets of comparable sizes. Our results are thus twofold: (i) they give the first experimental assessment of the effect of the number of BS replicates on the quality of support values returned through BS, and (ii) they validate our proposals for

  8. Initiation of DNA replication requires actin dynamics and formin activity.

    Science.gov (United States)

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  9. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  10. Replication protocol analysis: a method for the study of real-world design thinking

    DEFF Research Database (Denmark)

    Galle, Per; Kovacs, L. B.

    1996-01-01

    ’ is refined into a method called ‘replication protocol analysis’ (RPA), and discussed from a methodological perspective of design research. It is argued that for the study of real-world design thinking this method offers distinct advantages over traditional ‘design protocol analysis’, which seeks to capture......Given the brief of an architectural competition on site planning, and the design awarded the first prize, the first author (trained as an architect but not a participant in the competition) produced a line of reasoning that might have led from brief to design. In the paper, such ‘design replication...... the designer’s authentic line of reasoning. To illustrate how RPA can be used, the site planning case is briefly presented, and part of the replicated line of reasoning analysed. One result of the analysis is a glimpse of a ‘logic of design’; another is an insight which sheds new light on Darke’s classical...

  11. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    Science.gov (United States)

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  12. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  13. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Giuseppe Balistreri

    2016-02-01

    Full Text Available Kaposi's sarcoma herpesvirus (KSHV causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  14. A Replication Study on the Multi-Dimensionality of Online Social Presence

    Science.gov (United States)

    Mykota, David B.

    2015-01-01

    The purpose of the present study is to conduct an external replication into the multi-dimensionality of social presence as measured by the Computer-Mediated Communication Questionnaire (Tu, 2005). Online social presence is one of the more important constructs for determining the level of interaction and effectiveness of learning in an online…

  15. Replication protocol analysis: a method for the study of real-world design thinking

    DEFF Research Database (Denmark)

    Galle, Per; Kovacs, L. B.

    1996-01-01

    Given the brief of an architectural competition on site planning, and the design awarded the first prize, the first author (trained as an architect but not a participant in the competition) produced a line of reasoning that might have led from brief to design. In the paper, such ‘design replication......’ is refined into a method called ‘replication protocol analysis’ (RPA), and discussed from a methodological perspective of design research. It is argued that for the study of real-world design thinking this method offers distinct advantages over traditional ‘design protocol analysis’, which seeks to capture...

  16. EPA Lean Government Initiative: How to Replicate Lean Successes

    Science.gov (United States)

    This Lean Replication Primer describes how EPA Offices and Regions can identify and adapt successful practices from previous Lean projects to “replicate” their successes and generate further improvements.

  17. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  18. Blinded with Science or Informed by Charts? A Replication Study

    OpenAIRE

    Dragicevic , Pierre; Jansen , Yvonne

    2018-01-01

    International audience; We provide a reappraisal of Tal and Wansink's study "Blinded with Science" , where seemingly trivial charts were shown to increase belief in drug efficacy, presumably because charts are associated with science. Through a series of four replications conducted on two crowdsourcing platforms, we investigate an alternative explanation, namely, that the charts allowed participants to better assess the drug's efficacy. Considered together, our experiments suggest that the ch...

  19. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  20. Identification of the determinants of efficient Pestivirus replication

    DEFF Research Database (Denmark)

    Risager, Peter Christian

    , and in depth knowledge of the traits that determine the fitness of the virus in this regard are highly valuable. Recent advances in the field of molecular virology with methods to manipulate viral genomes have significantly helped to uncover these core mechanisms responsible for exploitation of the host......, BMC genomics). Manuscript II describes the generation of replicons that express two different types of luciferases (Rluc and Gluc), and their application as a tool for easy monitoring of replication competence (published paper, Journal of General Virology (94), 1739-1748). Manuscript III describes...... the properties of chimeric replicons and infectious clones that include a RNA dependent RNA polymerase (NS5B) from one of three different CSFV strains with distinct virulence properties. The entire NS5B proved to influence replication competence and key residues for replication competence was identified...

  1. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region.

    Science.gov (United States)

    Liu, Xiaohua; Kelsoe, John R; Greenwood, Tiffany A

    2016-01-01

    Bipolar disorder is a heterogeneous mood disorder associated with several important clinical comorbidities, such as eating disorders. This clinical heterogeneity complicates the identification of genetic variants contributing to bipolar susceptibility. Here we investigate comorbidity of eating disorders as a subphenotype of bipolar disorder to identify genetic variation that is common and unique to both disorders. We performed a genome-wide association analysis contrasting 184 bipolar subjects with eating disorder comorbidity against both 1370 controls and 2006 subjects with bipolar disorder only from the Bipolar Genome Study (BiGS). The most significant genome-wide finding was observed bipolar with comorbid eating disorder vs. controls within SOX2-OT (p=8.9×10(-8) for rs4854912) with a secondary peak in the adjacent FXR1 gene (p=1.2×10(-6) for rs1805576) on chromosome 3q26.33. This region was also the most prominent finding in the case-only analysis (p=3.5×10(-7) and 4.3×10(-6), respectively). Several regions of interest containing genes involved in neurodevelopment and neuroprotection processes were also identified. While our primary finding did not quite reach genome-wide significance, likely due to the relatively limited sample size, these results can be viewed as a replication of a recent study of eating disorders in a large cohort. These findings replicate the prior association of SOX2-OT with eating disorders and broadly support the involvement of neurodevelopmental/neuroprotective mechanisms in the pathophysiology of both disorders. They further suggest that different clinical manifestations of bipolar disorder may reflect differential genetic contributions and argue for the utility of clinical subphenotypes in identifying additional molecular pathways leading to illness. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Susceptibility loci for sporadic brain arteriovenous malformation; a replication study and meta-analysis

    NARCIS (Netherlands)

    Kremer, P.H.; Koeleman, B.P.C.; Rinkel, G.J.; Diekstra, F.P.; Berg, L.H. van den; Veldink, J.H.; Klijn, C.J.M.

    2016-01-01

    BACKGROUND: Case-control studies have reported multiple genetic loci to be associated with sporadic brain arteriovenous malformations (AVMs) but most of these have not been replicated in independent populations. The aim of this study was to find additional evidence for these reported associations

  3. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  4. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    Science.gov (United States)

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  5. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  6. Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies.

    Science.gov (United States)

    Walsh, Kyle M; Anderson, Erik; Hansen, Helen M; Decker, Paul A; Kosel, Matt L; Kollmeyer, Thomas; Rice, Terri; Zheng, Shichun; Xiao, Yuanyuan; Chang, Jeffrey S; McCoy, Lucie S; Bracci, Paige M; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2013-02-01

    Genomewide association studies (GWAS) and candidate-gene studies have implicated single-nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case-control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate-gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate-gene approach lay in selecting both appropriate genes and relevant SNPs within these genes. © 2012 WILEY PERIODICALS, INC.

  7. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  8. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  9. The role of technical assistance in the replication of effective HIV interventions.

    Science.gov (United States)

    O'Donnell, L; Scattergood, P; Adler, M; Doval, A S; Barker, M; Kelly, J A; Kegeles, S M; Rebchook, G M; Adams, J; Terry, M A; Neumann, M S

    2000-01-01

    This article examines the role of technical assistance (TA) in supporting the replication of proven HIV interventions. A case study of the replication of the VOICES/VOCES intervention elucidates the level and types of TA provided to support new users through the adoption process. TA included help in garnering administrative support, identifying target audiences, recruiting groups for sessions, maintaining fidelity to the intervention's core elements, tailoring the intervention to meet clients' needs, strengthening staff members' facilitation skills, troubleshooting challenges, and devising strategies to sustain the intervention. Two to four hours per month of TA were provided to each agency adopting the intervention, at an estimated monthly cost of $206 to $412. Findings illustrate how TA supports replication by establishing a conversation between the researcher TA providers experienced with the intervention and new users. This communication helps preserve key program elements and contributes to ongoing refinement of the intervention.

  10. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Quality of topographical micro replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Bariani, Paolo

    2003-01-01

    The quality of tool-to-part rough surface topography replication in injection moulding has been investigated. Quantitative descriptors suitable for detecting process conditions induced topography changes have been identified using a statistical criterion. The experimental work is based on a tool ...

  12. Mechanisms of DNA replication termination.

    Science.gov (United States)

    Dewar, James M; Walter, Johannes C

    2017-08-01

    Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.

  13. Corridors for Shared Prosperity : Intra South-Asia Replication of Inclusive Business Models

    OpenAIRE

    International Finance Corporation

    2015-01-01

    This research study identified replication opportunities and white spaces across focus sectors of agriculture, healthcare, and renewable energy. These include short-term opportunities in trade, technology transfer, and strategic alliances to cater to immediate demand for products such as solar home systems and services such as healthcare for non-communicable diseases. Long-termopportunitie...

  14. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery...... and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P2, rs7107784 near MIR4686 and rs67839313 near INAFM2....... Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P

  15. Large-scale replication study reveals a limit on probabilistic prediction in language comprehension.

    Science.gov (United States)

    Nieuwland, Mante S; Politzer-Ahles, Stephen; Heyselaar, Evelien; Segaert, Katrien; Darley, Emily; Kazanina, Nina; Von Grebmer Zu Wolfsthurn, Sarah; Bartolozzi, Federica; Kogan, Vita; Ito, Aine; Mézière, Diane; Barr, Dale J; Rousselet, Guillaume A; Ferguson, Heather J; Busch-Moreno, Simon; Fu, Xiao; Tuomainen, Jyrki; Kulakova, Eugenia; Husband, E Matthew; Donaldson, David I; Kohút, Zdenko; Rueschemeyer, Shirley-Ann; Huettig, Falk

    2018-04-03

    Do people routinely pre-activate the meaning and even the phonological form of upcoming words? The most acclaimed evidence for phonological prediction comes from a 2005 Nature Neuroscience publication by DeLong, Urbach and Kutas, who observed a graded modulation of electrical brain potentials (N400) to nouns and preceding articles by the probability that people use a word to continue the sentence fragment ('cloze'). In our direct replication study spanning 9 laboratories ( N =334), pre-registered replication-analyses and exploratory Bayes factor analyses successfully replicated the noun-results but, crucially, not the article-results. Pre-registered single-trial analyses also yielded a statistically significant effect for the nouns but not the articles. Exploratory Bayesian single-trial analyses showed that the article-effect may be non-zero but is likely far smaller than originally reported and too small to observe without very large sample sizes. Our results do not support the view that readers routinely pre-activate the phonological form of predictable words. © 2018, Nieuwland et al.

  16. Rolling replication of UV-irradiated duplex DNA in the phi X174 replicative-form----single-strand replication system in vitro

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers

  17. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    International Nuclear Information System (INIS)

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  18. Sample preparation composite and replicate strategy case studies for assay of solid oral drug products.

    Science.gov (United States)

    Nickerson, Beverly; Harrington, Brent; Li, Fasheng; Guo, Michele Xuemei

    2017-11-30

    Drug product assay is one of several tests required for new drug products to ensure the quality of the product at release and throughout the life cycle of the product. Drug product assay testing is typically performed by preparing a composite sample of multiple dosage units to obtain an assay value representative of the batch. In some cases replicate composite samples may be prepared and the reportable assay value is the average value of all the replicates. In previously published work by Harrington et al. (2014) [5], a sample preparation composite and replicate strategy for assay was developed to provide a systematic approach which accounts for variability due to the analytical method and dosage form with a standard error of the potency assay criteria based on compendia and regulatory requirements. In this work, this sample preparation composite and replicate strategy for assay is applied to several case studies to demonstrate the utility of this approach and its application at various stages of pharmaceutical drug product development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  20. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    Science.gov (United States)

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  1. REPLICATION TOOL AND METHOD OF PROVIDING A REPLICATION TOOL

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a replication tool (1, 1a, 1b) for producing a part (4) with a microscale textured replica surface (5a, 5b, 5c, 5d). The replication tool (1, 1a, 1b) comprises a tool surface (2a, 2b) defining a general shape of the item. The tool surface (2a, 2b) comprises a microscale...... energy directors on flange portions thereof uses the replication tool (1, 1a, 1b) to form an item (4) with a general shape as defined by the tool surface (2a, 2b). The formed item (4) comprises a microscale textured replica surface (5a, 5b, 5c, 5d) with a lateral arrangement of polydisperse microscale...

  2. Distribution of DNA replication proteins in Drosophila cells

    Science.gov (United States)

    Easwaran, Hariharan P; Leonhardt, Heinrich; Cardoso, M Cristina

    2007-01-01

    Background DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution. Results Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells. Conclusion We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very

  3. Genome-wide association study identifies 74 loci associated with educational attainment

    DEFF Research Database (Denmark)

    Okbay, Aysu; P. Beauchamp, Jonathan; Alan Fontana, Mark

    2016-01-01

    -nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural......Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends...... development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals...

  4. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  5. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus

    International Nuclear Information System (INIS)

    Panavas, Tadas; Nagy, Peter D.

    2003-01-01

    Defective interfering (DI) RNA associated with Tomato bushy stunt virus (TBSV), which is a plus-strand RNA virus, requires p33 and p92 proteins of TBSV or the related Cucumber necrosis virus (CNV), for replication in plants. To test if DI RNA can replicate in a model host, we coexpressed TBSV DI RNA and p33/p92 of CNV in yeast. We show evidence for replication of DI RNA in yeast, including (i) dependence on p33 and p92 for DI replication; (ii) presence of active CNV RNA-dependent RNA polymerase in isolated membrane-containing preparations; (iii) increasing amount of DI RNA(+) over time; (iv) accumulation of (-)stranded DI RNA; (v) presence of correct 5' and 3' ends in DI RNA; (vi) inhibition of replication by mutations in the replication enhancer; and (vii) evolution of DI RNA over time, as shown by sequence heterogeneity. We also produced evidence supporting the occurrence of DI RNA recombinants in yeast. In summary, development of yeast as a host for replication of TBSV DI RNA will facilitate studies on the roles of viral and host proteins in replication/recombination

  6. Genome-wide association study identifies variants in HORMAD2 associated with tonsillectomy

    DEFF Research Database (Denmark)

    Feenstra, Bjarke; Bager, Peter; Liu, Xueping

    2017-01-01

    BACKGROUND: Inflammation of the tonsils is a normal response to infection, but some individuals experience recurrent, severe tonsillitis and massive hypertrophy of the tonsils in which case surgical removal of the tonsils may be considered. OBJECTIVE: To identify common genetic variants associate...... the molecular mechanisms underlying the genetic association involve general lymphoid hyper-reaction throughout the mucosa-associated lymphoid tissue system.......BACKGROUND: Inflammation of the tonsils is a normal response to infection, but some individuals experience recurrent, severe tonsillitis and massive hypertrophy of the tonsils in which case surgical removal of the tonsils may be considered. OBJECTIVE: To identify common genetic variants associated...... with tonsillectomy. METHODS: We used tonsillectomy information from Danish health registers and carried out a genome-wide association study comprising 1464 patients and 12 019 controls of Northwestern European ancestry, with replication in an independent sample set of 1575 patients and 1367 controls. RESULTS...

  7. Replication of clinical innovations in multiple medical practices.

    Science.gov (United States)

    Henley, N S; Pearce, J; Phillips, L A; Weir, S

    1998-11-01

    Many clinical innovations had been successfully developed and piloted in individual medical practice units of Kaiser Permanente in North Carolina during 1995 and 1996. Difficulty in replicating these clinical innovations consistently throughout all 21 medical practice units led to development of the interdisciplinary Clinical Innovation Implementation Team, which was formed by using existing resources from various departments across the region. REPLICATION MODEL: Based on a model of transfer of best practices, the implementation team developed a process and tools (master schedule and activity matrix) to quickly replicate successful pilot projects throughout all medical practice units. The process involved the following steps: identifying a practice and delineating its characteristics and measures (source identification); identifying a team to receive the (new) practice; piloting the practice; and standardizing, including the incorporation of learnings. The model includes the following components for each innovation: sending and receiving teams, an innovation coordinator role, an innovation expert role, a location expert role, a master schedule, and a project activity matrix. Communication depended on a partnership among the location experts (local knowledge and credibility), the innovation coordinator (process expertise), and the innovation experts (content expertise). Results after 12 months of working with the 21 medical practice units include integration of diabetes care team services into the practices, training of more than 120 providers in the use of personal computers and an icon-based clinical information system, and integration of a planwide self-care program into the medical practices--all with measurable improved outcomes. The model for sequential replication and the implementation team structure and function should be successful in other organizational settings.

  8. Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome.

    Science.gov (United States)

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2016-09-01

    Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1

  9. GEMC1 is a TopBP1 interacting protein required for chromosomal DNA replication

    Science.gov (United States)

    Balestrini, Alessia; Cosentino, Claudia; Errico, Alessia; Garner, Elizabeth; Costanzo, Vincenzo

    2010-01-01

    Many factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication in complex multicellular organisms is poorly understood. Here, we report the identification of GEMC1, a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus egg extract we show that Xenopus GEMC1 (xGEMC1) binds to checkpoint and replication factor TopBP1, which promotes xGEMC1 binding to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 directly interacts with replication factors such as Cdc45 and Cdk2-CyclinE by which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication whereas depletion of xGEMC1 prevents DNA replication onset due to impairment of Cdc45 loading onto chromatin. Likewise, inhibition of GEMC1 expression by morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in higher eukaryotes by mediating TopBP1 and Cdk2 dependent recruitment of Cdc45 onto replication origins. PMID:20383140

  10. Is dopamine D1 receptor availability related to social behavior? A positron emission tomography replication study.

    Directory of Open Access Journals (Sweden)

    Pontus Plavén-Sigray

    Full Text Available Associations between dopamine receptor levels and pro- and antisocial behavior have previously been demonstrated in human subjects using positron emission tomography (PET and self-rated measures of personality traits. So far, only one study has focused on the dopamine D1-receptor (D1-R, finding a positive correlation with the trait social desirability, which is characterized by low dominant and high affiliative behavior, while physical aggression showed a negative correlation. The aim of the present study was to replicate these previous findings using a new independent sample of subjects.Twenty-six healthy males were examined with the radioligand [11C]SCH-23390, and completed the Swedish universities Scales of Personality (SSP which includes measures of social desirability and physical trait aggression. The simplified reference tissue model with cerebellum as reference region was used to calculate BPND values in the whole striatum and limbic striatum. The two regions were selected since they showed strong association between D1-R availability and personality scores in the previous study. Pearson's correlation coefficients and replication Bayes factors were then employed to assess the replicability and robustness of previous results.There were no significant correlations (all p values > 0.3 between regional BPND values and personality scale scores. Replication Bayes factors showed strong to moderate evidence in favor no relationship between D1-receptor availability and social desirability (striatum BF01 = 12.4; limbic striatum BF01 = 7.2 or physical aggression scale scores (limbic striatum BF01 = 3.3, compared to the original correlations.We could not replicate the previous findings of associations between D1-R availability and either pro- or antisocial behavior as measured using the SSP. Rather, there was evidence in favor of failed replications of associations between BPND and scale scores. Potential reasons for these results are restrictive

  11. Study of Vaccinia and Cowpox viruses' replication in Rac1-N17 dominant-negative cells

    Directory of Open Access Journals (Sweden)

    Ana Paula Carneiro Salgado

    2013-08-01

    Full Text Available Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV and Cowpox (CPXV and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.

  12. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Is Implicit Theory of Mind a Real and Robust Phenomenon? Results From a Systematic Replication Study.

    Science.gov (United States)

    Kulke, Louisa; von Duhn, Britta; Schneider, Dana; Rakoczy, Hannes

    2018-06-01

    Recently, theory-of-mind research has been revolutionized by findings from novel implicit tasks suggesting that at least some aspects of false-belief reasoning develop earlier in ontogeny than previously assumed and operate automatically throughout adulthood. Although these findings are the empirical basis for far-reaching theories, systematic replications are still missing. This article reports a preregistered large-scale attempt to replicate four influential anticipatory-looking implicit theory-of-mind tasks using original stimuli and procedures. Results showed that only one of the four paradigms was reliably replicated. A second set of studies revealed, further, that this one paradigm was no longer replicated once confounds were removed, which calls its validity into question. There were also no correlations between paradigms, and thus, no evidence for their convergent validity. In conclusion, findings from anticipatory-looking false-belief paradigms seem less reliable and valid than previously assumed, thus limiting the conclusions that can be drawn from them.

  14. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  15. Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations.

    Directory of Open Access Journals (Sweden)

    Michal Schwartz

    Full Text Available Non-Homologous End Joining (NHEJ is one of the two major pathways of DNA Double Strand Breaks (DSBs repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(DJ recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(DJ recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.

  16. International Expansion through Flexible Replication

    DEFF Research Database (Denmark)

    Jonsson, Anna; Foss, Nicolai Juul

    2011-01-01

    Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to ada......, etc.) are replicated in a uniform manner across stores, and change only very slowly (if at all) in response to learning (“flexible replication”). We conclude by discussing the factors that influence the approach to replication adopted by an international replicator.......Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to adapt...

  17. A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy

    Science.gov (United States)

    Talbot, C J; Tanteles, G A; Barnett, G C; Burnet, N G; Chang-Claude, J; Coles, C E; Davidson, S; Dunning, A M; Mills, J; Murray, R J S; Popanda, O; Seibold, P; West, C M L; Yarnold, J R; Symonds, R P

    2012-01-01

    Background: Response to radiotherapy varies between individuals both in terms of efficacy and adverse reactions. Finding genetic determinants of radiation response would allow the tailoring of the treatment, either by altering the radiation dose or by surgery. Despite a growing number of studies in radiogenomics, there are no well-replicated genetic association results. Methods: We carried out a candidate gene association study and replicated the result using three additional large cohorts, a total of 2036 women scored for adverse reactions to radiotherapy for breast cancer. Results: Genetic variation near the tumour necrosis factor alpha gene is shown to affect several clinical endpoints including breast induration, telangiectasia and overall toxicity. In the combined analysis homozygosity for the rare allele increases overall toxicity (P=0.001) and chance of being in the upper quartile of risk with odds ratio of 2.46 (95% confidence interval 1.52–3.98). Conclusion: We have identified that alleles of the class III major histocompatibility complex region associate with overall radiotherapy toxicity in breast cancer patients by using internal replication through a staged design. This is the first well-replicated report of a genetic predictor for radiotherapy reactions. PMID:22767148

  18. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    International Nuclear Information System (INIS)

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong

    2013-01-01

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication

  19. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong, E-mail: timjszzd@163.com

    2013-08-02

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication.

  20. Initiation of simian virus 40 DNA replication in vitro: Pulse-chase experiments identify the first labeled species as topologically unwound

    International Nuclear Information System (INIS)

    Bullock, P.A.; Seo, Yeon Soo; Hurwitz, J.

    1989-01-01

    A distinct unwound form of DNA containing the simian virus 40 (SV40) origin is produced in replication reactions carried out in mixtures containing crude fractions prepared from HeLa cells. This species, termed form U R , comigrates on chloroquine-containing agarose gels with the upper part of the previously described heterogeneous highly unwound circular DNA, form U. As with form U, formation of form U R is dependent upon the SV40 tumor (T) antigen. Pulse-chase experiments demonstrate that the first species to incorporate labeled deoxyribonucleotides comigrates with form U R . Restriction analyses of the products of the pulse-chase experiments show that initiation occurs at the SV40 origin and then proceeds outward in a bidirectional manner. These experiments establish form U R as the earliest detectable substrate for SV40 DNA replication and suggest that SV40 DNA replication initiates on an unwound species

  1. Murine leukemia virus (MLV replication monitored with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Bittner Alexandra

    2004-12-01

    Full Text Available Abstract Background Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results We inserted the coding sequences for green fluorescent protein (GFP into the proline-rich region (PRR of the ecotropic envelope protein (Env and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.

  2. Recovery from Proactive Semantic Interference and MRI Volume: A Replication and Extension Study.

    Science.gov (United States)

    Loewenstein, David A; Curiel, Rosie E; DeKosky, Steven; Rosselli, Monica; Bauer, Russell; Grieg-Custo, Maria; Penate, Ailyn; Li, Chunfei; Lizagarra, Gabriel; Golde, Todd; Adjouadi, Malek; Duara, Ranjan

    2017-01-01

    The rise in incidence of Alzheimer's disease (AD) has led to efforts to advance early detection of the disease during its preclinical stages. To achieve this, the field needs to develop more sensitive cognitive tests that relate to biological markers of disease pathology. Failure to recover from proactive interference (frPSI) is one such cognitive marker that is associated with volumetric reductions in the hippocampus, precuneus, and other AD-prone regions, and to amyloid load in the brain. The current study attempted to replicate and extend our previous findings that frPSI is a sensitive marker of early AD, and related to a unique pattern of volumetric loss in AD prone areas. Three different memory measures were examined relative to volumetric loss and cortical thickness among 45 participants with amnestic mild cognitive impairment. frPSI was uniquely associated with reduced volumes in the hippocampus (r = 0.50) precuneus (r = 0.41), and other AD prone regions, replicating previous findings. Strong associations between frPSI and lower entorhinal cortex volumes and cortical thickness (r≥0.60) and precuneus (r = 0.50) were also observed. Unique and strong associations between volumetric reductions and frPSI as observed by Loewenstein and colleagues were replicated. Together with cortical thickness findings, these results indicate that frPSI is worthy of further study as a sensitive and early cognitive marker of AD.

  3. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  4. Emergence of cooperation in phenotypically heterogeneous populations: a replicator dynamics analysis

    International Nuclear Information System (INIS)

    Barreira da Silva Rocha, A; Escobedo, R; Laruelle, A

    2015-01-01

    The emergence of cooperation is analyzed in heterogeneous populations where two kinds of individuals exist according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type. Individuals thus behave under partial information conditions. The interactions between individuals are described by the snowdrift game, where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game theory by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that the four monomorphic states are unstable and that a polymorphic state exists which is a global attractor for non-degenerate initial states of the population. The result for the discrete-time replicator coincides with the one of the continuous case. (paper)

  5. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  6. Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro

    International Nuclear Information System (INIS)

    Stillman, B.W.; Tamanoi, F.

    1983-01-01

    In this paper evidence is provided that the 140,000-dalton DNA polymerase is encoded by the adenoviral genome and is required for the initiation of DNA replication in vitro. The DNA sequences in the template DNA that are required for the initiation of replication have also been identified, using both plasmid DNAs and synthetic oligodeoxyribonucleotides. 48 references, 7 figures, 1 table

  7. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    Science.gov (United States)

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    correlates with pronounced defects in the secretory pathway and greatly reduces the replication of CVB, PV, and EV71. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter enterovirus replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    Science.gov (United States)

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    BPIFB6 expression correlates with pronounced defects in the secretory pathway and greatly reduces the replication of CVB, PV, and EV71. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter enterovirus replication. PMID:26962226

  9. Intrinsically bent DNA in replication origins and gene promoters.

    Science.gov (United States)

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  10. A genome-wide association study identifies five loci influencing facial morphology in Europeans.

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2012-09-01

    Full Text Available Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes--PRDM16, PAX3, TP63, C5orf50, and COL17A1--in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications.

  11. A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans

    Science.gov (United States)

    Liu, Fan; van der Lijn, Fedde; Schurmann, Claudia; Zhu, Gu; Chakravarty, M. Mallar; Hysi, Pirro G.; Wollstein, Andreas; Lao, Oscar; de Bruijne, Marleen; Ikram, M. Arfan; van der Lugt, Aad; Rivadeneira, Fernando; Uitterlinden, André G.; Hofman, Albert; Niessen, Wiro J.; Homuth, Georg; de Zubicaray, Greig; McMahon, Katie L.; Thompson, Paul M.; Daboul, Amro; Puls, Ralf; Hegenscheid, Katrin; Bevan, Liisa; Pausova, Zdenka; Medland, Sarah E.; Montgomery, Grant W.; Wright, Margaret J.; Wicking, Carol; Boehringer, Stefan; Spector, Timothy D.; Paus, Tomáš; Martin, Nicholas G.; Biffar, Reiner; Kayser, Manfred

    2012-01-01

    Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes—PRDM16, PAX3, TP63, C5orf50, and COL17A1—in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications. PMID:23028347

  12. Poor replication validity of biomedical association studies reported by newspapers.

    Science.gov (United States)

    Dumas-Mallet, Estelle; Smith, Andy; Boraud, Thomas; Gonon, François

    2017-01-01

    To investigate the replication validity of biomedical association studies covered by newspapers. We used a database of 4723 primary studies included in 306 meta-analysis articles. These studies associated a risk factor with a disease in three biomedical domains, psychiatry, neurology and four somatic diseases. They were classified into a lifestyle category (e.g. smoking) and a non-lifestyle category (e.g. genetic risk). Using the database Dow Jones Factiva, we investigated the newspaper coverage of each study. Their replication validity was assessed using a comparison with their corresponding meta-analyses. Among the 5029 articles of our database, 156 primary studies (of which 63 were lifestyle studies) and 5 meta-analysis articles were reported in 1561 newspaper articles. The percentage of covered studies and the number of newspaper articles per study strongly increased with the impact factor of the journal that published each scientific study. Newspapers almost equally covered initial (5/39 12.8%) and subsequent (58/600 9.7%) lifestyle studies. In contrast, initial non-lifestyle studies were covered more often (48/366 13.1%) than subsequent ones (45/3718 1.2%). Newspapers never covered initial studies reporting null findings and rarely reported subsequent null observations. Only 48.7% of the 156 studies reported by newspapers were confirmed by the corresponding meta-analyses. Initial non-lifestyle studies were less often confirmed (16/48) than subsequent ones (29/45) and than lifestyle studies (31/63). Psychiatric studies covered by newspapers were less often confirmed (10/38) than the neurological (26/41) or somatic (40/77) ones. This is correlated to an even larger coverage of initial studies in psychiatry. Whereas 234 newspaper articles covered the 35 initial studies that were later disconfirmed, only four press articles covered a subsequent null finding and mentioned the refutation of an initial claim. Journalists preferentially cover initial findings

  13. Poor replication validity of biomedical association studies reported by newspapers.

    Directory of Open Access Journals (Sweden)

    Estelle Dumas-Mallet

    Full Text Available To investigate the replication validity of biomedical association studies covered by newspapers.We used a database of 4723 primary studies included in 306 meta-analysis articles. These studies associated a risk factor with a disease in three biomedical domains, psychiatry, neurology and four somatic diseases. They were classified into a lifestyle category (e.g. smoking and a non-lifestyle category (e.g. genetic risk. Using the database Dow Jones Factiva, we investigated the newspaper coverage of each study. Their replication validity was assessed using a comparison with their corresponding meta-analyses.Among the 5029 articles of our database, 156 primary studies (of which 63 were lifestyle studies and 5 meta-analysis articles were reported in 1561 newspaper articles. The percentage of covered studies and the number of newspaper articles per study strongly increased with the impact factor of the journal that published each scientific study. Newspapers almost equally covered initial (5/39 12.8% and subsequent (58/600 9.7% lifestyle studies. In contrast, initial non-lifestyle studies were covered more often (48/366 13.1% than subsequent ones (45/3718 1.2%. Newspapers never covered initial studies reporting null findings and rarely reported subsequent null observations. Only 48.7% of the 156 studies reported by newspapers were confirmed by the corresponding meta-analyses. Initial non-lifestyle studies were less often confirmed (16/48 than subsequent ones (29/45 and than lifestyle studies (31/63. Psychiatric studies covered by newspapers were less often confirmed (10/38 than the neurological (26/41 or somatic (40/77 ones. This is correlated to an even larger coverage of initial studies in psychiatry. Whereas 234 newspaper articles covered the 35 initial studies that were later disconfirmed, only four press articles covered a subsequent null finding and mentioned the refutation of an initial claim.Journalists preferentially cover initial findings

  14. Poor replication validity of biomedical association studies reported by newspapers

    Science.gov (United States)

    Smith, Andy; Boraud, Thomas; Gonon, François

    2017-01-01

    Objective To investigate the replication validity of biomedical association studies covered by newspapers. Methods We used a database of 4723 primary studies included in 306 meta-analysis articles. These studies associated a risk factor with a disease in three biomedical domains, psychiatry, neurology and four somatic diseases. They were classified into a lifestyle category (e.g. smoking) and a non-lifestyle category (e.g. genetic risk). Using the database Dow Jones Factiva, we investigated the newspaper coverage of each study. Their replication validity was assessed using a comparison with their corresponding meta-analyses. Results Among the 5029 articles of our database, 156 primary studies (of which 63 were lifestyle studies) and 5 meta-analysis articles were reported in 1561 newspaper articles. The percentage of covered studies and the number of newspaper articles per study strongly increased with the impact factor of the journal that published each scientific study. Newspapers almost equally covered initial (5/39 12.8%) and subsequent (58/600 9.7%) lifestyle studies. In contrast, initial non-lifestyle studies were covered more often (48/366 13.1%) than subsequent ones (45/3718 1.2%). Newspapers never covered initial studies reporting null findings and rarely reported subsequent null observations. Only 48.7% of the 156 studies reported by newspapers were confirmed by the corresponding meta-analyses. Initial non-lifestyle studies were less often confirmed (16/48) than subsequent ones (29/45) and than lifestyle studies (31/63). Psychiatric studies covered by newspapers were less often confirmed (10/38) than the neurological (26/41) or somatic (40/77) ones. This is correlated to an even larger coverage of initial studies in psychiatry. Whereas 234 newspaper articles covered the 35 initial studies that were later disconfirmed, only four press articles covered a subsequent null finding and mentioned the refutation of an initial claim. Conclusion Journalists

  15. A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development.

    Science.gov (United States)

    Bass, Hank W; Wear, Emily E; Lee, Tae-Jin; Hoffman, Gregg G; Gumber, Hardeep K; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda

    2014-06-01

    The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  17. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  18. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nunya Chotiwan

    2018-02-01

    Full Text Available We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several

  19. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.

    Science.gov (United States)

    Chotiwan, Nunya; Andre, Barbara G; Sanchez-Vargas, Irma; Islam, M Nurul; Grabowski, Jeffrey M; Hopf-Jannasch, Amber; Gough, Erik; Nakayasu, Ernesto; Blair, Carol D; Belisle, John T; Hill, Catherine A; Kuhn, Richard J; Perera, Rushika

    2018-02-01

    We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted

  20. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication.

    Science.gov (United States)

    Balestrini, Alessia; Cosentino, Claudia; Errico, Alessia; Garner, Elizabeth; Costanzo, Vincenzo

    2010-05-01

    Many of the factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication is poorly understood in multicellular organisms. Here, we report the identification of GEMC1 (geminin coiled-coil containing protein 1), a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus laevis egg extract we show that Xenopus GEMC1 (xGEMC1) binds to the checkpoint and replication factor TopBP1, which promotes binding of xGEMC1 to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 interacts directly with replication factors such as Cdc45 and the kinase Cdk2-CyclinE, through which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication, whereas depletion of xGEMC1 prevents the onset of DNA replication owing to the impairment of Cdc45 loading onto chromatin. Similarly, inhibition of GEMC1 expression with morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in multicellular organisms by mediating TopBP1- and Cdk2-dependent recruitment of Cdc45 onto replication origins.

  1. Dedicated education unit: implementing an innovation in replication sites.

    Science.gov (United States)

    Moscato, Susan R; Nishioka, Vicki M; Coe, Michael T

    2013-05-01

    An important measure of an innovation is the ease of replication and achievement of the same positive outcomes. The dedicated education unit (DEU) clinical education model uses a collaborative academic-service partnership to develop an optimal learning environment for students. The University of Portland adapted this model from Flinders University, Australia, to increase the teaching capacity and quality of nursing education. This article identifies DEU implementation essentials and reports on the outcomes of two replication sites that received consultation support from the University of Portland. Program operation information, including education requirements for clinician instructors, types of patient care units, and clinical faculty-to-student ratios is presented. Case studies of the three programs suggest the DEU model is adaptable to a range of different clinical settings and continues to show promise as one strategy for addressing the nurse faculty shortage and strengthening academic-clinical collaborations while maintaining quality clinical education for students. Copyright 2013, SLACK Incorporated.

  2. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  3. Chromosome biology: conflict management for replication and transcription.

    Science.gov (United States)

    Dewar, James M; Walter, Johannes C

    2013-03-04

    A recent study has uncovered a new mechanism that attenuates DNA replication during periods of heightened gene expression to avoid collisions between replication and transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Regional differences in DNA replication in nasal epithelium following acute ozone or cigarette smoke exposure

    International Nuclear Information System (INIS)

    Johnson, N.F.; Hotchkiss, J.A.; Harkema, J.R.; Henderson, R.F.; Mauderly, J.L.; Cuddihy, R.G.

    1988-01-01

    The epithelium of the anterior nasal cavity is composed of four cell types, squamous, respiratory, cuboidal, and olfactory cells. We monitored proliferation In these tissues by bromodeoxy-uridine (BrdUrd) incorporation; the labeled cells were identified by using a monoclonal antibody that recognizes BrdUrd. The respiratory, cuboidal and olfactory epithelia had low cell turnover (1-labeled ceIl/mm basal lamina). Squamous epithelium contained 40-labeled cells per mm basal lamina. Following exposure to diluted mainstream cigarette smoke, a transient, but marked increase in DNA replication was seen in the cuboidal epithelium. In contrast, ozone exposure was associated with DNA replication in the olfactory and respiratory epithelium, as well as in the cuboidal epithelium. These studies show that the sensitivity of nasal epithelium to irritants can be assayed by measuring DNA replication. (author)

  5. Regional differences in DNA replication in nasal epithelium following acute ozone or cigarette smoke exposure

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N F; Hotchkiss, J A; Harkema, J R; Henderson, R F; Mauderly, J L; Cuddihy, R G

    1988-12-01

    The epithelium of the anterior nasal cavity is composed of four cell types, squamous, respiratory, cuboidal, and olfactory cells. We monitored proliferation In these tissues by bromodeoxy-uridine (BrdUrd) incorporation; the labeled cells were identified by using a monoclonal antibody that recognizes BrdUrd. The respiratory, cuboidal and olfactory epithelia had low cell turnover (1-labeled ceIl/mm basal lamina). Squamous epithelium contained 40-labeled cells per mm basal lamina. Following exposure to diluted mainstream cigarette smoke, a transient, but marked increase in DNA replication was seen in the cuboidal epithelium. In contrast, ozone exposure was associated with DNA replication in the olfactory and respiratory epithelium, as well as in the cuboidal epithelium. These studies show that the sensitivity of nasal epithelium to irritants can be assayed by measuring DNA replication. (author)

  6. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  7. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator.

    Directory of Open Access Journals (Sweden)

    Zhigang Yi

    2011-01-01

    Full Text Available Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14 that when overexpressed was able to mediate protection from yellow fever virus (YFV-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV, a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV, all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work

  8. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis.

    Science.gov (United States)

    de Tayrac, Marie; Roth, Marie-Paule; Jouanolle, Anne-Marie; Coppin, Hélène; le Gac, Gérald; Piperno, Alberto; Férec, Claude; Pelucchi, Sara; Scotet, Virginie; Bardou-Jacquet, Edouard; Ropert, Martine; Bouvet, Régis; Génin, Emmanuelle; Mosser, Jean; Deugnier, Yves

    2015-03-01

    Hereditary hemochromatosis (HH) is the most common form of genetic iron loading disease. It is mainly related to the homozygous C282Y/C282Y mutation in the HFE gene that is, however, a necessary but not a sufficient condition to develop clinical and even biochemical HH. This suggests that modifier genes are likely involved in the expressivity of the disease. Our aim was to identify such modifier genes. We performed a genome-wide association study (GWAS) using DNA collected from 474 unrelated C282Y homozygotes. Associations were examined for both quantitative iron burden indices and clinical outcomes with 534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses in an independent sample of 748 C282Y homozygotes from four different European centres. One SNP met genome-wide statistical significance for association with transferrin concentration (rs3811647, GWAS p value of 7×10(-9) and replication p value of 5×10(-13)). This SNP, located within intron 11 of the TF gene, had a pleiotropic effect on serum iron (GWAS p value of 4.9×10(-6) and replication p value of 3.2×10(-6)). Both serum transferrin and iron levels were associated with serum ferritin levels, amount of iron removed and global clinical stage (pHFE-associated HH (HFE-HH) patients, identified the rs3811647 polymorphism in the TF gene as the only SNP significantly associated with iron metabolism through serum transferrin and iron levels. Because these two outcomes were clearly associated with the biochemical and clinical expression of the disease, an indirect link between the rs3811647 polymorphism and the phenotypic presentation of HFE-HH is likely. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells

    Directory of Open Access Journals (Sweden)

    Ina Ersing

    2017-05-01

    Full Text Available Epstein-Barr virus (EBV replication contributes to multiple human diseases, including infectious mononucleosis, nasopharyngeal carcinoma, B cell lymphomas, and oral hairy leukoplakia. We performed systematic quantitative analyses of temporal changes in host and EBV proteins during lytic replication to gain insights into virus-host interactions, using conditional Burkitt lymphoma models of type I and II EBV infection. We quantified profiles of >8,000 cellular and 69 EBV proteins, including >500 plasma membrane proteins, providing temporal views of the lytic B cell proteome and EBV virome. Our approach revealed EBV-induced remodeling of cell cycle, innate and adaptive immune pathways, including upregulation of the complement cascade and proteasomal degradation of the B cell receptor complex, conserved between EBV types I and II. Cross-comparison with proteomic analyses of human cytomegalovirus infection and of a Kaposi-sarcoma-associated herpesvirus immunoevasin identified host factors targeted by multiple herpesviruses. Our results provide an important resource for studies of EBV replication.

  10. MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells

    Directory of Open Access Journals (Sweden)

    Qian Feng

    2012-11-01

    Full Text Available RIG-I and MDA5 are cytosolic RNA sensors that play a critical role in innate antiviral responses. Major advances have been made in identifying RIG-I ligands, but our knowledge of the ligands for MDA5 remains restricted to data from transfection experiments mostly using poly(I:C, a synthetic dsRNA mimic. Here, we dissected the IFN-α/β-stimulatory activity of different viral RNA species produced during picornavirus infection, both by RNA transfection and in infected cells in which specific steps of viral RNA replication were inhibited. Our results show that the incoming genomic plus-strand RNA does not activate MDA5, but minus-strand RNA synthesis and production of the 7.5 kbp replicative form trigger a strong IFN-α/β response. IFN-α/β production does not rely on plus-strand RNA synthesis and thus generation of the partially double-stranded replicative intermediate. This study reports MDA5 activation by a natural RNA ligand under physiological conditions.

  11. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    Science.gov (United States)

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  12. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    Science.gov (United States)

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Studies on the effects of persistent RNA priming on DNA replication and genomic stability

    OpenAIRE

    Stuckey, Ruth

    2014-01-01

    [EN]: DNA replication and transcription take place on the same DNA template, and the correct interplay between these processes ensures faithful genome duplication. DNA replication must be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA in order to maintain genomic integrity. Transcription generates RNA:DNA hybrids, transient intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes. RNA:DNA hybrids can form R-loops, ...

  14. DNA Replication Profiling Using Deep Sequencing.

    Science.gov (United States)

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  15. Using Replication Projects in Teaching Research Methods

    Science.gov (United States)

    Standing, Lionel G.; Grenier, Manuel; Lane, Erica A.; Roberts, Meigan S.; Sykes, Sarah J.

    2014-01-01

    It is suggested that replication projects may be valuable in teaching research methods, and also address the current need in psychology for more independent verification of published studies. Their use in an undergraduate methods course is described, involving student teams who performed direct replications of four well-known experiments, yielding…

  16. Commercial Building Partnerships Replication and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  17. Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe.

    Directory of Open Access Journals (Sweden)

    Majid Eshaghi

    Full Text Available BACKGROUND: During S. pombe S-phase, initiation of DNA replication occurs at multiple sites (origins that are enriched with AT-rich sequences, at various times. Current studies of genome-wide DNA replication profiles have focused on the DNA replication timing and origin location. However, the replication and/or firing efficiency of the individual origins on the genomic scale remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome-wide ORF-specific DNA microarray analysis, we show that in S. pombe, individual origins fire with varying efficiencies and at different times during S-phase. The increase in DNA copy number plotted as a function of time is approximated to the near-sigmoidal model, when considering the replication start and end timings at individual loci in cells released from HU-arrest. Replication efficiencies differ from origin to origin, depending on the origin's firing efficiency. We have found that DNA replication is inefficient early in S-phase, due to inefficient firing at origins. Efficient replication occurs later, attributed to efficient but late-firing origins. Furthermore, profiles of replication timing in cds1Delta cells are abnormal, due to the failure in resuming replication at the collapsed forks. The majority of the inefficient origins, but not the efficient ones, are found to fire in cds1Delta cells after HU removal, owing to the firing at the remaining unused (inefficient origins during HU treatment. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that efficient DNA replication/firing occurs late in S-phase progression in cells after HU removal, due to efficient late-firing origins. Additionally, checkpoint kinase Cds1p is required for maintaining the efficient replication/firing late in S-phase. We further propose that efficient late-firing origins are essential for ensuring completion of DNA duplication by the end of S-phase.

  18. Establishing a coherent and replicable measurement model of the Edinburgh Postnatal Depression Scale.

    Science.gov (United States)

    Martin, Colin R; Redshaw, Maggie

    2018-06-01

    The 10-item Edinburgh Postnatal Depression Scale (EPDS) is an established screening tool for postnatal depression. Inconsistent findings in factor structure and replication difficulties have limited the scope of development of the measure as a multi-dimensional tool. The current investigation sought to robustly determine the underlying factor structure of the EPDS and the replicability and stability of the most plausible model identified. A between-subjects design was used. EPDS data were collected postpartum from two independent cohorts using identical data capture methods. Datasets were examined with confirmatory factor analysis, model invariance testing and systematic evaluation of relational and internal aspects of the measure. Participants were two samples of postpartum women in England assessed at three months (n = 245) and six months (n = 217). The findings showed a three-factor seven-item model of the EPDS offered an excellent fit to the data, and was observed to be replicable in both datasets and invariant as a function of time point of assessment. Some EPDS sub-scale scores were significantly higher at six months. The EPDS is multi-dimensional and a robust measurement model comprises three factors that are replicable. The potential utility of the sub-scale components identified requires further research to identify a role in contemporary screening practice. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

  20. One for all and all for One: Improving replication of genetic studies through network diffusion.

    Directory of Open Access Journals (Sweden)

    Daniel Lancour

    2018-04-01

    Full Text Available Improving accuracy in genetic studies would greatly accelerate understanding the genetic basis of complex diseases. One approach to achieve such an improvement for risk variants identified by the genome wide association study (GWAS approach is to incorporate previously known biology when screening variants across the genome. We developed a simple approach for improving the prioritization of candidate disease genes that incorporates a network diffusion of scores from known disease genes using a protein network and a novel integration with GWAS risk scores, and tested this approach on a large Alzheimer disease (AD GWAS dataset. Using a statistical bootstrap approach, we cross-validated the method and for the first time showed that a network approach improves the expected replication rates in GWAS studies. Several novel AD genes were predicted including CR2, SHARPIN, and PTPN2. Our re-prioritized results are enriched for established known AD-associated biological pathways including inflammation, immune response, and metabolism, whereas standard non-prioritized results were not. Our findings support a strategy of considering network information when investigating genetic risk factors.

  1. High-Resolution Profiling of Drosophila Replication Start Sites Reveals a DNA Shape and Chromatin Signature of Metazoan Origins

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    2015-05-01

    Full Text Available At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  2. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    Science.gov (United States)

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  3. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  4. Perfectionism in Gifted Adolescents: A Replication and Extension

    Science.gov (United States)

    Margot, Kelly C.; Rinn, Anne N.

    2016-01-01

    To provide further generalizability for the results garnered by two previous studies, the authors conducted a methodological replication. In addition to adding to the body of replication research done with gifted students, the purpose of this study was to examine perfectionism differences among gifted adolescents in regards to gender, birth order,…

  5. Replication of genetic associations as pseudoreplication due to shared genealogy.

    Science.gov (United States)

    Rosenberg, Noah A; Vanliere, Jenna M

    2009-09-01

    The genotypes of individuals in replicate genetic association studies have some level of correlation due to shared descent in the complete pedigree of all living humans. As a result of this genealogical sharing, replicate studies that search for genotype-phenotype associations using linkage disequilibrium between marker loci and disease-susceptibility loci can be considered as "pseudoreplicates" rather than true replicates. We examine the size of the pseudoreplication effect in association studies simulated from evolutionary models of the history of a population, evaluating the excess probability that both of a pair of studies detect a disease association compared to the probability expected under the assumption that the two studies are independent. Each of nine combinations of a demographic model and a penetrance model leads to a detectable pseudoreplication effect, suggesting that the degree of support that can be attributed to a replicated genetic association result is less than that which can be attributed to a replicated result in a context of true independence.

  6. Mobile and replicated alignment of arrays in data-parallel programs

    Science.gov (United States)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.

  7. Polymorphisms in RYBP and AOAH genes are associated with chronic rhinosinusitis in a Chinese population: a replication study.

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    Full Text Available BACKGROUND: The development of CRS is believed to be the result of combined interactions between the genetic background of the affected subject and environmental factors. OBJECTIVES: To replicate and extend our recent findings from genetic association studies in chronic rhinosinusitis (CRS performed in a Canadian Caucasian population in a Chinese population. METHODS: In a case-control replication study, DNA samples were obtained from CRS with (n  = 306; CRSwNP and without (n = 332; CRSsNP nasal polyps, and controls (n = 315 in a Chinese population. A total of forty-nine single nucleotide polymorphisms (SNPs selected from previous identified SNPs associated with CRS in Canadian population, and SNPs from the CHB HapMap dataset were individually genotyped. RESULTS: We identified two SNPs respectively in RYBP (rs4532099, p = 2.15E-06, OR = 2.59 and AOAH (rs4504543, p = 0.0001152, OR = 0.58 significantly associated with whole CRS cohort. Subgroup analysis for the presence of nasal polyps (CRSwNP and CRSsNP displayed significant association in CRSwNP cohorts regarding to one SNP in RYBP (P = 3.24(E-006, OR = 2.76. Evidence of association in the CRSsNP groups in terms of 2 SNPs (AOAH_rs4504543 and RYBP_rs4532099 was detected as well. Stratifying analysis by gender demonstrated that none of the selected SNPs were associated with CRSwNP as well as CRSsNP. Meanwhile 3 SNPs (IL1A_rs17561, P = 0.005778; IL1A_rs1800587, P = 0.009561; IRAK4_rs4251513, P = 0.03837 were associated with serum total IgE level. CONCLUSIONS: These genes are biologically plausible, with roles in regulation of transcription (RYBP and inflammatory response (AOAH. The present data suggests the potential common genetic basis in the development of CRS in Chinese and Caucasian population.

  8. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  9. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  10. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  11. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  12. Analytical strategies for discovery and replication of genetic effects in pharmacogenomic studies

    Directory of Open Access Journals (Sweden)

    Kohler JR

    2014-08-01

    Full Text Available Jared R Kohler, Tobias Guennel, Scott L MarshallBioStat Solutions, Inc., Frederick, MD, USAAbstract: In the past decade, the pharmaceutical industry and biomedical research sector have devoted considerable resources to pharmacogenomics (PGx with the hope that understanding genetic variation in patients would deliver on the promise of personalized medicine. With the advent of new technologies and the improved collection of DNA samples, the roadblock to advancements in PGx discovery is no longer the lack of high-density genetic information captured on patient populations, but rather the development, adaptation, and tailoring of analytical strategies to effectively harness this wealth of information. The current analytical paradigm in PGx considers the single-nucleotide polymorphism (SNP as the genomic feature of interest and performs single SNP association tests to discover PGx effects – ie, genetic effects impacting drug response. While it can be straightforward to process single SNP results and to consider how this information may be extended for use in downstream patient stratification, the rate of replication for single SNP associations has been low and the desired success of producing clinically and commercially viable biomarkers has not been realized. This may be due to the fact that single SNP association testing is suboptimal given the complexities of PGx discovery in the clinical trial setting, including: 1 relatively small sample sizes; 2 diverse clinical cohorts within and across trials due to genetic ancestry (potentially impacting the ability to replicate findings; and 3 the potential polygenic nature of a drug response. Subsequently, a shift in the current paradigm is proposed: to consider the gene as the genomic feature of interest in PGx discovery. The proof-of-concept study presented in this manuscript demonstrates that genomic region-based association testing has the potential to improve the power of detecting single SNP or

  13. Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility

    NARCIS (Netherlands)

    Chang, Chia-Jung; Kuo, Ho-Chang; Chang, Jeng-Sheng; Lee, Jong-Keuk; Tsai, Fuu-Jen; Khor, Chiea Chuen; Chang, Li-Ching; Chen, Shih-Ping; Ko, Tai-Ming; Liu, Yi-Min; Chen, Ying-Ju; Hong, Young Mi; Jang, Gi Young; Hibberd, Martin L.; Kuijpers, Taco; Burgner, David; Levin, Michael; Burns, Jane C.; Davila, Sonia; Chen, Yuan-Tsong; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Lee, Yi-Ching; Liang, Chi-Di; Hwang, Kao-Pin; Chang, Luan-Yin; Huang, Li-Min; Chen, Ming-Ren; Chi, Hsin; Huang, Fu-Yuan; Chiu, Nan-Chang; Lee, Meng-Luen; Huang, Yhu-Chering; Hwang, Betau; Lee, Pi-Chang; Yoo, Jeong-Jin; Park, In-Sook; Hong, Soo-Jong; Kim, Kwi-Joo; Kim, Jae-Jung; Sohn, Saejung; Young Jang, Gi; Ha, Kee-Soo; Nam, Hyo-Kyoung; Byeon, Jung-Hye; Yun, Sin Weon; Han, Myung Ki; Kuipers, Irene M.; Ottenkamp, Jaap J.; Biezeveld, Maarten

    2013-01-01

    The BLK and CD40 loci have been associated with Kawasaki disease (KD) in two genome-wide association studies (GWAS) conducted in a Taiwanese population of Han Chinese ancestry (Taiwanese) and in Japanese cohorts. Here we build on these findings with replication studies of the BLK and CD40 loci in

  14. 36 CFR 910.64 - Replication.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Replication. 910.64 Section 910.64 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.64 Replication. Replication means the process of using modern methods...

  15. Molecular basis for PrimPol recruitment to replication forks by RPA.

    Science.gov (United States)

    Guilliam, Thomas A; Brissett, Nigel C; Ehlinger, Aaron; Keen, Benjamin A; Kolesar, Peter; Taylor, Elaine M; Bailey, Laura J; Lindsay, Howard D; Chazin, Walter J; Doherty, Aidan J

    2017-05-23

    DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.

  16. Analysis of the temporal program of replication initiation in yeast chromosomes.

    Science.gov (United States)

    Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J

    1995-01-01

    The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating

  17. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses.

    Science.gov (United States)

    Arjan-Odedra, Shetal; Swanson, Chad M; Sherer, Nathan M; Wolinsky, Steven M; Malim, Michael H

    2012-06-22

    The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells.

  18. New Methods to Address Old Challenges: The Use of Administrative Data for Longitudinal Replication Studies of Child Maltreatment.

    Science.gov (United States)

    Hurren, Emily; Stewart, Anna; Dennison, Susan

    2017-09-15

    Administrative data are crucial to the "big data" revolution of social science and have played an important role in the development of child maltreatment research. These data are also of value to administrators, policy makers, and clinicians. The focus of this paper is the use of administrative data to produce and replicate longitudinal studies of child maltreatment. Child protection administrative data have several advantages. They are often population-based, and allow longitudinal examination of child maltreatment and complex multi-level analyses. They also allow comparison across subgroups and minority groups, remove burden from individuals to disclose traumatic experiences, and can be less biased than retrospective recall. Finally, they can be linked to data from other agencies to explore comorbidity and outcomes, and are comparatively cost and time effective. The benefits and challenges associated with the use of administrative data for longitudinal child maltreatment research become magnified when these data are used to produce replications. Techniques to address challenges and support future replication efforts include developing a biographical understanding of the systems from which the data are drawn, using multiple data sources to contextualize the data and research results, recognizing and adopting various approaches to replication, and documenting all data coding and manipulation processes. These techniques are illustrated in this paper via a case study of previous replication work.

  19. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  20. Clinical isolates of GB virus type C vary in their ability to persist and replicate in peripheral blood mononuclear cell cultures

    International Nuclear Information System (INIS)

    George, Sarah L.; Xiang Jinhua; Stapleton, Jack T.

    2003-01-01

    GB virus C/hepatitis G virus (GBV-C) replication in vitro is inefficient and inconsistent. In this study, clinical isolates of GBV-C were evaluated using peripheral blood mononuclear cell (PBMC) based culture methods. Isolates varied consistently in their ability to persistently replicate, and yield increased in cells grown without PHA/IL-2 stimulation. The deduced polyprotein sequence of an isolate that replicated well was determined (GenBank AY196904) and compared to 20 full-length GBV-C sequences. Fourteen of the 16 unique amino acid polymorphisms identified were in the coding regions for nonstructural proteins associated with interferon resistance and RNA replication. These data indicate that clinical GBV-C isolates vary in their ability to persist in culture, do not require PHA/IL-2 stimulation, and that sequence variability in key regulatory regions may affect growth in PBMC cultures. Since GBV-C appears to inhibit HIV replication in a coinfection model, these studies should facilitate determination of the mechanism of this interaction

  1. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication.

    Science.gov (United States)

    Koo, Seong Joo; Fernández-Montalván, Amaury E; Badock, Volker; Ott, Christopher J; Holton, Simon J; von Ahsen, Oliver; Toedling, Joern; Vittori, Sarah; Bradner, James E; Gorjánácz, Mátyás

    2016-10-25

    ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.

  2. Assessment of heterogeneity between European Populations: a Baltic and Danish replication case-control study of SNPs from a recent European ulcerative colitis genome wide association study.

    Science.gov (United States)

    Andersen, Vibeke; Ernst, Anja; Sventoraityte, Jurgita; Kupcinskas, Limas; Jacobsen, Bent A; Krarup, Henrik B; Vogel, Ulla; Jonaitis, Laimas; Denapiene, Goda; Kiudelis, Gediminas; Balschun, Tobias; Franke, Andre

    2011-10-13

    Differences in the genetic architecture of inflammatory bowel disease between different European countries and ethnicities have previously been reported. In the present study, we wanted to assess the role of 11 newly identified UC risk variants, derived from a recent European UC genome wide association study (GWAS) (Franke et al., 2010), for 1) association with UC in the Nordic countries, 2) for population heterogeneity between the Nordic countries and the rest of Europe, and, 3) eventually, to drive some of the previous findings towards overall genome-wide significance. Eleven SNPs were replicated in a Danish sample consisting of 560 UC patients and 796 controls and nine missing SNPs of the German GWAS study were successfully genotyped in the Baltic sample comprising 441 UC cases and 1156 controls. The independent replication data was then jointly analysed with the original data and systematic comparisons of the findings between ethnicities were made. Pearson's χ2, Breslow-Day (BD) and Cochran-Mantel-Haenszel (CMH) tests were used for association analyses and heterogeneity testing. The rs5771069 (IL17REL) SNP was not associated with UC in the Danish panel. The rs5771069 (IL17REL) SNP was significantly associated with UC in the combined Baltic, Danish and Norwegian UC study sample driven by the Norwegian panel (OR = 0.89, 95% CI: 0.79-0.98, P = 0.02). No association was found between rs7809799 (SMURF1/KPNA7) and UC (OR = 1.20, 95% CI: 0.95-1.52, P = 0.10) or between UC and all other remaining SNPs. We had 94% chance of detecting an association for rs7809799 (SMURF1/KPNA7) in the combined replication sample, whereas the power were 55% or lower for the remaining SNPs.Statistically significant PBD was found for OR heterogeneity between the combined Baltic, Danish, and Norwegian panel versus the combined German, British, Belgian, and Greek panel (rs7520292 (P = 0.001), rs12518307 (P = 0.007), and rs2395609 (TCP11) (P = 0.01), respectively).No SNP reached genome

  3. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.

    Science.gov (United States)

    Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing

    2017-01-27

    DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.

  4. The progression of replication forks at natural replication barriers in live bacteria

    NARCIS (Netherlands)

    Moolman, M.C.; Tiruvadi Krishnan, S; Kerssemakers, J.W.J.; de Leeuw, R.; Lorent, V.J.F.; Sherratt, David J.; Dekker, N.H.

    2016-01-01

    Protein-DNA complexes are one of the principal barriers the replisome encounters during replication. One such barrier is the Tus-ter complex, which is a direction dependent barrier for replication fork progression. The details concerning the dynamics of the replisome when encountering these

  5. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2

    International Nuclear Information System (INIS)

    Eckerle, Lance D.; Albarino, Cesar G.; Ball, L. Andrew.

    2003-01-01

    The nodavirus Flock House virus has a bipartite genome composed of RNAs 1 and 2, which encode the catalytic component of the RNA-dependent RNA polymerase (RdRp) and the capsid protein precursor, respectively. In addition to catalyzing replication of the viral genome, the RdRp also transcribes from RNA1 a subgenomic RNA3, which is both required for and suppressed by RNA2 replication. Here, we show that in the absence of RNA1 replication, FHV RdRp replicated positive-sense RNA3 transcripts fully and copied negative-sense RNA3 transcripts into positive strands. The two nonstructural proteins encoded by RNA3 were dispensable for replication, but sequences in the 3'-terminal 58 nucleotides were required. RNA3 variants that failed to replicate also failed to transactivate RNA2. These results imply that RNA3 is naturally produced both by transcription from RNA1 and by subsequent RNA1-independent replication and that RNA3 replication may be necessary for transactivation of RNA2

  6. Chaotic interactions of self-replicating RNA.

    Science.gov (United States)

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  7. Replication stress interferes with histone recycling and predeposition marking of new histones

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Scharf, Annette N D; Ask, Katrine

    2010-01-01

    To restore chromatin on new DNA during replication, recycling of histones evicted ahead of the fork is combined with new histone deposition. The Asf1 histone chaperone, which buffers excess histones under stress, is a key player in this process. Yet how histones handled by human Asf1 are modified...... remains unclear. Here we identify marks on histones H3-H4 bound to Asf1 and changes induced upon replication stress. In S phase, distinct cytosolic and nuclear Asf1b complexes show ubiquitous H4K5K12diAc and heterogeneous H3 marks, including K9me1, K14ac, K18ac, and K56ac. Upon acute replication arrest......, the predeposition mark H3K9me1 and modifications typical of chromatin accumulate in Asf1 complexes. In parallel, ssDNA is generated at replication sites, consistent with evicted histones being trapped with Asf1. During recovery, histones stored with Asf1 are rapidly used as replication resumes. This shows...

  8. A CI-Independent Form of Replicative Inhibition: Turn Off of Early Replication of Bacteriophage Lambda

    Science.gov (United States)

    Hayes, Sidney; Horbay, Monique A.; Hayes, Connie

    2012-01-01

    Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop + oriλ+ sequence. PMID:22590552

  9. Prediction Interval: What to Expect When You're Expecting … A Replication.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Spence

    Full Text Available A challenge when interpreting replications is determining whether the results of a replication "successfully" replicate the original study. Looking for consistency between two studies is challenging because individual studies are susceptible to many sources of error that can cause study results to deviate from each other and the population effect in unpredictable directions and magnitudes. In the current paper, we derive methods to compute a prediction interval, a range of results that can be expected in a replication due to chance (i.e., sampling error, for means and commonly used indexes of effect size: correlations and d-values. The prediction interval is calculable based on objective study characteristics (i.e., effect size of the original study and sample sizes of the original study and planned replication even when sample sizes across studies are unequal. The prediction interval provides an a priori method for assessing if the difference between an original and replication result is consistent with what can be expected due to sample error alone. We provide open-source software tools that allow researchers, reviewers, replicators, and editors to easily calculate prediction intervals.

  10. The Alleged Crisis and the Illusion of Exact Replication

    NARCIS (Netherlands)

    Stroebe, Wolfgang; Strack, Fritz

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a replication crisis in psychology. Psychologists are encouraged to conduct more exact

  11. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    Directory of Open Access Journals (Sweden)

    Philippa M Beard

    Full Text Available Vaccinia virus (VACV is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  12. Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling.

    Science.gov (United States)

    Hird, Sarah; Kubatko, Laura; Carstens, Bryan

    2010-11-01

    We describe a method for estimating species trees that relies on replicated subsampling of large data matrices. One application of this method is phylogeographic research, which has long depended on large datasets that sample intensively from the geographic range of the focal species; these datasets allow systematicists to identify cryptic diversity and understand how contemporary and historical landscape forces influence genetic diversity. However, analyzing any large dataset can be computationally difficult, particularly when newly developed methods for species tree estimation are used. Here we explore the use of replicated subsampling, a potential solution to the problem posed by large datasets, with both a simulation study and an empirical analysis. In the simulations, we sample different numbers of alleles and loci, estimate species trees using STEM, and compare the estimated to the actual species tree. Our results indicate that subsampling three alleles per species for eight loci nearly always results in an accurate species tree topology, even in cases where the species tree was characterized by extremely rapid divergence. Even more modest subsampling effort, for example one allele per species and two loci, was more likely than not (>50%) to identify the correct species tree topology, indicating that in nearly all cases, computing the majority-rule consensus tree from replicated subsampling provides a good estimate of topology. These results were supported by estimating the correct species tree topology and reasonable branch lengths for an empirical 10-locus great ape dataset. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Genome-wide association study identifies a novel canine glaucoma locus.

    Directory of Open Access Journals (Sweden)

    Saija J Ahonen

    Full Text Available Glaucoma is an optic neuropathy and one of the leading causes of blindness. Its hereditary forms are classified into primary closed-angle (PCAG, primary open-angle (POAG and primary congenital glaucoma (PCG. Although many loci have been mapped in human, only a few genes have been identified that are associated with the development of glaucoma and the genetic basis of the disease remains poorly understood. Glaucoma has also been described in many dog breeds, including Dandie Dinmont Terriers (DDT in which it is a late-onset (>7 years disease. We designed clinical and genetic studies to better define the clinical features of glaucoma in the DDT and to identify the genetic cause. Clinical diagnosis was based on ophthalmic examinations of the affected dogs and 18 additionally investigated unaffected DDTs. We collected DNA from over 400 DTTs and a genome wide association study was performed in a cohort of 23 affected and 23 controls, followed by a fine mapping, a replication study and candidate gene sequencing. The clinical study suggested that ocular abnormalities including abnormal iridocorneal angles and pectinate ligament dysplasia are common (50% and 72%, respectively in the breed and the disease resembles human PCAG. The genetic study identified a novel 9.5 Mb locus on canine chromosome 8 including the 1.6 Mb best associated region (p = 1.63 × 10(-10, OR = 32 for homozygosity. Mutation screening in five candidate genes did not reveal any causative variants. This study indicates that although ocular abnormalities are common in DDTs, the genetic risk for glaucoma is conferred by a novel locus on CFA8. The canine locus shares synteny to a region in human chromosome 14q, which harbors several loci associated with POAG and PCG. Our study reveals a new locus for canine glaucoma and ongoing molecular studies will likely help to understand the genetic etiology of the disease.

  15. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-05

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Role of Importance and Distinctiveness of Semantic Features in People with Aphasia: A Replication Study

    Science.gov (United States)

    Mason-Baughman, Mary Beth; Wallace, Sarah E.

    2014-01-01

    Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…

  17. When and Why Replication Studies Should Be Published: Guidelines for Mathematics Education Journals

    Science.gov (United States)

    Star, Jon R.

    2018-01-01

    The present issue of "JRME" features three articles--Melhuish (2018; see EJ1167195); Jamil, Larsen, and Hamres (2018; see EJ1167178); and Thanheiser (2018; see EJ1167179)--that involve, at least to some degree, replication of prior published studies. In each of these articles, the authors provide a clear rationale for the importance of…

  18. DNA replication stress and cancer chemotherapy.

    Science.gov (United States)

    Kitao, Hiroyuki; Iimori, Makoto; Kataoka, Yuki; Wakasa, Takeshi; Tokunaga, Eriko; Saeki, Hiroshi; Oki, Eiji; Maehara, Yoshihiko

    2018-02-01

    DNA replication is one of the fundamental biological processes in which dysregulation can cause genome instability. This instability is one of the hallmarks of cancer and confers genetic diversity during tumorigenesis. Numerous experimental and clinical studies have indicated that most tumors have experienced and overcome the stresses caused by the perturbation of DNA replication, which is also referred to as DNA replication stress (DRS). When we consider therapeutic approaches for tumors, it is important to exploit the differences in DRS between tumor and normal cells. In this review, we introduce the current understanding of DRS in tumors and discuss the underlying mechanism of cancer therapy from the aspect of DRS. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    Science.gov (United States)

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  20. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  1. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, S.; Sanders, A. R.; Kendler, K. S.; Levinson, D. F.; Sklar, P.; Holmans, P. A.; Lin, D. Y.; Duan, J.; Ophoff, R. A.; Andreassen, O. A.; Scolnick, E.; Cichon, S.; St Clair, D.; Corvin, A.; Gurling, H.; Werge, T.; Rujescu, D.; Blackwood, D. H.; Pato, C. N.; Malhotra, A. K.; Purcell, S.; Dudbridge, F.; Neale, B. M.; Rossin, L.; Visscher, P. M.; Posthuma, D.; Ruderfer, D. M.; Fanous, A.; Stefansson, H.; Steinberg, S.; Mowry, B. J.; Golimbet, V.; de Hert, M.; Jonsson, E. G.; Bitter, I.; Pietilainen, O. P.; Collier, D. A.; Tosato, S.; Agartz, I.; Albus, M.; Alexander, M.; Amdur, R. L.; Amin, F.; Bass, N.; Bergen, S. E.; Black, D. W.; Borglum, A. D.; Brown, M. A.; Bruggeman, R.; Buccola, N. G.; Byerley, W. F.; Cahn, W.; Cantor, R. M.; Carr, V. J.; Catts, S. V.; Choudhury, K.; Cloninger, C. R.; Cormican, P.; Craddock, N.; Danoy, P. A.; Datta, S.; de Haan, L.; Demontis, D.; Dikeos, D.; Djurovic, S.; Donnely, P.; Donohoe, G.; Duong, L.; Dwyer, S.; Fink-Jensen, A.; Freedman, R.; Freimer, N. B.; Friedl, M.; Georgieva, L.; Giegling, I.; Gill, M.; Glenthoj, B.; Godard, S.; Hamshere, M.; Hansen, M.; Hartmann, A. M.; Henskens, F. A.; Hougaard, D. M.; Hultman, C. M.; Ingason, A.; Jablensky, A. V.; Jakobsen, K. D.; Jay, M.; Jurgens, G.; Kahn, R. S.; Keller, M. C.; Kenis, G.; Kenny, E.; Kim, Y.; Kirov, G. K.; Konnerth, H.; Konte, B.; Krabbendam, L.; Krasucki, R.; Lasseter, V. K.; Laurent, C.; Lawrence, J.; Lencz, T.; Lerer, F. B.; Liang, K. Y.; Lichtenstein, P.; Lieberman, J. A.; Linszen, D. H.; Lonnqvist, J.; Loughland, C. M.; Maclean, A. W.; Maher, B. S.; Maier, W.; Mallet, J.; Malloy, P.; Mattheisen, M.; Mattingsdal, M.; McGhee, K. A.; McGrath, J. J.; McIntosh, A.; McLean, D. E.; McQuillin, A.; Melle, I.; Michie, P. T.; Milanova, V.; Morris, D. W.; Mors, O.; Mortensen, P. B.; Moskvina, V.; Muglia, P.; Myin-Germeys, I.; Nertney, D. A.; Nestadt, G.; Nielsen, J.; Nikolov, I.; Nordentoft, M.; Norton, N.; Nothen, M. M.; O'Dushlaine, C. T.; Olincy, A.; Olsen, L.; O'Neill, F. A.; Orntoft, T. F.; Owen, M. J.; Pantelis, C.; Papadimitriou, G.; Pato, M. T.; Peltonen, L.; Petursson, H.; Pickard, B.; Pimm, J.; Pulver, A. E.; Puri, V.; Quested, D.; Quinn, E. M.; Rasmussen, H. B.; Rethelyi, J. M.; Ribble, R.; Rietschel, M.; Riley, B. P.; Ruggeri, M.; Schall, U.; Schulze, T. G.; Schwab, S. G.; Scott, R. J.; Shi, J.; Sigurdsson, E.; Silvermann, J. M.; Spencer, C. C.; Stefansson, K.; Strange, A.; Strengman, E.; Stroup, T. S.; Suvisaari, J.; Terenius, L.; Thirumalai, S.; Thygesen, J. H.; Timm, S.; Toncheva, D.; van den Oord, E.; van Os, J.; van Winkel, R.; Veldink, J.; Walsh, D.; Wang, A. G.; Wiersma, D.; Wildenauer, D. B.; Williams, H. J.; Williams, N. M.; Wormley, B.; Zammit, S.; Sullivan, P. F.; O'Donovan, M. C.; Daly, M. J.; Gejman, P. V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  2. The progression of replication forks at natural replication barriers in live bacteria.

    Science.gov (United States)

    Moolman, M Charl; Tiruvadi Krishnan, Sriram; Kerssemakers, Jacob W J; de Leeuw, Roy; Lorent, Vincent; Sherratt, David J; Dekker, Nynke H

    2016-07-27

    Protein-DNA complexes are one of the principal barriers the replisome encounters during replication. One such barrier is the Tus-ter complex, which is a direction dependent barrier for replication fork progression. The details concerning the dynamics of the replisome when encountering these Tus-ter barriers in the cell are poorly understood. By performing quantitative fluorescence microscopy with microfuidics, we investigate the effect on the replisome when encountering these barriers in live Escherichia coli cells. We make use of an E. coli variant that includes only an ectopic origin of replication that is positioned such that one of the two replisomes encounters a Tus-ter barrier before the other replisome. This enables us to single out the effect of encountering a Tus-ter roadblock on an individual replisome. We demonstrate that the replisome remains stably bound after encountering a Tus-ter complex from the non-permissive direction. Furthermore, the replisome is only transiently blocked, and continues replication beyond the barrier. Additionally, we demonstrate that these barriers affect sister chromosome segregation by visualizing specific chromosomal loci in the presence and absence of the Tus protein. These observations demonstrate the resilience of the replication fork to natural barriers and the sensitivity of chromosome alignment to fork progression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structure of replicating intermediates of human herpesvirus type 6

    International Nuclear Information System (INIS)

    Severini, Alberto; Sevenhuysen, Claire; Garbutt, Michael; Tipples, Graham A.

    2003-01-01

    We have studied the structure of the replicative intermediates of human herpesvirus 6 (HHV-6) using pulsed-field gel electrophoresis, partial digestion, two-dimensional gel electrophoresis, and sedimentation centrifugation. The results show that DNA replication of HHV-6 produces head-to-tail concatemeric intermediates as well as approximately equal amounts of circular monomers or oligomers. Unlike the situation in herpes simplex virus, the intermediates of human herpesvirus 6 replication are not highly branched, suggesting a difference in the mechanism of replication or a lower frequency of homologous recombination in human herpesvirus 6 compared to herpes simplex virus

  4. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  5. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  6. Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales".

    Science.gov (United States)

    Mushegian, Arcady; Karin, Eli Levy; Pupko, Tal

    2018-01-01

    The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes. Published by Elsevier Inc.

  7. A screen for genetic suppressor elements of hepatitis C virus identifies a supercharged protein inhibitor of viral replication.

    Directory of Open Access Journals (Sweden)

    Rudo L Simeon

    Full Text Available Genetic suppressor elements (GSEs are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection. A 244 amino acid gene fragment, B1, was strongly enriched after 5 rounds of selection. B1 derives from a single-base frameshift of the enhanced green fluorescent protein (eGFP which was used as a filler during fragment cloning. B1 has a very high net positive charge of 43 at neutral pH and a high charge-to-mass (kDa ratio of 1.5. We show that B1 expression specifically inhibits HCV replication. In addition, five highly positively charged B1 fragments produced from progressive truncation at the C-terminus all retain the ability to inhibit HCV, suggesting that a high positive charge, rather than a particular motif in B1, likely accounts for B1's anti-HCV activity. Another supercharged protein, +36GFP, was also found to strongly inhibit HCV replication when added to cells at the time of infection. This study reports a new methodology for HCV inhibitor screening and points to the anti-HCV potential of positively charged proteins/peptides.

  8. Contextual mediation of perceptions during hauntings and poltergeist-like experiences: a replication and extension.

    Science.gov (United States)

    Harte, T M

    2000-10-01

    This study is a replication of the experiment by Lange, Houran, Harte, and Havens (1996 on contextual variables, in which hallucinations appear to be affected by the environmental context. These contextual variables are influential in the reporting of haunting and poltergeist-like episodes. This study extended the previous study by adding new factors of time of day, climactic conditions, and emotional feelings. These were analyzed for a different sample, looking for further congruency between experiential content and the context. The sample (N=8431 were reports found on the Internet and in one book. The Lange, et al. study was replicated in that contextual variables were identified in 99.2% of the reports, the content of the reports was judged to be consistent with the nature of the contextual variables in 58.8% of the reports, and contextual variables were related to the percipients' state of arousal and the modalities of experience.

  9. Four Susceptibility Loci for Gallstone Disease Identified in a Meta-analysis of Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Joshi, Amit D; Andersson, Charlotte; Buch, Stephan

    2016-01-01

    discovery studies (8720 cases and 55,152 controls). We performed an inverse variance weighted, fixed-effects meta-analysis of study-specific estimates to identify single-nucleotide polymorphisms that were associated independently with gallstone disease. Associations were replicated in 6489 cases and 62...... in TM4SF4 (OR, 1.12; 95% CI, 1.08-1.16; P = 6.09 × 10(-11)), rs2547231 in SULT2A1 (encodes a sulfoconjugation enzyme that acts on hydroxysteroids and cholesterol-derived sterol bile acids) (OR, 1.17; 95% CI, 1.12-1.21; P = 2.24 × 10(-10)), rs1260326 in glucokinase regulatory protein (OR, 1.12; 95% CI, 1...

  10. Theoretical study of magnetic pattern replication by He+ ion irradiation through stencil masks

    International Nuclear Information System (INIS)

    Devolder, T.; Chappert, C.; Bernas, H.

    2002-01-01

    We have developed an irradiation technique that allows us to tune the magnetic properties of Co/Pt multilayers without affecting their roughness. The planarity and the ability to independently control nanostructure size and coercivity make our technique very appealing for magnetic recording. We study the irradiation-induced 1:1 replication of features drilled in a stencil mask. Both the 'gap' G between the magnetic film and the mask, and the aspect ratio (AR) of the mask features are analyzed, in view of the ion straggling in the mask resulting in collateral damages. Optimal gap is such that D<< G<< D/tan(α) (typically 0.1<< G<<25 μm), where the D is the feature size. The replication quality is best for AR≥3. Since the allowed gap interval is wide, we anticipate that mask fast positioning will be possible for the applications to magnetic recording

  11. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    Science.gov (United States)

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  13. Survival after a psychoeducational intervention for patients with cutaneous malignant melanoma: a replication study

    DEFF Research Database (Denmark)

    Boesen, Ellen H; Boesen, Sidsel H; Frederiksen, Kirsten

    2007-01-01

    The results of a randomized, intervention study done in 1993 of psychoeducation for patients with early-stage malignant melanoma showed a beneficial effect on recurrence and survival 6 years after the intervention. In the present study, we replicated the study with 258 Danish patients with malign...... with malignant melanoma. We also compared recurrence and survival among the participants in the randomized study with 137 patients who refused to participate....

  14. The structure of psychopathology in adolescence : Replication of a general psychopathology factor in the TRAILS study

    NARCIS (Netherlands)

    Laceulle, O.M.; Vollebergh, W.A.M.; Ormel, J.

    2015-01-01

    This study aimed to replicate a study by Caspi and colleagues, which proposed that the structure of psychopathology is characterized by a general psychopathology factor, in addition to smaller internalizing and externalizing factors. Our study expanded the approach of the original by using

  15. Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

    Science.gov (United States)

    Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2018-04-01

    Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.

  16. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses

    Science.gov (United States)

    2012-01-01

    Background The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. Results MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. Conclusions We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells. PMID:22727223

  17. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    Science.gov (United States)

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  18. New Sequence Variants in HLA Class II/III Region Associated with Susceptibility to Knee Osteoarthritis Identified by Genome-Wide Association Study

    Science.gov (United States)

    Nakajima, Masahiro; Takahashi, Atsushi; Kou, Ikuyo; Rodriguez-Fontenla, Cristina; Gomez-Reino, Juan J.; Furuichi, Tatsuya; Dai, Jin; Sudo, Akihiro; Uchida, Atsumasa; Fukui, Naoshi; Kubo, Michiaki; Kamatani, Naoyuki; Tsunoda, Tatsuhiko; Malizos, Konstantinos N.; Tsezou, Aspasia; Gonzalez, Antonio; Nakamura, Yusuke; Ikegawa, Shiro

    2010-01-01

    Osteoarthritis (OA) is a common disease that has a definite genetic component. Only a few OA susceptibility genes that have definite functional evidence and replication of association have been reported, however. Through a genome-wide association study and a replication using a total of ∼4,800 Japanese subjects, we identified two single nucleotide polymorphisms (SNPs) (rs7775228 and rs10947262) associated with susceptibility to knee OA. The two SNPs were in a region containing HLA class II/III genes and their association reached genome-wide significance (combined P = 2.43×10−8 for rs7775228 and 6.73×10−8 for rs10947262). Our results suggest that immunologic mechanism is implicated in the etiology of OA. PMID:20305777

  19. Dynamics of DNA replication during premeiosis and early meiosis in wheat.

    Science.gov (United States)

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.

  20. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  1. Electron microscopic analysis of rotavirus assembly-replication intermediates

    International Nuclear Information System (INIS)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.

    2015-01-01

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy

  2. Electron microscopic analysis of rotavirus assembly-replication intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Crystal E.; Kelly, Deborah F. [Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA (United States); McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu [Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA (United States); Department of Biomedical Sciences and Pathobiology, Virginia—Maryland Regional College of Veterinary Medicine, Blacksburg, VA (United States)

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.

  3. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability

    NARCIS (Netherlands)

    Wanzek, Katharina; Schwindt, Eike; Capra, John A.; Paeschke, Katrin

    2017-01-01

    The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and

  5. The Inherent Asymmetry of DNA Replication.

    Science.gov (United States)

    Snedeker, Jonathan; Wooten, Matthew; Chen, Xin

    2017-10-06

    Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.

  6. Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs.

    Science.gov (United States)

    Kobinger, Gary P; Leung, Anders; Neufeld, James; Richardson, Jason S; Falzarano, Darryl; Smith, Greg; Tierney, Kevin; Patel, Ami; Weingartl, Hana M

    2011-07-15

    (See the editorial commentary by Bausch, on pages 179-81.) Reston ebolavirus was recently detected in pigs in the Philippines. Specific antibodies were found in pig farmers, indicating exposure to the virus. This important observation raises the possibility that pigs may be susceptible to Ebola virus infection, including from other species, such as Zaire ebolavirus (ZEBOV), and can transmit to other susceptible hosts. This study investigated whether ZEBOV, a species commonly reemerging in central Africa, can replicate and induce disease in pigs and can be transmitted to naive animals. Domesticated Landrace pigs were challenged through mucosal exposure with a total of 1 ×10(6) plaque-forming units of ZEBOV and monitored for virus replication, shedding, and pathogenesis. Using similar conditions, virus transmission from infected to naive animals was evaluated in a second set of pigs. Following mucosal exposure, pigs replicated ZEBOV to high titers (reaching 10(7) median tissue culture infective doses/mL), mainly in the respiratory tract, and developed severe lung pathology. Shedding from the oronasal mucosa was detected for up to 14 days after infection, and transmission was confirmed in all naive pigs cohabiting with inoculated animals. These results shed light on the susceptibility of pigs to ZEBOV infection and identify an unexpected site of virus amplification and shedding linked to transmission of infectious virus.

  7. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Replication dynamics of the yeast genome.

    Science.gov (United States)

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  9. Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Jingchun

    2011-09-01

    We conducted data-mining analyses of genome wide association (GWA) studies of the CATIE and MGS-GAIN datasets, and found 13 markers in the two physically linked genes, PTPN21 and EML5, showing nominally significant association with schizophrenia. Linkage disequilibrium (LD) analysis indicated that all 7 markers from PTPN21 shared high LD (r(2)>0.8), including rs2274736 and rs2401751, the two non-synonymous markers with the most significant association signals (rs2401751, P=1.10 × 10(-3) and rs2274736, P=1.21 × 10(-3)). In a meta-analysis of all 13 replication datasets with a total of 13,940 subjects, we found that the two non-synonymous markers are significantly associated with schizophrenia (rs2274736, OR=0.92, 95% CI: 0.86-0.97, P=5.45 × 10(-3) and rs2401751, OR=0.92, 95% CI: 0.86-0.97, P=5.29 × 10(-3)). One SNP (rs7147796) in EML5 is also significantly associated with the disease (OR=1.08, 95% CI: 1.02-1.14, P=6.43 × 10(-3)). These 3 markers remain significant after Bonferroni correction. Furthermore, haplotype conditioned analyses indicated that the association signals observed between rs2274736\\/rs2401751 and rs7147796 are statistically independent. Given the results that 2 non-synonymous markers in PTPN21 are associated with schizophrenia, further investigation of this locus is warranted.

  10. LHCb experience with LFC replication

    CERN Document Server

    Bonifazi, F; Perez, E D; D'Apice, A; dell'Agnello, L; Düllmann, D; Girone, M; Re, G L; Martelli, B; Peco, G; Ricci, P P; Sapunenko, V; Vagnoni, V; Vitlacil, D

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  11. LHCb experience with LFC replication

    International Nuclear Information System (INIS)

    Bonifazi, F; Carbone, A; D'Apice, A; Dell'Agnello, L; Re, G L; Martelli, B; Ricci, P P; Sapunenko, V; Vitlacil, D; Perez, E D; Duellmann, D; Girone, M; Peco, G; Vagnoni, V

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements

  12. Human CD46-transgenic mice in studies involving replication-incompetent adenoviral type 35 vectors

    NARCIS (Netherlands)

    Verhaagh, S.; Jong, E. de; Goudsmit, J.; Lecollinet, S.; Gillissen, G.; Vries, M. de; Leuven, K. van; Que, I.; Ouwehand, K.; Mintardjo, R.; Weverling, G.J.; Radošević, K.; Richardson, J.; Eloit, M.; Lowik, C.; Quax, P.; Havenga, M.

    2006-01-01

    Wild-type strains of mice do not express CD46, a high-affinity receptor for human group B adenoviruses including type 35. Therefore, studies performed to date in mice using replication-incompetent Ad35 (rAd35) vaccine carriers may underestimate potency or result in altered vector distribution. Here,

  13. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    Science.gov (United States)

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  14. On the cross-cultural replicability of the resilient, undercontrolled, and overcontrolled personality types.

    Science.gov (United States)

    Alessandri, Guido; Vecchione, Michele; Donnellan, Brent M; Eisenberg, Nancy; Caprara, Gian Vittorio; Cieciuch, Jan

    2014-08-01

    Personality types reflect typical configurations of personality attributes within individuals. Over the last 20 years, researchers have identified a set of three replicable personality types: resilient (R), undercontrolled (U), and overcontrolled (O) types. In this study, we examined the cross-cultural replicability of the RUO types in Italy, Poland, Spain, and the United States. Personality types were identified using cluster analyses of Big Five profiles in large samples of college students from Italy (n = 322), the United States (n = 499), Spain (n = 420), and Poland (n = 235). Prior to clustering the profiles, the measurement invariance of the Big Five measure across samples was tested. We found evidence for the RUO types in all four samples. The three-cluster solution showed a better fit over alternative solutions and had a relatively high degree of cross-cultural generalizability. The RUO types are evident in samples from four countries with distinct linguistic and cultural traditions. Results were discussed in light of the importance of considering how traits are organized within individuals for advancing contemporary personality psychology. © 2013 Wiley Periodicals, Inc.

  15. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  16. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  17. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  18. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  19. DNA replication and post-replication repair in U.V.-sensitive mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Lavin, M.F.; McCombe, P.; Kidson, C.

    1976-01-01

    Mouse neuroblastoma cells differentiated when grown in the absence of serum; differentiation was reversed on the addition of serum. Differentiated cells were more sensitive to U.V.-radiation than proliferating cells. Whereas addition of serum to differentiated neuroblastoma cells normally resulted in immediate, synchronous entry into S phase, irradiation just before the addition of serum resulted in a long delay in the onset of DNA replication. During this lag period, incorporated 3 H-thymidine appeared in the light density region of CsCl gradients, reflecting either repair synthesis or abortive replication. Post-replication repair (gap-filling) was found to be present in proliferating cells and at certain times in differentiated cells. It is suggested that the sensitivity of differentiated neuroblastoma cells to U.V.-radiation may have been due to ineffective post-replication repair or to deficiencies in more than one repair mechanism, with reduction in repair capacity beyond a critical threshold. (author)

  20. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    Science.gov (United States)

    Lerner, Thomas R.; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R.G.; Borel, Sophie; Diedrich, Collin R.; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M.; Wilkinson, Robert J.; Griffiths, Gareth; Gutierrez, Maximiliano G.

    2016-01-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes. PMID:26901813

  1. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    Science.gov (United States)

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    OpenAIRE

    Hendro Nindito; Evaristus Didik Madyatmadja; Albert Verasius Dian Sano

    2014-01-01

    The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MyS...

  3. Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression.

    Science.gov (United States)

    Kiguoya, Marion W; Mann, Jaclyn K; Chopera, Denis; Gounder, Kamini; Lee, Guinevere Q; Hunt, Peter W; Martin, Jeffrey N; Ball, T Blake; Kimani, Joshua; Brumme, Zabrina L; Brockman, Mark A; Ndung'u, Thumbi

    2017-07-01

    There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates ( r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases ( P identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes. IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that

  4. Overcoming natural replication barriers: differential helicase requirements.

    Science.gov (United States)

    Anand, Ranjith P; Shah, Kartik A; Niu, Hengyao; Sung, Patrick; Mirkin, Sergei M; Freudenreich, Catherine H

    2012-02-01

    DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.

  5. Assessment of heterogeneity between European Populations: a Baltic and Danish replication case-control study of SNPs from a recent European ulcerative colitis genome wide association study

    Directory of Open Access Journals (Sweden)

    Jonaitis Laimas

    2011-10-01

    Full Text Available Abstract Background Differences in the genetic architecture of inflammatory bowel disease between different European countries and ethnicities have previously been reported. In the present study, we wanted to assess the role of 11 newly identified UC risk variants, derived from a recent European UC genome wide association study (GWAS (Franke et al., 2010, for 1 association with UC in the Nordic countries, 2 for population heterogeneity between the Nordic countries and the rest of Europe, and, 3 eventually, to drive some of the previous findings towards overall genome-wide significance. Methods Eleven SNPs were replicated in a Danish sample consisting of 560 UC patients and 796 controls and nine missing SNPs of the German GWAS study were successfully genotyped in the Baltic sample comprising 441 UC cases and 1156 controls. The independent replication data was then jointly analysed with the original data and systematic comparisons of the findings between ethnicities were made. Pearson's χ2, Breslow-Day (BD and Cochran-Mantel-Haenszel (CMH tests were used for association analyses and heterogeneity testing. Results The rs5771069 (IL17REL SNP was not associated with UC in the Danish panel. The rs5771069 (IL17REL SNP was significantly associated with UC in the combined Baltic, Danish and Norwegian UC study sample driven by the Norwegian panel (OR = 0.89, 95% CI: 0.79-0.98, P = 0.02. No association was found between rs7809799 (SMURF1/KPNA7 and UC (OR = 1.20, 95% CI: 0.95-1.52, P = 0.10 or between UC and all other remaining SNPs. We had 94% chance of detecting an association for rs7809799 (SMURF1/KPNA7 in the combined replication sample, whereas the power were 55% or lower for the remaining SNPs. Statistically significant PBD was found for OR heterogeneity between the combined Baltic, Danish, and Norwegian panel versus the combined German, British, Belgian, and Greek panel (rs7520292 (P = 0.001, rs12518307 (P = 0.007, and rs2395609 (TCP11 (P = 0

  6. Differential replication of Foot-and-mouth disease viruses in mice determine lethality.

    Science.gov (United States)

    Cacciabue, Marco; García-Núñez, María Soledad; Delgado, Fernando; Currá, Anabella; Marrero, Rubén; Molinari, Paula; Rieder, Elizabeth; Carrillo, Elisa; Gismondi, María Inés

    2017-09-01

    Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Exploiting replicative stress to treat cancer

    DEFF Research Database (Denmark)

    Dobbelstein, Matthias; Sørensen, Claus Storgaard

    2015-01-01

    DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms...

  8. Culture in the cockpit: do Hofstede's dimensions replicate?

    Science.gov (United States)

    Merritt, A.; Helmreich, R. L. (Principal Investigator)

    2000-01-01

    Survey data collected from 9,400 male commercial airline pilots in 19 countries were used in a replication study of Hofstede's indexes of national culture. The analysis that removed the constraint of item equivalence proved superior, both conceptually and empirically, to the analysis using Hofstede's items and formulae as prescribed, and rendered significant replication correlations for all indexes (Individualism-Collectivism .96, Power Distance .87, Masculinity-Femininity .75, and Uncertainty Avoidance .68). The successful replication confirms that national culture exerts an influence on cockpit behavior over and above the professional culture of pilots, and that "one size fits all" training is inappropriate.

  9. The Reliability and Validity of the Outcome Rating Scale: A Replication Study of a Brief Clinical Measure

    National Research Council Canada - National Science Library

    Bringhurst, David L; Watson, Curtis W; Miller, Scott D; Duncan, Barry L

    2004-01-01

    ... (Miller, Duncan, Brown, Sparks, AND Claud, 2003). This article reports the findings of an independent replication study evaluating the reliability and concurrent validity of the ORS as studied in a non-clinical sample...

  10. Evolution of complexity in RNA-like replicator systems

    Directory of Open Access Journals (Sweden)

    Hogeweg Paulien

    2008-03-01

    Full Text Available Abstract Background The evolution of complexity is among the most important questions in biology. The evolution of complexity is often observed as the increase of genetic information or that of the organizational complexity of a system. It is well recognized that the formation of biological organization – be it of molecules or ecosystems – is ultimately instructed by the genetic information, whereas it is also true that the genetic information is functional only in the context of the organization. Therefore, to obtain a more complete picture of the evolution of complexity, we must study the evolution of both information and organization. Results Here we investigate the evolution of complexity in a simulated RNA-like replicator system. The simplicity of the system allows us to explicitly model the genotype-phenotype-interaction mapping of individual replicators, whereby we avoid preconceiving the functionality of genotypes (information or the ecological organization of replicators in the model. In particular, the model assumes that interactions among replicators – to replicate or to be replicated – depend on their secondary structures and base-pair matching. The results showed that a population of replicators, originally consisting of one genotype, evolves to form a complex ecosystem of up to four species. During this diversification, the species evolve through acquiring unique genotypes with distinct ecological functionality. The analysis of this diversification reveals that parasitic replicators, which have been thought to destabilize the replicator's diversity, actually promote the evolution of diversity through generating a novel "niche" for catalytic replicators. This also makes the current replicator system extremely stable upon the evolution of parasites. The results also show that the stability of the system crucially depends on the spatial pattern formation of replicators. Finally, the evolutionary dynamics is shown to

  11. Chromatin maturation depends on continued DNA-replication

    International Nuclear Information System (INIS)

    Schlaeger, E.J.; Puelm, W.; Knippers, R.

    1983-01-01

    The structure of [ 3 H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [ 3 H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. The authors conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation. (Auth.)

  12. Synchronization of DNA array replication kinetics

    Science.gov (United States)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  13. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine

    2014-01-01

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus...... as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications....

  14. The value of repeating studies and multiple controls: replicated 28-day growth studies of rainbow trout exposed to clofibric acid.

    Science.gov (United States)

    Owen, Stewart F; Huggett, Duane B; Hutchinson, Thomas H; Hetheridge, Malcolm J; McCormack, Paul; Kinter, Lewis B; Ericson, Jon F; Constantine, Lisa A; Sumpter, John P

    2010-12-01

    Two studies to examine the effect of waterborne clofibric acid (CA) on growth-rate and condition of rainbow trout were conducted using accepted regulatory tests (Organisation for Economic Co-operation and Development [OECD] 215). The first study (in 2005) showed significant reductions after 21 d of exposure (21-d growth lowest-observed-effect concentration [LOEC] = 0.1 µg/L, 21-d condition LOEC = 0.1 µg/L) that continued to 28 d. Growth rate was reduced by approximately 50% (from 5.27 to 2.67% per day), while the condition of the fish reduced in a concentration-dependant manner. Additionally, in a concentration-dependent manner, significant changes in relative liver size were observed, such that increasing concentrations of CA resulted in smaller livers after 28-d exposure. A no-observed-effect concentration (NOEC) was not achieved in the 2005 study. An expanded second study (in 2006) that included a robust bridge to the 2005 study, with four replicate tanks of eight individual fish per concentration, did not repeat the 2005 findings. In the 2006 study, no significant effect on growth rate, condition, or liver biometry was observed after 21 or 28 d (28-d growth NOEC = 10 µg/L, 28-d condition NOEC = 10 µg/L), contrary to the 2005 findings. We do not dismiss either of these findings and suggest both are relevant and stand for comparison. However, the larger 2006 study carries more statistical power and multiple-tank replication, so probably produced the more robust findings. Despite sufficient statistical power in each study, interpretation of these and similar studies should be conducted with caution, because much significance is placed on the role of limited numbers of individual and tank replicates and the influence of control animals. Copyright © 2010 SETAC.

  15. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    Science.gov (United States)

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9 Replication.

    Directory of Open Access Journals (Sweden)

    Stefan Wolf

    Full Text Available Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9 virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS assay was performed using microRNA (miRNA inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549 cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2.

  17. Focus Article: Replication in Second Language Writing Research

    Science.gov (United States)

    Porte, Graeme; Richards, Keith

    2012-01-01

    This paper discusses the meaning and range of replication in L2 research from both quantitative and qualitative perspectives. In the first half of the paper, it will be argued that key quantitative studies need to be replicated to have their robustness and generalizability tested and that this is a requirement of scientific inquiry. Such research…

  18. The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists.

    Directory of Open Access Journals (Sweden)

    Adam K Fetterman

    Full Text Available Scientists are dedicating more attention to replication efforts. While the scientific utility of replications is unquestionable, the impact of failed replication efforts and the discussions surrounding them deserve more attention. Specifically, the debates about failed replications on social media have led to worry, in some scientists, regarding reputation. In order to gain data-informed insights into these issues, we collected data from 281 published scientists. We assessed whether scientists overestimate the negative reputational effects of a failed replication in a scenario-based study. Second, we assessed the reputational consequences of admitting wrongness (versus not as an original scientist of an effect that has failed to replicate. Our data suggests that scientists overestimate the negative reputational impact of a hypothetical failed replication effort. We also show that admitting wrongness about a non-replicated finding is less harmful to one's reputation than not admitting. Finally, we discovered a hint of evidence that feelings about the replication movement can be affected by whether replication efforts are aimed one's own work versus the work of another. Given these findings, we then present potential ways forward in these discussions.

  19. The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists.

    Science.gov (United States)

    Fetterman, Adam K; Sassenberg, Kai

    2015-01-01

    Scientists are dedicating more attention to replication efforts. While the scientific utility of replications is unquestionable, the impact of failed replication efforts and the discussions surrounding them deserve more attention. Specifically, the debates about failed replications on social media have led to worry, in some scientists, regarding reputation. In order to gain data-informed insights into these issues, we collected data from 281 published scientists. We assessed whether scientists overestimate the negative reputational effects of a failed replication in a scenario-based study. Second, we assessed the reputational consequences of admitting wrongness (versus not) as an original scientist of an effect that has failed to replicate. Our data suggests that scientists overestimate the negative reputational impact of a hypothetical failed replication effort. We also show that admitting wrongness about a non-replicated finding is less harmful to one's reputation than not admitting. Finally, we discovered a hint of evidence that feelings about the replication movement can be affected by whether replication efforts are aimed one's own work versus the work of another. Given these findings, we then present potential ways forward in these discussions.

  20. Enzymatic recognition of DNA replication origins

    International Nuclear Information System (INIS)

    Stayton, M.M.; Bertsch, L.; Biswas, S.

    1983-01-01

    In this paper we discuss the process of recognition of the complementary-strand origin with emphasis on RNA polymerase action in priming M13 DNA replication, the role of primase in G4 DNA replication, and the function of protein n, a priming protein, during primosome assembly. These phage systems do not require several of the bacterial DNA replication enzymes, particularly those involved in the regulation of chromosome copy number of the initiatiion of replication of duplex DNA. 51 references, 13 figures, 1 table

  1. Surface Microstructure Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2005-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... moulding of surface microstructures. Emphasis is put on the ability to replicate surface microstructures under normal injection moulding conditions, notably with low cost materials at low mould temperatures. The replication of surface microstructures in injection moulding has been explored...... for Polypropylene at low mould temperatures. The process conditions were varied over the recommended process window for the material. The geometry of the obtained structures was analyzed. Evidence suggests that step height replication quality depends linearly on structure width in a certain range. Further...

  2. Replication Protein A (RPA) Phosphorylation Prevents RPA Association with Replication Centers

    OpenAIRE

    Vassin, Vitaly M.; Wold, Marc S.; Borowiec, James A.

    2004-01-01

    Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2D) or alanine (RPA2A). Although RPA2D was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2D mutant was selectively unable to associate with re...

  3. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    Science.gov (United States)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  4. EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors.

    Science.gov (United States)

    Kremb, Stephan; Helfer, Markus; Heller, Werner; Hoffmann, Dieter; Wolff, Horst; Kleinschmidt, Andrea; Cepok, Sabine; Hemmer, Bernhard; Durner, Jörg; Brack-Werner, Ruth

    2010-12-01

    HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z' scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC(1280) library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors.

  5. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  6. RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms.

    Science.gov (United States)

    Farias Luz, Nivea; Balaji, Sakthi; Okuda, Kendi; Barreto, Aline Silva; Bertin, John; Gough, Peter J; Gazzinelli, Ricardo; Almeida, Roque P; Bozza, Marcelo T; Borges, Valeria M; Chan, Francis Ka-Ming

    2016-06-15

    Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1β expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1β secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Wolbachia wStri Blocks Zika Virus Growth at Two Independent Stages of Viral Replication.

    Science.gov (United States)

    Schultz, M J; Tan, A L; Gray, C N; Isern, S; Michael, S F; Frydman, H M; Connor, J H

    2018-05-22

    Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia w Stri, isolated from Laodelphax striatellus , was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that w Stri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. w Stri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by w Stri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into w Stri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia -infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in w Stri-infected cells. This study's findings increase the potential for application of w Stri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. IMPORTANCE Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so

  8. Genome-wide association analysis and replication of coronary artery disease in South Korea suggests a causal variant common to diverse populations

    Science.gov (United States)

    Cho, Eun Young; Jang, Yangsoo; Shin, Eun Soon; Jang, Hye Yoon; Yoo, Yeon-Kyeong; Kim, Sook; Jang, Ji Hyun; Lee, Ji Yeon; Yun, Min Hye; Park, Min Young; Chae, Jey Sook; Lim, Jin Woo; Shin, Dong Jik; Park, Sungha; Lee, Jong Ho; Han, Bok Ghee; Rae, Kim Hyung; Cardon, Lon R; Morris, Andrew P; Lee, Jong Eun; Clarke, Geraldine M

    2010-01-01

    Background Recent genome-wide association (GWA) studies have identified and replicated several genetic loci associated with the risk of development of coronary artery disease (CAD) in samples from populations of Caucasian and Asian descent. However, only chromosome 9p21 has been confirmed as a major susceptibility locus conferring risk for development of CAD across multiple ethnic groups. The authors aimed to find evidence of further similarities and differences in genetic risk of CAD between Korean and other populations. Methods The authors performed a GWA study comprising 230 cases and 290 controls from a Korean population typed on 490 032 single nucleotide polymorphisms (SNPs). A total of 3148 SNPs were taken forward for genotyping in a subsequent replication study using an independent sample of 1172 cases and 1087 controls from the same population. Results The association previously observed on chromosome 9p21 was independently replicated (p=3.08e–07). Within this region, the same risk haplotype was observed in samples from both Korea and of Western European descent, suggesting that the causal mutation carried on this background occurred on a single ancestral allele. Other than 9p21, the authors were unable to replicate any of the previously reported signals for association with CAD. Furthermore, no evidence of association was found at chromosome 1q41 for risk of myocardial infarction, previously identified as conferring risk in a Japanese population. Conclusion A common causal variant is likely to be responsible for risk of CAD in Korean and Western European populations at chromosome 9p21.3. Further investigations are required to confirm non-replication of any other cross-race genetic risk factors. PMID:27325954

  9. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  10. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress

    Science.gov (United States)

    Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S.

    2016-01-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  11. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Therese Wilhelm

    2016-05-01

    Full Text Available Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es. Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3% rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing, and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and

  12. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Science.gov (United States)

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  13. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  14. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee.

    Science.gov (United States)

    Hamza, Taye H; Chen, Honglei; Hill-Burns, Erin M; Rhodes, Shannon L; Montimurro, Jennifer; Kay, Denise M; Tenesa, Albert; Kusel, Victoria I; Sheehan, Patricia; Eaaswarkhanth, Muthukrishnan; Yearout, Dora; Samii, Ali; Roberts, John W; Agarwal, Pinky; Bordelon, Yvette; Park, Yikyung; Wang, Liyong; Gao, Jianjun; Vance, Jeffery M; Kendler, Kenneth S; Bacanu, Silviu-Alin; Scott, William K; Ritz, Beate; Nutt, John; Factor, Stewart A; Zabetian, Cyrus P; Payami, Haydeh

    2011-08-01

    Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P(2df) = 10(-6), GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10(-7)) but not in light coffee-drinkers. The a priori Replication hypothesis that "Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers" was confirmed: OR(Replication) = 0.59, P(Replication) = 10(-3); OR(Pooled) = 0.51, P(Pooled) = 7×10(-8). Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10(-3)), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10(-13)). Imputation revealed a block of SNPs that achieved P(2df)coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify

  15. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.

    Science.gov (United States)

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Guan, Liya; Liu, Hong; Qin, Qiwei

    2011-09-01

    Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Measurement of replication structures at the nanometer scale using super-resolution light microscopy.

    Science.gov (United States)

    Baddeley, D; Chagin, V O; Schermelleh, L; Martin, S; Pombo, A; Carlton, P M; Gahl, A; Domaing, P; Birk, U; Leonhardt, H; Cremer, C; Cardoso, M C

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses.

  17. Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation

    DEFF Research Database (Denmark)

    Koch, Birgit; Ma, Xiaofang; Løbner-Olesen, Anders

    2010-01-01

    . cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCIVc allowed us to specifically address...... the role of the Dam methyltransferase and SeqA in replication initiation from oriCIVc. We show that when E. coli's origin of replication is substituted by oriCIVc, dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself....... We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCIVc in E. coli. In this model, methylation at oriCIVc would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling...

  18. A critical role of a cellular membrane traffic protein in poliovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    George A Belov

    2008-11-01

    Full Text Available Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA, implicating some components(s of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA.

  19. Topology of a Membrane Associated Regulator of Prokaryotic DNA Replication

    National Research Council Canada - National Science Library

    Firshein, William

    1998-01-01

    This proposal has focused on a broad host range plasmid, RK2, as a model system to study how a pair of initiation proteins encoded by the plasmid for DNA replication function when replication occurs...

  20. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    Science.gov (United States)

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  1. Oblique roughness replication in strained SiGe/Si multilayers

    NARCIS (Netherlands)

    Holy, V.; Darhuber, A.A.; Stangl, J.; Bauer, G.; Nützel, J.-F.; Abstreiter, G.

    1998-01-01

    The replication of the interface roughness in SiGe/Si multilayers grown on miscut Si(001) substrates has been studied by means of x-ray reflectivity reciprocal space mapping. The interface profiles were found to be highly correlated and the direction of the maximal replication was inclined with

  2. Antecedents and outcomes of satisfaction in buyer–supplier relationships in South Africa: A replication study

    Directory of Open Access Journals (Sweden)

    Mornay Roberts-Lombard

    2017-10-01

    Full Text Available Background: There is a clear difference of opinion amongst researchers on the interrelatedness of the variables trust, commitment, satisfaction, coordination, cooperation and continuity in a business-to-business (B2B environment. The reason is that in previous studies much emphasis has been placed on creating and testing new theories, and not on providing practical generalities. Aim: The aim of this study was to determine how the variable satisfaction is positioned in relation to trust and commitment, and how satisfaction relates to the variables coordination, cooperation and continuity in a South African B2B environment. Setting: This study replicates a similar study conducted in 2013 in a B2B environment in South Africa and hopes to validate the outcome of that study by determining the relationship between the constructs postulated in the current study. The relationships between the different constructs in the proposed model will, therefore, provide a longitudinal perspective which is unique in terms of B2B research in South Africa. Methods: Both the original and replication studies followed a quantitative approach and targeted large companies in South Africa. In the original study, data were collected from 500 large South African companies, while in the replication study data were collected from 250 large companies. Structural equation modelling was used to analyse the data. Results: The findings specifically point to the need for organisations to direct resources towards the establishment of relationships that are founded on trust and commitment. Doing so will help ensure increased satisfaction, which, in turn, will result in greater coordination and cooperation in B2B relationships as well as long-term continuation of the relationship. Conclusion: The foundation for strong B2B relationships is to secure customer satisfaction. Business managers ought to understand that when business customers are dissatisfied, it can result in the

  3. A Highly Concurrent Replicated Data Structure EAI Endorsed Transactions

    Directory of Open Access Journals (Sweden)

    Mumtaz Ahmad

    2015-12-01

    Full Text Available Well defined concurrent replicated data structure is very important to design collaborative editing system, particularly, certain properties like out-of-order execution of concurrent operations and data convergence. In this paper, we introduce novel linear data structure based on unique identifier scheme required for indexed communication. These identifiers are real numbers holding specific pattern of precision. Based on the uniqueness and the total order of these identifiers, here, we present two concurrency control techniques to achieve high degree of concurrency according to strong and lazy happened-before relations. Our data structure preserves data convergence, yields better performance and avoids overheads as compared to existing approaches.

  4. Evolution of Replication Machines

    Science.gov (United States)

    Yao, Nina Y.; O'Donnell, Mike E.

    2016-01-01

    The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some “gears” of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the “replisome” machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus. PMID:27160337

  5. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  6. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  7. Discussing the Need of Experimental Replication with 5th Grade Students Conducting a Mealworm Experiment

    Science.gov (United States)

    Asshoff, Roman

    2017-01-01

    Scientific inquiry requires the replication of results in experimental studies. Recent studies draw a severe picture on the need of replication and the difficulties in replicating already published studies. As replicated confirmation of results is the basis of scientific and medical research, there may be a need to introduce the topic of…

  8. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    Science.gov (United States)

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress

    Directory of Open Access Journals (Sweden)

    Stephanie Munk

    2017-10-01

    Full Text Available The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity.

  10. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication.

    Science.gov (United States)

    Joshi, Kiranmai; Shah, Varun Jayeshkumar; Maddika, Subbareddy

    2016-12-01

    In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication.

    Science.gov (United States)

    Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E

    2017-12-13

    Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that

  12. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    Armstrong, Don L; Zidovetzki, Raphael; Markovitch, Omer; Lancet, Doron

    2011-01-01

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  13. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...... carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  14. Chromosomal DNA replication of Vicia faba cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1976-01-01

    The chromosomal DNA replication of higher plant cells has been investigated by DNA fiber autoradiography. The nuclear DNA fibers of Vicia root meristematic cells are organized into many tandem arrays of replication units or replicons which exist as clusters with respect to replication. DNA is replicated bidirectionally from the initiation points at the average rate of 0.15 μm/min at 20 0 C, and the average interinitiation interval is about 16 μm. The manner of chromosomal DNA replication in this higher plant is similar to that found in other eukaryotic cells at a subchromosomal level. (auth.)

  15. An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.

    Science.gov (United States)

    Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E; Yang, Li; Snyder, Beth A; Cai, Zhaohui; Heil, Marintha L; Cosford, Nicholas D P

    2017-12-01

    Continuous flow (microfluidic) chemistry was employed to prepare a small focused library of dihydropyrimidinone (DHPM) derivatives. Compounds in this class have been reported to exhibit activity against the human immunodeficiency virus (HIV), but their molecular target had not been identified. We tested the initial set of DHPMs in phenotypic assays providing a hit (1i) that inhibited the replication of the human immunodeficiency virus HIV in cells. Flow chemistry-driven optimization of 1i led to the identification of HIV replication inhibitors such as 1l with cellular potency comparable with the clinical drug nevirapine (NVP). Mechanism of action (MOA) studies using cellular and biochemical assays coupled with 3D fingerprinting and in silico modeling demonstrated that these drug-like probe compounds exert their effects by inhibiting the viral reverse transcriptase polymerase (RT). This led to the design and synthesis of the novel DHPM 1at that inhibits the replication of drug resistant strains of HIV. Our work demonstrates that combining flow chemistry-driven analogue refinement with phenotypic assays, in silico modeling and MOA studies is a highly effective strategy for hit-to-lead optimization applicable to the discovery of future therapeutic agents. Copyright © 2017. Published by Elsevier Ltd.

  16. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chro......Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division......, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple......-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive...

  17. Nonequilibrium Entropic Bounds for Darwinian Replicators

    Directory of Open Access Journals (Sweden)

    Jordi Piñero

    2018-01-01

    Full Text Available Life evolved on our planet by means of a combination of Darwinian selection and innovations leading to higher levels of complexity. The emergence and selection of replicating entities is a central problem in prebiotic evolution. Theoretical models have shown how populations of different types of replicating entities exclude or coexist with other classes of replicators. Models are typically kinetic, based on standard replicator equations. On the other hand, the presence of thermodynamical constraints for these systems remain an open question. This is largely due to the lack of a general theory of statistical methods for systems far from equilibrium. Nonetheless, a first approach to this problem has been put forward in a series of novel developements falling under the rubric of the extended second law of thermodynamics. The work presented here is twofold: firstly, we review this theoretical framework and provide a brief description of the three fundamental replicator types in prebiotic evolution: parabolic, malthusian and hyperbolic. Secondly, we employ these previously mentioned techinques to explore how replicators are constrained by thermodynamics. Finally, we comment and discuss where further research should be focused on.

  18. Rescue from replication stress during mitosis.

    Science.gov (United States)

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  19. Personality and Academic Motivation: Replication, Extension, and Replication

    Science.gov (United States)

    Jones, Martin H.; McMichael, Stephanie N.

    2015-01-01

    Previous work examines the relationships between personality traits and intrinsic/extrinsic motivation. We replicate and extend previous work to examine how personality may relate to achievement goals, efficacious beliefs, and mindset about intelligence. Approximately 200 undergraduates responded to the survey with a 150 participants replicating…

  20. Inhibition of DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  1. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  2. Replicative intermediates in UV-irradiated Simian virus 40

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1984-01-01

    The authors have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m 2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [ 3 H]thymidine. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h by which time the size of the newly-synthesized DNA exceeded the interdimer distance. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strand contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from 0V-damaged SV40 replicative intermediates. (Auth.)

  3. Pattern replication by confined dewetting

    NARCIS (Netherlands)

    Harkema, S.; Schäffer, E.; Morariu, M.D.; Steiner, U

    2003-01-01

    The dewetting of a polymer film in a confined geometry was employed in a pattern-replication process. The instability of dewetting films is pinned by a structured confining surface, thereby replicating its topographic pattern. Depending on the surface energy of the confining surface, two different

  4. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  5. Endoplasmic reticulum stress causes EBV lytic replication.

    Science.gov (United States)

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K; Rowe, David T; Wadowsky, Robert M; Rosendorff, Adam

    2011-11-17

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)-specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress-dependent and -independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress.

  6. Identifying management competencies for health care executives: review of a series of Delphi studies.

    Science.gov (United States)

    Hudak, R P; Brooke, P P; Finstuen, K

    2000-01-01

    This analysis reviews a selected body of research that identifies the essential areas of management expertise required of future health care executives. To ensure consistency, six studies are analyzed, utilizing the Delphi technique, to query a broad spectrum of experts in different fields and sites of health care management. The analysis identifies a number of management competencies, i.e., managerial capabilities, which current and aspiring health care executives, in various settings and with differing educational backgrounds, should possess to enhance the probability of their success in current and future positions of responsibility. In addition, this review identifies the skills (technical expertise), knowledge (facts and principles) and abilities (physical, mental or legal power) required to support achievement of these competencies. Leadership and resource management, including cost and finance dimensions, are the highest-rated requisite management competencies. The dominant skills, knowledge and abilities (SKAs) are related to interpersonal skills. The lowest-rated SKAs are related to job-specific, technical skills. Recommendations include the review of this research by formal and continuing education programs to determine the content of their courses and areas for future research. Similarly, current health care executives should assess this research to assist in identifying competency gaps. Lastly, this analysis recommends that the Delphi technique, as a valid and replicable methodology, be applied toward the study of non-executive health care managers, e.g., students, clinicians, mid-level managers and integrated systems administrators, to determine their requisite management competencies and SKAs.

  7. Parametrised Constants and Replication for Spatial Mobility

    DEFF Research Database (Denmark)

    Hüttel, Hans; Haagensen, Bjørn

    2009-01-01

    Parametrised replication and replication are common ways of expressing infinite computation in process calculi. While parametrised constants can be encoded using replication in the π-calculus, this changes in the presence of spatial mobility as found in e.g. the distributed π- calculus...... of the distributed π-calculus with parametrised constants and replication are incomparable. On the other hand, we shall see that there exists a simple encoding of recursion in mobile ambients....

  8. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J.M. Collée (Margriet); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (Guillermo); M.R. Alonso (Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  9. Registered Replication Report: Strack, Martin, & Stepper (1988).

    Science.gov (United States)

    Acosta, Alberto; Adams, Reginald B; Albohn, Daniel N; Allard, Eric S; Beek, Titia; Benning, Stephen D; Blouin- Hudon, Eve-Marie; Bulnes, Luis Carlo; Caldwell, Tracy L; Calin-Jageman, Robert J; Capaldi, Colin A; Carfagno, Nicholas S; Chasten, Kelsie T; Cleeremans, Axel; Connell, Louise; DeCicco, Jennifer M.; Dijkhoff, Laura; Dijkstra, Katinka; Fischer, Agneta H; Foroni, Francesco; Gronau, Quentin F; Hess, Ursula; Holmes, Kevin J; Jones, Jacob L H; Klein, Olivier; Koch, Christopher; Korb, Sebastian; Lewinski, Peter; Liao, Julia D; Lund, Sophie; Lupiáñez, Juan; Lynott, Dermot; Nance, Christin N; Oosterwijk, Suzanne; Özdog˘ru, Asil Ali; Pacheco-Unguetti, Antonia Pilar; Pearson, Bethany; Powis, Christina; Riding, Sarah; Roberts, Tomi-Ann; Rumiati, Raffaella I; Senden, Morgane; Shea-Shumsky, Noah B; Sobocko, Karin; Soto, Jose A; Steiner, Troy G; Talarico, Jennifer M; vanAllen, Zack M; Wagenmakers, E-J; Vandekerckhove, Marie; Wainwright, Bethany; Wayand, Joseph F; Zeelenberg, Rene; Zetzer, Emily E; Zwaan, Rolf A

    2016-11-01

    According to the facial feedback hypothesis, people's affective responses can be influenced by their own facial expression (e.g., smiling, pouting), even when their expression did not result from their emotional experiences. For example, Strack, Martin, and Stepper (1988) instructed participants to rate the funniness of cartoons using a pen that they held in their mouth. In line with the facial feedback hypothesis, when participants held the pen with their teeth (inducing a "smile"), they rated the cartoons as funnier than when they held the pen with their lips (inducing a "pout"). This seminal study of the facial feedback hypothesis has not been replicated directly. This Registered Replication Report describes the results of 17 independent direct replications of Study 1 from Strack et al. (1988), all of which followed the same vetted protocol. A meta-analysis of these studies examined the difference in funniness ratings between the "smile" and "pout" conditions. The original Strack et al. (1988) study reported a rating difference of 0.82 units on a 10-point Likert scale. Our meta-analysis revealed a rating difference of 0.03 units with a 95% confidence interval ranging from -0.11 to 0.16. © The Author(s) 2016.

  10. Iterated function systems for DNA replication

    Science.gov (United States)

    Gaspard, Pierre

    2017-10-01

    The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.

  11. Genome-wide association study for levels of total serum IgE identifies HLA-C in a Japanese population.

    Directory of Open Access Journals (Sweden)

    Yohei Yatagai

    Full Text Available Most of the previously reported loci for total immunoglobulin E (IgE levels are related to Th2 cell-dependent pathways. We undertook a genome-wide association study (GWAS to identify genetic loci responsible for IgE regulation. A total of 479,940 single nucleotide polymorphisms (SNPs were tested for association with total serum IgE levels in 1180 Japanese adults. Fine-mapping with SNP imputation demonstrated 6 candidate regions: the PYHIN1/IFI16, MHC classes I and II, LEMD2, GRAMD1B, and chr13∶60576338 regions. Replication of these candidate loci in each region was assessed in 2 independent Japanese cohorts (n = 1110 and 1364, respectively. SNP rs3130941 in the HLA-C region was consistently associated with total IgE levels in 3 independent populations, and the meta-analysis yielded genome-wide significance (P = 1.07×10(-10. Using our GWAS results, we also assessed the reproducibility of previously reported gene associations with total IgE levels. Nine of 32 candidate genes identified by a literature search were associated with total IgE levels after correction for multiple testing. Our findings demonstrate that SNPs in the HLA-C region are strongly associated with total serum IgE levels in the Japanese population and that some of the previously reported genetic associations are replicated across ethnic groups.

  12. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

    Science.gov (United States)

    Elks, Cathy E.; Perry, John R.B.; Sulem, Patrick; Chasman, Daniel I.; Franceschini, Nora; He, Chunyan; Lunetta, Kathryn L.; Visser, Jenny A.; Byrne, Enda M.; Cousminer, Diana L.; Gudbjartsson, Daniel F.; Esko, Tõnu; Feenstra, Bjarke; Hottenga, Jouke-Jan; Koller, Daniel L.; Kutalik, Zoltán; Lin, Peng; Mangino, Massimo; Marongiu, Mara; McArdle, Patrick F.; Smith, Albert V.; Stolk, Lisette; van Wingerden, Sophie W.; Zhao, Jing Hua; Albrecht, Eva; Corre, Tanguy; Ingelsson, Erik; Hayward, Caroline; Magnusson, Patrik K.E.; Smith, Erin N.; Ulivi, Shelia; Warrington, Nicole M.; Zgaga, Lina; Alavere, Helen; Amin, Najaf; Aspelund, Thor; Bandinelli, Stefania; Barroso, Ines; Berenson, Gerald S.; Bergmann, Sven; Blackburn, Hannah; Boerwinkle, Eric; Buring, Julie E.; Busonero, Fabio; Campbell, Harry; Chanock, Stephen J.; Chen, Wei; Cornelis, Marilyn C.; Couper, David; Coviello, Andrea D.; d’Adamo, Pio; de Faire, Ulf; de Geus, Eco J.C.; Deloukas, Panos; Döring, Angela; Smith, George Davey; Easton, Douglas F.; Eiriksdottir, Gudny; Emilsson, Valur; Eriksson, Johan; Ferrucci, Luigi; Folsom, Aaron R.; Foroud, Tatiana; Garcia, Melissa; Gasparini, Paolo; Geller, Frank; Gieger, Christian; Gudnason, Vilmundur; Hall, Per; Hankinson, Susan E.; Ferreli, Liana; Heath, Andrew C.; Hernandez, Dena G.; Hofman, Albert; Hu, Frank B.; Illig, Thomas; Järvelin, Marjo-Riitta; Johnson, Andrew D.; Karasik, David; Khaw, Kay-Tee; Kiel, Douglas P.; Kilpeläinen, Tuomas O.; Kolcic, Ivana; Kraft, Peter; Launer, Lenore J.; Laven, Joop S.E.; Li, Shengxu; Liu, Jianjun; Levy, Daniel; Martin, Nicholas G.; McArdle, Wendy L.; Melbye, Mads; Mooser, Vincent; Murray, Jeffrey C.; Murray, Sarah S.; Nalls, Michael A.; Navarro, Pau; Nelis, Mari; Ness, Andrew R.; Northstone, Kate; Oostra, Ben A.; Peacock, Munro; Palmer, Lyle J.; Palotie, Aarno; Paré, Guillaume; Parker, Alex N.; Pedersen, Nancy L.; Peltonen, Leena; Pennell, Craig E.; Pharoah, Paul; Polasek, Ozren; Plump, Andrew S.; Pouta, Anneli; Porcu, Eleonora; Rafnar, Thorunn; Rice, John P.; Ring, Susan M.; Rivadeneira, Fernando; Rudan, Igor; Sala, Cinzia; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schork, Nicholas J.; Scuteri, Angelo; Segrè, Ayellet V.; Shuldiner, Alan R.; Soranzo, Nicole; Sovio, Ulla; Srinivasan, Sathanur R.; Strachan, David P.; Tammesoo, Mar-Liis; Tikkanen, Emmi; Toniolo, Daniela; Tsui, Kim; Tryggvadottir, Laufey; Tyrer, Jonathon; Uda, Manuela; van Dam, Rob M.; van Meurs, Joyve B.J.; Vollenweider, Peter; Waeber, Gerard; Wareham, Nicholas J.; Waterworth, Dawn M.; Weedon, Michael N.; Wichmann, H. Erich; Willemsen, Gonneke; Wilson, James F.; Wright, Alan F.; Young, Lauren; Zhai, Guangju; Zhuang, Wei Vivian; Bierut, Laura J.; Boomsma, Dorret I.; Boyd, Heather A.; Crisponi, Laura; Demerath, Ellen W.; van Duijn, Cornelia M.; Econs, Michael J.; Harris, Tamara B.; Hunter, David J.; Loos, Ruth J.F.; Metspalu, Andres; Montgomery, Grant W.; Ridker, Paul M.; Spector, Tim D.; Streeten, Elizabeth A.; Stefansson, Kari; Thorsteinsdottir, Unnur; Uitterlinden, André G.; Widen, Elisabeth; Murabito, Joanne M.; Ong, Ken K.; Murray, Anna

    2011-01-01

    To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P=5.4×10−60) and 9q31.2 (P=2.2×10−33), we identified 30 novel menarche loci (all P<5×10−8) and found suggestive evidence for a further 10 loci (P<1.9×10−6). New loci included four previously associated with BMI (in/near FTO, SEC16B, TRA2B and TMEM18), three in/near other genes implicated in energy homeostasis (BSX, CRTC1, and MCHR2), and three in/near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and MAGENTA pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing. PMID:21102462

  14. Effector-Triggered Self-Replication in Coupled Subsystems.

    Science.gov (United States)

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identification of a Single Strand Origin of Replication in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Laurel D Wright

    2015-10-01

    Full Text Available We identified a functional single strand origin of replication (sso in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Integrative and conjugative elements (ICEs, also known as conjugative transposons are DNA elements typically found integrated into a bacterial chromosome where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICEs become activated and excise from the host chromosome and can transfer to neighboring cells via the element-encoded conjugation machinery. Activated ICEBs1 undergoes autonomous rolling circle replication that is needed for the maintenance of the excised element in growing and dividing cells. Rolling circle replication, used by many plasmids and phages, generates single-stranded DNA (ssDNA. In many cases, the presence of an sso enhances the conversion of the ssDNA to double-stranded DNA (dsDNA by enabling priming of synthesis of the second DNA strand. We initially identified sso1 in ICEBs1 based on sequence similarity to the sso of an RCR plasmid. Several functional assays confirmed Sso activity. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. We found that Sso activity was important for two key aspects of the ICEBs1 lifecycle: 1 maintenance of the plasmid form of ICEBs1 in cells after excision from the chromosome, and 2 stable acquisition of ICEBs1 following transfer to a new host. We identified sequences similar to known plasmid sso's in several other ICEs. Together, our results indicate that many other ICEs contain at least one single strand origin of replication, that these ICEs likely undergo autonomous replication, and that replication contributes to the stability and spread of these elements.

  16. Turning the Hands of Time Again: A Purely Confirmatory Replication Study and a Bayesian Analysis

    Directory of Open Access Journals (Sweden)

    Eric-Jan eWagenmakers

    2015-04-01

    Full Text Available In a series of four experiments, Topolinski and Sparenberg (2012; TS found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Experiment 2 from TS. Participants turned kitchen rolls either clockwise or counterclockwise while answering items from a questionnaire assessing openness to experience. Data from 102 participants showed that the effect went slightly in the direction opposite to that predicted by TS, and a preregistered Bayes factor hypothesis test revealed that the data were 10.76 times more likely under the null hypothesis than under the alternative hypothesis. Our findings illustrate the theoretical importance and practical advantages of preregistered Bayes factor replication studies, both for psychological science and for empirical work in general.

  17. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    Science.gov (United States)

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  18. Archaeal Viruses: Diversity, Replication, and Structure.

    Science.gov (United States)

    Dellas, Nikki; Snyder, Jamie C; Bolduc, Benjamin; Young, Mark J

    2014-11-01

    The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.

  19. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  20. Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells

    DEFF Research Database (Denmark)

    Kliszczak, Maciej; Sedlackova, Hana; Pitchai, Ganesha P

    2015-01-01

    DNA replication is a highly coordinated process that is initiated at multiple replication origins in eukaryotes. These origins are bound by the origin recognition complex (ORC), which subsequently recruits the Mcm2-7 replicative helicase in a Cdt1/Cdc6-dependent manner. In budding yeast, two...... essential replication factors, Sld2 and Mcm10, are then important for the activation of replication origins. In humans, the putative Sld2 homolog, RECQ4, interacts with MCM10. Here, we have identified two mutants of human RECQ4 that are deficient in binding to MCM10. We show that these RECQ4 variants...... are able to complement the lethality of an avian cell RECQ4 deletion mutant, indicating that the essential function of RECQ4 in vertebrates is unlikely to require binding to MCM10. Nevertheless, we show that the RECQ4-MCM10 interaction is important for efficient replication origin firing....

  1. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  2. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  3. Realistic Vascular Replicator for TAVR Procedures.

    Science.gov (United States)

    Rotman, Oren M; Kovarovic, Brandon; Sadasivan, Chander; Gruberg, Luis; Lieber, Baruch B; Bluestein, Danny

    2018-04-13

    Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves' performance. We report on a novel benchtop patient-specific arterial replicator designed for testing TAVR and training interventional cardiologists in the procedure. The Replicator is an accurate model of the human upper body vasculature for training physicians in percutaneous interventions. It comprises of fully-automated Windkessel mechanism to recreate physiological flow conditions. Calcified aortic valve models were fabricated and incorporated into the Replicator, then tested for performing TAVR procedure by an experienced cardiologist using the Inovare valve. EOA, pressures, and angiograms were monitored pre- and post-TAVR. A St. Jude mechanical valve was tested as a reference that is less affected by the AS anatomy. Results in the Replicator of both valves were compared to the performance in a commercial ISO-compliant LHS. The AS anatomy in the Replicator resulted in a significant decrease of the TAVR valve performance relative to the simplified LHS, with EOA and transvalvular pressures comparable to clinical data. Minor change was seen in the mechanical valve performance. The Replicator showed to be an effective platform for TAVR testing. Unlike a simplified geometric anatomy LHS, it conservatively provides clinically-relevant outcomes and complement it. The Replicator can be most valuable for testing new valves under challenging patient anatomies, physicians training, and procedural planning.

  4. Cyclophilin B facilitates the replication of Orf virus

    OpenAIRE

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-01-01

    Background Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the f...

  5. Adolescent Loneliness and the Interaction between the Serotonin Transporter Gene (5-HTTLPR and Parental Support: A Replication Study.

    Directory of Open Access Journals (Sweden)

    Annette W M Spithoven

    Full Text Available Gene-by-environment interaction (GxEs studies have gained popularity over the last decade, but the robustness of such observed interactions has been questioned. The current study contributes to this debate by replicating the only study on the interaction between the serotonin transporter gene (5-HTTLPR and perceived parental support on adolescents' peer-related loneliness. A total of 1,111 adolescents (51% boys with an average age of 13.70 years (SD = 0.93 participated and three annual waves of data were collected. At baseline, adolescent-reported parental support and peer-related loneliness were assessed and genetic information was collected. Assessment of peer-related loneliness was repeated at Waves 2 and 3. Using a cohort-sequential design, a Latent Growth Curve Model was estimated. Overall, a slight increase of loneliness over time was found. However, the development of loneliness over time was found to be different for boys and girls: girls' levels of loneliness increased over time, whereas boys' levels of loneliness decreased. Parental support was inversely related to baseline levels of loneliness, but unrelated to change of loneliness over time. We were unable to replicate the main effect of 5-HTTLPR or the 5-HTTLPR x Support interaction effect. In the Discussion, we examine the implications of our non-replication.

  6. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.

    Science.gov (United States)

    Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  7. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Directory of Open Access Journals (Sweden)

    Ralph M. Barnes

    2016-11-01

    Full Text Available A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive and numeric format (percentage, natural frequency on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2 and 730 undergraduate college students (Experiments 1, 3, and 4 indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  8. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Science.gov (United States)

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743

  9. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.

    Science.gov (United States)

    Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.

  10. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  11. A microhomology-mediated break-induced replication model for the origin of human copy number variation.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2009-01-01

    Full Text Available Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV. A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2-5 base pairs (bp. Third, endpoints occur near pre-existing low copy repeats (LCRs. Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR. Under these circumstances, single-strand 3' tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.

  12. Sources of variability among replicate samples separated by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Bland, Alison M; Janech, Michael G; Almeida, Jonas S; Arthur, John M

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) offers high-resolution separation for intact proteins. However, variability in the appearance of spots can limit the ability to identify true differences between conditions. Variability can occur at a number of levels. Individual samples can differ because of biological variability. Technical variability can occur during protein extraction, processing, or storage. Another potential source of variability occurs during analysis of the gels and is not a result of any of the causes of variability named above. We performed a study designed to focus only on the variability caused by analysis. We separated three aliquots of rat left ventricle and analyzed differences in protein abundance on the replicate 2D gels. As the samples loaded on each gel were identical, differences in protein abundance are caused by variability in separation or interpretation of the gels. Protein spots were compared across gels by quantile values to determine differences. Fourteen percent of spots had a maximum difference in intensity of 0.4 quantile values or more between replicates. We then looked individually at the spots to determine the cause of differences between the measured intensities. Reasons for differences were: failure to identify a spot (59%), differences in spot boundaries (13%), difference in the peak height (6%), and a combination of these factors (21). This study demonstrates that spot identification and characterization make major contributions to variability seen with 2DE. Methods to highlight why measured protein spot abundance is different could reduce these errors.

  13. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...

  14. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  15. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    Science.gov (United States)

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Asynchronous DNA replication within the human β-globin gene locus

    International Nuclear Information System (INIS)

    Epner, E.; Forrester, W.C.; Groudine, M.

    1988-01-01

    The timing of DNA replication of the human β-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human β-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-γ-globin gene region and approximately 20 kilobases 5' to the ε-globin gene and 20 kilobases 3' to the β-globin gene, replicate later and throughout S phase. A similar area is also present in the α-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks

  17. Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B.

    Science.gov (United States)

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2017-02-01

    Feline coronavirus (FCoV) causes the fatal disease feline infectious peritonitis, which is currently incurable by drug treatment, and no effective vaccines are available. Cyclosporin A (CsA), a cyclophilin (Cyp) inhibitor, inhibits the replication of FCoV in vitro and in vivo as well as the replication of human and animal coronaviruses. However, the mechanism underlying the regulation of coronavirus replication by CsA is unknown. In this study, we analysed the role of Cyps in FCoV replication using knockdown and knockout cells specific to Cyps. Inhibition of CypA and CypB reduced FCoV replication, with replication in knockout cells being much less than that in knockdown cells. Furthermore, the proteins expressed by CypA and CypB harbouring mutations in their respective predicted peptidyl-prolyl cis-transisomerase active sites, which also alter the affinities between Cyps and CsA, inhibited FCoV replication. These findings indicate that the peptidyl-prolyl cis-transisomerase active sites of Cyps might be required for FCoV replication.

  18. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    Science.gov (United States)

    Pharoah, Paul D. P.; Tsai, Ya-Yu; Ramus, Susan J.; Phelan, Catherine M.; Goode, Ellen L.; Lawrenson, Kate; Price, Melissa; Fridley, Brooke L.; Tyrer, Jonathan P.; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C.; Song, Honglin; Tessier, Daniel C.; Bacot, François; Vincent, Daniel; Cunningham, Julie M.; Dennis, Joe; Dicks, Ed; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M.; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brenton, James D.; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S.; Chang-Claude, Jenny; Chen, Y. Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S.; Coetzee, Gerhard; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K.; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne Krüger; Konecny, Gottfried E.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C.; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S.; van Altena, Anne M.; Berg, David Van Den; Vergote, Ignace; Vierkant, Robert A.; Vitonis, Allison F.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T.; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N.A.; Gayther, Simon A.; Schildkraut, Joellen M.; Sellers, Thomas A.

    2013-01-01

    Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer. PMID:23535730

  19. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  20. Charter School Replication. Policy Guide

    Science.gov (United States)

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  1. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress

    DEFF Research Database (Denmark)

    Fugger, Kasper; Chu, Wai Kit; Haahr, Peter

    2013-01-01

    The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break...... formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying...... of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks....

  2. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen

    2012-10-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

  3. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  4. Manual of Cupule Replication Technology

    Directory of Open Access Journals (Sweden)

    Giriraj Kumar

    2015-09-01

    Full Text Available Throughout the world, iconic rock art is preceded by non-iconic rock art. Cupules (manmade, roughly semi-hemispherical depressions on rocks form the major bulk of the early non-iconic rock art globally. The antiquity of cupules extends back to the Lower Paleolithic in Asia and Africa, hundreds of thousand years ago. When one observes these cupules, the inquisitive mind poses so many questions with regard to understanding their technology, reasons for selecting the site, which rocks were used to make the hammer stones used, the skill and cognitive abilities employed to create the different types of cupules, the objective of their creation, their age, and so on. Replication of the cupules can provide satisfactory answers to some of these questions. Comparison of the hammer stones and cupules produced by the replication process with those obtained from excavation can provide support to observations. This paper presents a manual of cupule replication technology based on our experience of cupule replication on hard quartzite rock near Daraki-Chattan in the Chambal Basin, India.

  5. Hili Inhibits HIV Replication in Activated T Cells.

    Science.gov (United States)

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  6. USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication.

    Science.gov (United States)

    Smits, Veronique A J; Freire, Raimundo

    2016-09-01

    DNA replication is both highly conserved and controlled. Problematic DNA replication can lead to genomic instability and therefore carcinogenesis. Numerous mechanisms work together to achieve this tight control and increasing evidence suggests that post-translational modifications (phosphorylation, ubiquitination, SUMOylation) of DNA replication proteins play a pivotal role in this process. Here we discuss such modifications in the light of a recent article that describes a novel role for the deubiquitinase (DUB) USP7/HAUSP in the control of DNA replication. USP7 achieves this function by an unusual and novel mechanism, namely deubiquitination of SUMOylated proteins at the replication fork, making USP7 also a SUMO DUB (SDUB). This work extends previous observations of increased levels of SUMO and low levels of ubiquitin at the on-going replication fork. Here, we discuss this novel study, its contribution to the DNA replication and genomic stability field and what questions arise from this work. © 2016 WILEY Periodicals, Inc.

  7. Replicated Data Management for Mobile Computing

    CERN Document Server

    Douglas, Terry

    2008-01-01

    Managing data in a mobile computing environment invariably involves caching or replication. In many cases, a mobile device has access only to data that is stored locally, and much of that data arrives via replication from other devices, PCs, and services. Given portable devices with limited resources, weak or intermittent connectivity, and security vulnerabilities, data replication serves to increase availability, reduce communication costs, foster sharing, and enhance survivability of critical information. Mobile systems have employed a variety of distributed architectures from client-server

  8. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Identification of Persistent RNA-DNA Hybrid Structures within the Origin of Replication of Human Cytomegalovirus

    OpenAIRE

    Prichard, Mark N.; Jairath, Sanju; Penfold, Mark E. T.; Jeor, Stephen St.; Bohlman, Marlene C.; Pari, Gregory S.

    1998-01-01

    Human cytomegalovirus (HCMV) lytic-phase DNA replication initiates at the cis-acting origin of replication, oriLyt. oriLyt is a structurally complex region containing repeat elements and transcription factor binding sites. We identified two site-specific alkali-labile regions within oriLyt which flank an alkali-resistant DNA segment. These alkali-sensitive regions were the result of the degradation of two RNA species embedded within oriLyt and covalently linked to viral DNA. The virus-associa...

  10. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    Directory of Open Access Journals (Sweden)

    Olivier Reynard

    2015-12-01

    Full Text Available The current outbreak of Ebola virus (EBOV in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV.

  11. Localization of Low Copy Number Plasmid pRC4 in Replicating Rod and Non-Replicating Cocci Cells of Rhodococcus erythropolis PR4.

    Directory of Open Access Journals (Sweden)

    Divya Singhi

    Full Text Available Rhodococcus are gram-positive bacteria, which can exist in two different shapes rod and cocci. A number of studies have been done in the past on replication and stability of small plasmids in this bacterium; however, there are no reports on spatial localization and segregation of these plasmids. In the present study, a low copy number plasmid pDS3 containing pRC4 replicon was visualized in growing cells of Rhodococcus erythropolis PR4 (NBRC100887 using P1 parS-ParB-GFP system. Cells were initially cocci and then became rod shaped in exponential phase. Cocci cells were found to be non-replicating as evident by the presence of single fluorescence focus corresponding to the plasmid and diffuse fluorescence of DnaB-GFP. Rod shaped cells contained plasmid either present as one fluorescent focus observed at the cell center or two foci localized at quarter positions. The results suggest that the plasmid is replicated at the cell center and then it goes to quarter position. In order to observe the localization of plasmid with respect to nucleoid, plasmid segregation was also studied in filaments where it was found to be replicated at the cell center in a nucleoid free region. To the best of our knowledge, this is the first report on segregation of small plasmids in R. erythropolis.

  12. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    International Nuclear Information System (INIS)

    Shanley, J.D.

    1986-01-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication

  13. DNA replication restart and cellular dynamics of Hef helicase/nuclease protein in Haloferax volcanii.

    Science.gov (United States)

    Lestini, Roxane; Delpech, Floriane; Myllykallio, Hannu

    2015-11-01

    Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  15. Difference-based clustering of short time-course microarray data with replicates

    Directory of Open Access Journals (Sweden)

    Kim Jihoon

    2007-07-01

    Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.

  16. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells.

    Science.gov (United States)

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J; Méndez, Ernesto; Arias, Carlos F

    2015-10-01

    Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients

  17. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells

    Science.gov (United States)

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto

    2015-01-01

    ABSTRACT Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and

  18. Plasticity of DNA replication initiation in Epstein-Barr virus episomes.

    Directory of Open Access Journals (Sweden)

    Paolo Norio

    2004-06-01

    Full Text Available In mammalian cells, the activity of the sites of initiation of DNA replication appears to be influenced epigenetically, but this regulation is not fully understood. Most studies of DNA replication have focused on the activity of individual initiation sites, making it difficult to evaluate the impact of changes in initiation activity on the replication of entire genomic loci. Here, we used single molecule analysis of replicated DNA (SMARD to study the latent duplication of Epstein-Barr virus (EBV episomes in human cell lines. We found that initiation sites are present throughout the EBV genome and that their utilization is not conserved in different EBV strains. In addition, SMARD shows that modifications in the utilization of multiple initiation sites occur across large genomic regions (tens of kilobases in size. These observations indicate that individual initiation sites play a limited role in determining the replication dynamics of the EBV genome. Long-range mechanisms and the genomic context appear to play much more important roles, affecting the frequency of utilization and the order of activation of multiple initiation sites. Finally, these results confirm that initiation sites are extremely redundant elements of the EBV genome. We propose that these conclusions also apply to mammalian chromosomes.

  19. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities.

    Science.gov (United States)

    Pelliccia, Sveva; Wu, Yu-Hsuan; Coluccia, Antonio; La Regina, Giuseppe; Tseng, Chin-Kai; Famiglini, Valeria; Masci, Domiziana; Hiscott, John; Lee, Jin-Ching; Silvestri, Romano

    2017-12-01

    Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.

  20. The Impact of Teacher Study Groups in Vocabulary on Teaching Practice, Teacher Knowledge, and Student Vocabulary Knowledge: A Large-Scale Replication Study

    Science.gov (United States)

    Jayanthi, Madhavi; Dimino, Joseph; Gersten, Russell; Taylor, Mary Jo; Haymond, Kelly; Smolkowski, Keith; Newman-Gonchar, Rebecca

    2018-01-01

    The purpose of this replication study was to examine the impact of the Teacher Study Group (TSG) professional development in vocabulary on first-grade teachers' knowledge of vocabulary instruction and observed teaching practice, and on students' vocabulary knowledge. Sixty-two schools from 16 districts in four states were randomly assigned to…

  1. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies.

    Science.gov (United States)

    Neumann, Friederike; Czech-Sioli, Manja; Dobner, Thomas; Grundhoff, Adam; Schreiner, Sabrina; Fischer, Nicole

    2016-11-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.

  2. Replication assessment of surface texture at sub-micrometre scale

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Hansen, Hans Nørgaard

    2017-01-01

    [2]. A replication process requires reproducing a master geometry by conveying it to a substrate material. It is typically induced by means of different energy sources (usually heat and force) and a direct physical contact between the master and the substrate. Furthermore, concepts of advanced......, because of the replication nature of molding processes, the required specifications for the manufacture of micro molded components must be ensured by means of a metrological approach to surface replication and dimensional control of both master geometry and replicated substrate [3]-[4]. Therefore...... replication was assessed by the replication fidelity, i.e., comparing the produced parts with the tool used to replicate the geometry. Furthermore, the uncertainty of the replication fidelity was achieved by propagating the uncertainties evaluated for both masters and replicas. Finally, despite the specimens...

  3. Replicating Health Economic Models: Firm Foundations or a House of Cards?

    Science.gov (United States)

    Bermejo, Inigo; Tappenden, Paul; Youn, Ji-Hee

    2017-11-01

    number of recent case studies. Recommendations are put forward for improving reporting standards to enhance comprehensive model replicability.

  4. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  5. Prospective elementary teachers' conceptions of multidigit number: exemplifying a replication framework for mathematics education

    Science.gov (United States)

    Jacobson, Erik; Simpson, Amber

    2018-04-01

    Replication studies play a critical role in scientific accumulation of knowledge, yet replication studies in mathematics education are rare. In this study, the authors replicated Thanheiser's (Educational Studies in Mathematics 75:241-251, 2010) study of prospective elementary teachers' conceptions of multidigit number and examined the main claim that most elementary pre-service teachers think about digits incorrectly at least some of the time. Results indicated no statistically significant difference in the distribution of conceptions between the original and replication samples and, moreover, no statistically significant differences in the distribution of sub-conceptions among prospective teachers with the most common conception. These results suggest confidence is warranted both in the generality of the main claim and in the utility of the conceptions framework for describing prospective elementary teachers' conceptions of multidigit number. The report further contributes a framework for replication of mathematics education research adapted from the field of psychology.

  6. Failed Replication of Oxytocin Effects on Trust: The Envelope Task Case.

    Directory of Open Access Journals (Sweden)

    Anthony Lane

    Full Text Available The neurohormone Oxytocin (OT has been one of the most studied peptides in behavioral sciences over the past two decades. Many studies have suggested that OT could increase trusting behaviors. A previous study, based on the "Envelope Task" paradigm, where trust is assessed by the degree of openness of an envelope containing participant's confidential information, showed that OT increases trusting behavior and reported one of the most powerful effects of OT on a behavioral variable. In this paper we present two failed replications of this effect, despite sufficient power to replicate the original large effect. The non-significant results of these two failed replications clearly exclude a large effect of OT on trust in this paradigm but are compatible with either a null effect of OT on trust, or a small effect, undetectable with small sample size (N = 95 and 61 in Study 1 and 2, respectively. Taken together, our results question the purported size of OT's effect on trust and emphasize the need for replications.

  7. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  8. How to securely replicate services (preliminary version)

    Science.gov (United States)

    Reiter, Michael; Birman, Kenneth

    1992-01-01

    A method is presented for constructing replicated services that retain their availability and integrity despite several servers and clients being corrupted by an intruder, in addition to others failing benignly. More precisely, a service is replicated by 'n' servers in such a way that a correct client will accept a correct server's response if, for some prespecified parameter, k, at least k servers are correct and fewer than k servers are correct. The issue of maintaining causality among client requests is also addressed. A security breach resulting from an intruder's ability to effect a violation of causality in the sequence of requests processed by the service is illustrated. An approach to counter this problem is proposed that requires that fewer than k servers are corrupt and, to ensure liveness, that k is less than or = n - 2t, where t is the assumed maximum total number of both corruptions and benign failures suffered by servers in any system run. An important and novel feature of these schemes is that the client need not be able to identify or authenticate even a single server. Instead, the client is required only to possess at most two public keys for the service.

  9. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein.

    Directory of Open Access Journals (Sweden)

    Dorothee A Vogt

    Full Text Available The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web and assists viral assembly in the close vicinity of lipid droplets (LDs. To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1-31, a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47 as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon, indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47--via its interaction with NS5A--serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.

  10. Extremal dynamics in random replicator ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kärenlampi, Petri P., E-mail: petri.karenlampi@uef.fi

    2015-10-02

    The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon. - Highlights: • Extremal Dynamics organizes random replicator ecosystems to two phases in fitness space. • Replicator systems show power-law scaling of activity. • Species extinction interferes with Bak–Sneppen type mutation activity. • Speciation–extinction dynamics does not show any critical phase transition. • Biological macroevolution probably is not a self-organized critical phenomenon.

  11. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    OpenAIRE

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi

    2016-01-01

    Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zeala...

  12. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India.

    Science.gov (United States)

    Saxena, Richa; Saleheen, Danish; Been, Latonya F; Garavito, Martha L; Braun, Timothy; Bjonnes, Andrew; Young, Robin; Ho, Weang Kee; Rasheed, Asif; Frossard, Philippe; Sim, Xueling; Hassanali, Neelam; Radha, Venkatesan; Chidambaram, Manickam; Liju, Samuel; Rees, Simon D; Ng, Daniel Peng-Keat; Wong, Tien-Yin; Yamauchi, Toshimasa; Hara, Kazuo; Tanaka, Yasushi; Hirose, Hiroshi; McCarthy, Mark I; Morris, Andrew P; Basit, Abdul; Barnett, Anthony H; Katulanda, Prasad; Matthews, David; Mohan, Viswanathan; Wander, Gurpreet S; Singh, Jai Rup; Mehra, Narinder K; Ralhan, Sarju; Kamboh, M Ilyas; Mulvihill, John J; Maegawa, Hiroshi; Tobe, Kazuyuki; Maeda, Shiro; Cho, Yoon S; Tai, E Shyong; Kelly, M Ann; Chambers, John C; Kooner, Jaspal S; Kadowaki, Takashi; Deloukas, Panos; Rader, Daniel J; Danesh, John; Sanghera, Dharambir K

    2013-05-01

    We performed a genome-wide association study (GWAS) and a multistage meta-analysis of type 2 diabetes (T2D) in Punjabi Sikhs from India. Our discovery GWAS in 1,616 individuals (842 case subjects) was followed by in silico replication of the top 513 independent single nucleotide polymorphisms (SNPs) (P Punjabi Sikhs (n = 2,819; 801 case subjects). We further replicated 66 SNPs (P Punjabi Sikh sample (n = 2,894; 1,711 case subjects). On combined meta-analysis in Sikh populations (n = 7,329; 3,354 case subjects), we identified a novel locus in association with T2D at 13q12 represented by a directly genotyped intronic SNP (rs9552911, P = 1.82 × 10⁻⁸) in the SGCG gene. Next, we undertook in silico replication (stage 2b) of the top 513 signals (P < 10⁻³) in 29,157 non-Sikh South Asians (10,971 case subjects) and de novo genotyping of up to 31 top signals (P < 10⁻⁴) in 10,817 South Asians (5,157 case subjects) (stage 3b). In combined South Asian meta-analysis, we observed six suggestive associations (P < 10⁻⁵ to < 10⁻⁷), including SNPs at HMG1L1/CTCFL, PLXNA4, SCAP, and chr5p11. Further evaluation of 31 top SNPs in 33,707 East Asians (16,746 case subjects) (stage 3c) and 47,117 Europeans (8,130 case subjects) (stage 3d), and joint meta-analysis of 128,127 individuals (44,358 case subjects) from 27 multiethnic studies, did not reveal any additional loci nor was there any evidence of replication for the new variant. Our findings provide new evidence on the presence of a population-specific signal in relation to T2D, which may provide additional insights into T2D pathogenesis.

  13. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  14. A Replication of the Internal Validity Structure of Three Major Teaching Rating Scales

    Science.gov (United States)

    Peters, Scott J.; Pereira, Nielsen

    2017-01-01

    Even as the importance of replication research has become more widely understood, the field of gifted education is almost completely devoid of replication studies. An area in which replication is a particular problem is in student identification research, since instrument validity is a necessary prerequisite for any sound psychometric decision. To…

  15. The Genomic Replication of the Crenarchaeal Virus SIRV2

    DEFF Research Database (Denmark)

    Martinez Alvarez, Laura

    reinitiation events may partially explain the branched topology of the viral replication intermediates. We also analyzed the intracellular location of viral replication, showing the formation of viral peripheral replication centers in SIRV2-infected cells, where viral DNA synthesis and replication...

  16. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    Directory of Open Access Journals (Sweden)

    E. V. Thomas

    2009-01-01

    Full Text Available Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in part to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.

  17. Large scale association analysis identifies three susceptibility loci for coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Stephanie Saade

    Full Text Available Genome wide association studies (GWAS and their replications that have associated DNA variants with myocardial infarction (MI and/or coronary artery disease (CAD are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3, and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR=0.68, p=0.0035, while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR=1.33, p=0.0086. Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology.

  18. Amplified Self-replication of DNA Origami Nanostructures through Multi-cycle Fast-annealing Process

    Science.gov (United States)

    Zhou, Feng; Zhuo, Rebecca; He, Xiaojin; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul

    We have developed a non-biological self-replication process using templated reversible association of components and irreversible linking with annealing and UV cycles. The current method requires a long annealing time, up to several days, to achieve the specific self-assembly of DNA nanostructures. In this work, we accomplished the self-replication with a shorter time and smaller replication rate per cycle. By decreasing the ramping time, we obtained the comparable replication yield within 90 min. Systematic studies show that the temperature and annealing time play essential roles in the self-replication process. In this manner, we can amplify the self-replication process to a factor of 20 by increasing the number of cycles within the same amount of time.

  19. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  20. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104