WorldWideScience

Sample records for replication initiation sites

  1. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    Science.gov (United States)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  2. P1 plasmid replication: initiator sequestration is inadequate to explain control by initiator-binding sites.

    OpenAIRE

    Pal, S K; Chattoraj, D K

    1988-01-01

    The unit-copy plasmid replicon mini-P1 consists of an origin, a gene for an initiator protein, RepA, and a control locus, incA. Both the origin and the incA locus contain repeat sequences that bind RepA. It has been proposed that the incA repeats control replication by sequestering the rate-limiting RepA initiator protein. Here we show that when the concentration of RepA was increased about fourfold beyond its normal physiological level from an inducible source in trans, the copy number of a ...

  3. How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Olivier Hyrien

    2016-08-01

    Full Text Available DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs, the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC, they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  4. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    Science.gov (United States)

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  5. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    Science.gov (United States)

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex*

    Science.gov (United States)

    Douglas, Max E.

    2016-01-01

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly (“G1-like”) and high affinity recruitment when CMG assembly takes place (“S-phase-like”). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. PMID:26719337

  7. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex.

    Science.gov (United States)

    Douglas, Max E; Diffley, John F X

    2016-03-11

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places.

    Science.gov (United States)

    van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J

    1998-06-01

    DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.

  9. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  10. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  11. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  12. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  13. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    Science.gov (United States)

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  14. A new MCM modification cycle regulates DNA replication initiation.

    Science.gov (United States)

    Wei, Lei; Zhao, Xiaolan

    2016-03-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.

  15. Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site

    Science.gov (United States)

    Liang, Chen; Rong, Liwei; Quan, Yudong; Laughrea, Michael; Kleiman, Lawrence; Wainberg, Mark A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only

  16. Plasticity of DNA replication initiation in Epstein-Barr virus episomes.

    Directory of Open Access Journals (Sweden)

    Paolo Norio

    2004-06-01

    Full Text Available In mammalian cells, the activity of the sites of initiation of DNA replication appears to be influenced epigenetically, but this regulation is not fully understood. Most studies of DNA replication have focused on the activity of individual initiation sites, making it difficult to evaluate the impact of changes in initiation activity on the replication of entire genomic loci. Here, we used single molecule analysis of replicated DNA (SMARD to study the latent duplication of Epstein-Barr virus (EBV episomes in human cell lines. We found that initiation sites are present throughout the EBV genome and that their utilization is not conserved in different EBV strains. In addition, SMARD shows that modifications in the utilization of multiple initiation sites occur across large genomic regions (tens of kilobases in size. These observations indicate that individual initiation sites play a limited role in determining the replication dynamics of the EBV genome. Long-range mechanisms and the genomic context appear to play much more important roles, affecting the frequency of utilization and the order of activation of multiple initiation sites. Finally, these results confirm that initiation sites are extremely redundant elements of the EBV genome. We propose that these conclusions also apply to mammalian chromosomes.

  17. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  18. Specificity and function of Archaeal DNA replication initiator proteins

    DEFF Research Database (Denmark)

    Samson, Rachel Y.; Xu, Yanqun; Gadelha, Catarina

    2013-01-01

    Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins...... to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels...

  19. Initiation of DNA replication requires actin dynamics and formin activity.

    Science.gov (United States)

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  20. Initiation at closely spaced replication origins in a yeast chromosome.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1993-12-10

    Replication of eukaryotic chromosomes involves initiation at origins spaced an average of 50 to 100 kilobase pairs. In yeast, potential origins can be recognized as autonomous replication sequences (ARSs) that allow maintenance of plasmids. However, there are more ARS elements than active chromosomal origins. The possibility was examined that close spacing of ARSs can lead to inactive origins. Two ARSs located 6.5 kilobase pairs apart can indeed interfere with each other. Replication is initiated from one or the other ARS with equal probability, but rarely (< 5%) from both ARSs on the same DNA molecule.

  1. Mechanisms Governing DDK Regulation of the Initiation of DNA Replication

    Directory of Open Access Journals (Sweden)

    Larasati

    2016-12-01

    Full Text Available The budding yeast Dbf4-dependent kinase (DDK complex—comprised of cell division cycle (Cdc7 kinase and its regulatory subunit dumbbell former 4 (Dbf4—is required to trigger the initiation of DNA replication through the phosphorylation of multiple minichromosome maintenance complex subunits 2-7 (Mcm2-7. DDK is also a target of the radiation sensitive 53 (Rad53 checkpoint kinase in response to replication stress. Numerous investigations have determined mechanistic details, including the regions of Mcm2, Mcm4, and Mcm6 phosphorylated by DDK, and a number of DDK docking sites. Similarly, the way in which the Rad53 forkhead-associated 1 (FHA1 domain binds to DDK—involving both canonical and non-canonical interactions—has been elucidated. Recent work has revealed mutual promotion of DDK and synthetic lethal with dpb11-1 3 (Sld3 roles. While DDK phosphorylation of Mcm2-7 subunits facilitates their interaction with Sld3 at origins, Sld3 in turn stimulates DDK phosphorylation of Mcm2. Details of a mutually antagonistic relationship between DDK and Rap1-interacting factor 1 (Rif1 have also recently come to light. While Rif1 is able to reverse DDK-mediated Mcm2-7 complex phosphorylation by targeting the protein phosphatase glycogen 7 (Glc7 to origins, there is evidence to suggest that DDK can counteract this activity by binding to and phosphorylating Rif1.

  2. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-05

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Insights into the Initiation of Eukaryotic DNA Replication.

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  4. Initiation preference at a yeast origin of replication.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  5. Initiation of DNA replication: functional and evolutionary aspects

    Science.gov (United States)

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  6. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Directory of Open Access Journals (Sweden)

    Joseph C Sanchez

    2017-10-01

    Full Text Available A form of dwarfism known as Meier-Gorlin syndrome (MGS is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5. These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45. The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C. We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  7. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Science.gov (United States)

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  8. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine

    2014-01-01

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus...... as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications....

  9. Replication initiatives will not salvage the trustworthiness of psychology.

    Science.gov (United States)

    Coyne, James C

    2016-05-31

    Replication initiatives in psychology continue to gather considerable attention from far outside the field, as well as controversy from within. Some accomplishments of these initiatives are noted, but this article focuses on why they do not provide a general solution for what ails psychology. There are inherent limitations to mass replications ever being conducted in many areas of psychology, both in terms of their practicality and their prospects for improving the science. Unnecessary compromises were built into the ground rules for design and publication of the Open Science Collaboration: Psychology that undermine its effectiveness. Some ground rules could actually be flipped into guidance for how not to conduct replications. Greater adherence to best publication practices, transparency in the design and publishing of research, strengthening of independent post-publication peer review and firmer enforcement of rules about data sharing and declarations of conflict of interest would make many replications unnecessary. Yet, it has been difficult to move beyond simple endorsement of these measures to consistent implementation. Given the strong institutional support for questionable publication practices, progress will depend on effective individual and collective use of social media to expose lapses and demand reform. Some recent incidents highlight the necessity of this.

  10. Specificity and Function of Archaeal DNA Replication Initiator Proteins

    Directory of Open Access Journals (Sweden)

    Rachel Y. Samson

    2013-02-01

    Full Text Available Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC that recruits the replicative helicase MCM(2-7 via Cdc6 and Cdt1. We find that the three origins in the single chromosome of the archaeon Sulfolobus islandicus are specified by distinct initiation factors. While two origins are dependent on archaeal homologs of eukaryal Orc1 and Cdc6, the third origin is instead reliant on an archaeal Cdt1 homolog. We exploit the nonessential nature of the orc1-1 gene to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels the protein’s structure rather than that of the DNA template.

  11. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    Science.gov (United States)

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  12. Analysis of the temporal program of replication initiation in yeast chromosomes.

    Science.gov (United States)

    Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J

    1995-01-01

    The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating

  13. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli.

    Science.gov (United States)

    Riber, Leise; Fujimitsu, Kazuyuki; Katayama, Tsutomu; Løbner-Olesen, Anders

    2009-01-01

    Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.

  14. Dedicated education unit: implementing an innovation in replication sites.

    Science.gov (United States)

    Moscato, Susan R; Nishioka, Vicki M; Coe, Michael T

    2013-05-01

    An important measure of an innovation is the ease of replication and achievement of the same positive outcomes. The dedicated education unit (DEU) clinical education model uses a collaborative academic-service partnership to develop an optimal learning environment for students. The University of Portland adapted this model from Flinders University, Australia, to increase the teaching capacity and quality of nursing education. This article identifies DEU implementation essentials and reports on the outcomes of two replication sites that received consultation support from the University of Portland. Program operation information, including education requirements for clinician instructors, types of patient care units, and clinical faculty-to-student ratios is presented. Case studies of the three programs suggest the DEU model is adaptable to a range of different clinical settings and continues to show promise as one strategy for addressing the nurse faculty shortage and strengthening academic-clinical collaborations while maintaining quality clinical education for students. Copyright 2013, SLACK Incorporated.

  15. From structure to mechanism—understanding initiation of DNA replication

    Science.gov (United States)

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L. Maximilian; Schneider, Sarah; Speck, Christian

    2017-01-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. PMID:28717046

  16. R-loops and initiation of DNA replication in human cells: a missing link?

    Directory of Open Access Journals (Sweden)

    Rodrigo eLombraña

    2015-04-01

    Full Text Available The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops in human cells and the increasing evidence of their involvement in several human malignancies have invigorated the research on R-loop biology in recent years. Here we propose that physiological R-loop formation at CpG island promoters can contribute to DNA replication origin specification at these regions, the most efficient replication initiation sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction activating the formation of G-quadruplex structures that target the Origin Recognition Complex (ORC in the single-stranded conformation. In agreement with this, we found that R-loops co-localize with the ORC within the same CpG island region in a significant fraction of these efficient replication origins, precisely at the position displaying the highest density of G4 motifs. This scenario builds on the connection between transcription and replication in human cells and suggests that R-loop dysregulation at CpG island promoter-origins might contribute to the phenotype of DNA replication abnormalities and loss of genome integrity detected in cancer cells.

  17. X-irradiation affects all DNA replication intermediates when inhibiting replication initiation

    International Nuclear Information System (INIS)

    Loenn, U.; Karolinska Hospital, Stockholm

    1982-01-01

    When a human melanoma line was irradiated with 10 Gy, there was, after 30 to 60 min, a gradual reduction in the DNA replication rate. Ten to twelve hours after the irradiation, the DNA replication had returned to near normal rate. The results showed tht low dose-rate X-irradiation inhibits preferentially the formation of small DNA replication intermediates. There is no difference between the inhibition of these replication intermediates formed only in the irradiated cells and those formed also in untreated cells. (U.K.)

  18. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  19. Inclusion bodies are a site of ebolavirus replication.

    Science.gov (United States)

    Hoenen, Thomas; Shabman, Reed S; Groseth, Allison; Herwig, Astrid; Weber, Michaela; Schudt, Gordian; Dolnik, Olga; Basler, Christopher F; Becker, Stephan; Feldmann, Heinz

    2012-11-01

    Inclusion bodies are a characteristic feature of ebolavirus infections in cells. They contain large numbers of preformed nucleocapsids, but their biological significance has been debated, and they have been suggested to be aggregates of viral proteins without any further biological function. However, recent data for other viruses that produce similar structures have suggested that inclusion bodies might be involved in genome replication and transcription. In order to study filovirus inclusion bodies, we fused mCherry to the ebolavirus polymerase L, which is found in inclusion bodies. The resulting L-mCherry fusion protein was functional in minigenome assays and incorporated into virus-like particles. Importantly, L-mCherry fluorescence in transfected cells was readily detectable and distributed in a punctate pattern characteristic for inclusion bodies. A recombinant ebolavirus encoding L-mCherry instead of L was rescued and showed virtually identical growth kinetics and endpoint titers to those for wild-type virus. Using this virus, we showed that the onset of inclusion body formation corresponds to the onset of viral genome replication, but that viral transcription occurs prior to inclusion body formation. Live-cell imaging further showed that inclusion bodies are highly dynamic structures and that they can undergo dramatic reorganization during cell division. Finally, by labeling nascent RNAs using click technology we showed that inclusion bodies are indeed the site of viral RNA synthesis. Based on these data we conclude that, rather than being inert aggregates of nucleocapsids, ebolavirus inclusion bodies are in fact complex and dynamic structures and an important site at which viral RNA replication takes place.

  20. High-Resolution Profiling of Drosophila Replication Start Sites Reveals a DNA Shape and Chromatin Signature of Metazoan Origins

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    2015-05-01

    Full Text Available At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  1. Chromatin Constrains the Initiation and Elongation of DNA Replication.

    Science.gov (United States)

    Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk

    2017-01-05

    Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. From structure to mechanism-understanding initiation of DNA replication.

    Science.gov (United States)

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L Maximilian; Schneider, Sarah; Speck, Christian

    2017-06-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. © 2017 Riera et al.; Published by Cold Spring Harbor Laboratory Press.

  3. A role for the weak DnaA binding sites in bacterial replication origins

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Løbner-Olesen, Anders

    2011-01-01

    DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an ‘AT-rich’ region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed...... between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility...... that bacterial origins might be more alike than previously thought....

  4. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-01-01

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  5. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  6. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  7. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  8. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  9. Histone Modification Associated with Initiation of DNA Replication | Center for Cancer Research

    Science.gov (United States)

    Before cells are able to divide, they must first duplicate their chromosomes accurately. DNA replication and packaging of DNA into chromosomes by histone proteins need to be coordinated by the cell to ensure proper transmission of genetic and epigenetic information to the next generation. Mammalian DNA replication begins at specific chromosomal sites, called replication

  10. EPA Lean Government Initiative: How to Replicate Lean Successes

    Science.gov (United States)

    This Lean Replication Primer describes how EPA Offices and Regions can identify and adapt successful practices from previous Lean projects to “replicate” their successes and generate further improvements.

  11. Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro

    International Nuclear Information System (INIS)

    Stillman, B.W.; Tamanoi, F.

    1983-01-01

    In this paper evidence is provided that the 140,000-dalton DNA polymerase is encoded by the adenoviral genome and is required for the initiation of DNA replication in vitro. The DNA sequences in the template DNA that are required for the initiation of replication have also been identified, using both plasmid DNAs and synthetic oligodeoxyribonucleotides. 48 references, 7 figures, 1 table

  12. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  13. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation.

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-12-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  15. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    " impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication......Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien......-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types....

  16. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast.

    Science.gov (United States)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine; Mankouri, Hocine W; Hickson, Ian D

    2014-04-07

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.

  17. Controlled initiation of chromosomal replication in Escherichia coli requires functional Hda protein.

    Science.gov (United States)

    Camara, Johanna Eltz; Skarstad, Kirsten; Crooke, Elliott

    2003-05-01

    Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.

  18. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae.

    Science.gov (United States)

    Garbacz, Marta A; Lujan, Scott A; Burkholder, Adam B; Cox, Phillip B; Wu, Qiuqin; Zhou, Zhi-Xiong; Haber, James E; Kunkel, Thomas A

    2018-02-27

    To investigate nuclear DNA replication enzymology in vivo, we have studied Saccharomyces cerevisiae strains containing a pol2-16 mutation that inactivates the catalytic activities of DNA polymerase ε (Pol ε). Although pol2-16 mutants survive, they present very tiny spore colonies, increased doubling time, larger than normal cells, aberrant nuclei, and rapid acquisition of suppressor mutations. These phenotypes reveal a severe growth defect that is distinct from that of strains that lack only Pol ε proofreading (pol2-4), consistent with the idea that Pol ε is the major leading-strand polymerase used for unstressed DNA replication. Ribonucleotides are incorporated into the pol2-16 genome in patterns consistent with leading-strand replication by Pol δ when Pol ε is absent. More importantly, ribonucleotide distributions at replication origins suggest that in strains encoding all three replicases, Pol δ contributes to initiation of leading-strand replication. We describe two possible models.

  19. [The effects of TorR protein on initiation of DNA replication in Escherichia coli].

    Science.gov (United States)

    Yuan, Yao; Jiaxin, Qiao; Jing, Li; Hui, Li; Morigen, Morigen

    2015-03-01

    The two-component systems, which could sense and respond to environmental changes, widely exist in bacteria as a signal transduction pathway. The bacterial CckA/CtrA, ArcA/ArcB and PhoP/PhoQ two-component systems are associated with initiation of DNA replication and cell division, however, the effects of the TorS/TorR system on cell cycle and DNA replication remains unknown. The TorS/TorR system in Escherichia coli can sense changes in trimethylamine oxide (TMAO) concentration around the cells. However, it is unknown if it also affects initiation of DNA replication. We detected DNA replication patterns in ΔtorS and ΔtorR mutant strains by flow cytometry. We found that the average number of replication origins (oriCs) per cell and doubling time in ΔtorS mutants were the same while the average number of oriCs in ΔtorR mutants was increased compared with that in wild-type cells. These results indicated that absence of TorR led to an earlier initiation of DNA replication than that in wild-type cells. Strangely, neither overexpression of TorR nor co-expression of TorR and TorS could restore ΔtorR mutant phenotype to the wild type. However, overexpression of SufD in both wild type and ΔtorR mutants promoted initiation of DNA replication, while mutation of SufD delayed it in ΔtorR mutants. Thus, TorR may affect initiation of DNA replication indirectly through regulating gene expression of sufD.

  20. Enhancement of internal ribosome entry site-mediated translation and replication of hepatitis C virus by PD98059

    International Nuclear Information System (INIS)

    Murata, Takayuki; Hijikata, Makoto; Shimotohno, Kunitada

    2005-01-01

    Translation initiation of hepatitis C virus (HCV) occurs in an internal ribosome entry site (IRES)-dependent manner. We found that HCV IRES-dependent protein synthesis is enhanced by PD98059, an inhibitor of the extracellular signal-regulated kinase (ERK) signaling pathway, while cellular cap-dependent translation was relatively unaffected by the compound. Treatment of cells with PD98059 allowed for robust HCV replication following cellular incubation with HCV-positive serum. Though the molecular mechanism underlying IRES enhancement remains elusive, PD98059 is a potent accelerator of HCV RNA replication

  1. Fragile genomic sites are associated with origins of replication.

    Science.gov (United States)

    Di Rienzi, Sara C; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-09-09

    Genome rearrangements are mediators of evolution and disease. Such rearrangements are frequently bounded by transfer RNAs (tRNAs), transposable elements, and other repeated elements, suggesting a functional role for these elements in creating or repairing breakpoints. Though not well explored, there is evidence that origins of replication also colocalize with breakpoints. To investigate a potential correlation between breakpoints and origins, we analyzed evolutionary breakpoints defined between Saccharomyces cerevisiae and Kluyveromyces waltii and S. cerevisiae and a hypothetical ancestor of both yeasts, as well as breakpoints reported in the experimental literature. We find that origins correlate strongly with both evolutionary breakpoints and those described in the literature. Specifically, we find that origins firing earlier in S phase are more strongly correlated with breakpoints than are later-firing origins. Despite origins being located in genomic regions also bearing tRNAs and Ty elements, the correlation we observe between origins and breakpoints appears to be independent of these genomic features. This study lays the groundwork for understanding the mechanisms by which origins of replication may impact genome architecture and disease.

  2. Intrinsic bent DNA sites in the chromosomal replication origin of Xylella fastidiosa 9a5c

    Directory of Open Access Journals (Sweden)

    F. Gimenes

    2008-04-01

    Full Text Available The features of the nucleotide sequences in both replication and promoter regions have been investigated in many organisms. Intrinsically bent DNA sites associated with transcription have been described in several prokaryotic organisms. The aim of the present study was to investigate intrinsic bent DNA sites in the segment that holds the chromosomal replication origin, oriC, of Xylella fastidiosa 9a5c. Electrophoretic behavior analyses, as well as in silico analyses of both the 2-D projection and helical parameters, were performed. The chromosomal segment analyzed contains the initial sequence of the rpmH gene, an intergenic region, the dnaA gene, the oriC sequence, and the 5' partial sequence of the dnaN gene. The analysis revealed fragments with reduced electrophoretic mobility, which indicates the presence of curved DNA segments. The analysis of the helical parameter ENDS ratio revealed three bent DNA sites (b1, b2, and b3 located in the rpmH-dnaA intergenic region, the dnaA gene, and the oriC 5' end, respectively. The chromosomal segment of X. fastidiosa analyzed here is rich in phased AT tracts and in CAnT motifs. The 2-D projection indicated a segment whose structure was determined by the cumulative effect of all bent DNA sites. Further, the in silico analysis of the three different bacterial oriC sequences indicated similar negative roll and twist >34.00° values. The DnaA box sequences, and other motifs in them, may be associated with the intrinsic DNA curvature.

  3. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies...... have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  4. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.

  5. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katie H. Jameson

    2017-01-01

    Full Text Available Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.

  6. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis.

    Science.gov (United States)

    Norris, Vic

    2011-05-01

    The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Science.gov (United States)

    Jameson, Katie H.; Wilkinson, Anthony J.

    2017-01-01

    Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis. PMID:28075389

  8. Replication Validity of Initial Association Studies: A Comparison between Psychiatry, Neurology and Four Somatic Diseases

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François

    2016-01-01

    Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability

  9. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Disaster recovery using VMware vSphere Replication and vCenter Site Recovery Manager

    CERN Document Server

    GB, Abhilash

    2014-01-01

    This is a step-by-step guide that will help you understand disaster recovery using VMware vSphere Replication 5.5 and VMware vCenter Site Recovery Manager (SRM) 5.5. The topics and configuration procedures are accompanied with relevant screenshots, flowcharts, and logical diagrams that makes grasping the concepts easier. This book is a guide for anyone who is keen on using vSphere Replication or vCenter Site Recovery Manager as a disaster recovery solution. This is an excellent handbook for solution architects, administrators, on-field engineers, and support professionals. Although the book as

  11. Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication.

    Science.gov (United States)

    Liberek, K; Osipiuk, J; Zylicz, M; Ang, D; Skorko, J; Georgopoulos, C

    1990-02-25

    The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.

  12. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    DEFF Research Database (Denmark)

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation of replic......Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation...... of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted...

  13. Initial results from MARmara SuperSITE

    Science.gov (United States)

    Meral Ozel, Nurcan; Necmioglu, Ocal; Favali, Paolo; Douglas, John; Mathieu, Pierre-Philippe; Geli, Louis; Ergintav, Semih; Oguz Ozel, Asım; Tan, Onur; Gurbuz, Cemil; Erdik, Mustafa

    2014-05-01

    shaking measurements, has been prepared by INERIS to be set up on the field to be also set up as an early warning system prototype to be progressively parameterized and tested on near to real time condition. Slip rate on the Main Marmara Fault from 3D seismic data has been estimated and extremely young age of the North Anatolian Fault in the Sea of Marmara has been determined. Seismic risk study for IGDAS Natural Gas Network including pipelines and its components has been carried out with several earthquake scenarios in Marmara Sea. An automatic shut-off algorithm has been developed for the automatic shut-off of the gas flow at the IGDAS district regulators during an extreme event. All the European and international initiatives and projects that could have links with MARsite were identified as the initial step for the integration of data management practices and coordination with ongoing research infrastructures. EPOS and EMSO are considered to be crucial links that could provide sustainability of MARsite's developments beyond the project's lifetime. Concerning EMSO, Marmara is one of the nodes of the research infrastructure, in which a permanent installation at sea is being integrated with land-based networks. In the context of EPOS, MARsite will be a thematic core service. In addition, the data collection and dissemination in MARsite is carried out according to the data management principles of EMSO and EPOS. Dissemination activities reached a certain level of maturity through the relesea of Public Annual Report, quarterly newsletter, ID card and poster, social media interaction, dedicated web sites, videos and several conferences and workhops participated, such as GEO European Projects' Workshop, Supersites Coordination Workshop and GEO-X Plenary & Geneva Ministerial Summit .

  14. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  15. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    International Nuclear Information System (INIS)

    Struble, E. B.; Gittis, A. G.; Bianchet, M. A.; McMacken, R.

    2007-01-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure

  16. Dpb11 may function with RPA and DNA to initiate DNA replication.

    Science.gov (United States)

    Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P; Kaplan, Daniel L

    2017-01-01

    Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.

  17. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  18. Execution programme for the initial site investigations at Forsmark

    International Nuclear Information System (INIS)

    2002-05-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Forsmark, Simpevarp and Tierp. Site investigations have started at Forsmark and Simpevarp. The municipal council of Tierp voted no to a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial site investigations are performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The initial site investigations are expected to take 1.5-2 years. If the assessment shows that the site has good potential to host a repository, complete site investigations will follow for an expected duration of 3.5-4 years. The purpose of the complete site investigations is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. A general programme in which the results from feasibility studies are summarized, the candidate sites presented and the framework of programme for the site investigation phase presented has been published. The general programme, and main references to the programme, specifies which data are required in order to design the repository and carry out a safety assessment, how the investigations should be carried out in order to provide these data, criteria with which the site must comply, as well as

  19. Execution programme for the initial site investigations at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Forsmark, Simpevarp and Tierp. Site investigations have started at Forsmark and Simpevarp. The municipal council of Tierp voted no to a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial site investigations are performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The initial site investigations are expected to take 1.5-2 years. If the assessment shows that the site has good potential to host a repository, complete site investigations will follow for an expected duration of 3.5-4 years. The purpose of the complete site investigations is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. A general programme in which the results from feasibility studies are summarized, the candidate sites presented and the framework of programme for the site investigation phase presented has been published. The general programme, and main references to the programme, specifies which data are required in order to design the repository and carry out a safety assessment, how the investigations should be carried out in order to provide these data, criteria with which the site must comply, as well as

  20. The Location of the Bacterial Origin of Replication is Critical for Initial Ciproflaxcin Antibiotic Resistance

    Science.gov (United States)

    Bos, Julia; Nehring, Ralph; Cruz, Diane; Austin, Doug; Rosenberg, Susan; Austin, Robert

    By using E. coli cells in which the unique origin of replication has been moved to a ectopic chromosome location distant from the native one, we probe how perturbation of gene order near the origin of replication impacts genome stability and survival under genomic attack. We find that when challenged with sub-inhibitory doses of ciprofloxacin, an antibiotic that generates replication fork stalling, cells with the ectopic origin show significant fitness loss. We show that genes functionally relevant to the cipro-induced stress response are largely located near the native origin, even in distantly related species. We show that while cipro induces increased copy number of genes proximal to the origin of replication as a direct consequence of replication fork stalling, gene copy number variation was reduced near the ectopic origin. Altered gene dosage in cells with an ectopic origin resulted in impaired replication fork repair and chromosome instability. We propose that gene distribution in the origin region acts as a fundamental first line of defense when the integrity of the genome is threatened and that genes proximal to the origin of replication serve as a mechanism of genetic innovation and a driving force of genome evolution in the presence of genotoxic antibiotics. Lewis Sigler Institute for Integrative Genomics and the Physics Department at Princeton University.

  1. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage

    DEFF Research Database (Denmark)

    Syljuåsen, Randi G; Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg

    2005-01-01

    by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose...

  2. Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme

    NARCIS (Netherlands)

    van der Ende, A.; Baker, T. A.; Ogawa, T.; Kornberg, A.

    1985-01-01

    The enzymatic replication of plasmids containing the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme priming systems: primase alone, RNA polymerase alone, or both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Kornberg, A.

  3. Functions of alternative Replication Protein A (aRPA) in initiation and elongation

    OpenAIRE

    Mason, Aaron C.; Roy, Rupa; Simmons, Daniel T.; Wold, Marc S.

    2010-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding complex that is essential for DNA replication, repair and recombination in eukaryotic cells. In addition to this canonical complex, we have recently characterized an alternative Replication Protein A complex (aRPA) that is unique to primates. aRPA is composed of three subunits: RPA1 and RPA3, also present in canonical RPA, and a primate-specific subunit RPA4, homologous to canonical RPA2. aRPA has biochemical properties similar to t...

  4. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis

    DEFF Research Database (Denmark)

    Di Marco, Stefano; Hasanova, Zdenka; Kanagaraj, Radhakrishnan

    2017-01-01

    The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent...... on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain...

  6. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-11-27

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development.

  7. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    International Nuclear Information System (INIS)

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-01-01

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development

  8. Parotid gland as an initial site of metastasis

    International Nuclear Information System (INIS)

    Borg, Martin F.

    2004-01-01

    The parotid gland is an uncommon site of metastasis from carcinomas arising outside the head and neck region. Involvement of the parotid gland as an initial site of metastasis or presentation is rare. The present case report is the first, to our knowledge, to describe the management and outcome of an elderly man whose first presentation of an asymptomatic squamous cell carcinoma of the lung was that of a rapidly growing fungating left parotid mass Copyright (2004) Blackwell Publishing Asia Pty Ltd

  9. Young Adult Capacity Initiative Cross-Site Analysis

    Science.gov (United States)

    Academy for Educational Development, 2012

    2012-01-01

    This cross-site analysis presents findings about the implementation, impact, and outcomes of the Young Adult Capacity Initiative (YACI), at 13 community-based organizations in New York City. These agencies received technical assistance and small incentive grants from the Fund for the City of New York Youth Development Institute (YDI) to build…

  10. Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB

    DEFF Research Database (Denmark)

    Duigou, Stephane; Knudsen, Kristine Groth; Skovgaard, Ole

    2006-01-01

    Although the two Vibrio cholerae chromosomes initiate replication in a coordinated fashion, we show here that each chromosome appears to have a specific replication initiator. DnaA overproduction promoted overinitiation of chromosome I and not chromosome II. In contrast, overproduction of RctB, a...

  11. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    Science.gov (United States)

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  12. Execution programme for the initial site investigations at Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Simpevarp, Forsmark, and Tierp north. The site investigations have started at Simpevarp and Forsmark. The municipal council of Tierp rejected a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial Site Investigation is performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The Initial Site Investigation is expected to take about 3 years. If the assessment shows that the site has good potential to host a repository, Complete Site Investigation will follow for an expected duration of another 3 years. The purpose of the Complete Site Investigation is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. The site-specific programme gives an overview of the whole site investigation phase as well as a detailed description of the initial stage. The results of the initial investigations will determine whether Simpevarp is appropriate for further investigation, i.e. the Complete Site Investigation. This document summarizes the investigations that will be carried out at Simpevarp during the Initial Site Investigations. The document is a working document, which will be successively updated as

  13. Execution programme for the initial site investigations at Simpevarp

    International Nuclear Information System (INIS)

    2002-10-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Simpevarp, Forsmark, and Tierp north. The site investigations have started at Simpevarp and Forsmark. The municipal council of Tierp rejected a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial Site Investigation is performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The Initial Site Investigation is expected to take about 3 years. If the assessment shows that the site has good potential to host a repository, Complete Site Investigation will follow for an expected duration of another 3 years. The purpose of the Complete Site Investigation is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. The site-specific programme gives an overview of the whole site investigation phase as well as a detailed description of the initial stage. The results of the initial investigations will determine whether Simpevarp is appropriate for further investigation, i.e. the Complete Site Investigation. This document summarizes the investigations that will be carried out at Simpevarp during the Initial Site Investigations. The document is a working document, which will be successively updated as

  14. A conserved MCM single-stranded DNA binding element is essential for replication initiation.

    Science.gov (United States)

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-04-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.

  15. Antiviral Stilbene 1,2-Diamines Prevent Initiation of Hepatitis C Virus RNA Replication at the Outset of Infection▿

    Science.gov (United States)

    Gastaminza, Pablo; Pitram, Suresh M.; Dreux, Marlene; Krasnova, Larissa B.; Whitten-Bauer, Christina; Dong, Jiajia; Chung, Josan; Fokin, Valery V.; Sharpless, K. Barry; Chisari, Francis V.

    2011-01-01

    The recent development of a cell culture model of hepatitis C virus (HCV) infection based on the JFH-1 molecular clone has enabled discovery of new antiviral agents. Using a cell-based colorimetric screening assay to interrogate a 1,200-compound chemical library for anti-HCV activity, we identified a family of 1,2-diamines derived from trans-stilbene oxide that prevent HCV infection at nontoxic, low micromolar concentrations in cell culture. Structure-activity relationship analysis of ∼300 derivatives synthesized using click chemistry yielded compounds with greatly enhanced low nanomolar potency and a >1,000:1 therapeutic ratio. Using surrogate models of HCV infection, we showed that the compounds selectively block the initiation of replication of incoming HCV RNA but have no impact on viral entry, primary translation, or ongoing HCV RNA replication, nor do they suppress persistent HCV infection. Selection of an escape variant revealed that NS5A is directly or indirectly targeted by this compound. In summary, we have identified a family of HCV inhibitors that target a critical step in the establishment of HCV infection in which NS5A translated de novo from an incoming genomic HCV RNA template is required to initiate the replication of this important human pathogen. PMID:21430055

  16. Direct Binding to Replication Protein A (RPA)-coated Single-stranded DNA Allows Recruitment of the ATR Activator TopBP1 to Sites of DNA Damage*

    Science.gov (United States)

    Acevedo, Julyana; Yan, Shan; Michael, W. Matthew

    2016-01-01

    A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes. PMID:27129245

  17. HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Lin

    Full Text Available EV71 (enterovirus 71 RNA contains an internal ribosomal entry site (IRES that directs cap-independent initiation of translation. IRES-dependent translation requires the host's translation initiation factors and IRES-associated trans-acting factors (ITAFs. We reported recently that mRNA decay factor AUF1 is a negative-acting ITAF that binds IRES stem-loop II. We also reported that the small RNA-processing enzyme Dicer produces at least four small RNAs (vsRNAs from the EV71 IRES. One of these, vsRNA1, derived from IRES stem-loop II, reduces IRES activity and virus replication. Since its mechanism of action is unknown, we hypothesized that it might control association of ITAFs with the IRES. Here, we identified the mRNA stability factor HuR and the RISC subunit Argonaute 2 (Ago2 as two ITAFs that bind stem-loop II. In contrast to AUF1, HuR and Ago2 promote EV71 IRES activity and virus replication. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with stem-loop II. This presents a possible mechanism by which vsRNA1 could control viral translation and replication.

  18. Site Specific Advisory Board initiative, evaluation survey results supplementary appendix: Summary of individual site results

    International Nuclear Information System (INIS)

    1996-08-01

    This Appendix presents results of the Site-Specific Advisory Board (SSAB) Initiative for each of the 11 sites that participated in the survey. These individual results are a supplement to the June 1996 Summary Report which presented overall survey results. Results are presented in 11 sections, arranged alphabetically by site. Each section includes a series of figures and tables that parallel those presented in the Summary Report. To facilitate comparison, figures are presented both for the individual site and for the overall long survey. The sequence of sections is: Fernald, Hanford, Idaho, Los Alamos, Monticello, Nevada, Pantex, Rocky Flats, St. Louis, Sandia, and Savannah River

  19. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli

    DEFF Research Database (Denmark)

    Riber, Leise; Fujimitsu, K.; Katayama, T.

    2009-01-01

    in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However...

  20. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  1. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    2009-06-01

    Full Text Available Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  2. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.

    Science.gov (United States)

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco; Marcello, Alessandro

    2014-06-01

    Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1(-/-) mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR(-/-) fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1(-/-) mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication

  3. Absence of Non-histone Protein Complexes at Natural Chromosomal Pause Sites Results in Reduced Replication Pausing in Aging Yeast Cells

    Directory of Open Access Journals (Sweden)

    Marleny Cabral

    2016-11-01

    Full Text Available There is substantial evidence that genomic instability increases during aging. Replication pausing (and stalling at difficult-to-replicate chromosomal sites may induce genomic instability. Interestingly, in aging yeast cells, we observed reduced replication pausing at various natural replication pause sites (RPSs in ribosomal DNA (rDNA and non-rDNA locations (e.g., silent replication origins and tRNA genes. The reduced pausing occurs independent of the DNA helicase Rrm3p, which facilitates replication past these non-histone protein-complex-bound RPSs, and is independent of the deacetylase Sir2p. Conditions of caloric restriction (CR, which extend life span, also cause reduced replication pausing at the 5S rDNA and at tRNA genes. In aged and CR cells, the RPSs are less occupied by their specific non-histone protein complexes (e.g., the preinitiation complex TFIIIC, likely because members of these complexes have primarily cytosolic localization. These conditions may lead to reduced replication pausing and may lower replication stress at these sites during aging.

  4. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Role of the Escherichia coli grpE heat shock protein in the initiation of bacteriophage lambda DNA replication.

    Science.gov (United States)

    Osipiuk, J; Zylicz, M

    1991-01-01

    Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.

  6. Towards observing the encounter of the T7 DNA replication fork with a lesion site at the Single molecule level

    KAUST Repository

    Shirbini, Afnan

    2017-05-01

    Single-molecule DNA flow-stretching assays have been a powerful approach to study various aspects on the mechanism of DNA replication for more than a decade. This technique depends on flow-induced force on a bead attached to a surface-tethered DNA. The difference in the elastic property between double-strand DNA (long) and single-strand DNA (short) at low regime force allows the observation of the beads motion when the dsDNA is converted to ssDNA by the replisome machinery during DNA replication. Here, I aim to develop an assay to track in real-time the encounter of the bacteriophage T7 replisome with abasic lesion site inserted on the leading strand template. I optimized methods to construct the DNA substrate that contains the abasic site and established the T7 leading strand synthesis at the single molecule level. I also optimized various control experiments to remove any interference from the nonspecific interactions of the DNA with the surface. My work established the foundation to image the encounter of the T7 replisome with abasic site and to characterize how the interactions between the helicase and the polymerase could influence the polymerase proofreading ability and its direct bypass of this highly common DNA damage type.

  7. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  8. Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1.

    Science.gov (United States)

    Alver, Robert C; Chadha, Gaganmeet Singh; Gillespie, Peter J; Blow, J Julian

    2017-03-07

    Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Initiation points for cellular deoxyribonucleic acid replication in human lymphoid cells converted by Epstein-Barr virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Shlomai, Z.; Ben-Bassat, H.

    1981-01-01

    Replicon size was estimated in two Epstein-Barr virus (EBV)-negative human lymphoma lines, BJAB and Ramos, and four EBV-positive lines derived from the former ones by infection (conversion) with two viral strains, B95-8 and P3HR-1. Logarithmic cultures were pulse-labeled with [/sup -3/H]thymidine, and the deoxyribonucleic acid was spread on microscopic slides and autoradiographed by the method of Huberman and Riggs. Three of the four EBV-converted cell lines, BJAB/B95-8, Ra/B95-8, and Ra/HRIK, were found to have significantly shorter replicons (41, 21, 54% shorter, respectively), i.e., more initiation points, than their EBV-negative parents. BJAB/HRIK had replicons which were only slightly shorter (11%) than those of BJAB. However, analysis of track length demonstrated that extensive track fusion occurred during the labeling of BJAB/HRIK, implying that its true average replicon size is shorter than the observed value. The results indicate that in analogy to simian virus 40, EBV activates new initiation points for cellular DNA replication in EBV-transformed cells

  10. Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa-long hydrophobic region (termed TM2. However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G. Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3-7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s oriented parallel to the membrane inner surface.

  11. Safeguards First Principles Initiative at the Nevada Test Site

    International Nuclear Information System (INIS)

    Johnson, Geneva

    2007-01-01

    The Material Control and Accountability (MC and A) program at the Nevada Test Site (NTS) was selected as a test bed for the Safeguards First Principles Initiative (SFPI). The implementation of the SFPI is evaluated using the system effectiveness model and the program is managed under an approved MC and A Plan. The effectiveness model consists of an evaluation of the critical elements necessary to detect, deter, and/or prevent the theft or diversion of Special Nuclear Material (SNM). The modeled results indicate that the MC and A program established under this variance is still effective, without creating unacceptable risk. Extensive performance testing is conducted through the duration of the pilot to ensure the protection system is effective and no material is at an unacceptable risk. The pilot was conducted from January 1, 2007, through May 30, 2007. This paper will discuss the following activities in association with SFPI: (1) Development of Timeline; (2) Crosswalk of DOE Order and SFPI; (3) Peer Review; (4) Deviation; (5) MC and A Plan and Procedure changes; (6) Changes implemented at NTS; (7) Training; and (8) Performance Test

  12. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  14. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids.

    Science.gov (United States)

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin

    2017-09-19

    An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Frequent dual initiation of reverse transcription in murine leukemia virus-based vectors containing two primer-binding sites

    International Nuclear Information System (INIS)

    Voronin, Yegor A.; Pathak, Vinay K.

    2003-01-01

    Retroviruses package two copies of viral RNA into each virion. Although each RNA contains a primer-binding site for initiation of DNA synthesis, it is unknown whether reverse transcription is initiated on both RNAs. To determine whether a single virion is capable of initiating reverse transcription more than once, we constructed a murine leukemia virus-based vector containing a second primer-binding site (PBS) derived from spleen necrosis virus and inserted the green fluorescent protein gene (GFP) between the two PBSs. Initiation of reverse transcription at either PBS results in a provirus that expresses GFP. However, initiation at both PBSs can result in the deletion of GFP, which can be detected by flow cytometry and Southern blotting analysis. Approximately 22-29% of the proviruses formed deleted the GFP in a single replication cycle, indicating the minimum proportion of virions that initiated reverse transcription on both PBSs. These results show that a significant proportion of MLV-based vectors containing two PBSs have the capacity to initiate reverse transcription more than once

  16. Identification, characterization and preliminary X-ray diffraction analysis of the rolling-circle replication initiator protein from plasmid pSTK1

    International Nuclear Information System (INIS)

    Carr, Stephen B.; Mecia, Lauren B.; Phillips, Simon E. V.; Thomas, Christopher D.

    2013-01-01

    A proteolytically stable fragment of a plasmid replication initiation protein from the thermophile G. stearothermophilus has been biochemically characterized, crystallized and diffraction data collected to a resolution of 2.5 Å. Antibiotic resistance in bacterial pathogens poses an ever-increasing risk to human health. In antibiotic-resistant strains of Staphylococcus aureus this resistance often resides in extra-chromosomal plasmids, such as those of the pT181 family, which replicate via a rolling-circle mechanism mediated by a plasmid-encoded replication initiation protein. Currently, there is no structural information available for the pT181-family Rep proteins. Here, the crystallization of a catalytically active fragment of a homologous replication initiation protein from the thermophile Geobacillus stearothermophilus responsible for the replication of plasmid pSTK1 is reported. Crystals of the RepSTK1 fragment diffracted to a resolution of 2.5 Å and belonged to space group P2 1 2 1 2 1

  17. An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein

    Science.gov (United States)

    Jaag, Hannah Miriam; Kawchuk, Lawrence; Rohde, Wolfgang; Fischer, Rainer; Emans, Neil; Prüfer, Dirk

    2003-01-01

    Potato leafroll polerovirus (PLRV) genomic RNA acts as a polycistronic mRNA for the production of proteins P0, P1, and P2 translated from the 5′-proximal half of the genome. Within the P1 coding region we identified a 5-kDa replication-associated protein 1 (Rap1) essential for viral multiplication. An internal ribosome entry site (IRES) with unusual structure and location was identified that regulates Rap1 translation. Core structural elements for internal ribosome entry include a conserved AUG codon and a downstream GGAGAGAGAGG motif with inverted symmetry. Reporter gene expression in potato protoplasts confirmed the internal ribosome entry function. Unlike known IRES motifs, the PLRV IRES is located completely within the coding region of Rap1 at the center of the PLRV genome. PMID:12835413

  18. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    Directory of Open Access Journals (Sweden)

    Anil Raj

    Full Text Available Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.

  19. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    Science.gov (United States)

    Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.

  20. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation | Center for Cancer Research

    Science.gov (United States)

    Dubbed "Tom's T" by Dhruba Chattoraj, the unusually conserved thymine at position +7 in bacteriophage P1 plasmid RepA DNA binding sites rises above repressor and acceptor sequence logos. The T appears to represent base flipping prior to helix opening in this DNA replication initation protein.

  1. Initiation of simian virus 40 DNA replication in vitro: Pulse-chase experiments identify the first labeled species as topologically unwound

    International Nuclear Information System (INIS)

    Bullock, P.A.; Seo, Yeon Soo; Hurwitz, J.

    1989-01-01

    A distinct unwound form of DNA containing the simian virus 40 (SV40) origin is produced in replication reactions carried out in mixtures containing crude fractions prepared from HeLa cells. This species, termed form U R , comigrates on chloroquine-containing agarose gels with the upper part of the previously described heterogeneous highly unwound circular DNA, form U. As with form U, formation of form U R is dependent upon the SV40 tumor (T) antigen. Pulse-chase experiments demonstrate that the first species to incorporate labeled deoxyribonucleotides comigrates with form U R . Restriction analyses of the products of the pulse-chase experiments show that initiation occurs at the SV40 origin and then proceeds outward in a bidirectional manner. These experiments establish form U R as the earliest detectable substrate for SV40 DNA replication and suggest that SV40 DNA replication initiates on an unwound species

  2. MTBP, the partner of Treslin, contains a novel DNA-binding domain that is essential for proper initiation of DNA replication.

    Science.gov (United States)

    Kumagai, Akiko; Dunphy, William G

    2017-11-01

    Treslin, which is essential for incorporation of Cdc45 into the replicative helicase, possesses a partner called MTBP (Mdm2-binding protein). We have analyzed Xenopus and human MTBP to assess its role in DNA replication. Depletion of MTBP from Xenopus egg extracts, which also removes Treslin, abolishes DNA replication. These extracts be can rescued with recombinant Treslin-MTBP but not Treslin or MTBP alone. Thus, Treslin-MTBP is collectively necessary for replication. We have identified a C-terminal region of MTBP (the CTM domain) that binds efficiently to both double-stranded DNA and G-quadruplex (G4) DNA. This domain also exhibits homology with budding yeast Sld7. Mutants of MTBP without a functional CTM domain are defective for DNA replication in Xenopus egg extracts. These mutants display an impaired localization to chromatin and the inability to support loading of Cdc45. Human cells harboring such a mutant also display severe S-phase defects. Thus, the CTM domain of MTBP plays a critical role in localizing Treslin-MTBP to the replication apparatus for initiation. © 2017 Kumagai and Dunphy. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Site initialization, recovery, and back-up in a distributed database system

    International Nuclear Information System (INIS)

    Attar, R.; Bernstein, P.A.; Goodman, N.

    1982-01-01

    Site initialization is the problem of integrating a new site into a running distributed database system (DDBS). Site recovery is the problem of integrating an old site into a DDBS when the site recovers from failure. Site backup is the problem of creating a static backup copy of a database for archival or query purposes. We present an algorithm that solves the site initialization problem. By modifying the algorithm slightly, we get solutions to the other two problems as well. Our algorithm exploits the fact that a correct DDBS must run a serializable concurrency control algorithm. Our algorithm relies on the concurrency control algorithm to handle all inter-site synchronization

  4. Utilizing the fluidized bed to initiate water treatment on site

    International Nuclear Information System (INIS)

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-01-01

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes)

  5. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  6. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses.

    Directory of Open Access Journals (Sweden)

    Mizuho Sakaki

    Full Text Available Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS, and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions ("open sea" were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs. Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence.

  7. Initial report for magnetostratigraphy of IODP Site U1490

    Science.gov (United States)

    Kumagai, Y.; Hatfield, R. G.; Nakamura, N.; Yamazaki, T.

    2017-12-01

    We report preliminary paleomagnetic results from between 175-296 meters composite depth (Miocene in age) of IODP Site U1490 recovered during Expedition 363. Site U1490 is located at 05°48.95´N, 142°39.27´E (the northern edge of the Eauripik Rise in the equatorial Pacific) in 2341 m water depth. A primary objective of Expedition 363 was to reconstruct the regional climate variability within the Western Pacific Warm Pool (WPWP) in a broad spatial coverage and different temporal resolutions through the time interval from the middle Miocene to late Pleistocene. The recovered pelagic sediments contains calcareous and siliceous nannofossils with varying proportions of clay and ash. It is also characterized by current-controlled mud waves with gradually decreasing amplitude upsection (Rosenthal et al., 2017). Since deep water is enriched in dissolved oxygen due to downwelling in polar regions, the mud waves were probably formed in an oxic environment by bottom currents, hindering the dissolution of magnetic minerals in the sediments. Shipboard analysis revealed that magnetic minerals between 20-175 m composite depth at Site U1490 have been dissolved by diagenetic alteration and the paleomagnetic data is uninterpretable. But the upper 20 m and below 175 m have a stable magnetization that spans from present to early Pleistocene (0-1.9 Ma) and middle to late Miocene period ( 9-19 Ma), respectively. The latter is an exceptionally long-time range continuous core sample, so it provides us an opportunity to reveal long-range variations of paleomagnetic field. We will show stepwise alternate-field (AF) demagnetization of the natural remanent magnetization on U-channel samples from the composite stratigraphic section to establish magnetostratigraphy at this site.

  8. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  9. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  10. Mars Science Laboratory: Mission, Landing Site, and Initial Results

    Science.gov (United States)

    Grotzinger, John; Blake, D.; Crisp, J.; Edgett, K.; Gellert, R.; Gomez-Elvira, J.; Hassler, D.; Mahaffy, P.; Malin, M.; Meyer, M.; Mitrofanov, I.; Vasavada, A.; Wiens, R.

    2012-10-01

    Scheduled to land on August 5, 2012, the Mars Science Laboratory rover, Curiosity, will conduct an investigation of modern and ancient environments. Recent mission results will be discussed. Curiosity has a lifetime of at least one Mars year ( 23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere; an x-ray diffractometer that will determine mineralogical diversity; focusable cameras that can image landscapes and rock/regolith textures in natural color; an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry; a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals; an active neutron spectrometer designed to search for water in rocks/regolith; a weather station to measure modern-day environmental variables; and a sensor designed for continuous monitoring of background solar and cosmic radiation. The 155-km diameter Gale Crater was chosen as Curiosity’s field site based on several attributes: an interior mound of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale’s regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, insure preservation of a rich record of the environmental history of early Mars.

  11. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    Science.gov (United States)

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  12. Alternative DFN model based on initial site investigations at Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. [Itasca Consultants, Ecully (France); Davy, S.A.P.; Bour, O.; Dreuzy, J.R. de [Geosciences, Rennes (France)

    2004-12-01

    In this report, we provide a first-order analysis of the fracture network at the Simpevarp site. The first order model is the fracture distribution function, noted, fdf, which provides the number of fractures having a given orientation and length, and belonging to a given volume of observation. The first-order distribution model does not describe higher-order correlation between fracture parameters, such as a possible dependency of fracture length distribution with orientations. We also check that most of the information is contained in this 1st-order distribution model, and that dividing the fracture networks into different sets do not bring a better statistical description. The fracture distribution function contains 3 main distributions: the probability distribution of fracture orientations, the dependency on the size of the sampling domain that may exhibit non-trivial scaling in case of fractal correlations, and the fracture-length density distribution, which appears to be well fitted by a power law. The main scaling parameters are the fractal dimension and the power-law exponent of the fracture length distribution. The former was found to be about equal to the embedding dimension, meaning that fractal correlations are weak and can be neglected in the DFN model. The latter depends on geology, that is either lithology or grain size, with values that ranges from 3.2 for granite-like outcrops to 4 for diorite or monzodiorite outcrops, as well as for the large-scale lineament maps. When analyzing the consistency of the different datasets (boreholes, outcrops, lineament maps), we found that two different DFNs can be described: the first one is derived from the fdf of the outcrop with fine-grained size lithology, and is valid across all scales investigated in this study, from the highly-fractured cores to large-scale maps; the second one is derived from the fdf of the outcrops with coarse-grained size lithology, and is found consistent with cores that present the

  13. In vitro transcription in the presence of DNA oligonucleotides can generate strong anomalous initiation sites.

    Science.gov (United States)

    Chow, C W; Clark, M P; Rinaldo, J E; Chalkley, R

    1996-03-01

    In the present study, we have explored an unexpected observation in transcription initiation that is mediated by single-stranded oligonucleotides. Initially, our goal was to understand the function of different upstream regulatory elements/initiation sites in the rat xanthine dehydrogenase/oxidase (XDH/XO) promoter. We performed in vitro transcription with HeLa nuclear extracts in the presence of different double-stranded oligonucleotides against upstream elements as competitors. A new and unusual transcription initiation site was detected by primer extension. This new initiation site maps to the downstream region of the corresponding competitor. Subsequent analyses have indicated that the induction of a new transcription initiation site is anomalous which is due to the presence of a small amount of single-stranded oligonucleotide in the competitor. We found that this anomalous initiation site is insensitive to the orientation of the promoter and requires only a small amount of single-stranded oligonucleotide (< 2-fold molar excess relative to template). We surmise that a complementary interaction between the single-stranded oligonucleotide and transiently denatured promoter template may be responsible for this sequence-specific transcription initiation artifact. To study the regulation of transcription initiation by in vitro transcription approaches, we propose that one should probe the effect of removing transacting factors by adding an excess of a cognate oligonucleotide which does not bear exact sequence identity to the template.

  14. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    Directory of Open Access Journals (Sweden)

    Dylan eFlather

    2015-06-01

    Full Text Available The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.

  15. Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution.

    Directory of Open Access Journals (Sweden)

    Sara Imari Walker

    Full Text Available Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for

  16. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative.

    Science.gov (United States)

    Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D; Martin, Javier

    2015-08-01

    There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era.

  17. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    Science.gov (United States)

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  18. No activation of new initiation points for deoxyribonucleic acid replication in BALB/c 3T3 cells transformed by Kirsten sarcoma virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Horowitz, A.T.

    1981-01-01

    BALB/c 3T3 cells were transformed by Kirsten sarcoma virus, and five clones were isolated in soft agar. Average replicon sizes of the transformed cell lines were stimated by the method of fiber-autoradiography and found to be the same size as the nontransformed 3T3 cells, analyzed in parallel. The results indicate that, unlike simian virus 40 and Epstein-Barr virus, Kirsten sarcoma virus does not activate new initiation points for cellular deoxyribonucleic acid replication in murine sarcome virus-transformed BALB/c 3T3 cells

  19. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    Science.gov (United States)

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein

    NARCIS (Netherlands)

    van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M

    2016-01-01

    Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant

  1. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  2. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren

    2008-01-01

    RNAs, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...... a promoter-proximal 5′ splice site via its U1 snRNA interaction can feed back to stimulate transcription initiation by enhancing preinitiation complex assembly....

  3. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  5. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  6. The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Urata, Shuzo; Uno, Yukiko; Kurosaki, Yohei; Yasuda, Jiro

    2018-06-12

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high mortality rate. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV infection. Here, we report that the cholesterol, fatty acid, and triglyceride synthesis pathways regulated by S1P is involved in SFTSV replication, using CHO-K1 cell line (SRD-12B) that is deficient in site 1 protease (S1P) enzymatic activity, PF-429242, a small compound targeting S1P enzymatic activity, and Fenofibrate and Lovastatin, which inhibit triglyceride and cholesterol synthesis, respectively. These results enhance our understanding of the SFTSV replication mechanism and may contribute to the development of novel therapies for SFTSV infection. Copyright © 2018. Published by Elsevier Inc.

  7. Establishment and Application of a High Throughput Screening System Targeting the Interaction between HCV Internal Ribosome Entry Site and Human Eukaryotic Translation Initiation Factor 3

    Directory of Open Access Journals (Sweden)

    Yuying Zhu

    2017-05-01

    Full Text Available Viruses are intracellular obligate parasites and the host cellular machinery is usually recruited for their replication. Human eukaryotic translation initiation factor 3 (eIF3 could be directly recruited by the hepatitis C virus (HCV internal ribosome entry site (IRES to promote the translation of viral proteins. In this study, we establish a fluorescence polarization (FP based high throughput screening (HTS system targeting the interaction between HCV IRES and eIF3. By screening a total of 894 compounds with this HTS system, two compounds (Mucl39526 and NP39 are found to disturb the interaction between HCV IRES and eIF3. And these two compounds are further demonstrated to inhibit the HCV IRES-dependent translation in vitro. Thus, this HTS system is functional to screen the potential HCV replication inhibitors targeting human eIF3, which is helpful to overcome the problem of viral resistance. Surprisingly, one compound HP-3, a kind of oxytocin antagonist, is discovered to significantly enhance the interaction between HCV IRES and eIF3 by this HTS system. HP-3 is demonstrated to directly interact with HCV IRES and promote the HCV IRES-dependent translation both in vitro and in vivo, which strongly suggests that HP-3 has potentials to promote HCV replication. Therefore, this HTS system is also useful to screen the potential HCV replication enhancers, which is meaningful for understanding the viral replication and screening novel antiviral drugs. To our knowledge, this is the first HTS system targeting the interaction between eIF3 and HCV IRES, which could be applied to screen both potential HCV replication inhibitors and enhancers.

  8. Further details of a hypothesis for the initiation of genetic recombination from recognition sites

    Energy Technology Data Exchange (ETDEWEB)

    Markham, P [Queen Elizabeth College, London (G.B.)

    1982-01-01

    Consideration of the initiation of genetic recombination from fixed sites recognised by an initiation complex, has provided more details of the envisaged mechanism and implications of a recent hypothesis. It has been shown that the hypothesis allows for more than one recombinogenic-event to result from a single binding of the recombination initiation complex to a recognition site in a DNA duplex. This capacity can explain data from fungal systems which are apparently inconsistent with the Meselson-Radding model of genetic recombination with respect to the positional relationship between tracts of hybrid DNA and sites of crossing-over. A mechanism for conversion, involving hybrid DNA formation, but without mismatch correction has also been proposed on the basis of this capacity. It is suggested that the hypothesis may apply generally to genetic recombination, in prokaryotes as well as eukaryotes.

  9. Quality improvement initiative: Preventative Surgical Site Infection Protocol in Vascular Surgery.

    Science.gov (United States)

    Parizh, David; Ascher, Enrico; Raza Rizvi, Syed Ali; Hingorani, Anil; Amaturo, Michael; Johnson, Eric

    2018-02-01

    Objective A quality improvement initiative was employed to decrease single institution surgical site infection rate in open lower extremity revascularization procedures. In an attempt to lower patient morbidity, we developed and implemented the Preventative Surgical Site Infection Protocol in Vascular Surgery. Surgical site infections lead to prolonged hospital stays, adjunctive procedure, and additive costs. We employed targeted interventions to address the common risk factors that predispose patients to post-operative complications. Methods Retrospective review was performed between 2012 and 2016 for all surgical site infections after revascularization procedures of the lower extremity. A quality improvement protocol was initiated in January 2015. Primary outcome was the assessment of surgical site infection rate reduction in the pre-protocol vs. post-protocol era. Secondary outcomes evaluated patient demographics, closure method, perioperative antibiotic coverage, and management outcomes. Results Implementation of the protocol decreased the surgical site infection rate from 6.4% to 1.6% p = 0.0137). Patient demographics and comorbidities were assessed and failed to demonstrate a statistically significant difference among the infection and no-infection groups. Wound closure with monocryl suture vs. staple proved to be associated with decreased surgical site infection rate ( p site infections in the vascular surgery population are effective and necessary. Our data suggest that there may be benefit in the incorporation of MRSA and Gram-negative coverage as part of the Surgical Care Improvement Project perioperative guidelines.

  10. Initial Characterization of the Wave Resource at Several High Energy U.S. Sites

    OpenAIRE

    Dallman, Ann; Neary, Vincent S.

    2014-01-01

    Wave energy resource characterization efforts are critical for developing knowledge of the physical conditions experienced by wave energy converter (WEC) devices and arrays. Developers are lacking a consistent characterization of possible wave energy test sites, and therefore Sandia National Laboratories (SNL) has been tasked with developing a catalogue characterizing three high energy U.S. test sites. The initial results and framework for the catalogue are discussed in this paper. U.S. De...

  11. The kissing-loop motif is a preferred site of 5' leader recombination during replication of SL3-3 murine leukemia viruses in mice

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Mikkelsen, J G; Schmidt, J

    1999-01-01

    , and the upstream part of the 5' untranslated region, enabled us to map recombination sites, guided by distinct scattered nucleotide differences. In 30 of 44 analyzed sequences, recombination was mapped to a 33-nucleotide similarity window coinciding with the kissing-loop stem-loop motif implicated in dimerization...... of the diploid genome. Interestingly, the recombination pattern preference found in replication-competent viruses from T-cell tumors is very similar to the pattern previously reported for retroviral vectors in cell culture experiments. The data therefore sustain the hypothesis that the kissing loop, presumably...

  12. Distributional Replication

    OpenAIRE

    Beare, Brendan K.

    2009-01-01

    Suppose that X and Y are random variables. We define a replicating function to be a function f such that f(X) and Y have the same distribution. In general, the set of replicating functions for a given pair of random variables may be infinite. Suppose we have some objective function, or cost function, defined over the set of replicating functions, and we seek to estimate the replicating function with the lowest cost. We develop an approach to estimating the cheapest replicating function that i...

  13. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes

    Directory of Open Access Journals (Sweden)

    de Hoon Michiel JL

    2007-02-01

    Full Text Available Abstract Background Computational prediction methods are currently used to identify genes in prokaryote genomes. However, identification of the correct translation initiation sites remains a difficult task. Accurate translation initiation sites (TISs are important not only for the annotation of unknown proteins but also for the prediction of operons, promoters, and small non-coding RNA genes, as this typically makes use of the intergenic distance. A further problem is that most existing methods are optimized for Escherichia coli data sets; applying these methods to newly sequenced bacterial genomes may not result in an equivalent level of accuracy. Results Based on a biological representation of the translation process, we applied Bayesian statistics to create a score function for predicting translation initiation sites. In contrast to existing programs, our combination of methods uses supervised learning to optimally use the set of known translation initiation sites. We combined the Ribosome Binding Site (RBS sequence, the distance between the translation initiation site and the RBS sequence, the base composition of the start codon, the nucleotide composition (A-rich sequences following start codons, and the expected distribution of the protein length in a Bayesian scoring function. To further increase the prediction accuracy, we also took into account the operon orientation. The outcome of the procedure achieved a prediction accuracy of 93.2% in 858 E. coli genes from the EcoGene data set and 92.7% accuracy in a data set of 1243 Bacillus subtilis 'non-y' genes. We confirmed the performance in the GC-rich Gamma-Proteobacteria Herminiimonas arsenicoxydans, Pseudomonas aeruginosa, and Burkholderia pseudomallei K96243. Conclusion Hon-yaku, being based on a careful choice of elements important in translation, improved the prediction accuracy in B. subtilis data sets and other bacteria except for E. coli. We believe that most remaining

  14. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics.

    Science.gov (United States)

    Beresova, Lucie; Vesela, Eva; Chamrad, Ivo; Voller, Jiri; Yamada, Masayuki; Furst, Tomas; Lenobel, Rene; Chroma, Katarina; Gursky, Jan; Krizova, Katerina; Mistrik, Martin; Bartek, Jiri

    2016-12-02

    Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.

  15. A Novel Quality Measure and Correction Procedure for the Annotation of Microbial Translation Initiation Sites

    NARCIS (Netherlands)

    Overmars, L.; Siezen, R.J.; Francke, C.

    2015-01-01

    The identification of translation initiation sites (TISs) constitutes an important aspect of sequence-based genome analysis. An erroneous TIS annotation can impair the identification of regulatory elements and N-terminal signal peptides, and also may flaw the determination of descent, for any

  16. Neural Network Prediction of Translation Initiation Sites in Eukaryotes: Perspectives for EST and Genome analysis

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Nielsen, Henrik

    1997-01-01

    Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role.This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known...

  17. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    Science.gov (United States)

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  18. Replication Catastrophe

    DEFF Research Database (Denmark)

    Toledo, Luis; Neelsen, Kai John; Lukas, Jiri

    2017-01-01

    Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA...... breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication...... checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under...

  19. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    Science.gov (United States)

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  20. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  1. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    International Nuclear Information System (INIS)

    Roehrig, John T.; Butrapet, Siritorn; Liss, Nathan M.; Bennett, Susan L.; Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E.; Blair, Carol D.; Huang, Claire Y.-H.

    2013-01-01

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants

  2. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roehrig, John T., E-mail: jtr1@cdc.gov [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  3. The Integrated Coastal Area Management (ICAM) Initiative in the Nyali-Bamburi-Shanzu Site, Mombasa, Kenya.

    OpenAIRE

    Mwandotto, B.A.J.

    1997-01-01

    A multi-institutional planning team headed by Coast Development Authority (CDA) in Kenya initiated an Integrated Coastal Area Management (ICAM) process in 1994. The pilot study site was Nyali-Bamburi-Shanzu area in Mombasa. The objective was to provide a starting point for addressing urgent coastal issues facing the area and to enrich the dialogue on how to address urgent coastal management problems nationwide. The pertinent coastal issues that were profiled in a participatory and interactive...

  4. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  5. Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication.

    Science.gov (United States)

    Gauson, Elaine J; Donaldson, Mary M; Dornan, Edward S; Wang, Xu; Bristol, Molly; Bodily, Jason M; Morgan, Iain M

    2015-05-01

    To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease

  6. Compartmental HBV evolution and replication in liver and extrahepatic sites after nucleos/tide analogue therapy in chronic hepatitis B carriers.

    Science.gov (United States)

    Gao, Shan; Duan, Zhong-Ping; Chen, Yu; van der Meer, Frank; Lee, Samuel S; Osiowy, Carla; van Marle, Guido; Coffin, Carla S

    2017-09-01

    Hepatitis B virus (HBV) variants are associated with nucleos/tide analogue (NA) response and liver disease but it is unknown whether NA influences extrahepatic HBV persistence. To investigate HBV replication and genetic evolution in hepatic and extrahepatic sites of chronic hepatitis B (CHB) before and after NA therapy. A total of 13 paired plasma, peripheral blood mononuclear cells (PBMC), were collected from chronic HBV carriers at baseline and after a median 53 weeks NA therapy as well as liver biopsy (N=7 baseline, N=5 follow-up). HBV covalently closed circular DNA (cccDNA) and messenger (m) RNA in liver and PBMC were analyzed. HBV polymerase (P)/surface (S), basal core promoter (BCP)/pre-core (PC)/C gene clonal sequencing was done in plasma, peripheral blood mononuclear cells (PBMC), and liver. Compare to baseline, at ∼53 weeks follow-up, there was no significant change in HBV cccDNA levels in liver (0.2-0.08 copies/hepatocyte, p>0.05) or in PBMC 0.003-0.02 copies/PBMC, p>0.05), and HBV mRNA remained detectable in both sites. At baseline, BCP variants were higher in PBMC vs. liver and plasma. After therapy, drug resistant (DR) and immune escape (IE) variants increased in liver but IE and PC variants were more frequent in PBMC. HBV P/S diversity was significantly higher in PBMC compared to plasma. Continuous HBV replication occurs in liver and PBMC and shows compartmentalized evolution under selective pressure of potent NA therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Early events in the pathogenesis of foot-and-mouth disease in pigs; identification of oropharyngeal tonsils as sites of primary and sustained viral replication.

    Directory of Open Access Journals (Sweden)

    Carolina Stenfeldt

    Full Text Available A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18-24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs.

  8. Robot-Assisted Laparoendoscopic Single-Site Partial Nephrectomy With the Novel Da Vinci Single-Site Platform: Initial Experience

    Science.gov (United States)

    Komninos, Christos; Tuliao, Patrick; Kim, Dae Keun; Choi, Young Deuk; Chung, Byung Ha

    2014-01-01

    Purpose To report our initial clinical cases of robotic laparoendoscopic single-site (R-LESS) partial nephrectomy (PN) performed with the use of the novel Da Vinci R-LESS platform. Materials and Methods Three patients underwent R-LESS PN from November 2013 through February 2014. Perioperative and postoperative outcomes were collected and intraoperative difficulties were noted. Results Operative time and estimated blood loss volume ranged between 100 and 110 minutes and between 50 and 500 mL, respectively. None of the patients was transfused. All cases were completed with the off-clamp technique, whereas one case required conversion to the conventional (multiport) approach because of difficulty in creating the appropriate scope for safe tumor resection. No major postoperative complications occurred, and all tumors were resected in safe margins. Length of hospital stay ranged between 3 and 7 days. The lack of EndoWrist movements, the external collisions, and the bed assistant's limited working space were noticed to be the main drawbacks of this surgical method. Conclusions Our initial experience with R-LESS PN with the novel Da Vinci platform shows that even though the procedure is feasible, it should be applied in only appropriately selected patients. However, further improvement is needed to overcome the existing limitations. PMID:24955221

  9. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  10. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  11. Intrinsically bent DNA in replication origins and gene promoters.

    Science.gov (United States)

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  12. Preliminary safety evaluation, based on initial site investigation data. Planning document

    International Nuclear Information System (INIS)

    Hedin, Allan

    2002-12-01

    This report is a planning document for the preliminary safety evaluations (PSE) to be carried out at the end of the initial stage of SKBs ongoing site investigations for a deep repository for spent nuclear fuel. The main purposes of the evaluations are to determine whether earlier judgements of the suitability of the candidate area for a deep repository with respect to long-term safety holds up in the light of borehole data and to provide feed-back to continued site investigations and site specific repository design. The preliminary safety evaluations will be carried out by a safety assessment group, based on a site model, being part of a site description, provided by a site modelling group and a repository layout within that model suggested by a repository engineering group. The site model contains the geometric features of the site as well as properties of the host rock. Several alternative interpretations of the site data will likely be suggested. Also the biosphere is included in the site model. A first task for the PSE will be to compare the rock properties described in the site model to previously established criteria for a suitable host rock. This report gives an example of such a comparison. In order to provide more detailed feedback, a number of thermal, hydrological, mechanical and chemical analyses of the site will also be included in the evaluation. The selection of analyses is derived from the set of geosphere and biosphere analyses preliminarily planned for the comprehensive safety assessment named SR-SITE, which will be based on a complete site investigation. The selection is dictated primarily by the expected feedback to continued site investigations and by the availability of data after the PSE. The repository engineering group will consider several safety related factors in suggesting a repository layout: Thermal calculations will be made to determine a minimum distance between canisters avoiding canister surface temperatures above 100 deg C

  13. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  14. The Escherichia coli cryptic prophage protein YfdR binds to DnaA and initiation of chromosomal replication is inhibited by overexpression of the gene cluster yfdQ-yfdR-yfdS-yfdT

    Directory of Open Access Journals (Sweden)

    Yaunori eNoguchi

    2016-03-01

    Full Text Available The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator

  15. The Escherichia coli Cryptic Prophage Protein YfdR Binds to DnaA and Initiation of Chromosomal Replication Is Inhibited by Overexpression of the Gene Cluster yfdQ-yfdR-yfdS-yfdT

    Science.gov (United States)

    Noguchi, Yasunori; Katayama, Tsutomu

    2016-01-01

    The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA) mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division regulation during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU)-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator Dna

  16. The Escherichia coli Cryptic Prophage Protein YfdR Binds to DnaA and Initiation of Chromosomal Replication Is Inhibited by Overexpression of the Gene Cluster yfdQ-yfdR-yfdS-yfdT.

    Science.gov (United States)

    Noguchi, Yasunori; Katayama, Tsutomu

    2016-01-01

    The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA) mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division regulation during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU)-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator Dna

  17. Initial source and site characterization studies for the U.C. Santa Barbara campus

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, R.; Nicholson, C.; Steidl, J.; Gurrola, L.; Alex, C.; Cochran, E.; Ely, G.; Tyler, T. [University of California, Santa Barbara (United States)

    1997-12-01

    The University of California Campus-Laboratory Collaboration (CLC) project is an integrated 3 year effort involving Lawrence Livermore National Laboratory (LLNL) and four UC campuses - Los Angeles (UCLA), Riverside (UCR), Santa Barbara (UCSB), and San Diego (UCSD) - plus additional collaborators at San Diego State University (SDSU), at Los Alamos National Laboratory and in industry. The primary purpose of the project is to estimate potential ground motions from large earthquakes and to predict site-specific ground motions for one critical structure on each campus. This project thus combines the disciplines of geology, seismology, geodesy, soil dynamics, and earthquake engineering into a fully integrated approach. Once completed, the CLC project will provide a template to evaluate other buildings at each of the four UC campuses, as well as provide a methodology for evaluating seismic hazards at other critical sites in California, including other UC locations at risk from large earthquakes. Another important objective of the CLC project is the education of students and other professional in the application of this integrated, multidisciplinary, state-of-the-art approach to the assessment of earthquake hazard. For each campus targeted by the CLC project, the seismic hazard study will consist of four phases: Phase I - Initial source and site characterization, Phase II - Drilling, logging, seismic monitoring, and laboratory dynamic soil testing, Phase III - Modeling of predicted site-specific earthquake ground motions, and Phase IV - Calculations of 3D building response. This report cover Phase I for the UCSB campus and incudes results up through March 1997.

  18. Initial evaluation of the radioecological situation at the Semipalatinsk Test Site in the Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, G.; Semiochkina, N. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1998-12-31

    The Semipalatinsk Test Site (STS) located in the Republic of Kazakhstan (Figure 1.1) was one of the major nuclear weapon test sites of the former Soviet Union. At the site, four hundred fifty six nuclear explosions took place between 1949 and 1989 within the STS (Mikhailov et al. 1996; Dubasov et al. 1994a), resulting in radioactive contamination both within and around the STS. Incidences of radiation related illnesses in such areas may be higher than normal levels (Burkhart 1996). Published estimates of the resulting dose to the public vary according to the source, but an independent study (Grosche 1996) indicated that as many as 30,000-40,000 people could have been exposed to an average dose of 1.6 Sv (160 rem) or more (mainly due to short-lived radionuclides such as {sup 131}I). A detailed international assessment of the impact of these tests on the local population has not yet been undertaken. A current investigation under the acronym, RADTEST, includes an evaluation of Semipalatinsk as part of a broad review of internal and external doses to people arising from nuclear tests at many different sites in the world. In the context of the European Commission funded project RESTORE (Restoration Strategy for Radioactive Contaminated Ecosystems) an attempt is being made to assess the present radiolecological situation in the STS. This initial report collates currently available data published in Russian-language literature and internal CIS reports, reports from Europe and the USA, and other international literature. In this initial evaluation, only an overview of published data made available to the RESTORE project is provided and briefly discussed. In addition, further assessments including experimental work are suggested. Additional sources of data will be pursued and will be integrated with experimental results in the final evaluation report. (orig.)

  19. Initial evaluation of the radioecological situation at the Semipalatinsk Test Site in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Voigt, G.; Semiochkina, N.

    1998-01-01

    The Semipalatinsk Test Site (STS) located in the Republic of Kazakhstan (Figure 1.1) was one of the major nuclear weapon test sites of the former Soviet Union. At the site, four hundred fifty six nuclear explosions took place between 1949 and 1989 within the STS (Mikhailov et al. 1996; Dubasov et al. 1994a), resulting in radioactive contamination both within and around the STS. Incidences of radiation related illnesses in such areas may be higher than normal levels (Burkhart 1996). Published estimates of the resulting dose to the public vary according to the source, but an independent study (Grosche 1996) indicated that as many as 30,000-40,000 people could have been exposed to an average dose of 1.6 Sv (160 rem) or more (mainly due to short-lived radionuclides such as 131 I). A detailed international assessment of the impact of these tests on the local population has not yet been undertaken. A current investigation under the acronym, RADTEST, includes an evaluation of Semipalatinsk as part of a broad review of internal and external doses to people arising from nuclear tests at many different sites in the world. In the context of the European Commission funded project RESTORE (Restoration Strategy for Radioactive Contaminated Ecosystems) an attempt is being made to assess the present radiolecological situation in the STS. This initial report collates currently available data published in Russian-language literature and internal CIS reports, reports from Europe and the USA, and other international literature. In this initial evaluation, only an overview of published data made available to the RESTORE project is provided and briefly discussed. In addition, further assessments including experimental work are suggested. Additional sources of data will be pursued and will be integrated with experimental results in the final evaluation report. (orig.)

  20. Dragon TIS Spotter: An Arabidopsis-derived predictor of translation initiation sites in plants

    KAUST Repository

    Magana-Mora, Arturo; Ashoor, Haitham; Jankovic, Boris R.; Kamau, Allan; Awara, Karim; Chowdhary, Rajesh; Archer, John A.C.; Bajic, Vladimir B.

    2012-01-01

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. The Author(s) 2012. Published by Oxford University Press.

  1. Joint federal initiative for demonstration of on-site innovative technologies

    International Nuclear Information System (INIS)

    Marsh, J.; Munro, J.F.; McKinnon, C.; Coyle, G.J.

    1994-01-01

    The Federal Government needs to develop and implement new technologies to support its environmental and waste management programs. The incentive is threefold: First, new technologies are needed to accomplish many cleanup and waste management tasks. Second, the development and implementation of new technologies is expected to reduce significantly total cleanup costs. Third, the development of new environmental technologies can help secure national economic advantages by making U.S. industry more competitive in terms of global environmental markets. The Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT) initiative reinvents inter-governmental relations by stressing the solving of environmental problems through partnerships rather than through confrontation. This overview -- which is essentially a shortened and slightly modified version of the recent Coordinating Group Report to the DOIT Committee --describes the waste management challenges facing the Nation, discusses the innovative solutions offered by DOIT, outlines progress of the initiative to date, and identifies critical next steps

  2. Dragon TIS Spotter: An Arabidopsis-derived predictor of translation initiation sites in plants

    KAUST Repository

    Magana-Mora, Arturo

    2012-10-30

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. The Author(s) 2012. Published by Oxford University Press.

  3. Status of initial phase of site-specific seismic monitoring: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1981-01-01

    This report presents the status of the initial phase of site-specific seismic monitoring work conducted under the Basalt Waste Isolation Project. This work is currently organized under two main elements: (1) a portable array; and (2) a baseline data collection array. Progress toward the development of each array is discussed along with an interpretation of preliminary data obtained from the test of a borehole seismometer at potential repository depths. The text is supplemented by nine figures and one table. 9 figs., 1 tab

  4. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  5. mRNA expression of the DNA replication-initiation proteins in epithelial dysplasia and squamous cell carcinoma of the tongue

    International Nuclear Information System (INIS)

    Li, Jian-na; Feng, Chong-jin; Lu, Yong-jun; Li, Hui-jun; Tu, Zheng; Liao, Gui-qing; Liang, Chun

    2008-01-01

    The tongue squamous cell carcinomas (SCCs) are characterized by high mitotic activity, and early detection is desirable. Overexpression of the DNA replication-initiation proteins has been associated with dysplasia and malignancy. Our aim was to determine whether these proteins are useful biomarkers for assessing the development of tongue SCC. We analyzed the mRNA expression of CDC6, CDT1, MCM2 and CDC45 in formalin-fixed, paraffin-embedded benign and malignant tongue tissues using quantitative real-time PCR followed by statistical analysis. We found that the expression levels are significantly higher in malignant SCC than mild precancerous epithelial dysplasia, and the expression levels in general increase with increasing grade of precancerous lesions from mild, moderate to severe epithelial dysplasia. CDC6 and CDC45 expression is dependent of the dysplasia grade and lymph node status. CDT1 expression is higher in severe dysplasia than in mild and moderate dysplasia. MCM2 expression is dependent of the dysplasia grade, lymph node status and clinical stage. The expression of the four genes is independent of tumor size or histological grade. A simple linear regression analysis revealed a linear increase in the mRNA levels of the four genes from the mild to severe dysplasia and SCC. A strong association was established between CDC6 and CDT1, and between MCM2 and CDC45 expression. The nonparametric receiver operating characteristic analysis suggested that MCM2 and CDC45 had a higher accuracy than CDC6 and CDT1 for distinguishing dysplasia from tongue SCC. These proteins can be used as biomarkers to distinguish precancerous dysplasia from SCC and are useful for early detection and diagnosis of SCC as an adjunct to clinicopathological parameters

  6. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  7. Effects of initial nitrogen addition on deep-soils bioventing at a fuel-contaminated site

    International Nuclear Information System (INIS)

    Ratz, J.W.; Guest, P.R.; Downey, D.C.

    1994-01-01

    A ruptured pipe at a Burlington Northern Railroad (BNRR) fueling pump house resulted in over 60,000 gallons of No. 2 diesel fuel spilling onto the surrounding soil. An initial investigation of site conditions indicated that subsurface soils were contaminated with diesel fuel to ground water, which was observed approximately 70 feet below the ground surface. State regulatory agencies requested that BNRR develop and implement a remedial action plan to treat these diesel-contaminated soils and protect local ground waters. Engineering-Science, Inc. (ES) was retained for this work and, after evaluating a variety of remediation technologies recommended using soil venting methods to enhance the immediate volatilization and long-term biodegradation of fuel residuals. ES designed and implemented a ''bioventing'' pilot test to determine soil properties such as air permeability, and to assess the potential for partial volatilization and long-term biodegradation of diesel fuel residuals at the site. Hydrocarbon concentrations, carbon dioxide, and oxygen levels were monitored at a vapor extraction well (VEW) and six vapor monitoring points (VMPs) to determine the rates of volatilization and biological degradation of fuel residuals. Pilot test results confirmed that full-scale bioventing was feasible for the remediation of this site

  8. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  9. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.; Raymond, J. R.; Brandley, D. J.; Serne, R. J.; Soldat, J. K.; Cole, C. R.; Deutsch, W. J.; Gupta, S. K.; Harwell, C. C.; Napier, B. A.; Reisenauer, A. E.; Prater, L. S.; Simmons, C. S.; Strenge, D. L.; Washburn, J. F.; Zellmer, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario

  10. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  11. Videoconferencing for site initiations in clinical studies: Mixed methods evaluation of usability, acceptability, and impact on recruitment.

    Science.gov (United States)

    Randell, Rebecca; Backhouse, Michael R; Nelson, E Andrea

    2016-12-01

    A critical issue for multicentre clinical studies is conducting site initiations, ensuring sites are trained in study procedures and comply with relevant governance requirements before they begin recruiting patients. How technology can support site initiations has not previously been explored. This study sought to evaluate use of off-the-shelf web-based videoconferencing to deliver site initiations for a large national multicentre study. Participants in the initiations, including podiatrists, diabetologists, trial coordinators, and research nurses, completed an online questionnaire based on the System Usability Scale (SUS) (N = 15). This was followed by semi-structured interviews, with a consultant diabetologist, a trial coordinator, and three research nurses, exploring perceived benefits and limitations of videoconferencing. The mean SUS score for the videoconferencing platform was 87.2 (SD = 13.7), suggesting a good level of usability. Interview participants perceived initiations delivered by videoconferencing as being more interactive and easier to follow than those delivered by teleconference. In comparison to face-to-face initiations, videoconferencing takes less time, easily fitting in with the work of staff at the local sites. Perceptions of impact on communication varied according to the hardware used. Off-the-shelf videoconferencing is a viable alternative to face-to-face site initiations and confers advantages over teleconferencing.

  12. Left Transperitoneal Adrenalectomy with a Laparoendoscopic Single-Site Surgery Combined Technique: Initial Case Reports

    Directory of Open Access Journals (Sweden)

    Yasuhiro Sumino

    2011-01-01

    Full Text Available Laparoendoscopic single-site surgery (LESS is a step toward the development of minimally invasive surgery. It is initially difficult for surgeons with limited experience to perform the surgery. We describe two cases of left adrenalectomy with a LESS combined with the addition of an accessory port. After a 2.5-cm skin incision was made at the level of the paraumbilicus to insert the primary 12-mm trocar for the laparoscope, a 5-mm nonbladed trocar was placed through the skin incision side-by-side with the primary trocar. A second 3-mm nonbladed trocar was then placed along the anterior axillary line; a multichannel trocar was not used as a single port. Both adrenalectomies were completed successfully. In patients with a minor adrenal tumor, a combined technique using LESS and an additional port is easier than LESS alone and may, therefore, be a bridge between the conventional laparoscopic approach and LESS.

  13. Initial formulation results for in situ grouting of a waste trench at ORNL Site No. 6

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Spence, R.D.; Godsey, T.T.

    1987-01-01

    An investigation is being conducted by the Chemical Technology Division to assist the Environmental Sciences Division in developing a grout formulation for use in testing in situ grouting in a waste trench at ORNL Site 6. This final report satisfies the milestone of Subtack 12 entitled, ''Low Level Waste (LLW) Trench Grouting Assessment,'' which was initially issued as RAP-86-7, December 31, 1985. Grouts prepared from dry-solid blends containing Type I Portland cement, ASTM Class C or Class F fly ash, and bentonite, mixed water at ratios of 10 to 15 lb/gal, were evaluated. The grouts prepared with ASTM Class C fly ash exhibited significantly better properties than those prepared with ASTM Class F fly ash. The grouts containing ASTM Class C fly ash satisfy tentative performance criteria for the project. 8 refs., 7 tabs

  14. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  15. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair.

    Science.gov (United States)

    Warbrick, E; Lane, D P; Glover, D M; Cox, L S

    1997-05-15

    Following genomic damage, the cessation of DNA replication is co-ordinated with onset of DNA repair; this co-ordination is essential to avoid mutation and genomic instability. To investigate these phenomena, we have analysed proteins that interact with PCNA, which is required for both DNA replication and repair. One such protein is p21Cip1, which inhibits DNA replication through its interaction with PCNA, while allowing repair to continue. We have identified an interaction between PCNA and the structure specific nuclease, Fen1, which is involved in DNA replication. Deletion analysis suggests that p21Cip1 and Fen1 bind to the same region of PCNA. Within Fen1 and its homologues a small region (10 amino acids) is sufficient for PCNA binding, which contains an 8 amino acid conserved PCNA-binding motif. This motif shares critical residues with the PCNA-binding region of p21Cip1. A PCNA binding peptide from p21Cip1 competes with Fen1 peptides for binding to PCNA, disrupts the Fen1-PCNA complex in replicating cell extracts, and concomitantly inhibits DNA synthesis. Competition between homologous regions of Fen1 and p21Cip1 for binding to the same site on PCNA may provide a mechanism to co-ordinate the functions of PCNA in DNA replication and repair.

  16. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora.

    Science.gov (United States)

    Zickler, D; Moreau, P J; Huynh, A D; Slezec, A M

    1992-09-01

    The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of "recombination nodules." Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants.

  17. Dragon TIS Spotter: an Arabidopsis-derived predictor of translation initiation sites in plants.

    Science.gov (United States)

    Magana-Mora, Arturo; Ashoor, Haitham; Jankovic, Boris R; Kamau, Allan; Awara, Karim; Chowdhary, Rajesh; Archer, John A C; Bajic, Vladimir B

    2013-01-01

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. Our tool is implemented as an artificial neural network. It is available as a web-based tool and, together with the source code, the list of features, and data used for model development, is accessible at http://cbrc.kaust.edu.sa/dts.

  18. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.

    Science.gov (United States)

    Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K

    2010-11-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.

  19. INITIAL SINGLE-SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  20. Preliminary safety evaluation for the Laxemar subarea. Based on data and site descriptions after the initial site investigation stage

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2006-03-15

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Laxemar subarea have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB in 2000. These criteria both concern properties of the site judged to be necessary for safety and engineering (requirements) and properties judged to be beneficial (preferences). The findings are then evaluated in order to provide feedback to continued investigations and design work. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The latter is eventually done in coming Safety Assessments. This preliminary safety evaluation shows that, according to existing data, the Laxemar subarea meets all safety requirements. The evaluation also shows that the Laxemar subarea meets most of the safety preferences, but for some aspects of the site description further reduction of the uncertainties would enhance the safety case. Despite the stated concerns, there is no reason, from a safety point of view, not to continue the Site Investigations at the Laxemar subarea. There are uncertainties to resolve and the safety would eventually need to be verified through a proper safety assessment. Only some of the uncertainties noted in the Site Descriptive Model have safety implications and need further resolution for this reason. Furthermore, uncertainties may need resolving for other reasons, such as giving an adequate assurance of site understanding or assisting in optimising design. Notably, there are questions about the

  1. Preliminary safety evaluation for the Laxemar subarea. Based on data and site descriptions after the initial site investigation stage

    International Nuclear Information System (INIS)

    Andersson, Johan

    2006-03-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Laxemar subarea have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB in 2000. These criteria both concern properties of the site judged to be necessary for safety and engineering (requirements) and properties judged to be beneficial (preferences). The findings are then evaluated in order to provide feedback to continued investigations and design work. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The latter is eventually done in coming Safety Assessments. This preliminary safety evaluation shows that, according to existing data, the Laxemar subarea meets all safety requirements. The evaluation also shows that the Laxemar subarea meets most of the safety preferences, but for some aspects of the site description further reduction of the uncertainties would enhance the safety case. Despite the stated concerns, there is no reason, from a safety point of view, not to continue the Site Investigations at the Laxemar subarea. There are uncertainties to resolve and the safety would eventually need to be verified through a proper safety assessment. Only some of the uncertainties noted in the Site Descriptive Model have safety implications and need further resolution for this reason. Furthermore, uncertainties may need resolving for other reasons, such as giving an adequate assurance of site understanding or assisting in optimising design. Notably, there are questions about the

  2. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.

    Science.gov (United States)

    Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu

    2004-06-01

    In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited

  3. Initial ORNL site assessment report on the storage of 233U

    International Nuclear Information System (INIS)

    Bereolos, P.J.; Yong, L.K.; Sadlowe, A.R.; Ramey, D.W.; Krichinsky, A.M.

    1998-03-01

    The 233 U storage facility at ORNL is Building 3019. The inventory stored in Building 3019 consists of 426.5 kg of 233 U contained in 1,387.1 kg of total uranium. The inventory is primarily in the form of uranium oxides; however, uranium metal and other compounds are also stored. Over 99% of the inventory is contained in 1,007 packages stored in tube vaults within the facility. A tank of thorium nitrate solution, the P-24 Tank, contains 0.13 kg of 233 U in ∼ 4,000 gal. of solution. The facility is receiving additional 233 U for storage from the remediation of the Molten Salt Reactor Experiment (MSRE) at ORNL. Consolidation of material from sites with small holdings is also adding to the 233 U inventory. Additionally, small quantities ( 233 U are in other research facilities at ORNL. A risk assessment process was chosen to evaluate the stored material and packages based on available package records. The risk scenario was considered the failure of a package (or a group of similar packages) in the Building 3019 inventory. The probability of such a failure depends on packaging factors such as the age and material of construction of the containers. The consequence of such a failure depends on the amount and form of the material within the packages. One thousand seven packages were categorized with this methodology resulting in 859 low-risk packages, 147 medium-risk packages, and 1 high-risk package. This initial assessment also documents the status of the evaluation of the Building 3019 and its systems for safe storage of 233 U. The final assessment report for ORNL storage of 233 U is scheduled for June 1999. The report will document the facility assessments, the specific package inspection plan, and the results of initial package inspections

  4. Laparoendoscopic single-site extraperitoneal inguinal hernia repair: initial experience in 10 patients.

    Science.gov (United States)

    Do, Minh; Liatsikos, Evangelos; Beatty, John; Haefner, Tim; Dunn, Ian; Kallidonis, Panagiotis; Stolzenburg, Jens-Uwe

    2011-06-01

    Recent technical advances and a trend toward laparoscopic single incision surgery have led us to explore the feasibility of laparoendoscopic single-site (LESS) hernia repair. We present our technique and initial experience with LESS extraperitoneal inguinal hernia repair in 10 consecutive men with unilateral inguinal hernias. Age range was 43.7 (28-64) years. Mean body mass index was 28 (range 24-30). Six were left inguinal hernias. There were six indirect and four direct hernias. Three patients had undergone previous open appendectomy. Incarcerated or bilateral hernias were excluded from our initial series. All cases were performed by three surgeons who were experienced in conventional totally extraperitoneal laparoscopic hernia repair as well as experienced in LESS. A literature review of current single-port inguinal hernia repair data is also presented. The mean operative time was 53 minutes (range 45-65  min). The average length of skin incision was 2.8  cm (range 2.3-3.2  cm). No drain was necessary in any of the patients, while no recordable bleeding was observed. There were no intraoperative or immediate postoperative complications. Hospitalization period was 2 days for all patients. After a limited follow-up of 1 month, there have been no recurrences and no complaints of testicular pain. The results of the current series compare favorably with those found in a literature review. LESS extraperitoneal inguinal hernia repair is both feasible and safe, although more technically demanding than its conventional laparoscopic counterpart. Although the cosmetic result with the former approach may prove superior, there are standing questions regarding the complications and long-term outcome. Randomized and if possible blinded trials that compare conventional and single-incision laparoscopic hernia repair may help to distinguish the most advantageous technique.

  5. Initiating a participatory action research process in the Agincourt health and socio-demographic surveillance site.

    Science.gov (United States)

    Wariri, Oghenebrume; D'Ambruoso, Lucia; Twine, Rhian; Ngobeni, Sizzy; van der Merwe, Maria; Spies, Barry; Kahn, Kathleen; Tollman, Stephen; Wagner, Ryan G; Byass, Peter

    2017-06-01

    Despite progressive health policy, disease burdens in South Africa remain patterned by deeply entrenched social inequalities. Accounting for the relationships between context, health and risk can provide important information for equitable service delivery. The aims of the research were to initiate a participatory research process with communities in a low income setting and produce evidence of practical relevance. We initiated a participatory action research (PAR) process in the Agincourt health and socio-demographic surveillance site (HDSS) in rural north-east South Africa. Three village-based discussion groups were convened and consulted about conditions to examine, one of which was under-5 mortality. A series of discussions followed in which routine HDSS data were presented and participants' subjective perspectives were elicited and systematized into collective forms of knowledge using ranking, diagramming and participatory photography. The process concluded with a priority setting exercise. Visual and narrative data were thematically analyzed to complement the participants' analysis. A range of social and structural root causes of under-5 mortality were identified: poverty, unemployment, inadequate housing, unsafe environments and shortages of clean water. Despite these constraints, single mothers were often viewed as negligent. A series of mid-level contributory factors in clinics were also identified: overcrowding, poor staffing, delays in treatment and shortages of medications. In a similar sense, pronounced blame and negativity were directed toward clinic nurses in spite of the systems constraints identified. Actions to address these issues were prioritized as: expanding clinics, improving accountability and responsiveness of health workers, improving employment, providing clean water, and expanding community engagement for health promotion. We initiated a PAR process to gain local knowledge and prioritize actions. The process was acceptable to those

  6. Site-directed mutagenesis of HIV-1 vpu gene demonstrates two clusters of replication-defective mutants with distinct ability to down-modulate cell surface CD4 and tetherin

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2010-11-01

    Full Text Available HIV-1 Vpu acts positively on viral infectivity by mediating CD4 degradation in endoplasmic reticulum and enhances virion release by counteracting a virion release restriction factor, tetherin. In order to define the impact of Vpu activity on HIV-1 replication, we have generated a series of site-specific proviral vpu mutants. Of fifteen mutants examined, seven exhibited a replication-defect similar to that of a vpu-deletion mutant in a lymphocyte cell line H9. These mutations clustered in narrow regions within transmembrane domain (TMD and cytoplasmic domain (CTD. Replication-defective mutants displayed the reduced ability to enhance virion release from a monolayer cell line HEp2 without exception. Upon transfection with Vpu expression vectors, neither TMD mutants nor CTD mutants blocked CD4 expression at the cell surface in another monolayer cell line MAGI. While TMD mutants were unable to down-modulate cell surface tetherin in HEp2 cells, CTD mutants did quite efficiently. Confocal microscopy analysis revealed the difference of intracellular localization between TMD and CTD mutants. In total, replication capability of HIV-1 carrying vpu mutations correlates well with the ability of Vpu to enhance virion release and to impede the cell surface expression of CD4 but not with the ability to down-modulate cell surface tetherin. Our results here suggest that efficient viral replication requires not only down-regulation of cell surface tetherin but also its degradation.

  7. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    Science.gov (United States)

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop. © 2015 American Society of Plant Biologists. All rights reserved.

  8. Initialization of a spin qubit in a site-controlled nanowire quantum dot

    International Nuclear Information System (INIS)

    Lagoudakis, Konstantinos G; McMahon, Peter L; Fischer, Kevin A; Müller, Kai; Yamamoto, Yoshihisa; Vučković, Jelena; Puri, Shruti; Dan Dalacu; Poole, Philip J; Reimer, Michael E; Zwiller, Val

    2016-01-01

    A fault-tolerant quantum repeater or quantum computer using solid-state spin-based quantum bits will likely require a physical implementation with many spins arranged in a grid. Self-assembled quantum dots (QDs) have been established as attractive candidates for building spin-based quantum information processing devices, but such QDs are randomly positioned, which makes them unsuitable for constructing large-scale processors. Recent efforts have shown that QDs embedded in nanowires can be deterministically positioned in regular arrays, can store single charges, and have excellent optical properties, but so far there have been no demonstrations of spin qubit operations using nanowire QDs. Here we demonstrate optical pumping of individual spins trapped in site-controlled nanowire QDs, resulting in high-fidelity spin-qubit initialization. This represents the next step towards establishing spins in nanowire QDs as quantum memories suitable for use in a large-scale, fault-tolerant quantum computer or repeater based on all-optical control of the spin qubits. (paper)

  9. Uterine cervical cancer with brain metastasis as the initial site of presentation.

    Science.gov (United States)

    Sato, Yumi; Tanaka, Kei; Kobayashi, Yoichi; Shibuya, Hiromi; Nishigaya, Yoshiko; Momomura, Mai; Matsumoto, Hironori; Iwashita, Mitsutoshi

    2015-07-01

    Brain metastasis from uterine cervical cancer is rare, with an incidence of 0.5%, and usually occurs late in the course of the disease. We report a case of uterine cervical cancer with brain metastasis as the initial site of presentation. A 50-year-old woman with headache, vertigo, amnesia and loss of appetite was admitted for persistent vomiting. Contrast enhanced computed tomography showed a solitary right frontal cerebral lesion with ring enhancement and uterine cervical tumor. She was diagnosed with uterine cervical squamous cell carcinoma with parametrium invasion and no other distant affected organs were detected. The cerebral lesion was surgically removed and pathologically proved to be metastasis of uterine cervical squamous cell carcinoma. The patient underwent concurrent chemoradiotherapy, followed by cerebral radiation therapy, but multiple metastases to the liver and lung developed and the patient died 7 months after diagnosis of brain metastasis. © 2015 The Authors. Journal of Obstetrics and Gynaecology Research © 2015 Japan Society of Obstetrics and Gynecology.

  10. Preliminary safety evaluation for the Simpevarp subarea. Based on data and site descriptions after the initial site investigation stage

    International Nuclear Information System (INIS)

    2005-04-01

    The main objectives of this Preliminary safety evaluation (PSE) of the Simpevarp subarea are: to determine, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB in the report SKB-TR--00-12. These criteria both concern properties of the site judged to be necessary for safety and engineering (requirements) and properties judged to be beneficial (preferences). The findings are then evaluated in order to provide feedback to continued investigations and design work. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that even considering remaining uncertainties, the Simpevarp subarea meets all safety requirements and most of the safety preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Simpevarp subarea. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Still, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry within the Simpevarp subarea would allow for a more specified layout, although the sensitivity analysis shows that the space needed is rather robust with respect to uncertainties in the zones. There is substantial uncertainty in the discrete fracture network (DFN) model

  11. Preliminary safety evaluation for the Forsmark area. Based on data and site descriptions after the initial site investigation stage

    International Nuclear Information System (INIS)

    Andersson, Johan

    2005-08-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Forsmark area have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that, even considering remaining uncertainties, the Forsmark area meets all stated safety requirements and preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Forsmark area. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Nevertheless, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry inside the target area would be needed to more firmly define locations of the suitable deposition volumes. There is substantial uncertainty in the Discrete Fracture Network model. Further reduction of the uncertainties, if needed, would probably only be possible from the underground, detailed investigation phase. Efforts need also be spent on improving the DFN-modelling. There are assumptions made in current models that could be challenged and there seems to be room for better use of the borehole information. It is particularly important to provide

  12. Preliminary safety evaluation for the Forsmark area. Based on data and site descriptions after the initial site investigation stage

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-08-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Forsmark area have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that, even considering remaining uncertainties, the Forsmark area meets all stated safety requirements and preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Forsmark area. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Nevertheless, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry inside the target area would be needed to more firmly define locations of the suitable deposition volumes. There is substantial uncertainty in the Discrete Fracture Network model. Further reduction of the uncertainties, if needed, would probably only be possible from the underground, detailed investigation phase. Efforts need also be spent on improving the DFN-modelling. There are assumptions made in current models that could be challenged and there seems to be room for better use of the borehole information. It is particularly important to

  13. Establishing a health demographic surveillance site in Bhaktapur district, Nepal: initial experiences and findings

    Directory of Open Access Journals (Sweden)

    Aryal Umesh

    2012-09-01

    Full Text Available Abstract Background A health demographic surveillance system (HDSS provides longitudinal data regarding health and demography in countries with coverage error and poor quality data on vital registration systems due to lack of public awareness, inadequate legal basis and limited use of data in health planning. The health system in Nepal, a low-income country, does not focus primarily on health registration, and does not conduct regular health data collection. This study aimed to initiate and establish the first HDSS in Nepal. Results We conducted a baseline survey in Jhaukhel and Duwakot, two villages in Bhaktapur district. The study surveyed 2,712 households comprising a total population of 13,669. The sex ratio in the study area was 101 males per 100 females and the average household size was 5. The crude birth and death rates were 9.7 and 3.9/1,000 population/year, respectively. About 11% of births occurred at home, and we found no mortality in infants and children less than 5 years of age. Various health problems were found commonly and some of them include respiratory problems (41.9%; headache, vertigo and dizziness (16.7%; bone and joint pain (14.4%; gastrointestinal problems (13.9%; heart disease, including hypertension (8.8%; accidents and injuries (2.9%; and diabetes mellitus (2.6%. The prevalence of non-communicable disease (NCD was 4.3% (95% CI: 3.83; 4.86 among individuals older than 30 years. Age-adjusted odds ratios showed that risk factors, such as sex, ethnic group, occupation and education, associated with NCD. Conclusion Our baseline survey demonstrated that it is possible to collect accurate and reliable data in a village setting in Nepal, and this study successfully established an HDSS site. We determined that both maternal and child health are better in the surveillance site compared to the entire country. Risk factors associated with NCDs dominated morbidity and mortality patterns.

  14. A Novel Quality Measure and Correction Procedure for the Annotation of Microbial Translation Initiation Sites.

    Directory of Open Access Journals (Sweden)

    Lex Overmars

    Full Text Available The identification of translation initiation sites (TISs constitutes an important aspect of sequence-based genome analysis. An erroneous TIS annotation can impair the identification of regulatory elements and N-terminal signal peptides, and also may flaw the determination of descent, for any particular gene. We have formulated a reference-free method to score the TIS annotation quality. The method is based on a comparison of the observed and expected distribution of all TISs in a particular genome given prior gene-calling. We have assessed the TIS annotations for all available NCBI RefSeq microbial genomes and found that approximately 87% is of appropriate quality, whereas 13% needs substantial improvement. We have analyzed a number of factors that could affect TIS annotation quality such as GC-content, taxonomy, the fraction of genes with a Shine-Dalgarno sequence and the year of publication. The analysis showed that only the first factor has a clear effect. We have then formulated a straightforward Principle Component Analysis-based TIS identification strategy to self-organize and score potential TISs. The strategy is independent of reference data and a priori calculations. A representative set of 277 genomes was subjected to the analysis and we found a clear increase in TIS annotation quality for the genomes with a low quality score. The PCA-based annotation was also compared with annotation with the current tool of reference, Prodigal. The comparison for the model genome of Escherichia coli K12 showed that both methods supplement each other and that prediction agreement can be used as an indicator of a correct TIS annotation. Importantly, the data suggest that the addition of a PCA-based strategy to a Prodigal prediction can be used to 'flag' TIS annotations for re-evaluation and in addition can be used to evaluate a given annotation in case a Prodigal annotation is lacking.

  15. Genetic Algorithms for Models Optimization for Recognition of Translation Initiation Sites

    KAUST Repository

    Mora, Arturo Magana

    2011-06-01

    This work uses genetic algorithms (GA) to reduce the complexity of the artificial neural networks (ANNs) and decision trees (DTs) for the accurate recognition of translation initiation sites (TISs) in Arabidopsis Thaliana. The Arabidopsis data was extracted directly from genomic DNA sequences. Methods derived in this work resulted in both reduced complexity of the predictors, as well as in improvement in prediction accuracy (generalization). Optimization through use of GA is generally a computationally intensive task. One of the approaches to overcome this problem is to use parallelization of code that implements GA, thus allowing computation on multiprocessing infrastructure. However, further improvement in performance GA implementation could be achieved through modification done to GA basic operations such as selection, crossover and mutation. In this work we explored two such improvements, namely evolutive mutation and GA-Simplex crossover operation. In this thesis we studied the benefit of these modifications on the problem of TISs recognition. Compared to the non-modified GA approach, we reduced the number of weights in the resulting model\\'s neural network component by 51% and the number of nodes in the model\\'s DTs component by 97% whilst improving the model\\'s accuracy at the same time. Separately, we developed another methodology for reducing the complexity of prediction models by optimizing the composition of training data subsets in bootstrap aggregation (bagging) methodology. This optimization is achieved by applying a new GA-based bagging methodology in order to optimize the composition of each of the training data subsets. This approach has shown in our test cases to considerably enhance the accuracy of the TIS prediction model compared to the original bagging methodology. Although these methods are applied to the problem of accurate prediction of TISs we believe that these methodologies have a potential for wider scope of application.

  16. DNA replication origins-where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M

    2016-08-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. © 2016 Prioleau and MacAlpine; Published by Cold Spring Harbor Laboratory Press.

  17. DNA replication origins—where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M.

    2016-01-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. PMID:27542827

  18. Structural properties of replication origins in yeast DNA sequences

    International Nuclear Information System (INIS)

    Cao Xiaoqin; Zeng Jia; Yan Hong

    2008-01-01

    Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on analyzing average flexibility profiles of 270 replication origins, we find that yeast replication origins are significantly rigid compared with their surrounding genomic regions. To further understand the highly distinctive property of replication origins, we compare the flexibility patterns between yeast replication origins and promoters, and find that they both contain significantly rigid DNAs. Our results suggest that DNA flexibility is an important factor that helps proteins recognize and bind the target sites in order to initiate DNA replication. Inspired by the role of the rigid region in promoters, we speculate that the rigid replication origins may facilitate binding of proteins, including the origin recognition complex (ORC), Cdc6, Cdt1 and the MCM2-7 complex

  19. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    Science.gov (United States)

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  20. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Liachko, Ivan; Youngblood, Rachel A; Tsui, Kyle; Bubb, Kerry L; Queitsch, Christine; Raghuraman, M K; Nislow, Corey; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-01

    The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.

  1. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Ivan Liachko

    2014-03-01

    Full Text Available The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.

  2. LHCb experience with LFC replication

    International Nuclear Information System (INIS)

    Bonifazi, F; Carbone, A; D'Apice, A; Dell'Agnello, L; Re, G L; Martelli, B; Ricci, P P; Sapunenko, V; Vitlacil, D; Perez, E D; Duellmann, D; Girone, M; Peco, G; Vagnoni, V

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements

  3. LHCb experience with LFC replication

    CERN Document Server

    Bonifazi, F; Perez, E D; D'Apice, A; dell'Agnello, L; Düllmann, D; Girone, M; Re, G L; Martelli, B; Peco, G; Ricci, P P; Sapunenko, V; Vagnoni, V; Vitlacil, D

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  4. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites.

    Directory of Open Access Journals (Sweden)

    Xiao P Peng

    2018-01-01

    Full Text Available Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA array. Each rDNA repeat contains a programmed replication fork barrier (RFB established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth.

  5. The governance of Natura 2000 sites: the importance of initial choices in the organisation of planning processes

    NARCIS (Netherlands)

    Beunen, R.; Vries, de J.R.

    2011-01-01

    The management of Natura 2000 sites faces several challenges. Responsible authorities need to achieve specific conservation objectives and they need to balance these objectives with social and economic interests. A study of two cases, one in England and one in the Netherlands, shows that the initial

  6. Nucleotide sequence analysis of regions of adenovirus 5 DNA containing the origins of DNA replication

    International Nuclear Information System (INIS)

    Steenbergh, P.H.

    1979-01-01

    The purpose of the investigations described is the determination of nucleotide sequences at the molecular ends of the linear adenovirus type 5 DNA. Knowledge of the primary structure at the termini of this DNA molecule is of particular interest in the study of the mechanism of replication of adenovirus DNA. The initiation- and termination sites of adenovirus DNA replication are located at the ends of the DNA molecule. (Auth.)

  7. An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, Eduardo [GE Energy Consulting, Denver, CO (United States)

    2016-07-01

    This report provides a deeper understanding of the wind project development process, from desktop studies to a successful project in the ground. It examines three siting consideration categories that wind project sponsors must include in the development process: wildlife (species that live in, near, or migrate through the area where wind development is possible), radar (wind turbines can cause interference with radar signals), and public engagement (representing communities and stakeholders who live near wind power projects). The research shows that although this country's abundant wind resource provides numerous options for addressing siting considerations, actually siting individual projects is becoming more difficult because of regulatory and other uncertainties. Model results are based on the premise that developers will be able to site, permit, and build successful projects, which is not always the case in reality.

  8. Sequence characteristics required for cooperative binding and efficient in vivo titration of the replication initiator protein DnaA in E. coli

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Christensen, Bjarke Bak; Atlung, Tove

    2007-01-01

    Plasmids carrying the mioC promoter region, which contains two DnaA boxes, R5 and R6 with one misfit to the consensus TT(A)/(T)TNCACA, are as efficient in in vivo titration of the DnaA protein as plasmids carrying a replication-inactivated oriC region with its eight DnaA boxes. Three additional Dna......A boxes around the promoter proximal R5 DnaA box were identified and shown by mutational analysis to be necessary for the cooperative binding of DnaA required for titration. These four DnaA boxes are located in the same orientation and with a spacing of two or three base-pairs. The cooperative binding...... was eliminated by insertion of half a helical turn between any of the DnaA boxes. Titration strongly depends on the presence and orientation of the promoter distal R6 DnaA box located 104 bp upstream of the R5 box as well as neighbouring sequences downstream of R6. Titration depends on the integrity of a 43 bp...

  9. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  10. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  11. Identifying Functional Neighborhoods within the Cell Nucleus: Proximity Analysis of Early S-Phase Replicating Chromatin Domains to Sites of Transcription, RNA Polymerase II, HP1γ, Matrin 3 and SAF-A

    Science.gov (United States)

    Malyavantham, Kishore S; Bhattacharya, Sambit; Barbeitos, Marcos; Mukherjee, Lopamudra; Xu, Jinhui; Fackelmayer, Frank O; Berezney, Ronald

    2009-01-01

    Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1γ, nascent transcript sites (TS), active DNA replicating sites in early S phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture. PMID:18618731

  12. Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

    Science.gov (United States)

    Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2018-04-01

    Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.

  13. Factors Related to Initiating Interpersonal Contacts on Internet Dating Sites: A View From the Social Exchange Theory

    Directory of Open Access Journals (Sweden)

    Rivka Shtatfeld

    2009-12-01

    Full Text Available The purpose of this study was to identify factors that influence dating-site users to initiate contact with potential romantic partners. The study was carried out by observing online behaviors and analyzing the profiles and authentic messages of these users (N = 106 over seven months. Contacts made by and with the research participants were analyzed in terms of the relationships between initiators‘ and receivers‘ demographic variables (marital status, age, level of education, income, writing skills, and stated physical appearance. In addition, the relationship between contacting partners and site accessibility was examined. The findings revealed that dating-site users initiated contact primarily with those having a similar marital status or slightly better characteristics (income, education, writing skills. In regard to writing skills, it was found that skilled writers attracted more contacts than did less skilled writers. However, the factor that was found to be most significantly related to initiating contact was the length of time that elapsed from last connection to the site, which implies the perceived accessibility of potential romantic partners. The findings were explained in terms of the Social Exchange Theory: people are attracted to those who grant them rewards.

  14. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    Science.gov (United States)

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  15. Activity-based protein profiling of the hepatitis C virus replication in Huh-7 hepatoma cells using a non-directed active site probe

    Directory of Open Access Journals (Sweden)

    McKay Craig S

    2010-02-01

    Full Text Available Abstract Background Hepatitis C virus (HCV poses a growing threat to global health as it often leads to serious liver diseases and is one of the primary causes for liver transplantation. Currently, no vaccines are available to prevent HCV infection and clinical treatments have limited success. Since HCV has a small proteome, it relies on many host cell proteins to complete its life cycle. In this study, we used a non-directed phenyl sulfonate ester probe (PS4≡ to selectively target a broad range of enzyme families that show differential activity during HCV replication in Huh-7 cells. Results The PS4≡ probe successfully targeted 19 active proteins in nine distinct protein families, some that were predominantly labeled in situ compared to the in vitro labeled cell homogenate. Nine proteins revealed altered activity levels during HCV replication. Some candidates identified, such as heat shock 70 kDa protein 8 (or HSP70 cognate, have been shown to influence viral release and abundance of cellular lipid droplets. Other differentially active PS4≡ targets, such as electron transfer flavoprotein alpha, protein disulfide isomerase A5, and nuclear distribution gene C homolog, constitute novel proteins that potentially mediate HCV propagation. Conclusions These findings demonstrate the practicality and versatility of non-directed activity-based protein profiling (ABPP to complement directed methods and accelerate the discovery of altered protein activities associated with pathological states such as HCV replication. Collectively, these results highlight the ability of in situ ABPP approaches to facilitate the identification of enzymes that are either predominantly or exclusively labeled in living cells. Several of these differentially active enzymes represent possible HCV-host interactions that could be targeted for diagnostic or therapeutic purposes.

  16. Replication origins oriGNAI3 and oriB of the mammalian AMPD2 locus nested in a region of straight DNA flanked by intrinsically bent DNA sites.

    Science.gov (United States)

    Balani, Valério Américo; de Lima Neto, Quirino Alves; Takeda, Karen Izumi; Gimenes, Fabrícia; Fiorini, Adriana; Debatisse, Michelle; Fernandez, Maria Aparecida

    2010-11-01

    The aim of this work was to determine whether intrinsically bent DNA sites are present at, or close to, the mammalian replication origins oriGNAI3 and oriB in the Chinese hamster AMPD2 locus. Using an electrophoretic mobility shift assay and in silico analysis, we located four intrinsically bent DNA sites (b1 to b4) in a fragment that contains the oriGNAI3 and one site (b5) proximal to oriB. The helical parameters show that each bent DNA site is curved in a left-handed superhelical writhe. A 2D projection of 3D fragment trajectories revealed that oriGNAI3 is located in a relatively straight segment flanked by bent sites b1 and b2, which map in previously identified Scaffold/Matrix Attachment Region. Sites b3 and b4 are located approximately 2 kb downstream and force the fragment into a strong closed loop structure. The b5 site is also located in an S/MAR that is found just downstream of oriB.

  17. An Initial Seed Selection Algorithm for K-means Clustering of Georeferenced Data to Improve Replicability of Cluster Assignments for Mapping Application

    OpenAIRE

    Khan, Fouad

    2016-01-01

    K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though -such as when classifying georeferenced data for mapping applications- standardization of clustering methodolo...

  18. Detection of foot-and-mouth disease virus RNA in pharyngeal epithelium biopsy samples obtained from infected cattle: Investigation of possible sites of virus replication and persistence

    DEFF Research Database (Denmark)

    Stenfeldt, Anna Carolina; Belsham, Graham

    2012-01-01

    measurements of the levels of FMDV RNA in the DSP as well as mandibular and retropharyngeal lymph nodes beyond 28 days after infection. Results indicated only low levels of FMDV RNA present in samples of pharyngeal epithelia during both early and persistent phases of infection with significantly higher levels...... of virus detected in pharyngeal excretions. It is concluded that the targeted area for sampling within the DSP does not harbour significant levels of virus replication during acute or persistent FMDV infection in cattle. Furthermore, the DSP and the mandibular and retropharyngeal lymph nodes cannot...

  19. Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe.

    Directory of Open Access Journals (Sweden)

    Majid Eshaghi

    Full Text Available BACKGROUND: During S. pombe S-phase, initiation of DNA replication occurs at multiple sites (origins that are enriched with AT-rich sequences, at various times. Current studies of genome-wide DNA replication profiles have focused on the DNA replication timing and origin location. However, the replication and/or firing efficiency of the individual origins on the genomic scale remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome-wide ORF-specific DNA microarray analysis, we show that in S. pombe, individual origins fire with varying efficiencies and at different times during S-phase. The increase in DNA copy number plotted as a function of time is approximated to the near-sigmoidal model, when considering the replication start and end timings at individual loci in cells released from HU-arrest. Replication efficiencies differ from origin to origin, depending on the origin's firing efficiency. We have found that DNA replication is inefficient early in S-phase, due to inefficient firing at origins. Efficient replication occurs later, attributed to efficient but late-firing origins. Furthermore, profiles of replication timing in cds1Delta cells are abnormal, due to the failure in resuming replication at the collapsed forks. The majority of the inefficient origins, but not the efficient ones, are found to fire in cds1Delta cells after HU removal, owing to the firing at the remaining unused (inefficient origins during HU treatment. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that efficient DNA replication/firing occurs late in S-phase progression in cells after HU removal, due to efficient late-firing origins. Additionally, checkpoint kinase Cds1p is required for maintaining the efficient replication/firing late in S-phase. We further propose that efficient late-firing origins are essential for ensuring completion of DNA duplication by the end of S-phase.

  20. 78 FR 73518 - Notice Inviting Suggestions for New Experiments for the Experimental Sites Initiative; Federal...

    Science.gov (United States)

    2013-12-06

    ... postsecondary educational institutions participating in one or more of eight on- going experiments. Information... program accountability. Institutions and others, including businesses, philanthropies, and State agencies... Federal Regulations is available via the Federal Digital System at: www.gpo.gov/fdsys . At this site you...

  1. Replication dynamics of the yeast genome.

    Science.gov (United States)

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  2. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  3. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; Jiao, Jing; You, Jianxin

    2014-01-01

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  4. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  5. Determination of entry site for acute type A aortic dissection by initial enhanced CT-scan

    International Nuclear Information System (INIS)

    Mase, Takenori; Narumiya, Chihiro; Aoyama, Takahiko; Nagata, Yoshihisa

    2002-01-01

    Acute type A aortic dissection presents a surgical emergency because conservative therapy is not effective in the majority of instances. Enhanced CT-scan of the chest is commonly available and is considered to be an optimal diagnostic method for this disease. The operative strategy is to resect the primary tear to close the entry site of the aortic dissection and replace it with a tubular Dacron graft. Therefore, the existence of the entry site is important in determining the operative procedure. Based on the numerical value of the enhanced CT-scan inspection, the present study seeks to preoperatively identify the location of the presumed entry site in aortic dissection. From May 1996 to June 1999, 21 consecutive patients (Marfan's syndrome excluded) with acute type A aortic dissection underwent surgical treatment. Nineteen patients were preoperatively examined by enhanced CT-scan: 11 men and 8 women, with a mean age of 61 years. CT-scan slices used for early diagnosis were of the ascending aorta, aortic arch, descending aorta, and thoracoabdominal aorta. The largest diameters of the whole and true lumen were measured from cross-sectional aortic images with a personal computer, and the areas of the whole and true lumen were obtained by the manual tracing method. The true ratio was calculated for the largest diameter and area of the whole lumen. The nineteen patients were divided into two groups according to the location of the entry site based on the operating views. Seven patients with the entry site in the ascending aorta were classified as group A, and twelve patients with the entry site further in the aortic arch and descending aorta were classified as group B. Comparisons were performed by non-parametric analysis. Moreover, a discriminant analysis was applied to evaluate the classification between the two groups. The ratio of the largest diameter of the true lumen in group A at the level of the ascending and descending aorta was significantly greater than that

  6. Determination of entry site for acute type A aortic dissection by initial enhanced CT-scan

    Energy Technology Data Exchange (ETDEWEB)

    Mase, Takenori; Narumiya, Chihiro; Aoyama, Takahiko; Nagata, Yoshihisa [Aichi Medical Univ., Nagakute (Japan). School of Medicine

    2002-01-01

    Acute type A aortic dissection presents a surgical emergency because conservative therapy is not effective in the majority of instances. Enhanced CT-scan of the chest is commonly available and is considered to be an optimal diagnostic method for this disease. The operative strategy is to resect the primary tear to close the entry site of the aortic dissection and replace it with a tubular Dacron graft. Therefore, the existence of the entry site is important in determining the operative procedure. Based on the numerical value of the enhanced CT-scan inspection, the present study seeks to preoperatively identify the location of the presumed entry site in aortic dissection. From May 1996 to June 1999, 21 consecutive patients (Marfan's syndrome excluded) with acute type A aortic dissection underwent surgical treatment. Nineteen patients were preoperatively examined by enhanced CT-scan: 11 men and 8 women, with a mean age of 61 years. CT-scan slices used for early diagnosis were of the ascending aorta, aortic arch, descending aorta, and thoracoabdominal aorta. The largest diameters of the whole and true lumen were measured from cross-sectional aortic images with a personal computer, and the areas of the whole and true lumen were obtained by the manual tracing method. The true ratio was calculated for the largest diameter and area of the whole lumen. The nineteen patients were divided into two groups according to the location of the entry site based on the operating views. Seven patients with the entry site in the ascending aorta were classified as group A, and twelve patients with the entry site further in the aortic arch and descending aorta were classified as group B. Comparisons were performed by non-parametric analysis. Moreover, a discriminant analysis was applied to evaluate the classification between the two groups. The ratio of the largest diameter of the true lumen in group A at the level of the ascending and descending aorta was significantly greater than

  7. Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird

    Science.gov (United States)

    Becker, Peter H.; Dittmann, Tobias; Ludwigs, Jan-Dieter; Limmer, Bente; Ludwig, Sonja C.; Bauch, Christina; Braasch, Alexander; Wendeln, Helmut

    2008-01-01

    In long-lived vertebrates, individuals generally visit potential breeding areas or populations during one or more seasons before reproducing for the first time. During these years of prospecting, they select a future breeding site, colony, or mate and improve various skills and their physical condition to meet the requirements of reproduction. One precondition of successful reproduction is arrival in time on the breeding grounds. Here, we study the intricate links among the date of initial spring arrival, body mass, sex, and the age of first breeding in the common tern Sterna hirundo, a long-lived migratory colonial seabird. The study is based on a unique, individual-based, long-term dataset of sexed birds, marked with transponders, which allow recording their individual arrival, overall attendance, and clutch initiation remotely and automatically year by year over the entire lifetime at the natal colony site. We show that the seasonal date of initial arrival at the breeding grounds predicts the individual age at first reproduction, which mostly occurs years later. Late first-time arrivals remain delayed birds throughout subsequent years. Our findings reveal that timing of arrival at the site of reproduction and timing of reproduction itself are coherent parameters of individual quality, which are linked with the prospects of the breeding career and may have consequences for fitness. PMID:18711134

  8. Chromosomal DNA replication of Vicia faba cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1976-01-01

    The chromosomal DNA replication of higher plant cells has been investigated by DNA fiber autoradiography. The nuclear DNA fibers of Vicia root meristematic cells are organized into many tandem arrays of replication units or replicons which exist as clusters with respect to replication. DNA is replicated bidirectionally from the initiation points at the average rate of 0.15 μm/min at 20 0 C, and the average interinitiation interval is about 16 μm. The manner of chromosomal DNA replication in this higher plant is similar to that found in other eukaryotic cells at a subchromosomal level. (auth.)

  9. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  10. Nariva Swamp Ramsar Site, Trinidad and Tobago (West Indies) Wetland Habitat Restoration Initiative

    Science.gov (United States)

    Montserrat Carbonell; Nadra Nathai-Gyan

    2005-01-01

    Trinidad and Tobago, a twin island nation, is the most southerly of the Caribbean islands and lies just 11 km off the coast of Venezuela, near the Orinoco delta. Trinidad, the larger of the two islands, is approximately 5,000 km² and the Nariva Swamp is located on its eastern coast (fig. 1). In 1993, this site was designated as a wetland of international...

  11. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  12. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    International Nuclear Information System (INIS)

    Mathew, Shomita S.; Bridge, Eileen

    2007-01-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci

  13. Smoke-free hospital site conversations: how nurses can initiate change.

    Science.gov (United States)

    Mackereth, Peter; Finchett, Charlotte; Holt, Melody

    2016-11-24

    Smoking tobacco continues to be the world's most preventable cause of death and disability with over six trillion cigarettes sold each year. Patients, visitors and health professionals who smoke on hospital sites present a challenge to the effectiveness of public health messages. Health professionals who ignore 'No smoking' hospital/clinic signage, and avoid smoking-cessation activity, help to sustain the perception that smoking is tolerated. Case studies, with a focus on lung cancer and chronic obstructive pulmonary disease (COPD), are used to illustrate how nurses can 'seed' the idea of hospitals becoming smoke-free, provide brief interventions and support patients, carers and colleagues to make that change.

  14. Initial Results on the Mineralogy and Geochemistry of the Mar Exploration Rover Gusev Landing Site

    Science.gov (United States)

    Christensen, P. R.

    2004-05-01

    The Spirit rover has investigated the geochemistry and mineralogy of the Gusev crater site using in situ Alpha Proton X-Ray, Mossbauer, visible, and infrared spectroscopy. The Gusev site is covered with angular to sub-rounded rocks that are typically less than 1 m in maximum dimension. More than 90 percent of these rocks are dark-toned, with the remainder being lighter-toned rocks that may predominantly be dark rocks with a thin (10's of microns) coating of easily removed fines. APXS analysis has been obtained of a rock (Adirondack) following the removal by grinding of the surface dust and the upper few mm of the rock surface. These data give a modal mineralogy corresponding to olivine basalt. High quality Mini-TES data have not been obtained of a completely dust-free rock surface. The Mini-TES data of Adirondack do show long wavelength (15-25 microns) absorptions due to olivine of composition ~Fo60. All of the rocks observed are very compositionally homogeneous in the Mini-TES spectra. These findings are consistent with the detection of olivine-bearing basalt at this site from orbital TES infrared spectroscopy. Mossbauer spectra of Adirondack show the presence of forsteritic olivine and magnetite, with possible pyroxene. The soils at Gusev are a mixture of reddish fine-grained to sandy materials, granular-sized particles that occur in ripple forms, and minor pebbles. Mini-TES spectra of the soil show an excellent match to the TES spectra of high-albedo, fine-grained material found in regional bright regions that is interpreted to be windblown dust. This agreement suggests at least the uppermost layer of the soil at Gusev has been accumulated from airfall dust. By analogy with prior analysis of TES data these materials contain several percent carbonate, minor bound water, and a framework silicate interpreted to be either feldspar or zeolite. APXS spectra show similar oxide abundances to those determined for the Pathfinder site, except for higher MgO, and lower

  15. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance

  16. Modeling time to recovery and initiating event frequency for loss of off-site power incidents at nuclear power plants

    International Nuclear Information System (INIS)

    Iman, R.L.; Hora, S.C.

    1988-01-01

    Industry data representing the time to recovery of loss of off-site power at nuclear power plants for 63 incidents caused by plant-centered losses, grid losses, or severe weather losses are fit with exponential, lognormal, gamma and Weibull probability models. A Bayesian analysis is used to compare the adequacy of each of these models and to provide uncertainty bounds on each of the fitted models. A composite model that combines the probability models fitted to each of the three sources of data is presented as a method for predicting the time to recovery of loss of off-site power. The composite model is very general and can be made site specific by making adjustments on the models used, such as might occur due to the type of switchyard configuration or type of grid, and by adjusting the weights on the individual models, such as might occur with weather conditions existing at a particular plant. Adjustments in the composite model are shown for different models used for switchyard configuration and for different weights due to weather. Bayesian approaches are also presented for modeling the frequency of initiating events leading to loss of off-site power. One Bayesian model assumes that all plants share a common incidence rate for loss of off-site power, while the other Bayesian approach models the incidence rate for each plant relative to the incidence rates of all other plants. Combining the Bayesian models for the frequency of the initiating events with the composite Bayesian model for recovery provides the necessary vehicle for a complete model that incorporates uncertainty into a probabilistic risk assessment

  17. Terrace Geochemistry at the Shiprock, New Mexico, Disposal Site - WM2017-17232 Initial Phase

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, Mark [USDOE Office of Legacy Management, Washington, DC (United States); Ranalli, Tony [Navarro Research and Engineering, Oak Ridge, TN (United States); Dander, David [Navarro Research and Engineering, Oak Ridge, TN (United States); Miller, David [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2017-03-08

    The objective of this investigation was to identify and differentiate potential non- mill-related water inputs to a shallow terrace groundwater system through the use of aqueous chemical and isotopic tracers at a former uranium- and vanadium-ore processing facility. Terrace groundwater in the vicinity of the Shiprock, New Mexico, site is hypothesized to be largely anthropogenic because natural rates of recharge in the terrace are likely insufficient to sustain a continuous water table in the terrace alluvial system, as observed in several analogue terrace locations east of the site and in response to post-mill dewatering efforts across the site. The terrace is composed of alluvial sand and gravel and weathered and unweathered Mancos Shale. Terrace groundwater exists and flows in the alluvium and to a much less extent in the Mancos Shale. Historical data established that in both the terrace and floodplain below the terrace, mill-derived uranium and sulfate is found primarily in the alluvium and the upper portion of the weathered Mancos Shale. Groundwater extraction is being conducted in the vicinity of former mill operations and in washes and seeps to dewater the formation and remove contamination, thus eliminating these exposure pathways and minimizing movement to the floodplain. However, past and present contribution of non-mill anthropogenic water sources may be hindering the dewatering effort, resulting in reduced remedy effectiveness. Groundwater source signatures can be determined based on chemical and isotopic ratios and are used to help identify and delineate both mill and non-mill water contributions. Aqueous chemical and isotopic tracers, such as 234U/238U activity ratios and uranium concentrations, δ34S sulfate and sulfate concentrations, tritium concentrations, and δ2Hwater and δ18O water are being used in this Phase I study. The aqueous chemical and isotopic analysis has identified areas on the terrace where groundwater is derived from mill

  18. Prelife catalysts and replicators

    OpenAIRE

    Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Life is based on replication and evolution. But replication cannot be taken for granted. We must ask what there was prior to replication and evolution. How does evolution begin? We have proposed prelife as a generative system that produces information and diversity in the absence of replication. We model prelife as a binary soup of active monomers that form random polymers. ‘Prevolutionary’ dynamics can have mutation and selection prior to replication. Some sequences might have catalytic acti...

  19. Implementation of a referral to discharge glycemic control initiative for reduction of surgical site infections in gynecologic oncology patients.

    Science.gov (United States)

    Hopkins, Laura; Brown-Broderick, Jennifer; Hearn, James; Malcolm, Janine; Chan, James; Hicks-Boucher, Wendy; De Sousa, Filomena; Walker, Mark C; Gagné, Sylvain

    2017-08-01

    To evaluate the frequency of surgical site infections before and after implementation of a comprehensive, multidisciplinary perioperative glycemic control initiative. As part of a CUSP (Comprehensive Unit-based Safety Program) initiative, between January 5 and December 18, 2015, we implemented comprehensive, multidisciplinary glycemic control initiative to reduce SSI rates in patients undergoing major pelvic surgery for a gynecologic malignancy ('Group II'). Key components of this quality of care initiative included pre-operative HbA1c measurement with special triage for patients meeting criteria for diabetes or pre-diabetes, standardization of available intraoperative insulin choices, rigorous pre-op/intra-op/post-op glucose monitoring with control targets set to maintain BG ≤10mmol/L (180mg/dL) and communication/notification with primary care providers. Effectiveness was evaluated against a similar control group of patients ('Group I') undergoing surgery in 2014 prior to implementation of this initiative. We studied a total of 462 patients. Subjects in the screened (Group II) and comparison (Group I) groups were of similar age (avg. 61.0, 60.0years; p=0.422) and BMI (avg. 31.1, 32.3kg/m 2 ; p=0.257). Descriptive statistics served to compare surgical site infection (SSI) rates and other characteristics across groups. Women undergoing surgery prior to implementation of this algorithm (n=165) had an infection rate of 14.6%. Group II (n=297) showed an over 2-fold reduction in SSI compared to Group I [5.7%; p=0.001, adjRR: 0.45, 95% CI: (0.25, 0.81)]. Additionally, approximately 19% of Group II patients were newly diagnosed with either prediabetes (HbA1C 6.0-6.4) or diabetes (HbA1C≥6.5) and were referred to family or internal medicine for appropriate management. Implementation of a comprehensive multidisciplinary glycemic control initiative can lead to a significant reduction in surgical site infections in addition to early identification of an important health

  20. Chemical shift changes provide evidence for overlapping single-stranded DNA and XPA binding sites on the 70 kDa subunit of human replication protein A

    Energy Technology Data Exchange (ETDEWEB)

    Daughdrill, Gary W.; Buchko, Garry W.; Botuyan, Maria V.; Arrowsmith, Cheryl H.; Wold, Marc S.; Kennedy, Michael A.; Lowry, David F.

    2003-07-15

    Replication protein A (RPA) is a heterotrimeric single-stranded DNA (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, NMR spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1-326 (hRPA701-326), and a fragment of the human XPA protein, residues 98-219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H-15N correlation spectrum of uniformly 15N-labeled hRPA701-326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA binding domain that is between residues 183 and 296 of the hRPA701-326 fragment. The hRPA701-326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA binding domain to identify the binding surface with XPA-MBD. The XPA-MBD binding surface showed significant overlap with an ssDNA binding surface that was previously identified using NMR spectroscopy and X-ray crystallography.

  1. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  2. Replication and Comparison of the Newly Proposed ADOS-2, Module 4 Algorithm in ASD without ID: A Multi-Site Study

    Science.gov (United States)

    Pugliese, Cara E.; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L.; Yerys, Benjamin E.; Maddox, Brenna B.; White, Susan W.; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D.; Schultz, Robert T.; Martin, Alex; Anthony, Laura Gutermuth

    2015-01-01

    Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised…

  3. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  4. Identification of Persistent RNA-DNA Hybrid Structures within the Origin of Replication of Human Cytomegalovirus

    OpenAIRE

    Prichard, Mark N.; Jairath, Sanju; Penfold, Mark E. T.; Jeor, Stephen St.; Bohlman, Marlene C.; Pari, Gregory S.

    1998-01-01

    Human cytomegalovirus (HCMV) lytic-phase DNA replication initiates at the cis-acting origin of replication, oriLyt. oriLyt is a structurally complex region containing repeat elements and transcription factor binding sites. We identified two site-specific alkali-labile regions within oriLyt which flank an alkali-resistant DNA segment. These alkali-sensitive regions were the result of the degradation of two RNA species embedded within oriLyt and covalently linked to viral DNA. The virus-associa...

  5. Activation of human herpesvirus replication by apoptosis.

    Science.gov (United States)

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  6. Replication and Comparison of the Newly Proposed ADOS-2, Module 4 Algorithm in ASD without ID: A Multi-site Study

    OpenAIRE

    Pugliese, Cara E.; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L; Yerys, Benjamin E; Maddox, Brenna B.; White, Susan W.; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D.; Schultz, Robert T.; Martin, Alex; Anthony, Laura Gutermuth

    2015-01-01

    Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised algorithm demonstrated increased sensitivity, but lower specificity in the overall sample. Estimates were highest for females, individuals with a verb...

  7. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  8. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  9. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription.

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-10-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.

  10. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    Science.gov (United States)

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  11. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  12. Topology of a Membrane Associated Regulator of Prokaryotic DNA Replication

    National Research Council Canada - National Science Library

    Firshein, William

    1998-01-01

    This proposal has focused on a broad host range plasmid, RK2, as a model system to study how a pair of initiation proteins encoded by the plasmid for DNA replication function when replication occurs...

  13. The contribution to site core damage frequency from independent occurrences of initiators in two or more units: How low is it?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-San; Park, Jin Hee; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Stutzke estimated the site risk by summing the contribution from common cause initiators and the contribution from single-unit initiators. He considered some kinds of multi-unit accident sequences caused by single-unit initiators. However, the contribution from independent occurrences of initiators in two or more units at a site was not taken into account. The purpose of this study is to estimate the contribution to site core damage frequency (CDF) from simultaneous occurrences of independent initiators in two or more units at the same site. Some assumptions and methods used in this analysis are firstly described, and the results and conclusions of the analysis are described. In this study, the contribution to site core damage frequency (CDF) from simultaneous occurrences of independent initiators in two or more units at the same site was estimated. A Korean six-unit site was selected as the reference site and the at-power internal events Level 1 PSA model for an OPR1000 unit at the reference site was used as the base model, and was modified to deal with some major dependencies between units at the site. Specifically, the availability of the AAC D/G, dependencies between offsite power recovery actions in different unis, and inter-unit CCF modeling for risk-significant components such as diesel generators were taken into account. As a result, the sum of dual-unit CDF due to independent occurrences of initiators in two units at the reference site was estimated to be sufficiently low to be neglected.

  14. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    Science.gov (United States)

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  15. Overcoming natural replication barriers: differential helicase requirements.

    Science.gov (United States)

    Anand, Ranjith P; Shah, Kartik A; Niu, Hengyao; Sung, Patrick; Mirkin, Sergei M; Freudenreich, Catherine H

    2012-02-01

    DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.

  16. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamaichi

    2011-07-01

    Full Text Available There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products that surround the origin of replication (oriCII of Vibrio cholerae chromosome II (chrII are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  17. Completion Report for Multi-Site Incentive MRT 2779 Implement ASC Tripod Initiative by 30SEP08

    Energy Technology Data Exchange (ETDEWEB)

    East, D; Cerutti, J; Noe, J; Cupps, K; Loncaric, J; Sturtevant, J

    2008-09-22

    This report provides documentation and evidence for the completion of the deployment of the Tripod common operating system (TripodOS, also known as and generally referred to below as TOSS). Background documents for TOSS are provided in Appendices A and B, including the initial TOSS proposal accepted by ASC HQ and Executives in July 2007 and a Governance Model defined by a Tri-Lab working group in September 2007. Appendix C contains a document that clarifies the intent and requirements for the completion criteria associated with MRT 2779. The deployment of TOSS is a Multi-Site Incentive from the ASC FY08-09 Implementation Plan due at the end of Quarter 4 in FY08.

  18. The initial investigation of Fatu-ma-Futi : an ancient coastal village site, Tutuila Island, Territory of American Samoa

    International Nuclear Information System (INIS)

    Addison, D.J.; Walter, G.; Morrison, A.

    2007-01-01

    Results of inital excavations at Fatu-ma-Futi Village are reported. Stratigraphy in two test pits was similar, with compacted surface layers of a car-parking lot underlain by a layer of clayey sand, fire-affected rock and ancient pebble-gravel paving, which slowly graded into the original beach surface. Post-moulds, shell midden, and basalt flakes were found in both units and human remains in one. Near-basal radiocarbon dates on charcoal suggest initial occupation of a newly formed littoral environment in the period of about 1600 to 1300 cal BP. Permanent habitation came later, with evidence of large-scale basalt tool manufacture towards the end of the sequence. This site is important for understanding current topics in Samoan prehistory, including settlement pattern and coastal geomorphology, marine exploitation and reef health, human lifestyle, health and burial practices, domestic architectural morphology; and the Tutuila basal export industry. (author). 37 refs., 8 figs., 7 tabs

  19. Polyhomologation based on in situ generated Boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures

    KAUST Repository

    Zhang, Zhen; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2015-01-01

    A novel strategy, based on the in situ generated Boron-thexyl-silaboracyclic initiating sites for the polyhomologation of dimethylsulfoxonium methylide, has been developed for the synthesis of complex polyethylene-based architectures. As examples

  20. Formation and repair of DNA-protein cross-links (DPCs) in newly replicated DNA

    International Nuclear Information System (INIS)

    Chiu, S.; Friedman, L.R.; Oleinick, N.L.

    1987-01-01

    DPCs preferentially involve proteins of the nuclear matrix, the site of replication and transcription. To elucidate the relationship with replication, the formation and repair of DPCs has been studied in newly replicated DNA. Log-phase V79 cells were pulsed with /sup 3/H-TdR (10-20 μCi/ml) for 30-90 sec at 22 0 followed by up to a 60 min chase at 37 0 . Irradiation (0-100 Gy) immediately after the pulse increases the labeled DNA in DPCs with a dose-dependence that is unaffected by the initial level of labeled DPC or by chase time. When cells are irradiated before the pulse, DNA synthesis is inhibited; however, release of pulse-labeled DPCs appears normal. The data suggest that during replication, DNA is cross-linked to (matrix) protein, contributing to background DPCs

  1. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  2. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site

    International Nuclear Information System (INIS)

    Collins, C.J.; Underdahl, J.P.; Levene, R.B.; Ravera, C.P.; Morin, M.J.; Dombalagian, M.J.; Ricca, G.; Livingston, D.M.; Lynch, D.C.

    1987-01-01

    A series of overlapping cosmid genomic clones have been isolated that contain the entire coding unit of the human gene for van Willebrand factor (vWf), a major component of the hemostatic system. The cloned segments span ≅ 175 kilobases of human DNA sequence, and hybridization analysis suggest that the vWf coding unit is ≅150 kilobases in length. Within one of these clones, the vWF transcription initiation site has been mapped and a portion of the vWf promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the transcription start site. Sequencing of a segment of another genomic clone has revealed the vWF translation termination codon. Where tested, comparative restriction analysis of cloned and chromosomal DNA segments strongly suggests that no major alterations occurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-producing endothelial cells and nonexpressing leukocytes suggest that vWf gene expression is not accompanied by gross genomic rearrangements. In addition, there is significant homology of C-terminal coding sequences among the vWf genes of several vertebrate species

  3. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA

    Science.gov (United States)

    Andreeva, Irena

    2018-01-01

    During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5′ untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA. PMID:29632209

  4. Roles for Dam methylation in bacterial chromosome replication

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Koch, Birgit; Skovgaard, Ole

    GATC sequences in the DNA of Escherichia coli and related species are methylated at the adenine residue by DNA adenine methyltransferase (DamMT). These methylated residues and/or the level of DamMT influence initiation of chromosome replication from the replication origin, oriC, which contain...... for about one third of the cell cycle. During sequestration at least three mechanisms operate to lower the activity of the initiator protein, DnaA. First, the dnaA promoter, which also contains an excess of GATC sequences, is sequestered for the same period of time as oriC to prevent de novo DnaA synthesis....... Second, new DnaA binding sites outside oriC are generated by replication which serve to titrate free DNA protein. Third, after initiation, DnaA-ATP is converted to inactive DnaA-ADP by a process called RIDA (regulatory inactivation of DnaA), which is dependent on the beta-clamp of DNA polymerase III...

  5. Hepatitis C virus translation preferentially depends on active RNA replication.

    Directory of Open Access Journals (Sweden)

    Helene Minyi Liu

    Full Text Available Hepatitis C virus (HCV RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome.

  6. Activation of a yeast replication origin near a double-stranded DNA break.

    Science.gov (United States)

    Raghuraman, M K; Brewer, B J; Fangman, W L

    1994-03-01

    Irradiation in the G1 phase of the cell cycle delays the onset of DNA synthesis and transiently inhibits the activation of replication origins in mammalian cells. It has been suggested that this inhibition is the result of the loss of torsional tension in the DNA after it has been damaged. Because irradiation causes DNA damage at an undefined number of nonspecific sites in the genome, it is not known how cells respond to limited DNA damage, and how replication origins in the immediate vicinity of a damage site would behave. Using the sequence-specific HO endonuclease, we have created a defined double-stranded DNA break in a centromeric plasmid in G1-arrested cells of the yeast Saccharomyces cerevisiae. We show that replication does initiate at the origin on the cut plasmid, and that the plasmid replicates early in the S phase after linearization in vivo. These observations suggest that relaxation of a supercoiled DNA domain in yeast need not inactivate replication origins within that domain. Furthermore, these observations rule out the possibility that the late replication context associated with chromosomal termini is a consequence of DNA ends.

  7. Replication of kinetoplast minicircle DNA

    International Nuclear Information System (INIS)

    Sheline, C.T.

    1989-01-01

    These studies describe the isolation and characterization of early minicircle replication intermediates from Crithidia fasciculata, and Leishmania tarentolae, the mitochondrial localization of a type II topoisomerase (TIImt) in C. fasciculata, and the implication of the aforementioned TIImt in minicircle replication in L. tarentolae. Early minicircle replication intermediates from C. fasciculata were identified and characterized using isolated kinetoplasts to incorporate radiolabeled nucleotides into its DNA. The pulse-label in an apparent theta-type intermediate chase into two daughter molecules. A uniquely gapped, ribonucleotide primed, knotted molecule represents the leading strand in the model proposed, and a highly gapped molecule represents the lagging strand. This theta intermediate is repaired in vitro to a doubly nicked catenated dimer which was shown to result from the replication of a single parental molecule. Very similar intermediates were found in the heterogeneous population of minicircles of L. tarentolae. The sites of the Leishmania specific discontinuities were mapped and shown to lie within the universally conserved sequence blocks in identical positions as compared to C. fasciculata and Trypanosoma equiperdum

  8. Manual of Cupule Replication Technology

    Directory of Open Access Journals (Sweden)

    Giriraj Kumar

    2015-09-01

    Full Text Available Throughout the world, iconic rock art is preceded by non-iconic rock art. Cupules (manmade, roughly semi-hemispherical depressions on rocks form the major bulk of the early non-iconic rock art globally. The antiquity of cupules extends back to the Lower Paleolithic in Asia and Africa, hundreds of thousand years ago. When one observes these cupules, the inquisitive mind poses so many questions with regard to understanding their technology, reasons for selecting the site, which rocks were used to make the hammer stones used, the skill and cognitive abilities employed to create the different types of cupules, the objective of their creation, their age, and so on. Replication of the cupules can provide satisfactory answers to some of these questions. Comparison of the hammer stones and cupules produced by the replication process with those obtained from excavation can provide support to observations. This paper presents a manual of cupule replication technology based on our experience of cupule replication on hard quartzite rock near Daraki-Chattan in the Chambal Basin, India.

  9. Recent advances in the genome-wide study of DNA replication origins in yeast

    Directory of Open Access Journals (Sweden)

    Chong ePeng

    2015-02-01

    Full Text Available DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs. Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genome. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some nonconventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve the replication origins prediction.

  10. Recent advances in the genome-wide study of DNA replication origins in yeast

    Science.gov (United States)

    Peng, Chong; Luo, Hao; Zhang, Xi; Gao, Feng

    2015-01-01

    DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some non-conventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve yeast replication origins prediction. PMID:25745419

  11. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  12. Methane ebullition fluxes from northern peatlands: initial observations from four sites of contrasting vegetation type in Caribou Bog, ME

    Science.gov (United States)

    Slater, L. D.; Comas, X.; Mumford, K. G.; Reeve, A. S.; Varner, R. K.; Chen, X.; Wright, W.; Wright, J.; Molnar, I. L.; Krol, M.

    2017-12-01

    The contribution of peatlands to the atmospheric CH4 burden remains unclear in large part due to incomplete understanding of the ebullition pathway. Oxidation of dissolved methane reduces the release of methane by diffusion, but the transit time of bubbles released via ebullition is too short for extensive oxidation to occur, i.e. ebullition releases increase the greenhouse gas potential of peatlands. We are working to couple innovative strategies for ebullition monitoring with a physical model describing gas transport in terms of the mechanical properties of the peat. This integration of measurement and modeling will permit a fundamental step forward towards a more quantitative understanding of CH4 ebullition from peatlands. Sampling and sensor installation have been performed in Caribou Bog, a multi-unit peatland located in Maine (USA) where an extensive database accounting for a decade of research is already available from previous work examining methane dynamics. Multi-depth gas trap and moisture probe arrays have been installed at four sites selected based on contrasting vegetation type and peat basin depth determined from extensive ground penetrating radar surveys. Hydraulic head measurements have also been acquired on multi-level piezometers designed to capture transient signals associated with gas transport. Cores and initial field observations acquired in summer 2017 confirm that the physical properties of the peat vary markedly between the sites and influence gas storage and release. An existing ebullition model describing gas bubble expansion is being coupled with an invasion percolation approach to describe the transport of CH4 between multiple peat layers by both diffusion in the pore water and ebullition between layers. Although the proposed model does not explicitly incorporate the geomechanical properties of peat, model predictions for maximum gas contents are being compared with key measurable geomechanical properties (including measured capillary

  13. New view on the initial development site and radiographic classification system of osteoarthritis of the knee based on radiographic analysis.

    Science.gov (United States)

    Moon, Ki-Ho

    2012-12-01

    Radiographic pathology of severe osteoarthritis of the knee (OAK) such as severe osteophyte at tibial spine (TS), compartment narrowing, marginal osteophyte, and subchondral sclerosis is well known. Kellgren-Lawrence grading system, which is widely used to diagnose OAK, describes narrowing-marginal osteophyte in 4-grades but uses osteophyte at TS only as evidence of OAK without detailed-grading. However, kinematically the knee employs medial TS as an axis while medial and lateral compartments carry the load, suggesting that early OAK would occur sooner at TS than at compartment. Then, Kellgren-Lawrence system may be inadequate to diagnose early-stage OAK manifested as a subtle osteophyte at TS without narrowing-marginal osteophyte. This undiagnosed-OAK will deteriorate becoming a contributing factor in an increasing incidence of OAK. This study developed a radiographic OAK-marker based on both osteophyte at TS and compartment narrowing-marginal osteophyte and graded as normal, mild, moderate, and severe. With this marker, both knee radiographs of 1,728 patients with knee pain were analyzed. Among 611 early-stage mild OAK, 562 or 92% started at TS and 49 or 8% at compartment. It suggests the initial development site of OAK, helping develop new site-specific radiographic classification system of OAK accurately to diagnose all severity of OAK at early, intermediate, or late-stage. It showed that Kellgren-Lawrence system missed 92.0% of early-stage mild OAK from diagnosis. A subtle osteophyte at TS is the earliest radiographic sign of OAK. A new radiographic classification system of OAK was suggested for accurate diagnosis of all OAK in severity and at stage.

  14. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  15. Application of a topical vapocoolant spray decreases pain at the site of initial intradermal anaesthetic injection during ultrasound-guided breast needle biopsy

    International Nuclear Information System (INIS)

    Collado-Mesa, F.; Net, J.M.; Arheart, K.; Klevos, G.A.; Yepes, M.M.

    2015-01-01

    Aim: To assess whether the application of a topical vapocoolant spray immediately prior to initial intradermal anaesthetic injection during ultrasound-guided breast biopsy decreases pain at the site of the initial injection. Materials and methods: In this institutional review board-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant study, 50 women aged 49.1 ± 1.6 years (mean ± standard error) were recruited and provided written informed consent. Participants served as their own controls and were blinded as to whether a topical vapocoolant spray or a placebo was used immediately prior to the initial local anaesthetic injection at two separate biopsy sites. With the exception of the application of vapocoolant or placebo, the entire ultrasound-guided procedure was performed according to a routine protocol. Participants recorded pain at initial injection site on a visual analogue scale. General linear mixed models for repeated measures analysis of variance and a 0.05 significance level were used. Results: Application of topical vapocoolant spray was shown to significantly decrease pain at the site of initial intradermal anaesthetic injection as compared to placebo (p<0.001). Treatment effect was independent of age of the subject, race/ethnicity, operator, type of biopsy device, and histopathology result. No complications from vapocoolant spray use were reported. Conclusion: Application of a topical vapocoolant spray immediately prior to initial intradermal anaesthetic injection during ultrasound-guided breast biopsy significantly decreases pain at the site of the initial injection and could contribute to improve the patient's overall procedural experience. -- Highlights: •Topical vapocoolant spray decreased pain at site of initial anesthetic injection (

  16. Rescue from replication stress during mitosis.

    Science.gov (United States)

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  17. Integrated Features by Administering the Support Vector Machine (SVM of Translational Initiations Sites in Alternative Polymorphic Contex

    Directory of Open Access Journals (Sweden)

    Nurul Arneida Husin

    2012-04-01

    Full Text Available Many algorithms and methods have been proposed for classification problems in bioinformatics. In this study, the discriminative approach in particular support vector machines (SVM is employed to recognize the studied TIS patterns. The applied discriminative approach is used to learn about some discriminant functions of samples that have been labelled as positive or negative. After learning, the discriminant functions are employed to decide whether a new sample is true or false. In this study, support vector machines (SVM is employed to recognize the patterns for studied translational initiation sites in alternative weak context. The method has been optimized with the best parameters selected; c=100, E=10-6 and ex=2 for non linear kernel function. Results show that with top 5 features and non linear kernel, the best prediction accuracy achieved is 95.8%. J48 algorithm is applied to compare with SVM with top 15 features and the results show a good prediction accuracy of 95.8%. This indicates that the top 5 features selected by the IGR method and that are performed by SVM are sufficient to use in the prediction of TIS in weak contexts.

  18. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand.

    Science.gov (United States)

    Yasukawa, Takehiro; Reyes, Aurelio; Cluett, Tricia J; Yang, Ming-Yao; Bowmaker, Mark; Jacobs, Howard T; Holt, Ian J

    2006-11-15

    Using two-dimensional agarose gel electrophoresis, we show that mitochondrial DNA (mtDNA) replication of birds and mammals frequently entails ribonucleotide incorporation throughout the lagging strand (RITOLS). Based on a combination of two-dimensional agarose gel electrophoretic analysis and mapping of 5' ends of DNA, initiation of RITOLS replication occurs in the major non-coding region of vertebrate mtDNA and is effectively unidirectional. In some cases, conversion of nascent RNA strands to DNA starts at defined loci, the most prominent of which maps, in mammalian mtDNA, in the vicinity of the site known as the light-strand origin.

  19. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  20. Who Needs Replication?

    Science.gov (United States)

    Porte, Graeme

    2013-01-01

    In this paper, the editor of a recent Cambridge University Press book on research methods discusses replicating previous key studies to throw more light on their reliability and generalizability. Replication research is presented as an accepted method of validating previous research by providing comparability between the original and replicated…

  1. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group.

    Science.gov (United States)

    Fukuda, M; Meshi, T; Okada, Y; Otsuki, Y; Takebe, I

    1981-07-01

    The initiation site for reconstitution on genome RNA was determined by electron microscopic serology for a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is chemically and serologically related to tobacco mosaic virus (TMV). The initiation site was located at the same position as that of the cowpea strain, a virus that produces short rods of encapsidated subgenomic messenger RNA for the coat protein (a two-component TMV), being about 320 nucleotides away from the 3' terminus, and hence within the coat protein cistron. Although CGMMV-W was until now believed to be a single-component TMV, the location of the initiation site indicated the presence of short rods containing coat protein messenger RNA in CGMMV-W-infected tissue, as in the case for the cowpea strain. We found such short rods in CGMMV-W-infected tissue. The results confirmed our previous hypothesis that the site of the initiation region for reconstitution determines the rod multiplicity of TMV. The finding of the second two-component TMV, CGMMV, indicates that the cowpea strain of TMV is not unique in being a two-component virus and that the location of the assembly initiation site on the genome RNA can be a criterion for grouping of viruses.

  2. Replication Protein A (RPA) Phosphorylation Prevents RPA Association with Replication Centers

    OpenAIRE

    Vassin, Vitaly M.; Wold, Marc S.; Borowiec, James A.

    2004-01-01

    Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2D) or alanine (RPA2A). Although RPA2D was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2D mutant was selectively unable to associate with re...

  3. Initial Tuning Sebagai Salah Satu Metode Pengoptimalan New Site Pada Jaringan Seluler Gsm (Studi Kasus Pada Area Kerja Pt. Sinergi Telecom Under Ericsson Network

    Directory of Open Access Journals (Sweden)

    Hesti Susilawati

    2007-02-01

    Full Text Available The development of new sites by telecommunication network operator, especially GSM network, purposes for more increase performance and give satisfy for consument. Performance of a site is most affecting for value of network quality totally. New site builded must be monitorized and optimized by its existing in order to can be more realible on serving society with the method that was mentioned “initial tuning activity”. On this method must be concerned some matter as like: application of accurate frequency for avoiding interference problem, creating neighbour relationship between ex isting site and new site, detection for faulth installation for arranging re-use frequency concept, setting accurate coverage, olso changing tilt angle for accurate main beam area. This arrangement must be conditioned on a new site that still “default”, so it can improve quality. On operator side, they have some criteria that must be passed by a new site. Initial tuning activity on Site Simpang RGM had been proved on passing  that site from recommended criteria, olso being totally indicated more increase pe rformance of network

  4. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  5. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication

    Directory of Open Access Journals (Sweden)

    Michael Niepmann

    2018-03-01

    Full Text Available Hepatitis C virus (HCV preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES in the 5′ untranslated region (5′ UTR, while also downstream elements like the cis-replication element (CRE in the coding region and the 3′ UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5′- and 3′-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA–RNA interactions (LRIs are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122 binds to two target sites at the 5′ end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3′ UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in

  6. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication.

    Science.gov (United States)

    Niepmann, Michael; Shalamova, Lyudmila A; Gerresheim, Gesche K; Rossbach, Oliver

    2018-01-01

    Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis -replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis -elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis -elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis -elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis -element in question acts on HCV

  7. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chro......Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division......, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple......-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive...

  8. Mapping of RNA initiation sites by high doses of uv iradiation: evidence for three independent promoters within the left 11% of the Ad-2 genome

    International Nuclear Information System (INIS)

    Wilson, M.C.; Fraser, N.W.; Darnell, J.E. Jr.

    1979-01-01

    Cells infected with Ad-2 virus were irradiated so that uv-induced lesions were introduced every 500 to 1000 nucleotides in the genomes, consequently leading to the premature termination of RNA transcription. Such cells when labeled with [ 3 H]uridine accumulate labeled promoter proximal RNA. Hybridization of this RNA after size fractionation to restriction fragments of the Ad-2 genome allowed the identification of DNA sequences containing active RNA initiation sites. Early during the infectious cycle two active RNA initiation sites were found within the left 11% of the Ad-2 genome within the 0 to 3.0 and 4.4 to 8.0 restriction fragments. During late infection (15 hr) an additional uv resistant transcript was detected indicating that a newly activated RNA initiation site, presumably for protein IX, resides within the fragment 8.0 to 11.2

  9. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Jyoti K.; Li, Mi; Ghirlando, Rodolfo; Miller Jenkins, Lisa M.; Wlodawer, Alexander; Chattoraj, Dhruba; Dunny, Gary M.

    2017-04-18

    Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations inrctBthat reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding. IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication ofVibrio choleraeChr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that

  10. Mean rate of DNA replication and replicon size in the shoot apex of Silence coeli-rosa. During the initial 120 minutes of the first day of floral induction

    International Nuclear Information System (INIS)

    Ormrod, J.C.; Francis, D.

    1986-01-01

    28-day-old plants of Silence coeli-rosa were exposed, at 1700 hours, to long day (LD) conditions comprising light of low fluence rate provided by tungsten bulbs, or maintained in darkness as short day (SD) controls. All plants were exposed at 1700 hours to tritiated-(methyl- 3 H)-thymidine for 30, 45, 60, 90, or 120 minutes. Apical domes were isolated and prepared as fiber autoradiographs from which replicon size and rates of DNA replication, per single replication fork were recorded. In SD, replicon size was between 15-20 μm and exposure to LD conditions altered neither replicon size nor the pattern of deployment of replicons during S-phase relative to the SD controls. However, the mean rate of replication in LD was 8.7 μm h -1 compared with 5.2 μm h -1 in SD. Thus, exposure to LD resulted in a 1.7-fold increase in the rate of DNA replication relative to the SD controls. This rapid increase in replication rate, detectable within 30 minutes of the start of the LD is discussed in relation to changes known to occur to the cell cycle in Silene during the first day of floral induction. (Author)

  11. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  12. Registered Replication Report

    DEFF Research Database (Denmark)

    Bouwmeester, S.; Verkoeijen, P. P.J.L.; Aczel, B.

    2017-01-01

    and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed...... the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned...

  13. Feasibility Study of Biopower in East Helena, Montana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former American Smelting and Refining Company (Asarco) smelter in East Helena, Montana, was selected for a feasibility study under the initiative. Biomass was chosen as the renewable energy resource based on the wood products industry in the area. Biopower was selected as the technology based on Montana's renewable portfolio standard (RPS) requiring utilities to purchase renewable power.

  14. The replication recipe : What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, Ap; Farach, Frank J.; Geller, Jason; Giner-Sorolla, Roger; Grange, James A.; Perugini, Marco; Spies, Jeffrey R.; van 't Veer, Anna

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  15. The Replication Recipe: What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, A.J.; Farach, F.J.; Geller, J.; Giner-Sorolla, R.; Grange, J.A.; Perugini, M.; Spies, J.R.; Veer, A. van 't

    2014-01-01

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  16. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  17. Chromatin Immunoprecipitation of Replication Factors Moving with the Replication Fork

    OpenAIRE

    Rapp, Jordan B.; Ansbach, Alison B.; Noguchi, Chiaki; Noguchi, Eishi

    2009-01-01

    Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization ...

  18. A New Replication Norm for Psychology

    Directory of Open Access Journals (Sweden)

    Etienne P LeBel

    2015-10-01

    Full Text Available In recent years, there has been a growing concern regarding the replicability of findings in psychology, including a mounting number of prominent findings that have failed to replicate via high-powered independent replication attempts. In the face of this replicability “crisis of confidence”, several initiatives have been implemented to increase the reliability of empirical findings. In the current article, I propose a new replication norm that aims to further boost the dependability of findings in psychology. Paralleling the extant social norm that researchers should peer review about three times as many articles that they themselves publish per year, the new replication norm states that researchers should aim to independently replicate important findings in their own research areas in proportion to the number of original studies they themselves publish per year (e.g., a 4:1 original-to-replication studies ratio. I argue this simple approach could significantly advance our science by increasing the reliability and cumulative nature of our empirical knowledge base, accelerating our theoretical understanding of psychological phenomena, instilling a focus on quality rather than quantity, and by facilitating our transformation toward a research culture where executing and reporting independent direct replications is viewed as an ordinary part of the research process. To help promote the new norm, I delineate (1 how each of the major constituencies of the research process (i.e., funders, journals, professional societies, departments, and individual researchers can incentivize replications and promote the new norm and (2 any obstacles each constituency faces in supporting the new norm.

  19. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  20. In vitro replication of poliovirus

    International Nuclear Information System (INIS)

    Lubinski, J.M.

    1986-01-01

    Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis of the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' 32 P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed

  1. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  2. Polyhomologation based on in situ generated Boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures

    KAUST Repository

    Zhang, Zhen

    2015-04-10

    A novel strategy, based on the in situ generated Boron-thexyl-silaboracyclic initiating sites for the polyhomologation of dimethylsulfoxonium methylide, has been developed for the synthesis of complex polyethylene-based architectures. As examples, the synthesis of a 4-arm polyethylene star, three (polystyrene)(polyethylene)2 3-miktoarm stars and a PE-branched double graft copolymers are given.

  3. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo

    International Nuclear Information System (INIS)

    Rivera, Angel A.; Wang Minghui; Suzuki, Kaori; Uil, Taco G.; Krasnykh, Victor; Curiel, David T.; Nettelbeck, Dirk M.

    2004-01-01

    The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdΔE1AIL), the early gene E2B (AdΔE2BIL), or the late fiber gene (AdΔfiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdΔE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdΔE1AIL) to six (AdΔfiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdΔE2BIL, AdΔfiberIL, and AdTL. AdΔfiberIL and the parental virus, Ad5-Δ24, resulted in similar cytotoxicity, but AdΔE2BIL and AdΔE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdΔE2BIL and AdΔfiberIL, but substantial for AdΔE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression

  4. Active role of a human genomic insert in replication of a yeast artificial chromosome.

    Science.gov (United States)

    van Brabant, A J; Fangman, W L; Brewer, B J

    1999-06-01

    Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.

  5. Development and Validation of a Preprocedural Risk Score to Predict Access Site Complications After Peripheral Vascular Interventions Based on the Vascular Quality Initiative Database

    Directory of Open Access Journals (Sweden)

    Daniel Ortiz

    2016-01-01

    Full Text Available Purpose: Access site complications following peripheral vascular intervention (PVI are associated with prolonged hospitalization and increased mortality. Prediction of access site complication risk may optimize PVI care; however, there is no tool designed for this. We aimed to create a clinical scoring tool to stratify patients according to their risk of developing access site complications after PVI. Methods: The Society for Vascular Surgery’s Vascular Quality Initiative database yielded 27,997 patients who had undergone PVI at 131 North American centers. Clinically and statistically significant preprocedural risk factors associated with in-hospital, post-PVI access site complications were included in a multivariate logistic regression model, with access site complications as the outcome variable. A predictive model was developed with a random sample of 19,683 (70% PVI procedures and validated in 8,314 (30%. Results: Access site complications occurred in 939 (3.4% patients. The risk tool predictors are female gender, age > 70 years, white race, bedridden ambulatory status, insulin-treated diabetes mellitus, prior minor amputation, procedural indication of claudication, and nonfemoral arterial access site (model c-statistic = 0.638. Of these predictors, insulin-treated diabetes mellitus and prior minor amputation were protective of access site complications. The discriminatory power of the risk model was confirmed by the validation dataset (c-statistic = 0.6139. Higher risk scores correlated with increased frequency of access site complications: 1.9% for low risk, 3.4% for moderate risk and 5.1% for high risk. Conclusions: The proposed clinical risk score based on eight preprocedural characteristics is a tool to stratify patients at risk for post-PVI access site complications. The risk score may assist physicians in identifying patients at risk for access site complications and selection of patients who may benefit from bleeding avoidance

  6. Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond

    DEFF Research Database (Denmark)

    Østergaard, Vibe Hallundbæk; Lisby, Michael

    2017-01-01

    transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription–replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how...... transcription–replication conflicts transition from S phase into various aberrant DNA structures in mitosis....

  7. Travelers' use of the WSDOT traffic conditions web site : customer satisfaction evaluation -- Metropolitan Model Deployment Initiative : Seattle, Washington

    Science.gov (United States)

    2000-01-28

    This report presents the results of an evaluation of public use of the Washington State Department of Transportation's (WSDOT) traffic conditions web site. This research was sponsored by the US Department of Transportation to assess customer satisfac...

  8. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    Science.gov (United States)

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Initial data of seismic input and soil conditions of Kozloduy NPP site. Extension to Part 2 soil conditions, issued October '93

    International Nuclear Information System (INIS)

    Boyadjiev, Z.

    1995-01-01

    On the basis of the results of the carried out experimental (laboratory and in situ) investigations of the dynamic characteristics, the following conclusions for the Kozloduy NPP site are presented. (1) The established through experimental studies relationships for the shear module and the damping factor as strain dependent of representative samples of soils of the site profile, can be used for all similar soils in the profile in the different parts of the site, taking into account the possible differences by means of the initial shear module in the normalized relationship for the respective generalized soil type. (2) When solving the problems of the site response and the 'soil - structure analysis', the geotechnical seismic model of the 'free field' profile can be assumed for all parts of the NPP site. (3) The changes of the lithological profile in different parts of the site, in respect to type and thickness, as well as in view of the different way and depth of the NPP structures foundation, make it necessary the elaboration of a geotechnical seismic model of the profile below the foundation plates of the reactor buildings of the NPP units in each particular case. These models can be made out on the basis of the summarized data about the shear velocities of the soil types, the lithological data of the studied boreholes in these places and the data having natural bulk density from 30 - 40 m depth determined by the laboratory studies of samples of these soils, assuming with approximation that the geotechnical seismic model below this depth is the same as the one of the 'free field'. (4) Studies have been carried out through in situ and laboratory studies of all the fundamental structures on the NPP site and the results of them are sufficient as an addition to the present initial data for solving the problems of the site response and the 'soil-structure inter-action' analyses of each structure

  10. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerisation initiators

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the

  11. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation

    DEFF Research Database (Denmark)

    Feng, Yunpeng; Vlassis, Arsenios; Roques, Céline

    2016-01-01

    implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1...

  12. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex.

    Science.gov (United States)

    Hiraga, Shin-Ichiro; Alvino, Gina M; Chang, Fujung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J; Weinreich, Michael; Raghuraman, M K; Donaldson, Anne D

    2014-02-15

    Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.

  13. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    Science.gov (United States)

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-06-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way.

  14. Rif1 Binding and Control of Chromosome-Internal DNA Replication Origins Is Limited by Telomere Sequestration.

    Science.gov (United States)

    Hafner, Lukas; Lezaja, Aleksandra; Zhang, Xu; Lemmens, Laure; Shyian, Maksym; Albert, Benjamin; Follonier, Cindy; Nunes, Jose Manuel; Lopes, Massimo; Shore, David; Mattarocci, Stefano

    2018-04-24

    The Saccharomyces cerevisiae telomere-binding protein Rif1 plays an evolutionarily conserved role in control of DNA replication timing by promoting PP1-dependent dephosphorylation of replication initiation factors. However, ScRif1 binding outside of telomeres has never been detected, and it has thus been unclear whether Rif1 acts directly on the replication origins that it controls. Here, we show that, in unperturbed yeast cells, Rif1 primarily regulates late-replicating origins within 100 kb of a telomere. Using the chromatin endogenous cleavage ChEC-seq technique, we robustly detect Rif1 at late-replicating origins that we show are targets of its inhibitory action. Interestingly, abrogation of Rif1 telomere association by mutation of its Rap1-binding module increases Rif1 binding and origin inhibition elsewhere in the genome. Our results indicate that Rif1 inhibits replication initiation by interacting directly with origins and suggest that Rap1-dependent sequestration of Rif1 increases its effective concentration near telomeres, while limiting its action at chromosome-internal sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Directory of Open Access Journals (Sweden)

    Jyoti K. Jha

    2017-04-01

    Full Text Available Replication of Vibrio cholerae chromosome 2 (Chr2 depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.

  16. Evolution of Replication Machines

    Science.gov (United States)

    Yao, Nina Y.; O'Donnell, Mike E.

    2016-01-01

    The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some “gears” of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the “replisome” machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus. PMID:27160337

  17. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20...

  18. A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I. Methodology development and initial results.

    Science.gov (United States)

    Mayes, W M; Johnston, D; Potter, H A B; Jarvis, A P

    2009-10-15

    In regions affected by historic non-coal (principally metal) mining activity, government agencies are often faced with the challenge of deploying limited remedial resources at abandoned mine sites to achieve maximum improvements in the chemical and ecological quality of impacted ground and surface waters. As such, strategies for the defensible allocation of public funds require comprehensive and systematic frameworks by which to identify and prioritise polluting sites for remediation. This paper describes the development and initial findings of such a national initiative in England and Wales which allies catchment-scale environmental impact assessments using existing public archive data, with recognition of the uncertainty in impact appraisals arising from disparities in data availability between sites and regions. The methodology identifies polluting sites and takes account not only of the chemical and ecological impacts of mine water discharges on receiving watercourses, but also of socio-economic factors such as conservation and heritage concerns, which can both impede or complement efforts to remediate mine sites. Using a Geographic Information System database and a suite of spatial analyses employing Boolean operators, both the extent of the pollution problem from abandoned non-coal mines in England and Wales (6% of 7815 surface water bodies are affected nationally) and the insight that can be gleaned from systematic analyses of existing archive data are highlighted. The results of the nationwide survey can be used as a dynamic database to inform future remedial planning, in terms of prioritising impacted river basins and abandoned non-coal mine sites themselves for either remediation or future monitoring efforts. As the assessment framework is built upon existing water quality and ecological data and mine site/geological data, there is considerable scope for the approach to be applied elsewhere where the legacy of historic mining persists through the

  19. Risk of Porphyromonas gingivalis recolonization during the early period of periodontal maintenance in initially severe periodontitis sites.

    Science.gov (United States)

    Fujise, Osamu; Miura, Mayumi; Hamachi, Takafumi; Maeda, Katsumasa

    2006-08-01

    Porphyromonas gingivalis is considered a critical pathogen of periodontal diseases including recurrent periodontitis. The profound effects of active periodontal treatment (APT) on P. gingivalis elimination were previously demonstrated and revealed that the subsequent P. gingivalis-free or -suppressed status seems to be maintained during early periodontal maintenance (PMT). The aim of the present study was to show the occurrence of microbial recolonization during this early PMT period. In total, 128 sites from 11 generalized chronic periodontitis patients and one generalized aggressive periodontitis patient underwent clinical and microbiologic examination at baseline (Exam-I), after APT (Exam-II), and in PMT (Exam-III). Exam-III was carried out an average of 4.5 +/- 3.5 months after Exam-II. Detection and quantification of putative pathogens were performed using a polymerase chain reaction-based method. The PMT used was effective in maintaining the clinical conditions improved by APT. However, in microbiological examinations, Exam-III showed higher detection frequency and levels of P. gingivalis than Exam-II. This suggests that a P. gingivalis recolonization started in the early PMT period. P. gingivalis-increased sites then showed significantly more severe signs of periodontitis in Exam-I than P. gingivalis-stable sites (bleeding on probing frequency: 76.7% versus 56.5%; suppuration frequency: 41.9% versus 12.9%). On the other hand, in Exam-II, no significant differences of clinical parameters were noted between P. gingivalis-increased and -stable sites. Severe periodontitis sites before APT seemed to place them at risk of P. gingivalis recolonization in the early PMT period, and this microbial restoration could be a cause of recurrent periodontitis.

  20. Melanoma Patients with Unknown Primary Site or Nodal Recurrence after Initial Diagnosis Have a Favourable Survival Compared to Those with Synchronous Lymph Node Metastasis and Primary Tumour

    OpenAIRE

    Weide, Benjamin; Faller, Christine; Els?sser, Margrit; B?ttner, Petra; Pflugfelder, Annette; Leiter, Ulrike; Eigentler, Thomas Kurt; Bauer, J?rgen; Meier, Friedegund; Garbe, Claus

    2013-01-01

    BACKGROUND: A direct comparison of prognosis between patients with regional lymph node metastases (LNM) detected synchronously with the primary melanoma (primary LNM), patients who developed their first LNM subsequently (secondary LNM) and those with initial LNM in melanoma with unknown primary site (MUP) is missing thus far. PATIENTS AND METHODS: Survival of 498 patients was calculated from the time point of the first macroscopic LNM using Kaplan Meier and multivariate Cox hazard regression ...

  1. Site-directed subsurface environmental initiative: Five year summary and plan for fundamental research in subsoils and in groundwater, FY 1989-FY 1993

    International Nuclear Information System (INIS)

    1987-10-01

    The overall goal of this research initiative is to develop the necessary scientific basis for resolution of key technical obstacles to defining and remediating contamination at DOE and other waste sites. To accomplish this goal, the resouces of the national laboratories, universities, and DOE sites will be fully utilized to develop and demonstrate improved, cost-effective, and environmentally acceptable techniques for predicting the behavior of contaminants and reducing their concentrations in ground water. This document is a preliminary plan to set general research directions for a program extending into the 1990s. The needs and milestones identified in this plan may change with additional guidance from DOE sites. Promising research opportunities will be identified as part of national laboratory submissions of preliminary proposals

  2. Initial Response of Pine Seedlings and Weeds to Dried Sewage Sludge in Rehabilitation of an Eroded Forest Site

    Science.gov (United States)

    Charles R. Berry

    1977-01-01

    Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...

  3. Finite element analysis of the influence of elastic anisotropy on stress intensification at stress corrosion cracking initiation sites in fcc alloys

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2018-05-01

    A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.

  4. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, O.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  6. The fork and the kinase: a DNA replication tale from a CHK1 perspective.

    Science.gov (United States)

    González Besteiro, Marina A; Gottifredi, Vanesa

    2015-01-01

    Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Tomato leaf curl Kerala virus (ToLCKeV AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1

    Directory of Open Access Journals (Sweden)

    Mukherjee Sunil K

    2010-06-01

    Full Text Available Abstract Background Geminiviruses are emerging plant viruses that infect a wide variety of vegetable crops, ornamental plants and cereal crops. They undergo recombination during co-infections by different species of geminiviruses and give rise to more virulent species. Antiviral strategies targeting a broad range of viruses necessitate a detailed understanding of the basic biology of the viruses. ToLCKeV, a virus prevalent in the tomato crop of Kerala state of India and a member of genus Begomovirus has been used as a model system in this study. Results AC3 is a geminiviral protein conserved across all the begomoviral species and is postulated to enhance viral DNA replication. In this work we have successfully expressed and purified the AC3 fusion proteins from E. coli. We demonstrated the higher order oligomerization of AC3 using sucrose gradient ultra-centrifugation and gel-filtration experiments. In addition we also established that ToLCKeV AC3 protein interacted with cognate AC1 protein and enhanced the AC1-mediated ATPase activity in vitro. Conclusions Highly hydrophobic viral protein AC3 can be purified as a fusion protein with either MBP or GST. The purification method of AC3 protein improves scope for the biochemical characterization of the viral protein. The enhancement of AC1-mediated ATPase activity might lead to increased viral DNA replication.

  8. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bugge

    2006-01-01

    Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication...

  9. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    DEFF Research Database (Denmark)

    Goldar, A.; Arneodo, A.; Audit, B.

    2016-01-01

    , and by taking into account the chromatin's fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement...

  10. Signal replication in a DNA nanostructure

    Science.gov (United States)

    Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan

    2017-01-01

    Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.

  11. Robotic Laparoendoscopic Single-site Retroperitioneal Renal Surgery: Initial Investigation of a Purpose-built Single-port Surgical System.

    Science.gov (United States)

    Maurice, Matthew J; Ramirez, Daniel; Kaouk, Jihad H

    2017-04-01

    Robotic single-site retroperitoneal renal surgery has the potential to minimize the morbidity of standard transperitoneal and multiport approaches. Traditionally, technological limitations of non-purpose-built robotic platforms have hindered the application of this approach. To assess the feasibility of retroperitoneal renal surgery using a new purpose-built robotic single-port surgical system. This was a preclinical study using three male cadavers to assess the feasibility of the da Vinci SP1098 surgical system for robotic laparoendoscopic single-site (R-LESS) retroperitoneal renal surgery. We used the SP1098 to perform retroperitoneal R-LESS radical nephrectomy (n=1) and bilateral partial nephrectomy (n=4) on the anterior and posterior surfaces of the kidney. Improvements unique to this system include enhanced optics and intelligent instrument arm control. Access was obtained 2cm anterior and inferior to the tip of the 12th rib using a novel 2.5-cm robotic single-port system that accommodates three double-jointed articulating robotic instruments, an articulating camera, and an assistant port. The primary outcome was the technical feasibility of the procedures, as measured by the need for conversion to standard techniques, intraoperative complications, and operative times. All cases were completed without the need for conversion. There were no intraoperative complications. The operative time was 100min for radical nephrectomy, and the mean operative time was 91.8±18.5min for partial nephrectomy. Limitations include the preclinical model, the small sample size, and the lack of a control group. Single-site retroperitoneal renal surgery is feasible using the latest-generation SP1098 robotic platform. While the potential of the SP1098 appears promising, further study is needed for clinical evaluation of this investigational technology. In an experimental model, we used a new robotic system to successfully perform major surgery on the kidney through a single small

  12. Demonstration of an initial screening phase for site selection for low level radioactive waste burial - an evaluation of relevant IAEA guidelines

    International Nuclear Information System (INIS)

    1984-04-01

    Low level radioactive wastes, arising from the use of radioisotopes in medicine and industry are accumulating throughout Australia. The rate of accumulation has not been large and storage of these wastes close to the point of use has proved practicable to date, but consideration must now be given to a central repository or repositories for these low level wastes. This report considers the question of selecting a site suitable for disposal of wastes by shallow ground burial. It attempts to asses the practicability of using factors suggested by the IAEA for the initial phase of site screening. The screening process described has essentially two stages. In the first, New South Wales was divided into broad structural units and these ranked in order of suitability. In the second stage, survey sites in which thick clay beds outcropped were delineated in the five highest ranking structural units. These survey sites were ranked on the basis of various geomorphological properties which largely described the hydrogeology of the site

  13. TSPA 1991: An initial total-system performance assessment for Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.W.; Wilson, M.L.; Dockery, H.A.; Kaplan, P.G.; Eaton, R.R.; Bingham, F.W. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

    1992-07-01

    This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulative distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.

  14. Environmental Impacts of Petroleum Production: Initial Results from the Osage-Skiatook Petroleum Environmental Research Sites, Osage County, Oklahoma

    Science.gov (United States)

    Kharaka, Yousif K.; Otton, James K.

    2003-01-01

    Exploration for and production of petroleum have caused major detrimental impacts to soils, surface and ground waters, and the local ecosystems in the United States. These impacts arise primarily from the improper disposal of large volumes of saline water produced with oil and gas, from accidental hydrocarbon and produced water releases, and from abandoned oil wells that were not correctly sealed. It is important to understand the long-term and short-term effects of produced water and hydrocarbon releases from these sites in order to develop risk-based remediation plans. Remediation is particularly needed in aging and depleted fields where land use is changing from petroleum production to residential, agricultural or recreational uses. About 20 scientists from the USGS and other governmental agencies and academia are involved in a multidisciplinary investigation to study the transport, fate, and natural attenuation of inorganic salts, trace metals, organic compounds and radionuclides present in produced water, and their impacts at the Osage-Skiatook Petroleum Environmental Research (OSPER) 'A' and 'B' sites, located on the Osage Reservation in Osage County, Oklahoma. Stakeholders in the project include the Osage Nation, which holds the mineral rights, the Bureau of Indian Affairs with trust responsibility, and the Army Corps of Engineers, which owns the surface rights at these sites and manages adjacent Skiatook Lake. The 4250-hectare Skiatook Lake provides drinking water to local Tulsa suburban communities and a rural water district, and offers recreational fishing and boating opportunities to tens of thousands of visitors each year. Approximately 1.5 and 1.0 hectare of land at the OSPER 'A' (depleted Lester lease) and 'B' (active Branstetter lease) sites, respectively, are affected by salt scarring, tree kills, soil salinization and brine and petroleum contamination due to the leakage of produced water and associated hydrocarbons from brine pits and accidental

  15. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  16. Mechanisms of DNA replication termination.

    Science.gov (United States)

    Dewar, James M; Walter, Johannes C

    2017-08-01

    Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.

  17. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  18. Basement Basalts from IODP Site 1438, Amami-Sankaku Basin: Implications for Sources and Melting Processes during Subduction Initiation in the Izu-Bonin-Mariana System

    Science.gov (United States)

    McCarthy, A. J.; Hickey-Vargas, R.; Yogodzinski, G. M.; Ishizuka, O.; Hocking, B.; Bizimis, M.; Savov, I. P.; Kusano, Y.; Arculus, R. J.

    2016-12-01

    IODP Expedition 351 Site 1438 is located in the Amami-Sankaku basin, just west of the Kyushu-Palau Ridge (KPR), a remnant of the early Izu-Bonin-Mariana (IBM) volcanic arc. 150 meters of basement basalt were drilled beneath 1460 m of volcaniclastic sediments and sedimentary rock. The age range inferred for these basalts is 51-52 Ma, close to the 48-52 Ma age of basalts associated with subduction initiation in the IBM forearc (forearc basalts or FABs). Site 1438 basement basalts form several distinct subunits, all relatively mafic (MgO = 6-14 %; Mg# = 51-83). Non-fluid-mobile incompatible trace element patterns are profoundly depleted. Sm/Nd (0.34-0.43) and Lu/Hf (0.18-0.37) reach values higher than most normal MORBs while La/Yb (0.31-0.98) and Ti/V (15.8-27.0) are lower. These features are shared with basalts drilled just west of the KPR at ODP Site 1201 and DSDP Site 447, and many FABs. Abundances of fluid-mobile incompatible elements vary together and are correlated with subunits defined by flow margins and rock physical properties, suggesting control by post-eruptive seawater alteration rather than varying inputs of subduction fluids. Hf-Nd isotopes for Site 1438 basement basalts range from (present-day) ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 in a well-correlated array. Their more radiogenic Hf-isotope character could indicate an Indian-type MORB source, however, basalts with ɛHf >16.5, are more radiogenic than many Indian MORB. Pb isotope data will help distinguish differing mantle source domains and origins for fluid-mobile elements. Overall, the combined geochemical data indicate that the mantle source of basement basalts in drill sites west of the KPR (1438, 1201, 447) are closely similar to those for FAB, and that as a group, these rocks are more depleted than more than 90% of global MORB. Our interpretation is that both IBM forearc basalts and basalts from drill sites immediately west of the KPR formed by melting of the same uniquely depleted mantle

  19. Genetic Analysis of a Mammalian Chromosomal Origin of Replication

    National Research Council Canada - National Science Library

    Altman, Amy

    2001-01-01

    The main goal of the research proposal was to develop an assay system for studying the specific genetic elements, if any, involved in the initiation of DNA replication in mammalian cells as outlined in Task 1...

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Brisbane Baylands Brownfield Site in Brisbane, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Healey, V.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Brisbane Baylands site in Brisbane, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  1. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at the TechCity East Campus Resource Conservation and Recovery Act Site in Kingston, New York. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geiger, Jesse W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States); Healey, Victoria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the TechCity East Campus site in Kingston, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Fort Ord Army Base Site in Marina, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Fort Ord Army Base (FOAB) site in Marina, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  4. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  6. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kerr McGee Site in Columbus, Mississippi. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Kerr McGee site in Columbus, Mississippi, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  8. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Bethlehem Steel Plant Brownfield Site in Lackawanna, New York. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Bethlehem Steel Plant site in Lackawanna, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  9. Initial direct comparison of 99mTc-TOC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NETs.

    Science.gov (United States)

    Cwikla, Jaroslaw B; Mikolajczak, Renata; Pawlak, Dariusz; Buscombe, John R; Nasierowska-Guttmejer, Anna; Bator, Andrzej; Maecke, Helmut R; Walecki, Jerzy

    2008-07-01

    The imaging of neuroendocrine tumors has become one of the most significant areas in nuclear oncology. In an attempt to provide high-quality imaging and possible sensitivity at a reduced cost, time, and radiation dose, several (99m)Tc agents have been proposed. The aim of this initial study was to compare the tumor uptake and biodistribution of 2 new 6-hydrazinopyridine-3-carboxylic acid (HYNIC)-derivatized Tyr(3)-octreotide analogs, (99m)Tc-[HYNIC,Tyr(3)]octreotide ((99m)Tc-TOC) and (99m)Tc-[HYNIC,Tyr(3),Thr(8)]octreotide ((99m)Tc-TATE), in patients with somatostatin receptor-expressing tumors. Each of 12 patients with proven gastrointestinal pancreatic neuroendocrine tumors received a mean activity of 520 MBq of (99m)Tc-TOC and (99m)Tc-TATE. Scintigraphy with both tracers was performed 3-4 h after their injection using standard whole-body and SPECT imaging. The images were reviewed subjectively by 2 readers, who reported tumor uptake lesion by lesion. Both radiotracers demonstrated concordance between the results in 7 patients (58%). In total, 110 sites of disease were identified with (99m)Tc-TOC, compared with 115 with (99m)Tc-TATE. There was 1 case in which (99m)Tc-TOC identified sites of disease not seen on (99m)Tc-TATE imaging but 4 cases in which some sites of disease were seen with (99m)Tc-TATE and not (99m)Tc-TOC. In this initial study, both tracers seem to show similar sites of tumor, with (99m)Tc-TATE having a slight edge in the total number of lesions seen, especially in lymph node metastases.

  10. Method of forecasting pollutant transfer in an aquifer initial results obtained in a sandy medium (Barp site, Gironde)

    International Nuclear Information System (INIS)

    Madoz-Escande, C.; Peyrus, J.-C.

    1979-01-01

    Hydrogeological studies are undertaken in the context of the radiological safety of nuclear plants to forecast consequences of accidental releases of radioactive pollutants into an aquifer (transfer time, concentration at points of emergence). This quantitative forecast is obtained with the aid of a mathematical model with sequential emission. This requires a knowledge of the physical parameters of the aquifer and of the behavior of the pollutant in relation to the water-bearing medium. The physical parameters of a saturated porous medium are presented with the aid of radioactive tracer tests on a model and also in the field. The initial results obtained in a sandy medium are presented. In view of the difficulty of extrapolating to field conditions the conclusions of tests on models, it was necessary to set up a mobile laboratory with which in situ studies could be undertaken. The behavior of the pollutant in relation to the water-bearing medium is the subject of preliminary laboratory research on the laws of adsorption under different pH and temperature conditions. The numerical results obtained call for confirmation in the field. A description is given of a method which should enable the distribution coefficients to be evaluated in situ

  11. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  12. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  13. Inhibition of DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  14. The scenario on the origin of translation in the RNA world: in principle of replication parsimony

    Directory of Open Access Journals (Sweden)

    Ma Wentao

    2010-11-01

    Full Text Available Abstract Background It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem. Presentation of the hypothesis Here an explanation to this problem is shown considering the principle of "replication parsimony" --- genetic information tends to be utilized in a parsimonious way under selection pressure, due to its replication cost (e.g., in the RNA world, nucleotides and ribozymes for RNA replication. Because a DRT would be quite long even for a short peptide, its replication cost would be great. Thus the diversity and the length of functional peptides synthesized by the DRT mechanism would be seriously limited. Adaptors (proto-tRNAs would arise to allow a DRT's complementary strand (called "C-DRT" here to direct the synthesis of the same peptide synthesized by the DRT itself. Because the C-DRT is a necessary part in the DRT's replication, fewer turns of the DRT's replication would be needed to synthesize definite copies of the functional peptide, thus saving the replication cost. Acting through adaptors, C-DRTs could transform into much shorter templates (called "proto-mRNAs" here and substitute the role of DRTs, thus significantly saving the replication cost. A proto-rRNA corresponding to the small subunit rRNA would then emerge

  15. Active site-dependent initiation at 1/sup 0/C by Chymase (CHY) of rat serosal mast cell (RSMC) exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Schick, B.; Austen, K.F.

    1986-03-01

    Exposure of RSMC (> 95% purity) to isolated CHY (0.5-1.5 U/ml), the major secretory granule protease, at 37/sup 0/C results in exocytosis, determined by the release of a soluble secretory granule enzyme, ..beta..-hexosaminidase. CHY-mediated RSMC exocytosis does not occur at 1/sup 0/C. Exposure of RSMC to CHY or ..cap alpha..-chymotrypsin (CT) at 1/sup 0/C, removal of buffer and resuspension of RSMC in buffer alone at 37/sup 0/C, yields the same exocytosis as direct exposure of RSMC to those chymotryptic enzymes at 37/sup 0/C. Differences in the interaction of CHY and CT with RSMC at 1/sup 0/C and 37/sup 0/C are dose-dependent, not qualitative. Binding to (< 0.5% of input) and dissociation of /sup 125/I-labeled CT (3-8 x 10/sup 8/ cpm/mg) from RSMC, as determined by spinning through oil, was time independent and saturation of specific binding was not achieved, indicating that the observed binding is nonspecific. Diisopropyl fluorophosphate (DFP) and lima bean trypsin inhibitor (LBTI) prevent subsequent exocytosis at 37/sup 0/C only if added within the first 10 min of the interaction of RSMC and CHY at 1/sup 0/C. Maximal CHY-mediated RSMC activation at 1/sup 0/C is achieved within 10 min and addition of DFP and LBTI after this period does not affect subsequent exocytosis. The dose- and time-dependent inhibition by DFP and LBTI at 1/sup 0/C of CHY initiation of RSMC exocytosis suggest that an enzymatic action of CHY on RSMC at 1/sup 0/C, not a binding reaction, commits RSMC to exocytosis at 37/sup 0/C.

  16. International Expansion through Flexible Replication

    DEFF Research Database (Denmark)

    Jonsson, Anna; Foss, Nicolai Juul

    2011-01-01

    Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to ada......, etc.) are replicated in a uniform manner across stores, and change only very slowly (if at all) in response to learning (“flexible replication”). We conclude by discussing the factors that influence the approach to replication adopted by an international replicator.......Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to adapt...

  17. Complementation of a primer binding site-impaired murine leukemia virus-derived retroviral vector by a genetically engineered tRNA-like primer

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Lovmand, J

    1997-01-01

    , but not with a noncomplementary tRNA-like molecule. The engineered primer was shown to be involved in both the initiation of first-strand synthesis and second-strand transfer. These results provide an in vivo demonstration that the retroviral replication machinery may recognize sequence complementarity rather than actual primer...... binding site and 3' primer sequences. Use of mutated primer binding site vectors replicating via engineered primers may add additional control features to retroviral gene transfer technology....

  18. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  19. Coxsackievirus B3 2A protease promotes encephalomyocarditis virus replication.

    Science.gov (United States)

    Song, Qin-Qin; Lu, Ming-Zhi; Song, Juan; Chi, Miao-Miao; Sheng, Lin-Jun; Yu, Jie; Luo, Xiao-Nuan; Zhang, Lu; Yao, Hai-Lan; Han, Jun

    2015-10-02

    To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    Science.gov (United States)

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  1. An initial examination of carbonate production in the western equatorial Pacific: XRF results from the Pliocene-Pleistocene of IODP Site U1490

    Science.gov (United States)

    Chapman, J.; Kulhanek, D. K.; Rosenthal, Y.; Holbourn, A. E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 363 sought to determine the nature of and driving forces behind climate variability in the Western Pacific Warm Pool (WPWP) region throughout the Neogene on millennial, orbital, and geologic timescales. Our research focuses on the Pliocene to recent (4-0 Ma) sediment record from IODP Site U1490 to examine changes in carbonate production and burial in the WPWP as a record of variations in the regional/global carbon cycle. This interval is of particular interest because it spans the Middle Pliocene Warm Period, the initiation of Northern Hemisphere Glaciation, and the Mid-Pleistocene Transition. Site U1490 is located on the northern edge of Eauripik Rise at 05°58.95'N, 142°39.27'E in the northern part of the WPWP. At 2341 m water depth, today the site is bathed in Upper Circumpolar Deepwater. Pliocene to recent sediment primarily consists of foraminifer-rich nannofossil ooze, with the sedimentation rate varying between 1.5 and 3 cm/kyr. Initial shipboard measurement of calcium carbonate content shows little variation at low resolution (1 sample every few meters), varying between 90 and 95 wt%. We collected X-ray fluorescence (XRF) data at 2 cm resolution along the composite stratigraphic section to obtain a qualitative measure of the bulk chemistry of the sediment. We will use the weight percent calcium carbonate of discrete samples to calibrate the XRF data to generate a high-resolution carbonate record. We observe cyclical variations in the Ca/Ba, which may reflect variations in productivity and/or dissolution through this interval, although additional work is needed to fully interpret these data. Ultimately our research will allow for comparison between records obtained from these cores located in the western equatorial Pacific to those obtained in the eastern and central Pacific, which will better elucidate the nature of the carbon system during the Plio-Pleistocene.

  2. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  3. Approaches to ensuring and improving quality in the context of health system strengthening: a cross-site analysis of the five African Health Initiative Partnership programs.

    Science.gov (United States)

    Hirschhorn, Lisa R; Baynes, Colin; Sherr, Kenneth; Chintu, Namwinga; Awoonor-Williams, John Koku; Finnegan, Karen; Philips, James F; Anatole, Manzi; Bawah, Ayaga A; Basinga, Paulin

    2013-01-01

    Integrated into the work in health systems strengthening (HSS) is a growing focus on the importance of ensuring quality of the services delivered and systems which support them. Understanding how to define and measure quality in the different key World Health Organization building blocks is critical to providing the information needed to address gaps and identify models for replication. We describe the approaches to defining and improving quality across the five country programs funded through the Doris Duke Charitable Foundation African Health Initiative. While each program has independently developed and implemented country-specific approaches to strengthening health systems, they all included quality of services and systems as a core principle. We describe the differences and similarities across the programs in defining and improving quality as an embedded process essential for HSS to achieve the goal of improved population health. The programs measured quality across most or all of the six WHO building blocks, with specific areas of overlap in improving quality falling into four main categories: 1) defining and measuring quality; 2) ensuring data quality, and building capacity for data use for decision making and response to quality measurements; 3) strengthened supportive supervision and/or mentoring; and 4) operational research to understand the factors associated with observed variation in quality. Learning the value and challenges of these approaches to measuring and improving quality across the key components of HSS as the projects continue their work will help inform similar efforts both now and in the future to ensure quality across the critical components of a health system and the impact on population health.

  4. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update

    Science.gov (United States)

    Aneja, Kawalpreet K.; Yuan, Yan

    2017-01-01

    The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed

  6. DNA Replication Profiling Using Deep Sequencing.

    Science.gov (United States)

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  7. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  8. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  9. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    OpenAIRE

    Hendro Nindito; Evaristus Didik Madyatmadja; Albert Verasius Dian Sano

    2014-01-01

    The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MyS...

  10. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, G.; Mosey, G.

    2013-03-01

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  11. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  12. A novel class of mutations that affect DNA replication in E. coli

    DEFF Research Database (Denmark)

    Nordman, Jared; Skovgaard, Ole; Wright, Andrew

    2007-01-01

    Over-initiation of DNA replication in cells containing the cold-sensitive dnaA(cos) allele has been shown to lead to extensive DNA damage, potentially due to head-to-tail replication fork collisions that ultimately lead to replication fork collapse, growth stasis and/or cell death. Based on the a...

  13. USP7 is a SUMO deubiquitinase essential for DNA replication

    DEFF Research Database (Denmark)

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment...... is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads...... to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7...

  14. The Annual Economic Burden of Syphilis: An Estimation of Direct, Productivity, and Intangible Costs for Syphilis in Guangdong Initiative for Comprehensive Control of Syphilis Sites.

    Science.gov (United States)

    Zou, Yaming; Liao, Yu; Liu, Fengying; Chen, Lei; Shen, Hongcheng; Huang, Shujie; Zheng, Heping; Yang, Bin; Hao, Yuantao

    2017-11-01

    Syphilis has continuously posed a great challenge to China. However, very little data existed regarding the cost of syphilis. Taking Guangdong Initiative for Comprehensive Control of Syphilis area as the research site, we aimed to comprehensively measure the annual economic burden of syphilis from a societal perspective. Newly diagnosed and follow-up outpatient cases were investigated by questionnaire. Reported tertiary syphilis cases and medical institutions cost were both collected. The direct economic burden was measured by the bottom-up approach, the productivity cost by the human capital method, and the intangible burden by the contingency valuation method. Three hundred five valid early syphilis cases and 13 valid tertiary syphilis cases were collected in the investigation to estimate the personal average cost. The total economic burden of syphilis was US $729,096.85 in Guangdong Initiative for Comprehensive Control of Syphilis sites in the year of 2014, with medical institutions cost accounting for 73.23% of the total. Household average direct cost of early syphilis was US $23.74. Average hospitalization cost of tertiary syphilis was US $2,749.93. Of the cost to medical institutions, screening and testing comprised the largest proportion (26%), followed by intervention and case management (22%) and operational cost (21%). Household average productivity cost of early syphilis was US $61.19. Household intangible cost of syphilis was US $15,810.54. Syphilis caused a substantial economic burden on patients, their families, and society in Guangdong. Household productivity and intangible costs both shared positive relationships with local economic levels. Strengthening the prevention and effective treatment of early syphilis could greatly help to lower the economic burden of syphilis.

  15. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  16. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    Science.gov (United States)

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Role for a region of helically unstable DNA within the Epstein-Barr virus latent cycle origin of DNA replication oriP in origin function

    International Nuclear Information System (INIS)

    Polonskaya, Zhanna; Benham, Craig J.; Hearing, Janet

    2004-01-01

    The minimal replicator of the Epstein-Barr virus (EBV) latent cycle origin of DNA replication oriP is composed of two binding sites for the Epstein-Barr virus nuclear antigen-1 (EBNA-1) and flanking inverted repeats that bind the telomere repeat binding factor TRF2. Although not required for minimal replicator activity, additional binding sites for EBNA-1 and TRF2 and one or more auxiliary elements located to the right of the EBNA-1/TRF2 sites are required for the efficient replication of oriP plasmids. Another region of oriP that is predicted to be destabilized by DNA supercoiling is shown here to be an important functional component of oriP. The ability of DNA fragments of unrelated sequence and possessing supercoiled-induced DNA duplex destabilized (SIDD) structures, but not fragments characterized by helically stable DNA, to substitute for this component of oriP demonstrates a role for the SIDD region in the initiation of oriP-plasmid DNA replication

  18. Termination of DNA replication forks: "Breaking up is hard to do".

    Science.gov (United States)

    Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component - Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.

  19. Initial investigation of 18F-NaF PET/CT for identification of vertebral sites amenable to surgical revision after spinal fusion surgery

    International Nuclear Information System (INIS)

    Quon, Andrew; Iagaru, Andrei; Dodd, Robert; Abreu, Marcelo Rodrigues de; Sprinz, Clarice; Hennemann, Sergio; Alves Neto, Jose Maria

    2012-01-01

    A pilot study was performed in patients with recurrent back pain after spinal fusion surgery to evaluate the ability of 18 F-NaF PET/CT imaging to correctly identify those requiring surgical intervention and to locate a site amenable to surgical intervention. In this prospective study 22 patients with recurrent back pain after spinal surgery and with equivocal findings on physical examination and CT were enrolled for evaluation with 18 F-NaF PET/CT. All PET/CT images were prospectively reviewed with the primary objective of identifying or ruling out the presence of lesions amenable to surgical intervention. The PET/CT results were then validated during surgical exploration or clinical follow-up of at least 15 months. Abnormal 18 F-NaF foci were found in 16 of the 22 patients, and surgical intervention was recommended. These foci were located at various sites: screws, cages, rods, fixation hardware, and bone grafts. In 6 of the 22 patients no foci requiring surgical intervention were found. Validation of the results by surgery (15 patients) or on clinical follow-up (7 patients) showed that 18 F-NaF PET/CT correctly predicted the presence of an abnormality requiring surgical intervention in 15 of 16 patients and was falsely positive in 1 of 16. In this initial investigation, 18 F-NaF PET/CT imaging showed potential utility for evaluation of recurrent symptoms after spinal fusion surgery by identifying those patients requiring surgical management. (orig.)

  20. Pattern replication by confined dewetting

    NARCIS (Netherlands)

    Harkema, S.; Schäffer, E.; Morariu, M.D.; Steiner, U

    2003-01-01

    The dewetting of a polymer film in a confined geometry was employed in a pattern-replication process. The instability of dewetting films is pinned by a structured confining surface, thereby replicating its topographic pattern. Depending on the surface energy of the confining surface, two different

  1. Charter School Replication. Policy Guide

    Science.gov (United States)

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  2. Melanoma patients with unknown primary site or nodal recurrence after initial diagnosis have a favourable survival compared to those with synchronous lymph node metastasis and primary tumour.

    Directory of Open Access Journals (Sweden)

    Benjamin Weide

    Full Text Available BACKGROUND: A direct comparison of prognosis between patients with regional lymph node metastases (LNM detected synchronously with the primary melanoma (primary LNM, patients who developed their first LNM subsequently (secondary LNM and those with initial LNM in melanoma with unknown primary site (MUP is missing thus far. PATIENTS AND METHODS: Survival of 498 patients was calculated from the time point of the first macroscopic LNM using Kaplan Meier and multivariate Cox hazard regression analysis. RESULTS: Patients with secondary LNM (HR = 0.67; p = 0.009 and those with initial LNM in MUP (HR = 0.45; p = 0.008 had a better prognosis compared to patients with primary LNM (median survival time 52 and 65 vs. 24 months, respectively. A high number of involved nodes, the presence of in-transit/satellite metastases and male gender had an additional independent unfavourable effect. CONCLUSIONS: Survival of patients with LNM in MUP and with secondary LNM is similar and considerably more favourable compared to those with primary LNM. This difference needs to be considered during patient counselling and for stratification purposes in clinical trials. The assumption of an immune privilege of patients with MUP which is responsible for rejection of the primary melanoma, and results in a favourable prognosis is not supported by our data.

  3. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    OpenAIRE

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program du...

  4. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    Science.gov (United States)

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  5. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    Science.gov (United States)

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  6. A CI-Independent Form of Replicative Inhibition: Turn Off of Early Replication of Bacteriophage Lambda

    Science.gov (United States)

    Hayes, Sidney; Horbay, Monique A.; Hayes, Connie

    2012-01-01

    Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop + oriλ+ sequence. PMID:22590552

  7. The hunt for origins of DNA replication in multicellular eukaryotes

    DEFF Research Database (Denmark)

    Urban, J. M.; Foulk, M. S.; Casella, Cinzia

    2015-01-01

    Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope...... that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed....

  8. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Hampton-Smith, Rachel J.; Aloia, Amanda L. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Eddes, James S. [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Simpson, Kaylene J. [Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hoffmann, Peter [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide (Australia); Beard, Michael R. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia)

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  9. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    International Nuclear Information System (INIS)

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  10. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    Science.gov (United States)

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  11. Geochemistry of Volcanic Rocks from International Ocean Discovery Program (IODP) Site 1438, Amami Sankaku Basin: Implications for Izu-Bonin-Mariana (IBM) Arc Initiation

    Science.gov (United States)

    Hickey-Vargas, R.; Ishizuka, O.; Yogodzinski, G. M.; Bizimis, M.; Savov, I. P.; McCarthy, A. J.; Arculus, R. J.; Bogus, K.

    2015-12-01

    IODP Expedition 351 drilled 150 m of volcanic basement overlain by 1461 m of sedimentary material at Site 1438 in the Amami Sankaku basin, just west of the Kyushu Palau Ridge, the locus of IBM arc initiation. Age interpretations based on biostratigraphy (Arculus et al., Nat. Geosci., in-press) determined that the age of the basement section is between 64 and 51 Ma, encompassing the age of the earliest volcanic products of the IBM arc. The Site 1438 volcanic basement consists of multiple flows of aphyric microcrystalline to finely crystalline basalts containing plagioclase and clinopyroxene with rare olivine pseudomorphs. New XRF major and ICPMS trace element data confirm findings of shipboard analysis that the basalts are moderately differentiated (6-14 % MgO; Mg# = 51-83; 73-490 ppm Cr and 58-350 ppm Ni) with downcore variations related to flow units. Ti/V and Ti/Sc ratios are 16-27 and 75-152, respectively, with lowest values at the base of the core. One prominent characteristic of the basalts is their depletion of immobile highly incompatible elements compared with MORB. Basalts have MORB-normalized La/Nd of 0.5 to 0.9, and most have Th/La 3 and primitive mantle normalized La/Yb > 1. Our results suggest that mantle melting at the onset of subduction involved exceptionally depleted sources. Enrichment over time may be related to increasing subduction inputs and/or other processes, such as entrainment of fertile asthenosphere during extension of the overriding plate.

  12. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    Science.gov (United States)

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences

    International Nuclear Information System (INIS)

    Frappier, L.; Zannis-Hadjopoulos, M.

    1987-01-01

    Twelve clones of origin-enriched sequences (ORS) isolated from early replicating monkey (CV-1) DNA were examined for transient episomal replication in transfected CV-1, COS-7, and HeLa cells. Plasmid DNA was isolated at time intervals after transfection and screened by the Dpn I resistance assay or by the bromodeoxyuridine substitution assay to differentiate between input and replicated DNA. The authors have identified four monkey ORS (ORS3, -8, -9, and -12) that can support plasmid replication in mammalian cells. This replication is carried out in a controlled and semiconservative manner characteristic of mammalian replicons. ORS replication was most efficient in HeLa cells. Electron microscopy showed ORS8 and ORS12 plasmids of the correct size with replication bubbles. Using a unique restriction site in ORS12, we have mapped the replication bubble within the monkey DNA sequence

  14. Pressure tube replication techniques using the advanced NDE system

    International Nuclear Information System (INIS)

    Isherwood, A.; Jarron, D.; Travers, J.; Hanley, K.

    2006-01-01

    rotary position of the flaw, as determined by ultrasonics, is entered and the tool is positioned in the channel and locked in place. A twenty minute auto-sequence is then initiated which injects material into the flaw and allows it to cure. Once complete, the delivery machine comes off channel and the tool is pushed out of the machine onto a loading trough. The operators remove the replica and recharge the tool for the next set of indications. Once the removed replica has been examined by trained technicians, it is moved to an on-site laser profilometry device to convert the positive of the flaw to a 3D computer image. This image is then curve fitted to determine the smallest radius of the flaw. The combination of in-vault recharging and a two plate tool has reduced critical path times for this phase of the outages. The ANDE Replication System has achieved rates of 10 replicas in just 42 hours. The ANDE Replication System has been successfully used at four different CANDU stations on over 30 flaws. It has been used with both the UDM and the ADM (Advanced Delivery Machine). This paper will present details of the new tool, control system, and field execution of the ANDE Replication System at Ontario Power Generation reactors. (author)

  15. Laparoendoscopic single-site repair of bladder rupture using a home-made single-port device: initial experience of treatment for a traumatic intraperitoneal bladder rupture.

    Science.gov (United States)

    Lee, Joo Yong; Kang, Dong Hyuk; Lee, Seung Wook

    2012-06-01

    We report our initial experience with a laparoendoscopic single-site (LESS) repair of a bladder rupture using a home-made single-port device. A 37-year-old man presented to the emergency department with complaints of voiding difficulty and gross hematuria after blunt trauma. Cystography and computed tomography revealed an intraperitoneal bladder rupture. The patient underwent LESS repair of a bladder rupture using the Alexis wound retractor, which was inserted through the umbilical incision. A home-made single-port device was made by fixing 6½ surgical gloves to the outer rim of the retractor and securing the glove finger to the end of 3 trocars with a tie. Using the flexible laparoscopic instruments and rigid instruments, LESS surgery was performed using a procedure similar to conventional laparoscopic surgery. The patient did not have any voiding problem after removal of the urethral Foley catheter on the 10th postoperative day. To our knowledge, this is the first published report of LESS repair of a traumatic bladder rupture using a home-made single-port device in the literature.

  16. Spectrometric study of the folding process of i-motif-forming DNA sequences upstream of the c-kit transcription initiation site

    International Nuclear Information System (INIS)

    Bucek, Pavel; Gargallo, Raimundo; Kudrev, Andrei

    2010-01-01

    The c-kit oncogene shows a cytosine-rich DNA region upstream of the transcription initiation site which forms an i-motif structure at slightly acidic pH values (Bucek et al. ). In the present study, the pH-induced formation of i-motif - forming sequences 5'-CCC CTC CCT CGC GCC CGC CCG-3' (ckitC1, native), 5'-CCC TTC CCT TGT GCC CGC CCG-3' (ckitC2) and 5'-CCCTT CCC TTTTT CCC T CCC T-3' (ckitC3) was studied by spectroscopic techniques, such as UV molecular absorption and circular dichroism (CD), in tandem with two multivariate data analysis methods, the hard modelling-based matrix method and the soft modelling-based MCR-ALS approach. Use of the hard chemical modelling enabled us to propose the equilibrium model, which describes spectral changes as functions of solution acidity. Additionally, the intrinsic protonation constant, K in , and the cooperativity parameters, ω c , and ω a , were calculated from the fitting procedure of the coupled CD and molecular absorption spectra. In the case of ckitC2 and ckitC3, the hard model correctly reproduced the spectral variations observed experimentally. The results indicated that folding was accompanied by a cooperative process, i.e. the enhancement of protonated structure stability upon protonation. In contrast, unfolding was accompanied by an anticooperative process. Finally, folding of the native sequence, ckitC1, seemed to follow a more complex mechanism.

  17. Cross-talk between free and bound spermatozoa to modulate initial sperm:egg ratios at the site of fertilization in the mammalian oviduct.

    Science.gov (United States)

    Hunter, R H F; Gadea, J

    2014-08-01

    This essay proposes that highly localized communication between free and bound spermatozoa in the caudal portion of the oviduct acts to regulate the numbers detaching from the epithelium and progressing to the site of fertilization close to the time of ovulation. Low initial sperm:egg ratios are essential for monospermic fertilization. Liberation of surface macromolecules and metabolic prompting from activated spermatozoa, together with altered patterns of sperm movement and dynamic differences in intracellular Ca(2+) ion status between neighboring sperm cells, would influence the progressive release of spermatozoa from the reservoir in the oviduct isthmus. Different intensities of preovulatory epithelial binding, reflecting a range of states in the sperm surface membranes and associated proteins, would provide a further explanation for a chronologically staggered periovulatory detachment of spermatozoa. Intimate sperm-sperm interactions within the confines of the oviduct isthmus offer a sensitive means of fine-tuning the vanguard of competent male gametes reaching the isthmo-ampullary junction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Two subunits of human ORC are dispensable for DNA replication and proliferation.

    Science.gov (United States)

    Shibata, Etsuko; Kiran, Manjari; Shibata, Yoshiyuki; Singh, Samarendra; Kiran, Shashi; Dutta, Anindya

    2016-12-01

    The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1 . The ORC1 or ORC2 -depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication.

  19. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Marbouty, Martial; Martins, Francisco de Lemos

    2016-01-01

    Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the...

  20. Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Østergaard, Vibe Hallundbæk; Haas, Caroline

    2011-01-01

    DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its...... and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant...... homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1...

  1. Pyrimidine dimers block simian virus 40 replication forks

    International Nuclear Information System (INIS)

    Berger, C.A.; Edenberg, H.J.

    1986-01-01

    UV light produces lesions, predominantly pyrimidine dimers, which inhibit DNA replication in mammalian cells. The mechanism of inhibition is controversial: is synthesis of a daughter strand halted at a lesion while the replication fork moves on and reinitiates downstream, or is fork progression itself blocked for some time at the site of a lesion? We directly addressed this question by using electron microscopy to examine the distances of replication forks from the origin in unirradiated and UV-irradiated simian virus 40 chromosomes. If UV lesions block replication fork progression, the forks should be asymmetrically located in a large fraction of the irradiated molecules; if replication forks move rapidly past lesions, the forks should be symmetrically located. A large fraction of the simian virus 40 replication forks in irradiated molecules were asymmetrically located, demonstrating that UV lesions present at the frequency of pyrimidine dimers block replication forks. As a mechanism for this fork blockage, we propose that polymerization of the leading strand makes a significant contribution to the energetics of fork movement, so any lesion in the template for the leading strand which blocks polymerization should also block fork movement

  2. Cell lethality after selective irradiation of the DNA replication fork

    International Nuclear Information System (INIS)

    Hofer, K.G.; Warters, R.L.

    1985-01-01

    It has been suggested that nascent DNA located at the DNA replication fork may exhibit enhanced sensitivity to radiation damage. To evaluate this hypothesis, Chinese hamster ovary cells (CHO) were labeled with 125 I-iododeoxyuridine ( 125 IUdR) either in the presence or absence of aphidicolin. Aphidicolin (5 μg/ml) reduced cellular 125 IUdR incorporation to 3-5% of the control value. The residual 125 I incorporation appeared to be restricted to low molecular weight (sub-replicon sized) fragments of DNA which were more sensitive to micrococcal nuclease attack and less sensitive to high salt DNase I digestion than randomly labeled DNA. These findings suggest that DNA replicated in the presence of aphidicolin remains localized at the replication fork adjacent to the nuclear matrix. Based on these observations an attempt was made to compare the lethal consequences of 125 I decays at the replication fork to that of 125 I decays randomly distributed over the entire genome. Regardless of the distribution of decay events, all treatment groups exhibited identical dose-response curves (D 0 : 101 125 I decays/cell). Since differential irradiation of the replication complex did not result in enhanced cell lethality, it can be concluded that neither the nascent DNA nor the protein components (replicative enzymes, nuclear protein matrix) associated with the DNA replication site constitute key radiosensitive targets within the cellular genome. (orig.)

  3. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A

    2015-01-01

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps...... into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early...... mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  4. Replication stress, a source of epigenetic aberrations in cancer?

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    . Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono......-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source...... of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis....

  5. Dynamics of picornavirus RNA replication within infected cells

    DEFF Research Database (Denmark)

    Belsham, Graham; Normann, Preben

    2008-01-01

    Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks the initiat......Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks...... the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following...... the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires de novo protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can...

  6. Mechanisms for the initiation of bacteriophage T7 DNA replication

    International Nuclear Information System (INIS)

    Fuller, C.W.; Beauchamp, B.B.; Engler, M.J.; Lechner, R.L.; Matson, S.W.; Tabor, S.; White, J.H.; Richardson, C.C.

    1983-01-01

    Genetic analysis of bacteriophage T7 has shown that the products of phage genes 1, 2, 3, 4, 5, and 6 are required for phage DNA synthesis in vivo. T7 RNA polymerase is the translation product of gene 1. This RNA polymerase is required for transcription of most of the phage genome, including genes 2 through 6. T7 RNA polymerase promoters consist of a highly conserved 23-bp DNA sequence. There are 17 such promoters in the T7 DNA molecule, all of which direct transcription from the same strand of the DNA. 70 references, 11 figures

  7. The escherichia coli chromosome replication initiator protein, DnaA

    DEFF Research Database (Denmark)

    Nyborg, Malene

    The experimental work presented in this thesis involve mutational analysis of the DNA binding domain of the DnaA protein and analysis of the A184V substitution in the ATP area of domain III and other amino acid substitutions found in the DnaA5 and DnaA4G proteins....

  8. REPLICATION TOOL AND METHOD OF PROVIDING A REPLICATION TOOL

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a replication tool (1, 1a, 1b) for producing a part (4) with a microscale textured replica surface (5a, 5b, 5c, 5d). The replication tool (1, 1a, 1b) comprises a tool surface (2a, 2b) defining a general shape of the item. The tool surface (2a, 2b) comprises a microscale...... energy directors on flange portions thereof uses the replication tool (1, 1a, 1b) to form an item (4) with a general shape as defined by the tool surface (2a, 2b). The formed item (4) comprises a microscale textured replica surface (5a, 5b, 5c, 5d) with a lateral arrangement of polydisperse microscale...

  9. Initiation of genome instability and preneoplastic processes through loss of Fhit expression.

    Directory of Open Access Journals (Sweden)

    Joshua C Saldivar

    Full Text Available Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the

  10. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  11. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  12. Personality and Academic Motivation: Replication, Extension, and Replication

    Science.gov (United States)

    Jones, Martin H.; McMichael, Stephanie N.

    2015-01-01

    Previous work examines the relationships between personality traits and intrinsic/extrinsic motivation. We replicate and extend previous work to examine how personality may relate to achievement goals, efficacious beliefs, and mindset about intelligence. Approximately 200 undergraduates responded to the survey with a 150 participants replicating…

  13. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication.

    Science.gov (United States)

    Balestrini, Alessia; Cosentino, Claudia; Errico, Alessia; Garner, Elizabeth; Costanzo, Vincenzo

    2010-05-01

    Many of the factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication is poorly understood in multicellular organisms. Here, we report the identification of GEMC1 (geminin coiled-coil containing protein 1), a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus laevis egg extract we show that Xenopus GEMC1 (xGEMC1) binds to the checkpoint and replication factor TopBP1, which promotes binding of xGEMC1 to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 interacts directly with replication factors such as Cdc45 and the kinase Cdk2-CyclinE, through which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication, whereas depletion of xGEMC1 prevents the onset of DNA replication owing to the impairment of Cdc45 loading onto chromatin. Similarly, inhibition of GEMC1 expression with morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in multicellular organisms by mediating TopBP1- and Cdk2-dependent recruitment of Cdc45 onto replication origins.

  14. GEMC1 is a TopBP1 interacting protein required for chromosomal DNA replication

    Science.gov (United States)

    Balestrini, Alessia; Cosentino, Claudia; Errico, Alessia; Garner, Elizabeth; Costanzo, Vincenzo

    2010-01-01

    Many factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication in complex multicellular organisms is poorly understood. Here, we report the identification of GEMC1, a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus egg extract we show that Xenopus GEMC1 (xGEMC1) binds to checkpoint and replication factor TopBP1, which promotes xGEMC1 binding to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 directly interacts with replication factors such as Cdc45 and Cdk2-CyclinE by which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication whereas depletion of xGEMC1 prevents DNA replication onset due to impairment of Cdc45 loading onto chromatin. Likewise, inhibition of GEMC1 expression by morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in higher eukaryotes by mediating TopBP1 and Cdk2 dependent recruitment of Cdc45 onto replication origins. PMID:20383140

  15. DNA replication: stalling a fork for imprinting and switching

    DEFF Research Database (Denmark)

    Egel, Richard

    2004-01-01

    Mating-type switching in fission yeast has long been known to be directed by a DNA 'imprint'. This imprint has now been firmly characterized as a protected site-specific and strand-specific nick. New work also links the widely conserved Swi1-Swi3 complex to the protection of stalled replication...

  16. Chromosomal context and replication properties of ARS plasmids in ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... plasmid but only a subset of them functions as replication origins in their ... except that they are rich in A + T content (As on one strand and Ts .... different unique, terminal, PCR-generated restriction sites used for cloning each fragment are ..... Hall TA 1999 BioEdit: a user-friendly biological sequence align-.

  17. Application of ground-truth for classification and quantification of bird movements on migratory bird habitat initiative sites in southwest Louisiana: final report

    Science.gov (United States)

    Barrow, Wylie C.; Baldwin, Michael J.; Randall, Lori A.; Pitre, John; Dudley, Kyle J.

    2013-01-01

    This project was initiated to assess migrating and wintering bird use of lands enrolled in the Natural Resources Conservation Service’s (NRCS) Migratory Bird Habitat Initiative (MBHI). The MBHI program was developed in response to the Deepwater Horizon oil spill in 2010, with the goal of improving/creating habitat for waterbirds affected by the spill. In collaboration with the University of Delaware (UDEL), we used weather surveillance radar data (Sieges 2014), portable marine radar data, thermal infrared images, and visual observations to assess bird use of MBHI easements. Migrating and wintering birds routinely make synchronous flights near dusk (e.g., departure during migration, feeding flights during winter). Weather radars readily detect birds at the onset of these flights and have proven to be useful remote sensing tools for assessing bird-habitat relations during migration and determining the response of wintering waterfowl to wetland restoration (e.g., Wetlands Reserve Program lands). However, ground-truthing is required to identify radar echoes to species or species group. We designed a field study to ground-truth a larger-scale, weather radar assessment of bird use of MBHI sites in southwest Louisiana. We examined seasonal bird use of MBHI fields in fall, winter, and spring of 2011-2012. To assess diurnal use, we conducted total area surveys of MBHI sites in the afternoon, collecting data on bird species composition, abundance, behavior, and habitat use. In the evenings, we quantified bird activity at the MBHI easements and described flight behavior (i.e., birds landing in, departing from, circling, or flying over the MBHI tract). Our field sampling captured the onset of evening flights and spanned the period of collection of the weather radar data analyzed. Pre- and post-dusk surveys were conducted using a portable radar system and a thermal infrared camera. Landbirds, shorebirds, and wading birds were commonly found on MBHI fields during diurnal

  18. Chameleon Chasing II: A Replication.

    Science.gov (United States)

    Newsom, Doug A.; And Others

    1993-01-01

    Replicates a 1972 survey of students, educators, and Public Relations Society of America members regarding who the public relations counselor really serves. Finds that, in 1992, most respondents thought primary responsibility was to the client, then to the client's relevant publics, then to self, then to society, and finally to media. Compares…

  19. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  20. Adressing Replication and Model Uncertainty

    DEFF Research Database (Denmark)

    Ebersberger, Bernd; Galia, Fabrice; Laursen, Keld

    innovation survey data for France, Germany and the UK, we conduct a ‘large-scale’ replication using the Bayesian averaging approach of classical estimators. Our method tests a wide range of determinants of innovation suggested in the prior literature, and establishes a robust set of findings on the variables...

  1. Pre-Feasibility Analysis of Pellet Manufacturing on the Former Loring Air Force Base Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, R.; Mosey, G.

    2014-04-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. This site, in Limestone, Maine -- formerly the location of the Loring Air Force Base but now owned by the Aroostook Band of Micmac -- was selected for the potential to produce heating pellets from woody feedstock. Biomass was chosen as the renewable energy resource to evaluate based on abundant woody-biomass resources available in the area. NREL also evaluates potential savings from converting existing Micmac property from oil-fired heating to pellet heating.

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  4. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Chino Mine in Silver City, New Mexico. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Chino Mine site in Silver City, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Peru Mill Industrial Park in the City of Deming, New Mexico. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Peru Mill Industrial Park site in the City of Deming, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  6. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.

    Science.gov (United States)

    Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A

    2017-09-15

    Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Replicative intermediates in UV-irradiated Simian virus 40

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1984-01-01

    The authors have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m 2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [ 3 H]thymidine. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h by which time the size of the newly-synthesized DNA exceeded the interdimer distance. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strand contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from 0V-damaged SV40 replicative intermediates. (Auth.)

  8. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Jessica L Prince

    Full Text Available Initial studies of 88 transmission pairs in the Zambia Emory HIV Research Project cohort demonstrated that the number of transmitted HLA-B associated polymorphisms in Gag, but not Nef, was negatively correlated to set point viral load (VL in the newly infected partners. These results suggested that accumulation of CTL escape mutations in Gag might attenuate viral replication and provide a clinical benefit during early stages of infection. Using a novel approach, we have cloned gag sequences isolated from the earliest seroconversion plasma sample from the acutely infected recipient of 149 epidemiologically linked Zambian transmission pairs into a primary isolate, subtype C proviral vector, MJ4. We determined the replicative capacity (RC of these Gag-MJ4 chimeras by infecting the GXR25 cell line and quantifying virion production in supernatants via a radiolabeled reverse transcriptase assay. We observed a statistically significant positive correlation between RC conferred by the transmitted Gag sequence and set point VL in newly infected individuals (p = 0.02. Furthermore, the RC of Gag-MJ4 chimeras also correlated with the VL of chronically infected donors near the estimated date of infection (p = 0.01, demonstrating that virus replication contributes to VL in both acute and chronic infection. These studies also allowed for the elucidation of novel sites in Gag associated with changes in RC, where rare mutations had the greatest effect on fitness. Although we observed both advantageous and deleterious rare mutations, the latter could point to vulnerable targets in the HIV-1 genome. Importantly, RC correlated significantly (p = 0.029 with the rate of CD4+ T cell decline over the first 3 years of infection in a manner that is partially independent of VL, suggesting that the replication capacity of HIV-1 during the earliest stages of infection is a determinant of pathogenesis beyond what might be expected based on set point VL alone.

  9. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Power and precision of replicated helicopter surveys in mixed bushveld

    Directory of Open Access Journals (Sweden)

    B.K. Reilly

    1998-07-01

    Full Text Available It is well known that aerial game counts in South Africa are often applied in a non-standardised, unreplicated fashion. They contribute to poor management decisions based on their results as they may be subject to large statistical Type I and II errors. Replicate counts of large herbivores were conducted in a 8 500 ha sample site in the Loskop Dam Nature Reserve in July 1991. These data were used to estimate precision of the counts and estimate statistical power to detect population changes for different combinations of replications and significance levels.

  11. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  12. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  13. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Science.gov (United States)

    Demarre, Gaëlle; Chattoraj, Dhruba K

    2010-05-06

    DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  15. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Directory of Open Access Journals (Sweden)

    Gaëlle Demarre

    2010-05-01

    Full Text Available DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  16. Data Service: Distributed Data Capture and Replication

    Science.gov (United States)

    Warner, P. B.; Pietrowicz, S. R.

    2007-10-01

    Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.

  17. Security in a Replicated Metadata Catalogue

    CERN Document Server

    Koblitz, B

    2007-01-01

    The gLite-AMGA metadata has been developed by NA4 to provide simple relational metadata access for the EGEE user community. As advanced features, which will be the focus of this presentation, AMGA provides very fine-grained security also in connection with the built-in support for replication and federation of metadata. AMGA is extensively used by the biomedical community to store medical images metadata, digital libraries, in HEP for logging and bookkeeping data and in the climate community. The biomedical community intends to deploy a distributed metadata system for medical images consisting of various sites, which range from hospitals to computing centres. Only safe sharing of the highly sensitive metadata as provided in AMGA makes such a scenario possible. Other scenarios are digital libraries, which federate copyright protected (meta-) data into a common catalogue. The biomedical and digital libraries have been deployed using a centralized structure already for some time. They now intend to decentralize ...

  18. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  19. Replicator dynamics in value chains

    DEFF Research Database (Denmark)

    Cantner, Uwe; Savin, Ivan; Vannuccini, Simone

    2016-01-01

    The pure model of replicator dynamics though providing important insights in the evolution of markets has not found much of empirical support. This paper extends the model to the case of firms vertically integrated in value chains. We show that i) by taking value chains into account, the replicator...... dynamics may revert its effect. In these regressive developments of market selection, firms with low fitness expand because of being integrated with highly fit partners, and the other way around; ii) allowing partner's switching within a value chain illustrates that periods of instability in the early...... stage of industry life-cycle may be the result of an 'optimization' of partners within a value chain providing a novel and simple explanation to the evidence discussed by Mazzucato (1998); iii) there are distinct differences in the contribution to market selection between the layers of a value chain...

  20. Replication confers β cell immaturity.

    Science.gov (United States)

    Puri, Sapna; Roy, Nilotpal; Russ, Holger A; Leonhardt, Laura; French, Esra K; Roy, Ritu; Bengtsson, Henrik; Scott, Donald K; Stewart, Andrew F; Hebrok, Matthias

    2018-02-02

    Pancreatic β cells are highly specialized to regulate systemic glucose levels by secreting insulin. In adults, increase in β-cell mass is limited due to brakes on cell replication. In contrast, proliferation is robust in neonatal β cells that are functionally immature as defined by a lower set point for glucose-stimulated insulin secretion. Here we show that β-cell proliferation and immaturity are linked by tuning expression of physiologically relevant, non-oncogenic levels of c-Myc. Adult β cells induced to replicate adopt gene expression and metabolic profiles resembling those of immature neonatal β that proliferate readily. We directly demonstrate that priming insulin-producing cells to enter the cell cycle promotes a functionally immature phenotype. We suggest that there exists a balance between mature functionality and the ability to expand, as the phenotypic state of the β cell reverts to a less functional one in response to proliferative cues.

  1. Chromatin replication and histone dynamics

    DEFF Research Database (Denmark)

    Alabert, Constance; Jasencakova, Zuzana; Groth, Anja

    2017-01-01

    Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate...... choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper...... organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure...

  2. DNA Copy-Number Control through Inhibition of Replication Fork Progression

    Directory of Open Access Journals (Sweden)

    Jared T. Nordman

    2014-11-01

    Full Text Available Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.

  3. Regulation of DNA replication in irradiated cells by trans-acting factors

    International Nuclear Information System (INIS)

    Wang, Y.; Huq, M.S.; Cheng, X.; Iliakis, G.

    1995-01-01

    We compared DNA replication activity in cytoplasmic extracts prepared from irradiated and nonirradiated HeLa cells using a simian virus 40 (SV40)-based in vitro replication assay. The assay measures semi-conservative DNA replication in a plasmid carrying the SV40 origin of replication and requires SV40 T antigen as the sole noncellular protein. The plasmid DNA used in the replication reaction is never exposed to radiation. We find that replication of plasmid DNA is significantly reduced when cytoplasmic extracts from irradiated cells are used. Since plasmid replication proceeds to completion in extracts from irradiated cells, the observed reduction in the overall replication activity is probably due to a reduction in the efficiency of initiation events. The degree of inhibition of DNA replication after exposure to 10, 30 and 50 Gy X rays as measured in vitro using this assay is similar to that measured in intact cells immediately before processing for extract preparation. These observations are compatible with the induction or activation by ionizing radiation of a factor(s) that inhibits in trans DNA replication. The results contribute to our understanding of the mechanism(s) developed by the cells to regulate DNA replication when exposed to clastogenic agents. Such processes may be of significance in the restoration of DNA integrity, and may define yet another checkpoint operating during S at the level of clusters of replicons. 26 refs., 4 figs

  4. Live Replication of Paravirtual Machines

    OpenAIRE

    Stodden, Daniel

    2009-01-01

    Virtual machines offer a fair degree of system state encapsulation, which promotes practical advances in fault tolerance, system debugging, profiling and security applications. This work investigates deterministic replay and semi-active replication for system paravirtualization, a software discipline trading guest kernel binar compatibility for reduced dependency on costly trap-and-emulate techniques. A primary contribution is evidence that trace capturing under a piecewise deterministic exec...

  5. Feasibility Study of Economics and Performance of Biopower at the Chanute Air Force Base in Rantoul, Illinois. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Scarlata, C.; Mosey, G.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chanute Air Force Base site in Rantoul, Illinois, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this study was to assess the site for a possible biopower system installation and estimate the cost, performance, and impacts of different biopower options.

  6. Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. O.; Mosey, G.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

  7. Replication-dependent 65R→K reversion in human immunodeficiency virus type 1 reverse transcriptase double mutant K65R + L74V

    International Nuclear Information System (INIS)

    Sharma, Prem L.; Nurpeisov, Viktoria; Lee, Kimberly; Skaggs, Sara; Di San Filippo, Christina Amat; Schinazi, Raymond F.

    2004-01-01

    Understanding of the mechanisms of interaction among nucleoside reverse transcriptase inhibitor (NRTI)-selected mutations in the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) coding sequence is essential for the design of newer drugs and for enhancing our vision of the structure function relationship among amino acids of the polymerase domain of HIV-1. Although several nucleoside reverse transcriptase inhibitors select RT mutations K65R and L74V, the combination of 65R + 74V is rare in clinics. A novel NRTI (-)-β-D-dioxolane-guanosine (DXG) is known to select in vitro either the 65R or 74V mutant virus (Antimicrob. Agents Chemother. 44 (2000) 1783). These mutations were not selected together during repeated passaging of the HIV-1 in the presence of this drug. To analyze the impact of these RT mutations on viral replication, a double mutant containing K65R + L74V was created by site-directed mutagenesis in a pNL4-3 background. Replication kinetic assays revealed that the mutant K65R + L74V is unstable, and 65R→K reversion occurs during replication of virus in phytohemagglutinin (PHA)-stimulated human peripheral blood mononuclear (PBM) cells in the absence of selection pressure. Replication kinetic assays in MT-2 cells demonstrated that double mutant 65R + 74V is highly attenuated for replication and the initiation of reversion is related to the increase in RT activity. Additionally, the suppression of viral replication in the presence of DXG or under suboptimal human recombinant interleukin-2 leads to minimal or no 65R→K reversion. These observations provide evidence that 65R→K reversion in the double mutant 65R + 74V is dependent on a specific rate of viral replication in a pNL4-3 background. A similar phenomenon may occur in vivo, which may have implications for treatment management strategies

  8. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    Science.gov (United States)

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  9. Testing the Efficacy of a Tier 2 Mathematics Intervention: A Conceptual Replication Study

    Science.gov (United States)

    Doabler, Christian T.; Clarke, Ben; Kosty, Derek B.; Kurtz-Nelson, Evangeline; Fien, Hank; Smolkowski, Keith; Baker, Scott K.

    2016-01-01

    The purpose of this closely aligned conceptual replication study was to investigate the efficacy of a Tier 2 kindergarten mathematics intervention. The replication study differed from the initial randomized controlled trial on three important elements: geographical region, timing of the intervention, and instructional context of the…

  10. Annual variation in polychlorinated biphenyl (PCB) exposure in tree swallow (Tachycineta bicolor) eggs and nestlings at Great Lakes Restoration Initiative (GLRI) study sites

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Dummer, Paul; Goldberg, Diana R.; Franson, J. Christian

    2018-01-01

    Tree swallow (Tachycineta bicolor) eggs and nestlings were collected from 16 sites across the Great Lakes to quantify normal annual variation in total polychlorinated biphenyl (PCB) exposure and to validate the sample size choice in earlier work. A sample size of five eggs or five nestlings per site was adequate to quantify exposure to PCBs in tree swallows given the current exposure levels and variation. There was no difference in PCB exposure in two randomly selected sets of five eggs collected in the same year, but analyzed in different years. Additionally, there was only modest annual variation in exposure, with between 69% (nestlings) and 73% (eggs) of sites having no differences between years. There was a tendency, both statistically and qualitatively, for there to be less exposure in the second year compared to the first year.

  11. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  12. Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication.

    Science.gov (United States)

    Camara, Johanna E; Breier, Adam M; Brendler, Therese; Austin, Stuart; Cozzarelli, Nicholas R; Crooke, Elliott

    2005-08-01

    Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.

  13. A dynamic model for in vivo virus replication

    Energy Technology Data Exchange (ETDEWEB)

    MacCarthy, J.E.; Kozak, J.J.

    1980-01-01

    In this paper a dynamic model of in vivo virus replication is presented. Kinetic equations are formulated to describe the overall process of replication and then analyzed using a ''synergetic'' approach. First the importance of a rate-limiting substrate is taken explicitly into account, and secondly the coupling between the processes considered (translation, replication and assembly) is strictly preserved; the analysis itself is carried out in the linear regime. The problems of defective-particle infections, standard-virus infections, inhibition of cellular synthesis, and the case of co-infected cells are treated. The various parameters of the model (initial cellular concentrations, rate constants) are specified using existing experimental data and the full (numerical) consequences of the model are explored in detail. The simple model developed is able to account qualitatively, and occasionally quantitatively, for the behavior observed experimentally for each of the problems cited above.

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Ft. Hood Military Base Outside Killeen, Texas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, J.; Lisell, L.; Mosey, G.

    2013-10-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative through the Region 6 contract, selected Ft. Hood Army Base in Killeen, Texas, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for possible photovoltaic (PV) system installations and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  15. USP7 is a SUMO deubiquitinase essential for DNA replication

    Science.gov (United States)

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates various aspects of DNA replication. We previously showed that the chromatin around replisomes is rich in SUMO and depleted in Ub, whereas an opposite pattern is observed in mature chromatin. How this SUMO-rich/Ub-low environment is maintained at sites of DNA replication is not known. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Chemical inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced to chromatin away from replisomes. Our findings provide a model to explain the differential accumulation of SUMO and Ub at replication forks, and identify an essential role of USP7 in DNA replication that should be taken into account for the use of USP7 inhibitors as anticancer agents. PMID:26950370

  16. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  17. Parametrised Constants and Replication for Spatial Mobility

    DEFF Research Database (Denmark)

    Hüttel, Hans; Haagensen, Bjørn

    2009-01-01

    Parametrised replication and replication are common ways of expressing infinite computation in process calculi. While parametrised constants can be encoded using replication in the π-calculus, this changes in the presence of spatial mobility as found in e.g. the distributed π- calculus...... of the distributed π-calculus with parametrised constants and replication are incomparable. On the other hand, we shall see that there exists a simple encoding of recursion in mobile ambients....

  18. Broken silence restored-remodeling primes for deacetylation at replication forks

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Groth, Anja

    2011-01-01

    Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation and restorat......Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation...

  19. The rock art of Mwana wa Chentcherere II rock shelter, Malawi : a site-specific study of girls' initiation rock art

    NARCIS (Netherlands)

    Zubieta, L.F.

    2006-01-01

    Mwana wa Chentcherere II, or Chentcherere Rock Shelter II, the name by which it was more generally known when it was excavated in 1972, is one of the largest rock painting sites in Malawi. It has been a national monument since 1972 and has been the subject of extensive archaeological research. This

  20. 36 CFR 910.64 - Replication.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Replication. 910.64 Section 910.64 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.64 Replication. Replication means the process of using modern methods...

  1. Exploiting replicative stress to treat cancer

    DEFF Research Database (Denmark)

    Dobbelstein, Matthias; Sørensen, Claus Storgaard

    2015-01-01

    DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms...

  2. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  3. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication

    Science.gov (United States)

    On, Kin Fan; Beuron, Fabienne; Frith, David; Snijders, Ambrosius P; Morris, Edward P; Diffley, John F X

    2014-01-01

    Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins. PMID:24566989

  4. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  5. How and why multiple MCMs are loaded at origins of DNA replication.

    Science.gov (United States)

    Das, Shankar P; Rhind, Nicholas

    2016-07-01

    Recent work suggests that DNA replication origins are regulated by the number of multiple mini-chromosome maintenance (MCM) complexes loaded. Origins are defined by the loading of MCM - the replicative helicase which initiates DNA replication and replication kinetics determined by origin's location and firing times. However, activation of MCM is heterogeneous; different origins firing at different times in different cells. Also, more MCMs are loaded in G1 than are used in S phase. These aspects of MCM biology are explained by the observation that multiple MCMs are loaded at origins. Having more MCMs at early origins makes them more likely to fire, effecting differences in origin efficiency that define replication timing. Nonetheless, multiple MCM loading raises new questions, such as how they are loaded, where these MCMs reside at origins, and how their presence affects replication timing. In this review, we address these questions and discuss future avenues of research. © 2016 WILEY Periodicals, Inc.

  6. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  7. Inferential misconceptions and replication crisis

    Directory of Open Access Journals (Sweden)

    Norbert Hirschauer

    2016-12-01

    Full Text Available Misinterpretations of the p value and the introduction of bias through arbitrary analytical choices have been discussed in the literature for decades. Nonetheless, they seem to have persisted in empirical research, and criticisms of p value misuses have increased in the recent past due to the non-replicability of many studies. Unfortunately, the critical concerns that have been raised in the literature are scattered over many disciplines, often linguistically confusing, and differing in their main reasons for criticisms. Misuses and misinterpretations of the p value are currently being discussed intensely under the label “replication crisis” in many academic disciplines and journals, ranging from specialized scientific journals to Nature and Science. In a drastic response to the crisis, the editors of the journal Basic and Applied Social Psychology even decided to ban the use of p values from future publications at the beginning of 2015, a fact that has certainly added fuel to the discussions in the relevant scientific forums. Finally, in early March, the American Statistical Association released a brief formal statement on p values that explicitly addresses misuses and misinterpretations. In this context, we systematize the most serious flaws related to the p value and discuss suggestions of how to prevent them and reduce the rate of false discoveries in the future.

  8. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  9. Repair replication in replicating and nonreplicating DNA after irradiation with uv light

    Energy Technology Data Exchange (ETDEWEB)

    Slor, H.; Cleaver, J.E.

    1978-06-01

    Ultraviolet light induces more pyrimidine dimers and more repair replication in DNA that replicates within 2 to 3 h of irradiation than in DNA that does not replicate during this period. This difference may be due to special conformational changes in DNA and chromatin that might be associated with semiconservative DNA replication.

  10. Recruitment of RecA homologs Dmc1p and Rad51p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI).

    Science.gov (United States)

    Fukuda, Tomoyuki; Ohya, Yoshikazu

    2006-02-01

    During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.

  11. An initial examination of carbonate variability in the western equatorial Pacific: XRF results from the lower to middle Miocene of IODP Site U1490

    Science.gov (United States)

    Valerio, D. A.; Kulhanek, D. K.; Rosenthal, Y.; Holbourn, A. E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 363 sought to determine the nature of and driving forces behind climate variability in the Western Pacific Warm Pool (WPWP) region throughout the Neogene on millennial, orbital, and geologic timescales. Our research focuses on the Miocene (19-9 Ma) sediment record from IODP Site U1490 to examine changes in carbonate production and burial in the WPWP as a record of variations in the regional/global carbon cycle. This interval is of particular interest because it spans the Middle Miocene Climatic Optimum, the Middle Miocene Climate Transition, and the late Miocene carbonate crash. Site U1490 is located on the northern edge of Eauripik Rise at 05°58.95'N, 142°39.27'E in the northern part of the WPWP. At 2341 m water depth, today the site is bathed in Upper Circumpolar Deepwater. Miocene sediment at Site U1490 primarily consists of clay-bearing to clay-rich foraminifer-rich nannofossil ooze, although biogenic silica (primarily radiolaria) is a significant component in the lowermost part of the record. The sedimentation rate in the early to middle Miocene was very low (calcium carbonate content of 87 wt% throughout the site, with the most significant variations in the lower to middle Miocene, where contents range from 20 to 85 wt%. We collected X-ray fluorescence (XRF) data at 1 cm resolution along the composite stratigraphic section over the 19-9 Ma interval to obtain a qualitative measure of the bulk chemistry of the sediment. We will use the weight percent calcium carbonate of discrete samples to calibrate the XRF data to generate a high-resolution carbonate record. We observe cyclical variations in the Ca/Ba, which may reflect variations in productivity and/or dissolution through this interval, although additional work is needed to fully interpret these data. Ultimately our research will allow for comparison between records obtained from these cores located in the western equatorial Pacific to those obtained

  12. Inhibition of Zika Virus Replication by Silvestrol

    Directory of Open Access Journals (Sweden)

    Fabian Elgner

    2018-03-01

    Full Text Available The Zika virus (ZIKV outbreak in 2016 in South America with specific pathogenic outcomes highlighted the need for new antiviral substances with broad-spectrum activities to react quickly to unexpected outbreaks of emerging viral pathogens. Very recently, the natural compound silvestrol isolated from the plant Aglaia foveolata was found to have very potent antiviral effects against the (−-strand RNA-virus Ebola virus as well as against Corona- and Picornaviruses with a (+-strand RNA-genome. This antiviral activity is based on the impaired translation of viral RNA by the inhibition of the DEAD-box RNA helicase eukaryotic initiation factor-4A (eIF4A which is required to unwind structured 5´-untranslated regions (5′-UTRs of several proto-oncogenes and thereby facilitate their translation. Zika virus is a flavivirus with a positive-stranded RNA-genome harboring a 5′-capped UTR with distinct secondary structure elements. Therefore, we investigated the effects of silvestrol on ZIKV replication in A549 cells and primary human hepatocytes. Two different ZIKV strains were used. In both infected A549 cells and primary human hepatocytes, silvestrol has the potential to exert a significant inhibition of ZIKV replication for both analyzed strains, even though the ancestor strain from Uganda is less sensitive to silvestrol. Our data might contribute to identify host factors involved in the control of ZIKV infection and help to develop antiviral concepts that can be used to treat a variety of viral infections without the risk of resistances because a host protein is targeted.

  13. Inhibition and recovery of the replication of depurinated parvovirus DNA in mouse fibroblasts

    International Nuclear Information System (INIS)

    Vos, J.M.; Avalosse, B.; Su, Z.Z.; Rommelaere, J.

    1984-01-01

    Apurinic sites were introduced in the single-stranded DNA of parvovirus minute-virus-of-mice (MVM) and their effect on viral DNA synthesis was measured in mouse fibroblasts. Approximately one apurinic site per viral genome, is sufficient to block its replication in untreated cells. The exposure of host cells to a sublethal dose of UV-light 15 hours prior to virus infection, enhances their ability to support the replication of depurinated MVM. Cell preirradiation induces the apparent overcome of 10-15% of viral DNA replication blocks. These results indicate that apurinic sites prevent mammalian cells from replicating single-stranded DNA unless a recovery process is activated by cell UV-irradiation

  14. Siting and Transportation for Consolidated Used Nuclear Fuel Management Facilities: A Proposed Approach for a Regional Initiative to Begin the Dialogue - 13562

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Alex W. [The Thrower Group LLC, Richmond, VA (United States); Janairo, Lisa [Council of State Governments-Midwestern Office, Sheboygan, WI (United States)

    2013-07-01

    The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to respo