WorldWideScience

Sample records for replication initiation genes

  1. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    Science.gov (United States)

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  2. Initiation preference at a yeast origin of replication.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  3. Initiation of DNA replication: functional and evolutionary aspects

    Science.gov (United States)

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  4. Changes in nucleosome repeat lengths precede replication in the early replicating metallothionein II gene region of cells synchronized in early S phase

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Tobey, R.A.

    1989-01-01

    Previous investigations showed that inhibition of DNA synthesis by hydroxyurea, aphidicolin, or 5-fluorodeoxyuridine produced large changes in the composition and nucleosome repeat lengths of bulk chromatin. There the authors report results of investigations to determine whether the changes in nucleosome repeat lengths might be localized in the initiated replicons, as postulated. In most experiments, Chinese hamster (line CHO) cells were synchronized in G1, or they were synchronized in early S phase by allowing G1 cells to enter S phase in medium containing 1 mM hydroxyurea or 5 μg mL -1 aphidicolin, a procedure believed to produce an accumulation of initiated replicons that arise from normally early replicating DNA. Measurements of nucleosome repeat lengths of bulk chromatin, the early replicating unexpressed metallothionein II (MTII) gene region, and a later replicating repeated sequence indicate that the changes in repeat lengths occur preferentially in the early replicating MTII gene region as G1 cells enter and become synchronized in early S phase. During that time, the MTII gene region is not replicated nor is there any evidence for induction of MTII messenger RNA. Thus, the results are consistent with the hypothesis that changes in chromatin structure occur preferentially in the early replicating (presumably initiated) replicons at initiation or that changes in chromatin structure can precede replication during inhibition of DNA synthesis. The shortened repeat lengths that precede MTII replication are, potentially, reversible, because they become elongated when the synchronized early S-phase cells are released to resume cell cycle progression

  5. Specificity and Function of Archaeal DNA Replication Initiator Proteins

    Directory of Open Access Journals (Sweden)

    Rachel Y. Samson

    2013-02-01

    Full Text Available Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC that recruits the replicative helicase MCM(2-7 via Cdc6 and Cdt1. We find that the three origins in the single chromosome of the archaeon Sulfolobus islandicus are specified by distinct initiation factors. While two origins are dependent on archaeal homologs of eukaryal Orc1 and Cdc6, the third origin is instead reliant on an archaeal Cdt1 homolog. We exploit the nonessential nature of the orc1-1 gene to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels the protein’s structure rather than that of the DNA template.

  6. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Directory of Open Access Journals (Sweden)

    Joseph C Sanchez

    2017-10-01

    Full Text Available A form of dwarfism known as Meier-Gorlin syndrome (MGS is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5. These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45. The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C. We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  7. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Science.gov (United States)

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  8. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  9. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  10. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  11. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    Science.gov (United States)

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  12. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  13. Relationship between mitochondrial gene rearrangements and stability of the origin of light strand replication

    Directory of Open Access Journals (Sweden)

    Miguel M. Fonseca

    2008-01-01

    Full Text Available Mitochondrial gene rearrangements are much more frequent in vertebrates than initially thought. It has been suggested that the origin of light strand replication could have an important role in the process of gene rearrangements, but this hypothesis has never been tested before. We used amphibians to test the correlation between light-strand replication origin thermodynamic stability and the occurrence of gene rearrangements. The two variables were correlated in a non-phylogenetic approach, but when tested in a phylogenetically based comparative method the correlation was not significant, although species with unstable light-strand replication origins were much more likely to have undergone gene rearrangements. This indicates that within amphibians there are stable and unstable phylogenetic groups regarding mitochondrial gene order. The species analyzed showed variability in the thermodynamic stability of the secondary structure, in the length of its stem and loop, and several species did not present the 5’-GCCGG-3’ motif reported to be necessary for efficient mitochondrial DNA replication. Future studies should focus on the role of the light-strand replication origin in mitochondrial DNA replication and gene rearrangements mechanisms.

  14. The Escherichia coli cryptic prophage protein YfdR binds to DnaA and initiation of chromosomal replication is inhibited by overexpression of the gene cluster yfdQ-yfdR-yfdS-yfdT

    Directory of Open Access Journals (Sweden)

    Yaunori eNoguchi

    2016-03-01

    Full Text Available The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator

  15. The Escherichia coli Cryptic Prophage Protein YfdR Binds to DnaA and Initiation of Chromosomal Replication Is Inhibited by Overexpression of the Gene Cluster yfdQ-yfdR-yfdS-yfdT

    Science.gov (United States)

    Noguchi, Yasunori; Katayama, Tsutomu

    2016-01-01

    The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA) mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division regulation during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU)-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator Dna

  16. The Escherichia coli Cryptic Prophage Protein YfdR Binds to DnaA and Initiation of Chromosomal Replication Is Inhibited by Overexpression of the Gene Cluster yfdQ-yfdR-yfdS-yfdT.

    Science.gov (United States)

    Noguchi, Yasunori; Katayama, Tsutomu

    2016-01-01

    The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA) mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division regulation during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU)-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator Dna

  17. [The effects of TorR protein on initiation of DNA replication in Escherichia coli].

    Science.gov (United States)

    Yuan, Yao; Jiaxin, Qiao; Jing, Li; Hui, Li; Morigen, Morigen

    2015-03-01

    The two-component systems, which could sense and respond to environmental changes, widely exist in bacteria as a signal transduction pathway. The bacterial CckA/CtrA, ArcA/ArcB and PhoP/PhoQ two-component systems are associated with initiation of DNA replication and cell division, however, the effects of the TorS/TorR system on cell cycle and DNA replication remains unknown. The TorS/TorR system in Escherichia coli can sense changes in trimethylamine oxide (TMAO) concentration around the cells. However, it is unknown if it also affects initiation of DNA replication. We detected DNA replication patterns in ΔtorS and ΔtorR mutant strains by flow cytometry. We found that the average number of replication origins (oriCs) per cell and doubling time in ΔtorS mutants were the same while the average number of oriCs in ΔtorR mutants was increased compared with that in wild-type cells. These results indicated that absence of TorR led to an earlier initiation of DNA replication than that in wild-type cells. Strangely, neither overexpression of TorR nor co-expression of TorR and TorS could restore ΔtorR mutant phenotype to the wild type. However, overexpression of SufD in both wild type and ΔtorR mutants promoted initiation of DNA replication, while mutation of SufD delayed it in ΔtorR mutants. Thus, TorR may affect initiation of DNA replication indirectly through regulating gene expression of sufD.

  18. P1 plasmid replication: initiator sequestration is inadequate to explain control by initiator-binding sites.

    OpenAIRE

    Pal, S K; Chattoraj, D K

    1988-01-01

    The unit-copy plasmid replicon mini-P1 consists of an origin, a gene for an initiator protein, RepA, and a control locus, incA. Both the origin and the incA locus contain repeat sequences that bind RepA. It has been proposed that the incA repeats control replication by sequestering the rate-limiting RepA initiator protein. Here we show that when the concentration of RepA was increased about fourfold beyond its normal physiological level from an inducible source in trans, the copy number of a ...

  19. A new MCM modification cycle regulates DNA replication initiation.

    Science.gov (United States)

    Wei, Lei; Zhao, Xiaolan

    2016-03-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.

  20. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    Science.gov (United States)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  1. Insights into the Initiation of Eukaryotic DNA Replication.

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  2. Intrinsically bent DNA in replication origins and gene promoters.

    Science.gov (United States)

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  3. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  4. Replicative Stress Induces Intragenic Transcription of the ASE1 Gene that Negatively Regulates Ase1 Activity

    OpenAIRE

    McKnight, Kelly; Liu, Hong; Wang, Yanchang

    2014-01-01

    Intragenic transcripts initiate within the coding region of a gene, thereby producing shorter mRNAs and proteins. Although intragenic transcripts are widely expressed [1], their role in the functional regulation of genes remains largely unknown. In budding yeast, DNA replication stress activates the S-phase checkpoint that stabilizes replication forks and arrests cells in S-phase with a short spindle [2-4]. When yeast cells were treated with hydroxyurea (HU) to block DNA synthesis and induce ...

  5. Asynchronous DNA replication within the human β-globin gene locus

    International Nuclear Information System (INIS)

    Epner, E.; Forrester, W.C.; Groudine, M.

    1988-01-01

    The timing of DNA replication of the human β-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human β-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-γ-globin gene region and approximately 20 kilobases 5' to the ε-globin gene and 20 kilobases 3' to the β-globin gene, replicate later and throughout S phase. A similar area is also present in the α-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks

  6. Plasticity of DNA replication initiation in Epstein-Barr virus episomes.

    Directory of Open Access Journals (Sweden)

    Paolo Norio

    2004-06-01

    Full Text Available In mammalian cells, the activity of the sites of initiation of DNA replication appears to be influenced epigenetically, but this regulation is not fully understood. Most studies of DNA replication have focused on the activity of individual initiation sites, making it difficult to evaluate the impact of changes in initiation activity on the replication of entire genomic loci. Here, we used single molecule analysis of replicated DNA (SMARD to study the latent duplication of Epstein-Barr virus (EBV episomes in human cell lines. We found that initiation sites are present throughout the EBV genome and that their utilization is not conserved in different EBV strains. In addition, SMARD shows that modifications in the utilization of multiple initiation sites occur across large genomic regions (tens of kilobases in size. These observations indicate that individual initiation sites play a limited role in determining the replication dynamics of the EBV genome. Long-range mechanisms and the genomic context appear to play much more important roles, affecting the frequency of utilization and the order of activation of multiple initiation sites. Finally, these results confirm that initiation sites are extremely redundant elements of the EBV genome. We propose that these conclusions also apply to mammalian chromosomes.

  7. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  8. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    Science.gov (United States)

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  9. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-05

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1

    Directory of Open Access Journals (Sweden)

    DasSarma Shiladitya

    2007-06-01

    Full Text Available Abstract Background Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential. Results Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence. The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene. Conclusion The results showed that ten

  11. How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Olivier Hyrien

    2016-08-01

    Full Text Available DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs, the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC, they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  12. Opposite replication polarities of transcribed and nontranscribed histone H5 genes

    International Nuclear Information System (INIS)

    Trempe, J.P.; Lindstrom, Y.I.; Leffak, M.

    1988-01-01

    The authors used an in vitro nuclear runoff replication assay to analyze the direction of replication of the active and inactive histone H5 genes in avian cells. In embryonic erythrocytes the transcribed histone H5 gene displayed sensitivity to endogenous nuclease cleavage. In contrast, this gene was insensitive to endogenous nuclease digestion under the same conditions in nuclei of the lymphoblastoid cell line MSB-1, and histone H5 gene transcripts were not detectable by dot-blot analysis of MSB-1 cell RNA. When nuclei were isolated from embryonic erythrocyctes and incubated with bromodeoxyuridine triphosphate, runoff replication from endogenous nuclease cleavage sites led to a relative enrichment for fragments near the 3' end of the histone H5 gene in the density-labeled DNA. In nuclei of MSB-1 cells or chicken embryo fibroblasts, however, runoff replication from restriction enzyme-cut sites (or induced endogenous nuclease-cut sites in MSB-1 nuclei) led to a relative enrichment for fragments near the 5' end of the H5 gene in dense DNA. Based on the enhanced incorporation of bromodeoxyuridine into origin-distal regions of DNA during the in vitro runoff replication assay, the authors conclude that the active histone H5 gene in embryonic erythrocytes is preferentially replicated in the transcriptional direction from an origin in the 5'-flanking DNA, whereas its inactive counterparts in MSB-1 cells and chicken embryo fibroblasts are preferentially replicated in the opposite direction

  13. Identification of genes involved in DNA replication of the Autographa californica baculovirus

    NARCIS (Netherlands)

    Kool, M.; Ahrens, C. H.; Goldbach, R. W.; Rohrmann, G. F.; Vlak, J. M.

    1994-01-01

    By use of a transient replication assay, nine genes involved in DNA replication were identified in the genome of the Autographa californica baculovirus. Six genes encoding helicase, DNA polymerase, IE-1, LEF-1, LEF-2, and LEF-3 are essential for DNA replication while three genes encoding P35, IE-2,

  14. Initiation at closely spaced replication origins in a yeast chromosome.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1993-12-10

    Replication of eukaryotic chromosomes involves initiation at origins spaced an average of 50 to 100 kilobase pairs. In yeast, potential origins can be recognized as autonomous replication sequences (ARSs) that allow maintenance of plasmids. However, there are more ARS elements than active chromosomal origins. The possibility was examined that close spacing of ARSs can lead to inactive origins. Two ARSs located 6.5 kilobase pairs apart can indeed interfere with each other. Replication is initiated from one or the other ARS with equal probability, but rarely (< 5%) from both ARSs on the same DNA molecule.

  15. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  16. Darwinian Evolution of Mutualistic RNA Replicators with Different Genes

    Science.gov (United States)

    Mizuuchi, R.; Ichihashi, N.

    2017-07-01

    We report a sustainable long-term replication and evolution of two distinct cooperative RNA replicators encoding different genes. One of the RNAs evolved to maintain or increase the cooperativity, despite selective advantage of selfish mutations.

  17. Analysis of the temporal program of replication initiation in yeast chromosomes.

    Science.gov (United States)

    Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J

    1995-01-01

    The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating

  18. Specificity and function of Archaeal DNA replication initiator proteins

    DEFF Research Database (Denmark)

    Samson, Rachel Y.; Xu, Yanqun; Gadelha, Catarina

    2013-01-01

    Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins...... to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels...

  19. Initiation of DNA replication requires actin dynamics and formin activity.

    Science.gov (United States)

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  20. The Location of the Bacterial Origin of Replication is Critical for Initial Ciproflaxcin Antibiotic Resistance

    Science.gov (United States)

    Bos, Julia; Nehring, Ralph; Cruz, Diane; Austin, Doug; Rosenberg, Susan; Austin, Robert

    By using E. coli cells in which the unique origin of replication has been moved to a ectopic chromosome location distant from the native one, we probe how perturbation of gene order near the origin of replication impacts genome stability and survival under genomic attack. We find that when challenged with sub-inhibitory doses of ciprofloxacin, an antibiotic that generates replication fork stalling, cells with the ectopic origin show significant fitness loss. We show that genes functionally relevant to the cipro-induced stress response are largely located near the native origin, even in distantly related species. We show that while cipro induces increased copy number of genes proximal to the origin of replication as a direct consequence of replication fork stalling, gene copy number variation was reduced near the ectopic origin. Altered gene dosage in cells with an ectopic origin resulted in impaired replication fork repair and chromosome instability. We propose that gene distribution in the origin region acts as a fundamental first line of defense when the integrity of the genome is threatened and that genes proximal to the origin of replication serve as a mechanism of genetic innovation and a driving force of genome evolution in the presence of genotoxic antibiotics. Lewis Sigler Institute for Integrative Genomics and the Physics Department at Princeton University.

  1. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  2. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    Full Text Available Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB, cAMP/calcium signaling (CRE/CREB, and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  3. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Science.gov (United States)

    Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  4. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  5. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    Science.gov (United States)

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  6. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  7. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katie H. Jameson

    2017-01-01

    Full Text Available Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.

  8. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Science.gov (United States)

    Jameson, Katie H.; Wilkinson, Anthony J.

    2017-01-01

    Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis. PMID:28075389

  9. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    Science.gov (United States)

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Replication and meiotic transmission of yeast ribosomal RNA genes.

    Science.gov (United States)

    Brewer, B J; Zakian, V A; Fangman, W L

    1980-11-01

    The yeast Saccharomyces cerevisiae has approximately 120 genes for the ribosomal RNAs (rDNA) which are organized in tandem within chromosomal DNA. These multiple-copy genes are homogeneous in sequence but can undergo changes in copy number and topology. To determine if these changes reflect unusual features of rDNA metabolism, we have examined both the replication of rDNA in the mitotic cell cycle and the inheritance of rDNA during meiosis. The results indicate that rDNA behaves identically to chromosomal DNA: each rDNA unit is replicated once during the S phase of each cell cycle and each unit is conserved through meiosis. Therefore, the flexibility in copy number and topology of rDNA does not arise from the selective replication of units in each S phase nor by the selective inheritance of units in meiosis.

  11. Replication initiatives will not salvage the trustworthiness of psychology.

    Science.gov (United States)

    Coyne, James C

    2016-05-31

    Replication initiatives in psychology continue to gather considerable attention from far outside the field, as well as controversy from within. Some accomplishments of these initiatives are noted, but this article focuses on why they do not provide a general solution for what ails psychology. There are inherent limitations to mass replications ever being conducted in many areas of psychology, both in terms of their practicality and their prospects for improving the science. Unnecessary compromises were built into the ground rules for design and publication of the Open Science Collaboration: Psychology that undermine its effectiveness. Some ground rules could actually be flipped into guidance for how not to conduct replications. Greater adherence to best publication practices, transparency in the design and publishing of research, strengthening of independent post-publication peer review and firmer enforcement of rules about data sharing and declarations of conflict of interest would make many replications unnecessary. Yet, it has been difficult to move beyond simple endorsement of these measures to consistent implementation. Given the strong institutional support for questionable publication practices, progress will depend on effective individual and collective use of social media to expose lapses and demand reform. Some recent incidents highlight the necessity of this.

  12. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro

    International Nuclear Information System (INIS)

    Stillman, B.W.; Tamanoi, F.

    1983-01-01

    In this paper evidence is provided that the 140,000-dalton DNA polymerase is encoded by the adenoviral genome and is required for the initiation of DNA replication in vitro. The DNA sequences in the template DNA that are required for the initiation of replication have also been identified, using both plasmid DNAs and synthetic oligodeoxyribonucleotides. 48 references, 7 figures, 1 table

  14. Controlled initiation of chromosomal replication in Escherichia coli requires functional Hda protein.

    Science.gov (United States)

    Camara, Johanna Eltz; Skarstad, Kirsten; Crooke, Elliott

    2003-05-01

    Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.

  15. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    Science.gov (United States)

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  16. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis.

    Science.gov (United States)

    Norris, Vic

    2011-05-01

    The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Activation of human herpesvirus replication by apoptosis.

    Science.gov (United States)

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  18. Constitutive role of the Fanconi anemia D2 gene in the replication stress response.

    Science.gov (United States)

    Tian, Yanyan; Shen, Xi; Wang, Rui; Klages-Mundt, Naeh L; Lynn, Erica J; Martin, Sara K; Ye, Yin; Gao, Min; Chen, Junjie; Schlacher, Katharina; Li, Lei

    2017-12-08

    In response to DNA cross-linking damage, the Fanconi anemia (FA) core complex activates the FA pathway by monoubiquitinating Fanconi anemia complementation group D2 (FANCD2) for the initiation of the nucleolytic processing of the DNA cross-links and stabilization of stalled replication forks. Given that all the classic FA proteins coordinately monoubiquitinate FANCD2, it is unclear why losses of individual classic FA genes yield varying cellular sensitivities to cross-linking damage. To address this question, we generated cellular knock-out models of FA core complex components and FANCD2 and found that FANCD2-null mutants display higher levels of spontaneous chromosomal damage and hypersensitivity to replication-blocking lesions than Fanconi anemia complementation group L (FANCL)-null mutants, suggesting that FANCD2 provides a basal level of DNA protection countering endogenous lesions in the absence of monoubiquitination. FANCD2's ubiquitination-independent function is likely involved in optimized recruitment of nucleolytic activities for the processing and protection of stressed replication forks. Our results reveal that FANCD2 has a ubiquitination-independent role in countering endogenous levels of replication stress, a function that is critical for the maintenance of genomic stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A comprehensive family-based replication study of schizophrenia genes

    DEFF Research Database (Denmark)

    Aberg, Karolina A; Liu, Youfang; Bukszár, Jozsef

    2013-01-01

     768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. MAIN OUTCOMES AND MEASURES Case-control status for SCZ. RESULTS Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs...... in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. SETTING Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. PATIENTS We included 11 185 cases and 10...

  20. X-irradiation affects all DNA replication intermediates when inhibiting replication initiation

    International Nuclear Information System (INIS)

    Loenn, U.; Karolinska Hospital, Stockholm

    1982-01-01

    When a human melanoma line was irradiated with 10 Gy, there was, after 30 to 60 min, a gradual reduction in the DNA replication rate. Ten to twelve hours after the irradiation, the DNA replication had returned to near normal rate. The results showed tht low dose-rate X-irradiation inhibits preferentially the formation of small DNA replication intermediates. There is no difference between the inhibition of these replication intermediates formed only in the irradiated cells and those formed also in untreated cells. (U.K.)

  1. Discovery and replication of gene influences on brain structure using LASSO regression

    Directory of Open Access Journals (Sweden)

    Omid eKohannim

    2012-08-01

    Full Text Available We implemented LASSO (least absolute shrinkage and selection operator regression to evaluate gene effects in genome-wide association studies (GWAS of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI. Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4 and CDH13. The top genes we identified with this method also displayed significant and widespread post-hoc effects on voxelwise, tensor-based morphometry (TBM maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2. We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years. In exploratory analyses, three selected SNPs in the MACROD2 gene were also significantly associated with performance intelligence quotient (PIQ. Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.

  2. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamaichi

    2011-07-01

    Full Text Available There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products that surround the origin of replication (oriCII of Vibrio cholerae chromosome II (chrII are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  3. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  4. Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies.

    Science.gov (United States)

    Walsh, Kyle M; Anderson, Erik; Hansen, Helen M; Decker, Paul A; Kosel, Matt L; Kollmeyer, Thomas; Rice, Terri; Zheng, Shichun; Xiao, Yuanyuan; Chang, Jeffrey S; McCoy, Lucie S; Bracci, Paige M; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2013-02-01

    Genomewide association studies (GWAS) and candidate-gene studies have implicated single-nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case-control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate-gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate-gene approach lay in selecting both appropriate genes and relevant SNPs within these genes. © 2012 WILEY PERIODICALS, INC.

  5. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks.

    Science.gov (United States)

    Davis, L; Barbera, M; McDonnell, A; McIntyre, K; Sternglanz, R; Jin , Q; Loidl, J; Engebrecht, J

    2001-01-01

    The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination. PMID:11238403

  6. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    International Nuclear Information System (INIS)

    Struble, E. B.; Gittis, A. G.; Bianchet, M. A.; McMacken, R.

    2007-01-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure

  7. Replication Validity of Initial Association Studies: A Comparison between Psychiatry, Neurology and Four Somatic Diseases

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François

    2016-01-01

    Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability

  8. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    OpenAIRE

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program du...

  9. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  10. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    DEFF Research Database (Denmark)

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation of replic......Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation...... of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted...

  11. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  12. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication.

    Science.gov (United States)

    Liberek, K; Osipiuk, J; Zylicz, M; Ang, D; Skorko, J; Georgopoulos, C

    1990-02-25

    The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.

  14. Rescue from replication stress during mitosis.

    Science.gov (United States)

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  15. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication

    International Nuclear Information System (INIS)

    Evans, E.V.A.

    1989-01-01

    The poxvirus, vaccinia, is large DNA virus which replicates in the cytoplasma of the host cell. The virus is believed to encode most or all of the functions required for the temporally regulated transcription and replication of its 186 kilobase genome. Physical and genetic autonomy from the host make vaccinia a useful eukaryotic organism in which to study replication genes and proteins, using a combination of biochemical and genetic techniques. Essential viral functions for replication are identified by conditional lethal mutants that fail to synthesize DNA at the non-permissive temperatures. One such group contains the non-complementing alleles ts17, ts24, ts69 (WR strain). Studies were undertaken to define the phenotype of ts mutants, and to identify and characterize the affected gene and protein. Mutant infection was essentially normal at 32 degree C, but at 39 degree C the mutants did not incorporate 3 H-thymidine into nascent viral DNA or synthesize late viral proteins. If mutant cultures were shifted to non-permissive conditions at the height of replication, DNA synthesis was halted rapidly, implying that the mutants are defective in DNA elongation. The gene affected in the WR mutants and in ts6389, a DNA-minus mutant of the IHD strain, was mapped by marker rescue and corresponds to open reading frame 5 (orfD5) of the viral HindIII D fragment

  16. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses.

    Directory of Open Access Journals (Sweden)

    Mizuho Sakaki

    Full Text Available Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS, and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions ("open sea" were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs. Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence.

  17. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  18. Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication.

    Science.gov (United States)

    Narula, Jatin; Kuchina, Anna; Lee, Dong-Yeon D; Fujita, Masaya; Süel, Gürol M; Igoshin, Oleg A

    2015-07-16

    Genes encoding proteins in a common regulatory network are frequently located close to one another on the chromosome to facilitate co-regulation or couple gene expression to growth rate. Contrasting with these observations, here, we demonstrate a functional role for the arrangement of Bacillus subtilis sporulation network genes on opposite sides of the chromosome. We show that the arrangement of two sporulation network genes, one located close to the origin and the other close to the terminus, leads to a transient gene dosage imbalance during chromosome replication. This imbalance is detected by the sporulation network to produce cell-cycle coordinated pulses of the sporulation master regulator Spo0A∼P. This pulsed response allows cells to decide between sporulation and continued vegetative growth during each cell cycle spent in starvation. The simplicity of this coordination mechanism suggests that it may be widely applicable in a variety of gene regulatory and stress-response settings. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  20. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    Science.gov (United States)

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  1. Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus.

    Science.gov (United States)

    Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V

    1997-12-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.

  2. Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB

    DEFF Research Database (Denmark)

    Duigou, Stephane; Knudsen, Kristine Groth; Skovgaard, Ole

    2006-01-01

    Although the two Vibrio cholerae chromosomes initiate replication in a coordinated fashion, we show here that each chromosome appears to have a specific replication initiator. DnaA overproduction promoted overinitiation of chromosome I and not chromosome II. In contrast, overproduction of RctB, a...

  3. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  4. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation.

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-12-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli.

    Science.gov (United States)

    Kato , J; Katayama, T

    2001-08-01

    The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.

  6. R-loops and initiation of DNA replication in human cells: a missing link?

    Directory of Open Access Journals (Sweden)

    Rodrigo eLombraña

    2015-04-01

    Full Text Available The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops in human cells and the increasing evidence of their involvement in several human malignancies have invigorated the research on R-loop biology in recent years. Here we propose that physiological R-loop formation at CpG island promoters can contribute to DNA replication origin specification at these regions, the most efficient replication initiation sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction activating the formation of G-quadruplex structures that target the Origin Recognition Complex (ORC in the single-stranded conformation. In agreement with this, we found that R-loops co-localize with the ORC within the same CpG island region in a significant fraction of these efficient replication origins, precisely at the position displaying the highest density of G4 motifs. This scenario builds on the connection between transcription and replication in human cells and suggests that R-loop dysregulation at CpG island promoter-origins might contribute to the phenotype of DNA replication abnormalities and loss of genome integrity detected in cancer cells.

  7. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    Science.gov (United States)

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli.

    Science.gov (United States)

    Riber, Leise; Fujimitsu, Kazuyuki; Katayama, Tsutomu; Løbner-Olesen, Anders

    2009-01-01

    Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.

  9. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  11. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  12. Identification, characterization and preliminary X-ray diffraction analysis of the rolling-circle replication initiator protein from plasmid pSTK1

    International Nuclear Information System (INIS)

    Carr, Stephen B.; Mecia, Lauren B.; Phillips, Simon E. V.; Thomas, Christopher D.

    2013-01-01

    A proteolytically stable fragment of a plasmid replication initiation protein from the thermophile G. stearothermophilus has been biochemically characterized, crystallized and diffraction data collected to a resolution of 2.5 Å. Antibiotic resistance in bacterial pathogens poses an ever-increasing risk to human health. In antibiotic-resistant strains of Staphylococcus aureus this resistance often resides in extra-chromosomal plasmids, such as those of the pT181 family, which replicate via a rolling-circle mechanism mediated by a plasmid-encoded replication initiation protein. Currently, there is no structural information available for the pT181-family Rep proteins. Here, the crystallization of a catalytically active fragment of a homologous replication initiation protein from the thermophile Geobacillus stearothermophilus responsible for the replication of plasmid pSTK1 is reported. Crystals of the RepSTK1 fragment diffracted to a resolution of 2.5 Å and belonged to space group P2 1 2 1 2 1

  13. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1.

    Science.gov (United States)

    Alver, Robert C; Chadha, Gaganmeet Singh; Gillespie, Peter J; Blow, J Julian

    2017-03-07

    Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts.

    Science.gov (United States)

    Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz

    2018-04-15

    Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae.

    Science.gov (United States)

    Garbacz, Marta A; Lujan, Scott A; Burkholder, Adam B; Cox, Phillip B; Wu, Qiuqin; Zhou, Zhi-Xiong; Haber, James E; Kunkel, Thomas A

    2018-02-27

    To investigate nuclear DNA replication enzymology in vivo, we have studied Saccharomyces cerevisiae strains containing a pol2-16 mutation that inactivates the catalytic activities of DNA polymerase ε (Pol ε). Although pol2-16 mutants survive, they present very tiny spore colonies, increased doubling time, larger than normal cells, aberrant nuclei, and rapid acquisition of suppressor mutations. These phenotypes reveal a severe growth defect that is distinct from that of strains that lack only Pol ε proofreading (pol2-4), consistent with the idea that Pol ε is the major leading-strand polymerase used for unstressed DNA replication. Ribonucleotides are incorporated into the pol2-16 genome in patterns consistent with leading-strand replication by Pol δ when Pol ε is absent. More importantly, ribonucleotide distributions at replication origins suggest that in strains encoding all three replicases, Pol δ contributes to initiation of leading-strand replication. We describe two possible models.

  17. Late-replicating X-chromosome: replication patterns in mammalian females

    Directory of Open Access Journals (Sweden)

    Tunin Karen

    2002-01-01

    Full Text Available The GTG-banding and 5-BrdU incorporation patterns of the late-replicating X-chromosome were studied in female dogs and cattle, and compared to human female patterns. The replication patterns of the short arm of the X-chromosomes did not show any difference between human, dog and cattle females. As to the long arm, some bands showed differences among the three studied species regarding the replication kinetics pattern. These differences were observed in a restricted region of the X-chromosome, delimited by Xq11 -> q25 in humans, by Xq1 -> q8 in dogs, and by Xq12 -> q32 in cattle. In an attempt to find out if these differences in the replication kinetics could be a reflection of differences in the localization of genes in that region of the X-chromosome, we used the probe for the human androgen receptor gene (AR localized at Xq12, which is in the region where we observed differences among the three studied species. We did not, however, observe hybridization signals. Our study goes on, using other human probes for genes located in the region Xq11 -> Xq25.

  18. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  19. Various mutations compensate for a deleterious lacZα insert in the replication enhancer of M13 bacteriophage.

    Directory of Open Access Journals (Sweden)

    Emily M Zygiel

    Full Text Available M13 and other members of the Ff class of filamentous bacteriophages have been extensively employed in myriad applications. The Ph.D. series of phage-displayed peptide libraries were constructed from the M13-based vector M13KE. As a direct descendent of M13mp19, M13KE contains the lacZα insert in the intergenic region between genes IV and II, where it interrupts the replication enhancer of the (+ strand origin. Phage carrying this 816-nucleotide insert are viable, but propagate in E. coli at a reduced rate compared to wild-type M13 phage, presumably due to a replication defect caused by the insert. We have previously reported thirteen compensatory mutations in the 5'-untranslated region of gene II, which encodes the replication initiator protein gIIp. Here we report several additional mutations in M13KE that restore a wild-type propagation rate. Several clones from constrained-loop variable peptide libraries were found to have ejected the majority of lacZα gene in order to reconstruct the replication enhancer, albeit with a small scar. In addition, new point mutations in the gene II 5'-untranslated region or the gene IV coding sequence have been spontaneously observed or synthetically engineered. Through phage propagation assays, we demonstrate that all these genetic modifications compensate for the replication defect in M13KE and restore the wild-type propagation rate. We discuss the mechanisms by which the insertion and ejection of the lacZα gene, as well as the mutations in the regulatory region of gene II, influence the efficiency of replication initiation at the (+ strand origin. We also examine the presence and relevance of fast-propagating mutants in phage-displayed peptide libraries.

  20. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    Science.gov (United States)

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  1. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex*

    Science.gov (United States)

    Douglas, Max E.

    2016-01-01

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly (“G1-like”) and high affinity recruitment when CMG assembly takes place (“S-phase-like”). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. PMID:26719337

  2. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex.

    Science.gov (United States)

    Douglas, Max E; Diffley, John F X

    2016-03-11

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Early function of the Abutilon mosaic virus AC2 gene as a replication brake.

    Science.gov (United States)

    Krenz, Björn; Deuschle, Kathrin; Deigner, Tobias; Unseld, Sigrid; Kepp, Gabi; Wege, Christina; Kleinow, Tatjana; Jeske, Holger

    2015-04-01

    The C2/AC2 genes of monopartite/bipartite geminiviruses of the genera Begomovirus and Curtovirus encode important pathogenicity factors with multiple functions described so far. A novel function of Abutilon mosaic virus (AbMV) AC2 as a replication brake is described, utilizing transgenic plants with dimeric inserts of DNA B or with a reporter construct to express green fluorescent protein (GFP). Their replicational release upon AbMV superinfection or the individual and combined expression of epitope-tagged AbMV AC1, AC2, and AC3 was studied. In addition, the effects were compared in the presence and in the absence of an unrelated tombusvirus suppressor of silencing (P19). The results show that AC2 suppresses replication reproducibly in all assays and that AC3 counteracts this effect. Examination of the topoisomer distribution of supercoiled DNA, which indicates changes in the viral minichromosome structure, did not support any influence of AC2 on transcriptional gene silencing and DNA methylation. The geminiviral AC2 protein has been detected here for the first time in plants. The experiments revealed an extremely low level of AC2, which was slightly increased if constructs with an intron and a hemagglutinin (HA) tag in addition to P19 expression were used. AbMV AC2 properties are discussed with reference to those of other geminiviruses with respect to charge, modification, and size in order to delimit possible reasons for the different behaviors. The (A)C2 genes encode a key pathogenicity factor of begomoviruses and curtoviruses in the plant virus family Geminiviridae. This factor has been implicated in the resistance breaking observed in agricultural cotton production. AC2 is a multifunctional protein involved in transcriptional control, gene silencing, and regulation of basal biosynthesis. Here, a new function of Abutilon mosaic virus AC2 in replication control is added as a feature of this protein in viral multiplication, providing a novel finding on

  4. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    Science.gov (United States)

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  6. The development of the conditionally replication-competent adenovirus: replacement of E4 orf1-4 region by exogenous gene.

    Science.gov (United States)

    Nam, Jae-Kook; Lee, Mi-Hyang; Seo, Hae-Hyun; Kim, Seok-Ki; Lee, Kang-Huyn; Kim, In-Hoo; Lee, Sang-Jin

    2010-05-01

    Tumor or tissue specific replicative adenovirus armed with a therapeutic gene has shown a promising anti-cancer therapeutic modality. However, because the genomic packaging capacity is constrained, only a few places inside it are available for transgene insertion. In the present study, we introduce a novel strategy utilizing the early E4 region for the insertion of therapeutic gene(s). We constructed the conditionally replication-competent adenovirus (CRAd), Ad5E4(mRFP) by: (i) replacing the E4/E1a promoter by the prostate-specific enhancer element; (ii) inserting mRFP inside the E4orf1-4 deletion region; and (iii) sub-cloning enhanced green fluorescent protein controlled by cytomegalovirus promoter in the left end of the viral genome. Subsequently, we evaluated its replication abilities and killing activities in vitro, as well as its in vivo anti-tumor efficacy in CWR22rv xenografts. When infected with Ad5E4(mRFP), the number and intensity of the mRFP gene products increased in a prostate cancer cell-specific manner as designed, suggesting that the mRFP gene and E4orfs other than E4orf1-4 were well synthesized from one transcript via alternative splicing as the recombinant adenovirus replicated. As expected from the confirmed virus replication capability, Ad5E4(mRFP) induced cell lysis as potent as the wild-type adenovirus and effectively suppressed tumor growth when tested in the CWR22rv xenografts in nude mice. Furthermore, Ad5E4(endo/angio) harboring an endostatin-angiostatin gene in E4orf1-4 was able to enhance CRAd by replacing mRFP with a therapeutic gene. The approach employed in the present study for the insertion of a therapeutic transgene in CRAd should facilitate the construction of CRAd containing multiple therapeutic genes in the viral genome that may have the potential to serve as highly potent cancer therapeutic reagents. Copyright (c) 2010 John Wiley & Sons, Ltd.

  7. From structure to mechanism—understanding initiation of DNA replication

    Science.gov (United States)

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L. Maximilian; Schneider, Sarah; Speck, Christian

    2017-01-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. PMID:28717046

  8. Replication, gene expression and particle production by a consensus Merkel Cell Polyomavirus (MCPyV genome.

    Directory of Open Access Journals (Sweden)

    Friederike Neumann

    Full Text Available Merkel Cell Polyomavirus (MCPyV genomes are clonally integrated in tumor tissues of approximately 85% of all Merkel cell carcinoma (MCC cases, a highly aggressive tumor of the skin which predominantly afflicts elderly and immunosuppressed patients. All integrated viral genomes recovered from MCC tissue or MCC cell lines harbor signature mutations in the early gene transcript encoding for the large T-Antigen (LT-Ag. These mutations selectively abrogate the ability of LT-Ag to support viral replication while still maintaining its Rb-binding activity, suggesting a continuous requirement for LT-Ag mediated cell cycle deregulation during MCC pathogenesis. To gain a better understanding of MCPyV biology, in vitro MCPyV replication systems are required. We have generated a synthetic MCPyV genomic clone (MCVSyn based on the consensus sequence of MCC-derived sequences deposited in the NCBI database. Here, we demonstrate that transfection of recircularized MCVSyn DNA into some human cell lines recapitulates efficient replication of the viral genome, early and late gene expression together with virus particle formation. However, serial transmission of infectious virus was not observed. This in vitro culturing system allows the study of viral replication and will facilitate the molecular dissection of important aspects of the MCPyV lifecycle.

  9. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  10. From structure to mechanism-understanding initiation of DNA replication.

    Science.gov (United States)

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L Maximilian; Schneider, Sarah; Speck, Christian

    2017-06-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. © 2017 Riera et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Chromatin Constrains the Initiation and Elongation of DNA Replication.

    Science.gov (United States)

    Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk

    2017-01-05

    Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    Science.gov (United States)

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  15. Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex

    International Nuclear Information System (INIS)

    Banerjee, Soma; Sikdar, Nilabja; Myung, Kyungjae

    2007-01-01

    Defects in DNA replication fidelity lead to genomic instability. Gross chromosomal rearrangement (GCR), a type of genomic instability, is highly enhanced by various initial mutations affecting DNA replication. Frequent observations of GCRs in many cancers strongly argue the importance of maintaining high fidelity of DNA replication to suppress carcinogenesis. Recent genome wide screens in Saccharomyces cerevisiae identified a new GCR suppressor gene, ELG1, enhanced level of genome instability gene 1. Its physical interaction with proliferating cell nuclear antigen (PCNA) and complex formation with Rfc2-5p proteins suggest that Elg1 functions to load/unload PCNA onto DNA during a certain DNA metabolism. High level of DNA damage accumulation and enhanced phenotypes with mutations in genes involved in cell cycle checkpoints, homologous recombination (HR), or chromatin assembly in the elg1 strain suggest that Elg1p-Rfc2-5p functions in a fundamental DNA metabolism to suppress genomic instability

  16. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lina Wati Durani

    2017-01-01

    Full Text Available Piper betle (PB is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%, presenescent (127.3%, and senescent (157.3% HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  17. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts.

    Science.gov (United States)

    Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana

    2017-01-01

    Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  18. Correction of gene expression data: Performance-dependency on inter-replicate and inter-treatment biases.

    Science.gov (United States)

    Darbani, Behrooz; Stewart, C Neal; Noeparvar, Shahin; Borg, Søren

    2014-10-20

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies. For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies of correction methods are influenced by the inter-treatment bias as well as the inter-replicate variance. Therefore, we recommend inspecting both of the bias sources in order to apply the most efficient correction method. As an alternative correction strategy, sequential application of different correction approaches is also advised. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Optimal control of gene mutation in DNA replication.

    Science.gov (United States)

    Yu, Juanyi; Li, Jr-Shin; Tarn, Tzyh-Jong

    2012-01-01

    We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment, and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base and codon-to-codon deterministic mutations can always be achieved within a finite number of steps.

  20. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  1. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    International Nuclear Information System (INIS)

    Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric; Ekchariyawat, Peeraya; Molès, Jean-Pierre; Simmons, Graham; Chazal, Nathalie; Desprès, Philippe

    2015-01-01

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV

  2. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-01-01

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  3. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  4. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  5. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...

  6. Staphylococcal SCCmec elements encode an active MCM-like helicase and thus may be replicative

    Energy Technology Data Exchange (ETDEWEB)

    Mir-Sanchis, Ignacio; Roman, Christina A.; Misiura, Agnieszka; Pigli, Ying Z.; Boyle-Vavra, Susan; Rice , Phoebe A. (UC)

    2016-08-29

    Methicillin-resistant Staphylococcus aureus (MRSA) is a public-health threat worldwide. Although the mobile genomic island responsible for this phenotype, staphylococcal cassette chromosome (SCC), has been thought to be nonreplicative, we predicted DNA-replication-related functions for some of the conserved proteins encoded by SCC. We show that one of these, Cch, is homologous to the self-loading initiator helicases of an unrelated family of genomic islands, that it is an active 3'-to-5' helicase and that the adjacent ORF encodes a single-stranded DNA–binding protein. Our 2.9-Å crystal structure of intact Cch shows that it forms a hexameric ring. Cch, like the archaeal and eukaryotic MCM-family replicative helicases, belongs to the pre–sensor II insert clade of AAA+ ATPases. Additionally, we found that SCC elements are part of a broader family of mobile elements, all of which encode a replication initiator upstream of their recombinases. Replication after excision would enhance the efficiency of horizontal gene transfer.

  7. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.

    Science.gov (United States)

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen

    2015-03-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  8. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    Science.gov (United States)

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  9. Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus.

    Science.gov (United States)

    Cosme, Ruth S Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-04-01

    Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.

  10. AKT1 fails to replicate as a longevity-associated gene in Danish and German nonagenarians and centenarians

    DEFF Research Database (Denmark)

    Nygaard, Marianne; Soerensen, Mette; Flachsbart, Friederike

    2013-01-01

    In addition to APOE and FOXO3, AKT1 has recently been suggested as a third consistent longevity gene, with variants in AKT1 found to be associated with human lifespan in two previous studies. Here, we evaluated AKT1 as a longevity-associated gene across populations by attempting to replicate the ...... not support AKT1 as a universal longevity-associated gene.European Journal of Human Genetics advance online publication, 29 August 2012; doi:10.1038/ejhg.2012.196....

  11. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  12. Rolling replication of UV-irradiated duplex DNA in the phi X174 replicative-form----single-strand replication system in vitro

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers

  13. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    Science.gov (United States)

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  14. Mechanisms Governing DDK Regulation of the Initiation of DNA Replication

    Directory of Open Access Journals (Sweden)

    Larasati

    2016-12-01

    Full Text Available The budding yeast Dbf4-dependent kinase (DDK complex—comprised of cell division cycle (Cdc7 kinase and its regulatory subunit dumbbell former 4 (Dbf4—is required to trigger the initiation of DNA replication through the phosphorylation of multiple minichromosome maintenance complex subunits 2-7 (Mcm2-7. DDK is also a target of the radiation sensitive 53 (Rad53 checkpoint kinase in response to replication stress. Numerous investigations have determined mechanistic details, including the regions of Mcm2, Mcm4, and Mcm6 phosphorylated by DDK, and a number of DDK docking sites. Similarly, the way in which the Rad53 forkhead-associated 1 (FHA1 domain binds to DDK—involving both canonical and non-canonical interactions—has been elucidated. Recent work has revealed mutual promotion of DDK and synthetic lethal with dpb11-1 3 (Sld3 roles. While DDK phosphorylation of Mcm2-7 subunits facilitates their interaction with Sld3 at origins, Sld3 in turn stimulates DDK phosphorylation of Mcm2. Details of a mutually antagonistic relationship between DDK and Rap1-interacting factor 1 (Rif1 have also recently come to light. While Rif1 is able to reverse DDK-mediated Mcm2-7 complex phosphorylation by targeting the protein phosphatase glycogen 7 (Glc7 to origins, there is evidence to suggest that DDK can counteract this activity by binding to and phosphorylating Rif1.

  15. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  16. The Proximity of Ribosomal Protein Genes to oriC Enhances Vibrio cholerae Fitness in the Absence of Multifork Replication.

    Science.gov (United States)

    Soler-Bistué, Alfonso; Timmermans, Michaël; Mazel, Didier

    2017-02-28

    Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin ( oriC ). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen. IMPORTANCE The role of gene order within the bacterial chromosome is poorly understood. In fast growers, the location of genes linked with the expression of genetic information (i.e., transcription and translation) is biased toward oriC It was proposed that the location of these genes helps to maximize their expression by recruiting

  17. Roles of Polypyrimidine Tract Binding Proteins in Major Immediate-Early Gene Expression and Viral Replication of Human Cytomegalovirus▿

    Science.gov (United States)

    Cosme, Ruth S. Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-01-01

    Human cytomegalovirus (HCMV), a member of the β subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns. PMID:19144709

  18. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  19. Initiation of simian virus 40 DNA replication in vitro: Pulse-chase experiments identify the first labeled species as topologically unwound

    International Nuclear Information System (INIS)

    Bullock, P.A.; Seo, Yeon Soo; Hurwitz, J.

    1989-01-01

    A distinct unwound form of DNA containing the simian virus 40 (SV40) origin is produced in replication reactions carried out in mixtures containing crude fractions prepared from HeLa cells. This species, termed form U R , comigrates on chloroquine-containing agarose gels with the upper part of the previously described heterogeneous highly unwound circular DNA, form U. As with form U, formation of form U R is dependent upon the SV40 tumor (T) antigen. Pulse-chase experiments demonstrate that the first species to incorporate labeled deoxyribonucleotides comigrates with form U R . Restriction analyses of the products of the pulse-chase experiments show that initiation occurs at the SV40 origin and then proceeds outward in a bidirectional manner. These experiments establish form U R as the earliest detectable substrate for SV40 DNA replication and suggest that SV40 DNA replication initiates on an unwound species

  20. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription.

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-10-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.

  1. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  2. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  3. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Devkanya Dutta

    Full Text Available A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.

  4. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  5. Dpb11 may function with RPA and DNA to initiate DNA replication.

    Science.gov (United States)

    Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P; Kaplan, Daniel L

    2017-01-01

    Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.

  6. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  7. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  8. DNA replication machinery is required for development in Drosophila.

    Science.gov (United States)

    Kohzaki, Hidetsugu; Asano, Maki; Murakami, Yota

    2018-01-01

     In Drosophila , some factors involved in chromosome replication seem to be involved in gene amplification and endoreplication, which are actively utilized in particular tissue development, but direct evidence has not been shown. Therefore, we examined the effect of depletion of replication factors on these processes. First, we confirmed RNAi knockdown can be used for the depletion of replication factors by comparing the phenotypes of RNAi knockdown and deletion or point mutants of the components of DNA licensing factor, MCM2, MCM4 and Cdt1. Next, we found that tissue-specific RNAi knockdown of replication factors caused tissue-specific defects, probably due to defects in DNA replication. In particular, we found that depletion inhibited gene amplification of the chorion gene in follicle cells and endoreplication in salivary glands, showing that chromosomal DNA replication factors are required for these processes. Finally, using RNAi, we screened the genes for chromosomal DNA replication that affected tissue development. Interestingly, wing specific knockdown of Mcm10 induced wing formation defects. These results suggest that some components of chromosomal replication machinery are directly involved in tissue development.

  9. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Genome-wide association study of smoking initiation and current smoking

    DEFF Research Database (Denmark)

    Vink, Jacqueline M; Smit, August B; de Geus, Eco J C

    2009-01-01

    For the identification of genes associated with smoking initiation and current smoking, genome-wide association analyses were carried out in 3497 subjects. Significant genes that replicated in three independent samples (n = 405, 5810, and 1648) were visualized into a biologically meaningful network......) and cell-adhesion molecules (e.g., CDH23). We conclude that a network-based genome-wide association approach can identify genes influencing smoking behavior....

  11. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2012-01-01

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  12. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  13. Antiviral Stilbene 1,2-Diamines Prevent Initiation of Hepatitis C Virus RNA Replication at the Outset of Infection▿

    Science.gov (United States)

    Gastaminza, Pablo; Pitram, Suresh M.; Dreux, Marlene; Krasnova, Larissa B.; Whitten-Bauer, Christina; Dong, Jiajia; Chung, Josan; Fokin, Valery V.; Sharpless, K. Barry; Chisari, Francis V.

    2011-01-01

    The recent development of a cell culture model of hepatitis C virus (HCV) infection based on the JFH-1 molecular clone has enabled discovery of new antiviral agents. Using a cell-based colorimetric screening assay to interrogate a 1,200-compound chemical library for anti-HCV activity, we identified a family of 1,2-diamines derived from trans-stilbene oxide that prevent HCV infection at nontoxic, low micromolar concentrations in cell culture. Structure-activity relationship analysis of ∼300 derivatives synthesized using click chemistry yielded compounds with greatly enhanced low nanomolar potency and a >1,000:1 therapeutic ratio. Using surrogate models of HCV infection, we showed that the compounds selectively block the initiation of replication of incoming HCV RNA but have no impact on viral entry, primary translation, or ongoing HCV RNA replication, nor do they suppress persistent HCV infection. Selection of an escape variant revealed that NS5A is directly or indirectly targeted by this compound. In summary, we have identified a family of HCV inhibitors that target a critical step in the establishment of HCV infection in which NS5A translated de novo from an incoming genomic HCV RNA template is required to initiate the replication of this important human pathogen. PMID:21430055

  14. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.

    Science.gov (United States)

    Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-10-01

    IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.

  15. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  16. Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Directory of Open Access Journals (Sweden)

    Candolfi Ermanno

    2011-07-01

    Full Text Available Abstract The Human Phosphate-Binding protein (HPBP is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naïve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection.

  17. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor γ, controls hepatitis B virus replication

    International Nuclear Information System (INIS)

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-01

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), adiponectin, liver X receptor α (LXRα), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPARγ and C/EBPα. Conversely, HBV replication was upregulated by adiponectin and PPARγ agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  18. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  19. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    Directory of Open Access Journals (Sweden)

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  20. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  1. Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.

    Science.gov (United States)

    Lieder, Sarah; Jahn, Michael; Koepff, Joachim; Müller, Susann; Takors, Ralf

    2016-01-01

    Cellular response to different types of stress is the hallmark of the cell's strategy for survival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions is an important unanswered question in bacterial physiology. A cell using binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth to initiation of replication, a DNA replication phase and a period of cell division. We present a detailed analysis of durations of cell cycle phases, investigating their dynamics under environmental stress conditions. Applying continuous steady state cultivations (chemostats), the DNA content of a Pseudomonas putida KT2440 population was quantified with flow cytometry at distinct growth rates. Data-driven modeling revealed that under stress conditions, such as oxygen deprivation, solvent exposure and decreased iron availability, DNA replication was accelerated correlated to the severity of the imposed stress (up to 1.9-fold). Cells maintained constant growth rates by balancing the shortened replication phase with extended cell cycle phases before and after replication. Transcriptome data underpin the transcriptional upregulation of crucial genes of the replication machinery. Hence adaption of DNA replication speed appears to be an important strategy to withstand environmental stress. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  3. Adolescent Loneliness and the Interaction between the Serotonin Transporter Gene (5-HTTLPR and Parental Support: A Replication Study.

    Directory of Open Access Journals (Sweden)

    Annette W M Spithoven

    Full Text Available Gene-by-environment interaction (GxEs studies have gained popularity over the last decade, but the robustness of such observed interactions has been questioned. The current study contributes to this debate by replicating the only study on the interaction between the serotonin transporter gene (5-HTTLPR and perceived parental support on adolescents' peer-related loneliness. A total of 1,111 adolescents (51% boys with an average age of 13.70 years (SD = 0.93 participated and three annual waves of data were collected. At baseline, adolescent-reported parental support and peer-related loneliness were assessed and genetic information was collected. Assessment of peer-related loneliness was repeated at Waves 2 and 3. Using a cohort-sequential design, a Latent Growth Curve Model was estimated. Overall, a slight increase of loneliness over time was found. However, the development of loneliness over time was found to be different for boys and girls: girls' levels of loneliness increased over time, whereas boys' levels of loneliness decreased. Parental support was inversely related to baseline levels of loneliness, but unrelated to change of loneliness over time. We were unable to replicate the main effect of 5-HTTLPR or the 5-HTTLPR x Support interaction effect. In the Discussion, we examine the implications of our non-replication.

  4. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage

    DEFF Research Database (Denmark)

    Syljuåsen, Randi G; Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg

    2005-01-01

    by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose...

  6. Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme

    NARCIS (Netherlands)

    van der Ende, A.; Baker, T. A.; Ogawa, T.; Kornberg, A.

    1985-01-01

    The enzymatic replication of plasmids containing the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme priming systems: primase alone, RNA polymerase alone, or both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Kornberg, A.

  7. Murine leukemia virus (MLV replication monitored with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Bittner Alexandra

    2004-12-01

    Full Text Available Abstract Background Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results We inserted the coding sequences for green fluorescent protein (GFP into the proline-rich region (PRR of the ecotropic envelope protein (Env and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.

  8. Histone Modification Associated with Initiation of DNA Replication | Center for Cancer Research

    Science.gov (United States)

    Before cells are able to divide, they must first duplicate their chromosomes accurately. DNA replication and packaging of DNA into chromosomes by histone proteins need to be coordinated by the cell to ensure proper transmission of genetic and epigenetic information to the next generation. Mammalian DNA replication begins at specific chromosomal sites, called replication

  9. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  10. APOA2, dietary fat and body mass index: replication of a gene-diet interaction in three independent populations

    Science.gov (United States)

    Background: Nutrigenetics studies the role of genetic variation on interactions between diet and health aimed at providing more personalized dietary advice. However, replication has been very low and our aim was to study the interaction between a functional polymorphism of the APOA2 gene, food intak...

  11. Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Østergaard, Vibe Hallundbæk; Haas, Caroline

    2011-01-01

    DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its...... and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant...... homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1...

  12. Structural Basis of Mitochondrial Transcription Initiation.

    Science.gov (United States)

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of specific enzyme inhibitors on replication, total genome DNA repair and on gene-specific DNA repair after UV irradiation in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.C.; Stevsner, Tinna; Bohr, Vilhelm A. (National Cancer Institute, NIH, Bethesda, MD (USA). Division of Cancer Treatment, Laboratory of Molecular Pharmacology); Mattern, M.R. (Smith Kline Beecham Pharmaceuticals, King of Prussia, PA (USA). Department of Biomolecular Discovery)

    1991-09-01

    The effects were studied of some specific enzyme inhibitors on DNA repair and replication after UV damage in Chinese hamster ovary cells. The DNA repair was studied at the level of the average, overall genome and also in the active dihydrofolate reductase gene. Replication was measured in the overall genome. The inhibitors were tested of DNA poly-merase {alpha} and {delta} (aphidicolin), of poly(ADPr) polymerase (3-aminobenzamide), of ribonucleotide reductase (hydroxyurea), of topo-isomerase I (camptothecin), and of topoisomerase II (merbarone, VP-16). In addition, the effects were tested of the potential topoisomerase I activator, {beta}-lapachone. All of these compounds inhibited genome replication and all topoisomerase inhibitors affected the overall genome repair; {beta}-lapachone stimulated it. None of these compounds had any effect on the gene-specific repair. (author). 36 refs.; 3 figs.; 2 tabs.

  14. Chromosome biology: conflict management for replication and transcription.

    Science.gov (United States)

    Dewar, James M; Walter, Johannes C

    2013-03-04

    A recent study has uncovered a new mechanism that attenuates DNA replication during periods of heightened gene expression to avoid collisions between replication and transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  16. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chro......Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division......, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple......-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive...

  17. Cyclophilin B facilitates the replication of Orf virus.

    Science.gov (United States)

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  18. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Derek L Lindstrom

    2011-03-01

    Full Text Available Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array. As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  19. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. EPA Lean Government Initiative: How to Replicate Lean Successes

    Science.gov (United States)

    This Lean Replication Primer describes how EPA Offices and Regions can identify and adapt successful practices from previous Lean projects to “replicate” their successes and generate further improvements.

  1. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    International Nuclear Information System (INIS)

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-01-01

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis

  2. MTBP, the partner of Treslin, contains a novel DNA-binding domain that is essential for proper initiation of DNA replication.

    Science.gov (United States)

    Kumagai, Akiko; Dunphy, William G

    2017-11-01

    Treslin, which is essential for incorporation of Cdc45 into the replicative helicase, possesses a partner called MTBP (Mdm2-binding protein). We have analyzed Xenopus and human MTBP to assess its role in DNA replication. Depletion of MTBP from Xenopus egg extracts, which also removes Treslin, abolishes DNA replication. These extracts be can rescued with recombinant Treslin-MTBP but not Treslin or MTBP alone. Thus, Treslin-MTBP is collectively necessary for replication. We have identified a C-terminal region of MTBP (the CTM domain) that binds efficiently to both double-stranded DNA and G-quadruplex (G4) DNA. This domain also exhibits homology with budding yeast Sld7. Mutants of MTBP without a functional CTM domain are defective for DNA replication in Xenopus egg extracts. These mutants display an impaired localization to chromatin and the inability to support loading of Cdc45. Human cells harboring such a mutant also display severe S-phase defects. Thus, the CTM domain of MTBP plays a critical role in localizing Treslin-MTBP to the replication apparatus for initiation. © 2017 Kumagai and Dunphy. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Effective inhibition of foot-and-mouth disease virus (FMDV replication in vitro by vector-delivered microRNAs targeting the 3D gene

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2011-06-01

    Full Text Available Abstract Background Foot-and-mouth disease virus (FMDV causes an economically important and highly contagious disease of cloven-hoofed animals. RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a new approach for controlling viral infections. There is no report available for FMDV inhibition by vector-delivered miRNA, although miRNA is believed to have more potential than siRNA. In this study, the inhibitory effects of vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined. Results Four pairs of oligonucleotides encoding 3D-specific miRNA of FMDV were designed and selected for construction of miRNA expression plasmids. In the reporter assays, two of four miRNA expression plasmids were able to significantly silence the expression of 3D-GFP fusion proteins from the reporter plasmid, p3D-GFP, which was cotransfected with each miRNA expression plasmid. After detecting the silencing effects of the reporter genes, the inhibitory effects of FMDV replication were determined in the miRNA expression plasmid-transfected and FMDV-infected cells. Virus titration and real-time RT-PCR assays showed that the p3D715-miR and p3D983-miR plasmids were able to potently inhibit the replication of FMDV when BHK-21 cells were infected with FMDV. Conclusion Our results indicated that vector-delivered miRNAs targeting the 3D gene efficiently inhibits FMDV replication in vitro. This finding provides evidence that miRNAs could be used as a potential tool against FMDV infection.

  4. Functions of alternative Replication Protein A (aRPA) in initiation and elongation

    OpenAIRE

    Mason, Aaron C.; Roy, Rupa; Simmons, Daniel T.; Wold, Marc S.

    2010-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding complex that is essential for DNA replication, repair and recombination in eukaryotic cells. In addition to this canonical complex, we have recently characterized an alternative Replication Protein A complex (aRPA) that is unique to primates. aRPA is composed of three subunits: RPA1 and RPA3, also present in canonical RPA, and a primate-specific subunit RPA4, homologous to canonical RPA2. aRPA has biochemical properties similar to t...

  5. Coxsackievirus B3 2A protease promotes encephalomyocarditis virus replication.

    Science.gov (United States)

    Song, Qin-Qin; Lu, Ming-Zhi; Song, Juan; Chi, Miao-Miao; Sheng, Lin-Jun; Yu, Jie; Luo, Xiao-Nuan; Zhang, Lu; Yao, Hai-Lan; Han, Jun

    2015-10-02

    To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bugge

    2006-01-01

    Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication...

  7. Toxicity of the bacteriophage λ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication

    International Nuclear Information System (INIS)

    Kedzierska, Barbara; Glinkowska, Monika; Iwanicki, Adam; Obuchowski, Michal; Sojka, Piotr; Thomas, Mark S.; Wegrzyn, Grzegorz

    2003-01-01

    The bacteriophage λ cII gene codes for a transcriptional activator protein which is a crucial regulator at the stage of the 'lysis-versus-lysogeny' decision during phage development. The CII protein is highly toxic to the host, Escherichia coli, when overproduced. However, the molecular mechanism of this toxicity is not known. Here we demonstrate that DNA synthesis, but not total RNA synthesis, is strongly inhibited in cII-overexpressing E. coli cells. The toxicity was also observed when the transcriptional stimulator activity of CII was abolished either by a point mutation in the cII gene or by a point mutation, rpoA341, in the gene coding for the RNA polymerase α subunit. Moreover, inhibition of cell growth, caused by both wild-type and mutant CII proteins in either rpoA + or rpoA341 hosts, could be relieved by overexpression of the E. coli dnaB and dnaC genes. In vitro replication of an oriC-based plasmid DNA was somewhat impaired by the presence of the CII, and several CII-resistant E. coli strains contain mutations near dnaC. We conclude that the DNA replication machinery may be a target for the toxic activity of CII

  8. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  9. Independent replication of a melanoma subtype gene signature and evaluation of its prognostic value and biological correlates in a population cohort.

    Science.gov (United States)

    Nsengimana, Jérémie; Laye, Jon; Filia, Anastasia; Walker, Christy; Jewell, Rosalyn; Van den Oord, Joost J; Wolter, Pascal; Patel, Poulam; Sucker, Antje; Schadendorf, Dirk; Jönsson, Göran B; Bishop, D Timothy; Newton-Bishop, Julia

    2015-05-10

    Development and validation of robust molecular biomarkers has so far been limited in melanoma research. In this paper we used a large population-based cohort to replicate two published gene signatures for melanoma classification. We assessed the signatures prognostic value and explored their biological significance by correlating them with factors known to be associated with survival (vitamin D) or etiological routes (nevi, sun sensitivity and telomere length). Genomewide microarray gene expressions were profiled in 300 archived tumors (224 primaries, 76 secondaries). The two gene signatures classified up to 96% of our samples and showed strong correlation with melanoma specific survival (P=3 x 10(-4)), Breslow thickness (P=5 x 10(-10)), ulceration (P=9.x10-8) and mitotic rate (P=3 x 10(-7)), adding prognostic value over AJCC stage (adjusted hazard ratio 1.79, 95%CI 1.13-2.83), as previously reported. Furthermore, molecular subtypes were associated with season-adjusted serum vitamin D at diagnosis (P=0.04) and genetically predicted telomere length (P=0.03). Specifically, molecular high-grade tumors were more frequent in patients with lower vitamin D levels whereas high immune tumors came from patients with predicted shorter telomeres. Our data confirm the utility of molecular biomarkers in melanoma prognostic estimation using tiny archived specimens and shed light on biological mechanisms likely to impact on cancer initiation and progression.

  10. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  11. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Szalewska-Pałasz Agnieszka

    2011-03-01

    Full Text Available Abstract Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts by dysfunction of pgi or pta, effects of dnaE486(ts by dysfunction of tktB, effects of dnaG(ts by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

  12. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  13. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line

    DEFF Research Database (Denmark)

    Jacobsen, Kari Stougaard; Nielsen, Kirstine Overgaard; Nordmann Winther, Thilde

    2016-01-01

    expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection...

  14. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  15. Interaction of the retinoblastoma protein with Orc1 and its recruitment to human origins of DNA replication.

    Directory of Open Access Journals (Sweden)

    Ramiro Mendoza-Maldonado

    Full Text Available BACKGROUND: The retinoblastoma protein (Rb is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by specifically binding to origins of DNA replication in a cell cycle regulated manner. We show that, both in vitro and inside the cells, the largest subunit of the origin recognition complex (Orc1 specifically binds hypo-phosphorylated Rb and that this interaction is competitive with the binding of Rb to E2F1. The displacement of Rb-bound Orc1 by E2F1 at origins of DNA replication marks the progression of the G1 phase of the cell cycle toward the G1-S border. CONCLUSIONS/SIGNIFICANCE: The participation of Rb and E2F1 in the formation of the multiprotein complex that binds origins of DNA replication in mammalian cells appears to represent an effective mechanism to couple the expression of genes required for cell cycle progression to the activation of DNA replication.

  16. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    Science.gov (United States)

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  17. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.; Perez-Jurado, L.; Francke, U.; Yu-Ker Wang [Stanford Univ. Medical Center, CA (United States); Kaplan, P. [Children`s Hospital of Philadelphia, PA (United States)

    1996-06-01

    Williams syndrome (WS) is a developmental disorder with multiple system manifestations, including supraval var aortic stenosis (SVAS), peripheral pulmonic stenosis, connective tissue abnormalities, short stature, characteristic personality profile and cognitive deficits, and variable hypercalcemia in infancy. It is caused by heterozygosity for a chromosomal deletion of part of band 7q11.23 including the elastin locus (ELN). Since disruption of the ELN gene causes autosomal dominant SVAS, it is assumed that ELN haploinsufficiency is responsible for the cardiovascular features of WS. The deletion that extends from the ELN locus in both directions is {ge}200 kb in size, although estimates of {ge}2 Mb are suggested by high-resolution chromosome banding and physical mapping studies. We have searched for additional dosage-sensitive genes within the deletion that may be responsible for the noncardiovascular features. We report here that the gene for replication factor C subunit 2 (RFC2) maps within the WS deletion region and was found to be deleted in all of 18 WS patients studied. The protein product of RFC2 is part of a multimeric complex involved in DNA elongation during replication. 14 refs., 3 figs.

  18. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  19. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  20. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  1. Morphological correlates of genital HPV infection: Viral replication, transcription and gene expression

    International Nuclear Information System (INIS)

    Crum, C.P.; Friedman, D.; Nuovo, G.; Silverstein, S.J.

    1987-01-01

    Current studies indicate a strong correlation between specific morphological changes and the presence of certain HPV strains in precancerous squamous epithelium of the cervix, vulva and vagina. HPV type 16 is the most commonly detected HPV type in cervical lesions in our experience, and 85% of these lesions exhibit some morphological features associated with aneuploid epithelium (CIN). However, over 50% of these lesions containing HPV 16 DNA exhibit, in addition, foci of epithelium indistinguishable from condyloma, although in our experience, only one HPV type(16) is detected in the majority of these lesions. DNA-DNA in situ hybridization analysis of these lesions containing HPV 16 DNA has demonstrated nucleic acids in areas resembling both condyloma and CIN, with the greatest concentration in mature cells containing cytoplasmic maturation. Ten percent of lesions containing HPV 16 produce detectable capsid antigens, and we have confirmed the presence of these antigens in the same areas which hybridize in-situ for HPV DNA. Recent studies using biotin and S-35 labeled RNa probes constructed in GEM-1 vectors indicate that early HPV genes are expressed primarily in the upper (more mature) regions of the neoplastic epithelium. Thus maturation appears to exert a positive influence on a variety of HPV functions in neoplastic epithelium, including DNA replication, early and late gene expression. It is possible that patterns of gene expression may vary between lesions associated with different HPV types or different morphologies. This possibility is being explored

  2. Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication.

    Science.gov (United States)

    Gauson, Elaine J; Donaldson, Mary M; Dornan, Edward S; Wang, Xu; Bristol, Molly; Bodily, Jason M; Morgan, Iain M

    2015-05-01

    To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease

  3. Chromosomal DNA replication of Vicia faba cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1976-01-01

    The chromosomal DNA replication of higher plant cells has been investigated by DNA fiber autoradiography. The nuclear DNA fibers of Vicia root meristematic cells are organized into many tandem arrays of replication units or replicons which exist as clusters with respect to replication. DNA is replicated bidirectionally from the initiation points at the average rate of 0.15 μm/min at 20 0 C, and the average interinitiation interval is about 16 μm. The manner of chromosomal DNA replication in this higher plant is similar to that found in other eukaryotic cells at a subchromosomal level. (auth.)

  4. Initiation of genome instability and preneoplastic processes through loss of Fhit expression.

    Directory of Open Access Journals (Sweden)

    Joshua C Saldivar

    Full Text Available Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the

  5. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20...

  6. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis.

    Science.gov (United States)

    Qiu, Ying-Hua; Deng, Fei-Yan; Li, Min-Jing; Lei, Shu-Feng

    2014-11-01

    Type 1 diabetes mellitus is a serious disorder characterized by destruction of pancreatic β-cells, culminating in absolute insulin deficiency. Genetic factors contribute to the susceptibility of type 1 diabetes mellitus. The aim of the present study was to identify more susceptibility genes of type 1 diabetes mellitus. We carried out an initial gene-based genome-wide association study in a total of 4,075 type 1 diabetes mellitus cases and 2,604 controls by using the Gene-based Association Test using Extended Simes procedure. Furthermore, we carried out replication studies, differential expression analysis and functional annotation clustering analysis to support the significance of the identified susceptibility genes. We identified 452 genes associated with type 1 diabetes mellitus, even after adapting the genome-wide threshold for significance (P diabetes mellitus, which were ignored in single-nucleotide polymorphism-based association analysis and were not previously reported. We found that 53 genes have supportive evidence from replication studies and/or differential expression studies. In particular, seven genes including four non-human leukocyte antigen (HLA) genes (RASIP1, STRN4, BCAR1 and MYL2) are replicated in at least one independent population and also differentially expressed in peripheral blood mononuclear cells or monocytes. Furthermore, the associated genes tend to enrich in immune-related pathways or Gene Ontology project terms. The present results suggest the high power of gene-based association analysis in detecting disease-susceptibility genes. Our findings provide more insights into the genetic basis of type 1 diabetes mellitus.

  7. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors

    Directory of Open Access Journals (Sweden)

    Catherine M. Crosby

    2017-02-01

    Full Text Available Most adenovirus (Ad vectors are E1 gene deleted replication defective (RD-Ad vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed “single cycle” Ad (SC-Ad vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In

  8. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  9. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update

    Science.gov (United States)

    Aneja, Kawalpreet K.; Yuan, Yan

    2017-01-01

    The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed

  10. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Shirley Lam

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection. METHODS: Plasmid-based small hairpin RNA (shRNA was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection. RESULTS: Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1. CONCLUSION: Taken together, these

  11. Identifying significant temporal variation in time course microarray data without replicates

    Directory of Open Access Journals (Sweden)

    Porter Weston

    2009-03-01

    Full Text Available Abstract Background An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected. Results A temporal test statistic is proposed that is based on the degree to which data are smoothed when fit by a spline function. An algorithm is presented that uses this test statistic together with a false discovery rate method to identify genes whose expression profiles exhibit significant temporal variation. The algorithm is tested on simulated data, and is compared with another recently published replicate-free method. The simulated data consists both of genes with known temporal dependencies, and genes from a null distribution. The proposed algorithm identifies a larger percentage of the time-dependent genes for a given false discovery rate. Use of the algorithm in a study of the estrous cycle in the rat mammary gland resulted in the identification of genes exhibiting distinct circadian variation. These results were confirmed in follow-up laboratory experiments. Conclusion The proposed algorithm provides a new approach for identifying expression profiles with significant temporal variation without relying on replicates. When compared with a recently published algorithm on simulated data, the proposed algorithm appears to identify a larger percentage of time-dependent genes for a given false discovery rate. The development of the algorithm was instrumental in revealing the presence of circadian variation in the virgin rat mammary gland during the estrous cycle.

  12. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism.

    Science.gov (United States)

    Tymecka-Mulik, Joanna; Boss, Lidia; Maciąg-Dorszyńska, Monika; Matias Rodrigues, João F; Gaffke, Lidia; Wosinski, Anna; Cech, Grzegorz M; Szalewska-Pałasz, Agnieszka; Węgrzyn, Grzegorz; Glinkowska, Monika

    2017-01-01

    To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator-DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.

  14. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes

    Directory of Open Access Journals (Sweden)

    Alexey A. Leontovich

    2016-01-01

    Full Text Available Metabolic memory (MM is defined as the persistence of diabetic (DM complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6–13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes.

  15. A CI-Independent Form of Replicative Inhibition: Turn Off of Early Replication of Bacteriophage Lambda

    Science.gov (United States)

    Hayes, Sidney; Horbay, Monique A.; Hayes, Connie

    2012-01-01

    Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop + oriλ+ sequence. PMID:22590552

  16. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    Science.gov (United States)

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  17. A comprehensive association analysis of homocysteine metabolic pathway genes in Singaporean Chinese with ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Hui-Qi Low

    Full Text Available BACKGROUND: The effect of genetic factors, apart from 5,10-methylenetetrahydrofolate reductase (MTHFR polymorphisms, on elevated plasma homocysteine levels and increasing ischemic stroke risk have not been fully elucidated. We conducted a comprehensive analysis of 25 genes involved in homocysteine metabolism to investigate association of common variants within these genes with ischemic stroke risk. METHODOLOGY/PRINCIPAL FINDINGS: The study was done in two stages. In the initial study, SNP and haplotype-based association analyses were performed using 147 tagging Single Nucleotide Polymorphisms (SNPs in 360 stroke patients and 354 non-stroke controls of Singaporean Chinese ethnicity. Joint association analysis of significant SNPs was then performed to assess the cumulative effect of these variants on ischemic stroke risk. In the replication study, 8 SNPs were selected for validation in an independent set of 420 matched case-control pairs of Singaporean Chinese ethnicity. SNP analysis from the initial study suggested 3 risk variants in the MTRR, SHMT1 and TCN2 genes which were moderately associated with ischemic stroke risk, independent of known stroke risk factors. Although the replication study failed to support single-SNP associations observed in the initial study, joint association analysis of the 3 variants in combined initial and replication samples revealed a trend of elevated risk with an increased number of risk alleles (Joint P(trend = 1.2×10(-6. CONCLUSIONS: Our study did not find direct evidence of associations between any single polymorphisms of homocysteine metabolic pathway genes and ischemic stroke, but suggests that the cumulative effect of several small to moderate risk variants from genes involved in homocysteine metabolism may jointly confer a significant impact on ischemic stroke risk.

  18. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  19. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  20. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  1. How many bootstrap replicates are necessary?

    Science.gov (United States)

    Pattengale, Nicholas D; Alipour, Masoud; Bininda-Emonds, Olaf R P; Moret, Bernard M E; Stamatakis, Alexandros

    2010-03-01

    Phylogenetic bootstrapping (BS) is a standard technique for inferring confidence values on phylogenetic trees that is based on reconstructing many trees from minor variations of the input data, trees called replicates. BS is used with all phylogenetic reconstruction approaches, but we focus here on one of the most popular, maximum likelihood (ML). Because ML inference is so computationally demanding, it has proved too expensive to date to assess the impact of the number of replicates used in BS on the relative accuracy of the support values. For the same reason, a rather small number (typically 100) of BS replicates are computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is 1 to 2 orders of magnitude faster than previous techniques, while yielding qualitatively comparable support values, making an experimental study possible. In this article, we propose stopping criteria--that is, thresholds computed at runtime to determine when enough replicates have been generated--and we report on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of our proposed criteria. We run our tests on 17 diverse real-world DNA--single-gene as well as multi-gene--datasets, which include 125-2,554 taxa. We find that our stopping criteria typically stop computations after 100-500 replicates (although the most conservative criterion may continue for several thousand replicates) while producing support values that correlate at better than 99.5% with the reference values on the best ML trees. Significantly, we also find that the stopping criteria can recommend very different numbers of replicates for different datasets of comparable sizes. Our results are thus twofold: (i) they give the first experimental assessment of the effect of the number of BS replicates on the quality of support values returned through BS, and (ii) they validate our proposals for

  2. Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome.

    Science.gov (United States)

    Riber, Leise; Olsson, Jan A; Jensen, Rasmus B; Skovgaard, Ole; Dasgupta, Santanu; Marinus, Martin G; Løbner-Olesen, Anders

    2006-08-01

    Initiation of DNA replication in Eschericia coli requires the ATP-bound form of the DnaA protein. The conversion of DnaA-ATP to DnaA-ADP is facilitated by a complex of DnaA, Hda (homologous to DnaA), and DNA-loaded beta-clamp proteins in a process termed RIDA (regulatory inactivation of DnaA). Hda-deficient cells initiate replication at each origin mainly once per cell cycle, and the rare reinitiation events never coincide with the end of the origin sequestration period. Therefore, RIDA is not the predominant mechanism to prevent immediate reinitiation from oriC. The cellular level of Hda correlated directly with dnaA gene expression such that Hda deficiency led to reduced dnaA gene expression, and overproduction of Hda led to DnaA overproduction. Hda-deficient cells were very sensitive to variations in the cellular level of DnaA, and DnaA overproduction led to uncontrolled initiation of replication from oriC, causing severe growth retardation or cell death. Based on these observations, we propose that both RIDA and dnaA gene autoregulation are required as homeostatic mechanisms to ensure that initiation of replication occurs at the same time relative to cell mass in each cell cycle.

  3. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction.

    Science.gov (United States)

    van Winkel, Mark; Peeters, Frenk; van Winkel, Ruud; Kenis, Gunter; Collip, Dina; Geschwind, Nicole; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Myin-Germeys, Inez; Wichers, Marieke

    2014-06-01

    A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factor(Val66Met) (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subjects with residual depressive symptoms the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity, (ii) replicate the neutralizing impact of positive emotions, (iii) extend these analyses to other variations in the BDNF gene in the new independent sample and the original sample of non-depressed individuals. Previous findings were replicated in an experience sampling method (ESM) study. Negative Affect (NA) responses to social stress were stronger in "Val/Met" carriers of BDNF(Val66Met) compared to "Val/Val" carriers. Positive emotions neutralized the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity in a dose-response fashion. Finally, two of four additional BDNF SNPs (rs11030101, rs2049046) showed similar moderating effects on social stress-sensitivity across both samples. The neutralizing effect of positive emotions on the moderating effects of these two additional SNPs was found in one sample. In conclusion, ESM has important advantages in gene-environment (GxE) research and may attribute to more consistent findings in future GxE research. This study shows how the impact of BDNF genetic variation on depressive symptoms may be explained by its impact on subtle daily life responses to social stress. Further, it shows that the generation of positive affect (PA) can buffer social stress sensitivity and partially undo the genetic susceptibility. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  4. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    Energy Technology Data Exchange (ETDEWEB)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D' Urso, Gennaro; Huberman, Joel A

    2003-11-27

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.

  5. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    International Nuclear Information System (INIS)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D'Urso, Gennaro; Huberman, Joel A.

    2003-01-01

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication

  6. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen

    2012-10-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

  7. Vaccinia virus as a subhelper for AAV replication and packaging

    Directory of Open Access Journals (Sweden)

    Andrea R Moore

    Full Text Available Adeno-associated virus (AAV has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  8. UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene

    Directory of Open Access Journals (Sweden)

    M. Zeeshan Chaudhry

    2017-07-01

    Full Text Available Apoptosis is an important defense mechanism mounted by the immune system to control virus replication. Hence, cytomegaloviruses (CMV evolved and acquired numerous anti-apoptotic genes. The product of the human CMV (HCMV UL36 gene, pUL36 (also known as vICA, binds to pro-caspase-8, thus inhibiting death-receptor apoptosis and enabling viral replication in differentiated THP-1 cells. In vivo studies of the function of HCMV genes are severely limited due to the strict host specificity of cytomegaloviruses, but CMV orthologues that co-evolved with other species allow the experimental study of CMV biology in vivo. The mouse CMV (MCMV homolog of the UL36 gene is called M36, and its protein product (pM36 is a functional homolog of vICA that binds to murine caspase-8 and inhibits its activation. M36-deficient MCMV is severely growth impaired in macrophages and in vivo. Here we show that pUL36 binds to the murine pro-caspase-8, and that UL36 expression inhibits death-receptor apoptosis in murine cells and can replace M36 to allow MCMV growth in vitro and in vivo. We generated a chimeric MCMV expressing the UL36 ORF sequence instead of the M36 one. The newly generated MCMVUL36 inhibited apoptosis in macrophage lines RAW 264.7, J774A.1, and IC-21 and its growth was rescued to wild type levels. Similarly, growth was rescued in vivo in the liver and spleen, but only partially in the salivary glands of BALB/c and C57BL/6 mice. In conclusion, we determined that an immune-evasive HCMV gene is conserved enough to functionally replace its MCMV counterpart and thus allow its study in an in vivo setting. As UL36 and M36 proteins engage the same molecular host target, our newly developed model can facilitate studies of anti-viral compounds targeting pUL36 in vivo.

  9. MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9 Replication.

    Directory of Open Access Journals (Sweden)

    Stefan Wolf

    Full Text Available Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9 virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS assay was performed using microRNA (miRNA inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549 cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2.

  10. Role of the Escherichia coli grpE heat shock protein in the initiation of bacteriophage lambda DNA replication.

    Science.gov (United States)

    Osipiuk, J; Zylicz, M

    1991-01-01

    Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.

  11. QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders.

    Science.gov (United States)

    Lu, A T-H; Yoon, J; Geschwind, D H; Cantor, R M

    2013-02-01

    Autism Spectrum Disorder (ASD) has a heterogeneous etiology that is genetically complex. It is defined by deficits in communication and social skills and the presence of restricted and repetitive behaviors. Genetic analyses of heritable quantitative traits that correlate with ASD may reduce heterogeneity. With this in mind, deficits in nonverbal communication (NVC) were quantified based on items from the Autism Diagnostic Interview Revised. Our previous analysis of 228 families from the Autism Genetics Research Exchange (AGRE) repository reported 5 potential quantitative trait loci (QTL). Here we report an NVC QTL replication study in an independent sample of 213 AGRE families. One QTL was replicated (Panalysis of 476 haplotype blocks with 708 AGRE families using the Family Based Association Test (FBAT). Blocks in two QTL genes were associated with NVC with a P-value of 0.001. Three associated haplotype blocks were intronic to the Nerve Growth Factor (NGF) gene (P=0.001, 0.001, 0.002), and one was intronic to KCND3 (P=0.001). Individual haplotypes within the associated blocks drove the associations (0.003, 0.0004 and 0.0002) for NGF and 0.0001 for KCND3. Using the same methods, these genes were tested for association with NVC in an independent sample of 1517 families from an Autism Genome Project (AGP). NVC was associated with a haplotype in an adjacent NGF block (P=0.0005) and one 46 kb away from the associated block in KCND3 (0.008). These analyses illustrate the value of QTL and targeted association studies for genetically complex disorders such as ASD. NGF is a promising risk gene for NVC deficits.

  12. Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer's disease

    Science.gov (United States)

    Combarros, Onofre; van Duijn, Cornelia M; Hammond, Naomi; Belbin, Olivia; Arias-Vásquez, Alejandro; Cortina-Borja, Mario; Lehmann, Michael G; Aulchenko, Yurii S; Schuur, Maaike; Kölsch, Heike; Heun, Reinhard; Wilcock, Gordon K; Brown, Kristelle; Kehoe, Patrick G; Harrison, Rachel; Coto, Eliecer; Alvarez, Victoria; Deloukas, Panos; Mateo, Ignacio; Gwilliam, Rhian; Morgan, Kevin; Warden, Donald R; Smith, A David; Lehmann, Donald J

    2009-01-01

    Background Chronic inflammation is a characteristic of Alzheimer's disease (AD). An interaction associated with the risk of AD has been reported between polymorphisms in the regulatory regions of the genes for the pro-inflammatory cytokine, interleukin-6 (IL-6, gene: IL6), and the anti-inflammatory cytokine, interleukin-10 (IL-10, gene: IL10). Methods We examined this interaction in the Epistasis Project, a collaboration of 7 AD research groups, contributing DNA samples from 1,757 cases of AD and 6,295 controls. Results We replicated the interaction. For IL6 rs2069837 AA × IL10 rs1800871 CC, the synergy factor (SF) was 1.63 (95% confidence interval: 1.10–2.41, p = 0.01), controlling for centre, age, gender and apolipoprotein E ε4 (APOEε4) genotype. Our results are consistent between North Europe (SF = 1.7, p = 0.03) and North Spain (SF = 2.0, p = 0.09). Further replication may require a meta-analysis. However, association due to linkage disequilibrium with other polymorphisms in the regulatory regions of these genes cannot be excluded. Conclusion We suggest that dysregulation of both IL-6 and IL-10 in some elderly people, due in part to genetic variations in the two genes, contributes to the development of AD. Thus, inflammation facilitates the onset of sporadic AD. PMID:19698145

  13. Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane.

    Directory of Open Access Journals (Sweden)

    Chingkai Chuang

    2014-02-01

    Full Text Available RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs that drive viral replication. The host lipins (phosphatidate phosphatases are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase, which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.

  14. DNA replication origins—where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M.

    2016-01-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. PMID:27542827

  15. Separation of replication and transcription domains in nucleoli.

    Science.gov (United States)

    Smirnov, E; Borkovec, J; Kováčik, L; Svidenská, S; Schröfel, A; Skalníková, M; Švindrych, Z; Křížek, P; Ovesný, M; Hagen, G M; Juda, P; Michalová, K; Cardoso, M C; Cmarko, D; Raška, I

    2014-12-01

    In mammalian cells, active ribosomal genes produce the 18S, 5.8S and 28S RNAs of ribosomal particles. Transcription levels of these genes are very high throughout interphase, and the cell needs a special strategy to avoid collision of the DNA polymerase and RNA polymerase machineries. To investigate this problem, we measured the correlation of various replication and transcription signals in the nucleoli of HeLa, HT-1080 and NIH 3T3 cells using a specially devised software for analysis of confocal images. Additionally, to follow the relationship between nucleolar replication and transcription in living cells, we produced a stable cell line expressing GFP-RPA43 (subunit of RNA polymerase I, pol I) and RFP-PCNA (the sliding clamp protein) based on human fibrosarcoma HT-1080 cells. We found that replication and transcription signals are more efficiently separated in nucleoli than in the nucleoplasm. In the course of S phase, separation of PCNA and pol I signals gradually increased. During the same period, separation of pol I and incorporated Cy5-dUTP signals decreased. Analysis of single molecule localization microscopy (SMLM) images indicated that transcriptionally active FC/DFC units (i.e. fibrillar centers with adjacent dense fibrillar components) did not incorporate DNA nucleotides. Taken together, our data show that replication of the ribosomal genes is spatially separated from their transcription, and FC/DFC units may provide a structural basis for that separation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. [Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].

    Science.gov (United States)

    Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F

    2013-01-01

    About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.

  17. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  18. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  19. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places.

    Science.gov (United States)

    van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J

    1998-06-01

    DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.

  20. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element.

    Directory of Open Access Journals (Sweden)

    Jacob Thomas

    Full Text Available Integrative and conjugative elements (ICEs are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT by the ICE-encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP, encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.

  1. mRNA expression of the DNA replication-initiation proteins in epithelial dysplasia and squamous cell carcinoma of the tongue

    International Nuclear Information System (INIS)

    Li, Jian-na; Feng, Chong-jin; Lu, Yong-jun; Li, Hui-jun; Tu, Zheng; Liao, Gui-qing; Liang, Chun

    2008-01-01

    The tongue squamous cell carcinomas (SCCs) are characterized by high mitotic activity, and early detection is desirable. Overexpression of the DNA replication-initiation proteins has been associated with dysplasia and malignancy. Our aim was to determine whether these proteins are useful biomarkers for assessing the development of tongue SCC. We analyzed the mRNA expression of CDC6, CDT1, MCM2 and CDC45 in formalin-fixed, paraffin-embedded benign and malignant tongue tissues using quantitative real-time PCR followed by statistical analysis. We found that the expression levels are significantly higher in malignant SCC than mild precancerous epithelial dysplasia, and the expression levels in general increase with increasing grade of precancerous lesions from mild, moderate to severe epithelial dysplasia. CDC6 and CDC45 expression is dependent of the dysplasia grade and lymph node status. CDT1 expression is higher in severe dysplasia than in mild and moderate dysplasia. MCM2 expression is dependent of the dysplasia grade, lymph node status and clinical stage. The expression of the four genes is independent of tumor size or histological grade. A simple linear regression analysis revealed a linear increase in the mRNA levels of the four genes from the mild to severe dysplasia and SCC. A strong association was established between CDC6 and CDT1, and between MCM2 and CDC45 expression. The nonparametric receiver operating characteristic analysis suggested that MCM2 and CDC45 had a higher accuracy than CDC6 and CDT1 for distinguishing dysplasia from tongue SCC. These proteins can be used as biomarkers to distinguish precancerous dysplasia from SCC and are useful for early detection and diagnosis of SCC as an adjunct to clinicopathological parameters

  2. Aberrant allele-specific replication, independent of parental origin, in blood cells of cancer patients

    International Nuclear Information System (INIS)

    Dotan, Zohar A; Dotan, Aviva; Ramon, Jacob; Avivi, Lydia

    2008-01-01

    Allelic counterparts of biallelically expressed genes display an epigenetic symmetry normally manifested by synchronous replication, different from genes subjected to monoallelic expression, which normally are characterized by an asynchronous mode of replication (well exemplified by the SNRPN imprinted locus). Malignancy was documented to be associated with gross modifications in the inherent replication-timing coordination between allelic counterparts of imprinted genes as well as of biallelically expressed loci. The cancer-related allelic replication timing aberrations are non-disease specific and appear in peripheral blood cells of cancer patients, including those with solid tumors. As such they offer potential blood markers for non-invasive cancer test. The present study was aimed to gain some insight into the mechanism leading to the replication timing alterations of genes in blood lymphocytes of cancer patients. Peripheral blood samples derived from patients with prostate cancer were chosen to represent the cancerous status, and samples taken from patients with no cancer but with benign prostate hyperplasia were used to portray the normal status. Fluorescence In Situ Hybridization (FISH) replication assay, applied to phytohemagglutinin (PHA)-stimulated blood lymphocytes, was used to evaluate the temporal order (either synchronous or asynchronous) of genes in the patients' cells. We demonstrated that: (i) the aberrant epigenetic profile, as delineated by the cancer status, is a reversible modification, evidenced by our ability to restore the normal patterns of replication in three unrelated loci (CEN15, SNRPN and RB1) by introducing an archetypical demethylating agent, 5-azacytidine; (ii) following the rehabilitating effect of demethylation, an imprinted gene (SNRPN) retains its original parental imprint; and (iii) the choice of an allele between early or late replication in the aberrant asynchronous replication, delineated by the cancer status, is not

  3. Roles for Dam methylation in bacterial chromosome replication

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Koch, Birgit; Skovgaard, Ole

    GATC sequences in the DNA of Escherichia coli and related species are methylated at the adenine residue by DNA adenine methyltransferase (DamMT). These methylated residues and/or the level of DamMT influence initiation of chromosome replication from the replication origin, oriC, which contain...... for about one third of the cell cycle. During sequestration at least three mechanisms operate to lower the activity of the initiator protein, DnaA. First, the dnaA promoter, which also contains an excess of GATC sequences, is sequestered for the same period of time as oriC to prevent de novo DnaA synthesis....... Second, new DnaA binding sites outside oriC are generated by replication which serve to titrate free DNA protein. Third, after initiation, DnaA-ATP is converted to inactive DnaA-ADP by a process called RIDA (regulatory inactivation of DnaA), which is dependent on the beta-clamp of DNA polymerase III...

  4. DNA replication stress as a hallmark of cancer.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2015-01-01

    Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.

  5. Two subunits of human ORC are dispensable for DNA replication and proliferation.

    Science.gov (United States)

    Shibata, Etsuko; Kiran, Manjari; Shibata, Yoshiyuki; Singh, Samarendra; Kiran, Shashi; Dutta, Anindya

    2016-12-01

    The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1 . The ORC1 or ORC2 -depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication.

  6. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  7. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Slominska-Wojewodzka, Monika; Hansen, Flemming G.

    2008-01-01

    Background: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. Methodology/Principal Findings: DNA microarrays were used to measure mRNA steady-state levels in initiatio......C genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non......-permissive temperature had completed the early stages of chromosome replication initiation. Conclusion/Significance: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart....

  8. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia.

    LENUS (Irish Health Repository)

    Chen, X

    2011-11-01

    We conducted data-mining analyses using the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) and molecular genetics of schizophrenia genome-wide association study supported by the genetic association information network (MGS-GAIN) schizophrenia data sets and performed bioinformatic prioritization for all the markers with P-values ≤0.05 in both data sets. In this process, we found that in the CMYA5 gene, there were two non-synonymous markers, rs3828611 and rs10043986, showing nominal significance in both the CATIE and MGS-GAIN samples. In a combined analysis of both the CATIE and MGS-GAIN samples, rs4704591 was identified as the most significant marker in the gene. Linkage disequilibrium analyses indicated that these markers were in low LD (3 828 611-rs10043986, r(2)=0.008; rs10043986-rs4704591, r(2)=0.204). In addition, CMYA5 was reported to be physically interacting with the DTNBP1 gene, a promising candidate for schizophrenia, suggesting that CMYA5 may be involved in the same biological pathway and process. On the basis of this information, we performed replication studies for these three single-nucleotide polymorphisms. The rs3828611 was found to have conflicting results in our Irish samples and was dropped out without further investigation. The other two markers were verified in 23 other independent data sets. In a meta-analysis of all 23 replication samples (family samples, 912 families with 4160 subjects; case-control samples, 11 380 cases and 15 021 controls), we found that both markers are significantly associated with schizophrenia (rs10043986, odds ratio (OR)=1.11, 95% confidence interval (CI)=1.04-1.18, P=8.2 × 10(-4) and rs4704591, OR=1.07, 95% CI=1.03-1.11, P=3.0 × 10(-4)). The results were also significant for the 22 Caucasian replication samples (rs10043986, OR=1.11, 95% CI=1.03-1.17, P=0.0026 and rs4704591, OR=1.07, 95% CI=1.02-1.11, P=0.0015). Furthermore, haplotype conditioned analyses indicated that the association

  9. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  10. Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication.

    Science.gov (United States)

    Camara, Johanna E; Breier, Adam M; Brendler, Therese; Austin, Stuart; Cozzarelli, Nicholas R; Crooke, Elliott

    2005-08-01

    Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.

  11. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    DEFF Research Database (Denmark)

    Goldar, A.; Arneodo, A.; Audit, B.

    2016-01-01

    , and by taking into account the chromatin's fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement...

  12. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-11-27

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development.

  13. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    International Nuclear Information System (INIS)

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-01-01

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development

  14. DNA replication origins-where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M

    2016-08-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. © 2016 Prioleau and MacAlpine; Published by Cold Spring Harbor Laboratory Press.

  15. Deletion of the M2-2 Gene from Avian Metapneumovirus Subgroup C (aMPV-C) Impairs Virus Replication and Immunogenicity in Turkeys

    Science.gov (United States)

    The second matrix (M2) gene of avian metapneumovirus subgroup C (aMPV-C) virus contains two overlapping open reading frames (ORFs), encoding two putative proteins, M2-1 and M2-2. Both proteins are believed to be involved in either viral RNA transcription or replication. To further characterize the f...

  16. Inhibition of DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  17. A New Replication Norm for Psychology

    Directory of Open Access Journals (Sweden)

    Etienne P LeBel

    2015-10-01

    Full Text Available In recent years, there has been a growing concern regarding the replicability of findings in psychology, including a mounting number of prominent findings that have failed to replicate via high-powered independent replication attempts. In the face of this replicability “crisis of confidence”, several initiatives have been implemented to increase the reliability of empirical findings. In the current article, I propose a new replication norm that aims to further boost the dependability of findings in psychology. Paralleling the extant social norm that researchers should peer review about three times as many articles that they themselves publish per year, the new replication norm states that researchers should aim to independently replicate important findings in their own research areas in proportion to the number of original studies they themselves publish per year (e.g., a 4:1 original-to-replication studies ratio. I argue this simple approach could significantly advance our science by increasing the reliability and cumulative nature of our empirical knowledge base, accelerating our theoretical understanding of psychological phenomena, instilling a focus on quality rather than quantity, and by facilitating our transformation toward a research culture where executing and reporting independent direct replications is viewed as an ordinary part of the research process. To help promote the new norm, I delineate (1 how each of the major constituencies of the research process (i.e., funders, journals, professional societies, departments, and individual researchers can incentivize replications and promote the new norm and (2 any obstacles each constituency faces in supporting the new norm.

  18. Topology of a Membrane Associated Regulator of Prokaryotic DNA Replication

    National Research Council Canada - National Science Library

    Firshein, William

    1998-01-01

    This proposal has focused on a broad host range plasmid, RK2, as a model system to study how a pair of initiation proteins encoded by the plasmid for DNA replication function when replication occurs...

  19. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    Science.gov (United States)

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Genes and sequences involved in the replication of cowpea mosaic virus RNAs

    NARCIS (Netherlands)

    Eggen, R.

    1989-01-01

    The aim of the studies described in this thesis was to gain more insight in the complex molecular mechanisms underlying the RNA replication of the cowpea mosaic virus genome. Previously the replication of CPMV RNA has been examined extensively with crude membrane fractions prepared from

  1. Identification of Poxvirus Genome Uncoating and DNA Replication Factors with Mutually Redundant Roles.

    Science.gov (United States)

    Liu, Baoming; Panda, Debasis; Mendez-Rios, Jorge D; Ganesan, Sundar; Wyatt, Linda S; Moss, Bernard

    2018-04-01

    Genome uncoating is essential for replication of most viruses. For poxviruses, the process is divided into two stages: removal of the envelope, allowing early gene expression, and breaching of the core wall, allowing DNA release, replication, and late gene expression. Subsequent studies showed that the host proteasome and the viral D5 protein, which has an essential role in DNA replication, are required for vaccinia virus (VACV) genome uncoating. In a search for additional VACV uncoating proteins, we noted a report that described a defect in DNA replication and late expression when the gene encoding a 68-kDa ankyrin repeat/F-box protein (68k-ank), associated with the cellular SCF (Skp1, cullin1, F-box-containing complex) ubiquitin ligase complex, was deleted from the attenuated modified vaccinia virus Ankara (MVA). Here we showed that the 68k-ank deletion mutant exhibited diminished genome uncoating, formation of DNA prereplication sites, and degradation of viral cores as well as an additional, independent defect in DNA synthesis. Deletion of the 68k-ank homolog of VACV strain WR, however, was without effect, suggesting the existence of compensating genes. By inserting VACV genes into an MVA 68k-ank deletion mutant, we discovered that M2, a member of the poxvirus immune evasion (PIE) domain superfamily and a regulator of NF-κB, and C5, a member of the BTB/Kelch superfamily associated with cullin-3-based ligase complexes, independently rescued the 68k-ank deletion phenotype. Thus, poxvirus uncoating and DNA replication are intertwined processes involving at least three viral proteins with mutually redundant functions in addition to D5. IMPORTANCE Poxviruses comprise a family of large DNA viruses that infect vertebrates and invertebrates and cause diseases of medical and zoological importance. Poxviruses, unlike most other DNA viruses, replicate in the cytoplasm, and their large genomes usually encode 200 or more proteins with diverse functions. About 90 genes may

  2. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Marbouty, Martial; Martins, Francisco de Lemos

    2016-01-01

    Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the...

  3. Enhanced replication of attenuated HSV-1 in irradiated human glioma xenografts

    International Nuclear Information System (INIS)

    Advani, Sunil J.; Kataoka, Yasushi; Sibley, Greg S.; Song, Paul Y.; Hallahan, Dennis E.; Roizman, Bernard; Weichselbaum, Ralph R.

    1997-01-01

    3616 since R7020 is less attenuated than R3616. IR provides a conducive local environment for viral replication and can specifically target enhanced viral replication to the irradiated tumor bed. We hypothesize ionizing radiation induces cellular gene(s) involved in glioma DNA repair that interact in the viral replication cycle to enhance viral replication. This effect is transient in that as the levels of the cellular induced gene(s) fall viral replication is no longer enhanced, and attenuated viruses diminish the threat of systemic toxicities

  4. The role of genes controlling the replication and cell division in the repair of radiation damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zhestyanikov, V D; Svetlova, M P; Tomilin, N V; Savel' eva, G E [AN SSSR, Leningrad. Inst. Tsitologii

    1975-01-01

    Mutations in genes controlling the replication (dnaEsup(ts), dnaBsup(ts), dnaGsup(ts) and cell division (lon) in Escherichia coli prevent the rejoining of the gamma radiation-induced single-strand breaks (dnaE in combination with polA1 mutation and dnaG at the restrictive temperature) and effective postreplication DNA repair in UV-irradiated cells (dnaG at the non-permissive temperature and lon mutation) and decrease the survival of UV- and gamma-irradiated bacteria.

  5. Initiation points for cellular deoxyribonucleic acid replication in human lymphoid cells converted by Epstein-Barr virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Shlomai, Z.; Ben-Bassat, H.

    1981-01-01

    Replicon size was estimated in two Epstein-Barr virus (EBV)-negative human lymphoma lines, BJAB and Ramos, and four EBV-positive lines derived from the former ones by infection (conversion) with two viral strains, B95-8 and P3HR-1. Logarithmic cultures were pulse-labeled with [/sup -3/H]thymidine, and the deoxyribonucleic acid was spread on microscopic slides and autoradiographed by the method of Huberman and Riggs. Three of the four EBV-converted cell lines, BJAB/B95-8, Ra/B95-8, and Ra/HRIK, were found to have significantly shorter replicons (41, 21, 54% shorter, respectively), i.e., more initiation points, than their EBV-negative parents. BJAB/HRIK had replicons which were only slightly shorter (11%) than those of BJAB. However, analysis of track length demonstrated that extensive track fusion occurred during the labeling of BJAB/HRIK, implying that its true average replicon size is shorter than the observed value. The results indicate that in analogy to simian virus 40, EBV activates new initiation points for cellular DNA replication in EBV-transformed cells

  6. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    Science.gov (United States)

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

  7. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Loo, Suet Kee; Ab Hamid, Suzina Sheikh; Musa, Mustaffa; Wong, Kah Keng

    2018-01-01

    Dysregulation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) is associated with the pathogenesis of various types of cancer. It has been previously shown that DNMT1 is frequently expressed in diffuse large B-cell lymphoma (DLBCL), however its functions remain to be elucidated in the disease. In this study, we gene expression profiled (GEP) shRNA targeting DNMT1(shDNMT1)-treated germinal center B-cell-like DLBCL (GCB-DLBCL)-derived cell line (i.e. HT) compared with non-silencing shRNA (control shRNA)-treated HT cells. Independent gene set enrichment analysis (GSEA) performed using GEPs of shRNA-treated HT cells and primary GCB-DLBCL cases derived from two publicly-available datasets (i.e. GSE10846 and GSE31312) produced three separate lists of enriched gene sets for each gene sets collection from Molecular Signatures Database (MSigDB). Subsequent Venn analysis identified 268, 145 and six consensus gene sets from analyzing gene sets in C2 collection (curated gene sets), C5 sub-collection [gene sets from gene ontology (GO) biological process ontology] and Hallmark collection, respectively to be enriched in positive correlation with DNMT1 expression profiles in shRNA-treated HT cells, GSE10846 and GSE31312 datasets [false discovery rate (FDR) 0.8) with DNMT1 expression and significantly downregulated (log fold-change <-1.35; p<0.05) following DNMT1 silencing in HT cells. These results suggest the involvement of DNMT1 in the activation of cell cycle and DNA replication in DLBCL cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  9. Endoplasmic reticulum stress causes EBV lytic replication.

    Science.gov (United States)

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K; Rowe, David T; Wadowsky, Robert M; Rosendorff, Adam

    2011-11-17

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)-specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress-dependent and -independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress.

  10. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    International Nuclear Information System (INIS)

    Depto, A.S.; Stenberg, R.M.

    1989-01-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene

  11. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi

    Science.gov (United States)

    Gotesman, M; Soliman, H; Besch, R; El-Matbouli, M

    2015-01-01

    Spring viraemia of carp virus (SVCV) is an aetiological agent of a serious disease affecting carp farms in Europe and is a member of the Rhabdoviridae family of viruses. The genome of SVCV codes for five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). RNA-mediated interference (RNAi) by small interfering RNAs (siRNAs) is a powerful tool to inhibit gene transcription and is used to study genes important for viral replication. In previous studies regarding another member of Rhabdoviridae, siRNA inhibition of the rabies virus nucleoprotein gene provided in vitro and in vivo protection against rabies. In this study, synthetic siRNA molecules were designed to target SVCV-N and SVCV-P transcripts to inhibit SVCV replication and were tested in an epithelioma papulosum cyprini (EPC) cell line. Inhibition of gene transcription was measured by real-time quantitative reverse-transcription PCR (RT-qPCR). The efficacy of using siRNA for inhibition of viral replication was analysed by RT-qPCR measurement of a reporter gene (glycoprotein) expression and by virus endpoint titration. Inhibition of nucleoprotein and phosphoprotein gene expression by siRNA reduced SVCV replication. However, use of tandem siRNAs that target phosphoprotein and nucleoprotein worked best at reducing SVCV replication. PMID:24460815

  12. Deletion of the M2-2 gene from avian metapneumovirus subgroup C impairs virus replication and immunogenicity in Turkeys.

    Science.gov (United States)

    Yu, Qingzhong; Estevez, Carlos N; Roth, Jason P; Hu, Haixia; Zsak, Laszlo

    2011-06-01

    The second matrix (M2) gene of avian metapneumovirus subgroup C (aMPV-C) contains two overlapping open reading frames (ORFs), encoding two putative proteins, M2-1 and M2-2. Both proteins are believed to be involved in viral RNA transcription or replication. To further characterize the function of the M2-2 protein in virus replication, the non-overlapping region of the M2-2 ORF was deleted from an infectious cDNA clone of the aMPV-C strain, and a viable virus was rescued by using reverse genetics technology. The recombinant virus, raMPV-C ΔM2-2, was characterized in vitro and in vivo. In Vero cells, raMPV-C ΔM2-2 replicated slightly less efficiently than the parental virus, 10-fold reduction at 48-h post-infection. The raMPV-C ΔM2-2 virus induced typical cytopathic effects (CPE) that were indistinguishable from those seen with the parental virus infection. In specific-pathogen-free (SPF) turkeys, raMPV-C ΔM2-2 was attenuated and caused no clinical signs of disease. Less than 20% of the inoculated birds shed detectable virus in tracheal tissue during the first 5 days post-infection, and no virus shedding was detected afterward. Forty percent of infected birds produced a weak antibody response at 14 days post-infection. Upon challenge with a virulent aMPV-C strain, more than 80% of the raMPV-C ΔM2-2-inoculated birds showed typical disease signs and virus shedding in tracheal tissue. These results suggest that the M2-2 protein of aMPV-C virus is not essential for virus replication in vitro, but is required for sufficient virus replication to maintain pathogenicity and immunogenicity in the natural host.

  13. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication

    Science.gov (United States)

    On, Kin Fan; Beuron, Fabienne; Frith, David; Snijders, Ambrosius P; Morris, Edward P; Diffley, John F X

    2014-01-01

    Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins. PMID:24566989

  14. Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin

    DEFF Research Database (Denmark)

    Ivanova, Darja; Taylor, Toni; Smith, Sarah L

    2015-01-01

    Each cell division requires the unwinding of millions of DNA base pairs to allow chromosome duplication and gene transcription. As DNA replication and transcription share the same template, conflicts between both processes are unavoidable and head-on collisions are thought to be particularly...

  15. A novel minicircle vector based system for inhibting the replication and gene expression of enterovirus 71 and coxsackievirus A16.

    Science.gov (United States)

    Yang, Zhuo; Li, Guodong; Zhang, Yingqiu; Liu, Xiaoman; Tien, Po

    2012-11-01

    Enterovirus 71 (EV 71) and Coxsackievirus A16 (CA 16) are two major causative agents of hand, foot and mouth disease (HFMD). They have been associated with severe neurological and cardiological complications worldwide, and have caused significant mortalities during large-scale outbreaks in China. Currently, there are no effective treatments against EV 71 and CA 16 infections. We now describe the development of a novel minicircle vector based RNA interference (RNAi) system as a therapeutic approach to inhibiting EV 71 and CA 16 replication. Small interfering RNA (siRNA) molecules targeting the conserved regions of the 3C(pro) and 3D(pol) function gene of the EV 71 and CA 16 China strains were designed based on their nucleotide sequences available in GenBank. This RNAi system was found to effectively block the replication and gene expression of these viruses in rhabdomyosarcoma (RD) cells and virus-infected mice model. The inhibitory effects were confirmed by a corresponding decrease in viral RNA, viral protein, and progeny virus production. In addition, no significant adverse off-target silencing or cytotoxic effects were observed. These results demonstrated the potential and feasibility of this novel minicircle vector based RNAi system for antiviral therapy against EV 71 and CA 16 infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe

    Science.gov (United States)

    Cotobal, Cristina; Segurado, Mónica; Antequera, Francisco

    2010-01-01

    DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals. PMID:20094030

  17. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    Science.gov (United States)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  18. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    Science.gov (United States)

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  19. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

  20. PROTEOLYTIC REMOVAL OF THE CARBOXYL TERMINUS OF THE T4 GENE 32 HELIX-DESTABILIZING PROTEIN ALTERS THE T4 IN VITRO REPLICATION COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Burke, R.L.; Alberts, B.M.; Hosoda, J.

    1980-07-01

    The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. (1) Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32*I protein for this synthesis. (2) Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. (3) Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. (4) The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3{prime}-OH end of a

  1. Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations.

    Directory of Open Access Journals (Sweden)

    Michal Schwartz

    Full Text Available Non-Homologous End Joining (NHEJ is one of the two major pathways of DNA Double Strand Breaks (DSBs repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(DJ recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(DJ recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.

  2. On meme--gene coevolution.

    Science.gov (United States)

    Bull, L; Holland, O; Blackmore, S

    2000-01-01

    In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.

  3. DNA Copy-Number Control through Inhibition of Replication Fork Progression

    Directory of Open Access Journals (Sweden)

    Jared T. Nordman

    2014-11-01

    Full Text Available Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.

  4. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  5. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  6. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli

    DEFF Research Database (Denmark)

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. Dna...... replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology...... in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on ori...

  7. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Science.gov (United States)

    Demarre, Gaëlle; Chattoraj, Dhruba K

    2010-05-06

    DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  8. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  9. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  10. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    International Nuclear Information System (INIS)

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  11. nfi-1 affects behavior and life-span in C. elegans but is not essential for DNA replication or survival

    Directory of Open Access Journals (Sweden)

    Hirono Keiko

    2005-10-01

    Full Text Available Abstract Background The Nuclear Factor I (one (NFI family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. Results C. elegans NFI protein (CeNFI binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. Conclusion NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C

  12. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  14. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity

    NARCIS (Netherlands)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-01-01

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA

  15. RNase H and replication of ColE1 DNA in Escherichia coli.

    OpenAIRE

    Naito, S; Uchida, H

    1986-01-01

    Amber mutations within the rnh (RNase H) gene of Escherichia coli K-12 were isolated by selecting for bacteria capable of replicating in a sup+ background replication-defective cer-6 mutant of the ColE1 replicon. The cer-6 mutation is an alteration of one base pair located 160 nucleotides upstream of the unique replication origin of this plasmid. Subsequently, we determined the DNA alterations present within these mutants. ColE1 DNA replicated in rnh(Am) recA cells, indicating that (i) RNase ...

  16. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi.

    Science.gov (United States)

    Gotesman, M; Soliman, H; Besch, R; El-Matbouli, M

    2015-02-01

    Spring viraemia of carp virus (SVCV) is an aetiological agent of a serious disease affecting carp farms in Europe and is a member of the Rhabdoviridae family of viruses. The genome of SVCV codes for five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). RNA-mediated interference (RNAi) by small interfering RNAs (siRNAs) is a powerful tool to inhibit gene transcription and is used to study genes important for viral replication. In previous studies regarding another member of Rhabdoviridae, siRNA inhibition of the rabies virus nucleoprotein gene provided in vitro and in vivo protection against rabies. In this study, synthetic siRNA molecules were designed to target SVCV-N and SVCV-P transcripts to inhibit SVCV replication and were tested in an epithelioma papulosum cyprini (EPC) cell line. Inhibition of gene transcription was measured by real-time quantitative reverse-transcription PCR (RT-qPCR). The efficacy of using siRNA for inhibition of viral replication was analysed by RT-qPCR measurement of a reporter gene (glycoprotein) expression and by virus endpoint titration. Inhibition of nucleoprotein and phosphoprotein gene expression by siRNA reduced SVCV replication. However, use of tandem siRNAs that target phosphoprotein and nucleoprotein worked best at reducing SVCV replication. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  17. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  18. Difference-based clustering of short time-course microarray data with replicates

    Directory of Open Access Journals (Sweden)

    Kim Jihoon

    2007-07-01

    Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.

  19. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro.

    Science.gov (United States)

    Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G

    2004-09-15

    The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development

  20. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine–Dalgarno sequence in prokaryotes

    KAUST Repository

    Nakagawa, So

    2017-02-15

    In prokaryotes, translation initiation is believed to occur through an interaction between the 3\\' tail of a 16S rRNA and a corresponding Shine-Dalgarno (SD) sequence in the 5\\' untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5\\' UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species\\' genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.

  1. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine–Dalgarno sequence in prokaryotes

    KAUST Repository

    Nakagawa, So; Niimura, Yoshihito; Gojobori, Takashi

    2017-01-01

    In prokaryotes, translation initiation is believed to occur through an interaction between the 3' tail of a 16S rRNA and a corresponding Shine-Dalgarno (SD) sequence in the 5' untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5' UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species' genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.

  2. The TGFB1 gene is associated with curve severity but not with the development of adolescent idiopathic scoliosis: a replication study in the Chinese population.

    Science.gov (United States)

    Xu, Leilei; Sun, Weixiang; Qin, Xiaodong; Qiu, Yong; Zhu, Zezhang

    2016-01-13

    The transforming growth factor beta-1 (TGFB1) gene was recently reported to be a new susceptible gene of adolescent idiopathic scoliosis (AIS) in Russian population. This study aimed to replicate the relationship between the TGFB1 gene and the susceptibility of AIS in a Chinese population, and to further describe its association with the curve severity. A total of 1251 female AIS patients and 994 age-matched healthy controls were included in this study. The rs1800469 of TGFB1 gene was genotyped for all participants using the PCR-based Invader assay. The differences of genotype and allele distributions between AIS patients and healthy controls were assessed using the Chi-square test. One-way ANOVA test was used to compare the mean Cobb angles among patients with different genotypes. There was no significant difference in terms of the genotype and the allele frequency between the patients and the controls. The mean Cobb angle was 34.7 ± 11.9° (range 25-61°). Case-only analysis showed that rs1800469 was significantly associated with the curve severity. Patients with genotype TT had remarkably higher curve magnitude (39.1 ± 12.8°) than those with genotype CT (34.8 ± 11.1°) or CC (32.1 ± 10.6°). The TGFB1 gene may not be a predisposition gene of AIS in the Chinese population. However, it can play a role in the curve progression of AIS. Replication studies in other ethnic groups are warranted to understand the implication of TGFB1 gene in AIS.

  3. A conserved MCM single-stranded DNA binding element is essential for replication initiation.

    Science.gov (United States)

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-04-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.

  4. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    Directory of Open Access Journals (Sweden)

    Nathalie Alazard-Dany

    2009-03-01

    Full Text Available The human parvovirus Adeno-Associated Virus (AAV type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1; whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP complex (UL5/8/52 and the single-stranded DNA-Binding Protein (ICP8 were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42 was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  5. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Directory of Open Access Journals (Sweden)

    Gaëlle Demarre

    2010-05-01

    Full Text Available DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  6. GEMC1 is a TopBP1 interacting protein required for chromosomal DNA replication

    Science.gov (United States)

    Balestrini, Alessia; Cosentino, Claudia; Errico, Alessia; Garner, Elizabeth; Costanzo, Vincenzo

    2010-01-01

    Many factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication in complex multicellular organisms is poorly understood. Here, we report the identification of GEMC1, a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus egg extract we show that Xenopus GEMC1 (xGEMC1) binds to checkpoint and replication factor TopBP1, which promotes xGEMC1 binding to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 directly interacts with replication factors such as Cdc45 and Cdk2-CyclinE by which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication whereas depletion of xGEMC1 prevents DNA replication onset due to impairment of Cdc45 loading onto chromatin. Likewise, inhibition of GEMC1 expression by morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in higher eukaryotes by mediating TopBP1 and Cdk2 dependent recruitment of Cdc45 onto replication origins. PMID:20383140

  7. A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia

    DEFF Research Database (Denmark)

    Ingason, Andrés; Giegling, Ina; Cichon, Sven

    2010-01-01

    The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample....... Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both...... as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia....

  8. Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis

    DEFF Research Database (Denmark)

    Molzen, T E; Burghout, P; Bootsma, H J

    2010-01-01

    Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis...... as targets for future therapy and prevention of pneumococcal meningitis, since their mutants were attenuated in both models of infection as well as in competitive growth in human cerebrospinal fluid in vitro.......Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis...... genes mutants of which had become attenuated or enriched, respectively, during infection. The results point to essential roles for capsular polysaccharides, nutrient uptake, and amino acid biosynthesis in bacterial replication during experimental meningitis. The GAF phenotype of a subset of identified...

  9. Maintaining epigenetic inheritance during DNA replication in plants

    Directory of Open Access Journals (Sweden)

    Francisco eIglesias

    2016-02-01

    Full Text Available Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are remembered temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance. This memory effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.

  10. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  11. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    Directory of Open Access Journals (Sweden)

    Arturo Diaz

    2015-03-01

    Full Text Available Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV RNA replication occurs on perinuclear endoplasmic reticulum (ER membranes in ~70 nm vesicular invaginations (spherules. BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  12. Isolation and characterization of the dnaA gene of Rickettsia prowazekii

    International Nuclear Information System (INIS)

    Waite, R.T.; Shaw, E.I.; Winkler, H.H.; Wood, D.G.

    1998-01-01

    The dnaA gene encoding the initiator protein of DNA replication was isolated from the obligate intracellular bacterium, Rickettsia prowazekii. Comparison of the deduced amino acid sequence of R. prowazekii DnaA with other bacterial DnaA proteins revealed extensive similarity. However, the rickettsial sequence is unique in the number of basic lysine residues found within a highly conserved portion of the putative DNA binding region, suggesting that the rickettsial protein may recognize a DNA sequence that differs from the consensus DnaA box sequence identified in other bacteria. Consensus DnaA box sequences, found upstream of many bacterial dnaA genes, were not identified upstream of rickettsial dnaA gene. In addition, gene organization within this region differed from that of other bacteria. The putative start of transcription of the rickettsial dnaA gene was localized to a site 522 nucleotides upstream of the DnaA start codon. Key words: Rickettsia prowazekii; dnaA gene; initiator protein (authors)

  13. Semiotic systems with duality of patterning and the issue of cultural replicators.

    Science.gov (United States)

    Schaden, Gerhard; Patin, Cédric

    2017-11-14

    Two major works in recent evolutionary biology have in different ways touched upon the issue of cultural replicators in language, namely Dawkins' Selfish Gene and Maynard Smith and Szathmáry's Major Transitions in Evolution. In the latter, the emergence of language is referred to as the last major transition in evolution (for the time being), a claim we argue to be derived from a crucial property of language, called Duality of Patterning. Prima facie, this property makes natural language look like a structural equivalent to DNA, and its peer in terms of expressive power. We will argue that, if one takes seriously Maynard Smith and Szathmáry's outlook and examines what has been proposed as linguistic replicators, amongst others phonemes and words, the analogy meme-gene becomes problematic. A key issue is the fact that genes and memes are assumed to carry and transmit information, while what has been described as the best candidate for replicatorhood in language, i.e. the phoneme, does by definition not carry meaning. We will argue that semiotic systems with Duality of Pattering (like natural languages) force us to reconsider either the analogy between replicators in the biological and the cultural domain, or what it is to be a replicator in linguistics.

  14. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  15. Construction of self-replicating subgenomic West Nile virus replicons for screening antiviral compounds.

    Science.gov (United States)

    Alcaraz-Estrada, Sofia L; Reichert, Erin Donohue; Padmanabhan, Radhakrishnan

    2013-01-01

    Mosquito-borne flavivirus RNA genomes encode one long open reading frame flanking 5'- and 3'-untranslated regions (5'- and 3'-UTRs) which contain cis-acting RNA elements playing important roles for viral RNA translation and replication. The viral RNA encodes a single polyprotein, which is processed into three structural proteins and seven nonstructural (NS) proteins. The regions coding for the seven NS proteins are sufficient for replication of the RNA. The sequences encoding the structural genes can be deleted except for two short regions. The first one encompasses 32 amino acid (aa) residues from the N-terminal coding sequence of capsid (C) and the second, 27 aa region from the C-terminus of envelope (E) protein. The deleted region can be substituted with a gene coding for a readily quantifiable reporter to give rise to a subgenomic reporter replicon. Replicons containing a variety of reporter genes and marker genes for construction of stable mammalian cell lines are valuable reagents for studying the effects of mutations in translation and/or replication in isolation from processes like the entry and assembly of the virus particles. Here we describe the construction of two West Nile virus (WNV) replicons by overlap extension PCR and standard recombinant DNA techniques. One has a Renilla luciferase (Rluc) reporter gene followed by an internal ribosome entry site (element) for cap-independent translation of the open reading frame encompassing the carboxy-terminal sequence of E to NS5. The second replicon has in tandem the Rluc gene, foot and mouth disease virus 2A, and neomycin phosphotransferase gene that allows establishment of a stable mammalian cell line expressing the Rluc reporter in the presence of the neomycin analog, G418. The stable replicon-expressing Vero cell line has been used for cell-based screening and determination of EC50 values for antiviral compounds that inhibited WNV replication.

  16. A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis

    Directory of Open Access Journals (Sweden)

    Christo P. Christov

    2018-02-01

    Full Text Available DNA replication in the embryo of Xenopus laevis changes dramatically at the mid-blastula transition (MBT, with Y RNA-independent random initiation switching to Y RNA-dependent initiation at specific origins. Here, we identify xNuRD, an MTA2-containing assemblage of the nucleosome remodeling and histone deacetylation complex NuRD, as an essential factor in pre-MBT Xenopus embryos that overcomes a functional requirement for Y RNAs during DNA replication. Human NuRD complexes have a different subunit composition than xNuRD and do not support Y RNA-independent initiation of DNA replication. Blocking or immunodepletion of xNuRD inhibits DNA replication initiation in isolated nuclei in vitro and causes inhibition of DNA synthesis, developmental delay, and embryonic lethality in early embryos. xNuRD activity declines after the MBT, coinciding with dissociation of the complex and emergence of Y RNA-dependent initiation. Our data thus reveal an essential role for a NuRD complex as a DNA replication factor during early Xenopus development.

  17. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    Science.gov (United States)

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  18. The effect of DNA replication on mutation of the Saccharomyces cerevisiae CDC8 gene.

    Science.gov (United States)

    Zaborowska, D; Zuk, J

    1990-04-01

    Incubation in YPD medium under permissive conditions when DNA replication is going on, strongly stimulates the induction of cdc+ colonies of UV-irradiated cells of yeast strains HB23 (cdc8-1/cdc8-3), HB26 (cdc8-3/cdc8-3) and HB7 (cdc8-1/cdc8-1). Inhibition of DNA replication by hydroxyurea, araCMP, cycloheximide or caffeine or else by incubation in phosphate buffer pH 7.0, abolishes this stimulation. Thus the replication of DNA is strongly correlated with the high induction of cdc+ colonies by UV irradiation. It is postulated that these UV-induced cdc+ colonies arise as the result infidelity in DNA replication.

  19. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  20. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  1. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  2. Dynamics of picornavirus RNA replication within infected cells

    DEFF Research Database (Denmark)

    Belsham, Graham; Normann, Preben

    2008-01-01

    Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks the initiat......Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks...... the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following...... the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires de novo protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can...

  3. Effects of benzo[a]pyrene-DNA adducts on a reconstituted replication system

    International Nuclear Information System (INIS)

    Brown, W.C.; Romano, L.J.

    1991-01-01

    The authors have used a partially reconstituted replication system consisting of T7 DNA polymerase and T7 gene 4 protein to examine the effect of benzo[a]pyrene (B[a]P) adducts on DNA synthesis and gene 4 protein activities. The gene 4 protein is required for T7 DNA replication because of its ability to act as both a primase and helicase. They show here that total synthesis decreases as the level of adducts per molecule of DNA increases, suggesting that the B[a]P adducts are blocking an aspect of the replication process. By challenging synthesis on oligonucleotide-primed B[a]P-modified DNA with unmodified DNA, they present evidence that the T7 DNA polymerase freely dissociates after encountering an adduct. Prior studies have shown that the gene 4 protein alone does not dissociate from the template during translocation upon encountering an adduct. However, when gene 4 protein primed DNA synthesis is challenged, they observe an increase in synthesis but to a lesser extent than observed on oligonucleotide-primed synthesis. Finally, they have examined DNA synthesis on duplex templates and show the B[a]P adducts inhibit synthesis by the T7 DNA polymerase and gene 4 protein to the same extent regardless of whether the adducts are positioned in the leading or lagging strand, while synthesis by the polymerase alone is inhibited only when the adducts are in the template strand

  4. Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa.

    Science.gov (United States)

    Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C

    2010-12-01

    Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.

  5. Termination of DNA replication forks: "Breaking up is hard to do".

    Science.gov (United States)

    Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component - Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.

  6. PKR Activation Favors Infectious Pancreatic Necrosis Virus Replication in Infected Cells

    Directory of Open Access Journals (Sweden)

    Amr A.A. Gamil

    2016-06-01

    Full Text Available The double-stranded RNA-activated protein kinase R (PKR is a Type I interferon (IFN stimulated gene that has important biological and immunological functions. In viral infections, in general, PKR inhibits or promotes viral replication, but PKR-IPNV interaction has not been previously studied. We investigated the involvement of PKR during infectious pancreatic necrosis virus (IPNV infection using a custom-made rabbit antiserum and the PKR inhibitor C16. Reactivity of the antiserum to PKR in CHSE-214 cells was confirmed after IFNα treatment giving an increased protein level. IPNV infection alone did not give increased PKR levels by Western blot, while pre-treatment with PKR inhibitor before IPNV infection gave decreased eukaryotic initiation factor 2-alpha (eIF2α phosphorylation. This suggests that PKR, despite not being upregulated, is involved in eIF2α phosphorylation during IPNV infection. PKR inhibitor pre-treatment resulted in decreased virus titers, extra- and intracellularly, concomitant with reduction of cells with compromised membranes in IPNV-permissive cell lines. These findings suggest that IPNV uses PKR activation to promote virus replication in infected cells.

  7. Signal replication in a DNA nanostructure

    Science.gov (United States)

    Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan

    2017-01-01

    Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.

  8. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication.

    Science.gov (United States)

    Balestrini, Alessia; Cosentino, Claudia; Errico, Alessia; Garner, Elizabeth; Costanzo, Vincenzo

    2010-05-01

    Many of the factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication is poorly understood in multicellular organisms. Here, we report the identification of GEMC1 (geminin coiled-coil containing protein 1), a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus laevis egg extract we show that Xenopus GEMC1 (xGEMC1) binds to the checkpoint and replication factor TopBP1, which promotes binding of xGEMC1 to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 interacts directly with replication factors such as Cdc45 and the kinase Cdk2-CyclinE, through which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication, whereas depletion of xGEMC1 prevents the onset of DNA replication owing to the impairment of Cdc45 loading onto chromatin. Similarly, inhibition of GEMC1 expression with morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in multicellular organisms by mediating TopBP1- and Cdk2-dependent recruitment of Cdc45 onto replication origins.

  9. Genetic influences on hand osteoarthritis in Finnish women--a replication study of candidate genes.

    Directory of Open Access Journals (Sweden)

    Satu Hämäläinen

    Full Text Available OBJECTIVES: Our aims were to replicate some previously reported associations of single nucleotide polymorphisms (SNPs in five genes (A2BP1, COG5, GDF5, HFE, ESR1 with hand osteoarthritis (OA, and to examine whether genes (BCAP29, DIO2, DUS4L, DVWA, HLA, PTGS2, PARD3B, TGFB1 and TRIB1 associated with OA at other joint sites were associated with hand OA among Finnish women. DESIGN: We examined the bilateral hand radiographs of 542 occupationally active Finnish female dentists and teachers aged 45 to 63 and classified them according to the presence of OA by using reference images. Data regarding finger joint pain and other risk factors were collected using a questionnaire. We defined two hand OA phenotypes: radiographic OA in at least three joints (ROA and symptomatic DIP OA. The genotypes were determined by PCR-based methods. In statistical analysis, we used SNPStats software, the chi-square test and logistic regression. RESULTS: Of the SNPs, rs716508 in A2BP1 was associated with ROA (OR = 0.7, 95% CI 0.5-0.9 and rs1800470 in TGFB1 with symptomatic DIP OA (1.8, 1.2-2.9. We found an interaction between ESR1 (rs9340799 and occupation: teachers with the minor allele were at an increased risk of symptomatic DIP OA (2.8, 1.3-6.5. We saw no association among the dentists. We also found that the carriage of the COG5 rs3757713 C allele increased the risk of ROA only among women with the BCAP29 rs10953541 CC genotype (2.6; 1.1-6.1. There was also a suggestive interaction between the HFE rs179945 and the ESR1 rs9340799, and the carriage of the minor allele of either of these SNPs was associated with an increased risk of symptomatic DIP OA (2.1, 1.3-2.5. CONCLUSIONS: Our results support the earlier findings of A2BP1 and TBGF1 being OA susceptibility genes and provide evidence of a possible gene-gene interaction in the genetic influence on hand OA predisposition.

  10. Structural properties of replication origins in yeast DNA sequences

    International Nuclear Information System (INIS)

    Cao Xiaoqin; Zeng Jia; Yan Hong

    2008-01-01

    Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on analyzing average flexibility profiles of 270 replication origins, we find that yeast replication origins are significantly rigid compared with their surrounding genomic regions. To further understand the highly distinctive property of replication origins, we compare the flexibility patterns between yeast replication origins and promoters, and find that they both contain significantly rigid DNAs. Our results suggest that DNA flexibility is an important factor that helps proteins recognize and bind the target sites in order to initiate DNA replication. Inspired by the role of the rigid region in promoters, we speculate that the rigid replication origins may facilitate binding of proteins, including the origin recognition complex (ORC), Cdc6, Cdt1 and the MCM2-7 complex

  11. A novel class of mutations that affect DNA replication in E. coli

    DEFF Research Database (Denmark)

    Nordman, Jared; Skovgaard, Ole; Wright, Andrew

    2007-01-01

    Over-initiation of DNA replication in cells containing the cold-sensitive dnaA(cos) allele has been shown to lead to extensive DNA damage, potentially due to head-to-tail replication fork collisions that ultimately lead to replication fork collapse, growth stasis and/or cell death. Based on the a...

  12. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation

    DEFF Research Database (Denmark)

    Feng, Yunpeng; Vlassis, Arsenios; Roques, Céline

    2016-01-01

    implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1...

  13. Intrinsic bent DNA sites in the chromosomal replication origin of Xylella fastidiosa 9a5c

    Directory of Open Access Journals (Sweden)

    F. Gimenes

    2008-04-01

    Full Text Available The features of the nucleotide sequences in both replication and promoter regions have been investigated in many organisms. Intrinsically bent DNA sites associated with transcription have been described in several prokaryotic organisms. The aim of the present study was to investigate intrinsic bent DNA sites in the segment that holds the chromosomal replication origin, oriC, of Xylella fastidiosa 9a5c. Electrophoretic behavior analyses, as well as in silico analyses of both the 2-D projection and helical parameters, were performed. The chromosomal segment analyzed contains the initial sequence of the rpmH gene, an intergenic region, the dnaA gene, the oriC sequence, and the 5' partial sequence of the dnaN gene. The analysis revealed fragments with reduced electrophoretic mobility, which indicates the presence of curved DNA segments. The analysis of the helical parameter ENDS ratio revealed three bent DNA sites (b1, b2, and b3 located in the rpmH-dnaA intergenic region, the dnaA gene, and the oriC 5' end, respectively. The chromosomal segment of X. fastidiosa analyzed here is rich in phased AT tracts and in CAnT motifs. The 2-D projection indicated a segment whose structure was determined by the cumulative effect of all bent DNA sites. Further, the in silico analysis of the three different bacterial oriC sequences indicated similar negative roll and twist >34.00° values. The DnaA box sequences, and other motifs in them, may be associated with the intrinsic DNA curvature.

  14. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  15. Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli.

    Science.gov (United States)

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-08-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the beta clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25 degrees C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25 degrees C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42 degrees C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25 degrees C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25 degrees C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway.

  16. Modes of Overinitiation, dnaA Gene Expression, and Inhibition of Cell Division in a Novel Cold-Sensitive hda Mutant of Escherichia coli▿

    Science.gov (United States)

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-01-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the β clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25°C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25°C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42°C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25°C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25°C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway. PMID:18502852

  17. Sequencing analysis reveals a unique gene organization in the gyrB region of Mycoplasma hominis

    DEFF Research Database (Denmark)

    Ladefoged, Søren; Christiansen, Gunna

    1994-01-01

    of which showed similarity to that which encodes the LicA protein of Haemophilus influenzae. The organization of the genes in the region showed no resemblance to that in the corresponding regions of other bacteria sequenced so far. The gyrA gene was mapped 35 kb downstream from the gyrB gene.......The homolog of the gyrB gene, which has been reported to be present in the vicinity of the initiation site of replication in bacteria, was mapped on the Mycoplasma hominis genome, and the region was subsequently sequenced. Five open reading frames were identified flanking the gyrB gene, one...

  18. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; Jiao, Jing; You, Jianxin

    2014-01-01

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  19. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  20. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  1. A reporter system for replication-competent gammaretroviruses: the inGluc-MLV-DERSE assay

    Science.gov (United States)

    Aloia, Amanda L.; Duffy, Lisa; Pak, Vladimir; Lee, KyeongEun; Sanchez-Martinez, Silvia; Derse, David; Heidecker, Gisela; Cornetta, Kenneth; Rein, Alan

    2012-01-01

    While novel retroviral vectors for use in gene-therapy products are reducing the potential for formation of replication-competent retrovirus (RCR), it remains crucial to screen products for RCR for both research and clinical purposes. For clinical grade gammaretrovirus-based vectors, RCR screening is achieved by an extended S+L− or marker rescue assay, while standard methods for replication-competent lentivirus detection are still in development. In this report, we describe a rapid and sensitive method for replication-competent gammaretrovirus detection. We used this assay to detect three members of the gammaretrovirus family and compared the sensitivity of our assay with well-established methods for retrovirus detection, including the extended S+L− assay. Results presented here demonstrate that this assay should be useful for gene-therapy product testing. PMID:22402321

  2. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  3. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    Science.gov (United States)

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  4. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  5. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    International Nuclear Information System (INIS)

    Kai, Mihoko; Wang, Teresa S.-F.

    2003-01-01

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polκ). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development

  6. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.

    Science.gov (United States)

    Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H

    2015-11-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.

  7. Transcriptional and physiological changes during Mycobacterium tuberculosis reactivation from non-replicating persistence

    Directory of Open Access Journals (Sweden)

    Peicheng Du

    2016-08-01

    Full Text Available Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

  8. Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression

    International Nuclear Information System (INIS)

    Yang, Shan; Kawamura, Kiyoko; Okamoto, Shinya; Yamauchi, Suguru; Shingyoji, Masato; Sekine, Ikuo; Kobayashi, Hiroshi; Tada, Yuji; Tatsumi, Koichiro; Hiroshima, Kenzo; Shimada, Hideaki; Tagawa, Masatoshi

    2015-01-01

    Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized

  9. Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe.

    Directory of Open Access Journals (Sweden)

    Majid Eshaghi

    Full Text Available BACKGROUND: During S. pombe S-phase, initiation of DNA replication occurs at multiple sites (origins that are enriched with AT-rich sequences, at various times. Current studies of genome-wide DNA replication profiles have focused on the DNA replication timing and origin location. However, the replication and/or firing efficiency of the individual origins on the genomic scale remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome-wide ORF-specific DNA microarray analysis, we show that in S. pombe, individual origins fire with varying efficiencies and at different times during S-phase. The increase in DNA copy number plotted as a function of time is approximated to the near-sigmoidal model, when considering the replication start and end timings at individual loci in cells released from HU-arrest. Replication efficiencies differ from origin to origin, depending on the origin's firing efficiency. We have found that DNA replication is inefficient early in S-phase, due to inefficient firing at origins. Efficient replication occurs later, attributed to efficient but late-firing origins. Furthermore, profiles of replication timing in cds1Delta cells are abnormal, due to the failure in resuming replication at the collapsed forks. The majority of the inefficient origins, but not the efficient ones, are found to fire in cds1Delta cells after HU removal, owing to the firing at the remaining unused (inefficient origins during HU treatment. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that efficient DNA replication/firing occurs late in S-phase progression in cells after HU removal, due to efficient late-firing origins. Additionally, checkpoint kinase Cds1p is required for maintaining the efficient replication/firing late in S-phase. We further propose that efficient late-firing origins are essential for ensuring completion of DNA duplication by the end of S-phase.

  10. Replication confers β cell immaturity.

    Science.gov (United States)

    Puri, Sapna; Roy, Nilotpal; Russ, Holger A; Leonhardt, Laura; French, Esra K; Roy, Ritu; Bengtsson, Henrik; Scott, Donald K; Stewart, Andrew F; Hebrok, Matthias

    2018-02-02

    Pancreatic β cells are highly specialized to regulate systemic glucose levels by secreting insulin. In adults, increase in β-cell mass is limited due to brakes on cell replication. In contrast, proliferation is robust in neonatal β cells that are functionally immature as defined by a lower set point for glucose-stimulated insulin secretion. Here we show that β-cell proliferation and immaturity are linked by tuning expression of physiologically relevant, non-oncogenic levels of c-Myc. Adult β cells induced to replicate adopt gene expression and metabolic profiles resembling those of immature neonatal β that proliferate readily. We directly demonstrate that priming insulin-producing cells to enter the cell cycle promotes a functionally immature phenotype. We suggest that there exists a balance between mature functionality and the ability to expand, as the phenotypic state of the β cell reverts to a less functional one in response to proliferative cues.

  11. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  12. Distributional Replication

    OpenAIRE

    Beare, Brendan K.

    2009-01-01

    Suppose that X and Y are random variables. We define a replicating function to be a function f such that f(X) and Y have the same distribution. In general, the set of replicating functions for a given pair of random variables may be infinite. Suppose we have some objective function, or cost function, defined over the set of replicating functions, and we seek to estimate the replicating function with the lowest cost. We develop an approach to estimating the cheapest replicating function that i...

  13. Chromatin Immunoprecipitation of Replication Factors Moving with the Replication Fork

    OpenAIRE

    Rapp, Jordan B.; Ansbach, Alison B.; Noguchi, Chiaki; Noguchi, Eishi

    2009-01-01

    Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization ...

  14. Replication Catastrophe

    DEFF Research Database (Denmark)

    Toledo, Luis; Neelsen, Kai John; Lukas, Jiri

    2017-01-01

    Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA...... breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication...... checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under...

  15. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    International Nuclear Information System (INIS)

    Boulos, Rasha E; Julienne, Hanna; Baker, Antoine; Jensen, Pablo; Arneodo, Alain; Audit, Benjamin; Chen, Chun-Long; D'Aubenton-Carafa, Yves; Thermes, Claude; Petryk, Nataliya; Kahli, Malik; Hyrien, Olivier; Goldar, Arach

    2014-01-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome. (paper)

  16. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome

    Directory of Open Access Journals (Sweden)

    Kahori Shimizu

    2014-01-01

    Full Text Available Leaky expression of adenovirus (Ad genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.

  17. Identification of a 450-bp region of human papillomavirus type 1 that promotes episomal replication in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chattopadhyay, Anasuya; Schmidt, Martin C.; Khan, Saleem A.

    2005-01-01

    Human papillomaviruses (HPVs) replicate as nuclear plasmids in infected cells. Since the DNA replication machinery is generally conserved between humans and Saccharomyces cerevisiae, we studied whether HPV-1 DNA can replicate in yeast. Plasmids containing a selectable marker (with or without a yeast centromere) and either the full-length HPV-1 genome or various regions of the viral long control region (LCR) and the 3' end of the L1 gene were introduced into S. cerevisiae and their ability to replicate episomally was investigated. Our results show that HPV-1 sequences promote episomal replication of plasmids although the yeast centromere is required for plasmid retention. We have mapped the autonomously replicating sequence activity of HPV-1 DNA to a 450 base-pair sequence (HPV-1 nt 6783-7232) that includes 293 nucleotides from the 5' region of the viral LCR and 157 nucleotides from the 3' end of the L1 gene. The HPV-1 ARS does not include the binding sites for the viral E1 and E2 proteins, and these proteins are dispensable for replication in S. cerevisiae

  18. Maintaining replication origins in the face of genomic change.

    Science.gov (United States)

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Mann, Tobias; Noble, William S; Raghuraman, M K; Brewer, Bonita J

    2012-10-01

    Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.

  19. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    Science.gov (United States)

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  20. Absence of Non-histone Protein Complexes at Natural Chromosomal Pause Sites Results in Reduced Replication Pausing in Aging Yeast Cells

    Directory of Open Access Journals (Sweden)

    Marleny Cabral

    2016-11-01

    Full Text Available There is substantial evidence that genomic instability increases during aging. Replication pausing (and stalling at difficult-to-replicate chromosomal sites may induce genomic instability. Interestingly, in aging yeast cells, we observed reduced replication pausing at various natural replication pause sites (RPSs in ribosomal DNA (rDNA and non-rDNA locations (e.g., silent replication origins and tRNA genes. The reduced pausing occurs independent of the DNA helicase Rrm3p, which facilitates replication past these non-histone protein-complex-bound RPSs, and is independent of the deacetylase Sir2p. Conditions of caloric restriction (CR, which extend life span, also cause reduced replication pausing at the 5S rDNA and at tRNA genes. In aged and CR cells, the RPSs are less occupied by their specific non-histone protein complexes (e.g., the preinitiation complex TFIIIC, likely because members of these complexes have primarily cytosolic localization. These conditions may lead to reduced replication pausing and may lower replication stress at these sites during aging.

  1. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  2. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure.

    Science.gov (United States)

    Schwab, Rebekka A; Nieminuszczy, Jadwiga; Shin-ya, Kazuo; Niedzwiedz, Wojciech

    2013-04-01

    Defective DNA repair causes Fanconi anemia (FA), a rare childhood cancer-predisposing syndrome. At least 15 genes are known to be mutated in FA; however, their role in DNA repair remains unclear. Here, we show that the FANCJ helicase promotes DNA replication in trans by counteracting fork stalling on replication barriers, such as G4 quadruplex structures. Accordingly, stabilization of G4 quadruplexes in ΔFANCJ cells restricts fork movements, uncouples leading- and lagging-strand synthesis and generates small single-stranded DNA gaps behind the fork. Unexpectedly, we also discovered that FANCJ suppresses heterochromatin spreading by coupling fork movement through replication barriers with maintenance of chromatin structure. We propose that FANCJ plays an essential role in counteracting chromatin compaction associated with unscheduled replication fork stalling and restart, and suppresses tumorigenesis, at least partially, in this replication-specific manner.

  3. Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.

    Science.gov (United States)

    Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira

    2018-01-01

    Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.

  4. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  5. Excess Polθ functions in response to replicative stress in homologous recombination-proficient cancer cells

    Directory of Open Access Journals (Sweden)

    T. Goullet de Rugy

    2016-10-01

    Full Text Available DNA polymerase theta (Polθ is a specialized A-family DNA polymerase that functions in processes such as translesion synthesis (TLS, DNA double-strand break repair and DNA replication timing. Overexpression of POLQ, the gene encoding Polθ, is a prognostic marker for an adverse outcome in a wide range of human cancers. While increased Polθ dosage was recently suggested to promote survival of homologous recombination (HR-deficient cancer cells, it remains unclear whether POLQ overexpression could be also beneficial to HR-proficient cancer cells. By performing a short interfering (siRNA screen in which genes encoding druggable proteins were knocked down in Polθ-overexpressing cells as a means to uncover genetic vulnerabilities associated with POLQ overexpression, we could not identify genes that were essential for viability in Polθ-overexpressing cells in normal growth conditions. We also showed that, upon external DNA replication stress, Polθ expression promotes cell survival and limits genetic instability. Finally, we report that POLQ expression correlates with the expression of a set of HR genes in breast, lung and colorectal cancers. Collectively, our data suggest that Polθ upregulation, besides its importance for survival of HR-deficient cancer cells, may be crucial also for HR-proficient cells to better tolerate DNA replication stress, as part of a global gene deregulation response, including HR genes.

  6. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    Science.gov (United States)

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  7. Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo

    Science.gov (United States)

    Oshiumi, Hiroyuki; Mengao, Deng; Takaki, Hiromi; Matsumoto, Misako; Aly, Hussein H.; Watashi, Koichi; Chayama, Kazuaki; Seya, Tsukasa

    2016-01-01

    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy. PMID:27626689

  8. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.

    Science.gov (United States)

    Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu

    2004-06-01

    In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited

  9. Mechanisms for the initiation of bacteriophage T7 DNA replication

    International Nuclear Information System (INIS)

    Fuller, C.W.; Beauchamp, B.B.; Engler, M.J.; Lechner, R.L.; Matson, S.W.; Tabor, S.; White, J.H.; Richardson, C.C.

    1983-01-01

    Genetic analysis of bacteriophage T7 has shown that the products of phage genes 1, 2, 3, 4, 5, and 6 are required for phage DNA synthesis in vivo. T7 RNA polymerase is the translation product of gene 1. This RNA polymerase is required for transcription of most of the phage genome, including genes 2 through 6. T7 RNA polymerase promoters consist of a highly conserved 23-bp DNA sequence. There are 17 such promoters in the T7 DNA molecule, all of which direct transcription from the same strand of the DNA. 70 references, 11 figures

  10. No activation of new initiation points for deoxyribonucleic acid replication in BALB/c 3T3 cells transformed by Kirsten sarcoma virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Horowitz, A.T.

    1981-01-01

    BALB/c 3T3 cells were transformed by Kirsten sarcoma virus, and five clones were isolated in soft agar. Average replicon sizes of the transformed cell lines were stimated by the method of fiber-autoradiography and found to be the same size as the nontransformed 3T3 cells, analyzed in parallel. The results indicate that, unlike simian virus 40 and Epstein-Barr virus, Kirsten sarcoma virus does not activate new initiation points for cellular deoxyribonucleic acid replication in murine sarcome virus-transformed BALB/c 3T3 cells

  11. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    Directory of Open Access Journals (Sweden)

    El Andaloussi Samir

    2011-05-01

    Full Text Available Abstract Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s. Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s, which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for

  12. Replication in hydroxyurea: it's a matter of time.

    Science.gov (United States)

    Alvino, Gina M; Collingwood, David; Murphy, John M; Delrow, Jeffrey; Brewer, Bonita J; Raghuraman, M K

    2007-09-01

    Hydroxyurea (HU) is a DNA replication inhibitor that negatively affects both the elongation and initiation phases of replication and triggers the "intra-S phase checkpoint." Previous work with budding yeast has shown that, during a short exposure to HU, MEC1/RAD53 prevent initiation at some late S phase origins. In this study, we have performed microarray experiments to follow the fate of all origins over an extended exposure to HU. We show that the genome-wide progression of DNA synthesis, including origin activation, follows the same pattern in the presence of HU as in its absence, although the time frames are very different. We find no evidence for a specific effect that excludes initiation from late origins. Rather, HU causes S phase to proceed in slow motion; all temporal classes of origins are affected, but the order in which they become active is maintained. We propose a revised model for the checkpoint response to HU that accounts for the continued but slowed pace of the temporal program of origin activation.

  13. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative.

    Science.gov (United States)

    Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D; Martin, Javier

    2015-08-01

    There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era.

  14. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  15. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Science.gov (United States)

    Mestre, Olga; Luo, Tao; Dos Vultos, Tiago; Kremer, Kristin; Murray, Alan; Namouchi, Amine; Jackson, Céline; Rauzier, Jean; Bifani, Pablo; Warren, Rob; Rasolofo, Voahangy; Mei, Jian; Gao, Qian; Gicquel, Brigitte

    2011-01-20

    The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs). A recent Beijing genotype (Bmyc10), which included 60% of strains from distinct parts of the world, appeared to be predominant. We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  16. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    2011-01-01

    Full Text Available The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant.We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  17. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    Directory of Open Access Journals (Sweden)

    Cui Zhao

    Full Text Available A DNA-binding protein (DBP [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05, indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01. The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01. The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.

  18. The Replication Recipe: What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, A.J.; Farach, F.J.; Geller, J.; Giner-Sorolla, R.; Grange, J.A.; Perugini, M.; Spies, J.R.; Veer, A. van 't

    2014-01-01

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  19. The replication recipe : What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, Ap; Farach, Frank J.; Geller, Jason; Giner-Sorolla, Roger; Grange, James A.; Perugini, Marco; Spies, Jeffrey R.; van 't Veer, Anna

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  20. Isolation of proteins involved in the replication of adenoviral DNA in vitro

    International Nuclear Information System (INIS)

    Lichy, J.H.; Nagata, K.; Friefeld, B.R.; Enomoto, T.; Field, J.; Guggenheimer, R.A.; Ikeda, J.E.; Horwitz, M.S.; Hurwitz, J.

    1983-01-01

    The simple mechanism of replication of adenoviral DNA has made adenovirus an especially useful model system for studies of eukaryotic replication mechanisms. The availability of this in vitro system that replicates exogenously added Ad DNA-pro has made it possible to characterize the factors involved in replication. The results presented in this paper summarize our further fractionation of the in vitro system. First, the properties of two factors purified from the uninfected nuclear extract are described. Second, the separation of the pTP/Ad Pol complex into subunits and the properties of the isolated subunits are presented. The 140K protein is shown to possess the Ad DNA polymerase activity. The results suggest that the only DNA polymerase required for adenoviral DNA replication in vitro is the 140K Ad DNA polymerase and that this enzyme is probably a viral gene product. 50 references, 10 figures, 3 tables

  1. Ectopic expression of AID in a non-B cell line triggers A:T and G:C point mutations in non-replicating episomal vectors.

    Directory of Open Access Journals (Sweden)

    Tihana Jovanic

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is currently viewed as a two step process initiated by the deamination of deoxycytidine (C to deoxyuridine (U, catalysed by the activation induced deaminase (AID. Phase 1 mutations arise from DNA replication across the uracil residue or the abasic site, generated by the uracil-DNA glycosylase, yielding transitions or transversions at G:C pairs. Phase 2 mutations result from the recognition of the U:G mismatch by the Msh2/Msh6 complex (MutS Homologue, followed by the excision of the mismatched nucleotide and the repair, by the low fidelity DNA polymerase eta, of the gap generated by the exonuclease I. These mutations are mainly focused at A:T pairs. Whereas in activated B cells both G:C and A:T pairs are equally targeted, ectopic expression of AID was shown to trigger only G:C mutations on a stably integrated reporter gene. Here we show that when using non-replicative episomal vectors containing a GFP gene, inactivated by the introduction of stop codons at various positions, a high level of EGFP positive cells was obtained after transient expression in Jurkat cells constitutively expressing AID. We show that mutations at G:C and A:T pairs are produced. EGFP positive cells are obtained in the absence of vector replication demonstrating that the mutations are dependent only on the mismatch repair (MMR pathway. This implies that the generation of phase 1 mutations is not a prerequisite for the expression of phase 2 mutations.

  2. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    Science.gov (United States)

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Testing the Efficacy of a Tier 2 Mathematics Intervention: A Conceptual Replication Study

    Science.gov (United States)

    Doabler, Christian T.; Clarke, Ben; Kosty, Derek B.; Kurtz-Nelson, Evangeline; Fien, Hank; Smolkowski, Keith; Baker, Scott K.

    2016-01-01

    The purpose of this closely aligned conceptual replication study was to investigate the efficacy of a Tier 2 kindergarten mathematics intervention. The replication study differed from the initial randomized controlled trial on three important elements: geographical region, timing of the intervention, and instructional context of the…

  4. Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Karras, Jenna R.; Paisie, Carolyn A.; Huebner, Kay, E-mail: kay.huebner@osumc.edu [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210 (United States)

    2014-06-04

    The fragile FHIT gene, encompassing the chromosomal fragile site FRA3B, is an early target of DNA damage in precancerous cells. While vulnerable to DNA damage itself, FHIT protein expression is essential to protect from DNA damage-induced cancer initiation and progression by modulating genome stability, oxidative stress and levels of accumulating DNA damage. Thus, FHIT, whose expression is lost or reduced in many human cancers, is a tumor suppressor and genome caretaker whose loss initiates genome instability in preneoplastic lesions. Ongoing studies are seeking more detailed understanding of the role of FHIT in the cellular response to oxidative damage. This review discusses the relationship between FHIT, reactive oxygen species production, and DNA damage in the context of cancer initiation and progression.

  5. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model

    International Nuclear Information System (INIS)

    Freytag, Svend O.; Paielli, Dell; Wing, Mark; Rogulski, Ken; Brown, Steve; Kolozsvary, Andy; Seely, John; Barton, Ken; Dragovic, Alek; Kim, Jae Ho

    2002-01-01

    Purpose: The purpose of this study was to evaluate the efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in an adjuvant setting with external beam radiation therapy (EBRT) in an experimental prostate cancer model in preparation for a Phase I clinical study in humans. Methods: For efficacy studies, i.m. DU145 and intraprostatic LNCaP C4-2 tumors were established in immune-deficient mice. Tumors were injected with the lytic, replication-competent Ad5-CD/TKrep adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene. Two days later, mice were administered 1 week of 5-fluorocytosine + ganciclovir (GCV) prodrug therapy and fractionated doses of EBRT (trimodal therapy). Tumor control rate of trimodal therapy was compared to that of EBRT alone. For toxicology studies, immune-competent male mice received a single intraprostatic injection (10 10 vp) of the replication-competent Ad5-CD/TKrep adenovirus. Two days later, mice were administered 4 weeks of 5-fluorocytosine + GCV prodrug therapy and 56 Gy EBRT to the pelvic region. The toxicity of trimodal therapy was assessed by histopathologic analysis of major organs and clinical chemistries. Results: In both the i.m. DU145 and intraprostatic LNCaP C4-2 tumor models, trimodal therapy significantly improved primary tumor control beyond that of EBRT alone. In the DU145 model, trimodal therapy resulted in a tumor growth delay (70 days) that was more than twice that (32 days) of EBRT alone. Whereas EBRT failed to eradicate DU145 tumors, trimodal therapy resulted in 25% tumor cure. In the LNCaP C4-2 tumor model, EBRT slowed the growth of intraprostatic tumors, but resulted in no tumor cures, and 57% of the mice developed retroperitoneal lymph node metastases at 3 months. By contrast, trimodal therapy resulted in 44% tumor cure and reduced significantly the percentage (13%) of lymph node metastases relative to EBRT alone. Overall

  6. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  7. Functional characterization of Bombyx mori nucleopolyhedrovirus late gene transcription and genome replication factors in the non-permissive insect cell line SF-21

    International Nuclear Information System (INIS)

    Berretta, Marcelo F.; Deshpande, Mandar; Crouch, Erin A.; Passarelli, A. Lorena

    2006-01-01

    We compared the abilities of late gene transcription and DNA replication machineries of the baculoviruses Autographa californica nucleopolyhedrovirus (AcMNPV) and Bombyx mori NPV (BmNPV) in SF-21 cells, an insect-derived cell line permissive for AcMNPV infection. It has been well established that 19 AcMNPV late expression factors (lefs) stimulate substantial levels of late gene promoter activity in SF-21 cells. Thus, we constructed a set of clones containing the BmNPV homologs of the AcMNPV lefs under control of the constitutive Drosophila heat shock 70 protein promoter and tested their ability to activate an AcMNPV late promoter-reporter gene cassette in SF-21 cells. We tested the potential of individual or predicted functional groups of BmNPV lefs to successfully replace the corresponding AcMNPV gene(s) in transient late gene expression assays. We found that most, but not all, BmNPV lefs were able to either fully or partially substitute for the corresponding AcMNPV homolog in the context of the remaining AcMNPV lefs with the exception of BmNPV p143, ie-2, and p35. BmNPV p143 was unable to support late gene expression or be imported into the nucleus of cells in the presence of the AcMNPV or the BmNPV LEF-3, a P143 nuclear shuttling factor. Our results suggest that host-specific factors may affect the function of homologous proteins

  8. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  9. Strategies in Gene Therapy for Glioblastoma

    International Nuclear Information System (INIS)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy

  10. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  11. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  12. Genetic Analysis of a Mammalian Chromosomal Origin of Replication

    National Research Council Canada - National Science Library

    Altman, Amy

    2001-01-01

    The main goal of the research proposal was to develop an assay system for studying the specific genetic elements, if any, involved in the initiation of DNA replication in mammalian cells as outlined in Task 1...

  13. The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David W; Ingmer, Hanne

    2016-01-01

    and transferred to acceptor RC-plasmids without assistance of other genes, by means of its location in between the Double Strand replication Origin (DSO) and the Single-Strand replication Origin (SSO). The proposed mobilization model of this DSO-qacC-SSO element represents a novel mechanism of gene mobilization...

  14. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  15. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    Directory of Open Access Journals (Sweden)

    Erkko Ylösmäki

    Full Text Available MicroRNAs (miRNAs are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5 in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  16. Transcription and replication result in distinct epigenetic marks following repression of early gene expression

    OpenAIRE

    Kallestad, Les; Woods, Emily; Christensen, Kendra; Gefroh, Amanda; Balakrishnan, Lata; Milavetz, Barry

    2013-01-01

    Simian Virus 40 (SV40) early transcription is repressed when the product of early transcription, T-antigen, binds to its cognate regulatory sequence, Site I, in the promoter of the SV40 minichromosome. Because SV40 minichromosomes undergo replication and transcription potentially repression could occur during active transcription or during DNA replication. Since repression is frequently epigenetically marked by the introduction of specific forms of methylated histone H3, we characterized th...

  17. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    Directory of Open Access Journals (Sweden)

    E. V. Thomas

    2009-01-01

    Full Text Available Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in part to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.

  18. The qacC gene has recently spread between rolling circle plasmids of Staphylococcus, indicative of a novel gene transfer mechanism

    Directory of Open Access Journals (Sweden)

    Trudy M. Wassenaar

    2016-09-01

    Full Text Available Resistance of Staphylococcus species to quaternary ammonium compounds, frequently used as disinfectants and biocides, can be attributed to qac genes. These qac gene products belong to the Small Multidrug Resistant (SMR protein family, and are often encoded by rolling-circle (RC replicating plasmids. Four classes of SMR-type qac gene families have been described in Staphylococcus species: qacC, qacG, qacJ and qacH. Within their class, these genes are highly conserved, but qacC genes are extremely conserved, although they are found in variable plasmid backgrounds. The lower degree of sequence identity of these plasmids compared to the strict nucleotide conservation of their qacC means that this gene has recently spread. In the absence of insertion sequences or other genetic elements explaining the mobility, we sought for an explanation of mobilization by sequence comparison. Publically available sequences of qac genes, their flanking genes and the replication gene that is invariably present in RC-plasmids were compared to reconstruct the evolutionary history of these plasmids and to explain the recent spread of qacC. Here we propose a new model that explains how qacC is mobilized and transferred to acceptor RC-plasmids without assistance of other genes, by means of its location in between the Double Strand replication Origin (DSO and the Single-Strand replication Origin (SSO. The proposed mobilization model of this DSO-qacC-SSO element represents a novel mechanism of gene mobilization in RC-plasmids, which has also been employed by other genes, such as lnuA (conferring lincomycin resistance. The proposed gene mobility has aided to the wide spread of clinically relevant resistance genes in Staphylococcus populations.

  19. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakai, Y; Goh, T K; Tani, Y

    1993-06-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as in monomeric forms in C. boidinii cells. The C. boidinii URA3 gene was overexpressed in C. boidinii on these CARS vectors. CARS1 and CARS2 were found to function as an autonomous replicating element in Saccharomyces cerevisiae as well. Different portions of the CARS1 sequence were needed for autonomous replicating activity in C. boidinii and S. cerevisiae. C. boidinii could also be transformed with vectors harboring a CARS fragment and the S. cerevisiae URA3 gene.

  20. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    Science.gov (United States)

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  1. USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication.

    Science.gov (United States)

    Hernández-Pérez, Santiago; Cabrera, Elisa; Amoedo, Hugo; Rodríguez-Acebes, Sara; Koundrioukoff, Stephane; Debatisse, Michelle; Méndez, Juan; Freire, Raimundo

    2016-10-01

    DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Specific functions of the Rep and Rep' proteins of porcine circovirus during copy-release and rolling-circle DNA replication

    Science.gov (United States)

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...

  3. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Jyoti K.; Li, Mi; Ghirlando, Rodolfo; Miller Jenkins, Lisa M.; Wlodawer, Alexander; Chattoraj, Dhruba; Dunny, Gary M.

    2017-04-18

    Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations inrctBthat reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding. IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication ofVibrio choleraeChr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that

  4. Regulation of DNA replication in irradiated cells by trans-acting factors

    International Nuclear Information System (INIS)

    Wang, Y.; Huq, M.S.; Cheng, X.; Iliakis, G.

    1995-01-01

    We compared DNA replication activity in cytoplasmic extracts prepared from irradiated and nonirradiated HeLa cells using a simian virus 40 (SV40)-based in vitro replication assay. The assay measures semi-conservative DNA replication in a plasmid carrying the SV40 origin of replication and requires SV40 T antigen as the sole noncellular protein. The plasmid DNA used in the replication reaction is never exposed to radiation. We find that replication of plasmid DNA is significantly reduced when cytoplasmic extracts from irradiated cells are used. Since plasmid replication proceeds to completion in extracts from irradiated cells, the observed reduction in the overall replication activity is probably due to a reduction in the efficiency of initiation events. The degree of inhibition of DNA replication after exposure to 10, 30 and 50 Gy X rays as measured in vitro using this assay is similar to that measured in intact cells immediately before processing for extract preparation. These observations are compatible with the induction or activation by ionizing radiation of a factor(s) that inhibits in trans DNA replication. The results contribute to our understanding of the mechanism(s) developed by the cells to regulate DNA replication when exposed to clastogenic agents. Such processes may be of significance in the restoration of DNA integrity, and may define yet another checkpoint operating during S at the level of clusters of replicons. 26 refs., 4 figs

  5. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress

    Science.gov (United States)

    Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S.

    2016-01-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  6. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Therese Wilhelm

    2016-05-01

    Full Text Available Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es. Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3% rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing, and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and

  7. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Science.gov (United States)

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  8. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    International Nuclear Information System (INIS)

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M.; Androphy, Elliot J.

    2015-01-01

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication

  9. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    Energy Technology Data Exchange (ETDEWEB)

    Kanginakudru, Sriramana, E-mail: skangina@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); DeSmet, Marsha, E-mail: mdesmet@iupui.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Thomas, Yanique, E-mail: ysthomas@umail.iu.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States); Morgan, Iain M., E-mail: immorgan@vcu.edu [VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia (United States); Androphy, Elliot J., E-mail: eandro@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  10. Replicative intermediates in UV-irradiated Simian virus 40

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1984-01-01

    The authors have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m 2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [ 3 H]thymidine. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h by which time the size of the newly-synthesized DNA exceeded the interdimer distance. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strand contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from 0V-damaged SV40 replicative intermediates. (Auth.)

  11. DNA replication is an integral part of the mouse oocyte's reprogramming machinery.

    Directory of Open Access Journals (Sweden)

    Bingyuan Wang

    Full Text Available Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24-36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1 and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.

  12. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    International Nuclear Information System (INIS)

    Mathew, Shomita S.; Bridge, Eileen

    2007-01-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci

  13. DNA-binding proteins essential for protein-primed bacteriophage ø29 DNA replication

    Directory of Open Access Journals (Sweden)

    Margarita Salas

    2016-08-01

    Full Text Available Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5’ ends of the DNA. This protein, called terminal protein (TP, is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3’-5’ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding

  14. Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

    Science.gov (United States)

    Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2018-04-01

    Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.

  15. A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy

    Science.gov (United States)

    Talbot, C J; Tanteles, G A; Barnett, G C; Burnet, N G; Chang-Claude, J; Coles, C E; Davidson, S; Dunning, A M; Mills, J; Murray, R J S; Popanda, O; Seibold, P; West, C M L; Yarnold, J R; Symonds, R P

    2012-01-01

    Background: Response to radiotherapy varies between individuals both in terms of efficacy and adverse reactions. Finding genetic determinants of radiation response would allow the tailoring of the treatment, either by altering the radiation dose or by surgery. Despite a growing number of studies in radiogenomics, there are no well-replicated genetic association results. Methods: We carried out a candidate gene association study and replicated the result using three additional large cohorts, a total of 2036 women scored for adverse reactions to radiotherapy for breast cancer. Results: Genetic variation near the tumour necrosis factor alpha gene is shown to affect several clinical endpoints including breast induration, telangiectasia and overall toxicity. In the combined analysis homozygosity for the rare allele increases overall toxicity (P=0.001) and chance of being in the upper quartile of risk with odds ratio of 2.46 (95% confidence interval 1.52–3.98). Conclusion: We have identified that alleles of the class III major histocompatibility complex region associate with overall radiotherapy toxicity in breast cancer patients by using internal replication through a staged design. This is the first well-replicated report of a genetic predictor for radiotherapy reactions. PMID:22767148

  16. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    Science.gov (United States)

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  17. Fission yeast cdc24(+) encodes a novel replication factor required for chromosome integrity.

    Science.gov (United States)

    Gould, K L; Burns, C G; Feoktistova, A; Hu, C P; Pasion, S G; Forsburg, S L

    1998-07-01

    A mutation within the Schizosaccharomyces pombe cdc24(+) gene was identified previously in a screen for cell division cycle mutants and the cdc24(+) gene was determined to be essential for S phase in this yeast. We have isolated the cdc24(+) gene by complementation of a new temperature-sensitive allele of the gene, cdc24-G1. The DNA sequence predicts the presence of an open reading frame punctuated by six introns which encodes a pioneer protein of 58 kD. A cdc24 null mutant was generated by homologous recombination. Haploid cells lacking cdc24(+) are inviable, indicating that cdc24(+) is an essential gene. The transcript of cdc24(+) is present at constant levels throughout the cell cycle. Cells lacking cdc24(+) function show a checkpoint-dependent arrest with a 2N DNA content, indicating a block late in S phase. Arrest is accompanied by a rapid loss of viability and chromosome breakage. An S. pombe homolog of the replicative DNA helicase DNA2 of S. cerevisiae suppresses cdc24. These results suggest that Cdc24p plays a role in the progression of normal DNA replication and is required to maintain genomic integrity.

  18. A dynamic model for in vivo virus replication

    Energy Technology Data Exchange (ETDEWEB)

    MacCarthy, J.E.; Kozak, J.J.

    1980-01-01

    In this paper a dynamic model of in vivo virus replication is presented. Kinetic equations are formulated to describe the overall process of replication and then analyzed using a ''synergetic'' approach. First the importance of a rate-limiting substrate is taken explicitly into account, and secondly the coupling between the processes considered (translation, replication and assembly) is strictly preserved; the analysis itself is carried out in the linear regime. The problems of defective-particle infections, standard-virus infections, inhibition of cellular synthesis, and the case of co-infected cells are treated. The various parameters of the model (initial cellular concentrations, rate constants) are specified using existing experimental data and the full (numerical) consequences of the model are explored in detail. The simple model developed is able to account qualitatively, and occasionally quantitatively, for the behavior observed experimentally for each of the problems cited above.

  19. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-01-01

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC

  20. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhou, Ling [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhang, Yan-ling [School of Biotechnology, Southern Medical University, Guangzhou 510515 (China); Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Li, Li-xia [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Fu, Xiang; Wu, Jiang-xue [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Huang, Wenlin, E-mail: hwenl@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Guangdong Provincial Key Laboratory of Tumor-Targeted Drug, Doublle Bioproducts Inc., Guangzhou 510663 (China)

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  1. A Role of hIPI3 in DNA Replication Licensing in Human Cells.

    Science.gov (United States)

    Huang, Yining; Amin, Aftab; Qin, Yan; Wang, Ziyi; Jiang, Huadong; Liang, Lu; Shi, Linjing; Liang, Chun

    2016-01-01

    The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis.

  2. How and why multiple MCMs are loaded at origins of DNA replication.

    Science.gov (United States)

    Das, Shankar P; Rhind, Nicholas

    2016-07-01

    Recent work suggests that DNA replication origins are regulated by the number of multiple mini-chromosome maintenance (MCM) complexes loaded. Origins are defined by the loading of MCM - the replicative helicase which initiates DNA replication and replication kinetics determined by origin's location and firing times. However, activation of MCM is heterogeneous; different origins firing at different times in different cells. Also, more MCMs are loaded in G1 than are used in S phase. These aspects of MCM biology are explained by the observation that multiple MCMs are loaded at origins. Having more MCMs at early origins makes them more likely to fire, effecting differences in origin efficiency that define replication timing. Nonetheless, multiple MCM loading raises new questions, such as how they are loaded, where these MCMs reside at origins, and how their presence affects replication timing. In this review, we address these questions and discuss future avenues of research. © 2016 WILEY Periodicals, Inc.

  3. The hunt for origins of DNA replication in multicellular eukaryotes

    DEFF Research Database (Denmark)

    Urban, J. M.; Foulk, M. S.; Casella, Cinzia

    2015-01-01

    Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope...... that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed....

  4. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.

    Science.gov (United States)

    Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María

    2016-08-09

    Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major

    Directory of Open Access Journals (Sweden)

    Rodrigo Lombraña

    2016-08-01

    Full Text Available Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs. Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance.

  6. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.

    Science.gov (United States)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-06-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  8. Promotion of Hendra Virus Replication by MicroRNA 146a

    Science.gov (United States)

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  9. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    Science.gov (United States)

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  10. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Hummon Amanda B

    2012-01-01

    Full Text Available Abstract Background Colorectal carcinomas (CRC carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. Results A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH, a protein recently linked to regulation of the AKT1/ß-catenin pathway. Conclusions We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of

  11. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells.

    Science.gov (United States)

    Hummon, Amanda B; Pitt, Jason J; Camps, Jordi; Emons, Georg; Skube, Susan B; Huppi, Konrad; Jones, Tamara L; Beissbarth, Tim; Kramer, Frank; Grade, Marian; Difilippantonio, Michael J; Ried, Thomas; Caplen, Natasha J

    2012-01-04

    Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/ß-catenin pathway. We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene NEFH.

  12. Expression of heterologous genes from an IRES translational cassette in replication-competent murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Jespersen, T.; Duch, M.; Carrasco, M.L.

    1999-01-01

    of spliced env mRNA for the SL3-3 derived vector relative to the Akv derived vectors, seemingly contributing to its low replication capacity. The EGFP expressing Akv-MLV was genetically stable for multiple rounds of infection; marker-cassette deletion revertants appeared after several replication rounds...

  13. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma

    Science.gov (United States)

    Rusiniak, Michael E.; Kunnev, Dimiter; Freeland, Amy; Cady, Gillian K.; Pruitt, Steven C.

    2011-01-01

    Mini-chromosome maintenance (Mcm) proteins are part of the replication licensing complex that is loaded onto chromatin during the G1-phase of the cell cycle and required for initiation of DNA replication in the subsequent S-phase. Mcm proteins are typically loaded in excess of the number of locations that are utilized during S-phase. Nonetheless, partial depletion of Mcm proteins leads to cancers and stem cell deficiencies. Mcm2 deficient mice, on a 129Sv genetic background, display a high rate of thymic lymphoblastic lymphoma. Here array comparative genomic hybridization (aCGH) is utilized to characterize the genetic damage accruing in these tumors. The predominant events are deletions averaging less than 0.5 Mb, considerably shorter than observed in prior studies using alternative mouse lymphoma models or human tumors. Such deletions facilitate identification of specific genes and pathways responsible for the tumors. Mutations in many genes that have been implicated in human lymphomas are recapitulated in this mouse model. These features, and the fact that the mutation underlying the accelerated genetic damage does not target a specific gene or pathway a priori, are valuable features of this mouse model for identification of tumor suppressor genes. Genes affected in all tumors include Pten, Tcfe2a, Mbd3 and Setd1b. Notch1 and additional genes are affected in subsets of tumors. The high frequency of relatively short deletions is consistent with elevated recombination between nearby stalled replication forks in Mcm2 deficient mice. PMID:22158038

  14. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication.

    Science.gov (United States)

    Koo, Seong Joo; Fernández-Montalván, Amaury E; Badock, Volker; Ott, Christopher J; Holton, Simon J; von Ahsen, Oliver; Toedling, Joern; Vittori, Sarah; Bradner, James E; Gorjánácz, Mátyás

    2016-10-25

    ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.

  15. In vitro replication of poliovirus

    International Nuclear Information System (INIS)

    Lubinski, J.M.

    1986-01-01

    Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis of the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' 32 P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed

  16. Expression profiling of colorectal cancer cells reveals inhibition of DNA replication licensing by extracellular calcium.

    Science.gov (United States)

    Aggarwal, Abhishek; Schulz, Herbert; Manhardt, Teresa; Bilban, Martin; Thakker, Rajesh V; Kallay, Enikö

    2017-06-01

    Colorectal cancer is one of the most common cancers in industrialised societies. Epidemiological studies, animal experiments, and randomized clinical trials have shown that dietary factors can influence all stages of colorectal carcinogenesis, from initiation through promotion to progression. Calcium is one of the factors with a chemoprophylactic effect in colorectal cancer. The aim of this study was to understand the molecular mechanisms of the anti-tumorigenic effects of extracellular calcium ([Ca 2+ ] o ) in colon cancer cells. Gene expression microarray analysis of colon cancer cells treated for 1, 4, and 24h with 2mM [Ca 2+ ] o identified significant changes in expression of 1571 probe sets (ANOVA, pcalcium-sensing receptor (CaSR), a G protein-coupled receptor is a mediator involved in this process. To test whether these results were physiologically relevant, we fed mice with a standard diet containing low (0.04%), intermediate (0.1%), or high (0.9%) levels of dietary calcium. The main molecules regulating replication licensing were inhibited also in vivo, in the colon of mice fed high calcium diet. We show that among the mechanisms behind the chemopreventive effect of [Ca 2+ ] o is inhibition of replication licensing, a process often deregulated in neoplastic transformation. Our data suggest that dietary calcium is effective in preventing replicative stress, one of the main drivers of cancer and this process is mediated by the calcium-sensing receptor. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    Directory of Open Access Journals (Sweden)

    Dylan eFlather

    2015-06-01

    Full Text Available The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.

  18. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy

    Directory of Open Access Journals (Sweden)

    Chang Myint OO

    2009-10-01

    Full Text Available Abstract Background Hepatitis C virus (HCV is one of the main causes of liver-related morbidity and mortality. Although combined interferon-α-ribavirin therapy is effective for about 50% of the patients with HCV, better therapies are needed and preventative vaccines have yet to be developed. Short-hairpin RNAs (shRNAs inhibit gene expression by RNA interference. The application of transient shRNA expression is limited, however, due to the inability of the shRNA to replicate in mammalian cells and its inefficient transduction. The duration of transgene (shRNA expression in mammalian cells can be significantly extended using baculovirus-based shRNA-expressing vectors that contain the latent viral protein Epstein-Barr nuclear antigen 1 (EBNA1 and the origin of latent viral DNA replication (OriP sequences. These recombinant vectors contain compatible promoters and are highly effective for infecting primary hepatocyte and hepatoma cell lines, making them very useful tools for studies of hepatitis B and hepatitis C viruses. Here, we report the use of these baculovirus-based vector-derived shRNAs to inhibit core-protein expression in full-length hepatitis C virus (HCV replicon cells. Results We constructed a long-term transgene shRNA expression vector that contains the EBV EBNA1 and OriP sequences. We also designed baculovirus vector-mediated shRNAs against the highly conserved core-protein region of HCV. HCV core protein expression was inhibited by the EBNA1/OriP baculovirus vector for at least 14 days, which was considerably longer than the 3 days of inhibition produced by the wild-type baculovirus vector. Conclusion These findings indicate that we successfully constructed a long-term transgene (shRNA expression vector (Ac-EP-shRNA452 using the EBNA1/OriP system, which was propagated in Escherichia coli and converted into mammalian cells. The potential anti-HCV activity of the long-term transgene (shRNA expression vector was evaluated with the view

  19. Rif1 Binding and Control of Chromosome-Internal DNA Replication Origins Is Limited by Telomere Sequestration.

    Science.gov (United States)

    Hafner, Lukas; Lezaja, Aleksandra; Zhang, Xu; Lemmens, Laure; Shyian, Maksym; Albert, Benjamin; Follonier, Cindy; Nunes, Jose Manuel; Lopes, Massimo; Shore, David; Mattarocci, Stefano

    2018-04-24

    The Saccharomyces cerevisiae telomere-binding protein Rif1 plays an evolutionarily conserved role in control of DNA replication timing by promoting PP1-dependent dephosphorylation of replication initiation factors. However, ScRif1 binding outside of telomeres has never been detected, and it has thus been unclear whether Rif1 acts directly on the replication origins that it controls. Here, we show that, in unperturbed yeast cells, Rif1 primarily regulates late-replicating origins within 100 kb of a telomere. Using the chromatin endogenous cleavage ChEC-seq technique, we robustly detect Rif1 at late-replicating origins that we show are targets of its inhibitory action. Interestingly, abrogation of Rif1 telomere association by mutation of its Rap1-binding module increases Rif1 binding and origin inhibition elsewhere in the genome. Our results indicate that Rif1 inhibits replication initiation by interacting directly with origins and suggest that Rap1-dependent sequestration of Rif1 increases its effective concentration near telomeres, while limiting its action at chromosome-internal sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  1. Repair replication in replicating and nonreplicating DNA after irradiation with uv light

    Energy Technology Data Exchange (ETDEWEB)

    Slor, H.; Cleaver, J.E.

    1978-06-01

    Ultraviolet light induces more pyrimidine dimers and more repair replication in DNA that replicates within 2 to 3 h of irradiation than in DNA that does not replicate during this period. This difference may be due to special conformational changes in DNA and chromatin that might be associated with semiconservative DNA replication.

  2. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  3. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.

    Science.gov (United States)

    Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A

    2017-09-15

    Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang

    2016-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.

  5. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  6. Herpes simplex virus replication compartments can form by coalescence of smaller compartments

    International Nuclear Information System (INIS)

    Taylor, Travis J; McNamee, Elizabeth E.; Day, Cheryl; Knipe, David M.

    2003-01-01

    Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures

  7. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (plife cycle.

  8. Analysis of classical swine fever virus RNA replication determinants using replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Fahnøe, Ulrik; Gullberg, Maria

    2013-01-01

    Self-replicating RNAs (replicons), with or without reporter gene sequences, derived from the genome of the Paderborn strain of classical swine fever virus (CSFV) have been produced. The full-length viral cDNA, propagated within a bacterial artificial chromosome (BAC), was modified by targeted...... recombination within E. coli. RNA transcripts were produced in vitro and introduced into cells by electroporation. The translation and replication of the replicon RNAs could be followed by the accumulation of luciferase (from Renilla reniformis or Gaussia princeps) protein expression (where appropriate......), as well as by detection of the CSFV NS3 protein production within the cells. Inclusion of the viral E2 coding region within the replicon was advantageous for the replication efficiency. Production of chimeric RNAs, substituting the NS2 and NS3 coding regions (as a unit) from the Paderborn strain...

  9. A replicating plasmid-based vector for GFP expression in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ishag, H Z A; Liu, M J; Yang, R S; Xiong, Q Y; Feng, Z X; Shao, G Q

    2016-04-28

    Mycoplasma hyopneumoniae (M. hyopneumoniae) causes porcine enzootic pneumonia (PEP) that significantly affects the pig industry worldwide. Despite the availability of the whole genome sequence, studies on the pathogenesis of this organism have been limited due to the lack of a genetic manipulation system. Therefore, the aim of the current study was to generate a general GFP reporter vector based on a replicating plasmid. Here, we describe the feasibility of GFP reporter expression in M. hyopneumoniae (strain 168L) controlled by the p97 gene promoter of this mycoplasma. An expression plasmid (pMD18-TOgfp) containing the p97 gene promoter, and origin of replication (oriC) of M. hyopneumoniae, tetracycline resistant marker (tetM), and GFP was constructed and used to transform competent M. hyopneumoniae cells. We observed green fluorescence in M. hyopneumoniae transformants under fluorescence microscopy, which indicates that there was expression of the GFP reporter that was driven by the p97 gene promoter. Additionally, an electroporation method for M. hyopneumoniae with an efficiency of approximately 1 x 10(-6) transformants/μg plasmid DNA was optimized and is described herein. In conclusion, our data demonstrate the susceptibility of M. hyopneumoniae to genetic manipulation whereby foreign genes are expressed. This work may encourage the development of genetic tools to manipulate the genome of M. hyopneumoniae for functional genomic analyses.

  10. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  11. Direct non transcriptional role of NF-Y in DNA replication.

    Science.gov (United States)

    Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol

    2016-04-01

    NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Effects of Interferon-α/β on HBV Replication Determined by Viral Load

    Science.gov (United States)

    Tian, Yongjun; Chen, Wen-ling; Ou, Jing-hsiung James

    2011-01-01

    Interferons α and β (IFN-α/β) are type I interferons produced by the host to control microbial infections. However, the use of IFN-α to treat hepatitis B virus (HBV) patients generated sustained response to only a minority of patients. By using HBV transgenic mice as a model and by using hydrodynamic injection to introduce HBV DNA into the mouse liver, we studied the effect of IFN-α/β on HBV in vivo. Interestingly, our results indicated that IFN-α/β could have opposite effects on HBV: they suppressed HBV replication when viral load was high and enhanced HBV replication when viral load was low. IFN-α/β apparently suppressed HBV replication via transcriptional and post-transcriptional regulations. In contrast, IFN-α/β enhanced viral replication by inducing the transcription factor HNF3γ and activating STAT3, which together stimulated HBV gene expression and replication. Further studies revealed an important role of IFN-α/β in stimulating viral growth and prolonging viremia when viral load is low. This use of an innate immune response to enhance its replication and persistence may represent a novel strategy that HBV uses to enhance its growth and spread in the early stage of viral infection when the viral level is low. PMID:21829354

  13. Evaluating the reproducibility of environmental radioactivity monitoring data through replicate sample analysis

    International Nuclear Information System (INIS)

    Lindeken, C.L.; White, J.H.; Silver, W.J.

    1978-01-01

    At the Lawrence Livermore Laboratory, about 10% of the sampling effort in the environmental monitoring program represents replicate sample collection. Replication of field samples was initiated as part of the quality assurance program for environmental monitoring to determine the reproducibility of environmental measurements. In the laboratory these replicates are processed along with routine samples. As all components of variance are included in analysis of such field samples, comparison of the analytical data from replicate analyses provides a basis for estimating the overall reproducibility of the measurements. The replication study indicates that the reproducibility of environmental radioactivity monitoring data is subject to considerably more variability than is indicated by the accompanying counting errors. The data are also compared with analyses of duplicate aliquots from a well mixed sample or with duplicate aliquots of samples with known radionuclide content. These comparisons show that most of the variability is associated with the collection and preparation of the sample rather than with the analytical procedures

  14. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase.

    Science.gov (United States)

    Zakian, V A; Brewer, B J; Fangman, W L

    1979-08-01

    Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA

  15. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Science.gov (United States)

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  16. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob Daniela

    2005-06-01

    Full Text Available Abstract Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  17. DNA transformations of Candida tropicalis with replicating and integrative vectors.

    Science.gov (United States)

    Sanglard, D; Fiechter, A

    1992-12-01

    The alkane-assimilating yeast Candida tropicalis was used as a host for DNA transformations. A stable ade2 mutant (Ha900) obtained by UV-mutagenesis was used as a recipient for different vectors carrying selectable markers. A first vector, pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication, was compatible for transforming Ha900. Two transformant types were observed: (i) pink transformants which easily lose pMK16 under non-selective growth conditions; (ii) white transformants, in which the same plasmid exhibited a higher mitotic stability. In both cases pMK16 could be rescued from these cells in Escherichia coli. A second vector, pADE2, containing the isolated C. tropicalis ADE2, gene, was used to transform Ha900. This vector integrated in the yeast genome at homologous sites of the ade2 locus. Different integration types were observed at one or both ade2 alleles in single or in tandem repeats.

  18. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  19. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Yuichi Hirata

    Full Text Available Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2 encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.

  20. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

    Science.gov (United States)

    Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori

    2012-01-01

    Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.

  1. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis

    DEFF Research Database (Denmark)

    Grauers, Anna; Wang, Jingwen; Einarsdottir, Elisabet

    2015-01-01

    samples from 100 surgically treated idiopathic scoliosis patients. Novel or rare missense, nonsense, or splice site variants were selected for individual genotyping in the 1,739 cases and 1,812 controls. In addition, the 5'UTR, noncoding exon and promoter regions of LBX1, not covered by exome sequencing...... by exome sequencing after filtration and an initial genotyping validation. However, we could not verify any association to idiopathic scoliosis in the large cohort of 1,739 cases and 1,812 controls. We did not find any variants in the 5'UTR, noncoding exon and promoter regions of LBX1. CONCLUSIONS: Here...... that are significantly associated with idiopathic scoliosis in Asian and Caucasian populations, rs11190870 close to the LBX1 gene being the most replicated finding. PURPOSE: The aim of the present study was to investigate the genetics of idiopathic scoliosis in a Scandinavian cohort by performing a candidate gene study...

  2. Prelife catalysts and replicators

    OpenAIRE

    Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Life is based on replication and evolution. But replication cannot be taken for granted. We must ask what there was prior to replication and evolution. How does evolution begin? We have proposed prelife as a generative system that produces information and diversity in the absence of replication. We model prelife as a binary soup of active monomers that form random polymers. ‘Prevolutionary’ dynamics can have mutation and selection prior to replication. Some sequences might have catalytic acti...

  3. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  4. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  5. Data from Investigating Variation in Replicability: A “Many Labs” Replication Project

    Directory of Open Access Journals (Sweden)

    Richard A. Klein

    2014-04-01

    Full Text Available This dataset is from the Many Labs Replication Project in which 13 effects were replicated across 36 samples and over 6,000 participants. Data from the replications are included, along with demographic variables about the participants and contextual information about the environment in which the replication was conducted. Data were collected in-lab and online through a standardized procedure administered via an online link. The dataset is stored on the Open Science Framework website. These data could be used to further investigate the results of the included 13 effects or to study replication and generalizability more broadly.

  6. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  7. Roles of three amino acids of capsid proteins in mink enteritis parvovirus replication.

    Science.gov (United States)

    Mao, Yaping; Su, Jun; Wang, Jigui; Zhang, Xiaomei; Hou, Qiang; Bian, Dawei; Liu, Weiquan

    2016-08-15

    Virulent mink enteritis parvovirus (MEV) strain MEV-LHV replicated to higher titers in feline F81 cells than attenuated strain MEV-L. Phylogenetic and sequence analyses of the VP2 gene of MEV-LHV, MEV-L and other strains in GenBank revealed two evolutionary branches separating virulent and attenuated strains. Three residues, 101, 232 and 411, differed between virulent and attenuated strains but were conserved within the two branches. Site-directed mutagenesis of the VP2 gene of infectious plasmids of attenuated strain MEV-L respectively replacing residues 101 Ile and 411 Ala with Thr and Glu of virulent strains (MEV-L I101T and MEV-L A411E) increased replication efficiency but still to lower levels than MEV-LHV. However, viruses with mutation of residue 232 (MEV-L I232V and MEV-L I101T/I232V/A411E) decreased viral transcription and replication levels. The three VP2 residues 101, 232 and 411, located on or near the capsid surface, played different roles in the infection processes of MEV. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.

    Directory of Open Access Journals (Sweden)

    Sarah L Kerns

    Full Text Available In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT. As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways.

  9. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation.

    Science.gov (United States)

    Huang, Lu; Yang, Mengtian; Yuan, Yan; Li, Xiaojuan; Kuang, Ersheng

    2017-02-01

    Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evidence for an asthma risk locus on chromosome Xp: a replication linkage study

    DEFF Research Database (Denmark)

    Brasch-Andersen, C; Møller, M U; Haagerup, A

    2008-01-01

    replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample. METHODS: We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22...... studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same.......3, and Xp22.31-p11.4 using additional markers in an independent set of 136 Danish asthmatic sib pair families. RESULTS: Nonparametric multipoint linkage analyses yielded suggestive evidence for linkage to asthma to chromosome Xp21.2 (MLS 2.92) but failed to replicate linkage to chromosomes 1p36.31-p36.21, 5...

  11. Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning.

    Science.gov (United States)

    Lezzhov, Alexander A; Gushchin, Vladimir A; Lazareva, Ekaterina A; Vishnichenko, Valery K; Morozov, Sergey Y; Solovyev, Andrey G

    2015-10-01

    Triple gene block (TGB), a conserved gene module found in the genomes of many filamentous and rod-shaped plant viruses, encodes three proteins, TGB1, TGB2 and TGB3, required for viral cell-to-cell movement through plasmodesmata and systemic transport via the phloem. The genome of Shallot virus X, the type species of the genus Allexivirus, includes TGB1 and TGB2 genes, but contains no canonical ORF for TGB3 protein. However, a TGB3-like protein-encoding sequence lacking an AUG initiator codon has been found in the shallot virus X (ShVX) genome in a position typical for TGB3 genes. This putative TGB3 gene is conserved in all allexiviruses. Here, we carried out sequence analysis to predict possible non-AUG initiator codons in the ShVX TGB3-encoding sequence. We further used an agroinfiltration assay in Nicotiana benthamiana to confirm this prediction. Site-directed mutagenesis was used to demonstrate that the ShVX TGB3 could be translated on a bicistronic mRNA template via a leaky scanning mechanism.

  12. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication

    Directory of Open Access Journals (Sweden)

    Michael Niepmann

    2018-03-01

    question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.

  13. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication.

    Science.gov (United States)

    Niepmann, Michael; Shalamova, Lyudmila A; Gerresheim, Gesche K; Rossbach, Oliver

    2018-01-01

    replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.

  14. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils

    Science.gov (United States)

    Campo, Vanina A.; Patenaude, Anne-Marie; Kaden, Svenja; Horb, Lori; Firka, Daniel; Jiricny, Josef; Di Noia, Javier M.

    2013-01-01

    The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR. PMID:23314153

  15. Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme.

    Science.gov (United States)

    Hancock, Steven J; Phan, Minh-Duy; Peters, Kate M; Forde, Brian M; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Paterson, David L; Walsh, Timothy R; Beatson, Scott A; Schembri, Mark A

    2017-02-01

    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including bla CMY and bla NDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a bla NDM-1 -positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of bla NDM -positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this bla NDM -containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies. Copyright © 2017 American Society for Microbiology.

  16. High-Resolution Profiling of Drosophila Replication Start Sites Reveals a DNA Shape and Chromatin Signature of Metazoan Origins

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    2015-05-01

    Full Text Available At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  17. Effects of ionizing radiations on DNA replication in cultured mammalian cells

    International Nuclear Information System (INIS)

    Makino, F.; Okada, S.

    1975-01-01

    The dose-response curve of [ 3 H] thymidine incorporation into the acid-insoluble fraction of cultured mammalian cells, grown in the presence of 10 -4 M cold thymidine, is different from that of incorporation in the absence of cold thymidine. For quantitative estimation of net DNA synthesis in nonirradiated and irradiated cells, two methods were used: isolation of newly synthesized BUdR-labeled DNA by CsCl gradient centrifugation and a fluorometric estimation of DNA content in the synchronized population. Both methods showed that the depression of [ 3 H]thymidine incorporation in the presence of cold thymidine reflected a depression of net DNA synthesis. Radiosensitive steps in DNA synthesis were examined by the use of alkaline sucrose gradient centrifugation. The rate of replication along the DNA strands was inhibited to a lesser extent than that of over-all DNA synthesis. The labeling patterns of DNA exposed to [ 3 H]thymidine for 20 min indicated that ionizing radiation preferentially interfered with the formation of small-size 3 H-labeled DNA pieces. These results suggest that the initiation of DNA replication is more radiosensitive than the elongation of DNA strands whose replication has already been initiated. (U.S.)

  18. Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue

    International Nuclear Information System (INIS)

    Meyers, Craig; Andreansky, Samita S.; Courtney, Richard J.

    2003-01-01

    We have investigated the interactions and consequences of superinfecting and coreplication of human papillomavirus (HPV) and herpes simplex virus (HSV) in human epithelial organotypic (raft) culture tissues. In HPV-positive tissues, HSV infection and replication induced significant cytopathic effects (CPE), but the tissues were able to recover and maintain a certain degree of tissue integrity and architecture. HPV31b not only maintained the episomal state of its genomic DNA but also maintained its genomic copy number even during times of extensive HSV-induced CPE. E2 transcripts encoded by HPV31b were undetectable even though HPV31b replication was maintained in HSV- infected raft tissues. Expression of HPV31b oncogenes (E6 and E7) was also repressed but to a lesser degree than was E2 expression. The extent of CPE induced by HSV is dependent on the magnitude of HPV replication and gene expression at the time of HSV infection. During active HSV infection, HPV maintains its genomic copy number even though genes required for its replication were repressed. These studies provide new insight into the complex interaction between two common human sexually transmitted viruses in an in vitro system, modeling their natural host tissue in vivo

  19. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  20. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  1. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Directory of Open Access Journals (Sweden)

    Jyoti K. Jha

    2017-04-01

    Full Text Available Replication of Vibrio cholerae chromosome 2 (Chr2 depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.

  2. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  3. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.

    Science.gov (United States)

    Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  4. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Directory of Open Access Journals (Sweden)

    Ralph M. Barnes

    2016-11-01

    Full Text Available A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive and numeric format (percentage, natural frequency on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2 and 730 undergraduate college students (Experiments 1, 3, and 4 indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  5. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Science.gov (United States)

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743

  6. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation.

    Science.gov (United States)

    García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine

    2018-01-01

    Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  7. Inhibition of in vitro SV40 DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Gough, G.; Wood, R.W.

    1989-01-01

    Ultraviolet light-induced DNA damage was found to inhibit SV40 origin-dependent DNA synthesis carried out by soluble humancell extracts. Replication of SV40-based plasmids was reduced to approx. 35% of that in unirradiated controls after irradiation with 50-100 J/m 2 germicidal ultraviolet light, where an average of 3-6 pyrimidine dimer photoproducts were formed per plasmid circle. Inhibition of the DNA helicase activity of T antigen (required for initiation of replication in the in vitro system) was also investigated, and was only significant after much higher fluences, 1000-5000 J/m 2 . The data indicate that DNA damage by ultraviolet light inhibits DNA synthesis in cell-free extracts principally by affecting components of the replication complex other than the DNA helicase activity of T antigen. The soluble system could be used to biochemically investigate the possible bypass or tolerance of DNA damage during replication (author). 21 refs.; 2 figs

  8. Association of Forced Vital Capacity with the Developmental Gene NCOR2.

    Directory of Open Access Journals (Sweden)

    Cosetta Minelli

    Full Text Available Forced Vital Capacity (FVC is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes.Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA. The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia and 5,062 children (ALSPAC. Associations were considered replicated if the replication p-value survived Bonferroni correction (p<0.002; 0.05/25, with a nominal p-value considered as suggestive evidence. For SNPs with evidence of replication, effects on the expression levels of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consortium, with further functional investigation performed using public epigenomic profiling data (ENCODE.NCOR2-rs12708369 showed strong replication in children (p = 0.0002, with replication unavailable in adults due to low imputation quality. This intronic variant is in a strong transcriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nominal level in both adults (p = 0.036 and children (p = 0.045, while WNT16-rs2707469 replicated at nominal level only in adults (p = 0.026. The eQTL analyses showed association of WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statistically significant eQTL effects for SERPINE2-rs6754561.We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing

  9. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    Science.gov (United States)

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  10. Autoradiographic studies of chromosome replication during the cell cycle of Streptococcus faecium

    International Nuclear Information System (INIS)

    Higgins, M.L.; Koch, A.L.; Dicker, D.T.; Daneo-Moore, L.

    1986-01-01

    Analysis of the distribution of autoradiographic grains around cells of Streptococcus faecium which had been either continuously or pulse-labeled with tritiated thymidine (mass doubling time, 90 min) showed a non-Poisson distribution even when the distribution of cell sizes in the populations studied was taken into account. These non-Poisson distributions of grains were assumed to reflect the discontinuous nature of chromosome replication. To study this discontinuous process further, an equation was fitted to the grain distribution observed for the pulse-labeled cells that assumed that in any population of cells there were subpopulations in which there were zero, one, or two replicating chromosomes. This analysis predicted an average time for chromosome replication and for the period between completion of rounds of chromosome replication and division of 55 and 43 min, respectively, which were in excellent agreement with estimates made by other techniques. The present investigation extended past studies in indicating that the initiation and completion of rounds of chromosome replication are poorly phased with increases in cell volume and that the amount of chromosome replication may be different in different cell halves

  11. Activation of a yeast replication origin near a double-stranded DNA break.

    Science.gov (United States)

    Raghuraman, M K; Brewer, B J; Fangman, W L

    1994-03-01

    Irradiation in the G1 phase of the cell cycle delays the onset of DNA synthesis and transiently inhibits the activation of replication origins in mammalian cells. It has been suggested that this inhibition is the result of the loss of torsional tension in the DNA after it has been damaged. Because irradiation causes DNA damage at an undefined number of nonspecific sites in the genome, it is not known how cells respond to limited DNA damage, and how replication origins in the immediate vicinity of a damage site would behave. Using the sequence-specific HO endonuclease, we have created a defined double-stranded DNA break in a centromeric plasmid in G1-arrested cells of the yeast Saccharomyces cerevisiae. We show that replication does initiate at the origin on the cut plasmid, and that the plasmid replicates early in the S phase after linearization in vivo. These observations suggest that relaxation of a supercoiled DNA domain in yeast need not inactivate replication origins within that domain. Furthermore, these observations rule out the possibility that the late replication context associated with chromosomal termini is a consequence of DNA ends.

  12. Recent advances in the genome-wide study of DNA replication origins in yeast

    Directory of Open Access Journals (Sweden)

    Chong ePeng

    2015-02-01

    Full Text Available DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs. Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genome. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some nonconventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve the replication origins prediction.

  13. Recent advances in the genome-wide study of DNA replication origins in yeast

    Science.gov (United States)

    Peng, Chong; Luo, Hao; Zhang, Xi; Gao, Feng

    2015-01-01

    DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some non-conventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve yeast replication origins prediction. PMID:25745419

  14. Transcription of the var genes from a freshly-obtained field isolate of Plasmodium falciparum shows more variable switching patterns than long laboratory-adapted isolates.

    Science.gov (United States)

    Ye, Run; Zhang, Dongmei; Chen, Biaobang; Zhu, Yongqiang; Zhang, Yilong; Wang, Shengyue; Pan, Weiqing

    2015-02-07

    Antigenic variation in Plasmodium falciparum involves switching among multicopy var gene family and is responsible for immune evasion and the maintenance of chronic infections. Current understanding of var gene expression and switching patterns comes from experiments conducted on long laboratory-adapted strains, with little known about their wild counterparts. Genome sequencing was used to obtain 50 var genes from a parasite isolated from the China-Myanmar border. Four clones with different dominant var genes were cultured in vitro in replicates for 50 generations. Transcription of the individual var gene was detected by real-time PCR and then the switching process was analysed. The expression of multicopy var genes is mutually exclusive in clones of a wild P. falciparum isolate. The activation of distinct primary dominant var genes leads to different and favoured switching patterns in the four clones. The on/off rates of individual var genes are variable and the choice of subsequent dominant var genes are random, which results in the different switching patterns among replicates of each clonal wild P. falciparum isolate with near identical initial transcription profiles. This study suggests that the switching patterns of var genes are abundant, which consist of both conserved and random parts.

  15. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins.

    Science.gov (United States)

    Milbredt, Sarah; Farmani, Neda; Sobetzko, Patrick; Waldminghaus, Torsten

    2016-10-21

    The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.

  16. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  17. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    International Nuclear Information System (INIS)

    Shen Cenchao; Yang Wenjuan; Ji Qiaoli; Zhang Zhizhou; Maki, Hisaji; Dong Anjie

    2009-01-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  18. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  19. Communicative genes in the evolution of empathy and altruism.

    Science.gov (United States)

    Buck, Ross

    2011-11-01

    This paper discusses spontaneous communication and its implications for understanding empathy and altruism. The question of the possibility of "true" altruism-giving up one's genetic potential in favor of the genetic potential of another-is a fundamental issue common to the biological, behavioral, and social sciences. Darwin regarded "social instincts and sympathies" to be critical to the social order, but the possibility of biologically-based prosocial motives and emotions was questioned when selection was interpreted as operating at the level of the gene. In the selfish gene hypothesis, Dawkins argued that the unit of evolutionary selection must be an active, germ-line replicator: a unit whose activities determine whether copies of it are made across evolutionary timescales. He argued that the only active replicator existing across evolutionary timescales is the gene, so that the "selfish gene" is a replicator motivated only to make copies of itself. The communicative gene hypothesis notes that genes function by communicating, and the phenotype communication involves not only the individual sending and receiving abilities of the individual genes involved, but also the relationship between them relative to other genes. Therefore the selection of communication as phenotype involves the selection of individual genes and also their relationship. Relationships become replicators, and are selected across evolutionary timescales including social relationships (e.g., sex, nurturance, dominance-submission). An interesting implication of this view: apparent altruism has been interpreted by selfish gene theorists as due to kin selection and reciprocity, in which the survival of kin and comrade indirectly favor the genetic potential of the altruist. From the viewpoint of the communicative gene hypothesis, rather than underlying altruism, kin selection and reciprocity are ways of restricting altruism to kin and comrade: they are mechanisms not of altruism but of xenophobia.

  20. Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes

    International Nuclear Information System (INIS)

    Yao, Fangke; Chen, Yun; Shi, Jintong; Ming, Ke; Liu, Jiaguo; Xiong, Wen; Song, Meiyun; Du, Hongxu; Wang, Yixuan; Zhang, Shuaibin; Wu, Yi; Wang, Deyun; Hu, Yuanliang

    2016-01-01

    Duck hepatitis A virus type 1 (DHAV-1) is an important agent of duck viral hepatitis. Until recently, the replication cycle of DHAV-1 is still unknown. Here duck embryonic hepatocytes infected with DHAV-1 were collected at different time points, and dynamic changes of the relative DHAV-1 gene expression during replication were detected by real-time PCR. And the morphology of hepatocytes infected with DHAV was evaluated by electron microscope. The result suggested that the adsorption of DHAV-1 saturated at 90 min post-infection, and the virus particles with size of about 50 nm including more than 20 nm of vacuum drying gold were observed on the infected cells surface. What's more, the replication lasted around 13 h after the early protein synthesis for about 5 h, and the release of DHAV-1 was in steady state after 32 h. The replication cycle will enrich the data for DVH control and provide the foundation for future studies. - Highlights: • This is the first description of the replication cycle of DHAV-1. • Firstly find that DHAV-1 adsorption saturated at 90 min post-infection. • The replication lasted around 13 h after early protein synthesis for about 5 h. • The release of DHAV-1 was in steady state after 32 h.