WorldWideScience

Sample records for replication regions encoding

  1. Nucleotide sequence and transcript organization of a region of the vaccinia virus genome which encodes a constitutively expressed gene required for DNA replication.

    Science.gov (United States)

    Roseman, N A; Hruby, D E

    1987-05-01

    A vaccinia virus (VV) gene required for DNA replication has been mapped to the left side of the 16-kilobase (kb) VV HindIII D DNA fragment by marker rescue of a DNA- temperature-sensitive mutant, ts17, using cloned fragments of the viral genome. The region of VV DNA containing the ts17 locus (3.6 kb) was sequenced. This nucleotide sequence contains one complete open reading frame (ORF) and two incomplete ORFs reading from left to right. Analysis of this region at early times revealed that transcription from the incomplete upstream ORF terminates coincidentally with the complete ORF encoding the ts17 gene product, which is directly downstream. The predicted proteins encoded by this region correlate well with polypeptides mapped by in vitro translation of hybrid-selected early mRNA. The nucleotide sequences of a 1.3-kb BglII fragment derived from ts17 and from two ts17 revertants were also determined, and the nature of the ts17 mutation was identified. S1 nuclease protection studies were carried out to determine the 5' and 3' ends of the transcripts and to examine the kinetics of expression of the ts17 gene during viral infection. The ts17 transcript is present at both early and late times postinfection, indicating that this gene is constitutively expressed. Surprisingly, the transcriptional start throughout infection occurs at the proposed late regulatory element TAA, which immediately precedes the putative initiation codon ATG. Although the biological activity of the ts17-encoded polypeptide was not identified, it was noted that in ts17-infected cells, expression of a nonlinked VV immediate-early gene (thymidine kinase) was deregulated at the nonpermissive temperature. This result may indicate that the ts17 gene product is functionally required at an early step of the VV replicative cycle.

  2. Minimal region necessary for autonomous replication of pTAR.

    Science.gov (United States)

    Gallie, D R; Kado, C I

    1988-07-01

    The native 44-kilobase-pair plasmid pTAR, discovered in a grapevine strain of Agrobacterium tumefaciens, contains a single origin of DNA replication confined to a 1.0-kilobase-pair region of the macromolecule. This region (ori) confers functions sufficient for replication in Agrobacterium and Rhizobium species but not in Pseudomonas solanacearum, Pseudomonas glumae, Pseudomonas syringae pv. savastanoi, Xanthomonas campestris pv. campestris, and Escherichia coli. ori contains a repA gene that encodes a 28,000-dalton protein required for replication. Nucleotide sequencing of repA and its promoter region revealed four 8-base-pair palindromic repeats upstream of the repA coding region. Deletion of these repeats alters repA expression and plasmid copy number. Downstream of repA are three additional repeats in a region essential for replication. A locus responsible for plasmid partitioning (parA) and a putative second locus regulating plasmid copy number are part of the origin region and are required for stable plasmid maintenance.

  3. Random codon re-encoding induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells.

    Directory of Open Access Journals (Sweden)

    Antoine Nougairede

    2013-02-01

    Full Text Available Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV, and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%. Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random

  4. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  5. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

    Science.gov (United States)

    Kawamura-Nagaya, Kazue; Ishibashi, Kazuhiro; Huang, Ying-Ping; Miyashita, Shuhei; Ishikawa, Masayuki

    2014-01-01

    Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided. PMID:24711385

  6. Dissection of the beta-globin replication-initiation region reveals specific requirements for replicator elements during gene amplification.

    Directory of Open Access Journals (Sweden)

    Naoya Okada

    Full Text Available Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR/origin/replicator and a nuclear matrix-attachment region (MAR is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR. Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.

  7. Staphylococcal SCCmec elements encode an active MCM-like helicase and thus may be replicative

    Energy Technology Data Exchange (ETDEWEB)

    Mir-Sanchis, Ignacio [Univ. of Chicago, IL (United States). Dept. of Biochemistry and Molecular Biology; Roman, Christina A. [Univ. of Chicago, IL (United States). Dept. of Biochemistry and Molecular Biology; Misiura, Agnieszka [Univ. of Chicago, IL (United States). Dept. of Biochemistry and Molecular Biology; Abbott Lab., North Chicago, IL (United States); Pigli, Ying Z. [Univ. of Chicago, IL (United States). Dept. of Biochemistry and Molecular Biology; Boyle-Vavra, Susan [Univ. of Chicago, IL (United States). Dept. of Pediatrics; Univ. of Chicago, IL (United States). MRSA Research Center; Rice, Phoebe A. [Univ. of Chicago, IL (United States). Dept. of Biochemistry and Molecular Biology

    2016-08-29

    Methicillin-resistant Staphylococcus aureus (MRSA) is a public-health threat worldwide. Although the mobile genomic island responsible for this phenotype, staphylococcal cassette chromosome (SCC), has been thought to be nonreplicative, we predicted DNA-replication-related functions for some of the conserved proteins encoded by SCC. We show that one of these, Cch, is homologous to the self-loading initiator helicases of an unrelated family of genomic islands, that it is an active 3'-to-5' helicase and that the adjacent ORF encodes a single-stranded DNA–binding protein. Our 2.9-Å crystal structure of intact Cch shows that it forms a hexameric ring. Cch, like the archaeal and eukaryotic MCM-family replicative helicases, belongs to the pre–sensor II insert clade of AAA+ ATPases. Additionally, we found that SCC elements are part of a broader family of mobile elements, all of which encode a replication initiator upstream of their recombinases. Replication after excision would enhance the efficiency of horizontal gene transfer.

  8. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-10-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions approximately 300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as 'master' replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these 'master' origins are likely to play a key role in genome dynamics during evolution and in pathological situations.

  9. Decreased replication origin activity in temporal transition regions.

    Science.gov (United States)

    Guan, Zeqiang; Hughes, Christina M; Kosiyatrakul, Settapong; Norio, Paolo; Sen, Ranjan; Fiering, Steven; Allis, C David; Bouhassira, Eric E; Schildkraut, Carl L

    2009-11-30

    In the mammalian genome, early- and late-replicating domains are often separated by temporal transition regions (TTRs) with novel properties and unknown functions. We identified a TTR in the mouse immunoglobulin heavy chain (Igh) locus, which contains replication origins that are silent in embryonic stem cells but activated during B cell development. To investigate which factors contribute to origin activation during B cell development, we systematically modified the genetic and epigenetic status of the endogenous Igh TTR and used a single-molecule approach to analyze DNA replication. Introduction of a transcription unit into the Igh TTR, activation of gene transcription, and enhancement of local histone modifications characteristic of active chromatin did not lead to origin activation. Moreover, very few replication initiation events were observed when two ectopic replication origin sequences were inserted into the TTR. These findings indicate that the Igh TTR represents a repressive compartment that inhibits replication initiation, thus maintaining the boundaries between early and late replication domains.

  10. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus.

    Science.gov (United States)

    Pujol, Céline; Grabenstein, Jens P; Perry, Robert D; Bliska, James B

    2005-09-06

    Yersinia pestis is a facultative intracellular bacterial pathogen that can replicate in macrophages. Little is known about the mechanism by which Y. pestis replicates in macrophages, and macrophage defense mechanisms important for limiting intracellular survival of Y. pestis have not been characterized. In this work, we investigated the ability of Y. pestis to replicate in primary murine macrophages that were activated with IFN-gamma. Y. pestis was able to replicate in macrophages that were activated with IFN-gamma after infection (postactivated). A region of chromosomal DNA known as the pigmentation (pgm) locus was required for replication in postactivated macrophages, and this replication was associated with reduced nitric oxide (NO) levels but not with reduced inducible NO synthase (iNOS) expression. Y. pestis delta pgm replicated in iNOS-/- macrophages that were postactivated with IFN-gamma, suggesting that killing of delta pgm Y. pestis is NO-dependent. A specific genetic locus within pgm, which shares similarity to a pathogenicity island in Salmonella, was shown to be required for replication of Y. pestis and restriction of NO levels in postactivated macrophages. These data demonstrate that intracellular Y. pestis can evade killing by macrophages that are exposed to IFN-gamma and identify a potential virulence gene encoded in the pgm locus that is required for this activity.

  11. Replication intermediate analysis confirms that chromosomal replication origin initiates from an unusual intergenic region in Caulobacter crescentus.

    Science.gov (United States)

    Brassinga, A K; Marczynski, G T

    2001-11-01

    The alpha-proteobacterium Caulobacter crescentus possesses a developmental cell cycle that restricts chromosome replication to a stalked cell type. The proposed C.crescentus chromosome replication origin (Cori) lies between hemE and RP001, an unusual intergenic region not previously associated with bacterial replication origins, although a similar genomic arrangement is also present at the putative replication origin in the related bacterium Rickettsia prowazekii. The cloned Cori supports autonomous plasmid replication selectively in the stalked cell type implying that replication of the entire chromosome also initiates between hemE and RP001. To confirm this location, we applied the 2-D (N/N) agarose gel electrophoresis technique to resolve and identify chromosome replication intermediates throughout a 30 kb region spanning Cori. Replication initiation in Cori was uniquely characterized by an 'origin bubble and Y-arc' pattern and this observation was supported by simple replication fork 'Y-arc' patterns that characterized the regions flanking Cori. These replication forks originated bi-directionally from within Cori as determined by the fork direction assay. Therefore, chromosomal replication initiates from the unusual hemE/RP001 intergenic region that we propose represents a new class of replication origins.

  12. Replication regions of two pairs of incompatible lactococcal theta-replicating plasmids.

    Science.gov (United States)

    Gravesen, A; von Wright, A; Josephsen, J; Vogensen, F K

    1997-01-01

    Incompatibility tests were performed employing 12 replicons belonging to a family of homologous lactococcal theta-replicating plasmids. Two pairs of incompatible plasmids were found, namely, pFV1001 and pFV1201, and pJW565 and pFW094. The replicons of plasmids pFV1001, pFV1201, pJW565, pJW566, and pFW094 were sequenced. Alignments were made of the replicational origins (repA) and putative replication proteins (RepB) of these and 11 related plasmid sequences. Comparison of the alignments with the incompatibility data indicated that the incompatibility determinant could be contained within the 22-bp tandem repeats DRII and/or the inverted repeat IR1 in repA. In support, the incompatibility determinant of pJW563 was localized to a 743-bp fragment encompassing repA. A stretch of 13 amino acids of RepB was proposed to be responsible for the plasmid-specific initiation of replication. This stretch is part of a domain containing features that are highly conserved within the proposed DNA binding regions of the initiation proteins from several well-characterized plasmids from Gram-negative bacteria, including pSC101, R6K, and mini-F.

  13. Replication of the TNFSF4 (OX40L) Promoter Region Association with Systemic Lupus Erythematosus

    Science.gov (United States)

    Delgado-Vega, Angélica M.; Abelson, Anna-Karin; Sánchez, Elena; Witte, Torsten; D’Alfonso, Sandra; Galeazzi, Mauro; Jiménez-Alonso, Juan; Pons-Estel, Bernardo A.

    2013-01-01

    The tumor necrosis factor ligand superfamily member 4 gene (TNFSF4) encodes the OX40 ligand (OX40L), a co-stimulatory molecule involved in T-cell activation. A recent study demonstrated the association ofTNFSF4 haplotypes located in the upstream region with risk for- or protection from Systemic Lupus Erythematosus (SLE) (Graham et al, 2008). In order to replicate this association, five single nucleotide polymorphisms (SNPs) tagging the previously associated haplotypes and passing the proper quality control filters were tested in 1312 cases and 1801 controls from Germany, Italy, Spain, and Argentina. The association of TNFSF4 with SLE was replicated in all the sets except Spain. There was a unique risk haplotype tagged by the minor alleles of the SNPs rs1234317 (pooled OR=1.39, p=0.0009) and rs12039904 (pooled OR=1.38, p=0.0012). We did not observe association to a single protective marker (rs844644) or haplotype as the first study reported; instead, we observed different protective haplotypes, all carrying the major alleles of both SNPs rs1234317 and rs12039904. Association analysis conditioning on the haplotypic background confirmed that these two SNPs explain the entire haplotype effect. This is the first replication study that confirms the association of genetic variation in the upstream region of TNFSF4 with susceptibility to SLE. PMID:19092840

  14. Single molecule analysis of replicated DNA reveals the usage of multiple KSHV genome regions for latent replication.

    Directory of Open Access Journals (Sweden)

    Subhash C Verma

    2011-11-01

    Full Text Available Kaposi's sarcoma associated herpesvirus (KSHV, an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA. Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD. Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA

  15. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    Science.gov (United States)

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Two replications of "Hierarchical encoding makes individuals in a group seem more attractive (2014; Experiment 4".

    Directory of Open Access Journals (Sweden)

    Yuko Ojiro

    2015-06-01

    Full Text Available The cheerleader effect implies that a person in a group look like more attractive than in isolation. Walker and Vul (2014 reported results supporting the existence of the cheerleader effect. We replicated Walker and Vul’s Experiment 4, which manipulated group size. Their participants were asked to rate attractiveness of each female face image in a group (one of 4, 9, or 16 members and in isolation and revealed that attractiveness ratings significantly increased in all the group conditions. We performed two direct replications of this experiment using Japanese participants. As a result, at least one experiment yielded a pattern of results similar to those of the previous study, although the effect was not significant and the effect size was small.

  17. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.

    Science.gov (United States)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-18

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in

  18. Ubiquitous human ‘master’ origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers

    Science.gov (United States)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-01

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The ‘master’ origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs

  19. The RFC2 gene encoding a subunit of replication factor C of Saccharomyces cerevisiae.

    OpenAIRE

    Noskov, V; Maki, S.; Kawasaki, Y.; Leem, S H; Ono, B; Araki, H; Pavlov, Y; Sugino, A

    1994-01-01

    Replication Factor C (RF-C) of Saccharomyces cerevisiae is a complex that consists of several different polypeptides ranging from 120- to 37 kDa (Yoder and Burgers, 1991; Fien and Stillman, 1992), similar to human RF-C. We have isolated a gene, RFC2, that appears to be a component of the yeast RF-C. The RFC2 gene is located on chromosome X of S. cerevisiae and is essential for cell growth. Disruption of the RFC2 gene led to a dumbbell-shaped terminal morphology, common to mutants having a def...

  20. Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase

    Science.gov (United States)

    Matsui, Takeru; Yoshikawa, Genki; Mihara, Tomoko; Chatchawankanphanich, Orawan; Kawasaki, Takeru; Nakano, Miyako; Fujie, Makoto; Ogata, Hiroyuki; Yamada, Takashi

    2017-01-01

    Ralstonia solanacearum phages ΦRP12 and ΦRP31 are jumbo phages isolated in Thailand. Here we show that they exhibit similar virion morphology, genome organization and host range. Genome comparisons as well as phylogenetic and proteomic tree analyses support that they belong to the group of ΦKZ-related phages, with their closest relatives being R. solanacearum phages ΦRSL2 and ΦRSF1. Compared with ΦRSL2 and ΦRSF1, ΦRP12 and ΦRP31 possess larger genomes (ca. 280 kbp, 25% larger). The replication of ΦRP12 and ΦRP31 was not affected by rifampicin treatment (20 μg/ml), suggesting that phage-encoded RNAPs function to start and complete the infection cycle of these phages without the need of host-encoded RNAPs. In contrast, ΦRSL2 and ΦRSF1, encoding the same set of RNAPs, did not produce progeny phages in the presence of rifampicin (5 μg/ml). This observation opens the possibility that some ΦRP12/ΦRP31 factors that are absent in ΦRSL2 and ΦRSF1 are involved in their host-independent transcription. PMID:28659872

  1. Noninvasive visualization of adenovirus replication with a fluorescent reporter in the E3 region.

    Science.gov (United States)

    Ono, Hidetaka A; Le, Long P; Davydova, Julia G; Gavrikova, Tatyana; Yamamoto, Masato

    2005-11-15

    To overcome the inefficacy and undesirable side effects of current cancer treatment strategies, conditionally replicative adenoviruses have been developed to exploit the unique mechanism of oncolysis afforded by tumor-specific viral replication. Despite rapid translation into clinical trials and the established safety of oncolytic adenoviruses, the in vivo function of these agents is not well understood due to lack of a noninvasive detection system for adenovirus replication. To address this issue, we propose the expression of a reporter from the adenovirus E3 region as a means to monitor replication. Adenovirus replication reporter vectors were constructed with the enhanced green fluorescent protein (EGFP) gene placed in the deleted E3 region under the control of the adenoviral major late promoter while retaining expression of the adenovirus death protein to conserve the native oncolytic capability of the virus. Strong EGFP fluorescence was detected from these vectors in a replication-dependent manner, which correlated with viral DNA replication. Fluorescence imaging in vivo confirmed the ability to noninvasively detect fluorescent signal during replication, which generally corresponded with the underlying level of viral DNA replication. EGFP representation of viral replication was further confirmed by Western blot comparison with the viral DNA content in the tumors. Imaging reporter expression controlled by the adenoviral major late promoter provides a viable approach to noninvasively monitor adenovirus replication in preclinical studies and has the potential for human application with clinically relevant imaging reporters.

  2. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    Science.gov (United States)

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-09-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA.

  3. Control of bacterial chromosome replication by non-coding regions outside the origin

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2017-01-01

    Chromosome replication in Eubacteria is initiated by initiator protein(s) binding to specific sites within the replication origin, oriC. Recently, initiator protein binding to chromosomal regions outside the origin has attracted renewed attention; as such binding sites contribute to control the f...

  4. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription.

    Directory of Open Access Journals (Sweden)

    Reza Djavadian

    2016-06-01

    Full Text Available Epstein-Barr virus lytic replication is accomplished by an intricate cascade of gene expression that integrates viral DNA replication and structural protein synthesis. Most genes encoding structural proteins exhibit "true" late kinetics-their expression is strictly dependent on lytic DNA replication. Recently, the EBV BcRF1 gene was reported to encode a TATA box binding protein homolog, which preferentially recognizes the TATT sequence found in true late gene promoters. BcRF1 is one of seven EBV genes with homologs found in other β- and γ-, but not in α-herpesviruses. Using EBV BACmids, we systematically disrupted each of these "βγ" genes. We found that six of them, including BcRF1, exhibited an identical phenotype: intact viral DNA replication with loss of late gene expression. The proteins encoded by these six genes have been found by other investigators to form a viral protein complex that is essential for activation of TATT-containing reporters in EBV-negative 293 cells. Unexpectedly, in EBV infected 293 cells, we found that TATT reporter activation was weak and non-specific unless an EBV origin of lytic replication (OriLyt was present in cis. Using two different replication-defective EBV genomes, we demonstrated that OriLyt-mediated DNA replication is required in cis for TATT reporter activation and for late gene expression from the EBV genome. We further demonstrate by fluorescence in situ hybridization that the late BcLF1 mRNA localizes to EBV DNA replication factories. These findings support a model in which EBV true late genes are only transcribed from newly replicated viral genomes.

  5. Isolation of a minireplicon of the plasmid pG6303 of Lactobacillus plantarum G63 and characterization of the plasmid-encoded Rep replication protein

    Indian Academy of Sciences (India)

    Jing Fan; Xuedong Xi; Yan Huang; Zhongli Cui

    2015-06-01

    A cryptic 10.0-kb plasmid pG6303 from a multiplasmid-containing Lactobacillus plantarum G63 was studied. The analysis of replicon was facilitated by the construction of shuttle vectors and electrotransformation into L. plantarum. The pG6303 replicon included (i) an open reading frame encoding the putative Rep replication initiation protein; and (ii) the putative origin of replication. The Rep protein was expressed as a fusion with the hexa-histidine (His) at its C-terminal end and purified by Ni-affinity chromatography. The electrophoretic mobility shift assays in pG6303 showed that the purified Rep protein specifically bound from 5582 to 5945 bp, differing from the putative origin of replication of pG6303. We speculate that pG6303 replication is a new mode of plasmid replication.

  6. Hepatitis C virus quasispecies in cancerous and noncancerous hepatic lesions: the core protein-encoding region.

    Directory of Open Access Journals (Sweden)

    Alam,Shahjalal S.

    2002-06-01

    Full Text Available We have shown that highly proofreading DNA polymerase is required for the polymerase chain reaction in the genetic analysis of hepatitis C virus (HCV. To clarify the status of HCV quasispecies in hepatic tissue using proofreading DNA polymerase, we performed a genetic analysis of the HCV core protein-encoding region in cancerous and noncancerous lesions derived from 4 patients with hepatocellular carcinoma. In contrast to the previously published data, we observed neither deletions nor stop codons in the analyzed region and no significant difference in the complexity of HCV quasispecies between cancerous and noncancerous lesions. This result suggests that the HCV core gene is never structurally defective in hepatic tissues, including cancerous lesions. However, in 3 of the patients, the consensus HCV species differed between cancerous and noncancerous lesions, suggesting that the predominant replicating HCV species differs between these 2 types of lesions. Moreover, during the course of the study, we obtained several interesting variants possessing a substitution at codon 9 of the core gene, whose substitution has been shown to induce the production of the F protein synthesized by a - 2/+1 ribosomal frameshift.

  7. Cycloviruses, gemycircularviruses and other novel replication-associated protein encoding circular viruses in Pacific flying fox (Pteropus tonganus) faeces.

    Science.gov (United States)

    Male, Maketalena F; Kraberger, Simona; Stainton, Daisy; Kami, Viliami; Varsani, Arvind

    2016-04-01

    Viral metagenomic studies have demonstrated that animal faeces can be a good sampling source for exploring viral diversity associated with the host and its environment. As part of an continuing effort to identify novel circular replication-associated protein encoding single-stranded (CRESS) DNA viruses circulating in the Tongan archipelago, coupled with the fact that bats are a reservoir species of a large number of viruses, we used a metagenomic approach to investigate the CRESS DNA virus diversity in Pacific flying fox (Pteropus tonganus) faeces. Faecal matter from four roosting sites located in Ha'avakatolo, Kolovai, Ha'ateiho and Lapaha on Tongatapu Island was collected in April 2014 and January 2015. From these samples we identified five novel cycloviruses representing three putative species, 25 gemycircularviruses representing at least 14 putative species, 17 other CRESS DNA viruses (15 putative species), two circular DNA molecules and a putative novel multi-component virus for which we have identified three cognate molecules. This study demonstrates that there exists a large diversity of CRESS DNA viruses in Pacific flying fox faeces.

  8. Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR.

    Science.gov (United States)

    Gallie, D R; Zaitlin, D; Perry, K L; Kado, C I

    1984-03-01

    A 5.4-kilobase region containing the origin of replication and stability maintenance of the 44-kilobase Agrobacterium tumefaciens plasmid pTAR has been mapped and characterized. Within this region is a 1.3-kilobase segment that is capable of directing autonomous replication. The remaining segment contains the stability locus for maintenance of pTAR during nonselective growth. Approximately 35% of pTAR shares sequence homology with pAg119, a 44-kilobase cryptic plasmid in grapevine strain 1D1119. However, no homology was detected between pTAR DNA and several Ti plasmids or several other small cryptic plasmids in many A. tumefaciens strains. A recombinant plasmid containing the origin of replication and stability maintenance region of pTAR was compatible with pTiC58, pTi15955, and pTi119 and incompatible with pAg119. A new compatibility group, Inc Ag-1, is discussed.

  9. Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR.

    OpenAIRE

    Gallie, D R; Zaitlin, D; Perry, K L; Kado, C I

    1984-01-01

    A 5.4-kilobase region containing the origin of replication and stability maintenance of the 44-kilobase Agrobacterium tumefaciens plasmid pTAR has been mapped and characterized. Within this region is a 1.3-kilobase segment that is capable of directing autonomous replication. The remaining segment contains the stability locus for maintenance of pTAR during nonselective growth. Approximately 35% of pTAR shares sequence homology with pAg119, a 44-kilobase cryptic plasmid in grapevine strain 1D11...

  10. Dynamic pupillary exchange engages brain regions encoding social salience.

    Science.gov (United States)

    Harrison, Neil A; Gray, Marcus A; Critchley, Hugo D

    2009-01-01

    Covert exchange of autonomic responses may shape social affective behavior, as observed in mirroring of pupillary responses during sadness processing. We examined how, independent of facial emotional expression, dynamic coherence between one's own and another's pupil size modulates regional brain activity. Fourteen subjects viewed pairs of eye stimuli while undergoing fMRI. Using continuous pupillometry biofeedback, the size of the observed pupils was varied, correlating positively or negatively with changes in participants' own pupils. Viewing both static and dynamic stimuli activated right fusiform gyrus. Observing dynamically changing pupils activated STS and amygdala, regions engaged by non-static and salient facial features. Discordance between observed and observer's pupillary changes enhanced activity within bilateral anterior insula, left amygdala and anterior cingulate. In contrast, processing positively correlated pupils enhanced activity within left frontal operculum. Our findings suggest pupillary signals are monitored continuously during social interactions and that incongruent changes activate brain regions involved in tracking motivational salience and attentionally meaningful information. Naturalistically, dynamic coherence in pupillary change follows fluctuations in ambient light. Correspondingly, in social contexts discordant pupil response is likely to reflect divergence of dispositional state. Our data provide empirical evidence for an autonomically mediated extension of forward models of motor control into social interaction.

  11. Induction of antigen-presenting capacity in tumor cells upon infection with non-replicating recombinant vaccinia virus encoding murine MHC class II and costimulatory molecules.

    Science.gov (United States)

    Marti, W R; Oertli, D; Meko, J B; Norton, J A; Tsung, K

    1997-01-15

    The possibility of inducing antigen-presenting capacity in cells normally lacking such capacity, currently represents a major goal in vaccine research. To address this issue we attempted to generate 'artificial' APC able to stimulate CD4+ T cell responses when tumor cells were infected with a single, recombinant, vaccinia virus (rVV) containing the two genes encoding murine MHC class II I-Ak and a third gene encoding the murine B7-1 (mB7-1) costimulatory molecule. To minimize the cytopathic effect and to improve safety, in view of possible in vivo applications, we made this rVV replication incompetent by Psoralen and long wave UV treatment. Tumor cells infected with rVV encoding I-Ak alone, pulsed with hen egg white lysozyme peptide (HEL46-61), induced IL-2 secretion by an antigen-specific T hybridoma. Tumor cells infected with the rVV encoding mB7-1 provided costimulation for activating resting CD4+ T cells in the presence of ConA. Tumor cells infected with the rVV encoding I-Ak and mB7-1, and pulsed with chicken ovotransferrin peptide (conalbumin133-145), induced a significantly higher response in a specific Th2 cell clone (D10.G4.1) as compared to cells infected with rVV encoding I-Ak molecules only. Thus, this replication incompetent rVV represents a safe, multiple gene, vector system able to confer in one single infection step effective APC capacity to non-professional APCs.

  12. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  13. Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions.

    Science.gov (United States)

    Li, Chen; Ge, Ling-ling; Li, Peng-peng; Wang, Yue; Dai, Juan-juan; Sun, Ming-xia; Huang, Li; Shen, Zhi-qiang; Hu, Xiao-chun; Ishag, Hassan; Mao, Xiang

    2014-01-20

    Japanese encephalitis virus is one of the most common causes for epidemic viral encephalitis in humans and animals. Herein we demonstrated that cellular helicase DDX3 is involved in JEV replication. DDX3 knockdown inhibits JEV replication. The helicase activity of DDX3 is crucial for JEV replication. GST-pulldown and co-immunoprecipitation experiments demonstrated that DDX3 could interact with JEV non-structural proteins 3 and 5. Co-immunoprecipitation and confocal microscopy analysis confirmed that DDX3 interacts and colocalizes with these viral proteins and viral RNA during the infection. We determined that DDX3 binds to JEV 5' and 3' un-translated regions. We used a JEV-replicon system to demonstrate that DDX3 positively regulates viral RNA translation, which might affect viral RNA replication at the late stage of virus infection. Collectively, we identified that DDX3 is necessary for JEV infection, suggesting that DDX3 might be a novel target to design new antiviral agents against JEV or other flavivirus infections.

  14. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins.

    Science.gov (United States)

    Eckert, Nadine; Wrensch, Florian; Gärtner, Sabine; Palanisamy, Navaneethan; Goedecke, Ulrike; Jäger, Nils; Pöhlmann, Stefan; Winkler, Michael

    2014-01-01

    Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.

  15. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins.

    Directory of Open Access Journals (Sweden)

    Nadine Eckert

    Full Text Available Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI zanamivir and the host cell interferon-inducible transmembrane (IFITM proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.

  16. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Directory of Open Access Journals (Sweden)

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  17. B7 costimulation molecules encoded by replication-defective, vhs-deficient HSV-1 improve vaccine-induced protection against corneal disease.

    Directory of Open Access Journals (Sweden)

    Jane E Schrimpf

    Full Text Available Herpes simplex virus 1 (HSV-1 causes herpes stromal keratitis (HSK, a sight-threatening disease of the cornea for which no vaccine exists. A replication-defective, HSV-1 prototype vaccine bearing deletions in the genes encoding ICP8 and the virion host shutoff (vhs protein reduces HSV-1 replication and disease in a mouse model of HSK. Here we demonstrate that combining deletion of ICP8 and vhs with virus-based expression of B7 costimulation molecules created a vaccine strain that enhanced T cell responses to HSV-1 compared with the ICP8⁻vhs⁻ parental strain, and reduced the incidence of keratitis and acute infection of the nervous system after corneal challenge. Post-challenge T cell infiltration of the trigeminal ganglia and antigen-specific recall responses in local lymph nodes correlated with protection. Thus, B7 costimulation molecules expressed from the genome of a replication-defective, ICP8⁻vhs⁻ virus enhance vaccine efficacy by further reducing HSK.

  18. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance.

    Directory of Open Access Journals (Sweden)

    Natalie R Lazar Adler

    Full Text Available Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA. Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE. A single mutant (bpaC was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA, those attenuated for virulence and net intracellular replication (BpaE, the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA. Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors

  19. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance.

    Science.gov (United States)

    Lazar Adler, Natalie R; Stevens, Mark P; Dean, Rachel E; Saint, Richard J; Pankhania, Depesh; Prior, Joann L; Atkins, Timothy P; Kessler, Bianca; Nithichanon, Arnone; Lertmemongkolchai, Ganjana; Galyov, Edouard E

    2015-01-01

    Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were

  20. [Similarities in periodical structures in the position of nucleotides in regions of initiation of replication of bacterial genomes].

    Science.gov (United States)

    Kravatskaia, G I; Frank, G K; Makeev, V Iu; Esipova, N G

    2002-01-01

    The regions of initiation of replication of some bacterial genomes were studied by the method of Fourier matrix analysis. A generalized spectral portrait of the primary structures of E. coli-like regions of initiation of replication in bacteria was obtained, which reflects the features of their structural and functional organization. It contains well-pronounced peaks that correspond to the periods T = 2, 11, 17, 27, 86-105 of nucleotides. The peaks corresponding to T = 9, 13, 14, 18, 19, 33-35, 45-47, 74-85, 106-110 are less pronounced. The uniqueness of the Fourier spectrum corresponding to the region of initiation of replication of E. coli oriC was considered by the example of the complete genome of E. coli. Some regions of the E. coli genome were identified that differ from oriC in the primary structure but have Fourier spectra resembling the spectrum of oriC. A number of these regions are alternative points of initiation of replication in sdrA(rnh) mutants of E. coli, the others are localized in yet unidentified regions of the E. coli genome but are capable, in our opinion, to participate in the initiation of replication. Thus, from the similarity of spectral portraits of different regions of the genome, it was possible to reveal several regions that have similar functions, i.e., are involved in initiation of replication.

  1. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    Science.gov (United States)

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity.

  2. Remembering beauty: Roles of orbitofrontal and hippocampal regions in successful memory encoding of attractive faces

    Science.gov (United States)

    Tsukiura, Takashi; Cabeza, Roberto

    2010-01-01

    Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent missesregions was stronger during the encoding of attractive than neutral or unattractive faces. These results suggest that better memory for attractive faces reflects greater interaction between a region associated with reward, the orbitofrontal cortex, and a region associated with successful memory encoding, the hippocampus. PMID:20659568

  3. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  4. The long repeat region is dispensable for fowl adenovirus replication in vitro.

    Science.gov (United States)

    Ojkic, D; Nagy, E

    2001-05-10

    Two regions containing tandemly repeated sequences are present in the fowl adenovirus 9 (FAdV-9) genome. The longer repeat region (TR-2) is composed of 13 contiguous 135-bp-long direct repeats, the function of which is unknown. An infectious FAdV-9 genomic clone, constructed by homologous recombination in Escherichia coli, was used for engineering of recombinant viruses. The enhanced green fluorescence protein (EGFP) coding sequence was cloned in both rightward and leftward orientations so as to replace TR-2. Replication-competent recombinant FAdVs were recovered, demonstrating that TR-2 was dispensable for FAdV-9 propagation in vitro. The expression of EGFP in infected cells was demonstrated by fluorescence microscopy, immunoprecipitation, and RT-PCR.

  5. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Vinay Kumar Srivastava; Dharani Dhar Dubey

    2007-08-01

    Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.

  6. The "enemies within": regions of the genome that are inherently difficult to replicate [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rahul Bhowmick

    2017-05-01

    Full Text Available An unusual feature of many eukaryotic genomes is the presence of regions that appear intrinsically difficult to copy during the process of DNA replication. Curiously, the location of these difficult-to-replicate regions is often conserved between species, implying a valuable role in some aspect of genome organization or maintenance. The most prominent class of these regions in mammalian cells is defined as chromosome fragile sites, which acquired their name because of a propensity to form visible gaps/breaks on otherwise-condensed chromosomes in mitosis. This fragility is particularly apparent following perturbation of DNA replication—a phenomenon often referred to as “replication stress”. Here, we review recent data on the molecular basis for chromosome fragility and the role of fragile sites in the etiology of cancer. In particular, we highlight how studies on fragile sites have provided unexpected insights into how the DNA repair machinery assists in the completion of DNA replication.

  7. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields.

    Science.gov (United States)

    Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2013-09-01

    It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.

  8. Identification and characterization of a cis-encoded antisense RNA associated with the replication process of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Isaac Dadzie

    Full Text Available Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise while others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned.

  9. Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein.

    OpenAIRE

    Doran, T J; Loh, S M; Firth, N; Skurray, R A

    1994-01-01

    The nucleotide sequences of the conjugative F plasmid transfer region genes, traV and traR, have been determined. The deduced amino acid sequence of TraV indicated that it may be a lipoprotein; this was confirmed by examining the effect of globomycin on traV-encoded polypeptides synthesized in minicells. An open reading frame that may represent a previously undetected transfer gene, now designated trbG, was identified immediately upstream of traV. The deduced product of traR was found to shar...

  10. PREPRO: a computer program for encoding regional exploration data for use in characteristic analysis

    Science.gov (United States)

    Bridges, N.J.; Hanley, J.T.; McCammon, R.B.

    1985-01-01

    The preprocessor (PREPRO) computer program offers the exploration geologist a variety of options for encoding regional exploration data into ternary form for use in characteristic analysis. PREPRO's options include variable-input formats, cursor input, ordering among a set of input variables, and selectable ternary transformations. Moreover, the program provides for the display of results which, in turn, makes possible review, reselection, and retransformation of variables. Most important, the performance of the listed steps in an interactive computing environment results in rapid and efficient preprocessing of the data.

  11. Drosophila duplication hotspots are associated with late-replicating regions of the genome.

    Directory of Open Access Journals (Sweden)

    Margarida Cardoso-Moreira

    2011-11-01

    Full Text Available Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans-Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is

  12. Structured RNAs in the ENCODE selected regions of the human genome

    DEFF Research Database (Denmark)

    Washietl, Stefan; Pedersen, Jakob Skou; Korbel, Jan O

    2007-01-01

    characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding......Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack...... and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions...

  13. In vitro and in vivo analysis of transcription within the replication region of plasmid pIP501.

    Science.gov (United States)

    Brantl, S; Nuez, B; Behnke, D

    1992-07-01

    Derivatives of the conjugative streptococcal plasmid pIP501 replicate stably in Bacillus subtilis. The region essential for replication of pIP501 has been narrowed down to a 2.2 kb DNA segment, the sequence of which has been determined. This region comprises two genes, copR and repR, proposed to be involved in copy control and replication. By in vitro and in vivo transcriptional analysis we characterized three active promoters, pI, pII and pIII within this region. A putative fourth promoter (pIV) was neither active in vitro nor in vivo. We showed that copR is transcribed from promoter pI while the repR gene is transcribed from promoter pII located just downstream of copR. The pII transcript encompasses a 329 nucleotide (nt) long leader sequence. A counter transcript that was complementary to a major part of this leader was found to originate from a third promoter pIII. The secondary structure of the counter transcript revealed several stem-loop regions. A regulatory function for this antisense RNA in the control of repR expression is proposed. Comparative analysis of the replication regions of pAM beta 1 and pSM19035 suggested a similar organization of transcriptional units, suggesting that an antisense RNA is produced by these plasmids also.

  14. DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-Loop-Dependent Manner.

    Science.gov (United States)

    Wiedemann, Eva-Maria; Peycheva, Mihaela; Pavri, Rushad

    2016-12-13

    Class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) locus generates antibody isotypes. CSR depends on double-strand breaks (DSBs) induced by activation-induced cytidine deaminase (AID). Although DSB formation and repair machineries are active in G1 phase, efficient CSR is dependent on cell proliferation and S phase entry; however, the underlying mechanisms are obscure. Here, we show that efficient CSR requires the replicative helicase, the Mcm complex. Mcm proteins are enriched at IgH switch regions during CSR, leading to assembly of facultative replication origins that require Mcm helicase function for productive CSR. Assembly of CSR-associated origins is facilitated by R loops and promotes the physical proximity (synapsis) of recombining switch regions, which is reduced by R loop inhibition or Mcm complex depletion. Thus, R loops contribute to replication origin specification that promotes DSB resolution in CSR. This suggests a mechanism for the dependence of CSR on S phase and cell division.

  15. Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein.

    Science.gov (United States)

    Doran, T J; Loh, S M; Firth, N; Skurray, R A

    1994-07-01

    The nucleotide sequences of the conjugative F plasmid transfer region genes, traV and traR, have been determined. The deduced amino acid sequence of TraV indicated that it may be a lipoprotein; this was confirmed by examining the effect of globomycin on traV-encoded polypeptides synthesized in minicells. An open reading frame that may represent a previously undetected transfer gene, now designated trbG, was identified immediately upstream of traV. The deduced product of traR was found to share amino acid similarity with proteins from the bacteriophages 186 and P2 and with the dosage-dependent dnaK suppressor DksA.

  16. Transient replication of a hepatitis C virus genotype 1b replicon chimera encoding NS5A-5B from genotype 3a.

    Science.gov (United States)

    Kylefjord, Helen; Danielsson, Axel; Sedig, Susanne; Belda, Oscar; Wiktelius, Daniel; Vrang, Lotta; Targett-Adams, Paul

    2014-01-01

    Although hepatitis C virus (HCV) is a pathogen of global significance, experimental therapies in current clinical development include highly efficacious all-oral combinations of HCV direct-acting antivirals (DAAs). If approved for use, these new treatment regimens will impact dramatically upon our capacity to eradicate HCV in the majority of virus-infected patients. However, recent data from late-stage clinical evaluations demonstrated that individuals infected with HCV genotype (GT) 3 responded less well to all-oral DAA combinations than patients infected with other HCV GTs. In light of these observations, the present study sought to expand the number of molecular tools available to investigate small molecule-mediated inhibition of HCV GT3 NS5A and NS5B proteins in preclinical tissue-culture systems. Accordingly, a novel subgenomic HCV replicon chimera was created by utilizing a GT1b backbone modified to produce NS5A and NS5B proteins from a consensus sequence generated from HCV GT3a genomic sequences deposited online at the European Hepatitis C Virus database. This approach avoided the need to isolate and amplify HCV genomes from sera derived from HCV-infected patients. The replicon chimera, together with a version engineered to express NS5A encoding a Y93H mutation, demonstrated levels of replication in transient assays robust enough to assess accurate antiviral activities of inhibitors representing different HCV DAA classes. Thus, the replicon chimera represents a new simple molecular tool suitable for drug discovery programmes aimed at investigating, understanding, and improving GT3a activities of HCV DAAs targeting NS5A or NS5B.

  17. A Computational Model Of Episodic Memory Encoding In Dentate Gyrus Hippocampus Sub Region As Pattern Separator Using ART Neural Network

    Directory of Open Access Journals (Sweden)

    Sudhakar Tripathi

    2014-01-01

    Full Text Available This paper presents a computational model of encoding and separation of episodic events via Dentate Gyrus sub region of hippocampus. The proposed model is implemented using adaptive resonance theory (ART neural network. The model incorporates the proposed method encoding of episodes in binary patterns. The proposed model is capable of achieving high level of pattern encoding and separation. The separation achieved for different episodes and events shown by the results are very good depending upon the vigilance parameter of the model. Vigilance parameter is assumed to be correlated to attention attribute while perceiving an episode of an event.

  18. Partial deletion of stem-loop 2 in the 3' untranslated region of foot-and-mouth disease virus identifies a region that is dispensable for virus replication.

    Science.gov (United States)

    Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-08-01

    The 3' untranslated region (3' UTR) of the foot-and-mouth disease virus (FMDV) genome plays an essential role in virus replication, but the properties of the 3' UTR are not completely defined. In order to determine the role of different regions of the 3' UTR in FMDV replication, we conducted site-directed mutagenesis of the 3' UTR of FMDV serotype O IND R2/1975 using a cDNA clone. Through independent serial deletions in various regions of the 3' UTR, we demonstrated that deletion of nucleotides between the stem-loop (SL) structures and in the beginning and the end regions of the SL2 structure could be lethal for FMDV replication. However, a block deletion of 20 nucleotides (nt 60 to 79) in the middle of SL2 did not affect the viability of FMDV in cultured cells. Characterisation of the deletion mutant virus (O(R2/1975-Δ3'UTR 60-79)) revealed no significant difference in growth kinetics or RNA replication ability compared to the parental virus. However, the mutant virus produced slightly larger plaques when compared to the parental virus. This is the first description of a dispensable 20-nucleotide region in SL2 of the FMDV 3' UTR.

  19. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis.

    Science.gov (United States)

    Dreier, J; Meletzus, D; Eichenlaub, R

    1997-03-01

    The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, causing bacterial wilt and canker, harbors two plasmids, pCM1 (27.5 kb) and pCM2 (72 kb), carrying genes involved in virulence. The region of plasmid pCM2 encoding the pathogenicity locus pat-1 was mapped by deletion analysis and complementation studies to a 1.5-kb Bg/II/SmaI DNA fragment. Introduction of the pat-1 region into endophytic, plasmid-free isolates of C. michiganensis subsp. michiganensis converted these bacteria into virulent pathogens. Based on the nucleotide sequence of the pat-1 region, an open reading frame (ORF1) can be predicted, coding for a protein of 280 amino acids and 29.7 kDa with homology to serine proteases. Introduction of a frame-shift mutation in ORF1 leads to a loss of the pathogenic phenotype. Northern (RNA) hybridizations identified an 1.5-knt transcript of the pat-1 structural gene. The site of transcription initiation was mapped by primer extension and a typical -10/-35 region was located with significant homology to the consensus Escherichia coli sigma 70 and Bacillus subtilis sigma 43 promoters. Downstream of the pat-1 structural gene, a peculiar repetitive sequence motif (pat-1rep) is located, consisting of 20 direct tandem repeats preceded by a run of 14 guanosine residues. DNA sequences homologous to pat-1rep were isolated and characterized from four virulent C. michiganensis subsp. michiganensis strains exhibiting a high extent of structural conservation. The deletion of this repetitive sequence reduced virulence significantly but did not lead to a complete loss of the virulence phenotype.

  20. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    Energy Technology Data Exchange (ETDEWEB)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L. (Univ. of Basel (Switzerland))

    1990-03-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.

  1. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.

    Directory of Open Access Journals (Sweden)

    Erin N Smith

    2011-06-01

    Full Text Available Although a highly heritable and disabling disease, bipolar disorder's (BD genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7. To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

  2. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.

    Directory of Open Access Journals (Sweden)

    Erin N Smith

    2011-06-01

    Full Text Available Although a highly heritable and disabling disease, bipolar disorder's (BD genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7. To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

  3. Molecular characterization of genes encoding the quinolone resistance determining regions of Malaysian Streptococcus pneumoniae strains

    Directory of Open Access Journals (Sweden)

    Kumari N

    2008-01-01

    Full Text Available Genes encoding the quinolones resistance determining regions (QRDRs in Streptococcus pneumoniae were detected by PCR and the sequence analysis was carried out to identify point mutations within these regions. The study was carried out to observe mutation patterns among S. pneumoniae strains in Malaysia. Antimicrobial susceptibility testing of 100 isolates was determined against various antibiotics, out of which 56 strains were categorised to have reduced susceptibility to ciprofloxacin (≥2 μg/mL. These strains were subjected to PCR amplification for presence of the gyrA, parC , gyrB and parE genes. Eight representative strains with various susceptibilities to fluoroquinolones were sequenced. Two out of the eight isolates that were sequenced were shown to have a point mutation in the gyrA gene at position Ser81. The detection of mutation at codon Ser81 of the gyrA gene suggested the potential of developing fluoroquinolone resistance among S. pneumoniae isolates in Malaysia. However, further experimental work is required to confirm the involvement of this mutation in the development of fluoroquinolone resistance in Malaysia.

  4. Selection and mapping of replication origins from a 500-kb region of the human X chromosome and their relationship to gene expression.

    Science.gov (United States)

    Rivella, S; Palermo, B; Pelizon, C; Sala, C; Arrigo, G; Toniolo, D

    1999-11-15

    In higher eukaryotes the mechanism controlling initiation of DNA replication remains largely unknown. New technologies are needed to shed light on how DNA replication initiates along the genome in specific regions. To identify the human DNA sequence requirements for initiation of replication, we developed a new method that allows selection of replication origins starting from large genomic regions of human DNA. We repeatedly isolated 15 new putative replication origins (PROs) from a human DNA region of 500 kb in which 17 genes have previously been characterized. Fine-mapping of these PROs showed that DNA replication can initiate at many specific points along actively transcribed DNA in the cell lines used for our selection. In conclusion, in this paper we describe a new method to identify PROs that suggests that the availability of initiation sites is dependent on the transcriptional state of the DNA.

  5. Comparison of ENCODE region SNPs between Cebu Filipino and Asian HapMap samples.

    Science.gov (United States)

    Marvelle, Amanda F; Lange, Leslie A; Qin, Li; Wang, Yunfei; Lange, Ethan M; Adair, Linda S; Mohlke, Karen L

    2007-01-01

    Patterns of linkage disequilibrium (LD) act as the framework for designing efficient association studies; these patterns are being studied and catalogued by The International HapMap Project. The current study assessed the transferability of tag SNPs chosen from HapMap panels to a cohort of 80 individuals from metro Cebu, Philippines, who participated in the Cebu Longitudinal Health and Nutrition Survey (CLHNS). The analyses focused on 627 single nucleotide polymorphisms (SNPs) in the central 40 kb within each of the 10 HapMap ENCODE regions. The similarity between the genetic variants in Cebu Filipino samples and HapMap panels was examined using allele frequency estimates, measures of pairwise linkage disequilibrium (LD), and haplotype frequency estimates. For these measures, strong correlations were observed between the Cebu Filipino samples and the Asian panels from HapMap, with the strongest correlations observed with the Han Chinese from Beijing (CHB) panel. Tag SNPs selected using the HapMap CHB panel were particularly effective at representing the genetic variation in Cebu Filipino samples. These results suggest that the HapMap data will be an effective resource for future studies in Cebu Filipino samples.

  6. Curing of plasmid pBMB28 from Bacillus thuringiensis YBT-020 using an unstable replication region.

    Science.gov (United States)

    Wang, Pengxia; Zhu, Qian; Shang, Hui; Zhu, Yiguang; Sun, Ming

    2016-02-01

    Bacillus thuringiensis serovar finitimus strain YBT-020 is the well-studied spore-crystal association (SCA) phenotypic strain, whose parasporal crystals adhere to spore after lysis of the mother cell. Its endogenous plasmids pBMB26 and pBMB28 were proved essential for this SCA phenotype. In our previous study, using conventional methods, pBMB26 cured derivative and both pBMB26 and pBMB28 cured derivative of YBT-020 were obtained. However, YBT-020 solely cured of pBMB28 could not be obtained. In this study, an unstable replication region of pBMB28 was identified and was used to construct an incompatible plasmid pRep28B. This incompatible plasmid was successfully used to cure plasmid pBMB28 and was easily eliminated through segregational instability under the optimum growth temperature of YBT-020. Therefore, an endogenous plasmid was cured from the B. thuringiensis strain utilizing plasmid incompatibility. Moreover, using an unstable replication region instead of a temperature sensitive (Ts) replication region is better to cure the incompatible plasmid because it can avoid culturing at higher temperature. This method provides an efficient method for plasmid curing in B. thuringiensis and other bacteria.

  7. Efficient replication and expression of murine leukemia virus with major deletions in the enhancer region of U3

    DEFF Research Database (Denmark)

    Pedersen, K.; Lovmand, S.; Bonefeld-Jørgensen, Eva Cecilie;

    1992-01-01

    The effect of deletions within the enhancer region in the U3 part of the LTR derived from the murine retrovirus Akv was studied. The deletions were stably transmitted through normal virus replication as shown by sequence analysis of cloned polymerase chain reaction product of the cDNA copy...... level of virus with the deleted LTRs all reached the level of virus with the intact LTR. We propose that stimulatory cis-acting sequences either adjacent to the site of proviral integration or in the coding regions of the provirus may compensate for deletions in the LTR....

  8. The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus.

    Science.gov (United States)

    Deutsch, Manuel J; Ott, Elisabeth; Papior, Peer; Schepers, Aloys

    2010-03-01

    The Epstein-Barr virus efficiently infects human B cells. The EBV genome is maintained extrachromosomally and replicates synchronously with the host's chromosomes. The latent origin of replication (oriP) guarantees plasmid stability by mediating two basic functions: replication and segregation of the viral genome. While the segregation process of EBV genomes is well understood, little is known about its chromatin association and nuclear distribution during interphase. Here, we analyzed the nuclear localization of EBV genomes and the role of functional oriP domains FR and DS for basic functions such as the transformation of primary cells, their role in targeting EBV genomes to distinct nuclear regions, and their association with epigenetic domains. Fluorescence in situ hybridization visualized the localization of extrachromosomal EBV genomes in the regions adjacent to chromatin-dense territories called the perichromatin. Further, immunofluorescence experiments demonstrated a preference of the viral genome for histone 3 lysine 4-trimethylated (H3K4me3) and histone 3 lysine 9-acetylated (H3K9ac) nuclear regions. To determine the role of FR and DS for establishment and subnuclear localization of EBV genomes, we transformed primary human B lymphocytes with recombinant mini-EBV genomes containing different oriP mutants. The loss of DS results in a slightly increased association in H3K27me3 domains. This study demonstrates that EBV genomes or oriP-based extrachromosomal vector systems are integrated into the higher order nuclear organization. We found that viral genomes are not randomly distributed in the nucleus. FR but not DS is crucial for the localization of EBV in perichromatic regions that are enriched for H3K4me3 and H3K9ac, which are hallmarks of transcriptionally active regions.

  9. Role of the short telomeric repeat region in Marek's disease virus replication, genomic integration, and lymphomagenesis.

    Science.gov (United States)

    Greco, Annachiara; Fester, Nadine; Engel, Annemarie T; Kaufer, Benedikt B

    2014-12-01

    Marek's disease virus (MDV) is a cell-associated alphaherpesvirus that causes generalized polyneuritis and T-cell lymphomas in chickens. MDV is able to integrate its genome into host telomeres, but the mechanism of integration is poorly understood. The MDV genome harbors two arrays of telomeric repeats (TMR) at the ends of its linear genome: multiple telomeric repeats (mTMR), with a variable number of up to 100 repeats, and short telomeric repeats (sTMR), with a fixed number of 6 repeats. The mTMR have recently been shown to play an important role in MDV integration and tumor formation; however, the functions of the sTMR have remained unknown. In this study, we demonstrate that deletion of the sTMR in the MDV genome abrogates virus replication, while extensive mutation of the sTMR does not, indicating that the presence of the sTMR but not the sTMR sequence itself is important. Furthermore, we generated a panel of truncation mutants to determine the minimal length of the sTMR and observed a direct correlation between sTMR length and MDV replication. To address the role of sTMR in MDV replication, integration, and tumorigenesis, sTMR sequences were replaced by a scrambled repeated sequence (vsTMR_mut). vsTMR_mut replicated comparably to parental and revertant viruses in vitro. In vivo, however, a significant reduction in disease and tumor incidence was observed in chickens infected with vsTMR_mut that also correlated with a reduced number of viral integration sites in tumor cells. Taken together, our data demonstrate that the sTMR play a central role in MDV genome replication, pathogenesis, and MDV-induced tumor formation. Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects chickens and causes high economic losses in the poultry industry. MDV integrates its genetic material into host telomeres, a process that is crucial for efficient tumor formation. The MDV genome harbors two arrays of telomeric repeats (TMR) at the ends of its linear

  10. Transcriptional analyses of the region of the equine herpesvirus type 4 genome encoding glycoproteins I and E.

    Science.gov (United States)

    Damiani, A M; Jang, H K; Matsumura, T; Yokoyama, N; Miyazawa, T; Mikami, T

    1999-01-01

    To map the transcripts encoding the equine herpesvirus type 4 (EHV-4) glycoproteins I (gI) and E (gE), transcriptional analyses were performed at the right part of the unique short segment of EHV-4 genome. The results revealed that the gI gene is encoded by a 1.6-kb transcript which is 3' coterminal with a 3.0-kb gD mRNA while the gE gene is encoded by two transcripts of 3.5- and 2.4-kb in size. The transcriptional patterns described in this study for the EHV-4 gI and gE are similar to those found in the equivalent region of herpes simplex virus type 1 and feline herpesvirus type 1. Characterization of EHV-4 gI and gE glycoprotein genes may facilitate future studies to define their roles in the EHV-4 infection.

  11. Prophage-Encoded Staphylococcal Enterotoxin A: Regulation of Production in Staphylococcus aureus Strains Representing Different Sea Regions.

    Science.gov (United States)

    Zeaki, Nikoleta; Susilo, Yusak Budi; Pregiel, Anna; Rådström, Peter; Schelin, Jenny

    2015-12-09

    The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA) gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards.

  12. Prophage-Encoded Staphylococcal Enterotoxin A: Regulation of Production in Staphylococcus aureus Strains Representing Different Sea Regions

    Directory of Open Access Journals (Sweden)

    Nikoleta Zeaki

    2015-12-01

    Full Text Available The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards.

  13. Parallel Engagement of Regions Associated with Encoding and Later Retrieval Forms Durable Memories

    NARCIS (Netherlands)

    Wagner, I.; Buuren, M. van; Bovy, L.; Fernandez, G.S.E.

    2016-01-01

    The fate of a memory is partly determined at initial encoding. However, the behavioral consequences of memory formation are often tested only once and shortly after learning, which leaves the neuronal predictors for the formation of durable memories largely unknown. Here, we hypothesized that durabl

  14. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions.

    Directory of Open Access Journals (Sweden)

    Jennifer R Plourde

    Full Text Available Highly pathogenic avian influenza A (HPAI, subtype H5N1, remains an emergent threat to the human population. While respiratory disease is a hallmark of influenza infection, H5N1 has a high incidence of neurological sequelae in many animal species and sporadically in humans. We elucidate the temporal/spatial infection of H5N1 in the brain of ferrets following a low dose, intranasal infection of two HPAI strains of varying neurovirulence and lethality. A/Vietnam/1203/2004 (VN1203 induced mortality in 100% of infected ferrets while A/Hong Kong/483/1997 (HK483 induced lethality in only 20% of ferrets, with death occurring significantly later following infection. Neurological signs were prominent in VN1203 infection, but not HK483, with seizures observed three days post challenge and torticollis or paresis at later time points. VN1203 and HK483 replication kinetics were similar in primary differentiated ferret nasal turbinate cells, and similar viral titers were measured in the nasal turbinates of infected ferrets. Pulmonary viral titers were not different between strains and pathological findings in the lungs were similar in severity. VN1203 replicated to high titers in the olfactory bulb, cerebral cortex, and brain stem; whereas HK483 was not recovered in these tissues. VN1203 was identified adjacent to and within the olfactory nerve tract, and multifocal infection was observed throughout the frontal cortex and cerebrum. VN1203 was also detected throughout the cerebellum, specifically in Purkinje cells and regions that coordinate voluntary movements. These findings suggest the increased lethality of VN1203 in ferrets is due to increased replication in brain regions important in higher order function and explains the neurological signs observed during H5N1 neurovirulence.

  15. RUNX1 induces DNA replication independent of active DNA demethylation at SPI1 regulatory regions.

    Science.gov (United States)

    Goyal, Shubham; Suzuki, Takahiro; Li, Jing-Ru; Maeda, Shiori; Kishima, Mami; Nishimura, Hajime; Shimizu, Yuri; Suzuki, Harukazu

    2017-04-04

    SPI1 is an essential transcription factor (TF) for the hematopoietic lineage, in which its expression is tightly controlled through a -17-kb upstream regulatory region and a promoter region. Both regulatory regions are demethylated during hematopoietic development, although how the change of DNA methylation status is performed is still unknown. We found that the ectopic overexpression of RUNX1 (another key TF in hematopoiesis) in HEK-293T cells induces almost complete DNA demethylation at the -17-kb upstream regulatory region and partial but significant DNA demethylation at the proximal promoter region. This DNA demethylation occurred in mitomycin-C-treated nonproliferating cells at both regulatory regions, suggesting active DNA demethylation. Furthermore, ectopic RUNX1 expression induced significant endogenous SPI1 expression, although its expression level was much lower than that of natively SPI1-expressing monocyte cells. These results suggest the novel role of RUNX1 as an inducer of DNA demethylation at the SPI1 regulatory regions, although the mechanism of RUNX1-induced DNA demethylation remains to be explored.

  16. Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV BZLF-1 (ZEBRA protein: implications for interactions with NF-κB and p53

    Directory of Open Access Journals (Sweden)

    Ghoda Lucy Y

    2011-09-01

    Full Text Available Abstract Background The carboxyl terminal of Epstein-Barr virus (EBV ZEBRA protein (also termed BZLF-1 encoded replication protein Zta or ZEBRA binds to both NF-κB and p53. The authors have previously suggested that this interaction results from an ankyrin-like region of the ZEBRA protein since ankyrin proteins such as IκB interact with NF-κB and p53 proteins. These interactions may play a role in immunopathology and viral carcinogenesis in B lymphocytes as well as other cell types transiently infected by EBV such as T lymphocytes, macrophages and epithelial cells. Methods Randomization of the ZEBRA terminal amino acid sequence followed by statistical analysis suggest that the ZEBRA carboxyl terminus is most closely related to ankyrins of the invertebrate cactus IκB-like protein. This observation is consistent with an ancient origin of ZEBRA resulting from a recombination event between an ankyrin regulatory protein and a fos/jun DNA binding factor. In silico modeling of the partially solved ZEBRA carboxyl terminus structure using PyMOL software demonstrate that the carboxyl terminus region of ZEBRA can form a polymorphic structure termed ZANK (ZEBRA ANKyrin-like region similar to two adjacent IκB ankyrin domains. Conclusions Viral capture of an ankyrin-like domain provides a mechanism for ZEBRA binding to proteins in the NF-κB and p53 transcription factor families, and also provides support for a process termed "Ping-Pong Evolution" in which DNA viruses such as EBV are formed by exchange of information with the host genome. An amino acid polymorphism in the ZANK region is identified in ZEBRA from tumor cell lines including Akata that could alter binding of Akata ZEBRA to the p53 tumor suppressor and other ankyrin binding protein, and a novel model of antagonistic binding interactions between ZANK and the DNA binding regions of ZEBRA is suggested that may be explored in further biochemical and molecular biological models of viral

  17. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity.

    Science.gov (United States)

    Li, J; Lu, Z; He, J; Chen, Q; Wang, X; Kang, L; Li, X-D

    2016-12-01

    Whereas the vertebrate muscle myosin heavy chains (MHCs) are encoded by a family of Mhc genes, most insects examined to date contain a single Mhc gene and produce all of the different MHC isoforms by alternative RNA splicing. Here, we found that the migratory locust, Locusta migratoria, has one Mhc gene, which contains 41 exons, including five alternative exclusive exons and one differently included penultimate exon, and potentially encodes 360 MHC isoforms. From the adult L. migratoria, we identified 14 MHC isoforms (including two identical isoforms): four from flight muscle (the thorax dorsal longitudinal muscle), three from jump muscle (the hind leg extensor tibiae muscle) and seven from the abdominal intersegmental muscle. We purified myosins from flight muscle and jump muscle and characterized their motor activities. At neutral pH, the flight and the jump muscle myosins displayed similar levels of in vitro actin-gliding activity, whereas the former had a slightly higher actin-activated ATPase activity than the latter. Interestingly, the pH dependences of the actin-activated ATPase activity of these two myosins are different. Because the dominant MHC isoforms in these two muscles are identical except for the two alternative exon-encoding regions, we propose that these two alternative regions modulate the pH dependence of L. migratoria muscle myosin.

  18. Spacetime replication of continuous variable quantum information

    Science.gov (United States)

    Hayden, Patrick; Nezami, Sepehr; Salton, Grant; Sanders, Barry C.

    2016-08-01

    The theory of relativity requires that no information travel faster than light, whereas the unitarity of quantum mechanics ensures that quantum information cannot be cloned. These conditions provide the basic constraints that appear in information replication tasks, which formalize aspects of the behavior of information in relativistic quantum mechanics. In this article, we provide continuous variable (CV) strategies for spacetime quantum information replication that are directly amenable to optical or mechanical implementation. We use a new class of homologically constructed CV quantum error correcting codes to provide efficient solutions for the general case of information replication. As compared to schemes encoding qubits, our CV solution requires half as many shares per encoded system. We also provide an optimized five-mode strategy for replicating quantum information in a particular configuration of four spacetime regions designed not to be reducible to previously performed experiments. For this optimized strategy, we provide detailed encoding and decoding procedures using standard optical apparatus and calculate the recovery fidelity when finite squeezing is used. As such we provide a scheme for experimentally realizing quantum information replication using quantum optics.

  19. Replication Restart in Bacteria.

    Science.gov (United States)

    Michel, Bénédicte; Sandler, Steven J

    2017-07-01

    In bacteria, replication forks assembled at a replication origin travel to the terminus, often a few megabases away. They may encounter obstacles that trigger replisome disassembly, rendering replication restart from abandoned forks crucial for cell viability. During the past 25 years, the genes that encode replication restart proteins have been identified and genetically characterized. In parallel, the enzymes were purified and analyzed in vitro, where they can catalyze replication initiation in a sequence-independent manner from fork-like DNA structures. This work also revealed a close link between replication and homologous recombination, as replication restart from recombination intermediates is an essential step of DNA double-strand break repair in bacteria and, conversely, arrested replication forks can be acted upon by recombination proteins and converted into various recombination substrates. In this review, we summarize this intense period of research that led to the characterization of the ubiquitous replication restart protein PriA and its partners, to the definition of several replication restart pathways in vivo, and to the description of tight links between replication and homologous recombination, responsible for the importance of replication restart in the maintenance of genome stability. Copyright © 2017 American Society for Microbiology.

  20. The core 2 beta-1,6-N-acetylglucosaminyltransferase-M encoded by bovine herpesvirus 4 is not essential for virus replication despite contributing to post-translational modifications of structural proteins.

    Science.gov (United States)

    Markine-Goriaynoff, Nicolas; Gillet, Laurent; Karlsen, Odd A; Haarr, Lars; Minner, Frédéric; Pastoret, Paul-Pierre; Fukuda, Minoru; Vanderplasschen, Alain

    2004-02-01

    The Bo17 gene of bovine herpesvirus 4 (BoHV-4) is the only virus gene known to date that encodes a homologue of the cellular core 2 beta-1,6-N-acetylglucosaminyltransferase-mucine type (C2GnT-M). Recently, our phylogenetic study revealed that the Bo17 gene has been acquired from an ancestor of the African buffalo around 1.5 million years ago. Despite this recent origin, the Bo17 sequence has spread to fixation in the virus population possibly by natural selection. Supporting the latter hypothesis, it has been shown by our group for the V. test strain that Bo17 is expressed during BoHV-4 replication in vitro, and that Bo17 expression product (pBo17) has all three enzymic activities exhibited by cellular C2GnT-M, i.e. core 2, core 4 and I branching activities. In the present study, firstly it was investigated whether encoding a functional C2GnT-M is a general property of BoHV-4 strains. Analysis of nine representative strains of the BoHV-4 species revealed that all of them express the Bo17 gene and the associated core 2 branching activity during virus replication in vitro. Secondly, in order to investigate the roles of Bo17, its kinetic class of expression was analysed and a deleted recombinant strain was produced. These experiments revealed that Bo17 is expressed as an early gene which is not essential for virus replication in vitro. However, comparison of the structural proteins, produced by the wild-type, the revertant and the deleted viruses, by 2D gels demonstrated that pBo17 contributes to the post-translational modifications of structural proteins. Possible roles of Bo17 in vivo are discussed.

  1. Regional activation of the human medial temporal lobe during intentional encoding of objects and positions

    DEFF Research Database (Denmark)

    Ramsøy, T.Z.; Liptrot, Matthew George; Skimminge, A.

    2009-01-01

    The medial temporal lobe (MTL) consists of several regions thought to be involved in learning and memory. However, the degree of functional specialization among these regions remains unclear. Previous studies have demonstrated effects of both content and processing stage, but findings have been i....... These results provide additional evidence for functional specialization within the MTL, but were less clear regarding the specific nature of content specificity in these regions. © 2009 Elsevier Inc....

  2. Sustained Inhibition of HBV Replication In Vivo after Systemic Injection of AAVs Encoding Artificial Antiviral Primary MicroRNAs

    Directory of Open Access Journals (Sweden)

    Mohube Betty Maepa

    2017-06-01

    Full Text Available Chronic infection with hepatitis B virus (HBV remains a problem of global significance and improving available treatment is important to prevent life-threatening complications arising in persistently infected individuals. HBV is susceptible to silencing by exogenous artificial intermediates of the RNA interference (RNAi pathway. However, toxicity of Pol III cassettes and short duration of silencing by effectors of the RNAi pathway may limit anti-HBV therapeutic utility. To advance RNAi-based HBV gene silencing, mono- and trimeric artificial primary microRNAs (pri-miRs derived from pri-miR-31 were placed under control of the liver-specific modified murine transthyretin promoter. The sequences, which target the X sequence of HBV, were incorporated into recombinant hepatotropic self-complementary adeno-associated viruses (scAAVs. Systemic intravenous injection of the vectors into HBV transgenic mice at a dose of 1 × 1011 per animal effected significant suppression of markers of HBV replication for at least 32 weeks. The pri-miRs were processed according to the intended design, and intrahepatic antiviral guide sequences were detectable for 40 weeks after the injection. There was no evidence of toxicity, and innate immunostimulation was not detectable following the injections. This efficacy is an improvement on previously reported RNAi-based inhibition of HBV replication and is important to clinical translation of the technology.

  3. Influence of the Leader protein coding region of foot-and-mouth disease virus on virus replication

    DEFF Research Database (Denmark)

    Belsham, Graham

    2013-01-01

    The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding......, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent...... on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production....

  4. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...... is observed with chromatin but not with naked DNA and does not involve dissociation of core histones from chromatin. Moreover, these effects require histone H2A/H2B dimers in addition to histone H3/H4. We additionally tested whether the DEK protein affects DNA-utilizing processes and found that the DEK...

  5. Influence of the Leader protein coding region of foot-and-mouth disease virus on virus replication.

    Science.gov (United States)

    Belsham, Graham J

    2013-07-01

    The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding sequence is lethal for the virus, whereas loss of the Lb coding sequence results in a virus that is viable in BHK cells. In addition, it is now shown that deletion of the 'spacer' region between these two initiation codons can be tolerated. Growth of the virus precisely lacking just the Lb coding sequence resulted in a previously undetected accumulation of frameshift mutations within the 'spacer' region. These mutations block the inappropriate fusion of amino acid sequences to the amino-terminus of the capsid protein precursor. Modification, by site-directed mutagenesis, of the Lab initiation codon, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production.

  6. Control regions for chromosome replication are conserved with respect to both sequence and location between Escherichia coli strains

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob; Charbon, Godefroid; Krogfelt, Karen Angeliki;

    2015-01-01

    In Escherichia coli, chromosome replication is initiated from oriC by the DnaA initiator protein associated with ATP. Three non-coding regions contribute to the activity of DnaA. The datA locus is instrumental in conversion of DnaAATP to DnaAADP (DDAH; datA dependent DnaAATP hydrolysis) whereas Dna......A rejuvenation sequences 1 and 2 (DARS1 and DARS2) reactivate DnaAADP to DnaAATP. The structural organization of oriC, datA, DARS1 and DARS2 were found conserved between 59 fully sequenced E. coli genomes, with differences primarily in the non-functional spacer regions between key protein binding sites....... Competition experiments during balanced growth in rich medium and during mouse colonization indicated roles of datA, DARS1 and DARS2 for bacterial fitness although the relative contribution of each region differed between growth conditions. We suggest that this fitness cost contribute to conservation of both...

  7. PTB Binds to the 3’ Untranslated Region of the Human Astrovirus Type 8: A Possible Role in Viral Replication

    Science.gov (United States)

    Espinosa-Hernández, Wendy; Velez-Uriza, Dora; Valdés, Jesús; Vélez-Del Valle, Cristina; Salas-Benito, Juan; Martínez-Contreras, Rebeca; García-Espítia, Matilde; Salas-Benito, Mariana; Vega-Almeida, Tania; De Nova-Ocampo, Mónica

    2014-01-01

    The 3′ untranslated region (3′UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3′UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3′UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3′UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3′UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3′UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3′UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3′UTR HAstV-8 and is required or participates in viral replication. PMID:25406089

  8. Nucleotide sequence and molecular genetic analysis of the vaccinia virus HindIII N/M region encoding the genes responsible for resistance to alpha-amanitin.

    Science.gov (United States)

    Tamin, A; Villarreal, E C; Weinrich, S L; Hruby, D E

    1988-07-01

    The genomic location of the gene(s) which provides vaccinia virus (VV) alpha-amanitin-resistant mutants with a drug-resistant phenotype have been mapped to the HindIII N/M region of the genome by the use of marker rescue techniques [E. C. Villarreal and D. E. Hruby (1986) J. Virol. 57, 65-70]. Nucleotide sequencing of a 2356-bp HindIII-Sau3A fragment of the vaccinia virus genome encompassing this region reveals the presence of two complete leftward-reading open reading frames (ORFs, N2 and M1) and two incomplete ORFs (N1 and M2). By computer analysis the N2 and M1 ORFs would be predicted to encode soluble VV polypeptides with molecular weights of approximately 20 and 48 kDa, respectively. The N2 and M1 ORFs have extremely A-T-rich 5'-proximal sequences, consistent with previous data regarding the location and A-T-richness of viral early promoters. Likewise, the consensus signal believed to be involved in terminating VV early gene transcription, TTTTTNT, was evident at the 3'-boundary of both the N2 and M1 ORFs suggesting that these genes may be VV early genes. The in vivo transcriptional activity, orientation, and limits of these putative transcriptional units were investigated by Northern blot, nuclease S1, and primer extension analysis. Both N2- and M1-specific transcripts were detected in the cytoplasm of VV-infected cells, suggesting that these loci are bonafide viral genes. Time-course nuclease S1 experiments revealed that the N2 gene was transcribed exclusively prior to VV DNA replication. In contrast, the M1 gene was transcribed throughout infection, although different start sites were used at early versus late times postinfection. These results are discussed in relation to the drug-resistant phenotype and future experiments to identify the viral gene product responsible.

  9. A novel deletion/insertion caused by a replication error in the β-globin gene locus control region.

    Science.gov (United States)

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Meley, Roland; Pondarré, Corinne; Francina, Alain

    2011-01-01

    Deletions in the β-globin locus control region (β-LCR) lead to (εγδβ)(0)-thalassemia [(εγδβ)(0)-thal]. In patients suffering from these rare deletions, a normal hemoglobin (Hb), phenotype is found, contrasting with a hematological thalassemic phenotype. Multiplex-ligation probe amplification (MLPA) is an efficient tool to detect β-LCR deletions combined with long-range polymerase chain reaction (PCR) and DNA sequencing to pinpoint deletion breakpoints. We present here a novel 11,155 bp β-LCR deletion found in a French Caucasian patient which removes DNase I hypersensitive site 2 (HS2) to HS4 of the β-LCR. Interestingly, a 197 bp insertion of two inverted sequences issued from the HS2-HS3 inter-region is present and suggests a complex rearrangement during replication. Carriers of this type of thalassemia can be misdiagnosed as an α-thal trait. Consequently, a complete α- and β-globin gene cluster analysis is required to prevent a potentially damaging misdiagnosis in genetic counselling.

  10. Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase.

    Science.gov (United States)

    Weir, J P; Moss, B

    1987-05-01

    Nine recombinant vaccinia viruses that contain overlapping segments of the putative promoter region of the vaccinia virus thymidine kinase (TK) gene linked to DNA coding for the prokaryotic enzyme chloramphenicol acetyltransferase (CAT) were constructed. In each case, the RNA start site and 5 bp of DNA downstream were retained. No significant difference in CAT expression occurred as the deletion was extended from 352 to 32 bp before the RNA start site. Deletion of a further 10 bp, however, led to complete cessation of early promoter activity. Primer extension analysis of the 5' ends of the transcripts verified that the natural TK RNA start site was still used when only 32 bp of upstream DNA remained. Loss of early promoter activity was previously found when deletions were extended from 31 to 24 bp before the RNA start site of another vaccinia gene that is expressed constitutively throughout infection (M.A. Cochran, C. Puckett, and B. Moss, 1985, Proc. Natl. Acad. Sci. USA 82, 19-23). Sequence similarities in the promoter regions of these two genes were noted.

  11. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP...... gene by electrophoretic mobility shift assay (EMSA) revealed specific binding of proteins from rat liver nuclear extracts to potential recognition sequences of NF-1/CTF, Sp1, AP-1, C/EBP and HNF-3. In addition, specific binding to a DR-1 type element was observed. By using in vitro translated...... for the ACBP DR-1 element. Addition of peroxisome proliferators (PP) to H4IIEC3 rat hepatoma cells led to an increase in the ACBP mRNA level, indicating that the DR-1 element could be a functional peroxisome proliferator responsive element (PPRE). Analysis of the ACBP promoter by transient transfection showed...

  12. Structural characteristics of the variable regions of immunoglobulin genes encoding a pathogenic autoantibody in murine lupus.

    Science.gov (United States)

    Tsao, B P; Ebling, F M; Roman, C; Panosian-Sahakian, N; Calame, K; Hahn, B H

    1990-02-01

    We have studied several monoclonal anti-double-stranded (ds) DNA antibodies for their ability to accelerate lupus nephritis in young NZB X NZW F1 female mice and to induce it in BALB/c mice. Two identified as pathogens in both strains have characteristics previously associated with nephritogenicity: expression of IgG2a isotype and IdGN2 idiotype. Both pathogenic antibodies used the combination of genes from the VHJ558 and VK9 subfamilies. Two weak pathogens failed to accelerate nephritis in young BW mice, but induced lupus nephritis in BALB/c mice. They both express IdGN2; one is cationic and an IgG3, the other is an IgG2a. Additional MAbs (some IgG2a, one IdGN2-positive) did not accelerate or induce nephritis. We have cloned and sequenced the variable regions of the immunoglobulin genes of one pathogenic autoantibody. No unique V, D, or J gene segments and no evidence of unusual mechanisms in generating diversity were used to construct this antibody. These data argue against use of unique abnormal Ig genes by systemic lupus erythematosus individuals to construct pathogenic autoantibody subsets. Instead, the major abnormality may be immunoregulatory.

  13. DNA replication origins in archaea

    OpenAIRE

    Zhenfang eWu; Jingfang eLiu; Haibo eYang; Hua eXiang

    2014-01-01

    DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to ...

  14. Characterization of the replication region of the Bacillus subtilis plasmid pLS20 : a novel type of replicon

    NARCIS (Netherlands)

    Meijer, WJJ; De Boer, AJ; van Tongeren, S; Venema, G; Bron, S

    1995-01-01

    A 3.1 kb fragment of the large (~55 kb) Bacillus subtilis plasmid pLS20 containing all the information for autonomous replication was cloned and sequenced. In contrast to the parental plasmid, derived minireplicons were unstably maintained. Using deletion analysis the fragment essential and sufficie

  15. Is CD36 gene polymorphism in region encoding lipid-binding domain associated with early onset CAD?

    Science.gov (United States)

    Rać, Monika; Safranow, Krzysztof; Kurzawski, Grzegorz; Krzystolik, Andrzej; Chlubek, Dariusz

    2013-11-01

    CD36 is a fatty acid translocase in striated muscle cells and cardiomyocytes. Some study suggested that alterations in CD36 gene may be associated with coronary artery disease (CAD) risk. The aim of the current study was to compare the frequency of CD36 variants in region encoding lipid-binding domain in Caucasian patients with early-onset CAD, no-CAD adult controls and neonates. The study group comprised 100 patients with early onset CAD. The genetic control groups were 306 infants and 40 no-CAD adults aged over 70years. Exons 4, 5 and 6 including fragments of flanking introns were studied using the denaturing high-performance liquid chromatography technique and direct sequencing. Changes detected in analyzed fragment of CD36: IVS3-6 T/C (rs3173798), IVS4-10 G/A (rs3211892), C311T (Thr104Ile, not described so far) in exon 5, G550A (Asp184Asn, rs138897347), C572T (Pro191Leu, rs143150225), G573A (Pro191Pro, rs5956) and A591T (Thr197Thr, rs141680676) in exon 6. No significant differences in the CD36 genotype, allele and haplotype frequencies were found between the three groups. Only borderline differences (p=0.066) were found between early onset CAD patients and newborns in the frequencies of 591T allele (2.00% vs 0.50%) and CGCGCGT haplotype (2.00% vs 0.50%) with both IVS3-6C and 591T variant alleles. In conclusion, CD36 variants: rs3173798, rs3211892, rs138897347, rs5956, rs143150225 rs141680676 and C311T do not seem to be involved in the risk of early-onset CAD in Caucasian population.

  16. Expression and function of variants of human catecholamine transporters lacking the fifth transmembrane region encoded by exon 6.

    Directory of Open Access Journals (Sweden)

    Chiharu Sogawa

    Full Text Available BACKGROUND: The transporters for dopamine (DAT and norepinephrine (NET are members of the Na+- and Cl--dependent neurotransmitter transporter family SLC6. There is a line of evidence that alternative splicing results in several isoforms of neurotransmitter transporters including NET. However, its relevance to the physiology and pathology of the neurotransmitter reuptake system has not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We found novel isoforms of human DAT and NET produced by alternative splicing in human blood cells (DAT and placenta (NET, both of which lacked the region encoded by exon 6. RT-PCR analyses showed a difference in expression between the full length (FL and truncated isoforms in the brain and peripheral tissues, suggesting tissue-specific alternative splicing. Heterologous expression of the FL but not truncated isoforms of DAT and NET in COS-7 cells revealed transport activity. However, immunocytochemistry with confocal microscopy and a cell surface biotinylation assay demonstrated that the truncated as well as FL isoform was expressed at least in part in the plasma membrane at the cell surface, although the truncated DAT was distributed to the cell surface slower than FL DAT. A specific antibody to the C-terminus of DAT labeled the variant but not FL DAT, when cells were not treated with Triton for permeabilization, suggesting the C-terminus of the variant to be located extracellulary. Co-expression of the FL isoform with the truncated isoform in COS-7 cells resulted in a reduced uptake of substrates, indicating a dominant negative effect of the variant. Furthermore, an immunoprecipitation assay revealed physical interaction between the FL and truncated isoforms. CONCLUSIONS/SIGNIFICANCE: The unique expression and function and the proposed membrane topology of the variants suggest the importance of isoforms of catecholamine transporters in monoaminergic signaling in the brain and peripheral tissues.

  17. Effect of truncation of the N-terminal region of the viral hemorrhagic septicemia virus (VHSV) P protein on viral replication.

    Science.gov (United States)

    Park, Ji Sun; Kim, Min Sun; Choi, Seung Hyuk; Kang, Yue Jai; Kim, Ki Hong

    2015-11-01

    The phosphoprotein (P) of viral hemorrhagic septicemia virus (VHSV) plays an essential role in viral replication by interconnecting the L protein and the N protein-RNA complex. In this study, to investigate the role of the N-terminal region of the P protein in viral replication, we mutated the first or the first and second or the first, second, and third ATG codon into TGA stop codons. The respective mutants were named P1, P2, and P3. Recombinant VHSVs containing each mutated P gene (rVHSV-P1, -P2, and -P3) were successfully generated by supplying the intact P protein in trans. The rVHSV-P2 and -P3 were not generated from cells expressing truncated P proteins (P1, P2 or P3 protein), but the rVHSV-P1 produced infectious viruses, even in cells without any P-protein-expressing plasmids. Nucleotide sequence analysis of the P gene of rVHSV-P1 showed that a mutation had occurred that resulted in the fourth amino acid (isoleucine, ATT) being changed to methionine (ATG) without a frameshift (P0.5), suggesting that strong selection pressure might facilitate mutations that are advantageous or essential for virus replication. Infectious rVHSV-P2 and -P3 were produced in cells expressing the P0.5 protein, suggesting that the first three amino acids of the P protein of VHSV are dispensable for viral replication. Furthermore, although the P1 protein was shorter than the P0.5 protein by only two amino acid residues, no viruses were produced when the P1 protein was supplied indicating that the fourth and the fifth amino acid residues are indispensable for normal P protein functions involved in viral replication.

  18. A 5'-proximal Stem-loop Structure of 5' Untranslated Region of Porcine Reproductive and Respiratory Syndrome Virus Genome Is Key for Virus Replication

    Directory of Open Access Journals (Sweden)

    Li Yanhua

    2011-04-01

    Full Text Available Abstract Background It has been well documented that the 5' untranslated region (5' UTR of many positive-stranded RNA viruses contain key cis-acting regulatory sequences, as well as high-order structural elements. Little is known for such regulatory elements controlling porcine arterivirus replication. We investigated the roles of a conserved stem-loop 2 (SL2 that resides in the 5'UTR of the genome of a type II porcine reproductive and respiratory syndrome virus (PRRSV. Results We provided genetic evidences demonstrating that 1 the SL2 in type II PRRSV 5' UTR, N-SL2, could be structurally and functionally substituted by its counterpart in type I PRRSV, E-SL2; 2 the functionality of N-SL2 was dependent upon the G-C rich stem structure, while the ternary-loop size was irrelevant to RNA synthesis; 3 serial deletions showed that the stem integrity of N-SL2 was crucial for subgenomic mRNA synthesis; and 4 when extensive base-pairs in the stem region was deleted, an alternative N-SL2-like structure with different sequence was utilized for virus replication. Conclusion Taken together, we concluded that the phylogenetically conserved SL2 in the 5' UTR was crucial for PRRSV virus replication, subgenomic mRNA synthesis in particular.

  19. Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome.

    Science.gov (United States)

    Chu, Derrick; Ren, Songyang; Hu, Stacy; Wang, Wei Gang; Subramanian, Aparna; Contreras, Deisy; Kanagavel, Vidhya; Chung, Eric; Ko, Justine; Amirtham Jacob Appadorai, Ranjit Singh; Sinha, Sanjeev; Jalali, Ziba; Hardy, David W; French, Samuel W; Arumugaswami, Vaithilingaraja

    2013-05-01

    Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE). In order to experimentally identify new cis RNA elements, we utilized an unbiased approach to introduce synonymous substitutions. The HCV genome coding for nonstructural proteins (nucleotide positions 3872 to 9097) was divided into 17 contiguous segments. The wobble nucleotide positions of each codon were replaced, resulting in 33% to 41% nucleotide changes. The HCV genome containing one of each of 17 mutant segments (S1 to S17) was tested for genome replication and infectivity. We observed that silent mutations in segment 13 (S13) (nucleotides [nt] 7457 to 7786), S14 (nt 7787 to 8113), S15 (nt 8114 to 8440), S16 (nt 8441 to 8767), and S17 (nt 8768 to 9097) resulted in impaired genome replication, suggesting CRE structures are enriched in the NS5B region. Subsequent high-resolution mutational analysis of NS5B (nt 7787 to 9289) using approximately 51-nucleotide contiguous subsegment mutant viruses having synonymous mutations revealed that subsegments SS8195-8245, SS8654-8704, and SS9011-9061 were required for efficient viral growth, suggesting that these regions act as enhancer elements. Covariant nucleotide substitution analysis of a stem-loop, JFH-SL9098, revealed the formation of an extended stem structure, which we designated JFH-SL9074. We have identified new enhancer RNA elements and an extended stem-loop in the NS5B coding region. Genetic modification of enhancer RNA elements can be utilized for designing attenuated HCV vaccine candidates.

  20. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning.

    Science.gov (United States)

    Li, G; Sudlow, G; Belmont, A S

    1998-03-09

    Recently we described a new method for in situ localization of specific DNA sequences, based on lac operator/repressor recognition (Robinett, C.C., A. Straight, G. Li, C. Willhelm, G. Sudlow, A. Murray, and A.S. Belmont. 1996. J. Cell Biol. 135:1685-1700). We have applied this methodology to visualize the cell cycle dynamics of an approximately 90 Mbp, late-replicating, heterochromatic homogeneously staining region (HSR) in CHO cells, combining immunostaining with direct in vivo observations. Between anaphase and early G1, the HSR extends approximately twofold to a linear, approximately 0.3-mum-diam chromatid, and then recondenses to a compact mass adjacent to the nuclear envelope. No further changes in HSR conformation or position are seen through mid-S phase. However, HSR DNA replication is preceded by a decondensation and movement of the HSR into the nuclear interior 4-6 h into S phase. During DNA replication the HSR resolves into linear chromatids and then recondenses into a compact mass; this is followed by a third extension of the HSR during G2/ prophase. Surprisingly, compaction of the HSR is extremely high at all stages of interphase. Preliminary ultrastructural analysis of the HSR suggests at least three levels of large-scale chromatin organization above the 30-nm fiber.

  1. Nucleolin interacts with the feline calicivirus 3' untranslated region and the protease-polymerase NS6 and NS7 proteins, playing a role in virus replication.

    Science.gov (United States)

    Cancio-Lonches, Clotilde; Yocupicio-Monroy, Martha; Sandoval-Jaime, Carlos; Galvan-Mendoza, Iván; Ureña, Luis; Vashist, Surender; Goodfellow, Ian; Salas-Benito, Juan; Gutiérrez-Escolano, Ana Lorena

    2011-08-01

    Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication.

  2. Nucleolin Interacts with the Feline Calicivirus 3′ Untranslated Region and the Protease-Polymerase NS6 and NS7 Proteins, Playing a Role in Virus Replication

    Science.gov (United States)

    Cancio-Lonches, Clotilde; Yocupicio-Monroy, Martha; Sandoval-Jaime, Carlos; Galvan-Mendoza, Iván; Ureña, Luis; Vashist, Surender; Goodfellow, Ian; Salas-Benito, Juan; Gutiérrez-Escolano, Ana Lorena

    2011-01-01

    Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3′ untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication. PMID:21680514

  3. Differential regulation of hepatitis B virus core protein expression and genome replication by a small upstream open reading frame and naturally occurring mutations in the precore region.

    Science.gov (United States)

    Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu

    2017-05-01

    Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  5. Molecular analysis of the replication origin of the Lactococcus lactis plasmid pCI305

    NARCIS (Netherlands)

    Foley, S; Bron, S; Venema, G; Daly, C; Fitzgerald, GF

    1996-01-01

    The replication origin region, ori, of the Lactococcus lactis subsp. lactis plasmid pCI305 contains three-and-one-half directly repeated 22-bp sequences and two inverted repeat sequences, IR1 and IR2. These inverted repeat sequences overlap the promoter of the repB gene, which encodes a protein (Rep

  6. Kissing interaction between 3' noncoding and coding sequences is essential for porcine arterivirus RNA replication

    NARCIS (Netherlands)

    Verheije, M.H.; Olsthoorn, R.C.L.; Kroese, M.V.; Rottier, P.J.M.; Meulenberg, J.J.M.

    2002-01-01

    We used an infectious cDNA clone of Porcine reproductive and respiratory syndrome virus (PRRSV) to investigate the presence of essential replication elements in the region of the genome encoding the structural proteins. Deletion analysis showed that a stretch of 34 nucleotides (14653 to 14686)

  7. Chromosome 7q Region Associated with Female Rheumatoid Arthritis in a British Population Fails to Replicate in a North American Case-Control Series

    Science.gov (United States)

    Korman, Benjamin D; Seldin, Michael F; Taylor, Kimberly E; Le, Julie M; Lee, Annette T; Plenge, Robert M; Amos, Christopher I; Criswell, Lindsey A; Gregersen, Peter K; Kastner, Daniel L; Remmers, Elaine F

    2009-01-01

    Objective The single nucleotide polymorphism (SNP) rs11761231 on chromosome 7q has been reported as a sexually dimorphic marker for rheumatoid arthritis susceptibility in a British population. We sought to replicate this finding and better characterize susceptibility alleles in the region in a North American population. Methods DNA from two North American collections of RA patients and controls (1605 cases and 2640 controls) was genotyped for rs11761231 and 16 additional chromosome 7q tag SNPs using Sequenom iPlex assays. Association tests were performed for each collection and also separately contrasting male cases versus male controls and female cases versus female controls. Principal components analysis (EIGENSTRAT) was used to determine association with RA before and after adjusting for population stratification in the subset of the samples (772 cases and 1213 controls) with whole genome SNP data. Results We failed to replicate association of the 7q region with rheumatoid arthritis. Initially, rs11761231 showed evidence for association with RA in the NARAC collection (p=0.0076) and rs11765576 showed association with RA in both the NARAC (p = 0.019) and RA replication (p = 0.0013) collections. These markers also exhibited sexual differentiation. However, in the whole genome subset, neither SNP showed significant association with RA after correction for population stratification. Conclusion While two SNPs on chromosome 7q appeared to be associated with RA in a North American cohort, the significance of this finding did not withstand correction for population substructure. Our results emphasize the need to carefully account for population structure to avoid false positive disease associations. PMID:19116934

  8. Cis-acting elements in the lytic origin of DNA replication of Marek's disease virus type 1.

    Science.gov (United States)

    Katsumata, A; Iwata, A; Ueda, S

    1998-12-01

    The replication origin of Marek's disease virus (MDV) type 1 was analysed by using a transient replication assay with plasmids containing various fragments of MDV strain Md5 genomic DNA. Plasmid pMBH, containing the BamHI-H fragment, showed replication activity in MDV-infected chicken embryonic fibroblasts (CEF). By deletion analysis of pMBH, two regions, the promoter-enhancer region of the MDV pp38 gene and the 132 bp tandem direct repeat, were shown to be required for replication activity. Replication of pMBH was not observed in uninfected CEF, suggesting that a trans-acting factor(s) encoded by the MDV genome was necessary for replication.

  9. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  10. The highly conserved aspartic acid residue between hypervariable regions 1 and 2 of human immunodeficiency virus type 1 gp120 is important for early stages of virus replication.

    Science.gov (United States)

    Wang, W K; Essex, M; Lee, T H

    1995-01-01

    Between hypervariable regions V1 and V2 of human immunodeficiency virus type 1 (HIV-1) gp120 lies a cluster of relatively conserved residues. The contribution of nine charged residues in this region to virus infectivity was evaluated by single-amino-acid substitutions in an infectious provirus clone. Three of the HIV-1 mutants studied had slower growth kinetics than the wild-type virus. The delay was most pronounced in a mutant with an alanine substituted for an aspartic acid residue at position 180. This aspartic acid is conserved by all HIV-1 isolates with known nucleotide sequences. Substitutions with three other residues at this position, including a negatively charged glutamic acid, all affected virus infectivity. The defect identified in these mutants suggests that this aspartic acid residue is involved in the early stages of HIV-1 replication. PMID:7983752

  11. An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome.

    Science.gov (United States)

    Lelke, Michaela; Brunotte, Linda; Busch, Carola; Günther, Stephan

    2010-02-01

    The central domain of the 200-kDa Lassa virus L protein is a putative RNA-dependent RNA polymerase. N- and C-terminal domains may harbor enzymatic functions important for viral mRNA synthesis, including capping enzymes or cap-snatching endoribonucleases. In the present study, we have employed a large-scale mutagenesis approach to map functionally relevant residues in these regions. The main targets were acidic (Asp and Glu) and basic residues (Lys and Arg) known to form catalytic and binding sites of capping enzymes and endoribonucleases. A total of 149 different mutants were generated and tested in the Lassa virus replicon system. Nearly 25% of evolutionarily highly conserved acidic and basic side chains were dispensable for function of L protein in the replicon context. The vast majority of the remaining mutants had defects in both transcription and replication. Seven residues (Asp-89, Glu-102, Asp-119, Lys-122, Asp-129, Glu-180, and Arg-185) were selectively important for mRNA synthesis. The phenotype was particularly pronounced for Asp-89, Glu-102, and Asp-129, which were indispensable for transcription but could be replaced by a variety of amino acid residues without affecting genome replication. Bioinformatics disclosed the remote similarity of this region to type IIs endonucleases. The mutagenesis was complemented by experiments with the RNA polymerase II inhibitor alpha-amanitin, demonstrating dependence of viral transcription from the cellular mRNA pool. In conclusion, this paper describes an N-terminal region in L protein being important for mRNA, but not genome synthesis. Bioinformatics and cell biological experiments lend support to the hypothesis that this region could be part of a cap-snatching enzyme.

  12. Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the Right and Left macrodomains

    Science.gov (United States)

    2017-01-01

    The Escherichia coli chromosome is organized into four macrodomains (Ori, Ter, Right and Left) and two non-structured regions. This organization influences the segregation of sister chromatids, the mobility of chromosomal DNA, and the cellular localization of the chromosome. The organization of the Ter and Ori macrodomains relies on two specific systems, MatP/matS for the Ter domain and MaoP/maoS for the Ori domain, respectively. Here by constructing strains with chromosome rearrangements to reshuffle the distribution of chromosomal segments, we reveal that the difference between the non-structured regions and the Right and Left lateral macrodomains relies on their position on the chromosome. A change in the genetic location of oriC generated either by an inversion within the Ori macrodomain or by the insertion of a second oriC modifies the position of Right and Left macrodomains, as the chromosome region the closest to oriC are always non-structured while the regions further away behave as macrodomain regardless of their DNA sequence. Using fluorescent microscopy we estimated that loci belonging to a non-structured region are significantly closer to the Ori MD than loci belonging to a lateral MD. Altogether, our results suggest that the origin of replication plays a prominent role in chromosome organization in E. coli, as it determines structuring and localization of macrodomains in growing cell. PMID:28486476

  13. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2016-01-01

    Full Text Available Aim: Avian encephalomyelitis (AE is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2 encoding gene of AE virus (AEV from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/μl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with

  14. A highly basic sequence at the N-terminal region is essential for targeting the DNA replication protein ORC1 to the nucleus in Leishmania donovani.

    Science.gov (United States)

    Kumar, Devanand; Kumar, Diwakar; Saha, Swati

    2012-07-01

    The conserved eukaryotic DNA replication protein ORC1 is one of the constituents of pre-replication complexes that assemble at or very near origins prior to replication initiation. ORC1 has been shown to be constitutively nuclear in Leishmania major. This study investigates the sequences involved in nuclear localization of ORC1 in Leishmania donovani, the causative agent of visceral leishmaniasis. Nuclear localization signals (NLSs) have been reported in only a few Leishmania proteins. Functional analyses have delineated NLSs to regions of ~60 amino acids in length in the tyrosyl DNA phosphodiesterase I and type II DNA topoisomerase of L. donovani, and in the L. major kinesin KIN13-1. Using a panel of site-directed mutations we have identified a sequence essential for nuclear import of LdORC1. This sequence at the N terminus of the protein comprises residues 2-5 (KRSR), with K2, R3 and R5 being crucial. Independent mutation of the K2 residue causes exclusion of the protein from the nucleus, while mutating the R5 residue leads to diffusion of the protein throughout the cell. This sequence, however, is insufficient for targeting a heterologous protein (β-galactosidase) to the nucleus. Analysis of additional ORC1 mutations and reporter constructs reveals that while the highly basic tetra-amino acid sequence at the N terminus is essential for nuclear localization, the ORC1 NLS in its entirety is more complex, and of a distributive character. Our results suggest that nuclear localization signalling sequences in Leishmania nuclear proteins are more complex than what is typically seen in higher eukaryotes.

  15. Sequence analysis of a Molluscum contagiosum virus DNA region which includes the gene encoding protein kinase 2 and other genes with unique organization.

    Science.gov (United States)

    Martin-Gallardo, A; Moratilla, M; Funes, J M; Agromayor, M; Nuñez, A; Varas, A J; Collado, M; Valencia, A; Lopez-Estebaranz, J L; Esteban, M

    1996-01-01

    The nucleotide sequence of a near left-terminal region from the genome of Molluscum contagiosum virus subtype I (MCVI) was determined. This region was contained within three adjacent BamHI fragments, designated L (2.4 kilobases (kb)), M (1.8 kb), and N (1.6 kb). BamHI cleavage of MCVI DNA produced another 1.6-kb fragment (N'), which had been mapped 30-50 kb from the L,M region. The MCVI restriction fragments were cloned and end-sequenced. The N fragment that maps at the L,M region was identified by the polymerase chain reaction, using primers devised from the sequence of each fragment. The results from this analysis led to establish the relative position of these fragments within the MCVI genome. The analysis of 3.6 kb of DNA sequence revealed the presence of ten open reading frames (ORFs). Comparison of the amino acid sequence of these ORFs to the amino acid sequence of vaccinia virus (VAC) proteins revealed that two complete MCVI ORFs, termed N1L and L1L, showed high degree of homology with VAC F9 and F10 genes, respectively. The F10 gene encodes a 52-kDa serine/threonine protein kinase (protein kinase 2), an essential protein involved in virus morphogenesis. The MCVI homologue (L1L) encoded a putative polypeptide of 443 aa, with a calculated molecular mass of 53 kDa, and 60.5/30.2% sequence identity/similarity to VAC F10. The MCV N1L (213 aa, 24 kDa) showed 42.6/40.6% amino acid sequence identity/similarity to VAC F9, a gene of unknown function encoding a 24-kDa protein with a hydrophobic C-terminal domain, which was conserved in MCVI. The genomic arrangement of MCVI N1L and L1L was equivalent to that of the vaccinia and variola virus homologues. However, the ORFs contained within MCVI fragment M (leftward) showed no homology, neither similarity in genetic organization, to the genes encoded by the corresponding regions of vaccinia and variola viruses.

  16. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  17. Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1.

    Directory of Open Access Journals (Sweden)

    Lisa Zecchi

    Full Text Available Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL, and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR. Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from P(E2 and P(E3 promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the P(E2 operon (genes 44 and 45 showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa. G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication.

  18. Recovery of viable porcine reproductive and respiratory syndrome virus from an infectious clone containing a partial deletion within the Nsp2-encoding region.

    Science.gov (United States)

    Ran, Z G; Chen, X Y; Guo, X; Ge, X N; Yoon, K J; Yang, H C

    2008-01-01

    Non-structural protein 2 (Nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is the most variable region and postulated to play an important role in cell and tissue tropism of PRRSV. To investigate the role of Nsp2 in the viability and growth of PRRSV in cells in vitro, two cDNA clones were constructed containing a deletion of 63 consecutive nucleotides (pWSK-DCBAd63) or 117 nucleotides (pWSK-DCBAd117) within the Nsp2-encoding region of PRRSV (BJ-4). The clone pWSK-DCBAd63 was infectious and produced viable recombinant virus, whereas clone pWSK-DCBAd117 could not be rescued. The rescued virus was able to induce CPE typical of PRRSV on MARC-145 cells and was stably propagated during sequential in vitro cell passages, like the virus recovered from the full-length cDNA clone of PRRSV BJ-4. In comparison to the parental virus (BJ-4) and the virus recovered from the full-length cDNA clone of the BJ-4 strain, the rescued virus from pWSK-DCBAd63 exhibited enhanced growth kinetics, reaching the peak progeny virus titer by 48 h postinfection. These observations suggest that the Nsp2-encoding region is necessary for productive virus infection, and partial deletion does not influence the viability and propagation of PRRSV in cell culture, which may provide a way to insert a foreign gene into the viral genome as a marker for differentiation.

  19. Molecular archaeology of Flaviviridae untranslated regions: duplicated RNA structures in the replication enhancer of flaviviruses and pestiviruses emerged via convergent evolution.

    Science.gov (United States)

    Gritsun, Dmitri J; Jones, Ian M; Gould, Ernest A; Gritsun, Tamara S

    2014-01-01

    RNA secondary structures in the 3'untranslated regions (3'UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.

  20. The replication origin of a repABC plasmid

    Directory of Open Access Journals (Sweden)

    Cevallos Miguel A

    2011-06-01

    Full Text Available Abstract Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The ori

  1. Characterization of promoter region and genomic structure of the murine and human genes encoding Src like adapter protein.

    Science.gov (United States)

    Kratchmarova, I; Sosinowski, T; Weiss, A; Witter, K; Vincenz, C; Pandey, A

    2001-01-10

    Src-like adapter protein (SLAP) was identified as a signaling molecule in a yeast two-hybrid system using the cytoplasmic domain of EphA2, a receptor protein tyrosine kinase (Pandey et al., 1995. Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase. J. Biol. Chem. 270, 19201-19204). It is very similar to members of the Src family of cytoplasmic tyrosine kinases in that it contains very homologous SH3 and SH2 domains (Abram and Courtneidge, 2000. Src family tyrosine kinases and growth factor signaling. Exp. Cell. Res. 254, 1-13.). However, instead of a kinase domain at the C-terminus, it contains a unique C-terminal region. In order to exclude the possibility that an alternative form exists, we have isolated genomic clones containing the murine Slap gene as well as the human SLA gene. The coding regions of murine Slap and human SLA genes contain seven exons and six introns. Absence of any kinase domain in the genomic region confirm its designation as an adapter protein. Additionally, we have cloned and sequenced approximately 2.6 kb of the region 5' to the initiator methionine of the murine Slap gene. When subcloned upstream of a luciferase gene, this fragment increased the transcriptional activity about 6-fold in a human Jurkat T cell line and approximately 52-fold in a murine T cell line indicating that this region contains promoter elements that dictate SLAP expression. We have also cloned the promoter region of the human SLA gene. Since SLAP is transcriptionally regulated by retinoic acid and by activation of B cells, the cloning of its promoter region will permit a detailed analysis of the elements required for its transcriptional regulation.

  2. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Directory of Open Access Journals (Sweden)

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  3. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  4. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  5. The highly conserved 5' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2'-modified siRNAs

    Directory of Open Access Journals (Sweden)

    Deng Jun-Xia

    2012-08-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 is a highly infectious agent that plays an etiological role in hand, foot, and mouth disease. It is associated with severe neurological complications and has caused significant mortalities in recent large-scale outbreaks. Currently, no effective vaccine or specific clinical therapy is available against EV71. Methods Unmodified 21 nucleotide small interfering RNAs (siRNAs and classic 2′-modified (2′-O-methylation or 2′-fluoro modification siRNAs were designed to target highly conserved 5′ untranslated region (UTR of the EV71 genome and employed as anti-EV71 agents. Real-time TaqMan RT-PCR, western blot analysis and plaque assays were carried out to evaluate specific viral inhibition by the siRNAs. Results Transfection of rhabdomyosarcoma (RD cells with siRNAs targeting the EV71 genomic 5′ UTR significantly delayed and alleviated the cytopathic effects of EV71 infection, increased cell viability in EV71-infected RD cells. The inhibitory effect on EV71 replication was sequence-specific and dosage-dependent, with significant corresponding decreases in viral RNA, VP1 protein and viral titer. Appropriate 2′-modified siRNAs exhibited similar RNA interference (RNAi activity with dramatically increased serum stability in comparison with unmodified counterparts. Conclusion Sequences were identified within the highly conserved 5′ UTR that can be targeted to effectively inhibit EV71 replication through RNAi strategies. Appropriate 2′-modified siRNAs provide a promising approach to optimizing siRNAs to overcome barriers on RNAi-based antiviral therapies for broader administration.

  6. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    DEFF Research Database (Denmark)

    Rossin, Elizabeth J.; Hansen, Kasper Lage; Raychaudhuri, Soumya

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these r......Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed......-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute...

  7. A 5'-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion.

    Science.gov (United States)

    Atallah, Osama O; Kang, Sung-Hwan; El-Mohtar, Choaa A; Shilts, Turksen; Bergua, María; Folimonova, Svetlana Y

    2016-02-01

    Superinfection exclusion (SIE), a phenomenon in which a primary virus infection prevents a secondary infection with the same or closely related virus, has been observed with various viruses. Earlier we demonstrated that SIE by Citrus tristeza virus (CTV) requires viral p33 protein. In this work we show that p33 alone is not sufficient for virus exclusion. To define the additional viral components that are involved in this phenomenon, we engineered a hybrid virus in which a 5'-proximal region in the genome of the T36 isolate containing coding sequences for the two leader proteases L1 and L2 has been substituted with a corresponding region from the genome of a heterologous T68-1 isolate. Sequential inoculation of plants pre-infected with the CTV L1L2T68 hybrid with T36 CTV resulted in superinfection with the challenge virus, which indicated that the substitution of the L1-L2 coding region affected SIE ability of the virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Contribution of a genomic accessory region encoding a putative cellobiose phosphotransferase system to virulence of Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Lauren J McAllister

    Full Text Available Streptococcus pneumoniae (the pneumococcus is a formidable human pathogen, responsible for massive global morbidity and mortality. The ability to utilize carbohydrates in a variety of host niches appears to be integral to pneumococcal pathogenesis. In this study we investigated a genomic island, which includes a ROK family protein, a putative cellobiose phosphotransferase system (PTS and a putative sulfatase. This accessory region is widespread in the pneumococcus in strains of various serotypes and levels of virulence. We have performed simple bioinformatic analysis of the region and investigated its role in vivo in 2 strains with markedly different virulence profiles (WCH206 of serotype 3, ST180; Menzies5 of serotype 11A, ST662. Deleting and replacing the entire island with an antibiotic resistance cassette caused the virulent serotype 3 strain to become attenuated in a murine pneumonia/sepsis model. Further mutants were constructed and used to show that various components of the island contribute significantly to the fitness of WCH206 in a variety of niches of this model, including the nasopharynx, ears and blood, but especially in the lungs. In addition, the island conferred a competitive advantage in nasopharyngeal colonization for the serotype 11A strain, which was essentially avirulent in the pneumonia/sepsis model. The contribution of this island to both pathogenesis and colonization may explain why this accessory region is widespread in the pneumococcus.

  9. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K.; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  10. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases

    Science.gov (United States)

    Biermann, B.; Johnson, E. M.; Feldman, L. J.

    1990-01-01

    Maize (Zea mays) roots respond to a variety of environmental stimuli which are perceived by a specialized group of cells, the root cap. We are studying the transduction of extracellular signals by roots, particularly the role of protein kinases. Protein phosphorylation by kinases is an important step in many eukaryotic signal transduction pathways. As a first phase of this research we have isolated a cDNA encoding a maize protein similar to fungal and animal protein kinases known to be involved in the transduction of extracellular signals. The deduced sequence of this cDNA encodes a polypeptide containing amino acids corresponding to 33 out of 34 invariant or nearly invariant sequence features characteristic of protein kinase catalytic domains. The maize cDNA gene product is more closely related to the branch of serine/threonine protein kinase catalytic domains composed of the cyclic-nucleotide- and calcium-phospholipid-dependent subfamilies than to other protein kinases. Sequence identity is 35% or more between the deduced maize polypeptide and all members of this branch. The high structural similarity strongly suggests that catalytic activity of the encoded maize protein kinase may be regulated by second messengers, like that of all members of this branch whose regulation has been characterized. Northern hybridization with the maize cDNA clone shows a single 2400 base transcript at roughly similar levels in maize coleoptiles, root meristems, and the zone of root elongation, but the transcript is less abundant in mature leaves. In situ hybridization confirms the presence of the transcript in all regions of primary maize root tissue.

  11. A replication study of GWAS-derived lipid genes in Asian Indians: the chromosomal region 11q23.3 harbors loci contributing to triglycerides.

    Directory of Open Access Journals (Sweden)

    Timothy R Braun

    Full Text Available Recent genome-wide association scans (GWAS and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD. In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638 in our Asian Indian cohort from the Sikh Diabetes Study (SDS comprising 3,781 individuals (2,902 from Punjab and 879 from the US. Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C (p = 2.03×10(-26. Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037 from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG levels in this Asian Indian cohort (rs964184: p = 1.74×10(-17; rs12286037: p = 1.58×10(-2. We further explored 45 SNPs in a ∼195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP (UK and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p = 1.06×10(-39. Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG and, consequently, diabetes and CAD.

  12. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world.

  13. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays

    Science.gov (United States)

    Lu, Yiqing; Lu, Jie; Zhao, Jiangbo; Cusido, Janet; Raymo, Françisco M.; Yuan, Jingli; Yang, Sean; Leif, Robert C.; Huo, Yujing; Piper, James A.; Paul Robinson, J.; Goldys, Ewa M.; Jin, Dayong

    2014-05-01

    Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called ‘τ-Dots’. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.

  14. Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator.

    Science.gov (United States)

    Settlage, S B; Miller, A B; Gruissem, W; Hanley-Bowdoin, L

    2001-01-20

    Geminiviruses replicate their small, single-stranded DNA genomes through double-stranded DNA intermediates in plant nuclei using host replication machinery. Like most dicot-infecting geminiviruses, tomato golden mosaic virus encodes a protein, AL3 or C3, that greatly enhances viral DNA accumulation through an unknown mechanism. Earlier studies showed that AL3 forms oligomers and interacts with the viral replication initiator AL1. Experiments reported here established that AL3 also interacts with a plant homolog of the mammalian tumor suppressor protein, retinoblastoma (pRb). Analysis of truncated AL3 proteins indicated that pRb and AL1 bind to similar regions of AL3, whereas AL3 oligomerization is dependent on a different region of the protein. Analysis of truncated AL1 proteins located the AL3-binding domain between AL1 amino acids 101 and 180 to a region that also includes the AL1 oligomerization domain and the catalytic site for initiation of viral DNA replication. Interestingly, the AL3-binding domain was fully contiguous with the domain that mediates AL1/pRb interactions. The potential significance of AL3/pRb binding and the coincidence of the domains responsible for AL3, AL1, and pRb interactions are discussed.

  15. Efficient inhibition of human immunodeficiency virus replication using novel modified microRNA-30a targeting 3′-untranslated region transcripts

    Science.gov (United States)

    NEJATI, AHMAD; SHAHMAHMOODI, SHOHREH; AREFIAN, EHSAN; SHOJA, ZABIHOLLAH; MARASHI, SAYED-MAHDI; TABATABAIE, HAMIDEH; MOLLAEI-KANDELOUS, YAGHOUB; SOLEIMANI, MASOUD; NATEGH, RAKHSHANDEH

    2016-01-01

    RNA interference (RNAi)-based gene therapy is currently considered to be a combinatorial anti-human immunodeficiency virus-1 (HIV-1) therapy. Although artificial polycistronic microRNAs (miRs) can reduce HIV-1 escape mutant variants, this approach may increase the risk of side effects. The present study aimed to optimize the efficiency of anti-HIV RNAi gene therapy in order to reduce the cell toxicity induced by multi-short hairpin RNA expression. An artificial miR-30a-3′-untranslated region (miR-3-UTR) obtained from a single RNA polymerase II was used to simultaneously target all viral transcripts. The results of the present study demonstrated that HIV-1 replication was significantly inhibited in the cells with the miR-3-UTR construct, suggesting that miR-3′-UTR may serve as a promising tool for RNAi-based gene therapy in the treatment of HIV-1. PMID:27168813

  16. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays

    Science.gov (United States)

    Lu, Yiqing; Lu, Jie; Zhao, Jiangbo; Cusido, Janet; Raymo, Françisco M; Yuan, Jingli; Yang, Sean; Leif, Robert C.; Huo, Yujing; Piper, James A.; Paul Robinson, J; Goldys, Ewa M.; Jin, Dayong

    2014-01-01

    Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called ‘τ-Dots’. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences. PMID:24796249

  17. Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Takase, I.; Ishino, F.; Wachi, M.; Kamata, H.; Doi, M.; Asoh, S.; Matsuzawa, H.; Ohta, T.; Matsuhashi, M.

    1987-12-01

    The coding of two rare lipoproteins by two genes, rlpA and rlpB, located in the leuS-dacA region (15 min) on the Escherichia coli chromosome was demonstrated by expression of subcloned genes in a maxicell system. The formation of these two proteins was inhibited by globomycin, which is an inhibitor of the signal peptidase for the known lipoproteins of E. coli. In each case, this inhibition was accompanied by formation of a new protein, which showed a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and which we suppose to be a prolipoprotein with an N-terminal signal peptide sequence similar to those of the bacterial major lipoproteins and lysis proteins of some bacteriocins. The incorporation of /sup 3/H-labeled palmitate and glycerol into the two lipoproteins was also observed. Sequencing of DNA showed that the two lipoprotein genes contained sequences that could code for signal peptide sequences of 17 amino acids (rlpA lipoprotein) and 18 amino acids (rlpB lipoprotein). The deduced sequences of the mature peptides consisted of 345 amino acids (M/sub r/ 35,615, rlpA lipoprotein) and 175 amino acids (M/sub r/ 19,445, rlpB lipoprotein), with an N-terminal cysteine to which thioglyceride and N-fatty acyl residues may be attached. These two lioproteins may be important in duplication of the cells.

  18. Role of HIV-1 subtype C envelope V3 to V5 regions in viral entry, coreceptor utilization and replication efficiency in primary T-lymphocytes and monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Gopalan Sarla

    2007-11-01

    Full Text Available Abstract Background Several subtypes of HIV-1 circulate in infected people worldwide, including subtype B in the United States and subtype C in Africa and India. To understand the biological properties of HIV-1 subtype C, including cellular tropism, virus entry, replication efficiency and cytopathic effects, we reciprocally inserted our previously characterized envelope V3–V5 regions derived from 9 subtype C infected patients from India into a subtype B molecular clone, pNL4-3. Equal amounts of the chimeric viruses were used to infect T-lymphocyte cell lines (A3.01 and MT-2, coreceptor cell lines (U373-MAGI-CCR5/CXCR4, primary blood T-lymphocytes (PBL and monocyte-derived macrophages (MDM. Results We found that subtype C envelope V3–V5 region chimeras failed to replicate in T-lymphocyte cell lines but replicated in PBL and MDM. In addition, these chimeras were able to infect U373MAGI-CD4+-CCR5+ but not U373MAGI-CD4+-CXCR4+ cell line, suggesting CCR5 coreceptor utilization and R5 phenotypes. These subtype C chimeras were unable to induce syncytia in MT-2 cells, indicative of non-syncytium inducing (NSI phenotypes. More importantly, the subtype C envelope chimeras replicated at higher levels in PBL and MDM compared with subtype B chimeras and isolates. Furthermore, the higher levels subtype C chimeras replication in PBL and MDM correlated with increased virus entry in U373MAGI-CD4+-CCR5+. Conclusion Taken together, these results suggest that the envelope V3 to V5 regions of subtype C contributed to higher levels of HIV-1 replication compared with subtype B chimeras, which may contribute to higher viral loads and faster disease progression in subtype C infected individuals than other subtypes as well as rapid HIV-1 subtype C spread in India.

  19. Structure and promoter activity of the 5' flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans.

    Science.gov (United States)

    Culetto, E; Combes, D; Fedon, Y; Roig, A; Toutant, J P; Arpagaus, M

    1999-07-30

    We report the structure and the functional activity of the promoter region of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. We found that ace-1 was trans -spliced to the SL1 spliced leader and that transcription was initiated at a cluster of multiple starts. There was neither a TATA nor a CAAT box at consensus distances from these starts. Interspecies sequence comparison of the 5' regions of ace-1 in C. elegans and in the related nematode Caenorhabditis briggsae identified four blocks of conserved sequences located within a sequence of 2.4 kilobases upstream from the initiator ATG. In vitro expression of CAT reporter genes in mammalian cells allowed the determination of a minimal promoter in the first 288 nucleotides. In phenotype rescue experiments in vivo, the ace-1 gene containing 2.4 kilobases of 5' flanking region of either C. elegans or C. briggsae was found to restore a coordinated mobility to the uncoordinated double mutants ace-1(-);ace-2(-)of C. elegans. This showed that the ace-1 promoter was contained in 2.4 kilobases of the 5' region, and indicated that cis -regulatory elements as well as coding sequences of ace-1 were functionally conserved between the two nematode species. The pattern of ace-1 expression was established through microinjection of Green Fluorescent Protein reporter gene constructs and showed a major mesodermal expression. Deletion analysis showed that two of the four blocks of conserved sequences act as tissue-specific activators. The distal block is a mesodermal enhancer responsible for the expression in body wall muscle cells, anal sphincter and vulval muscle cells. Another block of conserved sequence directs expression in pharyngeal muscle cells pm5 and three pairs of cephalic sensory neurons. Copyright 1999 Academic Press.

  20. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    Science.gov (United States)

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.

  1. Molecular Cloning of Spergen-4, Encoding a Spermatogenic Cell-Specific Protein Associated with Sperm Flagella and the Acrosome Region in Rat Spermatozoa.

    Science.gov (United States)

    Howida, Ali; Salaheldeen, Elsaid; Iida, Hiroshi

    2016-04-01

    We used a differential display in combination with complementary DNA (cDNA) cloning approach to isolate a novel rat gene LOC690919 with an open reading frame of 1227-length nucleotides encoding a protein of 409 amino acids. This gene was designated as Spergen-4 (a spermatogenic cell-specific gene-4). Spergen-4 mRNA was highly expressed in testis, and its expression was detected in rat testis starting at three weeks of postnatal development and persisting up to adulthood. Mouse and human orthologs, which lack N-terminal 77 amino acid residues of rat Spegen-4, were found in the database. Immunofluorescence microscopy and immunoblot analysis demonstrated that Spergen-4 was not expressed in spermatogonia, spermatocytes, and round spermatids, but was restrictedly detected at sperm head, cytoplasm, and developing flagella of elongated spermatids in rat testis. In mature spermatozoa, Spergen-4 was detected at the acrosome region as well as the principal piece of flagella. Spergen-4 immunosignal disappeared from sperm heads on acrosome reaction induced by progesterone. These data suggest that Spergen-4 integrated into elongated spermatids during spermiogenesis serves as a constituent for acrosome region and flagella of rat spermatozoa.

  2. Typing of the pilus-protein-encoding FCT region and biofilm formation as novel parameters in epidemiological investigations of Streptococcus pyogenes isolates from various infection sites.

    Science.gov (United States)

    Köller, Thomas; Manetti, Andrea Guido Oreste; Kreikemeyer, Bernd; Lembke, Cordula; Margarit, Immaculada; Grandi, Guido; Podbielski, Andreas

    2010-04-01

    Streptococcus pyogenes is an important human pathogen for which an association between infection site and selected epidemiological or functional markers has previously been suggested. However, the studies involved often used strains with an insufficiently defined clinical background and laboratory history. Thus, the major goal of the present study was to investigate these relationships in 183 prospectively collected, well-defined, low-passage isolates from a North-East German centre for tertiary care. For each isolate the clinical background (91 respiratory, 71 skin and 21 invasive isolates) and antibiotic-resistance pattern was recorded. All isolates were classified according to their emm type, antibiotic-resistance and PFGE pattern ( SmaI restriction analysis of genomic DNA). As novel discriminatory methods we performed a PCR-based typing of the pilus-protein-encoding FCT region (FCT) and biofilm-formation phenotyping in various culture media. Forty-one isolates were found to be resistant to at least one of the tested antibiotics. emm typing revealed emm28, emm12 , emm1, emm4, emm89 and emm2 as the most frequent types in our collection. The novel FCT typing showed isolates encoding FCT types 4 and 2 to be the most common. Overall 113 strains with unique combinations of emm and FCT types, antibiotic-resistance and PFGE patterns were identified. The majority of all isolates revealed an association of biofilm-formation capacity with growth media. Comparing all results for potential associations, no correlation could be established between the anatomical site of isolation and the emm or the FCT type. There was no relationship between biofilm formation and emm type, antibiotic-resistance or PFGE patterns. However, a novel association between biofilm formation and FCT type became obvious among strains from our collection.

  3. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ming-hao; Uratani, Yoshihiko; Arimatsu, Yasuyoshi [Mitsubishi Kasei Institute of Life Sciences, Tokyo (Japan)

    1997-02-01

    Latexin was first found as a 29-kDa antigen expressed in a subset of neurons in infragranular layers of lateral, but not dorsal, neocortical areas in the rat using a monoclonal antibody PC3.1. It was found that the vast majority of latexin-expressing neurons in both layers V and VI within the lateral neocortex were generated concurrently at Embryonic Day 15, demonstrating a strict correlation between the molecular identity of neurons and the time of their generation. Since neurons expressing latexin are located in the restricted part of the neocortex, latexin has been used as a useful molecular marker to elucidate the mechanism underlying cortical regional specification. The latexin cDNA isolated from a cDNA library of the rat cerebral cortex encodes a protein composed of 223-amino-acid residues containing two potential Ca{sup 2+}/calmodulin-dependent protein kinase sites and one cGMP-dependent protein kinase phosphorylation site. The absence of any signal peptide or potential transmembrane domain is consistent with the apparent cytosolic localization of latexin in the rat brain. The transcripts of latexin were expressed in not only neutral but also nonneural tissues (e.g., lung, spleen, kidney, heart, and digestive tracts). Recently, it has been demonstrated that latexin purified from the rat brain has inhibitory activity against carboxypeptidase A1, carboxypeptidase A2, and mast cell carboxypeptidase A, with less carboxypeptidase B-inhibiting activity. The amino acid sequence deduced from the rat latexin cDNA has no strict homology to any sequences so far known. Genomic Southern blot analysis using a cDNA probe of rat latexin suggested that the gene encoding latexin in the rat has homologues in other mammalian species and in the chicken, but not in the nematode, fly, or frog. 9 refs., 1 fig.

  4. Broader utilization of origins of DNA replication in cancer cell lines along a 78 kb region of human chromosome 2q34.

    Science.gov (United States)

    Valenzuela, Manuel S; Hu, Lan; Lueders, John; Walker, Robert; Meltzer, Paul S

    2012-01-01

    Human DNA replication depends on the activation of thousands of origins distributed within the genome. The actual distribution of origins is not known, nor whether this distribution is unique to a cell type, or if it changes with the proliferative state of the cell. In this study, we have employed a real-time PCR-based nascent strand DNA abundance assay, to determine the location of origins along a 78 kb region on Chr2q34. Preliminary studies using nascent DNA strands isolated from either HeLa and normal skin fibroblast cells showed that in both cell lines peaks of high origin activity mapped in similar locations. However, the overall origin profile in HeLa cells corresponded to broad origin activation zones, whereas in fibroblasts a more punctuated profile of origin activation was observed. To investigate the relevance of this differential origin profile, we compared the origin distribution profiles in breast cancer cell lines MDA-MB-231, BT-474, and MCF-7, to their normal counterpart MCF-10A. In addition, the CRL7250 cell line was also used as a normal control. Our results validated our earlier observation and showed that the origin profile in normal cell lines exhibited a punctuated pattern, in contrast to broader zone profiles observed in the cancer cell lines. A quantitative analysis of origin peaks revealed that the number of activated origins in cancer cells is statistically larger than that obtained in normal cells, suggesting that the flexibility of origin usage is significantly increased in cancer cells compared to their normal counterparts.

  5. Role of preterminal protein processing in adenovirus replication.

    Science.gov (United States)

    Webster, A; Leith, I R; Nicholson, J; Hounsell, J; Hay, R T

    1997-09-01

    Preterminal protein (pTP), the protein primer for adenovirus DNA replication, is processed at two sites by the virus-encoded protease to yield mature terminal protein (TP). Here we demonstrate that processing to TP, via an intermediate (iTP), is conserved in all serotypes sequenced to date; and in determining the sites cleaved in Ad4 pTP, we extend the previously published substrate specificity of human adenovirus proteases to include a glutamine residue at P4. Furthermore, using monoclonal antibodies raised against pTP, we show that processing to iTP and TP are temporally separated in the infectious cycle, with processing to iTP taking place outside the virus particles. In vitro and in vivo studies of viral DNA replication reveal that iTP can act as a template for initiation and elongation and argue against a role for virus-encoded protease in switching off DNA replication. Virus DNA with TP attached to its 5' end (TP-DNA) has been studied extensively in in vitro DNA replication assays. Given that in vivo pTP-DNA, not TP-DNA, is the template for all but the first round of replication, the two templates were compared in vitro and shown to have different properties. Immunofluorescence studies suggest that a region spanning the TP cleavage site is involved in defining the subnuclear localization of pTP. Therefore, a likely role for the processing of pTP-DNA is to create a distinct template for early transcription (TP-DNA), while the terminal protein moiety, be it TP or pTP, serves to guide the template to the appropriate subcellular location through the course of infection.

  6. A deletion in the proximal untranslated pX region of human T-cell leukemia virus type II decreases viral replication but not infectivity in vivo.

    Science.gov (United States)

    Cockerell, G L; Rovnak, J; Green, P L; Chen, I S

    1996-02-01

    The function of untranslated (UT) nucleotide sequences in the proximal portion of the pX region of the human T-cell leukemia virus (HTLV) family of retroviruses remains enigmatic. Previous studies have shown that these sequences are not necessary for the expression of viral proteins or for the induction, transmission, or maintenance of the transformed cell type in vitro. To determine the effect of the UT region in vivo, separate groups of rabbits were inoculated with lethally irradiated, stable clones of the human B-lymphoblastoid cell line, 729, transfected with either a full-length wild-type HTLV-II clone (pH6neo) or a mutant clone containing a 324-bp deletion in the proximal UT portion of pX (pH6neo delta UT[6661-6984]), or nontransfected 729 cells. All rabbits inoculated with either wild-type or pX-deleted HTLV-II developed a similar profile and titer of serum antibodies against HTLV-II antigens, as determined by Western immunoblots, by 4 weeks postinoculation (PI). Antibody titers, as determined by enzyme immunoassay, were similar between the two groups of rabbits and increased over the 18-week period of study. All rabbits were killed at 18 weeks PI, and spleen, peripheral blood lymphocytes (PBMC), bone marrow, and mesenteric lymph node were assayed for HTLV-II tax/rex sequences by quantitative polymerase chain reaction. Virus was detected in all tissues tested from all rabbits inoculated with 729pH6neo cells containing wild-type HTLV-II, which contained between 1.4 and 0.3 mean copies of provirus per cell. In contrast, the distribution and number of provirus copies were more limited in rabbits inoculated with 729pH6neo delta UT(6661-6984) cells containing UT-deleted HTLV-II; in most tissues, there was a fivefold to sevenfold reduction in mean provirus copies per cell as compared with rabbits inoculated with wild-type HTLV-II. All rabbits inoculated with control 729 cells remained negative for HTLV-II infection, as determined by the same techniques. It was

  7. Replication of plasmids in gram-negative bacteria.

    OpenAIRE

    1989-01-01

    Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical d...

  8. Validation of rapid velocity encoded cine imaging of a dynamically complex flow field using turbo block regional interpolation scheme for k space.

    Science.gov (United States)

    Kortright, E; Doyle, M; Anayiotos, A S; Walsh, E G; Fuisz, A R; Pohost, G M

    2001-02-01

    Block regional interpolation scheme for k space (BRISK) is a sparse sampling approach to allow rapid magnetic resonance imaging of dynamic events. Rapid velocity encoded cine (VEC) imaging with Turbo BRISK is potentially an important clinical diagnostic technique for cardiovascular diseases. Previously we applied BRISK and Turbo BRISK to imaging pulsatile flow in a straight tube. To evaluate the capabilities of Turbo BRISK imaging in more complex dynamic flow fields such as might exist in the human vasculature, an in vitro curved tube model, similar in geometry to the aortic arch, was fabricated and imaged under pulsatile flow conditions. Velocity maps were obtained using conventional VEC and Turbo BRISK (turbo factors 1 through 5). Comparison of the flow fields obtained with each higher order turbo factor showed excellent agreement with conventional VEC with minimal loss of information. Similarly, flow maps showed good agreement with the profiles from a laser Doppler velocimetry model. Turbo-5 BRISK, for example, allowed a 94% savings in imaging time, reducing the conventional imaging time from over 8 min to a near breath-hold imaging period of 31 s. Turbo BRISK shows excellent promise toward the development of a clinical tool to evaluate complex dynamic intravascular flow fields.

  9. Analysis of Ig V{sub H} region genes encoding IgE antibodies in splenic B lymphocytes of a patient with asthma

    Energy Technology Data Exchange (ETDEWEB)

    Snow, R.E.; Chapman, C.J.; Stevenson, F.K. [Southampton Univ. Hospitals (United Kingdom)] [and others

    1995-05-15

    An atopic patient with hypersensitivity against house dust mite died as a result of an asthmatic attack. A portion of the spleen was obtained and was used to analyze the spectrum of Ig heavy chain V regions involved in encoding IgE Abs. A nested PCR technique generated 14 cloned V{sub H} sequences that had distinct CDR3 regions; 5 of 14 were derived from the minor V{sub H}5 family, and the remainder derived from the larger families, V{sub H}3 (6 of 14) and V{sub H}4 (3 of 14). One of the V{sub H}3-derived sequences was present as a repeated sequence in three clones. A control PCR with the same V{sub H} primers in combination with J{sub H} primers yielded only 1 of 13 sequences from V{sub H}5, indicating preferential V{sub H}5 usage only for IgE. Analysis of V{sub H}5-C{epsilon} sequences revealed usage of a single gene, DP73, with extensive mutations and several {open_quotes}hot spots{close_quotes} containing common replacement amino acids. However, there was no concentration of replacement mutations in the CDRs, which conventionally would indicate a role for Ag selection. The V{sub H}3 and V{sub H}4 genes in combination with C{epsilon} also harbored extensive somatic mutations. From these findings in splenic B lymphocytes, and those of a previous study of blood lymphocytes, it seems that preferential usage of V{sub H}5 genes and extensive somatic hypermutation are characteristic of B cells synthesizing IgE in patients with allergic disease. 27 refs., 3 figs., 2 tabs.

  10. Archaeal DNA replication.

    Science.gov (United States)

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  11. CARB-9, a Carbenicillinase Encoded in the VCR Region of Vibrio cholerae Non-O1, Non-O139 Belongs to a Family of Cassette-Encoded β-Lactamases†

    OpenAIRE

    Petroni, Alejandro; Melano, Roberto G.; Saka, Héctor A.; Garutti, Alicia; Mange, Laura; Pasterán, Fernando; Rapoport, Melina; Miranda, Mariana; Faccone, Diego; Rossi, Alicia; Hoffman, Paul S.; Galas, Marcelo F.

    2004-01-01

    The gene blaCARB-9 was located in the Vibrio cholerae super-integron, but in a different location relative to blaCARB-7. CARB-9 (pI 5.2) conferred β-lactam MICs four to eight times lower than those conferred by CARB-7, differing at Ambler's positions V97I, L124F, and T228K. Comparison of the genetic environments of all reported blaCARB genes indicated that the CARB enzymes constitute a family of cassette-encoded β-lactamases.

  12. CARB-9, a Carbenicillinase Encoded in the VCR Region of Vibrio cholerae Non-O1, Non-O139 Belongs to a Family of Cassette-Encoded β-Lactamases†

    Science.gov (United States)

    Petroni, Alejandro; Melano, Roberto G.; Saka, Héctor A.; Garutti, Alicia; Mange, Laura; Pasterán, Fernando; Rapoport, Melina; Miranda, Mariana; Faccone, Diego; Rossi, Alicia; Hoffman, Paul S.; Galas, Marcelo F.

    2004-01-01

    The gene blaCARB-9 was located in the Vibrio cholerae super-integron, but in a different location relative to blaCARB-7. CARB-9 (pI 5.2) conferred β-lactam MICs four to eight times lower than those conferred by CARB-7, differing at Ambler's positions V97I, L124F, and T228K. Comparison of the genetic environments of all reported blaCARB genes indicated that the CARB enzymes constitute a family of cassette-encoded β-lactamases. PMID:15388476

  13. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  14. Analysis of a new strain of Euphorbia mosaic virus with distinct replication specificity unveils a lineage of begomoviruses with short Rep sequences in the DNA-B intergenic region

    Directory of Open Access Journals (Sweden)

    Argüello-Astorga Gerardo R

    2010-10-01

    Full Text Available Abstract Background Euphorbia mosaic virus (EuMV is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. Results A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. Conclusions EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in

  15. Structure and replication of hepatitis delta virus

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Unidade de Biologia Molecular, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, ... molecules of both delta antigens (Ryu et al., 1993). This ..... Glenn JS, Watson JA, Havel CM, White JO (1992). ... HDV RNA encoding the large delta antigen cannot replicate. J. Gen.

  16. Characterization of the replicon from the lactococcal theta-replicating plasmid pJW563.

    Science.gov (United States)

    Gravesen, A; Josephsen, J; von Wright, A; Vogensen, F K

    1995-09-01

    The replication region of the lactococcal plasmid pJW563 was localized to a 2.3-kb EcoRI fragment. This DNA fragment was sequenced ans a 1155-bp open reading frame, repB563, encoding a putative protein RepB563 of 385 amino acids was found. An AT-rich noncoding region, repA563, was found upstream of repB563. This segment included several direct and inverted repeats. A downstream 591-bp open reading frame, ORF X, which was not necessary for replication, was putatively translationally coupled to repB563, RepB563 supplied in trans could support replication of a plasmid containing repA563 and a truncated repB563. This observation suggests that RepB563 is a trans-acting replication protein, and repA563 the cis-acting origin of replication, repA563, repB563, and the beginning of ORF X showed high homology to similar regions in a family of lactococcal theta-replicating plasmids. The repA DNA sequences and the RepB amino acid sequences of the plasmids were aligned and the consensus sequences generated. The comparison revealed highly conserved areas among this family of plasmids. In addition, variable domains emerged, presumably having a plasmid specific function, pVS40 and pC1305 were plasmids with replication proteins showing high homology to RepB563. Despite this homology, replication from repA563 could not be supported by the pVS40 or pC1305 replication protein supplied in trans. Likewise the pJW563 protein could not support replication from the pVS40 origin. pJW563 was found to be compatible with the pVS40 and pC1305 replicons. The results indicate that pJW563 belongs to the widespread family of lactococcal theta-replicating pladmids. Despite the high homology between their replicons, the interaction between the replication origin and the protein is highly specific in many cases rendering the plasmids compatible.

  17. A transcription and translation-coupled DNA replication system using rolling-circle replication.

    Science.gov (United States)

    Sakatani, Yoshihiro; Ichihashi, Norikazu; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-05-27

    All living organisms have a genome replication system in which genomic DNA is replicated by a DNA polymerase translated from mRNA transcribed from the genome. The artificial reconstitution of this genome replication system is a great challenge in in vitro synthetic biology. In this study, we attempted to construct a transcription- and translation-coupled DNA replication (TTcDR) system using circular genomic DNA encoding phi29 DNA polymerase and a reconstituted transcription and translation system. In this system, phi29 DNA polymerase was translated from the genome and replicated the genome in a rolling-circle manner. When using a traditional translation system composition, almost no DNA replication was observed, because the tRNA and nucleoside triphosphates included in the translation system significantly inhibited DNA replication. To minimize these inhibitory effects, we optimized the composition of the TTcDR system and improved replication by approximately 100-fold. Using our system, genomic DNA was replicated up to 10 times in 12 hours at 30 °C. This system provides a step toward the in vitro construction of an artificial genome replication system, which is a prerequisite for the construction of an artificial cell.

  18. Dynamics of Escherichia coli chromosome segregation during multifork replication.

    Science.gov (United States)

    Nielsen, Henrik J; Youngren, Brenda; Hansen, Flemming G; Austin, Stuart

    2007-12-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.

  19. Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1990-01-01

    B-G antigens are cell-surface molecules encoded by a highly polymorphic multigene family located in the chicken major histocompatibility complex (MHC). Rabbit antisera to B-G molecules immunoprecipitate 3-6 bands from iodinated erythrocytes by sodium dodecyl sulfate (SDS) gels under reducing...

  20. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    KAUST Repository

    Knodel, Markus

    2017-10-02

    Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures-namely the ER surface and the membranous webs-based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.

  1. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks.

    Science.gov (United States)

    Willis, Nicholas A; Chandramouly, Gurushankar; Huang, Bin; Kwok, Amy; Follonier, Cindy; Deng, Chuxia; Scully, Ralph

    2014-06-26

    Replication fork stalling can promote genomic instability, predisposing to cancer and other diseases. Stalled replication forks may be processed by sister chromatid recombination (SCR), generating error-free or error-prone homologous recombination (HR) outcomes. In mammalian cells, a long-standing hypothesis proposes that the major hereditary breast/ovarian cancer predisposition gene products, BRCA1 and BRCA2, control HR/SCR at stalled replication forks. Although BRCA1 and BRCA2 affect replication fork processing, direct evidence that BRCA gene products regulate homologous recombination at stalled chromosomal replication forks is lacking, due to a dearth of tools for studying this process. Here we report that the Escherichia coli Tus/Ter complex can be engineered to induce site-specific replication fork stalling and chromosomal HR/SCR in mouse cells. Tus/Ter-induced homologous recombination entails processing of bidirectionally arrested forks. We find that the Brca1 carboxy (C)-terminal tandem BRCT repeat and regions of Brca1 encoded by exon 11-two Brca1 elements implicated in tumour suppression-control Tus/Ter-induced homologous recombination. Inactivation of either Brca1 or Brca2 increases the absolute frequency of 'long-tract' gene conversions at Tus/Ter-stalled forks, an outcome not observed in response to a site-specific endonuclease-mediated chromosomal double-strand break. Therefore, homologous recombination at stalled forks is regulated differently from homologous recombination at double-strand breaks arising independently of a replication fork. We propose that aberrant long-tract homologous recombination at stalled replication forks contributes to genomic instability and breast/ovarian cancer predisposition in BRCA mutant cells.

  2. Assembly of Slx4 signaling complexes behind DNA replication forks.

    Science.gov (United States)

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.

  3. Alphavirus polymerase and RNA replication.

    Science.gov (United States)

    Pietilä, Maija K; Hellström, Kirsi; Ahola, Tero

    2017-01-16

    Alphaviruses are typically arthropod-borne, and many are important pathogens such as chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1-4), initially produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully processed nsP1-nsP4 is responsible for the production of genomic and subgenomic plus strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the binding also requires the other nsPs. The alphavirus polymerase has been purified and is capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3' end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses induce membrane invaginations called spherules, which form a microenvironment for RNA synthesis by concentrating replication components and protecting double-stranded RNA intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis in vitro, but high-resolution structure of the RC has not been achieved, and thus the arrangement of viral and possible host components remains unknown. For some alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus polymerase inhibitors have been described.

  4. Distinct contributions of lateral orbito-frontal cortex, striatum, and fronto-parietal network regions for rule encoding and control of memory-based implementation during instructed reversal learning.

    Science.gov (United States)

    Ruge, Hannes; Wolfensteller, Uta

    2016-01-15

    A key element of behavioral flexibility is to quickly learn to modify or reverse previously acquired stimulus-response associations. Such reversal learning (RL) can either be driven by feedback or by explicit instruction, informing either retrospectively or prospectively about the changed response requirements. Neuroimaging studies have thus far exclusively focused either on feedback-driven RL or on instructed initial learning of novel rules. The present study examined the neural basis of instructed RL as compared to instructed initial learning, separately assessing reversal-related instruction-based encoding processes and reversal-related control processes required for implementing reversed rules under competition from the initially learned rules. We found that instructed RL is partly supported by similar regions as feedback-driven RL, including lateral orbitofrontal cortex (lOFC) and anterior dorsal caudate. Encoding-related activation in both regions determined resilience against response competition during subsequent memory-based reversal implementation. Different from feedback-driven RL, instruction-based RL relied heavily on the generic fronto-parietal cognitive control network--not for encoding but for reversal-related control processes during memory-based implementation. These findings are consistent with a model of partly decoupled, yet interacting, systems of (i) symbolic rule representations that are instantaneously updated upon instruction and (ii) pragmatic representations of reward-associated S-R links mediating the enduring competition from initially learned rules.

  5. Autoantibody germ-line gene segment encodes V{sub H} and V{sub L} regions of a human anti-streptococcal monoclonal antibody recognizing streptococcal M protein and human cardiac myosin epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, A.; Cunningham, M.W. [Univ. of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Adderson, E.E. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1995-04-15

    Cross-reactivity of anti-streptococcal Abs with human cardiac myosin may result in sequelae following group A streptococcal infections. Molecular mimicry between group A streptococcal M protein and cardiac myosin may be the basis for the immunologic cross-reactivity. In this study, a cross-reactive human anti-streptococcal/antimyosin mAb (10.2.3) was characterized, and the myosin epitopes were recognized by the Ab identified. mAb 10.2.3 reacted with four peptides from the light meromyosin (LMM) tail fragment of human cardiac myosin, including LMM-10 (1411-1428), LMM-23 (1580-1597), LMM-27 (1632-1649), and LMM-30 (1671-1687). Only LMM-30 inhibited binding of mAb 10.2.3 to streptococcal M protein and human cardiac myosin. Human mAb 10.2.3 labeled cytoskeletal structures within rat heart cells in indirect immunofluorescence, and reacted with group A streptococci expressing various M protein serotypes, PepM5, and recombinant M protein. The nucleotide sequence of gene segments encoding the Ig heavy and light chain V region of mAb 10.2.3 was determined. The light chain V segment was encoded by a VK1 gene segment that was 98.5% identical with germ-line gene humig{sub K}Vi5. The V segment of the heavy chain was encoded by a V{sub H}3a gene segment that differed from the V{sub H}26 germ-line gene by a single base change. V{sub H}26 is expressed preferentially in early development and encodes autoantibodies with anti-DNA and rheumatoid factor specificities. Anti-streptococcal mAb 10.2.3 is an autoantibody encoded by V{sub H} and V{sub L} genes, with little or no somatic mutation. 63 refs., 11 figs.

  6. Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K;

    1990-01-01

    that the extracellular regions of these molecules are very similar and that the length polymorphism is due to variations in the cytoplasmic regions. Inspection of the cDNA-derived protein sequence in this region shows many heptad repeats, which may allow variation in length by step deletion and alternative splicing...

  7. Completion of DNA replication in Escherichia coli.

    Science.gov (United States)

    Wendel, Brian M; Courcelle, Charmain T; Courcelle, Justin

    2014-11-18

    The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.

  8. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  9. Serotonin Transporter-Linked Polymorphic Region (5-HTTLPR) Genotype and Stressful Life Events Interact to Predict Preschool-Onset Depression: A Replication and Developmental Extension

    Science.gov (United States)

    Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Tillman, Rebecca; Luby, Joan L.

    2014-01-01

    Background: Scientific enthusiasm about gene × environment interactions, spurred by the 5-HTTLPR (serotonin transporter-linked polymorphic region) × SLEs (stressful life events) interaction predicting depression, have recently been tempered by sober realizations of small effects and meta-analyses reaching opposing conclusions. These mixed findings…

  10. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    Science.gov (United States)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  11. Requirement of the N-terminal residues of human cytomegalovirus UL112-113 proteins for viral growth and oriLyt-dependent DNA replication.

    Science.gov (United States)

    Kim, Young-Eui; Park, Mi Young; Kang, Kyeong Jin; Han, Tae Hee; Lee, Chan Hee; Ahn, Jin-Hyun

    2015-08-01

    The UL112-113 region of the human cytomegalovirus (HCMV) genome encodes four phosphoproteins of 34, 43, 50, and 84 kDa that promote viral DNA replication. Co-transfection assays have demonstrated that self-interaction of these proteins via the shared N-termini is necessary for their intranuclear distribution as foci and for the efficient relocation of a viral DNA polymerase processivity factor (UL44) to the viral replication sites. However, the requirement of UL112-113 N-terminal residues for viral growth and DNA replication has not been fully elucidated. Here, we investigated the effect of deletion of the N-terminal regions of UL112-113 proteins on viral growth and oriLyt-dependent DNA replication. A deletion of the entire UL112 region or the region encoding the 25 N-terminal amino-acid residues from the HCMV (Towne strain) bacmid impaired viral growth in bacmid-transfected human fibroblast cells, indicating their requirement for viral growth. In co-immunoprecipitation assays using the genomic gene expressing the four UL112-113 proteins together, the 25 N-terminal amino-acid residues were found to be necessary for stable expression of UL112-113 proteins and their self-interaction. These residues were also required for efficient binding to and relocation of UL44, but not for interaction with IE2, an origin-binding transcription factor. In co-transfection/replication assays, replication of the oriLyt-containing plasmid was promoted by expression of intact UL112-113 proteins, but not by the expression of 25-amino-acid residue-deleted proteins. Our results demonstrate that the 25 N-terminal amino-acid residues of UL112-113 proteins that mediate self-interaction contribute to viral growth by promoting their binding to UL44 and the initiation of oriLyt-dependent DNA replication.

  12. Persistent replication of a hepatitis C virus genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey.

    Science.gov (United States)

    Suzuki, Saori; Mori, Ken-Ichi; Higashino, Atsunori; Iwasaki, Yuki; Yasutomi, Yasuhiro; Maki, Noboru; Akari, Hirofumi

    2016-01-01

    The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV-B), which is closely related to HCV, was generated. The chimera between HCV and GBV-B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (virus. Our results will help establish a novel non-human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.

  13. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  14. Escalation of error catastrophe for enzymatic self-replicators

    Science.gov (United States)

    Obermayer, B.; Frey, E.

    2009-11-01

    It is a long-standing question in origin-of-life research whether the information content of replicating molecules can be maintained in the presence of replication errors. Extending standard quasispecies models of non-enzymatic replication, we analyze highly specific enzymatic self-replication mediated through an otherwise neutral recognition region, which leads to frequency-dependent replication rates. We find a significant reduction of the maximally tolerable error rate, because the replication rate of the fittest molecules decreases with the fraction of functional enzymes. Our analysis is extended to hypercyclic couplings as an example for catalytic networks.

  15. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element.

    Directory of Open Access Journals (Sweden)

    Jacob Thomas

    Full Text Available Integrative and conjugative elements (ICEs are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT by the ICE-encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP, encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.

  16. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  17. Streptomyces linear plasmids that contain a phage-like, centrally located, replication origin.

    Science.gov (United States)

    Chang, P C; Kim, E S; Cohen, S N

    1996-12-01

    Unlike previously studied linear replicons containing 5' DNA termini covalently bound to protein, pSLA2, a 17 kb linear plasmid of Streptomyces rochei, initiates replication internally rather than at the telomeres (Chang and Cohen, 1994). Here we identify and characterize the replication origin of pSLA2, showing that it contains a series of direct repeats (iterons) within a centrally located gene encoding an essential DNA-binding protein (Rep1); a second essential protein (Rep2), which resembles prokaryotic DNA helicases and has ATPase activity stimulated by single-stranded DNA, is expressed from the same transcript. A 430 bp locus separated by almost 2 kb from the iterons of the origin specifies an as yet undefined additional function required in cis for plasmid replication. pSCL, a 12 kb linear plasmid of Streptomyces clavuligerus, contains, near the centre of the plasmid, a region configured like the pSLA2 origin. The replication regions of pSLA2 and pSCL, which are capable of propagating plasmid DNA in either a circular or linear form (Shiffman and Cohen, 1992; Chang and Cohen, 1994) resemble those of temperate bacteriophages of the Enterobacteriacae and Bacillus. Our observations suggest that Streptomyces linear plasmids may occupy an evolutionarily intermediate position between circular plasmids and linear phage replicons.

  18. Beet yellows virus replicase and replicative compartments: parallels with other RNA viruses

    Directory of Open Access Journals (Sweden)

    Vladimir A. Gushchin

    2013-03-01

    Full Text Available In eukaryotic virus systems, infection leads to induction of membranous compartments in which replication occurs. Virus-encoded subunits of the replication complex mediate its interaction with membranes. As replication platforms, RNA viruses use the cytoplasmic surfaces of different membrane compartments, e.g., endoplasmic reticulum (ER, Golgi, endo/lysosomes, mitochondria, chloroplasts and peroxisomes. Closterovirus infections are accompanied by formation of multivesicular complexes from cell membranes of ER or mitochondrial origin. So far the mechanisms for vesicles formation have been obscure. In the replication-associated 1a polyprotein of Beet yellows virus (BYV and other closteroviruses, the region between the methyltransferase (MTR and helicase (HEL domains (1a central region, 1a CR is marginally conserved. Computer-assisted analysis predicts several putative membrane-binding domains in the BYV 1a CR. Transient expression of a hydrophobic segment (referred to here as CR-2 of the BYV 1a in Nicotiana benthamiana led to reorganization of the ER and formation of ~1-m mobile globules. We propose that the CR-2 may be involved in the formation of multivesicular complexes in BYV-infected cells. This provides analogy with membrane-associated proteins mediating the build-up of virus factories in cells infected with diverse positive-strand RNA viruses (alpha-like viruses, picorna-like viruses, flaviviruses, and nidoviruses and negative-strand RNA viruses (bunyaviruses.

  19. Beet yellows virus replicase and replicative compartments: parallels with other RNA viruses.

    Science.gov (United States)

    Gushchin, Vladimir A; Solovyev, Andrey G; Erokhina, Tatyana N; Morozov, Sergey Y; Agranovsky, Alexey A

    2013-01-01

    In eukaryotic virus systems, infection leads to induction of membranous compartments in which replication occurs. Virus-encoded subunits of the replication complex mediate its interaction with membranes. As replication platforms, RNA viruses use the cytoplasmic surfaces of different membrane compartments, e.g., endoplasmic reticulum (ER), Golgi, endo/lysosomes, mitochondria, chloroplasts, and peroxisomes. Closterovirus infections are accompanied by formation of multivesicular complexes from cell membranes of ER or mitochondrial origin. So far the mechanisms for vesicles formation have been obscure. In the replication-associated 1a polyprotein of Beet yellows virus (BYV) and other closteroviruses, the region between the methyltransferase and helicase domains (1a central region (CR), 1a CR) is marginally conserved. Computer-assisted analysis predicts several putative membrane-binding domains in the BYV 1a CR. Transient expression of a hydrophobic segment (referred to here as CR-2) of the BYV 1a in Nicotiana benthamiana led to reorganization of the ER and formation of ~1-μm mobile globules. We propose that the CR-2 may be involved in the formation of multivesicular complexes in BYV-infected cells. This provides analogy with membrane-associated proteins mediating the build-up of "virus factories" in cells infected with diverse positive-strand RNA viruses (alpha-like viruses, picorna-like viruses, flaviviruses, and nidoviruses) and negative-strand RNA viruses (bunyaviruses).

  20. Construction of self-replicating subgenomic dengue virus 4 (DENV4) replicon.

    Science.gov (United States)

    Alcaraz-Estrada, Sofia L; Del Angel, Rosa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 are members of mosquito-borne flavivirus genus of Flaviviridae family that encode one long open reading frame (ORF) that is translated to a polyprotein. Both host and virally encoded proteases function in the processing of the polyprotein by co-translational and posttranslational mechanisms to yield 10 mature proteins prior to viral RNA replication. To study cis- and trans-acting factors involved in viral RNA replication, many groups [1-8] have constructed cDNAs encoding West Nile virus (WNV), DENV, or yellow fever virus reporter replicon RNAs. The replicon plasmids constructed in our laboratory for WNV [9] and the DENV4 replicon described here are arranged in the order of 5'-untranslated region (UTR), the N-terminal coding sequence of capsid (C), Renilla luciferase (Rluc) reporter gene with a translation termination codon, and an internal ribosome entry site (IRES) element from encephalomyocarditis virus (EMCV) for cap-independent translation of the downstream ORF that codes for a polyprotein precursor, CterE-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5, followed by the 3'-UTR. In the second DENV4 replicon, the Rluc gene is fused sequentially downstream to the 20 amino acid (aa) FMDV 2A protease coding sequence, neomycin resistance gene (Neo(r)), a termination codon, and the EMCV leader followed by the same polyprotein coding sequence and 3'-UTR as in the first replicon. The first replicon is useful to study by transient transfection experiments the cis-acting elements and trans-acting factors involved in viral RNA replication. The second DENV4 replicon is used to establish a stable monkey kidney (Vero) cell line by transfection of replicon RNA and selection in the presence of the G418, an analog of neomycin. This replicon is useful for screening and identifying antiviral compounds that are potential inhibitors of viral replication.

  1. The Hypocrea jecorina (Trichoderma reesei hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding region of the wild-type genome

    Directory of Open Access Journals (Sweden)

    Hartl Lukas

    2008-07-01

    Full Text Available Abstract Background The hypercellulolytic mutant Hypocrea jecorina (anamorph Trichoderma reesei RUT C30 is the H. jecorina strain most frequently used for cellulase fermentations and has also often been employed for basic research on cellulase regulation. This strain has been reported to contain a truncated carbon catabolite repressor gene cre1 and is consequently carbon catabolite derepressed. To date this and an additional frame-shift mutation in the glycoprotein-processing β-glucosidase II encoding gene are the only known genetic differences in strain RUT C30. Results In the present paper we show that H. jecorina RUT C30 lacks an 85 kb genomic fragment, and consequently misses additional 29 genes comprising transcription factors, enzymes of the primary metabolism and transport proteins. This loss is already present in the ancestor of RUT C30 – NG 14 – and seems to have occurred in a palindromic AT-rich repeat (PATRR typically inducing chromosomal translocations, and is not linked to the cre1 locus. The mutation of the cre1 locus has specifically occurred in RUT C30. Some of the genes that are lacking in RUT C30 could be correlated with pronounced alterations in its phenotype, such as poor growth on α-linked oligo- and polyglucosides (loss of maltose permease, or disturbance of osmotic homeostasis. Conclusion Our data place a general caveat on the use of H. jecorina RUT C30 for further basic research.

  2. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    Science.gov (United States)

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.

  3. The Replication Recipe: What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, A.J.; Farach, F.J.; Geller, J.; Giner-Sorolla, R.; Grange, J.A.; Perugini, M.; Spies, J.R.; Veer, A. van 't

    2014-01-01

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  4. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene

    OpenAIRE

    Tomkinson, Alan E.; Sallmyr, Annahita

    2013-01-01

    Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA lig...

  5. Inhibition of porcine reproductive and respiratory syndrome virus replication with exosome-transferred artificial microRNA targeting the 3' untranslated region.

    Science.gov (United States)

    Zhu, Li; Bao, Liping; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2015-10-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease. As part of the development of RNA interference (RNAi) strategy against the disease, in this study a recombinant adenovirus (rAd) expressing the artificial microRNA (amiRNA) targeting the 3' untranslated region (UTR) was used to investigate the exosome-mediated amiRNA transfer from different pig cell types to porcine alveolar macrophages (PAMs). Quantitative RT-PCR showed that the sequence-specific amiRNA was expressed in and secreted via exosomes from the rAd-transduced pig kidney cell line PK-15, PAM cell line 3D4/163, kidney fibroblast cells (PFCs) and endometrial endothelial cells (PEECs) with different secretion efficiencies. Fluorescent microscopy revealed that the dye-labeled amiRNA-containing exosomes of different cell origins were efficiently taken up by all of the five types of pig cells tested, including primary PAMs. Quantitative RT-PCR showed that the amiRNA-containing exosomes of different cell origins were taken up by primary PAMs in both time- and dose-dependent manners. Both quantitative RT-PCR and viral titration assays showed that the exosome-delivered amiRNA had potent anti-viral effects against three different PRRSV strains. These data suggest that the exosomes derived from pig cells could serve as an efficient miRNA transfer vehicle, and that the exosome-delivered amiRNA had potent anti-viral effects against different PRRSV strains.

  6. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  7. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  8. Abiotic self-replication.

    Science.gov (United States)

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    The key to the origins of life is the replication of information. Linear polymers such as nucleic acids that both carry information and can be replicated are currently what we consider to be the basis of living systems. However, these two properties are not necessarily coupled. The ability to mutate in a discrete or quantized way, without frequent reversion, may be an additional requirement for Darwinian evolution, in which case the notion that Darwinian evolution defines life may be less of a tautology than previously thought. In this Account, we examine a variety of in vitro systems of increasing complexity, from simple chemical replicators up to complex systems based on in vitro transcription and translation. Comparing and contrasting these systems provides an interesting window onto the molecular origins of life. For nucleic acids, the story likely begins with simple chemical replication, perhaps of the form A + B → T, in which T serves as a template for the joining of A and B. Molecular variants capable of faster replication would come to dominate a population, and the development of cycles in which templates could foster one another's replication would have led to increasingly complex replicators and from thence to the initial genomes. The initial genomes may have been propagated by RNA replicases, ribozymes capable of joining oligonucleotides and eventually polymerizing mononucleotide substrates. As ribozymes were added to the genome to fill gaps in the chemistry necessary for replication, the backbone of a putative RNA world would have emerged. It is likely that such replicators would have been plagued by molecular parasites, which would have been passively replicated by the RNA world machinery without contributing to it. These molecular parasites would have been a major driver for the development of compartmentalization/cellularization, as more robust compartments could have outcompeted parasite-ridden compartments. The eventual outsourcing of metabolic

  9. Adenovirus DNA Replication

    OpenAIRE

    Hoeben, Rob C.; Uil, Taco G.

    2013-01-01

    Adenoviruses have attracted much attention as probes to study biological processes such as DNA replication, transcription, splicing, and cellular transformation. More recently these viruses have been used as gene-transfer vectors and oncolytic agents. On the other hand, adenoviruses are notorious pathogens in people with compromised immune functions. This article will briefly summarize the basic replication strategy of adenoviruses and the key proteins involved and will deal with the new deve...

  10. Targeting species D adenoviruses replication to counteract the epidemic keratoconjunctivitis.

    Science.gov (United States)

    Nikitenko, Natalia A; Speiseder, Thomas; Groitl, Peter; Spirin, Pavel V; Prokofjeva, Maria M; Lebedev, Timofey D; Rubtsov, Petr M; Lam, Elena; Riecken, Kristoffer; Fehse, Boris; Dobner, Thomas; Prassolov, Vladimir S

    2015-06-01

    Human adenoviruses are non-enveloped DNA viruses causing various infections; their pathogenicity varies dependent on virus species and type. Although acute infections can sometimes take severe courses, they are rarely fatal in immune-competent individuals. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are hyperacute and highly contagious infections of the eye caused by human adenovirus types within species D. Currently there is no causal treatment available to counteract these diseases effectively. The E2B region of the adenovirus genome encodes for the viral DNA polymerase, which is required for adenoviral DNA replication. Here we propose novel model systems to test this viral key factor, DNA polymerase, as a putative target for the development of efficient antiviral therapy based on RNA interference. Using our model cell lines we found that different small interfering RNAs mediate significant suppression (up to 90%) of expression levels of viral DNA polymerase upon transfection. Moreover, permanent expression of short hairpin RNA based on the most effective small interfering RNA led to a highly significant, more than tenfold reduction in replication for different human group D adenoviruses involved in ocular infections.

  11. Construction of an infectious cDNA clone of genotype 1 avian hepatitis E virus: characterization of its pathogenicity in broiler breeders and demonstration of its utility in studying the role of the hypervariable region in virus replication.

    Science.gov (United States)

    Park, Soo-Jeong; Lee, Byung-Woo; Moon, Hyun-Woo; Sung, Haan Woo; Yoon, Byung-Il; Meng, Xiang-Jin; Kwon, Hyuk Moo

    2015-05-01

    A full-length infectious cDNA clone of the genotype 1 Korean avian hepatitis E virus (avian HEV) (pT11-aHEV-K) was constructed and its infectivity and pathogenicity were investigated in leghorn male hepatoma (LMH) chicken cells and broiler breeders. We demonstrated that capped RNA transcripts from the pT11-aHEV-K clone were translation competent when transfected into LMH cells and infectious when injected intrahepatically into the livers of chickens. Gross and microscopic pathological lesions underpinned the avian HEV infection and helped characterize its pathogenicity in broiler breeder chickens. The avian HEV genome contains a hypervariable region (HVR) in ORF1. To demonstrate the utility of the avian HEV infectious clone, several mutants with various deletions in and beyond the known HVR were derived from the pT11-aHEV-K clone. The HVR-deletion mutants were replication competent in LMH cells, although the deletion mutants extending beyond the known HVR were non-viable. By using the pT11-aHEV-K infectious clone as the backbone, an avian HEV luciferase reporter replicon and HVR-deletion mutant replicons were also generated. The luciferase assay results of the reporter replicon and its mutants support the data obtained from the infectious clone and its derived mutants. To further determine the effect of HVR deletion on virus replication, the capped RNA transcripts from the wild-type pT11-aHEV-K clone and its mutants were injected intrahepatically into chickens. The HVR-deletion mutants that were translation competent in LMH cells displayed in chickens an attenuation phenotype of avian HEV infectivity, suggesting that the avian HEV HVR is important in modulating the virus infectivity and pathogenicity.

  12. Secondary structural analysis of the mRNA regions encoding the hemagglutinin cleavage site basic amino acids of the avian influenza virus H5N1 subtype samples

    Institute of Scientific and Technical Information of China (English)

    ZHANG SuXia; WANG Xin; CHEN XueFeng; CAO Huai; ZHANG Wen; LIU CiQuan

    2008-01-01

    Here we report the codon bias and the mRNA secondary structural features of the hemagglutinin (HA) cleavage site basic amino acid regions of avian influenza virus H5N1 subtypes. We have developed a dynamic extended folding strategy to predict RNA secondary structure with RNAstructure 4.1 program in an iterative extension process. Statistical analysis of the sequences showed that the HA cleavage site basic amino acids favor the adenine-rich codons, and the corresponding mRNA fragments are mainly in the folding states of single-stranded loops. Our sequential and structural analyses showed that to prevent and control these highly pathogenic viruses, that is, to inhibit the gene expression of avian influenza virus H5N1 subtypes, we should consider the single-stranded loop regions of the HA cleavage site-coding sequences as the targets of RNA interference.

  13. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    Science.gov (United States)

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  14. Thinking about seeing: perceptual sources of knowledge are encoded in the theory of mind brain regions of sighted and blind adults.

    Science.gov (United States)

    Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca

    2014-10-01

    Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others' minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others' mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others' mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others' mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of relevant first-person perceptual experiences.

  15. Oncogene v-jun modulates DNA replication.

    Science.gov (United States)

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  16. The Ancestral Gene for Transcribed, Low-Copy Repeats in the Prader-Willi/Angleman Region Encodes a Large Protein Implicated in Protein Trafficking that is Deficient in Mice with Neuromuscular and

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Y.

    1999-01-01

    Transcribed, low-copy repeat elements are associated with the breakpoint regions of common deletions in Prader-Willi and Angelman syndromes. We report here the identification of the ancestral gene ( HERC2 ) and a family of duplicated, truncated copies that comprise these low-copy repeats. This gene encodes a highly conserved giant protein, HERC2, that is distantly related to p532 (HERC1), a guanine nucleotide exchange factor (GEF) implicated in vesicular trafficking. The mouse genome contains a single Herc2 locus, located in the jdf2 (juvenile development and fertility-2) interval of chromosome 7C. We have identified single nucleotide splice junction mutations in Herc2 in three independent N-ethyl-N-nitrosourea-induced jdf2 mutant alleles, each leading to exon skipping with premature termination of translation and/or deletion of conserved amino acids. Therefore, mutations in Herc2 lead to the neuromuscular secretory vesicle and sperm acrosome defects, other developmental abnormalities and juvenile lethality of jdf2 mice. Combined, these findings suggest that HERC2 is an important gene encoding a GEF involved in protein trafficking and degradation pathways in the cell.

  17. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.

    Science.gov (United States)

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-12-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general

  18. Investigating variation in replicability: A "Many Labs" replication project

    NARCIS (Netherlands)

    Klein, R.A.; Ratliff, K.A.; Vianello, M.; Adams, R.B.; Bahnik, S.; Bernstein, M.J.; Bocian, K.; Brandt, M.J.; Brooks, B.; Brumbaugh, C.C.; Cemalcilar, Z.; Chandler, J.; Cheong, W.; Davis, W.E.; Devos, T.; Eisner, M.; Frankowska, N.; Furrow, D.; Galliani, E.M.; Hasselman, F.W.; Hicks, J.A.; Hovermale, J.F.; Hunt, S.J.; Huntsinger, J.R.; IJzerman, H.; John, M.S.; Joy-Gaba, J.A.; Kappes, H.B.; Krueger, L.E.; Kurtz, J.; Levitan, C.A.; Mallett, R.K.; Morris, W.L.; Nelson, A.J.; Nier, J.A.; Packard, G.; Pilati, R.; Rutchick, A.M.; Schmidt, K.; Skorinko, J.L.M.; Smith, R.; Steiner, T.G.; Storbeck, J.; Van Swol, L.M.; Thompson, D.; Veer, A.E. van 't; Vaughn, L.A.; Vranka, M.; Wichman, A.L.; Woodzicka, J.A.; Nosek, B.A.

    2014-01-01

    Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of 13 classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, 10 effects replicated consistently.

  19. Hepatitis B virus replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hepadnaviruses, including human hepatitis B virus (HBV), replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Despite this kinship to retroviruses, there are fundamental differences beyond the fact that hepadnavirions contain DNA instead of RNA. Most peculiar is the initiation of reverse transcription: it occurs by protein-priming, is strictly committed to using an RNA hairpin on the pgRNA,ε, as template, and depends on cellular chaperones;moreover, proper replication can apparently occur only in the specialized environment of intact nucleocapsids.This complexity has hampered an in-depth mechanistic understanding. The recent successful reconstitution in the test tube of active replication initiation complexes from purified components, for duck HBV (DHBV),now allows for the analysis of the biochemistry of hepadnaviral replication at the molecular level. Here we review the current state of knowledge at all steps of the hepadnaviral genome replication cycle, with emphasis on new insights that turned up by the use of such cellfree systems. At this time, they can, unfortunately,not be complemented by three-dimensional structural information on the involved components. However, at least for the s RNA element such information is emerging,raising expectations that combining biophysics with biochemistry and genetics will soon provide a powerful integrated approach for solving the many outstanding questions. The ultimate, though most challenging goal,will be to visualize the hepadnaviral reverse transcriptase in the act of synthesizing DNA, which will also have strong implications for drug development.

  20. Initiation and regulation of paramyxovirus transcription and replication.

    Science.gov (United States)

    Noton, Sarah L; Fearns, Rachel

    2015-05-01

    The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.

  1. Psychology, replication & beyond.

    Science.gov (United States)

    Laws, Keith R

    2016-06-01

    Modern psychology is apparently in crisis and the prevailing view is that this partly reflects an inability to replicate past findings. If a crisis does exists, then it is some kind of 'chronic' crisis, as psychologists have been censuring themselves over replicability for decades. While the debate in psychology is not new, the lack of progress across the decades is disappointing. Recently though, we have seen a veritable surfeit of debate alongside multiple orchestrated and well-publicised replication initiatives. The spotlight is being shone on certain areas and although not everyone agrees on how we should interpret the outcomes, the debate is happening and impassioned. The issue of reproducibility occupies a central place in our whig history of psychology.

  2. Specific amplification of gene encoding N-terminal region of catalase-peroxidase protein (KatG-N) for diagnosis of disseminated MAC disease in HIV patients.

    Science.gov (United States)

    Latawa, Romica; Singh, Krishna Kumar; Wanchu, Ajay; Sethi, Sunil; Sharma, Kusum; Sharma, Aman; Laal, Suman; Verma, Indu

    2014-10-01

    Disseminated Mycobacterium avium-intracellulare complex (MAC) infection is considered as severe complication of advanced HIV/AIDS disease. Currently available various laboratory investigations have not only limited ability to discriminate between MAC infection and tuberculosis but are also laborious and time consuming. The aim of this study was, therefore, to design a molecular-based strategy for specific detection of MAC and its differentiation from Mycobacterium tuberculosis (M. tb) isolated from the blood specimens of HIV patients. A simple PCR was developed based on the amplification of 120-bp katG-N gene corresponding to the first 40 amino acids of N-terminal catalase-peroxidase (KatG) protein of Mycobacterium avium that shows only ~13% sequence homology by clustal W alignment to N-terminal region of M. tb KatG protein. This assay allowed the accurate and rapid detection of MAC bacteremia, distinguishing it from M. tb in a single PCR reaction without any need for sequencing or hybridization protocol to be performed thereafter. This study produced enough evidence that a significant proportion of Indian HIV patients have disseminated MAC bacteremia, suggesting the utility of M. avium katG-N gene PCR for early detection of MAC disease in HIV patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication

    DEFF Research Database (Denmark)

    Oke, Muse; Kerou, Melina; Liu, Huanting

    2011-01-01

    that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between...... positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral...

  4. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease.

    Science.gov (United States)

    Kimura, Ryo; Kamino, Kouzin; Yamamoto, Mitsuko; Nuripa, Aidaralieva; Kida, Tomoyuki; Kazui, Hiroaki; Hashimoto, Ryota; Tanaka, Toshihisa; Kudo, Takashi; Yamagata, Hidehisa; Tabara, Yasuharu; Miki, Tetsuro; Akatsu, Hiroyasu; Kosaka, Kenji; Funakoshi, Eishi; Nishitomi, Kouhei; Sakaguchi, Gaku; Kato, Akira; Hattori, Hideyuki; Uema, Takeshi; Takeda, Masatoshi

    2007-01-01

    We scanned throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) using 374 Japanese patients and 375 population-based controls, because trisomy 21 is known to be associated with early deposition of beta-amyloid (Abeta) in the brain. Among 417 markers spanning 33 Mb, 22 markers showed associations with either the allele or the genotype frequency (P KCNJ6 genes. In logistic regression, the DYRK1A (dual-specificity tyrosine-regulated kinase 1A) gene, located in the Down syndrome critical region, showed the highest significance [OR = 2.99 (95% CI: 1.72-5.19), P = 0.001], whereas the RUNX1 gene showed a high odds ratio [OR = 23.3 (95% CI: 2.76-196.5), P = 0.038]. DYRK1A mRNA level in the hippocampus was significantly elevated in patients with AD when compared with pathological controls (P < 0.01). DYRK1A mRNA level was upregulated along with an increase in the Abeta-level in the brain of transgenic mice, overproducing Abeta at 9 months of age. In neuroblastoma cells, Abeta induced an increase in the DYRK1A transcript, which also led to tau phosphorylation at Thr212 under the overexpression of tau. Therefore, the upregulation of DYRK1A transcription results from Abeta loading, further leading to tau phosphorylation. Our result indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.

  5. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  6. Two-stage replication of previous genome-wide association studies of AS3MT-CNNM2-NT5C2 gene cluster region in a large schizophrenia case-control sample from Han Chinese population.

    Science.gov (United States)

    Guan, Fanglin; Zhang, Tianxiao; Li, Lu; Fu, Dongke; Lin, Huali; Chen, Gang; Chen, Teng

    2016-10-01

    Schizophrenia is a devastating psychiatric condition with high heritability. Replicating the specific genetic variants that increase susceptibility to schizophrenia in different populations is critical to better understand schizophrenia. CNNM2 and NT5C2 are genes recently identified as susceptibility genes for schizophrenia in Europeans, but the exact mechanism by which these genes confer risk for schizophrenia remains unknown. In this study, we examined the potential for genetic susceptibility to schizophrenia of a three-gene cluster region, AS3MT-CNNM2-NT5C2. We implemented a two-stage strategy to conduct association analyses of the targeted regions with schizophrenia. A total of 8218 individuals were recruited, and 45 pre-selected single nucleotide polymorphisms (SNPs) were genotyped. Both single-marker and haplotype-based analyses were conducted in addition to imputation analysis to increase the coverage of our genetic markers. Two SNPs, rs11191419 (OR=1.24, P=7.28×10(-5)) and rs11191514 (OR=1.24, P=0.0003), with significant independent effects were identified. These results were supported by the data from both the discovery and validation stages. Further haplotype and imputation analyses also validated these results, and bioinformatics analyses indicated that CALHM1, which is located approximately 630kb away from CNNM2, might be a susceptible gene for schizophrenia. Our results provide further support that AS3MT, CNNM2 and CALHM1 are involved with the etiology and pathogenesis of schizophrenia, suggesting these genes are potential targets of interest for the improvement of disease management and the development of novel pharmacological strategies.

  7. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20...

  8. Replication-Fork Dynamics

    NARCIS (Netherlands)

    Duderstadt, Karl E.; Reyes-Lamothe, Rodrigo; van Oijen, Antoine M.; Sherratt, David J.

    2014-01-01

    The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication re

  9. Coronavirus Attachment and Replication

    Science.gov (United States)

    1988-03-28

    synthesis during RNA replication of vesicular stomatitis virus. J. Virol. 49:303-309. Pedersen, N.C. 1976a. Feline infectious peritonitis: Something old...receptors on intestinal brush border membranes from normal host species were developed for canine (CCV), feline (FIPV), porcine (TGEV), human (HCV...gastroenteritis receptor on pig BBMs ...... ................. ... 114 Feline infectious peritonitis virus receptor on cat BBMs ... .............. 117 Human

  10. A genome-wide linkage study of bipolar disorder and co-morbid migraine: replication of migraine linkage on chromosome 4q24, and suggestion of an overlapping susceptibility region for both disorders on chromosome 20p11.

    Science.gov (United States)

    Oedegaard, K J; Greenwood, T A; Lunde, A; Fasmer, O B; Akiskal, H S; Kelsoe, J R

    2010-04-01

    Migraine and Bipolar Disorder (BPAD) are clinically heterogeneous disorders of the brain with a significant, but complex, genetic component. Epidemiological and clinical studies have demonstrated a high degree of co-morbidity between migraine and BPAD. Several genome-wide linkage studies in BPAD and migraine have shown overlapping regions of linkage on chromosomes, and two functionally similar voltage-dependent calcium channels CACNA1A and CACNA1C have been identified in familial hemiplegic migraine and recently implicated in two whole genome BPAD association studies, respectively. We hypothesized that using migraine co-morbidity to look at subsets of BPAD families in a genetic linkage analysis would prove useful in identifying genetic susceptibility regions in both of these disorders. We used BPAD with co-morbid migraine as an alternative phenotype definition in a re-analysis of the NIMH Bipolar Genetics Initiative wave 4 data set. In this analysis we selected only those families in which at least two members were diagnosed with migraine by a doctor according to patients' reports. Nonparametric linkage analysis performed on 31 families segregating both BPAD and migraine identified a linkage signal on chromosome 4q24 for migraine (but not BPAD) with a peak LOD of 2.26. This region has previously been implicated in two independent migraine linkage studies. In addition we identified a locus on chromosome 20p11 with overlapping elevated LOD scores for both migraine (LOD=1.95) and BPAD (LOD=1.67) phenotypes. This region has previously been implicated in two BPAD linkage studies, and, interestingly, it harbors a known potassium dependant sodium/calcium exchanger gene, SLC24A3, that plays a critical role in neuronal calcium homeostasis. Our findings replicate a previously identified migraine linkage locus on chromosome 4 (not co-segregating with BPAD) in a sample of BPAD families with co-morbid migraine, and suggest a susceptibility locus on chromosome 20, harboring a

  11. The putative imprinted locus D15S9 within the common deletion region for the Prader-Willi and Angelman syndromes encodes two overlapping mRNAs transcribed from opposite strands

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, C.C.; Driscoll, D.J. [Univ. of Florida, Gainesville, FL (United States); Saitoh, S. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1994-09-01

    Prader-Willi syndrome is typically caused by a deletion of paternal 15q11-q13, or maternal uniparental disomy (UPD) of chromosome 15, while Angelman syndrome is caused by a maternal deletion or paternal UPD of the same region. Therefore, these two clinically distinct neurobehavioral syndromes result from differential expression of imprinted genes within 15q11-q13. A 3.1 kb cDNA, DN34, from the D15S9 locus within 15q11-q13 was isolated from a human fetal brain library. We showed previously that DN34 probe detects a DNA methylation imprint and therefore may represent a candidate imprinted gene. Isolation of genomic clones and DNA sequencing demonstrated that the gene segment encoding the partial cDNA DN34 was split by a 2 kb intron, but did not encode a substantial open reading frame (ORF). Preliminary analysis of expression by RT-PCR suggests that this gene is expressed in fetal but not in tested tissue types from the adult, and thus its imprinting status has not been possible to assess at present. Surprisingly, we found an ORF on the antisense strand of the DN34 cDNA. This ORF encodes a putative polypeptide of 505 amino acid residues containing a RING C{sub 3}HC{sub 4} zinc-finger motif and other features of nuclear proteins. Subsequent characterization of this gene, ZNF127, and a mouse homolog, demonstrated expression of 3.2 kb transcript from all tested fetal and adult tissues. Transcripts initiate from within a CpG-island, shown to be differentially methylated on parental alleles in the human. Interestingly, functional imprinting of the mouse homolog was subsequently demonstrated in an F{sub 1} cross by analyzing a VNTR polymorphism in the mRNA. The ZNF127 gene is intronless, has significant overlap with the DN34 gene on the antisense strand, and a 1 kb 3{prime} end within the 2 kb DN34 intron.

  12. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients

    Science.gov (United States)

    Lango-Chavarría, M.; Chimal-Ramírez, G.K.; Ruiz-Tachiquín, M.E.; Espinoza-Sánchez, N.A.; Suárez-Arriaga, M.C.; Fuentes-Pananá, E.M.

    2017-01-01

    Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer. PMID:28101578

  13. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  14. Interferon γ expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity

    OpenAIRE

    1999-01-01

    Interferon γ (IFN-γ) has pleiotropic biological effects, including intrinsic antiviral activity as well as stimulation and regulation of immune responses. An infectious recombinant human respiratory syncytial virus (rRSV/mIFN-γ) was constructed that encodes murine (m) IFN-γ as a separate gene inserted into the G-F intergenic region. Cultured cells infected with rRSV/mIFN-γ secreted 22 μg mIFN-γ per 106 cells. The replication of rRSV/mIFN-γ, but not that of a control chimeric rRSV containing t...

  15. Reversible Switching of Cooperating Replicators

    Science.gov (United States)

    Urtel, Georg C.; Rind, Thomas; Braun, Dieter

    2017-02-01

    How can molecules with short lifetimes preserve their information over millions of years? For evolution to occur, information-carrying molecules have to replicate before they degrade. Our experiments reveal a robust, reversible cooperation mechanism in oligonucleotide replication. Two inherently slow replicating hairpin molecules can transfer their information to fast crossbreed replicators that outgrow the hairpins. The reverse is also possible. When one replication initiation site is missing, single hairpins reemerge from the crossbreed. With this mechanism, interacting replicators can switch between the hairpin and crossbreed mode, revealing a flexible adaptation to different boundary conditions.

  16. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.

    Directory of Open Access Journals (Sweden)

    Yair Field

    2008-11-01

    Full Text Available The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of approximately 380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted organizations over other factor sites, where factors bind without competition.

  17. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  18. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  19. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria.

    Science.gov (United States)

    Giusti, María de los Ángeles; Pistorio, Mariano; Lozano, Mauricio J; Tejerizo, Gonzalo A Torres; Salas, María Eugenia; Martini, María Carla; López, José Luis; Draghi, Walter O; Del Papa, María Florencia; Pérez-Mendoza, Daniel; Sanjuán, Juan; Lagares, Antonio

    2012-05-01

    Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own

  20. Initiation of adenovirus DNA replication.

    OpenAIRE

    Reiter, T; Fütterer, J; Weingärtner, B; Winnacker, E L

    1980-01-01

    In an attempt to study the mechanism of initiation of adenovirus DNA replication, an assay was developed to investigate the pattern of DNA synthesis in early replicative intermediates of adenovirus DNA. By using wild-type virus-infected cells, it was possible to place the origin of adenovirus type 2 DNA replication within the terminal 350 to 500 base pairs from either of the two molecular termini. In addition, a variety of parameters characteristic of adenovirus DNA replication were compared ...

  1. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  2. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  3. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  4. Replication data collection highlights value in diversity of replication attempts

    Science.gov (United States)

    DeSoto, K. Andrew; Schweinsberg, Martin

    2017-01-01

    Researchers agree that replicability and reproducibility are key aspects of science. A collection of Data Descriptors published in Scientific Data presents data obtained in the process of attempting to replicate previously published research. These new replication data describe published and unpublished projects. The different papers in this collection highlight the many ways that scientific replications can be conducted, and they reveal the benefits and challenges of crucial replication research. The organizers of this collection encourage scientists to reuse the data contained in the collection for their own work, and also believe that these replication examples can serve as educational resources for students, early-career researchers, and experienced scientists alike who are interested in learning more about the process of replication. PMID:28291224

  5. 3D structure prediction of replication factor C subunits (RFC and their interactome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mohamed Ragab Abdel Gawwad

    2013-06-01

    Full Text Available DNA stress can causes potentially spontaneous genome damage during DNA replication process. Proteins involved in this process are DNA-dependent ATPases, required for replication and repair. In this study the 3-D structure of RFC protein subunits in Arabidopsis thaliana: RFC1, RFC2, RFC3, RFC4 and RFC5 are predicted and confirmed by Ramachadran plot. The amino acid sequences are highly similar to the sequences of the homologous human RFC 140-, 37-, 36-, 40-, and 38 kDa subunits, respectively, and also show amino acid sequence similarity to functionally homologous proteins from E. coli. All five subunits show conserved regions characteristic of ATP/GTP-binding proteins and have significant degree of similarity among each other. The segments of conserved amino acid sequences that define a family of related proteins have been identified. RFC1 is identical to CDC44, a gene identified as a cell division cycle gene encoding a protein involved in DNA metabolism. Subcellular localization and interactions of each protein RFC protein subunit is determined. It subsequently became clear that RFC proteins and their interactome have functions in cell cycle regulation and/or DNA replication and repair processes. In addition, AtRFC subunits are controlling the biosynthesis of salicylic and salicylic acid-mediated defense responses in Arabidopsis.

  6. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data

    Directory of Open Access Journals (Sweden)

    Yokochi Tomoki

    2008-12-01

    Full Text Available Abstract Background Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5–5 megabases in mammals within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. Results We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1 view their data sets privately without sharing; (2 share with other registered users; or (3 make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. Conclusion ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the

  7. New Carbenicillin-Hydrolyzing β-Lactamase (CARB-7) from Vibrio cholerae Non-O1, Non-O139 Strains Encoded by the VCR Region of the V. cholerae Genome†

    Science.gov (United States)

    Melano, Roberto; Petroni, Alejandro; Garutti, Alicia; Saka, Héctor Alex; Mange, Laura; Pasterán, Fernando; Rapoport, Melina; Rossi, Alicia; Galas, Marcelo

    2002-01-01

    In a previous study, an analysis of 77 ampicillin-nonsusceptible (resistant plus intermediate categories) strains of Vibrio cholerae non-O1, non-O139, isolated from aquatic environment and diarrheal stool, showed that all of them produced a β-lactamase with a pI of 5.4. Hybridization or amplification by PCR with a probe for blaTEM or primers for blaCARB gene families was negative. In this work, an environmental ampicillin-resistant strain from this sample, ME11762, isolated from a waterway in the west region of Argentina, was studied. The nucleotide sequence of the structural gene of the β-lactamase was determined by bidirectional sequencing of a Sau3AI fragment belonging to this isolate. The gene encodes a new 288-amino-acid protein, designated CARB-7, that shares 88.5% homology with the CARB-6 enzyme; an overall 83.2% homology with PSE-4, PSE-1, CARB-3, and the Proteus mirabilis N29 enzymes; and 79% homology with CARB-4 enzyme. The gene for this β-lactamase could not be transferred to Escherichia coli by conjugation. The nucleotide sequence of the flanking regions of the blaCARB-7 gene showed the occurrence of three 123-bp V. cholerae repeated sequences, all of which were found outside the predicted open reading frame. The upstream fragment of the blaCARB-7 gene shared 93% identity with a locus situated inside V. cholerae's chromosome 2. These results strongly suggest the chromosomal location of the blaCARB-7 gene, making this the first communication of a β-lactamase gene located on the VCR island of the V. cholerae genome. PMID:12069969

  8. The molecular biology of Bluetongue virus replication.

    Science.gov (United States)

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention.

  9. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bugge

    2006-01-01

    Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication......, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions...

  10. Anatomy of Mammalian Replication Domains

    Science.gov (United States)

    Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2017-01-01

    Genetic information is faithfully copied by DNA replication through many rounds of cell division. In mammals, DNA is replicated in Mb-sized chromosomal units called “replication domains.” While genome-wide maps in multiple cell types and disease states have uncovered both dynamic and static properties of replication domains, we are still in the process of understanding the mechanisms that give rise to these properties. A better understanding of the molecular basis of replication domain regulation will bring new insights into chromosome structure and function. PMID:28350365

  11. Phosphorylation of hepatitis C virus RNA polymerases ser29 and ser42 by protein kinase C-related kinase 2 regulates viral RNA replication.

    Science.gov (United States)

    Han, Song-Hee; Kim, Seong-Jun; Kim, Eun-Jung; Kim, Tae-Eun; Moon, Jae-Su; Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Kun; Yoo, Jong Shin; Son, Woo Sung; Rhee, Jin-Kyu; Han, Seung Hyun; Oh, Jong-Won

    2014-10-01

    Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase (RdRp), is the key enzyme for HCV RNA replication. We previously showed that HCV RdRp is phosphorylated by protein kinase C-related kinase 2 (PRK2). In the present study, we used biochemical and reverse-genetics approaches to demonstrate that HCV NS5B phosphorylation is crucial for viral RNA replication in cell culture. Two-dimensional phosphoamino acid analysis revealed that PRK2 phosphorylates NS5B exclusively at its serine residues in vitro and in vivo. Using in vitro kinase assays and mass spectrometry, we identified two phosphorylation sites, Ser29 and Ser42, in the Δ1 finger loop region that interacts with the thumb subdomain of NS5B. Colony-forming assays using drug-selectable HCV subgenomic RNA replicons revealed that preventing phosphorylation by Ala substitution at either Ser29 or Ser42 impairs HCV RNA replication. Furthermore, reverse-genetics studies using HCV infectious clones encoding phosphorylation-defective NS5B confirmed the crucial role of these PRK2 phosphorylation sites in viral RNA replication. Molecular-modeling studies predicted that the phosphorylation of NS5B stabilizes the interactions between its Δ1 loop and thumb subdomain, which are required for the formation of the closed conformation of NS5B known to be important for de novo RNA synthesis. Collectively, our results provide evidence that HCV NS5B phosphorylation has a positive regulatory role in HCV RNA replication. While the role of RNA-dependent RNA polymerases (RdRps) in viral RNA replication is clear, little is known about their functional regulation by phosphorylation. In this study, we addressed several important questions about the function and structure of phosphorylated hepatitis C virus (HCV) nonstructural protein 5B (NS5B). Reverse-genetics studies with HCV replicons encoding phosphorylation-defective NS5B mutants and analysis of their RdRp activities revealed previously unidentified

  12. The Golden Ratio Encoder

    CERN Document Server

    Daubechies, I; Wang, Y; Yilmaz, Ö

    2008-01-01

    This paper proposes a novel Nyquist-rate analog-to-digital (A/D) conversion algorithm which achieves exponential accuracy in the bit-rate despite using imperfect components. The proposed algorithm is based on a robust implementation of a beta-encoder where the value of the base beta is equal to golden mean. It was previously shown that beta-encoders can be implemented in such a way that their exponential accuracy is robust against threshold offsets in the quantizer element. This paper extends this result by allowing for imperfect analog multipliers with imprecise gain values as well. A formal computational model for algorithmic encoders and a general test bed for evaluating their robustness is also proposed.

  13. A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein.

    Directory of Open Access Journals (Sweden)

    Ayman El-Guindy

    Full Text Available ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A, at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E, Z(R187K and Z(K188A, were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1, the single-stranded DNA-binding protein (BALF2 and the DNA polymerase processivity factor (BMRF1, partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication.

  14. Properties and use of novel replication-competent vectors based on Semliki Forest virus

    Directory of Open Access Journals (Sweden)

    Lulla Valeria

    2009-03-01

    Full Text Available Abstract Background Semliki Forest virus (SFV has a positive strand RNA genome and infects different cells of vertebrates and invertebrates. The 5' two-thirds of the genome encodes non-structural proteins that are required for virus replication and synthesis of subgenomic (SG mRNA for structural proteins. SG-mRNA is generated by internal initiation at the SG-promoter that is located at the complementary minus-strand template. Different types of expression systems including replication-competent vectors, which represent alphavirus genomes with inserted expression units, have been developed. The replication-competent vectors represent useful tools for studying alphaviruses and have potential therapeutic applications. In both cases, the properties of the vector, such as its genetic stability and expression level of the protein of interest, are important. Results We analysed 14 candidates of replication-competent vectors based on the genome of an SFV4 isolate that contained a duplicated SG promoter or an internal ribosomal entry site (IRES-element controlled marker gene. It was found that the IRES elements and the minimal -21 to +5 SG promoter were non-functional in the context of these vectors. The efficient SG promoters contained at least 26 residues upstream of the start site of SG mRNA. The insertion site of the SG promoter and its length affected the genetic stability of the vectors, which was always higher when the SG promoter was inserted downstream of the coding region for structural proteins. The stability also depended on the conditions used for vector propagation. A procedure based on the in vitro transcription of ligation products was used for generation of replication-competent vector-based expression libraries that contained hundreds of thousands of different genomes, and maintained genetic diversity and the ability to express inserted genes over five passages in cell culture. Conclusion The properties of replication-competent vectors

  15. Analysis of JC virus DNA replication using a quantitative and high-throughput assay.

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A

    2014-11-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.

  16. DNA ligase I, the replicative DNA ligase.

    Science.gov (United States)

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  17. POLD3 is haploinsufficient for DNA replication in mice

    OpenAIRE

    Murga, Matilde; Lecona, Emilio; Kamileri, Irene; Díaz,Marcos; Lugli, Natalia; Sotiriou, Sotirios K.; Anton, Marta E.; Méndez, Juan; Thanos D Halazonetis; Fernandez-Capetillo, Oscar

    2016-01-01

    The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologues are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizzosaccharomyces pombe orthologue is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also requ...

  18. Replicated Spectrographs in Astronomy

    CERN Document Server

    Hill, Gary J

    2014-01-01

    As telescope apertures increase, the challenge of scaling spectrographic astronomical instruments becomes acute. The next generation of extremely large telescopes (ELTs) strain the availability of glass blanks for optics and engineering to provide sufficient mechanical stability. While breaking the relationship between telescope diameter and instrument pupil size by adaptive optics is a clear path for small fields of view, survey instruments exploiting multiplex advantages will be pressed to find cost-effective solutions. In this review we argue that exploiting the full potential of ELTs will require the barrier of the cost and engineering difficulty of monolithic instruments to be broken by the use of large-scale replication of spectrographs. The first steps in this direction have already been taken with the soon to be commissioned MUSE and VIRUS instruments for the Very Large Telescope and the Hobby-Eberly Telescope, respectively. MUSE employs 24 spectrograph channels, while VIRUS has 150 channels. We compa...

  19. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  20. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  1. DNA sequences encoding erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.K.

    1987-10-27

    A purified and isolated DNA sequence is described consisting essentially of a DNA sequence encoding a polypeptide having an amino acid sequence sufficiently duplicative of that of erythropoietin to allow possession of the biological property of causing bone marrow cells to increase production of reticulocytes and red blood cells, and to increase hemoglobin synthesis or iron uptake.

  2. Time-Encoded Imagers.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  3. Late-replicating X-chromosome: replication patterns in mammalian females

    Directory of Open Access Journals (Sweden)

    Tunin Karen

    2002-01-01

    Full Text Available The GTG-banding and 5-BrdU incorporation patterns of the late-replicating X-chromosome were studied in female dogs and cattle, and compared to human female patterns. The replication patterns of the short arm of the X-chromosomes did not show any difference between human, dog and cattle females. As to the long arm, some bands showed differences among the three studied species regarding the replication kinetics pattern. These differences were observed in a restricted region of the X-chromosome, delimited by Xq11 -> q25 in humans, by Xq1 -> q8 in dogs, and by Xq12 -> q32 in cattle. In an attempt to find out if these differences in the replication kinetics could be a reflection of differences in the localization of genes in that region of the X-chromosome, we used the probe for the human androgen receptor gene (AR localized at Xq12, which is in the region where we observed differences among the three studied species. We did not, however, observe hybridization signals. Our study goes on, using other human probes for genes located in the region Xq11 -> Xq25.

  4. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-15

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen the yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  5. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  6. DNA-Binding Proteins Regulating pIP501 Transfer and Replication

    Science.gov (United States)

    Grohmann, Elisabeth; Goessweiner-Mohr, Nikolaus; Brantl, Sabine

    2016-01-01

    pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling

  7. Efficient usage of Adabas replication

    CERN Document Server

    Storr, Dieter W

    2011-01-01

    In today's IT organization replication becomes more and more an essential technology. This makes Software AG's Event Replicator for Adabas an important part of your data processing. Setting the right parameters and establishing the best network communication, as well as selecting efficient target components, is essential for successfully implementing replication. This book provides comprehensive information and unique best-practice experience in the field of Event Replicator for Adabas. It also includes sample codes and configurations making your start very easy. It describes all components ne

  8. Solving the Telomere Replication Problem

    Science.gov (United States)

    Maestroni, Laetitia; Matmati, Samah; Coulon, Stéphane

    2017-01-01

    Telomeres are complex nucleoprotein structures that protect the extremities of linear chromosomes. Telomere replication is a major challenge because many obstacles to the progression of the replication fork are concentrated at the ends of the chromosomes. This is known as the telomere replication problem. In this article, different and new aspects of telomere replication, that can threaten the integrity of telomeres, will be reviewed. In particular, we will focus on the functions of shelterin and the replisome for the preservation of telomere integrity. PMID:28146113

  9. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.

    Directory of Open Access Journals (Sweden)

    Shlomit Farkash-Amar

    Full Text Available DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR. Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR. Our algorithm, ARTO (Analysis of Replication Timing and Organization, uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10-25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are

  10. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L.; Landolin, Jane M.; Bristow, Christopher A.; Ma, Lijia; Lin, Michael F.; Washietl, Stefan; Arshinoff, Bradley I.; Ay, Ferhat; Meyer, Patrick E.; Robine, Nicolas; Washington, Nicole L.; Stefano, Luisa Di; Berezikov, Eugene; Brown, Christopher D.; Candeias, Rogerio; Carlson, Joseph W.; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y.; Will, Sebastian; Alekseyenko, Artyom A.; Artieri, Carlo; Booth, Benjamin W.; Brooks, Angela N.; Dai, Qi; Davis, Carrie A.; Duff, Michael O.; Feng, Xin; Gorchakov, Andrey A.; Gu, Tingting; Henikoff, Jorja G.; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K.; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K.; Riddle, Nicole C.; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E.; Schwartz, Yuri B.; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H.; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E.; Brent, Michael R.; Cherbas, Lucy; Elgin, Sarah C. R.; Gingeras, Thomas R.; Grossman, Robert; Hoskins, Roger A.; Kaufman, Thomas C.; Kent, William; Kuroda, Mitzi I.; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W.; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R.; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J.; Celniker, Susan E.; Henikoff, Steven; Karpen, Gary H.; Lai, Eric C.; MacAlpine, David M.; Stein, Lincoln D.; White, Kevin P.; Kellis, Manolis

    2010-12-22

    of {approx}40% of the protein and nonprotein-coding genes [FlyBase 5.12 (4)] have been determined from cDNA collections (5, 6), manual curation of gene models (7), gene mutations and comprehensive genome-wide RNA interference screens (8-10), and comparative genomic analyses (11, 12). The Drosophila modENCODE project has generated more than 700 data sets that profile transcripts, histone modifications and physical nucleosome properties, general and specific transcription factors (TFs), and replication programs in cell lines, isolated tissues, and whole organisms across several developmental stages (Fig. 1). Here, we computationally integrate these data sets and report (i) improved and additional genome annotations, including full-length proteincoding genes and peptides as short as 21 amino acids; (ii) noncoding transcripts, including 132 candidate structural RNAs and 1608 nonstructural transcripts; (iii) additional Argonaute (Ago)-associated small RNA genes and pathways, including new microRNAs (miRNAs) encoded within protein-coding exons and endogenous small interfering RNAs (siRNAs) from 3-inch untranslated regions; (iv) chromatin 'states' defined by combinatorial patterns of 18 chromatin marks that are associated with distinct functions and properties; (v) regions of high TF occupancy and replication activity with likely epigenetic regulation; (vi)mixed TF and miRNA regulatory networks with hierarchical structure and enriched feed-forward loops; (vii) coexpression- and co-regulation-based functional annotations for nearly 3000 genes; (viii) stage- and tissue-specific regulators; and (ix) predictive models of gene expression levels and regulator function.

  11. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  12. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo.

    Science.gov (United States)

    Guse, K; Dias, J D; Bauerschmitz, G J; Hakkarainen, T; Aavik, E; Ranki, T; Pisto, T; Särkioja, M; Desmond, R A; Kanerva, A; Hemminki, A

    2007-06-01

    Oncolytic viruses kill cancer cells by tumor-selective replication. Clinical data have established the safety of the approach but also the need of improvements in potency. Efficacy of oncolysis is linked to effective infection of target cells and subsequent productive replication. Other variables include intratumoral barriers, access to target cells, uptake by non-target organs and immune response. Each of these aspects relates to the location and degree of virus replication. Unfortunately, detection of in vivo replication has been difficult, labor intensive and costly and therefore not much studied. We hypothesized that by coinfection of a luciferase expressing E1-deleted virus with an oncolytic virus, both viruses would replicate when present in the same cell. Photon emission due to conversion of D-Luciferin is sensitive and penetrates tissues well. Importantly, killing of animals is not required and each animal can be imaged repeatedly. Two different murine xenograft models were used and intratumoral coinjections of luciferase encoding virus were performed with eight different oncolytic adenoviruses. In both models, we found significant correlation between photon emission and infectious virus production. This suggests that the system can be used for non-invasive quantitation of the amplitude, persistence and dynamics of oncolytic virus replication in vivo, which could be helpful for the development of more effective and safe agents.

  13. Functional amyloids as inhibitors of plasmid DNA replication

    Science.gov (United States)

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-del Álamo, María; Fernández-Tresguerres, M. Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is ‘handcuffing’, i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  14. Identification of putative DnaN-binding motifs in plasmid replication initiation proteins.

    Science.gov (United States)

    Dalrymple, Brian P; Kongsuwan, Kritaya; Wijffels, Gene

    2007-01-01

    Recently the plasmid RK2 replication initiation protein, TrfA, has been shown to bind to the beta subunit of DNA Polymerase III (DnaN) via a short pentapeptide with the consensus QL[S/D]LF. A second consensus peptide, the hexapeptide QLxLxL, has also been demonstrated to mediate binding to DnaN. Here we describe the results of a comprehensive survey of replication initiation proteins encoded by bacterial plasmids to identify putative DnaN-binding sites. Both pentapeptide and hexapeptide motifs have been identified in a number of families of replication initiation proteins. The distribution of sites is sporadic and closely related families of proteins may differ in the presence, location, or type of putative DnaN-binding motif. Neither motif has been identified in replication initiation proteins encoded by plasmids that replicate via rolling circles or strand displacement. The results suggest that the recruitment of DnaN to the origin of replication of a replisome by plasmid replication initiation proteins is not generally required for plasmid replication, but that in some cases it may be beneficial for efficiency of replication initiation.

  15. Discoveries and functions of virus-encoded MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, ChinaVirus-encoded microRNAs (miRNAs) are a new kind of miRNAs that regulate the expression of target gene in host cells or viruses through inducing cleavage of mRNA, repressing translation, etc., and change the processes of host cells or replicate viruses to escape or resist immune surveillance of host and protect viruses themselves. It has become a hot topic to discover viral genes encoding miRNAs and their target genes, and to identify their functions. This review provides background information on the history of virally encoded miRNAs including their genomic distribution, functions and mechanisms.In addition, we discuss the similarities and differences between virus- and host-encoded miRNAs, the future directions of researches in viral miRNAs and their applications in diseases control and therapy.

  16. Replication timing: a fingerprint for cell identity and pluripotency.

    Directory of Open Access Journals (Sweden)

    Tyrone Ryba

    2011-10-01

    Full Text Available Many types of epigenetic profiling have been used to classify stem cells, stages of cellular differentiation, and cancer subtypes. Existing methods focus on local chromatin features such as DNA methylation and histone modifications that require extensive analysis for genome-wide coverage. Replication timing has emerged as a highly stable cell type-specific epigenetic feature that is regulated at the megabase-level and is easily and comprehensively analyzed genome-wide. Here, we describe a cell classification method using 67 individual replication profiles from 34 mouse and human cell lines and stem cell-derived tissues, including new data for mesendoderm, definitive endoderm, mesoderm and smooth muscle. Using a Monte-Carlo approach for selecting features of replication profiles conserved in each cell type, we identify "replication timing fingerprints" unique to each cell type and apply a k nearest neighbor approach to predict known and unknown cell types. Our method correctly classifies 67/67 independent replication-timing profiles, including those derived from closely related intermediate stages. We also apply this method to derive fingerprints for pluripotency in human and mouse cells. Interestingly, the mouse pluripotency fingerprint overlaps almost completely with previously identified genomic segments that switch from early to late replication as pluripotency is lost. Thereafter, replication timing and transcription within these regions become difficult to reprogram back to pluripotency, suggesting these regions highlight an epigenetic barrier to reprogramming. In addition, the major histone cluster Hist1 consistently becomes later replicating in committed cell types, and several histone H1 genes in this cluster are downregulated during differentiation, suggesting a possible instrument for the chromatin compaction observed during differentiation. Finally, we demonstrate that unknown samples can be classified independently using site

  17. Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities.

    Science.gov (United States)

    Anticevic, Alan; Repovs, Grega; Barch, Deanna M

    2013-01-01

    Substantial evidence implicates working memory (WM) as a core deficit in schizophrenia (SCZ), purportedly due to primary deficits in dorsolateral prefrontal cortex functioning. Recent findings suggest that SCZ is also associated with abnormalities in suppression of certain regions during cognitive engagement--namely the default mode system--that may further contribute to WM pathology. However, no study has systematically examined activation and suppression abnormalities across both encoding and maintenance phases of WM in SCZ. Twenty-eight patients and 24 demographically matched healthy subjects underwent functional magnetic resonance imaging at 3T while performing a delayed match-to-sample WM task. Groups were accuracy matched to rule out performance effects. Encoding load was identical across subjects to facilitate comparisons across WM phases. We examined activation differences using an assumed model approach at the whole-brain level and within meta-analytically defined WM areas. Despite matched performance, we found regions showing less recruitment during encoding and maintenance for SCZ subjects. Furthermore, we identified 2 areas closely matching the default system, which SCZ subjects failed to deactivate across WM phases. Lastly, activation in prefrontal regions predicted the degree of deactivation for healthy but not SCZ subjects. Current results replicate and extend prefrontal recruitment abnormalities across WM phases in SCZ. Results also indicate deactivation abnormalities across WM phases, possibly due to inefficient prefrontal recruitment. Such regional deactivation may be critical for suppressing sources of interference during WM trace formation. Thus, deactivation deficits may constitute an additional source of impairments, which needs to be further characterized for a complete understanding of WM pathology in SCZ.

  18. Analysis of the Genes Encoding the Histones of Microsporidia Nosema bombycis

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2013-02-01

    Full Text Available Histone proteins are essential components of eukaryotic chromosomes, the objective of the study is to provide some new insights into its evolution through analysis of N. bombycis Histone genes at genomic level. In the study, genes encoding core Histone H2A, H2B, H3 and H4 from Nosema bombycis were analyzed by multiple sequence alignments. Analysis showed that: each type of the core Histone genes, sharing high similarity with each other in both coding and non-coding regions, has low copy number. Multiple sequence alignments showed N. bombycis core Histones diverge obviously, relative-rate test revealed Histone proteins have accelerated in the evolutionary rate of amino acid substitution. The distance between the stop codon and consensus poly (A signal is compacted, no conserved hair-pin element was found in 3'-untranslated regions of Histone mRNAs and overlapping gene transcription was observed in the downstream region of Histone variant H3_3, that implies there maybe have only single class of core Histone genes encoding replication-independent Histones in N. bombycis. Surveying the upstream of the coding region of all core Histone genes, there were no canonical TATA or CAAT boxes except that a common Histone motif (TTTCCCTCC was discovered. Moreover, no similar Histone motif mentioned above existed in Encephalitozoon cuniculi, the closely related organisms. That means that similar Histone motif maybe exists in microsporidian last common ancestor, N. bombycis retained Histone motif, while E. cuniculi have lost Histone motif after the differentiation from the common ancestor with the change of the host. Therefore the analysis of the genes encoding the Histones ofN. bombycis revealed that there maybe have two evolution directions in microsporidia, that is, genome extreme compact and mild compact, during the course of evolution. It contributes us to have the knowledge of that there have different genome size in microsporidia and provide useful

  19. Charter School Replication. Policy Guide

    Science.gov (United States)

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  20. Functional interactions of DNA topoisomerases with a human replication origin.

    Science.gov (United States)

    Abdurashidova, Gulnara; Radulescu, Sorina; Sandoval, Oscar; Zahariev, Sotir; Danailov, Miltcho B; Demidovich, Alexander; Santamaria, Laura; Biamonti, Giuseppe; Riva, Silvano; Falaschi, Arturo

    2007-02-21

    The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.

  1. LHCb experience with LFC replication

    CERN Document Server

    Bonifazi, F; Perez, E D; D'Apice, A; dell'Agnello, L; Düllmann, D; Girone, M; Re, G L; Martelli, B; Peco, G; Ricci, P P; Sapunenko, V; Vagnoni, V; Vitlacil, D

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  2. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2014-01-01

    Full Text Available The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MySQL running on Linux as the destination. The method applied in this research is prototyping in which the processes of development and testing can be done interactively and repeatedly. The key result of this research is that the replication technology applied, which is called Oracle GoldenGate, can successfully manage to do its task in replicating data in real-time and heterogeneous platforms.

  3. LHCb experience with LFC replication

    CERN Document Server

    Carbone, Angelo; Dafonte Perez, Eva; D'Apice, Antimo; dell'Agnello, Luca; Duellmann, Dirk; Girone, Maria; Lo Re, Giuseppe; Martelli, Barbara; Peco, Gianluca; Ricci, Pier Paolo; Sapunenko, Vladimir; Vagnoni, Vincenzo; Vitlacil, Dejan

    2007-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informations (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  4. Accelerated gene evolution through replication-transcription conflicts.

    Science.gov (United States)

    Paul, Sandip; Million-Weaver, Samuel; Chattopadhyay, Sujay; Sokurenko, Evgeni; Merrikh, Houra

    2013-03-28

    Several mechanisms that increase the rate of mutagenesis across the entire genome have been identified; however, how the rate of evolution might be promoted in individual genes is unclear. Most genes in bacteria are encoded on the leading strand of replication. This presumably avoids the potentially detrimental head-on collisions that occur between the replication and transcription machineries when genes are encoded on the lagging strand. Here we identify the ubiquitous (core) genes in Bacillus subtilis and determine that 17% of them are on the lagging strand. We find a higher rate of point mutations in the core genes on the lagging strand compared with those on the leading strand, with this difference being primarily in the amino-acid-changing (nonsynonymous) mutations. We determine that, overall, the genes under strong negative selection against amino-acid-changing mutations tend to be on the leading strand, co-oriented with replication. In contrast, on the basis of the rate of convergent mutations, genes under positive selection for amino-acid-changing mutations are more commonly found on the lagging strand, indicating faster adaptive evolution in many genes in the head-on orientation. Increased gene length and gene expression amounts are positively correlated with the rate of accumulation of nonsynonymous mutations in the head-on genes, suggesting that the conflict between replication and transcription could be a driving force behind these mutations. Indeed, using reversion assays, we show that the difference in the rate of mutagenesis of genes in the two orientations is transcription dependent. Altogether, our findings indicate that head-on replication-transcription conflicts are more mutagenic than co-directional conflicts and that these encounters can significantly increase adaptive structural variation in the coded proteins. We propose that bacteria, and potentially other organisms, promote faster evolution of specific genes through orientation

  5. Mutational analysis of the coding regions of the genes encoding protein kinase B-alpha and -beta, phosphoinositide-dependent protein kinase-1, phosphatase targeting to glycogen, protein phosphatase inhibitor-1, and glycogenin

    DEFF Research Database (Denmark)

    Hansen, L; Fjordvang, H; Rasmussen, S K

    1999-01-01

    be caused by genetic variability in the genes encoding proteins shown by biochemical evidence to be involved in insulin-stimulated glycogen synthesis in skeletal muscle. In 70 insulin-resistant Danish NIDDM patients, mutational analysis by reverse transcription-polymerase chain reaction-single strand...... conformation polymorphism-heteroduplex analysis was performed on genomic DNA or skeletal muscle-derived cDNAs encoding glycogenin, protein phosphatase inhibitor-1, phophatase targeting to glycogen, protein kinase B-alpha and -beta, and the phosphoinositide-dependent protein kinase-1. Although a number...

  6. How Attention Modulates Encoding of Dynamic Stimuli

    Science.gov (United States)

    Oren, Noga; Shapira-Lichter, Irit; Lerner, Yulia; Tarrasch, Ricardo; Hendler, Talma; Giladi, Nir; Ash, Elissa L.

    2016-01-01

    When encoding a real-life, continuous stimulus, the same neural circuits support processing and integration of prior as well as new incoming information. This ongoing interplay is modulated by attention, and is evident in regions such as the prefrontal cortex section of the task positive network (TPN), and in the posterior cingulate cortex (PCC), a hub of the default mode network (DMN). Yet the exact nature of such modulation is still unclear. To investigate this issue, we utilized an fMRI task that employed movies as the encoded stimuli and manipulated attentional load via an easy or hard secondary task that was performed simultaneously with encoding. Results showed increased intersubject correlation (inter-SC) levels when encoding movies in a condition of high, as compared to low attentional load. This was evident in bilateral ventrolateral and dorsomedial prefrontal cortices and the dorsal PCC (dPCC). These regions became more attuned to the combination of the movie and the secondary task as the attentional demand of the latter increased. Activation analyses revealed that at higher load the prefrontal TPN regions were more activated, whereas the dPCC was more deactivated. Attentional load also influenced connectivity within and between the networks. At high load the dPCC was anti-correlated to the prefrontal regions, which were more functionally coherent amongst themselves. Finally and critically, greater inter-SC in the dPCC at high load during encoding predicted lower memory strength when that information was retrieved. This association between inter-SC levels and memory strength suggest that as attentional demands increased, the dPCC was more attuned to the secondary task at the expense of the encoded stimulus, thus weakening memory for the encoded stimulus. Together, our findings show that attentional load modulated the function of core TPN and DMN regions. Furthermore, the observed relationship between memory strength and the modulation of the dPCC points

  7. Assembling semiconductor nanocomposites using DNA replication technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon W.; Crown, Kevin K.; Bachand, George David

    2005-11-01

    Deoxyribonucleic acid (DNA) molecules represent Nature's genetic database, encoding the information necessary for all cellular processes. From a materials engineering perspective, DNA represents a nanoscale scaffold with highly refined structure, stability across a wide range of environmental conditions, and the ability to interact with a range of biomolecules. The ability to mass-manufacture functionalized DNA strands with Angstrom-level resolution through DNA replication technology, however, has not been explored. The long-term goal of the work presented in this report is focused on exploiting DNA and in vitro DNA replication processes to mass-manufacture nanocomposite materials. The specific objectives of this project were to: (1) develop methods for replicating DNA strands that incorporate nucleotides with ''chemical handles'', and (2) demonstrate attachment of nanocrystal quantum dots (nQDs) to functionalized DNA strands. Polymerase chain reaction (PCR) and primer extension methodologies were used to successfully synthesize amine-, thiol-, and biotin-functionalized DNA molecules. Significant variability in the efficiency of modified nucleotide incorporation was observed, and attributed to the intrinsic properties of the modified nucleotides. Noncovalent attachment of streptavidin-coated nQDs to biotin-modified DNA synthesized using the primer extension method was observed by epifluorescence microscopy. Data regarding covalent attachment of nQDs to amine- and thiol-functionalized DNA was generally inconclusive; alternative characterization tools are necessary to fully evaluate these attachment methods. Full realization of this technology may facilitate new approaches to manufacturing materials at the nanoscale. In addition, composite nQD-DNA materials may serve as novel recognition elements in sensor devices, or be used as diagnostic tools for forensic analyses. This report summarizes the results obtained over the course of this 1-year

  8. Adaptation and Diversification of an RNA Replication System under Initiation- or Termination-Impaired Translational Conditions.

    Science.gov (United States)

    Mizuuchi, Ryo; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-07-01

    Adaptation to various environments is a remarkable characteristic of life. Is this limited to extant complex living organisms, or is it also possible for a simpler self-replication system to adapt? In this study, we addressed this question by using a translation-coupled RNA replication system that comprised a reconstituted translation system and an RNA "genome" that encoded a replicase gene. We performed RNA replication reactions under four conditions, under which different components of translation were partly inhibited. We found that replication efficiency increased with the number of rounds of replication under all the tested conditions. The types of dominant mutations differed depending on the condition, thus indicating that this simple system adapted to different environments in different ways. This suggests that even a primitive self-replication system composed of a small number of genes on the early earth could have had the ability to adapt to various environments.

  9. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    Science.gov (United States)

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  10. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  11. Murine leukemia virus (MLV replication monitored with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Bittner Alexandra

    2004-12-01

    Full Text Available Abstract Background Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results We inserted the coding sequences for green fluorescent protein (GFP into the proline-rich region (PRR of the ecotropic envelope protein (Env and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.

  12. Choreography of bacteriophage T7 DNA replication.

    Science.gov (United States)

    Lee, Seung-Joo; Richardson, Charles C

    2011-10-01

    The replication system of phage T7 provides a model for DNA replication. Biochemical, structural, and single-molecule analyses together provide insight into replisome mechanics. A complex of polymerase, a processivity factor, and helicase mediates leading strand synthesis. Establishment of the complex requires an interaction of the C-terminal tail of the helicase with the polymerase. During synthesis the complex is stabilized by other interactions to provide for a processivity of 5 kilobase (kb). The C-terminal tail also interacts with a distinct region of the polymerase to captures dissociating polymerase to increase the processivity to >17kb. The lagging strand is synthesized discontinuously within a loop that forms and resolves during each cycle of Okazaki fragment synthesis. The synthesis of a primer as well as the termination of a fragment signal loop resolution.

  13. International Expansion through Flexible Replication

    DEFF Research Database (Denmark)

    Jonsson, Anna; Foss, Nicolai Juul

    2011-01-01

    to local environments and under the impact of new learning. To illuminate these issues, we draw on a longitudinal in-depth study of Swedish home furnishing giant IKEA, involving more than 70 interviews. We find that IKEA has developed organizational mechanisms that support an ongoing learning process aimed......, etc.) are replicated in a uniform manner across stores, and change only very slowly (if at all) in response to learning (“flexible replication”). We conclude by discussing the factors that influence the approach to replication adopted by an international replicator....

  14. The Psychology of Replication and Replication in Psychology.

    Science.gov (United States)

    Francis, Gregory

    2012-11-01

    Like other scientists, psychologists believe experimental replication to be the final arbiter for determining the validity of an empirical finding. Reports in psychology journals often attempt to prove the validity of a hypothesis or theory with multiple experiments that replicate a finding. Unfortunately, these efforts are sometimes misguided because in a field like experimental psychology, ever more successful replication does not necessarily ensure the validity of an empirical finding. When psychological experiments are analyzed with statistics, the rules of probability dictate that random samples should sometimes be selected that do not reject the null hypothesis, even if an effect is real. As a result, it is possible for a set of experiments to have too many successful replications. When there are too many successful replications for a given set of experiments, a skeptical scientist should be suspicious that null or negative findings have been suppressed, the experiments were run improperly, or the experiments were analyzed improperly. This article describes the implications of this observation and demonstrates how to test for too much successful replication by using a set of experiments from a recent research paper.

  15. Regulation of Replication Recovery and Genome Integrity

    DEFF Research Database (Denmark)

    Colding, Camilla Skettrup

    Preserving genome integrity is essential for cell survival. To this end, mechanisms that supervise DNA replication and respond to replication perturbations have evolved. One such mechanism is the replication checkpoint, which responds to DNA replication stress and acts to ensure replication pausing...

  16. The hunt for origins of DNA replication in multicellular eukaryotes

    DEFF Research Database (Denmark)

    Urban, J. M.; Foulk, M. S.; Casella, Cinzia;

    2015-01-01

    Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope...... that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed....

  17. A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages.

    Science.gov (United States)

    Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R

    2014-09-01

    A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.

  18. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.

    Directory of Open Access Journals (Sweden)

    Andrea J Dowling

    Full Text Available Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.

  19. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... with their chronological age and present health status, help define their current rate of aging and contribute to establish personalized therapy plans to reduce, counteract or even avoid the appearance of aging biomarkers....

  20. Non-viral S/MAR vectors replicate episomally in vivo when provided with a selective advantage.

    Science.gov (United States)

    Wong, S P; Argyros, O; Coutelle, C; Harbottle, R P

    2011-01-01

    The ideal gene therapy vector should enable persistent expression without the limitations of safety and reproducibility. We previously reported that a prototype plasmid vector, containing a scaffold matrix attachment region (S/MAR) domain and the luciferase reporter gene, showed transgene expression for at least 6 months following a single administration to MF1 mice. Following partial hepatectomy of the animals, however, we found no detectable vector replication and subsequent propagation in vivo. To overcome this drawback, we have now developed an in vivo liver selection strategy by which liver cells transfected with an S/MAR plasmid are provided with a survival advantage over non-transfected cells. This allows an enrichment of vectors that are capable of replicating and establishing themselves as extra-chromosomal entities in the liver. Accordingly, a novel S/MAR plasmid encoding the Bcl-2 gene was constructed; Bcl-2 expression confers resistance against apoptosis-mediated challenges by the Fas-activating antibody Jo2. Following hydrodynamic delivery to the livers of mice and frequent Jo2 administrations, we demonstrate that this Bcl-luciferase S/MAR plasmid is indeed capable of providing sustained luciferase reporter gene expression for over 3 months and that this plasmid replicates as an episomal entity in vivo. These results provide proof-of-principle that S/MAR vectors are capable of preventing transgene silencing, are resistant to integration and are able to confer mitotic stability in vivo when provided with a selective advantage.

  1. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen

    Science.gov (United States)

    Lempp, Florian A.; Urban, Stephan

    2017-01-01

    The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15–20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B. PMID:28677645

  2. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  3. Nucleotide Metabolism and DNA Replication.

    Science.gov (United States)

    Warner, Digby F; Evans, Joanna C; Mizrahi, Valerie

    2014-10-01

    The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.

  4. Plasmid Rolling-Circle Replication.

    Science.gov (United States)

    Ruiz-Masó, J A; MachóN, C; Bordanaba-Ruiseco, L; Espinosa, M; Coll, M; Del Solar, G

    2015-02-01

    Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.

  5. Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii.

    Directory of Open Access Journals (Sweden)

    Eva C Berglund

    2009-07-01

    Full Text Available The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella.

  6. Proteasome-dependent degradation of replisome components regulates faithful DNA replication.

    Science.gov (United States)

    Roseaulin, Laura C; Noguchi, Chiaki; Noguchi, Eishi

    2013-08-15

    The replication machinery, or the replisome, collides with a variety of obstacles during the normal process of DNA replication. In addition to damaged template DNA, numerous chromosome regions are considered to be difficult to replicate owing to the presence of DNA secondary structures and DNA-binding proteins. Under these conditions, the replication fork stalls, generating replication stress. Stalled forks are prone to collapse, posing serious threats to genomic integrity. It is generally thought that the replication checkpoint functions to stabilize the replisome and replication fork structure upon replication stress. This is important in order to allow DNA replication to resume once the problem is solved. However, our recent studies demonstrated that some replisome components undergo proteasome-dependent degradation during DNA replication in the fission yeast Schizosaccharomyces pombe. Our investigation has revealed the involvement of the SCF(Pof3) (Skp1-Cullin/Cdc53-F-box) ubiquitin ligase in replisome regulation. We also demonstrated that forced accumulation of the replisome components leads to abnormal DNA replication upon replication stress. Here we review these findings and present additional data indicating the importance of replisome degradation for DNA replication. Our studies suggest that cells activate an alternative pathway to degrade replisome components in order to preserve genomic integrity.

  7. Analysis of protein-protein interactions in the feline calicivirus replication complex.

    Science.gov (United States)

    Kaiser, William J; Chaudhry, Yasmin; Sosnovtsev, Stanislav V; Goodfellow, Ian G

    2006-02-01

    Caliciviruses are a major cause of gastroenteritis in humans and cause a wide variety of other diseases in animals. Here, the characterization of protein-protein interactions between the individual proteins of Feline calicivirus (FCV), a model system for other members of the family Caliciviridae, is reported. Using the yeast two-hybrid system combined with a number of other approaches, it is demonstrated that the p32 protein (the picornavirus 2B analogue) of FCV interacts with p39 (2C), p30 (3A) and p76 (3CD). The FCV protease/RNA polymerase (ProPol) p76 was found to form homo-oligomers, as well as to interact with VPg and ORF2, the region encoding the major capsid protein VP1. A weak interaction was also observed between p76 and the minor capsid protein encoded by ORF3 (VP2). ORF2 protein was found to interact with VPg, p76 and VP2. The potential roles of the interactions in calicivirus replication are discussed.

  8. Simulation Studies in Data Replication Strategies

    Institute of Scientific and Technical Information of China (English)

    HarveyB.Newman; IosifC.Legrand

    2001-01-01

    The aim of this work is to present the simulation studies in evaluating different data replication strategies between Regional Centers.The simulation Framework developed within the "Models of Networked Analysis at Rgional Centers”(MONARC) project,as a design and optimization tool for large scale distributed systems,has been used for these modeling studies.Remote client-serer access to database servers as well as ftp-like data transfers have been ralistically simulated and the performance and limitations are presented as a function of the characteristics of the protocol used and the network parameters.

  9. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  10. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication.

    Science.gov (United States)

    McKnight, K L; Lemon, S M

    1998-12-01

    Cis-acting RNA signals are required for replication of positive-strand viruses such as the picornaviruses. Although these generally have been mapped to the 5' and/or 3' termini of the viral genome, RNAs derived from human rhinovirus type 14 are unable to replicate unless they contain an internal cis-acting replication element (cre) located within the genome segment encoding the capsid proteins. Here, we show that the essential cre sequence is 83-96 nt in length and located between nt 2318-2413 of the genome. Using dicistronic RNAs in which translation of the P1 and P2-P3 segments of the polyprotein were functionally dissociated, we further demonstrate that translation of the cre sequence is not required for RNA replication. Thus, although it is located within a protein-coding segment of the genome, the cre functions as an RNA entity. Computer folds suggested that cre sequences could form a stable structure in either positive- or minus-strand RNA. However, an analysis of mutant RNAs containing multiple covariant and non-covariant nucleotide substitutions within these putative structures demonstrated that only the predicted positive-strand structure is essential for efficient RNA replication. The absence of detectable minus-strand synthesis from RNAs that lack the cre suggests that the cre is required for initiation of minus-strand RNA synthesis. Since a lethal 3' noncoding region mutation could be partially rescued by a compensating mutation within the cre, the cre appears to participate in a long-range RNA-RNA interaction required for this process. These data provide novel insight into the mechanisms of replication of a positive-strand RNA virus, as they define the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex. Since internally located RNA replication signals have been shown to exist in several other positive-strand RNA virus families, these observations are potentially relevant to a wide array of

  11. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mt

  12. Modulation of pPS10 Host Range by Plasmid-Encoded RepA Initiator Protein

    Science.gov (United States)

    Maestro, Beatriz; Sanz, Jesús M.; Díaz-Orejas, Ramón; Fernández-Tresguerres, Elena

    2003-01-01

    We report here the isolation and analysis of novel repA host range mutants of pPS10, a plasmid originally found in Pseudomonas savastanoi. Upon hydroxylamine treatment, five plasmid mutants were selected for their establishment in Escherichia coli at 37°C, a temperature at which the wild-type form cannot be established. The mutations were located in different functional regions of the plasmid RepA initiation protein, and the mutants differ in their stable maintenance, copy number, and ability to interact with sequences of the basic replicon. Four of them have broadened their host range, and one of them, unable to replicate in Pseudomonas, has therefore changed its host range. Moreover, the mutants also have increased their replication efficiency in strains other than E. coli such as Pseudomonas putida and Alcaligenes faecalis. None of these mutations drastically changed the structure or thermal stability of the wild-type RepA protein, but in all cases an enhanced interaction with host-encoded DnaA protein was detected by gel filtration chromatography. The effects of the mutations on the functionality of RepA protein are discussed in the framework of a three-dimensional model of the protein. We propose possible explanations for the host range effect of the different repA mutants, including the enhancement of limiting interactions of RepA with specific host replication factors such as DnaA. PMID:12562807

  13. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis.

    Science.gov (United States)

    Albrecht, Björn; Lairmore, Michael D

    2002-09-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) infection is associated with a diverse range of lymphoproliferative and neurodegenerative diseases, yet pathogenic mechanisms induced by the virus remain obscure. This complex retrovirus contains typical structural and enzymatic genes but also unique regulatory and accessory genes in four open reading frames (ORFs) of the pX region of the viral genome (pX ORFs I to IV). The regulatory proteins encoded by pX ORFs III and IV, Tax and Rex, respectively, have been extensively characterized. In contrast the contribution of the four accessory proteins p12(I), p27(I), p13(II), and p30(II), encoded by pX ORFs I and II, to viral replication and pathogenesis remained unclear. Proviral clones that are mutated in either pX ORF I or II, while fully competent in cell culture, are severely limited in their replicative capacity in a rabbit model. Emerging evidence indicates that the HTLV-1 accessory proteins are critical for establishment of viral infectivity, enhance T-lymphocyte activation, and potentially alter gene transcription and mitochondrial function. HTLV-1 pX ORF I expression is critical to the viral infectivity in resting primary lymphocytes, suggesting a role for p12(I) in lymphocyte activation. The endoplasmic reticulum and cis-Golgi localizing p12(I), encoded from pX ORF I, activates NFAT, a key T-cell transcription factor, through calcium-mediated signaling pathways and may lower the threshold of lymphocyte activation via the JAK/STAT pathway. In contrast p30(II) localizes to the nucleus and represses viral promoter activity, but may regulate cellular gene expression through p300/CBP or related coactivators of transcription. p13(II) targets mitochondrial proteins, where it alters the organelle morphology and may influence energy metabolism. Collectively, studies of the molecular functions of the HTLV-1 accessory proteins provide insight into strategies used by retroviruses that are associated with lymphoproliferative

  14. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2014-07-01

    Full Text Available Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s continuous performance test (CPT. Method: Our previous study found that ADHD adults had increased rightward EEG beta (16-21 Hz asymmetry in inferior parietal brain regions during the CPT (p=.00001, and that this metric exhibited a lack of normal correlation (i.e., observed in controls with beta asymmetry at temporal-parietal regions. We re-tested these effects in a new ADHD sample, and with both new and old samples combined. We additionally examined: a EEG asymmetry in multiple frequency bands, b unilateral effects for all asymmetry findings, and c the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings, again demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal-parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal-parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increases of attentional shifting and compensatory sustained/selective attention.

  15. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  16. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  17. Shell Separation for Mirror Replication

    Science.gov (United States)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  18. Dengue virus binding and replication by platelets.

    Science.gov (United States)

    Simon, Ayo Y; Sutherland, Michael R; Pryzdial, Edward L G

    2015-07-16

    Dengue virus (DENV) infection causes ∼200 million cases of severe flulike illness annually, escalating to life-threatening hemorrhagic fever or shock syndrome in ∼500,000. Although thrombocytopenia is typical of both mild and severe diseases, the mechanism triggering platelet reduction is incompletely understood. As a probable initiating event, direct purified DENV-platelet binding was followed in the current study by quantitative reverse transcription-polymerase chain reaction and confirmed antigenically. Approximately 800 viruses specifically bound per platelet at 37°C. Fewer sites were observed at 25°C, the blood bank storage temperature (∼350 sites), or 4°C, known to attenuate virus cell entry (∼200 sites). Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and heparan sulfate proteoglycan were implicated as coreceptors because only the combination of anti-DC-SIGN and low-molecular-weight heparin prevented binding. Interestingly, at 37°C and 25°C, platelets replicated the positive sense single-stranded RNA genome of DENV by up to ∼4-fold over 7 days. Further time course experiments demonstrated production of viral NS1 protein, which is known to be highly antigenic in patient serum. The infectivity of DENV intrinsically decayed in vitro, which was moderated by platelet-mediated generation of viable progeny. This was shown using a transcription inhibitor and confirmed by freeze-denatured platelets being incapable of replicating the DENV genome. For the first time, these data demonstrate that platelets directly bind DENV saturably and produce infectious virus. Thus, expression of antigen encoded by DENV is a novel consideration in the pathogen-induced thrombocytopenia mechanism. These results furthermore draw attention to the possibility that platelets may produce permissive RNA viruses in addition to DENV.

  19. Sequence and recombination analyses of the geminivirus replication initiator protein

    Indian Academy of Sciences (India)

    T Vadivukarasi; K R Girish; R Usha

    2007-01-01

    The sequence motifs present in the replication initiator protein (Rep) of geminiviruses have been compared with those present in all known rolling circle replication initiators. The predicted secondary structures of Rep representing each group of organisms have been compared and found to be conserved. Regions of recombination in the Rep gene and the adjoining 5′ intergenic region (IR) of representative species of Geminiviridae have been identified using Recombination Detection Programs. The possible implications of such recombinations on the increasing host range of geminivirus infections are discussed.

  20. Personality and Academic Motivation: Replication, Extension, and Replication

    Science.gov (United States)

    Jones, Martin H.; McMichael, Stephanie N.

    2015-01-01

    Previous work examines the relationships between personality traits and intrinsic/extrinsic motivation. We replicate and extend previous work to examine how personality may relate to achievement goals, efficacious beliefs, and mindset about intelligence. Approximately 200 undergraduates responded to the survey with a 150 participants replicating…

  1. Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs.

    Science.gov (United States)

    Kim, Dal Young; Atasheva, Svetlana; McAuley, Alexander J; Plante, Jessica A; Frolova, Elena I; Beasley, David W C; Frolov, Ilya

    2014-07-22

    Since the development of infectious cDNA clones of viral RNA genomes and the means of delivery of the in vitro-synthesized RNA into cells, alphaviruses have become an attractive system for expression of heterologous genetic information. Alphaviruses replicate exclusively in the cytoplasm, and their genetic material cannot recombine with cellular DNA. Alphavirus genome-based, self-replicating RNAs (replicons) are widely used vectors for expression of heterologous proteins. Their current design relies on replacement of structural genes, encoded by subgenomic RNAs (SG RNA), with heterologous sequences of interest. The SG RNA is transcribed from a promoter located in the alphavirus-specific RNA replication intermediate and is not further amplified. In this study, we have applied the accumulated knowledge of the mechanism of alphavirus replication and promoter structures, in particular, to increase the expression level of heterologous proteins from Venezuelan equine encephalitis virus (VEEV)-based replicons. During VEEV infection, replication enzymes are produced in excess to RNA replication intermediates, and a large fraction of them are not involved in RNA synthesis. The newly designed constructs encode SG RNAs, which are not only transcribed from the SG promoter, but are additionally amplified by the previously underused VEEV replication enzymes. These replicons produce SG RNAs and encoded proteins of interest 10- to 50-fold more efficiently than those using a traditional design. A modified replicon encoding West Nile virus (WNV) premembrane and envelope proteins efficiently produced subviral particles and, after a single immunization, elicited high titers of neutralizing antibodies, which protected mice from lethal challenge with WNV.

  2. Regulation of Replication Recovery and Genome Integrity

    DEFF Research Database (Denmark)

    Colding, Camilla Skettrup

    facilitate replication recovery after MMS-induced replication stress. Our data reveal that control of Mrc1 turnover through the interplay between posttranslational modifications and INQ localization adds another layer of regulation to the replication checkpoint. We also add replication recovery to the list...... is mediated by Mrc1, which ensures Mec1 presence at the stalled replication fork thus facilitating Rad53 phosphorylation. When replication can be resumed safely, the replication checkpoint is deactivated and replication forks restart. One mechanism for checkpoint deactivation is the ubiquitin......-targeted proteasomal degradation of Mrc1. In this study, we describe a novel nuclear structure, the intranuclear quality control compartment (INQ), which regulates protein turnover and is important for recovery after replication stress. We find that upon methyl methanesulfonate (MMS)-induced replication stress, INQ...

  3. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair.

    Science.gov (United States)

    Villarroya, M; Pérez-Roger, I; Macián, F; Armengod, M E

    1998-03-16

    The beta subunit of DNA polymerase III holoenzyme, the Escherichia coli chromosomal replicase, is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity. The gene encoding beta, dnaN, maps between dnaA and recF, which are involved in initiation of DNA replication at oriC and resumption of DNA replication at disrupted replication forks, respectively. In exponentially growing cells, dnaN and recF are expressed predominantly from the dnaA promoters. However, we have found that stationary phase induction of the dnaN promoters drastically changes the expression pattern of the dnaA operon genes. As a striking consequence, synthesis of the beta subunit and RecF protein increases when cell metabolism is slowing down. Such an induction is dependent on the stationary phase sigma factor, RpoS, although the accumulation of this factor alone is not sufficient to activate the dnaN promoters. These promoters are located in DNA regions without static bending, and the -35 hexamer element is essential for their RpoS-dependent induction. Our results suggest that stationary phase-dependent mechanisms have evolved in order to coordinate expression of dnaN and recF independently of the dnaA regulatory region. These mechanisms might be part of a developmental programme aimed at maintaining DNA integrity under stress conditions.

  4. Linking DNA replication to heterochromatin silencing and epigenetic inheritance

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Zhiguo Zhang

    2012-01-01

    Chromatin is organized into distinct functional domains.During mitotic cell division,both genetic information encoded in DNA sequence and epigenetic information embedded in chromatin structure must be faithfully duplicated.The inheritance of epigenetic states is critical in maintaining the genome integrity and gene expression state.In this review,we will discuss recent progress on how proteins known to be involved in DNA replication and DNA replication-coupled nucleosome assembly impact on the inheritance and maintenance of heterochromatin,a tightly compact chromatin structure that silences gene transcription.As heterochromatin is important in regulating gene expression and maintaining genome stability,understanding how heterochromatin states are inherited during S phase of the cell cycle is of fundamental importance.

  5. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  6. Hyperthermia stimulates HIV-1 replication.

    Science.gov (United States)

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  7. Cellular Responses to Replication Problems

    NARCIS (Netherlands)

    M. Budzowska (Magdalena)

    2008-01-01

    textabstractDuring every S-phase cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. It is a tremendous task, given the large sizes of mammalian genomes and the required precision of DNA replication. A major threat to the accuracy and eff

  8. Covert Reinforcement: A Partial Replication.

    Science.gov (United States)

    Ripstra, Constance C.; And Others

    A partial replication of an investigation of the effect of covert reinforcement on a perceptual estimation task is described. The study was extended to include an extinction phase. There were five treatment groups: covert reinforcement, neutral scene reinforcement, noncontingent covert reinforcement, and two control groups. Each subject estimated…

  9. The Arbitrarily Varying Multiple-Access Channel with Conferencing Encoders

    CERN Document Server

    Wiese, Moritz

    2011-01-01

    We derive the capacity region of arbitrarily varying multiple-access channels with conferencing encoders for both deterministic and random coding. We obtain a dichotomy: either the channel's deterministic capacity region is zero or it equals the two-dimensional random coding region. We determine exactly when either case holds. We also discuss the benefits of conferencing. For both the compound and the arbitrarily varying cases, we give the example of a channel which does not achieve any non-zero rate pair without encoder cooperation, but the two-dimensional random coding capacity region if conferencing is possible. Unlike compound multiple-access channels, arbitrarily varying multiple-access channels may exhibit a discontinuous increase of the capacity region when conferencing is enabled. We use the arbitrarily varying multiple-access channel with conferencing encoders for an information-theoretic analysis of the performance of wireless networks with cooperating base stations disturbed by exterior interferenc...

  10. The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Suter, Bernhard; Tong, Amy; Chang, Michael; Yu, Lisa; Brown, Grant W; Boone, Charles; Rine, Jasper

    2004-01-01

    Mutations in genes encoding the origin recognition complex (ORC) of Saccharomyces cerevisiae affect initiation of DNA replication and transcriptional repression at the silent mating-type loci. To explore the function of ORC in more detail, a screen for genetic interactions was undertaken using large

  11. Viral hijacking of a replicative helicase loader and its implications for helicase loading control and phage replication

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Iris V.; Berger, James M.

    2016-05-31

    Replisome assembly requires the loading of replicative hexameric helicases onto origins by AAA+ ATPases. How loader activity is appropriately controlled remains unclear. Here, we use structural and biochemical analyses to establish how an antimicrobial phage protein interferes with the function of theStaphylococcus aureusreplicative helicase loader, DnaI. The viral protein binds to the loader’s AAA+ ATPase domain, allowing binding of the host replicative helicase but impeding loader self-assembly and ATPase activity. Close inspection of the complex highlights an unexpected locus for the binding of an interdomain linker element in DnaI/DnaC-family proteins. We find that the inhibitor protein is genetically coupled to a phage-encoded homolog of the bacterial helicase loader, which we show binds to the host helicase but not to the inhibitor itself. These findings establish a new approach by which viruses can hijack host replication processes and explain how loader activity is internally regulated to prevent aberrant auto-association.

  12. Replication stress activates DNA repair synthesis in mitosis.

    Science.gov (United States)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D

    2015-12-10

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.

  13. Replication-Uncoupled Histone Deposition during Adenovirus DNA Replication

    OpenAIRE

    Komatsu, Tetsuro; Nagata, Kyosuke

    2012-01-01

    In infected cells, the chromatin structure of the adenovirus genome DNA plays critical roles in its genome functions. Previously, we reported that in early phases of infection, incoming viral DNA is associated with both viral core protein VII and cellular histones. Here we show that in late phases of infection, newly synthesized viral DNA is also associated with histones. We also found that the knockdown of CAF-1, a histone chaperone that functions in the replication-coupled deposition of his...

  14. REPLICATION TOOL AND METHOD OF PROVIDING A REPLICATION TOOL

    DEFF Research Database (Denmark)

    2016-01-01

    structured master surface (3a, 3b, 3c, 3d) having a lateral master pattern and a vertical master profile. The microscale structured master surface (3a, 3b, 3c, 3d) has been provided by localized pulsed laser treatment to generate microscale phase explosions. A method for producing a part with microscale......The invention relates to a replication tool (1, 1a, 1b) for producing a part (4) with a microscale textured replica surface (5a, 5b, 5c, 5d). The replication tool (1, 1a, 1b) comprises a tool surface (2a, 2b) defining a general shape of the item. The tool surface (2a, 2b) comprises a microscale...... energy directors on flange portions thereof uses the replication tool (1, 1a, 1b) to form an item (4) with a general shape as defined by the tool surface (2a, 2b). The formed item (4) comprises a microscale textured replica surface (5a, 5b, 5c, 5d) with a lateral arrangement of polydisperse microscale...

  15. PNA-encoded chemical libraries.

    Science.gov (United States)

    Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas

    2015-06-01

    Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70.

  16. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  17. Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus.

    Science.gov (United States)

    Martínez-Turiño, Sandra; Hernández, Carmen

    2010-12-01

    Pelargonium flower break virus (PFBV) belongs to the genus Carmovirus (family Tombusviridae) and, as with the remaining members of the group, possesses a monopartite genome of single-stranded, positive-sense RNA that contains five ORFs. The two 5'-proximal ORFs (ORFs 1 and 2) encode two polypeptides of 27 and 86 kDa (p27 and p86), respectively, that show homology with replication proteins. The p27 does not present any motif to explain its presumed involvement in replication, while p86 has the motifs conserved in RNA-dependent RNA polymerases. In this work, we have confirmed the necessity of p27 and p86 for PFBV replication. To gain insights into the function(s) of p27, we have expressed and purified the protein from Escherichia coli and tested its ability to bind RNA in vitro. The results have shown that p27 is able to bind ssRNA with high affinity and in a cooperative fashion and that it is also capable of binding other types of nucleic acids, though to a lesser extent. Additionally, competition experiments suggest that p27 has a preference for PFBV-derived ssRNAs. Using truncated forms of p27, it can be concluded that several regions of the protein contribute to its RNA-binding properties and that this contribution is additive. This study is the first to show nucleic acid-binding ability of the ORF1 product of a carmovirus and the data obtained suggest that this product plays an essential role in selection and recruitment of viral RNA replication templates.

  18. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells

    OpenAIRE

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    Udgivelsesdato: 2008-Feb DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells by using the model organisms Escherichia coli and Schizosaccharomyces pombe as examples. Although the underlying molecular details are different, the logic behind the con...

  19. Replicator dynamics in value chains

    DEFF Research Database (Denmark)

    Cantner, Uwe; Savin, Ivan; Vannuccini, Simone

    2016-01-01

    The pure model of replicator dynamics though providing important insights in the evolution of markets has not found much of empirical support. This paper extends the model to the case of firms vertically integrated in value chains. We show that i) by taking value chains into account, the replicator...... dynamics may revert its effect. In these regressive developments of market selection, firms with low fitness expand because of being integrated with highly fit partners, and the other way around; ii) allowing partner's switching within a value chain illustrates that periods of instability in the early...... stage of industry life-cycle may be the result of an 'optimization' of partners within a value chain providing a novel and simple explanation to the evidence discussed by Mazzucato (1998); iii) there are distinct differences in the contribution to market selection between the layers of a value chain...

  20. Compressed Encoding for Rank Modulation

    CERN Document Server

    Gad, Eyal En; Jiang,; Bruck, Jehoshua

    2011-01-01

    Rank modulation has been recently proposed as a scheme for storing information in flash memories. While rank modulation has advantages in improving write speed and endurance, the current encoding approach is based on the "push to the top" operation that is not efficient in the general case. We propose a new encoding procedure where a cell level is raised to be higher than the minimal necessary subset - instead of all - of the other cell levels. This new procedure leads to a significantly more compressed (lower charge levels) encoding. We derive an upper bound for a family of codes that utilize the proposed encoding procedure, and consider code constructions that achieve that bound for several special cases.

  1. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  2. Self-Organising Stochastic Encoders

    CERN Document Server

    Luttrell, Stephen

    2010-01-01

    The processing of mega-dimensional data, such as images, scales linearly with image size only if fixed size processing windows are used. It would be very useful to be able to automate the process of sizing and interconnecting the processing windows. A stochastic encoder that is an extension of the standard Linde-Buzo-Gray vector quantiser, called a stochastic vector quantiser (SVQ), includes this required behaviour amongst its emergent properties, because it automatically splits the input space into statistically independent subspaces, which it then separately encodes. Various optimal SVQs have been obtained, both analytically and numerically. Analytic solutions which demonstrate how the input space is split into independent subspaces may be obtained when an SVQ is used to encode data that lives on a 2-torus (e.g. the superposition of a pair of uncorrelated sinusoids). Many numerical solutions have also been obtained, using both SVQs and chains of linked SVQs: (1) images of multiple independent targets (encod...

  3. Therapeutic targeting of replicative immortality

    OpenAIRE

    Yaswen, Paul; MacKenzie, Karen L.; Keith, W. Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L.; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo

    2015-01-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persis...

  4. Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication.

    Science.gov (United States)

    Paran, Nir; De Silva, Frank S; Senkevich, Tatiana G; Moss, Bernard

    2009-12-17

    Vaccinia virus (VACV) encodes DNA polymerase and additional proteins that enable cytoplasmic replication. We confirmed the ability of VACV DNA ligase mutants to replicate and tested the hypothesis that cellular ligases compensate for loss of viral gene expression. RNA silencing of human DNA ligase I expression and a small molecule inhibitor of human DNA ligase I [corrected] severely reduced replication of viral DNA in cells infected with VACV ligase-deficient mutants, indicating that the cellular enzyme plays a complementary role. Replication of ligase-deficient VACV was greatly reduced and delayed in resting primary cells, correlating with initial low levels of ligase I and subsequent viral induction and localization of ligase I in virus factories. These studies indicate that DNA ligation is essential for poxvirus replication and explain the ability of ligase deletion mutants to replicate in dividing cells but exhibit decreased pathogenicity in mice. Encoding its own ligase might allow VACV to "jump-start" DNA synthesis.

  5. Dynamic replication of Web contents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phenomenal growth of the World Wide Web has brought huge increase in the traffic to the popular web sites.Long delays and denial of service experienced by the end-users,especially during the peak hours,continues to be the common problem while accessing popular sites.Replicating some of the objects at multiple sites in a distributed web-server environment is one of the possible solutions to improve the response time/Iatency. The decision of what and where to replicate requires solving a constraint optimization problem,which is NP-complete in general.In this paper, we consider the problem of placing copies of objects in a distributed web server system to minimize the cost of serving read and write requests when the web servers have Iimited storage capacity.We formulate the problem as a 0-1 optimization problem and present a polynomial time greedy algorithm with backtracking to dynamically replicate objects at the appropriate sites to minimize a cost function.To reduce the solution search space,we present necessary condi tions for a site to have a replica of an object jn order to minimize the cost function We present simulation resuIts for a variety of problems to illustrate the accuracy and efficiency of the proposed algorithms and compare them with those of some well-known algorithms.The simulation resuIts demonstrate the superiority of the proposed algorithms.

  6. Chl12 (Ctf18) Forms a Novel Replication Factor C-Related Complex and Functions Redundantly with Rad24 in the DNA Replication Checkpoint Pathway

    OpenAIRE

    Naiki, Takahiro; Kondo, Tae; Nakada, Daisuke; Matsumoto, Kunihiro; Sugimoto, Katsunori

    2001-01-01

    RAD24 has been identified as a gene essential for the DNA damage checkpoint in budding yeast. Rad24 is structurally related to subunits of the replication factor C (RFC) complex, and forms an RFC-related complex with Rfc2, Rfc3, Rfc4, and Rfc5. The rad24Δ mutation enhances the defect of rfc5-1 in the DNA replication block checkpoint, implicating RAD24 in this checkpoint. CHL12 (also called CTF18) encodes a protein that is structurally related to the Rad24 and RFC proteins. We show here that a...

  7. Unscheduled DNA replication origin activation at inserted HPV 18 sequences in a HPV-18/MYC amplicon.

    Science.gov (United States)

    Conti, Chiara; Herrick, John; Bensimon, Aaron

    2007-08-01

    Oncogene amplification is a critical step leading to tumorigenesis, but the underlying mechanisms are still poorly understood. Despite data suggesting that DNA replication is a major source of genomic instability, little is known about replication origin usage and replication fork progression in rearranged regions. Using a single DNA molecule approach, we provide here the first study of replication kinetics on a previously characterized MYC/papillomavirus (HPV18) amplicon in a cervical cancer. Using this amplicon as a model, we investigated the role DNA replication control plays in generating amplifications in human cancers. The data reveal severely perturbed DNA replication kinetics in the amplified region when compared with other regions of the same genome. It was found that DNA replication is initiated from both genomic and viral sequences, resulting in a higher median frequency of origin firings. In addition, it was found that the higher initiation frequency was associated with an equivalent increase in the number of stalled replication forks. These observations raise the intriguing possibility that unscheduled replication origin activation at inserted HPV-18 viral DNA sequences triggers DNA amplification in this cancer cell line and the subsequent overexpression of the MYC oncogene.

  8. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    of initiation, which leads to hyperinitiation, results in double-strand breaks when replication forks encounters single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. Thus, the number of replication forks can only increase when ROS formation is reduced or when...... that the cell needs a copy of both DARS1 and DARS2 for proper regulation of initiation; i.e. DARS1 is a poor replacement for DARS2 and vice versa. Last we suggest that transcription has a negative effect of the activity of the non-coding regions....

  9. Evaluating replicability of laboratory experiments in economics.

    Science.gov (United States)

    Camerer, Colin F; Dreber, Anna; Forsell, Eskil; Ho, Teck-Hua; Huber, Jürgen; Johannesson, Magnus; Kirchler, Michael; Almenberg, Johan; Altmejd, Adam; Chan, Taizan; Heikensten, Emma; Holzmeister, Felix; Imai, Taisuke; Isaksson, Siri; Nave, Gideon; Pfeiffer, Thomas; Razen, Michael; Wu, Hang

    2016-03-25

    The replicability of some scientific findings has recently been called into question. To contribute data about replicability in economics, we replicated 18 studies published in the American Economic Review and the Quarterly Journal of Economics between 2011 and 2014. All of these replications followed predefined analysis plans that were made publicly available beforehand, and they all have a statistical power of at least 90% to detect the original effect size at the 5% significance level. We found a significant effect in the same direction as in the original study for 11 replications (61%); on average, the replicated effect size is 66% of the original. The replicability rate varies between 67% and 78% for four additional replicability indicators, including a prediction market measure of peer beliefs.

  10. ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide

    NARCIS (Netherlands)

    Compaan, B.; Yang, W.C.; Bisseling, T.; Franssen, H.

    2001-01-01

    In situ expression studies show that MsENOD40 is expressed in pericycle cells of alfalfa roots within 3 hr after addition of Sinorhizobium meliloti 1021. This is about 15 hr before cortical cell divisions become apparent. All ENOD40 clones isolated so far share two conserved regions, box 1 and box 2

  11. The 172 kb prkA-addAB region from 83° to 97° of the Bacillus subtilis chromosome contains several dysfunctional genes, the glyB marker, many genes encoding transporter proteins, and the ubiquitous hit gene

    NARCIS (Netherlands)

    Noback, Michiel A.; Holsappel, Siger; Kiewiet, Rense; Terpstra, Peter; Wambutt, Rolf; Wedler, Holger; Venema, Gerard; Bron, Sierd

    1998-01-01

    A 171812 bp nucleotide sequence between prkA and addAB (83° to 97°) on the genetic map of the Bacillus subtilis 168 chromosome was determined and analysed. An accurate physical/genetic map of this previously poorly described chromosomal region was constructed. One hundred and seventy open reading fr

  12. The 172 kb prkA-addAB region from 83 degrees to 97 degrees of the Bacillus subtilis chromosome contains several dysfunctional genes, the glyB marker, many genes encoding transporter proteins, and the ubiquitous hit gene

    NARCIS (Netherlands)

    Noback, MA; Holsappel, S; Kiewiet, R; Terpstra, P; Wambutt, R; Wedler, H; Venema, G; Bron, S

    1998-01-01

    A 171812 bp nucleotide sequence between prkA and addAB (83 degrees to 97 degrees) on the genetic map of the Bacillus subtilis 168 chromosome was determined and analysed. An accurate physical/genetic map of this previously poorly described chromosomal region was constructed. One hundred and seventy o

  13. Identification of imprinted genes using a novel screening method based on asynchronous DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Kawame, H.; Hansen, R.S.; Gartler, S.M. [Univ. of Washington, Seattle, WA (United States)

    1994-09-01

    Genomic imprinting refers to the process of epigenetic change that occurs during germ cell development that results in either maternal- or paternal-specific gene expression. Identification of imprinted genes is of primary importance to the understanding of imprinting mechanisms and the role of specific imprinted genes in human disease. Recently, it has been established that chromosomal regions known to contain imprinted genes replicate asynchronously. We propose a novel screening method to identify imprinted genes based on replication asynchrony as a marker for imprinted domains. Dividing human cells were pulse-labeled with BrdU and separated into different fractions of S-phase by flow cytometry. A library of late-replicating inter-Alu sequences should be enriched in gene-associated sequences that replicate early on one chromosome and late on the other homologue. Clones were analyzed for replication timing by hybridization to inter-Alu replication profiles. Candidates for replication asynchrony exhibited broad or biphasic replication timing, and these were analyzed for chromosomal location by hybridizations to inter-Alu products from a hybrid mapping panel. Initial screening of 123 clones resulted in 3 asynchronously-replicating clones that localized to single chromosomes. Chromosome 17 and chromosome 19 candidates might be located in regions thought to be imprinted by synteny with mouse chromosomes. A chromosome 15 clone was further characterized because of its possible localization to the Prader-Willi/Angelman locus. This sequence was localized outside the region deleted in Prader-Willi patients, and was found to be expressed in human cell lines. Replication asynchrony for this sequence appears to be polymorphic because cells derived from some individuals indicated synchronous replication. This appears to be the first example of a polymorphism in replication asynchrony.

  14. Replication Origin Specification Gets a Push.

    Science.gov (United States)

    Plosky, Brian S

    2015-12-03

    During the gap between G1 and S phases when replication origins are licensed and fired, it is possible that DNA translocases could disrupt pre-replicative complexes (pre-RCs). In this issue of Molecular Cell, Gros et al. (2015) find that pre-RCs can be pushed along DNA and retain the ability to support replication.

  15. Exploiting replicative stress to treat cancer

    DEFF Research Database (Denmark)

    Dobbelstein, Matthias; Sørensen, Claus Storgaard

    2015-01-01

    DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms...

  16. Screening and identification of virus-encoded RNA silencing suppressors.

    Science.gov (United States)

    Karjee, Sumona; Islam, Mohammad Nurul; Mukherjee, Sunil K

    2008-01-01

    RNA silencing, including RNA interference, is a novel method of gene regulation and one of the potent host-defense mechanisms against the viruses. In the course of evolution, the viruses have encoded proteins with the potential to suppress the host RNA silencing mechanism as a counterdefense strategy. The virus-encoded RNA silencing suppressors (RSSs) can serve as important biological tools to dissect the detailed RNA silencing pathways and also to evolve the antiviral strategies. Screening and identification of the RSSs are indeed of utmost significance in the field of plant biotechnology. We describe two Green Fluorescent Protein (GFP) reporter-based plant assay systems that rely on two different principles, namely reversal of silencing and enhancement of rolling circle replication (RCR) of geminiviral replicon. These proof-of-concept examples and assay systems could be used to screen various plant, animal, and insect viral ORFs for identification of the RSS activities.

  17. Internal RNA Replication Elements are Prevalent in Tombusviridae

    Directory of Open Access Journals (Sweden)

    Beth L Nicholson

    2012-08-01

    Full Text Available Internal replication elements (IREs are RNA structures that are present at internal positions in the genomes of different types of plus-strand RNA viruses. Members of the genus Tombusvirus (family Tombusviridae contain an IRE within the polymerase coding region of their genomes and this RNA element participates in both genome targeting to sites of replication and replicase complex assembly. Here we propose that other members of the virus family Tombusviridae also possess comparable IREs. Through sequence and structural analyses, candidate IREs in several genera of this family were identified, including aureusviruses, necroviruses, carmoviruses and pelarspoviruses. The results from subsequent mutational analysis of selected proposed IREs were consistent with a critical role for these structures in viral genome accumulation during infections. Our study supports the existence of IREs in several genera in Tombusviridae and points to previously unappreciated similarities in genome replication strategies between members of this virus family.

  18. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.

  19. Replication initiator DnaA binds at the Caulobacter centromere and enables chromosome segregation.

    Science.gov (United States)

    Mera, Paola E; Kalogeraki, Virginia S; Shapiro, Lucy

    2014-11-11

    During cell division, multiple processes are highly coordinated to faithfully generate genetically equivalent daughter cells. In bacteria, the mechanisms that underlie the coordination of chromosome replication and segregation are poorly understood. Here, we report that the conserved replication initiator, DnaA, can mediate chromosome segregation independent of replication initiation. It does so by binding directly to the parS centromere region of the chromosome, and mutations that alter this interaction result in cells that display aberrant centromere translocation and cell division. We propose that DnaA serves to coordinate bacterial DNA replication with the onset of chromosome segregation.

  20. Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly.

    Science.gov (United States)

    Kovalev, Nikolay; Nagy, Peter D

    2013-12-01

    Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.

  1. A Dimeric Rep Protein Initiates Replication of a Linear Archaeal Virus Genome: Implications for the Rep Mechanism and Viral Replication ▿ †

    Science.gov (United States)

    Oke, Muse; Kerou, Melina; Liu, Huanting; Peng, Xu; Garrett, Roger A.; Prangishvili, David; Naismith, James H.; White, Malcolm F.

    2011-01-01

    The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5′ end of the DNA, releasing a 3′ DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed. PMID:21068244

  2. Crystallization and preliminary X-ray crystallographic studies on the parD-encoded protein Kid from Escherichia coli plasmid R1

    NARCIS (Netherlands)

    Hargreaves, D.; Giraldo, R.; Santos-Sierra, S.; Boelens, R.; Rice, D.W.; Díaz Orejas, R.; Rafferty, J.B.

    2002-01-01

    DNA replication in Escherichia coli and therefore bacterial proliferation relies upon the efficient functioning of the DnaB helicase. The toxin protein Kid from the plasmid-stability system parD encoded on plasmid R1 of E. coli is thought to target and block DnaB-dependent DNA replication. The

  3. Transcriptional control of DNA replication licensing by Myc

    Science.gov (United States)

    Valovka, Taras; Schönfeld, Manuela; Raffeiner, Philipp; Breuker, Kathrin; Dunzendorfer-Matt, Theresia; Hartl, Markus; Bister, Klaus

    2013-12-01

    The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.

  4. Effect of CD4 gene expression on adenovirus replication.

    Science.gov (United States)

    Hotta, J; Shi, L; Ginsberg, H S

    1994-11-01

    The gene encoding the CD4 receptor was introduced into KB cells to establish the KBT4 cell line, a cell line susceptible to infection with human immunodeficiency virus type 1. Adenovirus replication was found to be significantly less in these cells than in the parental KB cells. Similar decreased adenovirus type 5 (Ad5) replication occurred in HeLaT4 cells compared with the original HeLa cells. The presence of CD4 did not alter the cell surface population of KB cell adenovirus receptors, since viral adsorption was similar in the two cell lines. Moreover, addition of soluble CD4 did not reduce viral replication in either KB or KBT4 infected cells. Uncoating of viral DNA was also unchanged in KBT4 cells compared with the parental KB cells. In contrast, migration to or entrance of viral DNA into nuclei and synthesis of early viral RNAs was delayed and reduced in KBT4 cells. These effects were more pronounced for Ad7 than for Ad5. The yields of infectious viruses were the same in both cell lines, however, after transfection of naked viral DNAs to initiate infection. These results imply that the expression of the CD4 gene in KBT4 cells interfered with passage of uncoated virus across endosomal vesicles and/or transfer of uncoated core viral DNA into the nucleus.

  5. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  6. Selective memories: infants' encoding is enhanced in selection via suppression.

    Science.gov (United States)

    Markant, Julie; Amso, Dima

    2013-11-01

    The present study examined the hypothesis that inhibitory visual selection mechanisms play a vital role in memory by limiting distractor interference during item encoding. In Experiment 1a we used a modified spatial cueing task in which 9-month-old infants encoded multiple category exemplars in the contexts of an attention orienting mechanism involving suppression (i.e. inhibition of return, IOR) versus one that does not (i.e. facilitation). At test, infants in the IOR condition showed both item-specific learning and abstraction of broader category information. In contrast, infants in the facilitation condition did not discriminate across novel and familiar test items. Experiment 1b confirmed that the learning observed in the IOR condition was specific to spatial cueing of attention and was not due to timing differences across the IOR and facilitation conditions. In Experiment 2, we replicated the results of Experiment 1, using a within-subjects design to explicitly examine learning and memory encoding in the context of concurrent suppression. These data show that developing inhibitory selective attention enhances efficacy of memory encoding for subsequent retrieval. Furthermore, these results highlight the importance of considering interactions between developing attention and memory systems.

  7. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    : manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  8. Replication of prions in differentiated muscle cells.

    Science.gov (United States)

    Herbst, Allen; Aiken, Judd M; McKenzie, Debbie

    2014-01-01

    We have demonstrated that prions accumulate to high levels in non-proliferative C2C12 myotubes. C2C12 cells replicate as myoblasts but can be differentiated into myotubes. Earlier studies indicated that C2C12 myoblasts are not competent for prion replication. (1) We confirmed that observation and demonstrated, for the first time, that while replicative myoblasts do not accumulate PrP(Sc), differentiated post-mitotic myotube cultures replicate prions robustly. Here we extend our observations and describe the implication and utility of this system for replicating prions.

  9. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...... in various parts of the viral life cyclus. Most of the receptors encoded by human pathogenic virus are still orphan receptors, i.e. the endogenous ligand is unknown. In the few cases where it has been possible to characterize these receptors pharmacologically, they have been found to bind a broad spectrum...... expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  10. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories

    Science.gov (United States)

    Ge, Xin Quan

    2010-01-01

    Replication origins are licensed by loading MCM2-7 hexamers before entry into S phase. However, only ∼10% of licensed origins are normally used in S phase, with the others remaining dormant. When fork progression is inhibited, dormant origins initiate nearby to ensure that all of the DNA is eventually replicated. In apparent contrast, replicative stress activates ataxia telangiectasia and rad-3–related (ATR) and Chk1 checkpoint kinases that inhibit origin firing. In this study, we show that at low levels of replication stress, ATR/Chk1 predominantly suppresses origin initiation by inhibiting the activation of new replication factories, thereby reducing the number of active factories. At the same time, inhibition of replication fork progression allows dormant origins to initiate within existing replication factories. The inhibition of new factory activation by ATR/Chk1 therefore redirects replication toward active factories where forks are inhibited and away from regions that have yet to start replication. This minimizes the deleterious consequences of fork stalling and prevents similar problems from arising in unreplicated regions of the genome. PMID:21173116

  11. Choosing a suitable method for the identification of replication origins in microbial genomes

    Directory of Open Access Journals (Sweden)

    Chengcheng eSong

    2015-09-01

    Full Text Available As the replication of genomic DNA is arguably the most important task performed by a cell and given that it is controlled at the initiation stage, the events that occur at the replication origin play a central role in the cell cycle. Making sense of DNA replication origins is important for improving our capacity to study cellular processes and functions in the regulation of gene expression, genome integrity in much finer detail. Thus, clearly comprehending the positions and sequences of replication origins which are fundamental to chromosome organization and duplication is the first priority of all. In view of such important roles of replication origins, tremendous work has been aimed at identifying and testing the specificity of replication origins. A number of computational tools based on various skew types have been developed to predict replication origins. Using various in silico approaches such as Ori-Finder 2, and databases such as DoriC and oriDB, researchers have predicted the locations of replication origins sites for thousands bacterial chromosomes and archaeal genomes. Based on the predicted results, we should choose an effective method for identifying and confirming the interactions at origins of replication. Here we describe the main existing experimental methods that aimed to determine the replication origin regions and list some of the many the practical applications of these methods.

  12. DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hume Stroud

    2012-07-01

    Full Text Available The relationship between epigenetic marks on chromatin and the regulation of DNA replication is poorly understood. Mutations of the H3K27 methyltransferase genes, Arabidopsis trithorax-related protein5 (ATXR5 and ATXR6, result in re-replication (repeated origin firing within the same cell cycle. Here we show that mutations that reduce DNA methylation act to suppress the re-replication phenotype of atxr5 atxr6 mutants. This suggests that DNA methylation, a mark enriched at the same heterochromatic regions that re-replicate in atxr5/6 mutants, is required for aberrant re-replication. In contrast, RNA sequencing analyses suggest that ATXR5/6 and DNA methylation cooperatively transcriptionally silence transposable elements (TEs. Hence our results suggest a complex relationship between ATXR5/6 and DNA methylation in the regulation of DNA replication and transcription of TEs.

  13. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke;

    2016-01-01

    , allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes......Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks...... ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...

  14. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-02-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells by using the model organisms Escherichia coli and Schizosaccharomyces pombe as examples. Although the underlying molecular details are different, the logic behind the control mechanisms is similar. For example, after initiation, crucial molecules required for the loading of replicative helicases in both prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism that prevents re-replication in both systems also increases the synthesis of DNA building blocks.

  15. Synaptic encoding of temporal contiguity

    Directory of Open Access Journals (Sweden)

    Srdjan eOstojic

    2013-04-01

    Full Text Available Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity. Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain.

  16. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study

    DEFF Research Database (Denmark)

    Gyongyosi, Mariann; Khorsand, Aliasghar; Zamini, Sholeh;

    2005-01-01

    . The ROI was projected onto the baseline and follow-up rest and stress polar maps of the 99m-Tc-sestamibi/tetrofosmin single-photon emission computed tomography scintigraphy calculating the extent and severity (expressed as the mean normalized tracer uptake) of the ROI automatically. The extents of the ROI....... CONCLUSIONS: Projection of the NOGA-guided injection area onto the single-photon emission computed tomography polar maps permits quantitative evaluation of myocardial perfusion in regions treated with angiogenic substances. Injections of phVEGF A165 plasmid improve, but do not normalize, the stress...

  17. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  18. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader.

    Science.gov (United States)

    Rock, Jeremy M; Lang, Ulla F; Chase, Michael R; Ford, Christopher B; Gerrick, Elias R; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M; Lamers, Meindert H

    2015-06-01

    The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3'-5' exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain-mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.

  19. DNA replication stress: causes, resolution and disease.

    Science.gov (United States)

    Mazouzi, Abdelghani; Velimezi, Georgia; Loizou, Joanna I

    2014-11-15

    DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Replication Stress: A Lifetime of Epigenetic Change

    Directory of Open Access Journals (Sweden)

    Simran Khurana

    2015-09-01

    Full Text Available DNA replication is essential for cell division. Challenges to the progression of DNA polymerase can result in replication stress, promoting the stalling and ultimately collapse of replication forks. The latter involves the formation of DNA double-strand breaks (DSBs and has been linked to both genome instability and irreversible cell cycle arrest (senescence. Recent technological advances have elucidated many of the factors that contribute to the sensing and repair of stalled or broken replication forks. In addition to bona fide repair factors, these efforts highlight a range of chromatin-associated changes at and near sites of replication stress, suggesting defects in epigenome maintenance as a potential outcome of aberrant DNA replication. Here, we will summarize recent insight into replication stress-induced chromatin-reorganization and will speculate on possible adverse effects for gene expression, nuclear integrity and, ultimately, cell function.

  1. pTAR-Encoded Proteins in Plasmid Partitioning

    OpenAIRE

    Kalnin, Kirill; Stegalkina, Svetlana; Yarmolinsky, Michael

    2000-01-01

    Partition cassettes, essential for the segregational stability of low-copy-number bacterial plasmids, typically encode two autoregulated proteins and an adjacent cis-acting centromere analog to which one or perhaps both proteins bind. The diminutive partition region of pTAR of Agrobacterium spp. was reported to be exceptional, encoding only a single protein, ParA (D. R. Gallie and C. I. Kado, J. Mol. Biol. 193:465–478, 1987). However, resequencing of the region revealed two small downstream g...

  2. Toward Better Genetically Encoded Sensors of Membrane Potential.

    Science.gov (United States)

    Storace, Douglas; Sepehri Rad, Masoud; Kang, BokEum; Cohen, Lawrence B; Hughes, Thom; Baker, Bradley J

    2016-05-01

    Genetically encoded optical sensors of cell activity are powerful tools that can be targeted to specific cell types. This is especially important in neuroscience because individual brain regions can include a multitude of different cell types. Optical imaging allows for simultaneous recording from numerous neurons or brain regions. Optical signals of membrane potential are useful because membrane potential changes are a direct sign of both synaptic and action potentials. Here we describe recent improvements in the in vitro and in vivo signal size and kinetics of genetically encoded voltage indicators (GEVIs) and discuss their relationship to alternative sensors of neural activity.

  3. A user's guide to the encyclopedia of DNA elements (ENCODE).

    Science.gov (United States)

    2011-04-01

    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.

  4. A new light on DNA replication from the inactive X chromosome.

    Science.gov (United States)

    Aladjem, Mirit I; Fu, Haiqing

    2014-06-01

    While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, "silent" chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular.

  5. Genome-wide studies highlight indirect links between human replication origins and gene regulation.

    Science.gov (United States)

    Cadoret, Jean-Charles; Meisch, Françoise; Hassan-Zadeh, Vahideh; Luyten, Isabelle; Guillet, Claire; Duret, Laurent; Quesneville, Hadi; Prioleau, Marie-Noëlle

    2008-10-14

    To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.

  6. DNA immunization with fusion genes encoding different regions of hepatitis C virus E2 fused to the gene for hepatitis B surface antigen elicits immune responses to both HCV and HBV

    Institute of Scientific and Technical Information of China (English)

    Jing Jin; Jian-Ying Yang; Jing Liu; Yu-Ying Kong; Yuan Wang; Guang-Di Li

    2002-01-01

    AIM: Both Hepatitis B virus (HBV) and Hepatitis C virus(HCV) are major causative agents of transfusion-associatedand community-acquired hepatitis worldwide. Developmentof a HCV vaccine as well as more effective HBV vaccines isan urgent task. DNA immunization provides a promisingapproach to elicit protective humoral and cellular immuneresponses against viral infection. The aim of this study is toachieve immune responses against both HCV and HBV by DNAimmunization with fusion constructs comprising various HCVE2 gene fragments fused to HBsAg gane of HBV.METHODS: C57BL/6 mice were immunized with plasmid DNAexpressing five fragments of HCV E2 fused to the gene forHBsAg respectively. After one primary and one boostingimmunizations, antibodies against HCV E2 and HBsAg weretested and subtyped in ELISA. Splenic cytokine expressionof IFN-γ and IL-10 was analyzed using an RT-PCR assay.Post-immune mouse antisera also were tested for theirability to capture HCV viruses in the serum of a hepatitis Cpatient in vitro.RESUTLTS: After immunization, antibodies against bothHBsAg and HCV E2 were detected in mouse sera, withIgG2a being the dominant immunoglobulin sub-class. High-level expression of INF-γ was deuetected in cultured splenic cells.Mouse antisera against three of the five fusion constructs wereable to capture HCV viruses in an in vitro assay.CONCLUSION: The results indicate that these fusionconstructs could efficiently elicit humoral and Th1 dominantcellular immune responses against both HBV S and HCV E2antigens in DNA-immunized mice. They thus could serve ascandidates for a bivalent vaccine against HBV and HCVinfection. In addition, the capacity of mouse antisera againstthree of the five fusion constnucts to capture HCV virusses invitro suggested that neutralizing epitopes may be present inother regions of E2 besides the hypervariable region 1.

  7. Self-replication of DNA rings

    Science.gov (United States)

    Kim, Junghoon; Lee, Junwye; Hamada, Shogo; Murata, Satoshi; Ha Park, Sung

    2015-06-01

    Biology provides numerous examples of self-replicating machines, but artificially engineering such complex systems remains a formidable challenge. In particular, although simple artificial self-replicating systems including wooden blocks, magnetic systems, modular robots and synthetic molecular systems have been devised, such kinematic self-replicators are rare compared with examples of theoretical cellular self-replication. One of the principal reasons for this is the amount of complexity that arises when you try to incorporate self-replication into a physical medium. In this regard, DNA is a prime candidate material for constructing self-replicating systems due to its ability to self-assemble through molecular recognition. Here, we show that DNA T-motifs, which self-assemble into ring structures, can be designed to self-replicate through toehold-mediated strand displacement reactions. The inherent design of these rings allows the population dynamics of the systems to be controlled. We also analyse the replication scheme within a universal framework of self-replication and derive a quantitative metric of the self-replicability of the rings.

  8. Functional neural networks underlying semantic encoding of associative memories.

    Science.gov (United States)

    Crespo-Garcia, M; Cantero, J L; Pomyalov, A; Boccaletti, S; Atienza, M

    2010-04-15

    Evidence suggests that theta oscillations recruit distributed cortical representations to improve associative encoding under semantically congruent conditions. Here we show that positive effects of semantic context on encoding and retrieval of associations are mediated by changes in the coupling pattern between EEG theta sources. During successful encoding of semantically congruent face-location associations, the right superior parietal lobe showed enhanced theta phase synchronization with other regions within the lateral posterior parietal lobe (PPL) and left medial temporal lobe (MTL). However, functional coordination involving the inferior parietal lobe was higher in the incongruent condition. These results suggest a differential engagement of top-down and bottom-up mechanisms during encoding of semantically congruent and incongruent episodic associations, respectively. Although retrieval processes operated on a similar neural network, the main difference with the study phase was the larger amount of functional links shown by the lateral prefrontal cortex with regions of the MTL and PPL. All together, these results suggest that theta oscillations mediate, at least partially, the positive effect of semantic congruence on associative memory by (i) optimizing top-down attentional mechanisms through enhanced theta phase synchronization between dorsal regions of the PPL and MTL and (ii) by adjusting the control of automatic attention to sensory and contextual information reactivated in the MTL through functional connections with the inferior parietal lobe during both encoding and retrieval processes.

  9. Brain activity underlying encoding and retrieval of source memory.

    Science.gov (United States)

    Cansino, Selene; Maquet, Pierre; Dolan, Raymond J; Rugg, Michael D

    2002-10-01

    Neural activity elicited during the encoding and retrieval of source information was investigated with event-related functional magnetic resonance imaging (efMRI). During encoding, 17 subjects performed a natural/artificial judgement on pictures of common objects which were presented randomly in one of the four quadrants of the display. At retrieval, old pictures were mixed with new ones and subjects judged whether each picture was new or old and, if old, indicated in which quadrant it was presented at encoding. During encoding, study items that were later recognized and assigned a correct source judgement elicited greater activity than recognized items given incorrect judgements in a variety of regions, including right lateral occipital and left prefrontal cortex. At retrieval, regions showing greater activity for recognized items given correct versus incorrect source judgements included the right hippocampal formation and the left prefrontal cortex. These findings indicate a role for these regions in the encoding and retrieval of episodic information beyond that required for simple item recognition.

  10. DNA Replication via Entanglement Swapping

    CERN Document Server

    Pusuluk, Onur

    2010-01-01

    Quantum effects are mainly used for the determination of molecular shapes in molecular biology, but quantum information theory may be a more useful tool to understand the physics of life. Molecular biology assumes that function is explained by structure, the complementary geometries of molecules and weak intermolecular hydrogen bonds. However, both this assumption and its converse are possible if organic molecules and quantum circuits/protocols are considered as hardware and software of living systems that are co-optimized during evolution. In this paper, we try to model DNA replication as a multiparticle entanglement swapping with a reliable qubit representation of nucleotides. In the model, molecular recognition of a nucleotide triggers an intrabase entanglement corresponding to a superposition state of different tautomer forms. Then, base pairing occurs by swapping intrabase entanglements with interbase entanglements.

  11. Imprinted chromosomal domains revealed by allele-specific replication timing of the GABRB3 and GABRA5 genes

    Energy Technology Data Exchange (ETDEWEB)

    LaSalle, J.; Flint, A.; Lalande, M. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    The GABRB3 and GABRA5 genes are organized as a cluster in chromosome 15q11-q13. The genes are separated by around 100 kb and arranged in opposite transcriptional orientations. The GABA{sub A} receptor cluster lies near the Angelman and Prader-Willi loci and displays asynchronous DNA replication, suggesting that this region is subject to parental imprinting. In order to further study the association between DNA replication and imprinting, allele-specific replication was assayed by fluorescence in situ hybridization with {lambda}-phage probes from the GABRB3/A5 region and a D15Z1 satellite probe to identify the parental origin of each chromosome. The replication kinetics of each allele was determined by using a flow sorter to fractionate mitogen-stimulated lymphocytes on the basis of cell cycle progression prior to FISH analysis. These kinetic studies reveal a 50-150 kb chromosomal domain extending from the middle of the GABRB3/A5 intergenic region into the GABRA5 5{prime}-UTR which displays maternal replication in early S with paternal replication delayed until the end of S. In contrast, genomic regions on either side of this maternal early replication domain exhibit the opposite pattern with paternal before maternal replication and both alleles replicating in the latter half of S. These results indicate that the GABRB3/A5 region is divided into domains in which replication timing is determined by parental origin. In addition to a loss of asynchronous replication, organization into replication timing domains is also lost in lymphocytes from maternal and paternal uniparental disomy 15 patients suggesting that a chromosome contribution from both parents is required for the establishment of the imprinted replication domains.

  12. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. Copyright © 2015 The Authors

  13. Replication efficiency of rolling-circle replicon-based plasmids derived from porcine circovirus 2 in eukaryotic cells.

    Science.gov (United States)

    Faurez, Florence; Dory, Daniel; Henry, Aurélie; Bougeard, Stéphanie; Jestin, André

    2010-04-01

    In this study, a method was developed to measure replication rates of rolling-circle replicon-based plasmids in eukaryotic cells. This method is based on the discriminative quantitation of MboI-resistant, non-replicated input plasmids and DpnI-resistant, replicated plasmids. To do so, porcine circovirus type 2 (PCV2) replicon-based plasmids were constructed. These plasmids contained the PCV2 origin of replication, the PCV2 Rep promoter and the PCV2 Rep gene. The results show that the replication rate depends on the length of the PCV2 replicon-based plasmid and not on the respective position of the Rep promoter and the promoter of the gene of interest that encodes the enhanced green fluorescent protein (eGFP). In all cases, it was necessary to add the Rep gene encoded by a plasmid and cotransfected as a replication booster. This method can evaluate the replication potential of replicon-based plasmids quickly and is thereby a promising tool for the development of plasmids for vaccine purposes.

  14. Re-engaging with the past: recapitulation of encoding operations during episodic retrieval

    Science.gov (United States)

    Morcom, Alexa M.

    2014-01-01

    Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection. PMID:24904386

  15. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  16. Trapping DNA replication origins from the human genome.

    Science.gov (United States)

    Eki, Toshihiko; Murakami, Yasufumi; Hanaoka, Fumio

    2013-04-17

    Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins' structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5-3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.

  17. Regulation of Unperturbed DNA Replication by Ubiquitylation

    Directory of Open Access Journals (Sweden)

    Sara Priego Moreno

    2015-06-01

    Full Text Available Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.

  18. Chromosome replication and segregation in bacteria.

    Science.gov (United States)

    Reyes-Lamothe, Rodrigo; Nicolas, Emilien; Sherratt, David J

    2012-01-01

    In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.

  19. Semiconservative replication in the quasispecies model

    Science.gov (United States)

    Tannenbaum, Emmanuel; Deeds, Eric J.; Shakhnovich, Eugene I.

    2004-06-01

    This paper extends Eigen’s quasispecies equations to account for the semiconservative nature of DNA replication. We solve the equations in the limit of infinite sequence length for the simplest case of a static, sharply peaked fitness landscape. We show that the error catastrophe occurs when μ , the product of sequence length and per base pair mismatch probability, exceeds 2 ln [2/ ( 1+1/k ) ] , where k>1 is the first-order growth rate constant of the viable “master” sequence (with all other sequences having a first-order growth rate constant of 1 ). This is in contrast to the result of ln k for conservative replication. In particular, as k→∞ , the error catastrophe is never reached for conservative replication, while for semiconservative replication the critical μ approaches 2 ln 2 . Semiconservative replication is therefore considerably less robust than conservative replication to the effect of replication errors. We also show that the mean equilibrium fitness of a semiconservatively replicating system is given by k ( 2 e-μ/2 -1 ) below the error catastrophe, in contrast to the standard result of k e-μ for conservative replication (derived by Kimura and Maruyama in 1966). From this result it is readily shown that semiconservative replication is necessary to account for the observation that, at sufficiently high mutagen concentrations, faster replicating cells will die more quickly than more slowly replicating cells. Thus, in contrast to Eigen’s original model, the semiconservative quasispecies equations are able to provide a mathematical basis for explaining the efficacy of mutagens as chemotherapeutic agents.

  20. Regulation of chromosomal replication in Caulobacter crescentus.

    Science.gov (United States)

    Collier, Justine

    2012-03-01

    The alpha-proteobacterium Caulobacter crescentus is characterized by its asymmetric cell division, which gives rise to a replicating stalked cell and a non-replicating swarmer cell. Thus, the initiation of chromosomal replication is tightly regulated, temporally and spatially, to ensure that it is coordinated with cell differentiation and cell cycle progression. Waves of DnaA and CtrA activities control when and where the initiation of DNA replication will take place in C. crescentus cells. The conserved DnaA protein initiates chromosomal replication by directly binding to sites within the chromosomal origin (Cori), ensuring that DNA replication starts once and only once per cell cycle. The CtrA response regulator represses the initiation of DNA replication in swarmer cells and in the swarmer compartment of pre-divisional cells, probably by competing with DnaA for binding to Cori. CtrA and DnaA are controlled by multiple redundant regulatory pathways that include DNA methylation-dependent transcriptional regulation, temporally regulated proteolysis and the targeting of regulators to specific locations within the cell. Besides being critical regulators of chromosomal replication, CtrA and DnaA are also master transcriptional regulators that control the expression of many genes, thus connecting DNA replication with other events of the C. crescentus cell cycle. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Comparison of three replication strategies in complex multicellular organisms: Asexual replication, sexual replication with identical gametes, and sexual replication with distinct sperm and egg gametes

    Science.gov (United States)

    Tannenbaum, Emmanuel

    2008-01-01

    This paper studies the mutation-selection balance in three simplified replication models. The first model considers a population of organisms replicating via the production of asexual spores. The second model considers a sexually replicating population that produces identical gametes. The third model considers a sexually replicating population that produces distinct sperm and egg gametes. All models assume diploid organisms whose genomes consist of two chromosomes, each of which is taken to be functional if equal to some master sequence, and defective otherwise. In the asexual population, the asexual diploid spores develop directly into adult organisms. In the sexual populations, the haploid gametes enter a haploid pool, where they may fuse with other haploids. The resulting immature diploid organisms then proceed to develop into mature organisms. Based on an analysis of all three models, we find that, as organism size increases, a sexually replicating population can only outcompete an asexually replicating population if the adult organisms produce distinct sperm and egg gametes. A sexual replication strategy that is based on the production of large numbers of sperm cells to fertilize a small number of eggs is found to be necessary in order to maintain a sufficiently low cost for sex for the strategy to be selected for over a purely asexual strategy. We discuss the usefulness of this model in understanding the evolution and maintenance of sexual replication as the preferred replication strategy in complex, multicellular organisms.

  2. Encoding information into precipitation structures

    Science.gov (United States)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  3. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state.

    Science.gov (United States)

    Lee, Tae-Jin; Pascuzzi, Pete E; Settlage, Sharon B; Shultz, Randall W; Tanurdzic, Milos; Rabinowicz, Pablo D; Menges, Margit; Zheng, Ping; Main, Dorrie; Murray, James A H; Sosinski, Bryon; Allen, George C; Martienssen, Robert A; Hanley-Bowdoin, Linda; Vaughn, Matthew W; Thompson, William F

    2010-06-10

    DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4) during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac) was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated with initiation zones

  4. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state.

    Directory of Open Access Journals (Sweden)

    Tae-Jin Lee

    2010-06-01

    Full Text Available DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4 during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated

  5. Geometric Hyperplanes: Desargues Encodes Doily

    CERN Document Server

    Saniga, Metod

    2011-01-01

    It is shown that the structure of the generalized quadrangle of order two is fully encoded in the properties of the Desargues configuration. A point of the quadrangle is represented by a geometric hyperplane of the Desargues configuration and its line by a set of three hyperplanes such that one of them is the complement of the symmetric difference of the remaining two and they all share a pair of non-collinear points.

  6. Structure and function of a cyanophage-encoded peptide deformylase.

    Science.gov (United States)

    Frank, Jeremy A; Lorimer, Don; Youle, Merry; Witte, Pam; Craig, Tim; Abendroth, Jan; Rohwer, Forest; Edwards, Robert A; Segall, Anca M; Burgin, Alex B

    2013-06-01

    Bacteriophages encode auxiliary metabolic genes that support more efficient phage replication. For example, cyanophages carry several genes to maintain host photosynthesis throughout infection, shuttling the energy and reducing power generated away from carbon fixation and into anabolic pathways. Photodamage to the D1/D2 proteins at the core of photosystem II necessitates their continual replacement. Synthesis of functional proteins in bacteria requires co-translational removal of the N-terminal formyl group by a peptide deformylase (PDF). Analysis of marine metagenomes to identify phage-encoded homologs of known metabolic genes found that marine phages carry PDF genes, suggesting that their expression during infection might benefit phage replication. We identified a PDF homolog in the genome of Synechococcus cyanophage S-SSM7. Sequence analysis confirmed that it possesses the three absolutely conserved motifs that form the active site in PDF metalloproteases. Phylogenetic analysis placed it within the Type 1B subclass, most closely related to the Arabidopsis chloroplast PDF, but lacking the C-terminal α-helix characteristic of that group. PDF proteins from this phage and from Synechococcus elongatus were expressed and characterized. The phage PDF is the more active enzyme and deformylates the N-terminal tetrapeptides from D1 proteins more efficiently than those from ribosomal proteins. Solution of the X-ray/crystal structures of those two PDFs to 1.95 Å resolution revealed active sites identical to that of the Type 1B Arabidopsis chloroplast PDF. Taken together, these findings show that many cyanophages encode a PDF with a D1 substrate preference that adds to the repertoire of genes used by phages to maintain photosynthetic activities.

  7. Vector Encoding in Biochemical Networks

    Science.gov (United States)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  8. Prefrontal contributions to relational encoding in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Chris M. Foster

    2016-01-01

    Full Text Available Relational memory declines are well documented as an early marker for amnestic mild cognitive impairment (aMCI. Episodic memory formation relies on relational processing supported by two mnemonic mechanisms, generation and binding. Neuroimaging studies using functional magnetic resonance imaging (fMRI have primarily focused on binding deficits which are thought to be mediated by medial temporal lobe dysfunction. In this study, prefrontal contributions to relational encoding were also investigated using fMRI by parametrically manipulating generation demands during the encoding of word triads. Participants diagnosed with aMCI and healthy control subjects encoded word triads consisting of a category word with either, zero, one, or two semantically related exemplars. As the need to generate increased (i.e., two- to one- to zero-link triads, both groups recruited a core set of regions associated with the encoding of word triads including the parahippocampal gyrus, superior temporal gyrus, and superior parietal lobule. Participants diagnosed with aMCI also parametrically recruited several frontal regions including the inferior frontal gyrus and middle frontal gyrus as the need to generate increased, whereas the control participants did not show this modulation. While there is some functional overlap in regions recruited by generation demands between the groups, the recruitment of frontal regions in the aMCI participants coincides with worse memory performance, likely representing a form of neural inefficiency associated with Alzheimer's disease.

  9. Prefrontal contributions to relational encoding in amnestic mild cognitive impairment.

    Science.gov (United States)

    Foster, Chris M; Addis, Donna Rose; Ford, Jaclyn H; Kaufer, Daniel I; Burke, James R; Browndyke, Jeffrey N; Welsh-Bohmer, Kathleen A; Giovanello, Kelly S

    2016-01-01

    Relational memory declines are well documented as an early marker for amnestic mild cognitive impairment (aMCI). Episodic memory formation relies on relational processing supported by two mnemonic mechanisms, generation and binding. Neuroimaging studies using functional magnetic resonance imaging (fMRI) have primarily focused on binding deficits which are thought to be mediated by medial temporal lobe dysfunction. In this study, prefrontal contributions to relational encoding were also investigated using fMRI by parametrically manipulating generation demands during the encoding of word triads. Participants diagnosed with aMCI and healthy control subjects encoded word triads consisting of a category word with either, zero, one, or two semantically related exemplars. As the need to generate increased (i.e., two- to one- to zero-link triads), both groups recruited a core set of regions associated with the encoding of word triads including the parahippocampal gyrus, superior temporal gyrus, and superior parietal lobule. Participants diagnosed with aMCI also parametrically recruited several frontal regions including the inferior frontal gyrus and middle frontal gyrus as the need to generate increased, whereas the control participants did not show this modulation. While there is some functional overlap in regions recruited by generation demands between the groups, the recruitment of frontal regions in the aMCI participants coincides with worse memory performance, likely representing a form of neural inefficiency associated with Alzheimer's disease.

  10. Evidence for an asthma risk locus on chromosome Xp: a replication linkage study

    DEFF Research Database (Denmark)

    Brasch-Andersen, C; Møller, M U; Haagerup, A;

    2008-01-01

    BACKGROUND: Asthma is a complex genetic disorder characterized by chronic inflammation in the airways. Identification of genetic risk factors for asthma has been complicated due to genetic heterogeneity and influence from environmental risk factors. Despite the fact that multiple genetic linkage...... studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same...... replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample. METHODS: We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22...

  11. High-throughput mapping of origins of replication in human cells.

    Science.gov (United States)

    Lucas, Isabelle; Palakodeti, Aparna; Jiang, Yanwen; Young, David J; Jiang, Nan; Fernald, Anthony A; Le Beau, Michelle M

    2007-08-01

    Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.

  12. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity

    Science.gov (United States)

    Lipps, Georg; Röther, Susanne; Hart, Christina; Krauss, Gerhard

    2003-01-01

    Although DNA replication is a process common in all domains of life, primase and replicative DNA polymerase appear to have evolved independently in the bacterial domain versus the archaeal/eukaryal branch of life. Here, we report on a new type of replication protein that constitutes the first member of the DNA polymerase family E. The protein ORF904, encoded by the plasmid pRN1 from the thermoacidophile archaeon Sulfolobus islandicus, is a highly compact multifunctional enzyme with ATPase, primase and DNA polymerase activity. Recombinant purified ORF904 hydrolyses ATP in a DNA-dependent manner. Deoxynucleotides are preferentially used for the synthesis of primers ∼8 nucleotides long. The DNA polymerase activity of ORF904 synthesizes replication products of up to several thousand nucleotides in length. The primase and DNA polymerase activity are located in the N-terminal half of the protein, which does not show homology to any known DNA polymerase or primase. ORF904 constitutes a new type of replication enzyme, which could have evolved indepen dently from the eubacterial and archaeal/eukaryal proteins of DNA replication. PMID:12743045

  13. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.; Rustad, Tige; Ollodart, Anja R.; Wright, Aaron T.; Sherman, David R.; Grundner, Christoph

    2014-01-07

    In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.

  14. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  15. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  16. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  17. Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation.

    Directory of Open Access Journals (Sweden)

    Gongshi Bai

    2016-01-01

    Full Text Available Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS. Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2-7 (MCM2-7 factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level.

  18. Accessory Genes Confer a High Replication Rate to Virulent Feline Immunodeficiency Virus

    OpenAIRE

    Troyer, Ryan M.; Thompson, Jesse; Elder, John H.; VandeWoude, Sue

    2013-01-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between tw...

  19. DNA-SEQUENCE DETERMINATION AND FUNCTIONAL-CHARACTERIZATION OF THE OCT-PLASMID-ENCODED ALKJKL GENES OF PSEUDOMONAS-OLEOVORANS

    NARCIS (Netherlands)

    van Beilen, J.B.; EGGINK, G; ENEQUIST, H; Witholt, Bernard; Bos, R

    1992-01-01

    The alkBFGHJKL and alkST operons encode enzymes that allow Pseudomonas putida (oleovorans) to metabolize alkanes. In this paper we report the nucleotide sequence of a 4592 bp region of the alkBFGHJKL operon encoding the AlkJ, AlkK and AlkL polypeptides. The alkJ gene encodes a protein of 59 kilodalt

  20. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    Directory of Open Access Journals (Sweden)

    Kazuhiro Iiyama

    2015-06-01

    Full Text Available A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage.

  1. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    of the mechanisms controlling topography replication. Surface micro topography replication in injection moulding depends on the main elements of  Process conditions  Plastic material  Mould topography In this work, the process conditions is the main factor considered, but the impact of plastic material...

  2. Replication and Robustness in Developmental Research

    Science.gov (United States)

    Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.

    2014-01-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…

  3. Replication and Robustness in Developmental Research

    Science.gov (United States)

    Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.

    2014-01-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…

  4. Using Replication Projects in Teaching Research Methods

    Science.gov (United States)

    Standing, Lionel G.; Grenier, Manuel; Lane, Erica A.; Roberts, Meigan S.; Sykes, Sarah J.

    2014-01-01

    It is suggested that replication projects may be valuable in teaching research methods, and also address the current need in psychology for more independent verification of published studies. Their use in an undergraduate methods course is described, involving student teams who performed direct replications of four well-known experiments, yielding…

  5. How frog embryos replicate their DNA reliably

    Science.gov (United States)

    Bechhoefer, John; Marshall, Brandon

    2007-03-01

    Frog embryos contain three billion base pairs of DNA. In early embryos (cycles 2-12), DNA replication is extremely rapid, about 20 min., and the entire cell cycle lasts only 25 min., meaning that mitosis (cell division) takes place in about 5 min. In this stripped-down cell cycle, there are no efficient checkpoints to prevent the cell from dividing before its DNA has finished replication - a disastrous scenario. Even worse, the many origins of replication are laid down stochastically and are also initiated stochastically throughout the replication process. Despite the very tight time constraints and despite the randomness introduced by origin stochasticity, replication is extremely reliable, with cell division failing no more than once in 10,000 tries. We discuss a recent model of DNA replication that is drawn from condensed-matter theories of 1d nucleation and growth. Using our model, we discuss different strategies of replication: should one initiate all origins as early as possible, or is it better to hold back and initiate some later on? Using concepts from extreme-value statistics, we derive the distribution of replication times given a particular scenario for the initiation of origins. We show that the experimentally observed initiation strategy for frog embryos meets the reliability constraint and is close to the one that requires the fewest resources of a cell.

  6. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency

    Directory of Open Access Journals (Sweden)

    Alexis L. Santana

    2017-02-01

    Full Text Available RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS/toll-like receptor (TLR4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB signaling during murine gammaherpesvirus 68 (MHV68 infection: a latent B cell line (HE-RIT inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA.

  7. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency

    Science.gov (United States)

    Santana, Alexis L.; Oldenburg, Darby G.; Kirillov, Varvara; Malik, Laraib; Dong, Qiwen; Sinayev, Roman; Marcu, Kenneth B.; White, Douglas W.; Krug, Laurie T.

    2017-01-01

    RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB) signaling during murine gammaherpesvirus 68 (MHV68) infection: a latent B cell line (HE-RIT) inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio) that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R) that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA. PMID:28212352

  8. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depl...

  9. Variable fragment of heavy chain antibody against the terminal protein region of hepatitis B virus polymerase introduced by Tat protein transduction domain inhibits the replication of hepatitis B virus in vitro%蛋白转导结构域介导乙型肝炎病毒聚合酶末端蛋白重链可变区抗体体外抑制病毒的复制

    Institute of Scientific and Technical Information of China (English)

    于俊岩; 兰林; 李俊刚; 张长江; 王宇明

    2009-01-01

    目的 蛋白转导结构域(TAT)介导HBV聚合酶末端蛋白(TP)重链可变区(VH)抗体,研究特异性TAT-VH抗体体外对HBV复制的影响.方法 将TAT-VH基因克隆入原核表达载体pET28a(+),在大肠埃希菌BL21(DE3)LysS内诱导融合蛋白表达并进行纯化.纯化的TAT-VH加入培养的HepG2.2.15细胞,间接免疫荧光法检测其导入HepG2.2.15细胞的效率,四甲基偶氮唑盐(MTT)法检测其对细胞生长代谢的影响,将TAT-VH加入培养的HepG2.2.15细胞,定量PCR法检测HBV DNA水平.数据行单因素方差分析和t检验.结果 成功制备了TAT-VH融合蛋白,间接免疫荧光及MTT证实TAT-VH可以跨膜导入HepG2.2.15细胞,且对细胞生长无影响;加入5 000 nmol/L TAT-VH的HepG2.2.15细胞培养上清液内HBV DNA为(1.211±0.132)lg拷贝/mL,对照组为(5.325±0.041)lg拷贝/mL(t=72.91,P<0.05);细胞内分别为(3.521±0.411)和(8.532±0.132)Ig拷贝/mL(t=28.41,P<0.05).结论 HBV聚合酶TP区特异性TAT-VH抗体在体外可抑制HBV复制,为应用细胞内抗体治疗HBV感染提供了良好的实验基础.%Objective To study a functional variable fragment of heavy chain(VH)antibody against the terminal protein(TP)region of hepatitis B virus(HBV)polymerase introduced by human immunodeficiency virus Tat protein transduction domain(TAT)and the inhibitive activity of TAT-VH on the replication of HBV in vitro.Methods The gene encoding TAT-VH was cloned into prokaryotic expression vector pET28a(+).Recombinant plasmid was transduced into E coli BL21(DE3)LysS,then the protein was expressed and purified.The purified TAT-VH fusion protein was added into HepG2.2.15 cell culture.The transduction efficiency was evaluated by indirect fluorescence assay(IFA).The cytotoxicity of TAT-VH was detected by Methabenzthiazuron(MTT)assay.HBV DNA level in HepG2.2.15 cell culture was measured using quantitative polymerase chain reaction(PCR).The data were analyzed by one-factor analysis of variance and t test.Results TAT

  10. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells

    DEFF Research Database (Denmark)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells...... prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism...... by using the model organisms Escherichia coli and Schizosaccharomyces pombe as examples. Although the underlying molecular details are different, the logic behind the control mechanisms is similar. For example, after initiation, crucial molecules required for the loading of replicative helicases in both...

  11. Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier

    Science.gov (United States)

    Sofueva, Sevil; Osman, Fekret; Lorenz, Alexander; Steinacher, Roland; Castagnetti, Stefania; Ledesma, Jennifer; Whitby, Matthew C.

    2011-01-01

    Most DNA double-strand breaks (DSBs) in S- and G2-phase cells are repaired accurately by Rad51-dependent sister chromatid recombination. However, a minority give rise to gross chromosome rearrangements (GCRs), which can result in disease/death. What determines whether a DSB is repaired accurately or inaccurately is currently unclear. We provide evidence that suggests that perturbing replication by a non-programmed protein–DNA replication fork barrier results in the persistence of replication intermediates (most likely regions of unreplicated DNA) into mitosis, which results in anaphase bridge formation and ultimately to DNA breakage. However, unlike previously characterised replication-associated DSBs, these breaks are repaired mainly by Rad51-independent processes such as single-strand annealing, and are therefore prone to generate GCRs. These data highlight how a replication-associated DSB can be predisposed to give rise to genome rearrangements in eukaryotes. PMID:21576223

  12. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke

    2016-01-01

    , allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes...... ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...... chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication....

  13. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode.

    Science.gov (United States)

    Akhrymuk, Ivan; Frolov, Ilya; Frolova, Elena I

    2016-01-01

    Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus-host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellular pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5.

  14. Rescue from replication stress during mitosis.

    Science.gov (United States)

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  15. A New Replication Norm for Psychology

    Directory of Open Access Journals (Sweden)

    Etienne P LeBel

    2015-10-01

    Full Text Available In recent years, there has been a growing concern regarding the replicability of findings in psychology, including a mounting number of prominent findings that have failed to replicate via high-powered independent replication attempts. In the face of this replicability “crisis of confidence”, several initiatives have been implemented to increase the reliability of empirical findings. In the current article, I propose a new replication norm that aims to further boost the dependability of findings in psychology. Paralleling the extant social norm that researchers should peer review about three times as many articles that they themselves publish per year, the new replication norm states that researchers should aim to independently replicate important findings in their own research areas in proportion to the number of original studies they themselves publish per year (e.g., a 4:1 original-to-replication studies ratio. I argue this simple approach could significantly advance our science by increasing the reliability and cumulative nature of our empirical knowledge base, accelerating our theoretical understanding of psychological phenomena, instilling a focus on quality rather than quantity, and by facilitating our transformation toward a research culture where executing and reporting independent direct replications is viewed as an ordinary part of the research process. To help promote the new norm, I delineate (1 how each of the major constituencies of the research process (i.e., funders, journals, professional societies, departments, and individual researchers can incentivize replications and promote the new norm and (2 any obstacles each constituency faces in supporting the new norm.

  16. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C;

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  17. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  18. JC virus small T antigen binds phosphatase PP2A and Rb family proteins and is required for efficient viral DNA replication activity.

    Directory of Open Access Journals (Sweden)

    Brigitte Bollag

    Full Text Available BACKGROUND: The human polyomavirus, JC virus (JCV produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg and three T' proteins, but little is known about small tumor antigen (tAg functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A, and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.

  19. Cognitive and Neural Effects of Semantic Encoding Strategy Training in Older Adults

    Science.gov (United States)

    Anderson, B. A.; Barch, D. M.; Jacoby, L. L.

    2012-01-01

    Prior research suggests that older adults are less likely than young adults to use effective learning strategies during intentional encoding. This functional magnetic resonance imaging (fMRI) study investigated whether training older adults to use semantic encoding strategies can increase their self-initiated use of these strategies and improve their recognition memory. The effects of training on older adults' brain activity during intentional encoding were also examined. Training increased older adults' self-initiated semantic encoding strategy use and eliminated pretraining age differences in recognition memory following intentional encoding. Training also increased older adults' brain activity in the medial superior frontal gyrus, right precentral gyrus, and left caudate during intentional encoding. In addition, older adults' training-related changes in recognition memory were strongly correlated with training-related changes in brain activity in prefrontal and left lateral temporal regions associated with semantic processing and self-initiated verbal encoding strategy use in young adults. These neuroimaging results demonstrate that semantic encoding strategy training can alter older adults' brain activity patterns during intentional encoding and suggest that young and older adults may use the same network of brain regions to support self-initiated use of verbal encoding strategies. PMID:21709173

  20. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamaichi

    2011-07-01

    Full Text Available There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products that surround the origin of replication (oriCII of Vibrio cholerae chromosome II (chrII are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  1. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Science.gov (United States)

    Yamaichi, Yoshiharu; Gerding, Matthew A; Davis, Brigid M; Waldor, Matthew K

    2011-07-01

    There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products) that surround the origin of replication (oriCII) of Vibrio cholerae chromosome II (chrII) are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  2. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  3. Enzyme-like replication de novo in a microcontroller environment.

    Science.gov (United States)

    Tangen, Uwe

    2010-01-01

    The desire to start evolution from scratch inside a computer memory is as old as computing. Here we demonstrate how viable computer programs can be established de novo in a Precambrian environment without supplying any specific instantiation, just starting with random bit sequences. These programs are not self-replicators, but act much more like catalysts. The microcontrollers used in the end are the result of a long series of simplifications. The objective of this simplification process was to produce universal machines with a human-readable interface, allowing software and/or hardware evolution to be studied. The power of the instruction set can be modified by introducing a secondary structure-folding mechanism, which is a state machine, allowing nontrivial replication to emerge with an instruction width of only a few bits. This state-machine approach not only attenuates the problems of brittleness and encoding functionality (too few bits available for coding, and too many instructions needed); it also enables the study of hardware evolution as such. Furthermore, the instruction set is sufficiently powerful to permit external signals to be processed. This information-theoretic approach forms one vertex of a triangle alongside artificial cell research and experimental research on the creation of life. Hopefully this work helps develop an understanding of how information—in a similar sense to the account of functional information described by Hazen et al.—is created by evolution and how this information interacts with or is embedded in its physico-chemical environment.

  4. BARE retrotransposons are translated and replicated via distinct RNA pools.

    Directory of Open Access Journals (Sweden)

    Wei Chang

    Full Text Available The replication of Long Terminal Repeat (LTR retrotransposons, which can constitute over 80% of higher plant genomes, resembles that of retroviruses. A major question for retrotransposons and retroviruses is how the two conflicting roles of their transcripts, in translation and reverse transcription, are balanced. Here, we show that the BARE retrotransposon, despite its organization into just one open reading frame, produces three distinct classes of transcripts. One is capped, polyadenylated, and translated, but cannot be copied into cDNA. The second is not capped or polyadenylated, but is destined for packaging and ultimate reverse transcription. The third class is capped, polyadenylated, and spliced to favor production of a subgenomic RNA encoding only Gag, the protein forming virus-like particles. Moreover, the BARE2 subfamily, which cannot synthesize Gag and is parasitic on BARE1, does not produce the spliced sub-genomic RNA for translation but does make the replication competent transcripts, which are packaged into BARE1 particles. To our knowledge, this is first demonstration of distinct RNA pools for translation and transcription for any retrotransposon.

  5. Successful Scene Encoding in Presymptomatic Early-Onset Alzheimer's Disease.

    Science.gov (United States)

    Quiroz, Yakeel T; Willment, Kim Celone; Castrillon, Gabriel; Muniz, Martha; Lopera, Francisco; Budson, Andrew; Stern, Chantal E

    2015-01-01

    Brain regions critical to episodic memory are altered during the preclinical stages of Alzheimer's disease (AD). However, reliable means of identifying cognitively-normal individuals at higher risk to develop AD have not been established. To examine whether functional MRI can detect early functional changes associated with scene encoding in a group of presymptomatic presenilin-1 (PSEN1) E280A mutation carriers. Participants were 39 young, cognitively-normal individuals from an autosomal dominant early-onset AD kindred, located in Antioquia, Colombia. Participants performed a functional MRI scene encoding task and a post-scan subsequent memory test. PSEN1 mutation carriers exhibited hyperactivation within medial temporal lobe regions (hippocampus,parahippocampal formation) during successful scene encoding compared to age-matched non-carriers. Hyperactivation in medial temporal lobe regions during scene encoding is seen in individuals genetically-determined to develop AD years before their clinical onset. Our findings will guide future research with the ultimate goal of using functional neuroimaging in the early detection of preclinical AD.

  6. Bunyaviridae and Their Replication. Part 2. Replication of Bunyaviridae

    Science.gov (United States)

    1990-01-01

    hemorrhagic fever (CCHF), sandfly fever Naples (SFN), and Uukuniemi (UUK) VIRION MORPHOLOGY AND STRUCTURE (14,16,142,144). Most viruses in the family...genera (ex- the phieboviruses, Punta Toro (PT) (152). sandfly fever cept for uukuviruses and phleboviruses which have the Sicilian (SFS), and RVFV (96...fragments may therefore rep- temperature -sensitive mutants of UUK, in which GI resent transmembrane regions of proteins, which could and G2 (but not N

  7. Distinct Orbitofrontal Regions Encode Stimulus and Choice Valuation

    Science.gov (United States)

    Cunningham, William A.; Kesek, Amanda; Mowrer, Samantha M.

    2009-01-01

    The weak axiom of revealed preferences suggests that the value of an object can be understood through the simple examination of choices. Although this axiom has driven economic theory, the assumption of equation between value and choice is often violated. fMRI was used to decouple the processes associated with evaluating stimuli from evaluating…

  8. Inclusion bodies are a site of ebolavirus replication.

    Science.gov (United States)

    Hoenen, Thomas; Shabman, Reed S; Groseth, Allison; Herwig, Astrid; Weber, Michaela; Schudt, Gordian; Dolnik, Olga; Basler, Christopher F; Becker, Stephan; Feldmann, Heinz

    2012-11-01

    Inclusion bodies are a characteristic feature of ebolavirus infections in cells. They contain large numbers of preformed nucleocapsids, but their biological significance has been debated, and they have been suggested to be aggregates of viral proteins without any further biological function. However, recent data for other viruses that produce similar structures have suggested that inclusion bodies might be involved in genome replication and transcription. In order to study filovirus inclusion bodies, we fused mCherry to the ebolavirus polymerase L, which is found in inclusion bodies. The resulting L-mCherry fusion protein was functional in minigenome assays and incorporated into virus-like particles. Importantly, L-mCherry fluorescence in transfected cells was readily detectable and distributed in a punctate pattern characteristic for inclusion bodies. A recombinant ebolavirus encoding L-mCherry instead of L was rescued and showed virtually identical growth kinetics and endpoint titers to those for wild-type virus. Using this virus, we showed that the onset of inclusion body formation corresponds to the onset of viral genome replication, but that viral transcription occurs prior to inclusion body formation. Live-cell imaging further showed that inclusion bodies are highly dynamic structures and that they can undergo dramatic reorganization during cell division. Finally, by labeling nascent RNAs using click technology we showed that inclusion bodies are indeed the site of viral RNA synthesis. Based on these data we conclude that, rather than being inert aggregates of nucleocapsids, ebolavirus inclusion bodies are in fact complex and dynamic structures and an important site at which viral RNA replication takes place.

  9. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  10. Data from Investigating Variation in Replicability: A “Many Labs” Replication Project

    Directory of Open Access Journals (Sweden)

    Richard A. Klein

    2014-04-01

    Full Text Available This dataset is from the Many Labs Replication Project in which 13 effects were replicated across 36 samples and over 6,000 participants. Data from the replications are included, along with demographic variables about the participants and contextual information about the environment in which the replication was conducted. Data were collected in-lab and online through a standardized procedure administered via an online link. The dataset is stored on the Open Science Framework website. These data could be used to further investigate the results of the included 13 effects or to study replication and generalizability more broadly.

  11. Parametrised Constants and Replication for Spatial Mobility

    DEFF Research Database (Denmark)

    Hüttel, Hans; Haagensen, Bjørn

    2009-01-01

    of reachable sites is static an encoding exists, but we also show that parametrised constants can not be encoded in the full calculus. The locality requirement supplements widely accepted encoding criteria. It appears to be a natural property in spatial calculi where links and locations can fail. The versions...... and the calculus of mobile ambients. Here, processes are located at sites and can migrate between them. In this paper we say that an encoding is local if it does not introduce extra migration. We first study this property for the distributed π-calculus where locations can be dynamically created. If the set...

  12. Correspondence between stimulus encoding- and maintenance-related neural processes underlies successful working memory.

    Science.gov (United States)

    Cohen, Jessica R; Sreenivasan, Kartik K; D'Esposito, Mark

    2014-03-01

    The ability to actively maintain information in working memory (WM) is vital for goal-directed behavior, but the mechanisms underlying this process remain elusive. We hypothesized that successful WM relies upon a correspondence between the neural processes associated with stimulus encoding and the neural processes associated with maintenance. Using functional magnetic resonance imaging, we identified regional activity and inter-regional connectivity during stimulus encoding and the maintenance of those stimuli when they were no longer present. We compared correspondence in these neural processes across encoding and maintenance epochs with WM performance. Critically, greater correspondence between encoding and maintenance in 1) regional activity in the lateral prefrontal cortex (PFC) and 2) connectivity between lateral PFC and extrastriate cortex was associated with increased performance. These findings suggest that the conservation of neural processes across encoding and maintenance supports the integrity of representations in WM.

  13. [Neurons that encode sound direction].

    Science.gov (United States)

    Peña, J L

    In the auditory system, the inner ear breaks down complex signals into their spectral components, and encodes the amplitude and phase of each. In order to infer sound direction in space, a computation on each frequency component of the sound must be performed. Space specific neurons in the owl s inferior colliculus respond only to sounds coming from a particular direction and represent the results of this computation. The interaural time difference (ITD) and interaural level difference (ILD define the auditory space for the owl and are processed in separate neural pathways. The parallel pathways that process these cues merge in the external nucleus of the inferior colliculus where the space specific neurons are selective to combinations of ITD and ILD. How do inputs from the two sources interact to produce combination selectivity to ITD ILD pairs? A multiplication of postsynaptic potentials tuned to ITD and ILD can account for the subthreshold responses of these neurons to ITD ILD pairs. Examples of multiplication by neurons or neural circuits are scarce, but many computational models assume the existence of this basic operation. The owl s auditory system uses such operation to create a 2 dimensional map of auditory space. The map of space in the owl s auditory system shows important similarities with representations of space in the cerebral cortex and other sensory systems. In encoding space or other stimulus features, individual neurons appear to possess analogous functional properties related to the synthesis of high order receptive fields.

  14. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    Energy Technology Data Exchange (ETDEWEB)

    Kanginakudru, Sriramana, E-mail: skangina@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); DeSmet, Marsha, E-mail: mdesmet@iupui.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Thomas, Yanique, E-mail: ysthomas@umail.iu.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States); Morgan, Iain M., E-mail: immorgan@vcu.edu [VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia (United States); Androphy, Elliot J., E-mail: eandro@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  15. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Aditya S Pratihar; Vishnu P Tripathi; Mukesh P Yadav; Dharani D Dubey

    2015-12-01

    Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2OO4, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2OO4 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727-associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2OO4 or ars727 remains unaltered by the extended chromosomal context.

  16. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Replication forks reverse at high frequency upon replication stress in Physarum polycephalum.

    Science.gov (United States)

    Maric, Chrystelle; Bénard, Marianne

    2014-12-01

    The addition of hydroxyurea after the onset of S phase allows replication to start and permits the successive detecting of replication-dependent joint DNA molecules and chicken foot structures in the synchronous nuclei of Physarum polycephalum. We find evidence for a very high frequency of reversed replication forks upon replication stress. The formation of these reversed forks is dependent on the presence of joint DNA molecules, the impediment of the replication fork progression by hydroxyurea, and likely on the propensity of some replication origins to reinitiate replication to counteract the action of this compound. As hydroxyurea treatment enables us to successively detect the appearance of joint DNA molecules and then of reversed replication forks, we propose that chicken foot structures are formed both from the regression of hydroxyurea-frozen joint DNA molecules and from hydroxyurea-stalled replication forks. These experiments underscore the transient nature of replication fork regression, which becomes detectable due to the hydroxyurea-induced slowing down of replication fork progression.

  18. A quantitative model of DNA replication in Xenopus embryos: reliable replication despite stochasticity

    Science.gov (United States)

    Cheng-Hsin Yang, Scott; Bechhoefer, John

    2008-03-01

    DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the replication time and may lead to cell death if replication takes longer than the cell cycle time (˜ 25 min.). Surprisingly, although the typical replication time is about 20 min., in vivo experiments show that replication fails to complete only about 1 in 250 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two mechanisms: the first uses a regular spatial distribution of origins, while the second uses randomly located origins but increases their probability of initiation as the cell cycle proceeds. Here, we show that both mechanisms yield similar end-time distributions, implying that regular origin spacing is not needed for control of replication time. Moreover, we show that the experimentally inferred time-dependent initiation rate satisfies the observed low failure probability and nearly optimizes the use of replicative proteins.

  19. Targeting DNA Replication Stress for Cancer Therapy

    Science.gov (United States)

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  20. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  1. Feedback-Based Collaborative Secrecy Encoding over Binary Symmetric Channels

    CERN Document Server

    Amariucai, George

    2009-01-01

    In this paper we propose a feedback scheme for transmitting secret messages between two legitimate parties, over an eavesdropped communication link. Relative to Wyner's traditional encoding scheme \\cite{wyner1}, our feedback-based encoding often yields larger rate-equivocation regions and achievable secrecy rates. More importantly, by exploiting the channel randomness inherent in the feedback channels, our scheme achieves a strictly positive secrecy rate even when the eavesdropper's channel is less noisy than the legitimate receiver's channel. All channels are modeled as binary and symmetric (BSC). We demonstrate the versatility of our feedback-based encoding method by using it in three different configurations: the stand-alone configuration, the mixed configuration (when it combines with Wyner's scheme \\cite{wyner1}), and the reversed configuration. Depending on the channel conditions, significant improvements over Wyner's secrecy capacity can be observed in all configurations.

  2. Encoding of electrophysiology and other signals in MR images

    DEFF Research Database (Denmark)

    Hanson, Lars G; Lund, Torben E; Hanson, Christian G

    2007-01-01

    to the "magstripe" technique used for encoding of soundtracks in motion pictures, the electrical signals are in this way encoded as artifacts appearing in the MR images or spectra outside the region of interest. The encoded signals are subsequently reconstructed from the signal recorded by the scanner. RESULTS......: Electrophysiological (EP) eye and heart muscular recording (electrooculography [EOG] and electrocardiography [ECG]) during fast echo planar imaging (EPI) is demonstrated with an expandable, modular 8-channel prototype implementation. The gradient artifacts that would normally be dominating EOG are largely eliminated....... CONCLUSION: The method provides relatively inexpensive sampling with inherent microsecond synchronization and it reduces gradient artifacts in physiological recordings significantly. When oversampling is employed, the method is compatible with all MR reconstruction and postprocessing techniques....

  3. The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Campelo, Ana B.; Gaspar, Paula; Roces, Clara; Rodriguez, Ana; Kok, Jan; Kuipers, Oscar P.; Neves, Ana Rute; Martinez, Beatriz

    2011-01-01

    pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes

  4. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  5. Study on the micro-replication of shark skin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body. Taking shark skins as the replication templates, and the micro-embossing and micro-molding as the material forming methods, the micro-replicating technology of the outward morphology on shark skins was demonstrated. The preliminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision, which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.

  6. A role for the weak DnaA binding sites in bacterial replication origins

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Løbner-Olesen, Anders

    2011-01-01

    DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an ‘AT-rich’ region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed...... between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility...

  7. Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation

    DEFF Research Database (Denmark)

    Koch, Birgit; Ma, Xiaofang; Løbner-Olesen, Anders

    2010-01-01

    We successfully substituted Escherichia coli's origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCIVc). Replication from oriCIVc initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration....... cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCIVc allowed us to specifically address...

  8. Suppression of feline calicivirus replication using small interfering RNA targeted to its polymerase gene.

    Science.gov (United States)

    Taharaguchi, Satoshi; Matsuhiro, Takahisa; Harima, Hayato; Sato, Atsuko; Ohe, Kyoko; Sakai, Sachi; Takahashi, Toshikazu; Hara, Motonobu

    2012-06-01

    Feline calicivirus (FCV) is a pathogenic microorganism that causes upper respiratory diseases in cats. Recently, an FCV infection with a high mortality rate has been confirmed, and there is need to develop a treatment for cases of acute infection. We evaluated whether the replication of FCV could be prevented by RNA interference. For this study, we designed an siRNA targeted to the polymerase region of the strain FCV-B isolated from a cat that died after exhibiting neurological symptoms. Cells transfected with siR-pol dose-dependently suppressed the replication of FCV-B. siR-pol suppressed its replication by suppressing the target viral RNA.

  9. Replicated Data Management for Mobile Computing

    CERN Document Server

    Douglas, Terry

    2008-01-01

    Managing data in a mobile computing environment invariably involves caching or replication. In many cases, a mobile device has access only to data that is stored locally, and much of that data arrives via replication from other devices, PCs, and services. Given portable devices with limited resources, weak or intermittent connectivity, and security vulnerabilities, data replication serves to increase availability, reduce communication costs, foster sharing, and enhance survivability of critical information. Mobile systems have employed a variety of distributed architectures from client-server

  10. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene.

    Directory of Open Access Journals (Sweden)

    Jason G Bragg

    Full Text Available BACKGROUND: Phages infecting marine picocyanobacteria often carry a psbA gene, which encodes a homolog to the photosynthetic reaction center protein, D1. Host encoded D1 decays during phage infection in the light. Phage encoded D1 may help to maintain photosynthesis during the lytic cycle, which in turn could bolster the production of deoxynucleoside triphosphates (dNTPs for phage genome replication. METHODOLOGY/PRINCIPAL FINDINGS: To explore the consequences to a phage of encoding and expressing psbA, we derive a simple model of infection for a cyanophage/host pair--cyanophage P-SSP7 and Prochlorococcus MED4--for which pertinent laboratory data are available. We first use the model to describe phage genome replication and the kinetics of psbA expression by host and phage. We then examine the contribution of phage psbA expression to phage genome replication under constant low irradiance (25 microE m(-2 s(-1. We predict that while phage psbA expression could lead to an increase in the number of phage genomes produced during a lytic cycle of between 2.5 and 4.5% (depending on parameter values, this advantage can be nearly negated by the cost of psbA in elongating the phage genome. Under higher irradiance conditions that promote D1 degradation, however, phage psbA confers a greater advantage to phage genome replication. CONCLUSIONS/SIGNIFICANCE: These analyses illustrate how psbA may benefit phage in the dynamic ocean surface mixed layer.

  11. Phylogenetic Analysis of Homologous Proteins Encoded by UL2 and UL23 genes of Herpesviridae

    Institute of Scientific and Technical Information of China (English)

    Long-ding LIU; Wen-juan WU; Min HONG; Hai-jing SHI; Shao-hui MA; Jing-jing WANG; Hong-ling ZHAO; Yun LIAO; Qi-han LI

    2007-01-01

    The proteins encoded by the Herpesviridae β-gene play a critical role in the replication stage of the virus. In this paper, phylogenetic analyses provided evidence that someβ-gene products, such as UL2 and UL23 from HSV1, have their homologous genes in its family, and also exist in prokaryotic organisms, indicating that these viruses appear to have been assembled over evolutionary time by numerous independent events of horizontal gene transfer.

  12. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Stumpf

    2014-10-01

    Full Text Available Mitochondrial DNA (mtDNA encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS, would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mt

  13. Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio.

    Science.gov (United States)

    Daga, R R; Thode, G; Amores, A

    1996-01-01

    The chromosome complement of Danio rerio was investigated by Giemsa staining and C-banding, Ag-NORs and replication banding. The diploid number of this species is 2n = 50 and the arm number (NF) = 100. Constitutive heterochromatin was located at the centromeric position of all chromosome pairs. Nucleolus organizer regions appeared in the terminal position of the long arms of chromosomes 1, 2 and 8. Replication banding pattern allowed the identification of each chromosome pair.

  14. Molecular mechanisms for protein-encoded inheritance.

    Science.gov (United States)

    Wiltzius, Jed J W; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R; Apostol, Marcin I; Goldschmidt, Lukasz; Soriaga, Angela B; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-09-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of beta-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct beta-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  15. Molecular mechanisms for protein-encoded inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  16. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    Science.gov (United States)

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.

  17. Dynamical encoding of cursive handwriting.

    Science.gov (United States)

    Singer, Y; Tishby, N

    1994-01-01

    A model-based approach to on-line cursive handwriting analysis and recognition is presented and evaluated. In this model, on-line handwriting is considered as a modulation of a simple cycloidal pen motion, described by two coupled oscillations with a constant linear drift along the line of the writing. By slow modulations of the amplitudes and phase lags of the two oscillators, a general pen trajectory can be efficiently encoded. These parameters are then quantized into a small number of values without altering the writing intelligibility. A general procedure for the estimation and quantization of these cycloidal motion parameters for arbitrary handwriting is presented. The result is a discrete motor control representation of the continuous pen motion, via the quantized levels of the model parameters. This motor control representation enables successful word spotting and matching of cursive scripts. Our experiments clearly indicate the potential of this dynamic representation for complete cursive handwriting recognition.

  18. [Immunoglobulin genes encoding antibodies directed to oncodevelopmental carbohydrate antigens].

    Science.gov (United States)

    Zenita, K; Yago, K; Fujimoto, E; Kannagi, R

    1990-07-01

    We investigated the immunoglobulin genes which encode the variable region of the monoclonal antibodies directed to the onco-developmental carbohydrate antigens such SSEA-1, fucosyl SSEA-1, SSEA-3 and SSEA-4. The VH region of these antibodies was preferentially encoded by the gene members of the X24, VH7183 and Q52 families, the families which are known to be located at the 3'-end region of the murine germ line VH gene. This result is interesting particularly when considering that the members of the 3'-end VH families are known to be preferentially expressed in embryonic B lymphocytes by an intrinsic genetic program. The comparative study of the nucleic acid sequences of mRNAs encoding these antibodies and the sequences of the corresponding germ line VH genes disclosed that the sequences encoding the antibodies contain no mutation from the germ line VH genes, or contain only a few somatic mutations, which are thought to be insignificant for the reactivity of the antibodies to the nominal antigens. These results imply that some of the embryonic B lymphocytes that express the unmutated germ line VH genes of the 3'-end families can be reactive with embryonic carbohydrate antigens, albeit rearranged with appropriate D-JH gene segments, and coupled with proper light chains. The VH region of the syngenic monoclonal anti-idiotypic antibodies directed to these anti-carbohydrate antibodies were also encoded preferentially by the members of the 3'-end VH families. We propose here that a part of the virgin embryonic B lymphocytes, which express the antibody encoded by the gene members of the 3'-end VH families at the cell surface, will be stimulated by the embryonic carbohydrate antigens which are abundantly present in the internal milieu of the embryo. The clonally expanded B lymphocytes, in turn, will facilitate the proliferation of other populations of embryonic B lymphocytes expressing the corresponding anti-idiotypic antibodies, which are also encoded by the gene members

  19. Genetically Encoded Sensors for Metabolites

    Science.gov (United States)

    Deuschle, Karen; Fehr, Marcus; Hilpert, Melanie; Lager, Ida; Lalonde, Sylvie; Looger, Loren L.; Okumoto, Sakiko; Persson, Jörgen; Schmidt, Anja; Frommer, Wolf B.

    2009-01-01

    Background Metabolomics, i.e., the multiparallel analysis of metabolite changes occurring in a cell or an organism, has become feasible with the development of highly efficient mass spectroscopic technologies. Functional genomics as a standard tool helped to identify the function of many of the genes that encode important transporters and metabolic enzymes over the past few years. Advanced expression systems and analysis technologies made it possible to study the biochemical properties of the corresponding proteins in great detail. We begin to understand the biological functions of the gene products by systematic analysis of mutants using systematic PTGS/RNAi, knockout and TILLING approaches. However, one crucial set of data especially relevant in the case of multicellular organisms is lacking: the knowledge of the spatial and temporal profiles of metabolite levels at cellular and subcellular levels. Methods We therefore developed genetically encoded nanosensors for several metabolites to provide a basic set of tools for the determination of cytosolic and subcellular metabolite levels in real time by using fluorescence microscopy. Results Prototypes of these sensors were successfully used in vitro and also in vivo, i.e., to measure sugar levels in fungal and animal cells. Conclusions One of the future goals will be to expand the set of sensors to a wider spectrum of substrates by using the natural spectrum of periplasmic binding proteins from bacteria and by computational design of proteins with altered binding pockets in conjunction with mutagenesis. This toolbox can then be applied for four-dimensional imaging of cells and tissues to elucidate the spatial and temporal distribution of metabolites as a discovery tool in functional genomics, as a tool for high-throughput, high-content screening for drugs, to test metabolic models, and to analyze the interplay of cells in a tissue or organ. PMID:15688353

  20. Using autonomous replication to physically and genetically define human origins of replication

    Energy Technology Data Exchange (ETDEWEB)

    Krysan, P.J.

    1993-01-01

    The author previously developed a system for studying autonomous replication in human cells involving the use of sequences from the Epstein-Barr virus (EBV) genome to provide extrachromosomal plasmids with a nuclear retention function. Using this system, it was demonstrated that large fragments of human genomic DNA could be isolated which replicate autonomously in human cells. In this study the DNA sequences which function as origins of replication in human cells are defined physically and genetically. These experiments demonstrated that replication initiates at multiple locations distributed throughout the plasmid. Another line of experiments addressed the DNA sequence requirements for autonomous replication in human cells. These experiments demonstrated that human DNA fragments have a higher replication activity than bacterial fragments do. It was also found, however, that the bacterial DNA sequence could support efficient replication if enough copies of it were present on the plasmid. These findings suggested that autonomous replication in human cells does not depend on extensive, specific DNA sequences. The autonomous replication system which the author has employed for these experiments utilizes a cis-acting sequence from the EBV origin and the trans-acting EBNA-1 protein to provide plasmids with a nuclear retention function. It was therefore relevant to verify that the autonomous replication of human DNA fragments did not depend on the replication activity associated with the EBV sequences utilized for nuclear retention. To accomplish this goal, the author demonstrated that plasmids carrying the EBV sequences and large fragments of human DNA could support long-term autonomous replication in hamster cells, which are not permissive for EBV replication.

  1. Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes.

    Science.gov (United States)

    Wu, LiHong; Liu, Yang; Kong, DaoChun

    2014-05-01

    Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.

  2. A Unique cis-Encoded Small Noncoding RNA Is Regulating Legionella pneumophila Hfq Expression in a Life Cycle-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Giulia Oliva

    2017-01-01

    Full Text Available Legionella pneumophila is an environmental bacterium that parasitizes protozoa, but it may also infect humans, thereby causing a severe pneumonia called Legionnaires’ disease. To cycle between the environment and a eukaryotic host, L. pneumophila is regulating the expression of virulence factors in a life cycle-dependent manner: replicating bacteria do not express virulence factors, whereas transmissive bacteria are highly motile and infective. Here we show that Hfq is an important regulator in this network. Hfq is highly expressed in transmissive bacteria but is expressed at very low levels in replicating bacteria. A L. pneumophila hfq deletion mutant exhibits reduced abilities to infect and multiply in Acanthamoeba castellanii at environmental temperatures. The life cycle-dependent regulation of Hfq expression depends on a unique cis-encoded small RNA named Anti-hfq that is transcribed antisense of the hfq transcript and overlaps its 5′ untranslated region. The Anti-hfq sRNA is highly expressed only in replicating L. pneumophila where it regulates hfq expression through binding to the complementary regions of the hfq transcripts. This results in reduced Hfq protein levels in exponentially growing cells. Both the small noncoding RNA (sRNA and hfq mRNA are bound and stabilized by the Hfq protein, likely leading to the cleavage of the RNA duplex by the endoribonuclease RNase III. In contrast, after the switch to transmissive bacteria, the sRNA is not expressed, allowing now an efficient expression of the hfq gene and consequently Hfq. Our results place Hfq and its newly identified sRNA anti-hfq in the center of the regulatory network governing L. pneumophila differentiation from nonvirulent to virulent bacteria.

  3. A Unique cis-Encoded Small Noncoding RNA Is Regulating Legionella pneumophila Hfq Expression in a Life Cycle-Dependent Manner

    Science.gov (United States)

    Oliva, Giulia; Sahr, Tobias; Rolando, Monica; Knoth, Maike

    2017-01-01

    ABSTRACT Legionella pneumophila is an environmental bacterium that parasitizes protozoa, but it may also infect humans, thereby causing a severe pneumonia called Legionnaires’ disease. To cycle between the environment and a eukaryotic host, L. pneumophila is regulating the expression of virulence factors in a life cycle-dependent manner: replicating bacteria do not express virulence factors, whereas transmissive bacteria are highly motile and infective. Here we show that Hfq is an important regulator in this network. Hfq is highly expressed in transmissive bacteria but is expressed at very low levels in replicating bacteria. A L. pneumophila hfq deletion mutant exhibits reduced abilities to infect and multiply in Acanthamoeba castellanii at environmental temperatures. The life cycle-dependent regulation of Hfq expression depends on a unique cis-encoded small RNA named Anti-hfq that is transcribed antisense of the hfq transcript and overlaps its 5′ untranslated region. The Anti-hfq sRNA is highly expressed only in replicating L. pneumophila where it regulates hfq expression through binding to the complementary regions of the hfq transcripts. This results in reduced Hfq protein levels in exponentially growing cells. Both the small noncoding RNA (sRNA) and hfq mRNA are bound and stabilized by the Hfq protein, likely leading to the cleavage of the RNA duplex by the endoribonuclease RNase III. In contrast, after the switch to transmissive bacteria, the sRNA is not expressed, allowing now an efficient expression of the hfq gene and consequently Hfq. Our results place Hfq and its newly identified sRNA anti-hfq in the center of the regulatory network governing L. pneumophila differentiation from nonvirulent to virulent bacteria. PMID:28074027

  4. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...

  5. Control of chromosome replication in caulobacter crescentus.

    Science.gov (United States)

    Marczynski, Gregory T; Shapiro, Lucy

    2002-01-01

    Caulobacter crescentus permits detailed analysis of chromosome replication control during a developmental cell cycle. Its chromosome replication origin (Cori) may be prototypical of the large and diverse class of alpha-proteobacteria. Cori has features that both affiliate and distinguish it from the Escherichia coli chromosome replication origin. For example, requirements for DnaA protein and RNA transcription affiliate both origins. However, Cori is distinguished by several features, and especially by five binding sites for the CtrA response regulator protein. To selectively repress and limit chromosome replication, CtrA receives both protein degradation and protein phosphorylation signals. The signal mediators, proteases, response regulators, and kinases, as well as Cori DNA and the replisome, all show distinct patterns of temporal and spatial organization during cell cycle progression. Future studies should integrate our knowledge of biochemical activities at Cori with our emerging understanding of cytological dynamics in C. crescentus and other bacteria.

  6. LHCb Data Replication During SC3

    CERN Multimedia

    Smith, A

    2006-01-01

    LHCb's participation in LCG's Service Challenge 3 involves testing the bulk data transfer infrastructure developed to allow high bandwidth distribution of data across the grid in accordance with the computing model. To enable reliable bulk replication of data, LHCb's DIRAC system has been integrated with gLite's File Transfer Service middleware component to make use of dedicated network links between LHCb computing centres. DIRAC's Data Management tools previously allowed the replication, registration and deletion of files on the grid. For SC3 supplementary functionality has been added to allow bulk replication of data (using FTS) and efficient mass registration to the LFC replica catalog.Provisional performance results have shown that the system developed can meet the expected data replication rate required by the computing model in 2007. This paper details the experience and results of integration and utilisation of DIRAC with the SC3 transfer machinery.

  7. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  8. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  9. Replicating function of the RS1 element associated with Vibrio cholerae CTX phi prophage.

    Science.gov (United States)

    Campos, J; Fando, R; Silva, A; Rodriguez, B L; Benitez, J A

    1998-07-01

    The RS1 element associated with Vibrio cholerae CTX phi prophage was cloned from an E1 Tor biotype Vibrio cholerae strain. We used the recA- vaccine strain Peru-15, that lacks the target for RS-mediated site-specific integration, to show that RS1 promotes autonomous replication of a suicide vector. A linker insertion in the rstR open reading frame abolished autonomous replication in Peru-15 but not in a strain containing an RS1 in the chromosome. An AT-rich region containing cis-acting elements involved in autonomous replication was identified by deletion. This region was sufficient to support autonomous replication in a strain containing an RS1 in the chromosome. DNA sequence analysis of a region present in RS1 and not RS2 revealed the presence of putative binding sites for host proteins involved in plasmid replication. These results indicate that RS1 contains a replicon distinct from RS2 which could be involved in replicative recombination events associated with tandem amplification of the CTX element.

  10. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode

    Energy Technology Data Exchange (ETDEWEB)

    Akhrymuk, Ivan; Frolov, Ilya; Frolova, Elena I., E-mail: evfrolova@UAB.edu

    2016-01-15

    Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus–host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellular pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5. - Highlights: • Both RIG-I and MDA5 detect alphavirus replication. • Alphavirus-induced transcriptional shutoff affects type I IFN induction. • Sensing of alphavirus replication by RIG-I and MDA5 depends on their concentrations. • High basal level of RIG-I and MDA5 allows IFN induction by pathogenic alphaviruses. • This dependence determines the discrepancy between the in vivo and in vitro data.

  11. DNA replication catalyzed by herpes simplex virus type 1 proteins reveals trombone loops at the fork.

    Science.gov (United States)

    Bermek, Oya; Willcox, Smaranda; Griffith, Jack D

    2015-01-30

    Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.

  12. Tomato bushy stunt virus and DI RNAs as a model for studying mechanisms of RNA virus replication, pathogenicity and recombination. Final technical report for 1994--1997

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J. [Univ. of Nebraska, Lincoln, NE (United States). School of Biological Sciences; Jackson, A.O. [Univ. of California, Berkeley, CA (United States). Dept. of Plant Biology

    1997-12-31

    Tomato bushy stunt virus (TBSV) is a small icosahedral virus with a very broad host-range. The symptoms of systemic infection range from mild mosaic to severe necrosis that often results in death. The genome of TBSV is composed of a single plus stranded RNA molecule with five genes. Two 5 inch genes are translated from the viral RNA, and the remaining three are translated from two subgenomic RNAs. Prior to the DOE supported studies, TBSV gene function had been assigned solely on the basis of sequence similarity with other virus genes of known function. The two 5 inch proximal genes (p33 and p92) were thought to be involved in viral replication, the middle gene encoded the capsid protein (p41), but no clear function was assigned to two nested 3 inch genes (p19 and p22), although it was suggested that at least one could be involved in movement. This research has determined the roles of each of the viral genes in the infection process, and the authors have obtained considerable genetic information pertinent to the contributions of the coat protein and the nested genes to the disease phenotypes observed in several host plants. They have also identified another genetic element with a short open reading frame in the 3 inch-noncoding region of the genome that provides a host-dependent replication function.

  13. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides AT+CG in the mitogenome of Kamimuria wangi.

    Science.gov (United States)

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (XY, i.e. AC) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the AT+CG exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  14. Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region

    DEFF Research Database (Denmark)

    Madsen, Hans Peter Lynge; Hammer, Karin

    1998-01-01

    , of which at least two (the integrase gene and putative repressor) are needed for lysogeny, and the divergent and longer transcriptional unit from PL, presumably encoding functions required for the lytic life cycle. ORFs with homology to proteins involved in DNA replication were identified on the latter...... to a phage repressor, a single-stranded DNA-binding protein, a topoisomerase, a Cro-like protein and two other phage proteins of unknown function were detected. The gene arrangement in the early transcribed region of TP901-1 thus consists of two transcriptional units: one from PR containing four genes...

  15. Commercial Building Partnerships Replication and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  16. Mycobacterium tuberculosis replicates within necrotic human macrophages

    Science.gov (United States)

    Lerner, Thomas R.; Repnik, Urska; Herbst, Susanne; Collinson, Lucy M.; Griffiths, Gareth

    2017-01-01

    Mycobacterium tuberculosis modulation of macrophage cell death is a well-documented phenomenon, but its role during bacterial replication is less characterized. In this study, we investigate the impact of plasma membrane (PM) integrity on bacterial replication in different functional populations of human primary macrophages. We discovered that IFN-γ enhanced bacterial replication in macrophage colony-stimulating factor–differentiated macrophages more than in granulocyte–macrophage colony-stimulating factor–differentiated macrophages. We show that permissiveness in the different populations of macrophages to bacterial growth is the result of a differential ability to preserve PM integrity. By combining live-cell imaging, correlative light electron microscopy, and single-cell analysis, we found that after infection, a population of macrophages became necrotic, providing a niche for M. tuberculosis replication before escaping into the extracellular milieu. Thus, in addition to bacterial dissemination, necrotic cells provide first a niche for bacterial replication. Our results are relevant to understanding the environment of M. tuberculosis replication in the host. PMID:28242744

  17. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  18. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division...

  19. A genetic screen for replication initiation defective (rid mutants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Locovei Alexandra M

    2010-08-01

    Full Text Available Abstract In fission yeast the intra-S phase and DNA damage checkpoints are activated in response to inhibition of DNA replication or DNA damage, respectively. The intra-S phase checkpoint responds to stalled replication forks leading to the activation of the Cds1 kinase that both delays cell cycle progression and stabilizes DNA replication forks. The DNA damage checkpoint, that operates during the G2 phase of the cell cycle delays mitotic progression through activation of the checkpoint kinase, Chk1. Delay of the cell cycle is believed to be essential to allow time for either replication restart (in S phase or DNA damage repair (in G2. Previously, our laboratory showed that fission yeast cells deleted for the N-terminal half of DNA polymerase ε (Cdc20 are delayed in S phase, but surprisingly require Chk1 rather than Cds1 to maintain cell viability. Several additional DNA replication mutants were then tested for their dependency on Chk1 or Cds1 when grown under semi-permissive temperatures. We discovered that mutants defective in DNA replication initiation are sensitive only to loss of Chk1, whilst mutations that inhibit DNA replication elongation are sensitive to loss of both Cds1 and Chk1. To confirm that the Chk1-sensitive, Cds1-insensitive phenotype (rid phenotype is specific to mutants defective in DNA replication initiation, we completed a genetic screen for cell cycle mutants that require Chk1, but not Cds1 to maintain cell viability when grown at semi-permissive temperatures. Our screen identified two mutants, rid1-1 and rid2-1, that are defective in Orc1 and Mcm4, respectively. Both mutants show defects in DNA replication initiation consistent with our hypothesis that the rid phenotype is replication initiation specific. In the case of Mcm4, the mutation has been mapped to a highly conserved region of the protein that appears to be required for DNA replication initiation, but not elongation. Therefore, we conclude that the cellular

  20. Translation initiation of the replication initiator repB gene of promiscuous plasmid pMV158 is led by an extended non-SD sequence.

    Science.gov (United States)

    López-Aguilar, Celeste; Ruiz-Masó, José A; Rubio-Lepe, Tania Samir; Sanz, Marta; del Solar, Gloria

    2013-07-01

    RepB is the pMV158-encoded protein that initiates rolling-circle replication of this promiscuous plasmid. Availability of RepB is rate-limiting for the plasmid replication process, and therefore the repB gene encoding the protein is subjected to strict control. Two trans-acting plasmid elements, CopG and the antisense RNAII, are involved in controlling the synthesis of the initiator at the transcriptional and translational level, respectively. In addition to this dual control of repB expression that senses and corrects fluctuations in plasmid copy number, proper availability of RepB also relies on the adequate functionality of the transcription and translation initiation regulatory signals. Translation of repB has been postulated to depend on an atypical ribosome binding site that precedes its start codon, although such a hypothesis has never been proved. To define sequences involved in translation of repB, several mutations in the translation initiation region of the repB mRNA have been characterized by using an Escherichia coli in vitro expression system wherein the synthesis of RepB was detected and quantified. We showed that translation of repB is not coupled to that of copG and depends only on its own initiation signals. The atypical ribosome binding site, as it was defined, is not involved in translation initiation. However, the sequence just upstream of the repB start codon, encompassing the proximal box of the atypical ribosome binding site and the four bases immediately downstream of it, is indeed important for efficient translation of repB. The high degree of conservation of this sequence among the rep genes of plasmids of the same pMV158 family supports its relevancy as a translation initiation signal in mRNAs without a recognizable Shine-Dalgarno sequence.

  1. Identification of the minimal replicon and the origin of replication of the crenarchaeal plasmid pRN1.

    Science.gov (United States)

    Berkner, Silvia; Hinojosa, Mery Pina; Prangishvili, David; Lipps, Georg

    2014-10-01

    We have determined the minimal replicon of the crenarchaeal plasmid pRN1. It consists of 3097 base pairs amounting to 58% of the genome of pRN1. The minimal replicon comprises replication operon orf56/orf904 coding for a transcriptional repressor and the replication protein of pRN1. An upstream region of 64 bp that contains the promoter of the replication operon is essential as well as 166 bp of sequence downstream of the orf904 gene. This region contains a putative transcriptional terminator and a 100 nucleotides long stem-loop structure. Only the latter structure was shown to be required for replication. In addition replication was sustained when the stem-loop was displaced to another part of the pRN1 sequence. By mutational analysis we also find that the integrity of the stem-loop structure is required to maintain the replication of pRN1-derived constructs. As similar stem-loop structures are also present in other members of the pRN family, we suggest that this conserved structural element could be the origin of replication for the pRN plasmids. Further bioinformatic analysis revealed that the domain structure of the replication protein and the presence of a similar stem-loop structure as the putative replication origin are also found in several bacteriophages.

  2. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases.

    Science.gov (United States)

    Barnes, Ryan; Eckert, Kristin

    2017-01-06

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize "difficult to replicate" genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  3. Early secretory pathway localization and lack of processing for hepatitis E virus replication protein pORF1.

    Science.gov (United States)

    Perttilä, Julia; Spuul, Pirjo; Ahola, Tero

    2013-04-01

    Hepatitis E virus (HEV) is a positive-strand RNA virus and a major causative agent of acute sporadic and epidemic hepatitis. HEV replication protein is encoded by ORF1 and contains the predicted domains of methyltransferase (MT), protease, macro domain, helicase (HEL) and polymerase (POL). In this study, the full-length protein pORF1 (1693 aa) and six truncated variants were expressed by in vitro translation and in human HeLa and hepatic Huh-7 cells by using several vector systems. The proteins were visualized by three specific antisera directed against the MT, HEL and POL domains. In vitro translation of full-length pORF1 yielded smaller quantities of two fragments. However, these fragments were not observed after pORF1 expression and pulse-chase studies in human cells, and their production was not dependent on the predicted protease domain in pORF1. The weight of evidence supports the proposition that pORF1 is not subjected to specific proteolytic processing, which is unusual among animal positive-strand RNA viruses but common for plant viruses. pORF1 was membrane associated in cells and localized to a perinuclear region, where it partially overlapped with localization of the endoplasmic reticulum (ER) marker BAP31 and was closely interspersed with staining of the ER-Golgi intermediate compartment marker protein ERGIC-53. Co-localization with BAP31 was enhanced by treatment with brefeldin A. Therefore, HEV may utilize modified early secretory pathway membranes for replication.

  4. Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing

    Science.gov (United States)

    Eckerle, Lance D.; Becker, Michelle M.; Halpin, Rebecca A.; Li, Kelvin; Venter, Eli; Lu, Xiaotao; Scherbakova, Sana; Graham, Rachel L.; Baric, Ralph S.; Stockwell, Timothy B.; Spiro, David J.; Denison, Mark R.

    2010-01-01

    Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and

  5. A Comprehensive Family-Based Replication Study of Schizophrenia Genes

    Science.gov (United States)

    Aberg, Karolina A.; Liu, Youfang; Bukszár, Jozsef; McClay, Joseph L.; Khachane, Amit N.; Andreassen, Ole A.; Blackwood, Douglas; Corvin, Aiden; Djurovic, Srdjan; Gurling, Hugh; Ophoff, Roel; Pato, Carlos N.; Pato, Michele T.; Riley, Brien; Webb, Todd; Kendler, Kenneth; O’Donovan, Mick; Craddock, Nick; Kirov, George; Owen, Mike; Rujescu, Dan; St Clair, David; Werge, Thomas; Hultman, Christina M.; Delisi, Lynn E.; Sullivan, Patrick; van den Oord, Edwin J.

    2017-01-01

    Importance Schizophrenia (SCZ) is a devastating psychiatric condition. Identifying the specific genetic variants and pathways that increase susceptibility to SCZ is critical to improve disease understanding and address the urgent need for new drug targets. Objective To identify SCZ susceptibility genes. Design We integrated results from a meta-analysis of 18 genome-wide association studies (GWAS) involving 1 085 772 single-nucleotide polymorphisms (SNPs) and 6 databases that showed significant informativeness for SCZ. The 9380 most promising SNPs were then specifically genotyped in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. Setting Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. Patients We included 11 185 cases and 10 768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. Main Outcomes and Measures Case-control status for SCZ. Results Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs with replication values of P<.01, the proportion of SNPs that had the same direction of effects as in the GWAS meta-analysis was 89% in the combined ancestry group (sign test, P<2.20×10−16) and 93% in subjects of European ancestry only (P<2.20×10−16). Our results supported the major histocompatibility complex region showing a 3.7-fold overall enrichment of replication values of P<.01 in subjects from European ancestry. We replicated SNPs in TCF4 (P=2.53×10−10) and NOTCH4 (P=3.16×10−7) that are among the most robust SCZ findings. More novel findings included POM121L2 (P=3.51×10−7), AS3MT (P=9.01×10−7), CNNM2 (P=6.07×10−7), and NT5C2 (P=4.09×10−7). To explore the many small effects, we performed pathway analyses. The most significant pathways involved neuronal function

  6. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  7. White Spot Syndrome Virus Orf514 Encodes a Bona Fide DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Rogerio R. Sotelo-Mundo

    2011-01-01

    Full Text Available White spot syndrome virus (WSSV is the causative agent of white spot syndrome, one of the most devastating diseases in shrimp aquaculture. The genome of WSSV includes a gene that encodes a putative family B DNA polymerase (ORF514, which is 16% identical in amino acid sequence to the Herpes virus 1 DNA polymerase. The aim of this work was to demonstrate the activity of the WSSV ORF514-encoded protein as a DNA polymerase and hence a putative antiviral target. A 3.5 kbp fragment encoding the conserved polymerase and exonuclease domains of ORF514 was overexpressed in bacteria. The recombinant protein showed polymerase activity but with very low level of processivity. Molecular modeling of the catalytic protein core encoded in ORF514 revealed a canonical polymerase fold. Amino acid sequence alignments of ORF514 indicate the presence of a putative PIP box, suggesting that the encoded putative DNA polymerase may use a host processivity factor for optimal activity. We postulate that WSSV ORF514 encodes a bona fide DNA polymerase that requires accessory proteins for activity and maybe target for drugs or compounds that inhibit viral DNA replication.

  8. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening

    Science.gov (United States)

    2017-01-01

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790

  9. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the