WorldWideScience

Sample records for replicating viral antigen

  1. Response of sublethally irradiated monkeys to a replicating viral antigen

    International Nuclear Information System (INIS)

    Hilmas, D.E.; Spertzel, R.O.

    1975-01-01

    Temporal effects of exposure to sublethal, total-body x radiation (400 R) on responses to vaccination with the attenuated Venezuelan equine encephalomyelitis vaccine virus, TC-83, were examined in rhesus monkeys. Viremia, often with delayed onset, was prolonged even when irradiation preceded vaccination by 28 days. Virus titers were increased, particularly in groups irradiated 4 or 7 days before vaccination. Delay in appearance of hemagglutination-inhibition and serum-neutralizing antibody correlated closely with persistence of viremia in irradiated-vaccinated monkeys. The temporal course of antibody response was markedly affected by the interval between irradiation and injection of this replicating antigen. With longer intervals between irradiation and vaccination, the somewhat depressed antibody responses approached normal or surpassed those of nonirradiated monkeys. Vaccination 14 days after radiation exposure resulted in lethality to 8 of 12 monkeys, apparently as a result of secondary infection. The additional lymphopenic stress due to the effect of TC-83, superimposed on the severely depressed hematopoietic competence at 14 days, undoubtedly contributed to this increased susceptibility to latent infection

  2. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; Jiao, Jing; You, Jianxin

    2014-01-01

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  3. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  4. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xiao-Xian Cui

    2017-12-01

    Full Text Available Hepatitis B virus (HBV infection is endemic in Asia and chronic hepatitis B (CHB is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b or lamivudine (3TC, the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.

  5. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  6. TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.

    Science.gov (United States)

    Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei

    2015-10-16

    Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. APOBEC3 Interference during Replication of Viral Genomes

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2015-06-01

    Full Text Available Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.

  8. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    Science.gov (United States)

    2016-05-26

    Chapter 14. Intracellular detection of viral transcription and replication using RNA FISH i. Summary/Abstract Many hemorrhagic fever viruses...only allow entirely new investigations into the replication of these viruses, but also how this method can be applied to any virus with a known...localization, TurboFISH, hemorrhagic fever virus replication 1. Introduction RNA FISH was developed as a method to visualize cellular RNA by binding a

  9. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication.

    Directory of Open Access Journals (Sweden)

    Peng-Nien Huang

    2017-05-01

    Full Text Available Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR in host cells. This study found that enterovirus A71 (EVA71 utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1, a key endoplasmic reticulum protein (ER involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice. These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.

  10. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  11. HSV-1 Remodels Host Telomeres to Facilitate Viral Replication

    Directory of Open Access Journals (Sweden)

    Zhong Deng

    2014-12-01

    Full Text Available Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1 results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs. At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA, followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.

  12. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  13. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  14. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  15. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.

  16. Dynamics of viral replication in blood and lymphoid tissues during SIVmac251 infection of macaques

    Directory of Open Access Journals (Sweden)

    Mannioui Abdelkrim

    2009-01-01

    Full Text Available Abstract Background Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied. Results The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT, with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected. Conclusion We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important

  17. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2016-05-15

    The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature

  19. Viral replication and lung lesions in BALB/c mice experimentally inoculated with avian metapneumovirus subgroup C isolated from chickens.

    Directory of Open Access Journals (Sweden)

    Li Wei

    Full Text Available Avian metapneumovirus (aMPV emerged as an important respiratory pathogen causing acute respiratory tract infection in avian species. Here we used a chicken aMPV subgroup C (aMPV/C isolate to inoculate experimentally BALB/c mice and found that the aMPV/C can efficiently replicate and persist in the lungs of mice for at least 21 days with a peak viral load at day 6 postinoculation. Lung pathological changes were characterized by increased inflammatory cells. Immunochemical assay showed the presence of viral antigens in the lungs and significant upregulation of pulmonary inflammatory cytokines and chemokines including MCP-1, MIP-1α, RANTES, IL-1β, IFN-γ, and TNF-α were detected following inoculation. These results indicate for the first time that chicken aMPV/C may replicate in the lung of mice. Whether aMPV/C has potential as zoonotic pathogen, further investigation will be required.

  20. Viral replication and lung lesions in BALB/c mice experimentally inoculated with avian metapneumovirus subgroup C isolated from chickens.

    Science.gov (United States)

    Wei, Li; Zhu, Shanshan; She, Ruiping; Hu, Fengjiao; Wang, Jing; Yan, Xu; Zhang, Chunyan; Liu, Shuhang; Quan, Rong; Li, Zixuan; Du, Fang; Wei, Ting; Liu, Jue

    2014-01-01

    Avian metapneumovirus (aMPV) emerged as an important respiratory pathogen causing acute respiratory tract infection in avian species. Here we used a chicken aMPV subgroup C (aMPV/C) isolate to inoculate experimentally BALB/c mice and found that the aMPV/C can efficiently replicate and persist in the lungs of mice for at least 21 days with a peak viral load at day 6 postinoculation. Lung pathological changes were characterized by increased inflammatory cells. Immunochemical assay showed the presence of viral antigens in the lungs and significant upregulation of pulmonary inflammatory cytokines and chemokines including MCP-1, MIP-1α, RANTES, IL-1β, IFN-γ, and TNF-α were detected following inoculation. These results indicate for the first time that chicken aMPV/C may replicate in the lung of mice. Whether aMPV/C has potential as zoonotic pathogen, further investigation will be required.

  1. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  2. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  3. Serum hepatitis B surface antigen and hepatitis B e antigen titers: disease phase influences correlation with viral load and intrahepatic hepatitis B virus markers.

    Science.gov (United States)

    Thompson, Alexander J V; Nguyen, Tin; Iser, David; Ayres, Anna; Jackson, Kathy; Littlejohn, Margaret; Slavin, John; Bowden, Scott; Gane, Edward J; Abbott, William; Lau, George K K; Lewin, Sharon R; Visvanathan, Kumar; Desmond, Paul V; Locarnini, Stephen A

    2010-06-01

    Although threshold levels for hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) titers have recently been proposed to guide therapy for chronic hepatitis B (CHB), their relationship to circulating hepatitis B virus (HBV) DNA and intrahepatic HBV replicative intermediates, and the significance of emerging viral variants, remains unclear. We therefore tested the hypothesis that HBsAg and HBeAg titers may vary independently of viral replication in vivo. In all, 149 treatment-naïve CHB patients were recruited (HBeAg-positive, n = 71; HBeAg-negative, n = 78). Quantification of HBeAg and HBsAg was performed by enzyme immunoassay. Virological characterization included serum HBV DNA load, HBV genotype, basal core promoter (BCP)/precore (PC) sequence, and, in a subset (n = 44), measurement of intrahepatic covalently closed circular DNA (cccDNA) and total HBV DNA, as well as quantitative immunohistochemical (IHC) staining for HBsAg. In HBeAg-positive CHB, HBsAg was positively correlated with serum HBV DNA and intrahepatic cccDNA and total HBV DNA (r = 0.69, 0.71, 0.76, P < 0.01). HBeAg correlated with serum HBV DNA (r = 0.60, P < 0.0001), although emerging BCP/PC variants reduced HBeAg titer independent of viral replication. In HBeAg-negative CHB, HBsAg correlated poorly with serum HBV DNA (r = 0.28, P = 0.01) and did not correlate with intrahepatic cccDNA nor total HBV DNA. Quantitative IHC for hepatocyte HBsAg confirmed a relationship with viral replication only in HBeAg-positive patients. The correlation between quantitative HBsAg titer and serum and intrahepatic markers of HBV replication differs between patients with HBeAg-positive and HBeAg-negative CHB. HBeAg titers may fall independent of viral replication as HBeAg-defective variants emerge prior to HBeAg seroconversion. These findings provide new insights into viral pathogenesis and have practical implications for the use of quantitative serology as a clinical biomarker.

  4. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  5. Effects of Interferon-α/β on HBV Replication Determined by Viral Load

    Science.gov (United States)

    Tian, Yongjun; Chen, Wen-ling; Ou, Jing-hsiung James

    2011-01-01

    Interferons α and β (IFN-α/β) are type I interferons produced by the host to control microbial infections. However, the use of IFN-α to treat hepatitis B virus (HBV) patients generated sustained response to only a minority of patients. By using HBV transgenic mice as a model and by using hydrodynamic injection to introduce HBV DNA into the mouse liver, we studied the effect of IFN-α/β on HBV in vivo. Interestingly, our results indicated that IFN-α/β could have opposite effects on HBV: they suppressed HBV replication when viral load was high and enhanced HBV replication when viral load was low. IFN-α/β apparently suppressed HBV replication via transcriptional and post-transcriptional regulations. In contrast, IFN-α/β enhanced viral replication by inducing the transcription factor HNF3γ and activating STAT3, which together stimulated HBV gene expression and replication. Further studies revealed an important role of IFN-α/β in stimulating viral growth and prolonging viremia when viral load is low. This use of an innate immune response to enhance its replication and persistence may represent a novel strategy that HBV uses to enhance its growth and spread in the early stage of viral infection when the viral level is low. PMID:21829354

  6. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria.

    Science.gov (United States)

    Muñoz-Espín, Daniel; Daniel, Richard; Kawai, Yoshikazu; Carballido-López, Rut; Castilla-Llorente, Virginia; Errington, Jeff; Meijer, Wilfried J J; Salas, Margarita

    2009-08-11

    Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.

  7. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen...

  8. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    Science.gov (United States)

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model.

    Science.gov (United States)

    Lin, Yi-Jiun; Huang, Li-Rung; Yang, Hung-Chih; Tzeng, Horng-Tay; Hsu, Ping-Ning; Wu, Hui-Lin; Chen, Pei-Jer; Chen, Ding-Shinn

    2010-05-18

    We recently developed a mouse model of hepatitis B virus (HBV) persistence, in which a single i.v. hydrodynamic injection of HBV DNA to C57BL/6 mice allows HBV replication and induces a partial immune response, so that about 20-30% of the mice carry HBV for more than 6 months. The model was used to identify the viral antigen crucial for HBV persistence. We knocked out individual HBV genes by introducing a premature termination codon to the HBV core, HBeAg, HBx, and polymerase ORFs. The specific-gene-deficient HBV mutants were hydrodynamically injected into mice and the HBV profiles of the mice were monitored. About 90% of the mice that received the HBcAg-mutated HBV plasmid exhibited high levels of hepatitis B surface antigenemia and maintained HBsAg expression for more than 6 months after injection. To map the region of HBcAg essential for viral clearance, we constructed a set of serial HBcAg deletion mutants for hydrodynamic injection. We localized the essential region of HBcAg to the carboxyl terminus, specifically to the 10 terminal amino acids (HBcAg176-185). The majority of mice receiving this HBV mutant DNA did not elicit a proper HBcAg-specific IFN-gamma response and expressed HBV virions for 6 months. These results indicate that the immune response triggered in mice by HBcAg during exposure to HBV is important in determining HBV persistence.

  10. Development of recombinant antigen array for simultaneous detection of viral antibodies.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Protein microarrays have been developed to study antibody reactivity against a large number of antigens, demonstrating extensive perspective for clinical application. We developed a viral antigen array by spotting four recombinant antigens and synthetic peptide, including glycoprotein G of herpes simplex virus (HSV type 1 and 2, phosphoprotein 150 of cytomegalovirus (CMV, Rubella virus (RV core plus glycoprotein E1 and E2 as well as a E1 peptide with the optimal concentrations on activated glass slides to simultaneously detect IgG and IgM against HSV1, HSV2, CMV and RV in clinical specimens of sera and cerebrospinal fluids (CSFs. The positive reference sera were initially used to measure the sensitivity and specificity of the array with the optimal conditions. Then clinical specimens of 144 sera and 93 CSFs were tested for IgG and IgM antibodies directed against HSV1, HSV2, CMV and RV by the antigen array. Specificity of the antigen array for viral antibodies detection was satisfying compared to commercial ELISA kits but sensitivity of the array varied relying on quality and antigenic epitopes of the spotting antigens. In short, the recombinant antigen array has potential to simultaneous detect multiple viral antibodies using minute amount (3 µl of samples, which holds the particularly advantage to detect viral antibodies in clinical CSFs being suspicious of neonatal meningitis and encephalitis.

  11. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  12. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    OpenAIRE

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-01-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generate...

  13. Viral gene products and replication of the human immunodeficiency type 1 virus.

    Science.gov (United States)

    Morrow, C D; Park, J; Wakefield, J K

    1994-05-01

    The acquired immunodeficiency syndrome (AIDS) epidemic represents a modern-day plague that has not only resulted in a tragic loss of people from a wide spectrum of society but has reshaped our viewpoints regarding health care, the treatment of infectious diseases, and social issues regarding sexual behavior. There is little doubt now that the cause of the disease AIDS is a virus known as the human immunodeficiency virus (HIV). The HIV virus is a member of a large family of viruses termed retroviruses, which have as a hallmark the capacity to convert their RNA genome into a DNA form that then undergoes a process of integration into the host cell chromosome, followed by the expression of the viral genome and translation of viral proteins in the infected cell. This review describes the organization of the HIV-1 viral genome, the expression of viral proteins, as well as the functions of the accessory viral proteins in HIV replication. The replication of the viral genome is divided into two phases, the early phase and the late phase. The early phase consists of the interaction of the virus with the cell surface receptor (CD4 molecule in most cases), the uncoating and conversion of the viral RNA genome into a DNA form, and the integration into the host cell chromosome. The late phase consists of the expression of the viral proteins from the integrated viral genome, the translation of viral proteins, and the assembly and release of the virus. Points in the HIV-1 life cycle that are targets for therapeutic intervention are also discussed.

  14. Manipulating 3D-Printed and Paper Models Enhances Student Understanding of Viral Replication

    Science.gov (United States)

    Couper, Lisa; Johannes, Kristen; Powers, Jackie; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Understanding key concepts in molecular biology requires reasoning about molecular processes that are not directly observable and, as such, presents a challenge to students and teachers. We ask whether novel interactive physical models and activities can help students understand key processes in viral replication. Our 3D tangible models are…

  15. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes

    NARCIS (Netherlands)

    Taschner, P. E.; van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    RNAs 1 and 2 of alfalfa mosaic virus (AIMV) encode proteins P1 and P2, respectively, both of which have a putative role in viral RNA replication. Tobacco plants were transformed with DNA copies of RNA1 (P1-plants), RNA2 (P2-plants) or a combination of these two cDNAs (P12-plants). All transgenic

  16. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    Science.gov (United States)

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    Directory of Open Access Journals (Sweden)

    Gefei Wang

    2016-01-01

    Full Text Available Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i. but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.

  18. Role of pentraxin 3 in shaping arthritogenic alphaviral disease: from enhanced viral replication to immunomodulation.

    Directory of Open Access Journals (Sweden)

    Suan-Sin Foo

    2015-02-01

    Full Text Available The rising prevalence of arthritogenic alphavirus infections, including chikungunya virus (CHIKV and Ross River virus (RRV, and the lack of antiviral treatments highlight the potential threat of a global alphavirus pandemic. The immune responses underlying alphavirus virulence remain enigmatic. We found that pentraxin 3 (PTX3 was highly expressed in CHIKV and RRV patients during acute disease. Overt expression of PTX3 in CHIKV patients was associated with increased viral load and disease severity. PTX3-deficient (PTX3(-/- mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication. Furthermore, binding of the N-terminal domain of PTX3 to RRV facilitated viral entry and replication. Thus, our study demonstrates the pivotal role of PTX3 in shaping alphavirus-triggered immunity and disease and provides new insights into alphavirus pathogenesis.

  19. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  20. Rekombinante bovin-humane Parainfluenzaviren Typ 3 als Impfvektoren gegen nicht-virale Antigene

    OpenAIRE

    Schomacker, Henrick

    2008-01-01

    Bei bhPIV3 handelt es sich um ein bovines Parainfluenzavirus Typ 3 (bPIV3), dessen Ober-flächenproteingene gegen jene des humanen Parainfluenzavirus Typ 3 (hPIV3) ausgetauscht wurden. Dieses ursprünglich als experimenteller Impfstoff gegen hPIV3 entwickelte Virus wurde darüber hinaus als Impfvektor zur Expression anderer viraler Antigene verwendet. Im Rahmen der hier vorgestellten Arbeit wurden die ersten bhPIV3-basierten Vektoren für nicht-virale Antigene hergestellt und in einem ersten Vers...

  1. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    Science.gov (United States)

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular

  2. Viral hijacking of a replicative helicase loader and its implications for helicase loading control and phage replication

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Iris V.; Berger, James M.

    2016-05-31

    Replisome assembly requires the loading of replicative hexameric helicases onto origins by AAA+ ATPases. How loader activity is appropriately controlled remains unclear. Here, we use structural and biochemical analyses to establish how an antimicrobial phage protein interferes with the function of theStaphylococcus aureusreplicative helicase loader, DnaI. The viral protein binds to the loader’s AAA+ ATPase domain, allowing binding of the host replicative helicase but impeding loader self-assembly and ATPase activity. Close inspection of the complex highlights an unexpected locus for the binding of an interdomain linker element in DnaI/DnaC-family proteins. We find that the inhibitor protein is genetically coupled to a phage-encoded homolog of the bacterial helicase loader, which we show binds to the host helicase but not to the inhibitor itself. These findings establish a new approach by which viruses can hijack host replication processes and explain how loader activity is internally regulated to prevent aberrant auto-association.

  3. Distribution of bovine viral diarrhoea virus antigen in persistently infected white-tailed deer (Odocoileus virginianus).

    Science.gov (United States)

    Passler, T; Walz, H L; Ditchkoff, S S; van Santen, E; Brock, K V; Walz, P H

    2012-11-01

    Infection with bovine viral diarrhoea virus (BVDV), analogous to that occurring in cattle, is reported rarely in white-tailed deer (Odocoileus virginianus). This study evaluated the distribution of BVDV antigen in persistently infected (PI) white-tailed deer and compared the findings with those from PI cattle. Six PI fawns (four live-born and two stillborn) from does exposed experimentally to either BVDV-1 or BVDV-2 were evaluated. Distribution and intensity of antigen expression in tissues was evaluated by immunohistochemistry. Data were analyzed in binary fashion with a proportional odds model. Viral antigen was distributed widely and was present in all 11 organ systems. Hepatobiliary, integumentary and reproductive systems were respectively 11.8, 15.4 and 21.6 times more likely to have higher antigen scores than the musculoskeletal system. Pronounced labelling occurred in epithelial tissues, which were 1.9-3.0 times likelier than other tissues to contain BVDV antigen. Antigen was present in >90% of samples of liver and skin, suggesting that skin biopsy samples are appropriate for BVDV diagnosis. Moderate to severe lymphoid depletion was detected and may hamper reliable detection of BVDV in lymphoid organs. Muscle tissue contained little antigen, except for in the cardiovascular system. Antigen was present infrequently in connective tissues. In nervous tissues, antigen expression frequency was 0.3-0.67. In the central nervous system (CNS), antigen was present in neurons and non-neuronal cells, including microglia, emphasizing that the CNS is a primary target for fetal BVDV infection. BVDV antigen distribution in PI white-tailed deer is similar to that in PI cattle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication

    Science.gov (United States)

    Jiang, Wei; Sheng, Chunjie; Gu, Xiuling; Liu, Dong; Yao, Chen; Gao, Shijuan; Chen, Shuai; Huang, Yinghui; Huang, Wenlin; Fang, Min

    2016-01-01

    Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets. PMID:27869202

  5. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.

    Science.gov (United States)

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Guan, Liya; Liu, Hong; Qin, Qiwei

    2011-09-01

    Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. An Alternative Form of Replication Protein A Prevents Viral Replication in Vitro*

    OpenAIRE

    Mason, Aaron C.; Haring, Stuart J.; Pryor, John M.; Staloch, Cathy A.; Gan, Tze Fei; Wold, Marc S.

    2009-01-01

    Replication protein A (RPA), the eukaryotic single-stranded DNA-binding complex, is essential for multiple processes in cellular DNA metabolism. The “canonical” RPA is composed of three subunits (RPA1, RPA2, and RPA3); however, there is a human homolog to the RPA2 subunit, called RPA4, that can substitute for RPA2 in complex formation. We demonstrate that the resulting “alternative” RPA (aRPA) complex has solution and DNA binding properties indistinguishable from the c...

  7. Simian Immunodeficiency Virus (SIV-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication

    Directory of Open Access Journals (Sweden)

    Kumudhini Preethi Haran

    2018-03-01

    Full Text Available There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh cells using antiviral chimeric antigen receptor (CAR T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure of HIV and SIV infections.

  8. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    Directory of Open Access Journals (Sweden)

    Arturo Blazquez-Navarro

    2018-05-01

    Full Text Available BK virus (BKV associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  9. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    Science.gov (United States)

    Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal

    2018-05-01

    BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  10. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    Science.gov (United States)

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-07-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.

  11. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  12. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  13. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication

    Science.gov (United States)

    Chase, Amanda J.; Daijogo, Sarah

    2014-01-01

    ABSTRACT Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition. PMID:24371074

  14. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  15. Augmentation of DHCR24 expression by hepatitis C virus infection facilitates viral replication in hepatocytes.

    Science.gov (United States)

    Takano, Takashi; Tsukiyama-Kohara, Kyoko; Hayashi, Masahiro; Hirata, Yuichi; Satoh, Masaaki; Tokunaga, Yuko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Funata, Nobuaki; Sudoh, Masayuki; Kohara, Michinori

    2011-09-01

    We characterized the role of 24-dehydrocholesterol reductase (DHCR24) in hepatitis C virus infection (HCV). DHCR24 is a cholesterol biosynthetic enzyme and cholesterol is a major component of lipid rafts, which is reported to play an important role in HCV replication. Therefore, we examined the potential of DHCR24 as a target for novel HCV therapeutic agents. We examined DHCR24 expression in human hepatocytes in both the livers of HCV-infected patients and those of chimeric mice with human hepatocytes. We targeted DHCR24 with siRNA and U18666A which is an inhibitor of both DHCR24 and cholesterol synthesis. We measured the level of HCV replication in these HCV replicon cell lines and HCV infected cells. U18666A was administrated into chimeric mice with humanized liver, and anti-viral effects were assessed. Expression of DHCR24 was induced by HCV infection in human hepatocytes in vitro, and in human hepatocytes of chimeric mouse liver. Silencing of DHCR24 by siRNA decreased HCV replication in replicon cell lines and HCV JFH-1 strain-infected cells. Treatment with U18666A suppressed HCV replication in the replicon cell lines. Moreover, to evaluate the anti-viral effect of U18666A in vivo, we administrated U18666A with or without pegylated interferon to chimeric mice and observed an inhibitory effect of U18666A on HCV infection and a synergistic effect with interferon. DHCR24 is an essential host factor which augmented its expression by HCV infection, and plays a significant role in HCV replication. DHCR24 may serve as a novel anti-HCV drug target. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication.

    Science.gov (United States)

    Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-07-04

    EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.

  17. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication.

    Science.gov (United States)

    Passos-Castilho, Ana Maria; Marchand, Claude; Archambault, Denis

    2018-02-01

    The bovine immunodeficiency virus (BIV) Rev shuttling protein contains nuclear/nucleolar localization signals and nuclear import/export mechanisms that are novel among lentivirus Rev proteins. Several viral proteins localize to the nucleolus, which may play a role in processes that are essential to the outcome of viral replication. Although BIV Rev localizes to the nucleoli of transfected/infected cells and colocalizes with one of its major proteins, nucleophosmin (NPM1, also known as B23), the role of the nucleolus and B23 in BIV replication remains to be determined. Here, we demonstrate for the first time that BIV Rev interacts with nucleolar phosphoprotein B23 in cells. Using small interfering RNA (siRNA) technology, we show that depletion of B23 expression inhibits virus production by BIV-infected cells, indicating that B23 plays an important role in BIV replication. The interaction between Rev and B23 may represent a potential new target for the development of antiviral drugs against lentiviruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of BSA Antigen Sensitization during the Acute Phase of Influenza A Viral Infection on CD11c+ Pulmonary Antigen Presenting Cells

    Directory of Open Access Journals (Sweden)

    Fumitaka Sato

    2009-01-01

    Conclusions: BSA antigen sensitization during the acute phase of influenza A viral infection enhanced IL-10 production from naive CD4+ T cell interaction with CD11c+ pulmonary APCs. The IL-10 secretion evoked Th2 responses in the lungs with downregulation of Th1 responses and was important for the eosinophil recruitment into the lungs after BSA antigen challenge.

  19. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis

    International Nuclear Information System (INIS)

    Mu, J.-J.; Tsay, Y.-G.; Juan, L.-J.; Fu, T.-F.; Huang, W.-H.; Chen, D.-S.; Chen, P.-J.

    2004-01-01

    Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [ 3 H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication

  20. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    Science.gov (United States)

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.

  1. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    Directory of Open Access Journals (Sweden)

    Cui Zhao

    Full Text Available A DNA-binding protein (DBP [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05, indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01. The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01. The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.

  2. Wolbachia wStri Blocks Zika Virus Growth at Two Independent Stages of Viral Replication.

    Science.gov (United States)

    Schultz, M J; Tan, A L; Gray, C N; Isern, S; Michael, S F; Frydman, H M; Connor, J H

    2018-05-22

    Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia w Stri, isolated from Laodelphax striatellus , was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that w Stri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. w Stri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by w Stri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into w Stri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia -infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in w Stri-infected cells. This study's findings increase the potential for application of w Stri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. IMPORTANCE Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so

  3. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  4. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    International Nuclear Information System (INIS)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L.

    1990-01-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed

  5. Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Lu, Mijia; Liang, Xueya; Jennings, Ryan; Niewiesk, Stefan; Li, Jianrong

    2016-08-15

    Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus

  6. [Post-herpes simplex encephalitis chorea: Viral replication or immunological mechanism?].

    Science.gov (United States)

    Benrhouma, H; Nasri, A; Kraoua, I; Klaa, H; Turki, I; Gouider-Khouja, N

    2015-09-01

    Herpes simplex encephalitis is a severe neurological condition, whose outcome is improved if treated early with acyclovir. Post-herpes simplex encephalitis with acute chorea has rarely been reported. We report on two observations of children presenting with post-herpes simplex encephalitis with acute chorea, related to two different pathophysiological mechanisms. The first one is an 11-month-old girl developing relapsing herpes simplex encephalitis with chorea due to resumption of viral replication. The second one is a 2-year-old boy with relapsing post-herpes simplex encephalitis acute chorea caused by an immunoinflammatory mechanism. We discuss the different neurological presentations of herpetic relapses, notably those presenting with movement disorders, as well as their clinical, paraclinical, physiopathological, and therapeutic aspects. Post-herpes simplex encephalitis with acute chorea may involve two mechanisms: resumption of viral replication or an immunoinflammatory mechanism. Treatment of post-herpes simplex encephalitis with acute chorea depends on the underlying mechanism, while prevention is based on antiviral treatment of herpes simplex encephalitis with acyclovir at the dose of 20mg/kg/8h for 21 days. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Endemic versus epidemic viral spreads display distinct patterns of HTLV-2b replication

    International Nuclear Information System (INIS)

    Gabet, Anne-Sophie; Moules, Vincent; Sibon, David; Nass, Catharie C.; Mortreux, Franck; Mauclere, Philippe; Gessain, Antoine; Murphy, Edward L.; Wattel, Eric

    2006-01-01

    As the replication pattern of leukemogenic PTLVs possesses a strong pathogenic impact, we investigated HTLV-2 replication in vivo in asymptomatic carriers belonging into 2 distinct populations infected by the same HTLV-2b subtype. They include epidemically infected American blood donors, in whom HTLV-2b has been present for only 30 years, and endemically infected Bakola Pygmies from Cameroon, characterized by a long viral endemicity (at least few generations). In blood donors, both the circulating proviral loads and the degree of infected cell proliferation were largely lower than those characterizing asymptomatic carriers infected with leukemogenic PTLVs (HTLV-1, STLV-1). This might contribute to explain the lack of known link between HTLV-2b infection and the development of malignancies in this population. In contrast, endemically infected individuals displayed high proviral loads resulting from the extensive proliferation of infected cells. The route and/or the duration of infection, viral genetic drift, host immune response, genetic background, co-infections or a combination thereof might have contributed to these differences between endemically and epidemically infected subjects. As the clonality pattern observed in endemically infected individuals is very reminiscent of that of leukemogenic PTLVs at the pre-leukemic stage, our results highlight the possible oncogenic effect of HTLV-2b infection in such population

  8. Cytomegalovirus-specific T-cell responses and viral replication in kidney transplant recipients

    Directory of Open Access Journals (Sweden)

    Sester Urban

    2008-06-01

    Full Text Available Abstract Background Cytomegalovirus (CMV seronegative recipients (R- of kidney transplants (KT from seropositive donors (D+ are at higher risk for CMV replication and ganciclovir(GCV-resistance than CMV R(+. We hypothesized that low CMV-specific T-cell responses are associated with increased risk of CMV replication in R(+-patients with D(+ or D(- donors. Methods We prospectively evaluated 73 consecutive KT-patients [48 R(+, 25 D(+R(-] undergoing routine testing for CMV replication as part of a preemptive strategy. We compared CMV-specific interferon-γ (IFN-γ responses of CD4+CD3+ lymphocytes in peripheral blood mononuclear cells (PBMC using three different antigen preparation (CMV-lysate, pp72- and pp65-overlapping peptide pools using intracellular cytokine staining and flow cytometry. Results Median CD4+ and CD8+T-cell responses to CMV-lysate, pp72- and pp65-overlapping peptide pools were lower in D(+R(- than in R(+patients or in non-immunosuppressed donors. Comparing subpopulations we found that CMV-lysate favored CD4+- over CD8+-responses, whereas the reverse was observed for pp72, while pp65-CD4+- and -CD8+-responses were similar. Concurrent CMV replication in R(+-patients was associated with significantly lower T-cell responses (pp65 median CD4+ 0.00% vs. 0.03%, p = 0.001; CD8+ 0.01% vs. 0.03%; p = 0.033. Receiver operated curve analysis associated CMV-pp65 CD4+ responses of > 0.03% in R(+-patients with absence of concurrent (p = 0.003 and future CMV replication in the following 8 weeks (p = 0.036. GCV-resistant CMV replication occurred in 3 R(+-patients (6.3% with pp65- CD4+ frequencies Conclusion The data suggest that pp65-specific CD4+ T-cells might be useful to identify R(+-patients at increased risk of CMV replication. Provided further corroborating evidence, CMV-pp65 CD4+ responses above 0.03% in PBMCs of KT patients under stable immunosuppression are associated with lower risk of concurrent and future CMV replication during the

  9. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication.

    Science.gov (United States)

    Pudupakam, R S; Kenney, Scott P; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A; Leroith, Tanya; Pierson, F William; Meng, Xiang-Jin

    2011-10-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.

  10. Rapid solid-phase radioimmunoassay for detection of equine infectious anemia viral antigen and antibodies: parameters involved in standardization

    International Nuclear Information System (INIS)

    Horenstein, A.L.; Feinstein, R.E.

    1985-01-01

    Solid-phase radioimmunoassays (SPRIA) are described for the detection of equine infectious anemia (EIA) viral antigen and antibodies. Protein-antigen P29 currently used in the agar-gel immunodiffusion (AGID) test was used as antigen in the SPRIA. The specificity of the reaction was assessed by inhibition with the antigen. The reaction of immune serum against EIA-virus antigen adsorbed to the wells, was completely inhibited by the antigen in solution. This property was applied in an indirect competitive SPRIA for the detection of viral protein P29. The detection threshold of the SPRIA for EIA virus protein was about 5 ng and about 1 ng of antibody can be detected. The assay is rapid, specific and sensitive and allows the testing of multiple serum samples with the advantage of employing a single secondary labelled antibody. (orig.)

  11. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (plife cycle.

  12. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    Science.gov (United States)

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role

  14. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    Science.gov (United States)

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  15. Replicative homeostasis II: Influence of polymerase fidelity on RNA virus quasispecies biology: Implications for immune recognition, viral autoimmunity and other "virus receptor" diseases

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-08-01

    Full Text Available Abstract Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.

  16. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  17. Calcein represses human papillomavirus 16 E1-E2 mediated DNA replication via blocking their binding to the viral origin of replication.

    Science.gov (United States)

    Das, Dipon; Smith, Nathan W; Wang, Xu; Richardson, Stacie L; Hartman, Matthew C T; Morgan, Iain M

    2017-08-01

    Human papillomaviruses are causative agents in several human diseases ranging from genital warts to ano-genital and oropharyngeal cancers. Currently only symptoms of HPV induced disease are treated; there are no antivirals available that directly target the viral life cycle. Previously, we determined that the cellular protein TopBP1 interacts with the HPV16 replication/transcription factor E2. This E2-TopBP1 interaction is essential for optimal E1-E2 DNA replication and for the viral life cycle. The drug calcein disrupts the interaction of TopBP1 with itself and other host proteins to promote cell death. Here we demonstrate that calcein blocks HPV16 E1-E2 DNA replication via blocking the viral replication complex forming at the origin of replication. This occurs at non-toxic levels of calcein and demonstrates specificity as it does not block the ability of E2 to regulate transcription. We propose that calcein or derivatives could be developed as an anti-HPV therapeutic. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  19. Detection of viral antigens by solid phase radioimmunoassay on polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Prokudina, E N; Semenova, N P; Zhdanov, V M

    1986-04-01

    Polyethylene film, without any pretreatment, may serve as a solid phase (SP) for RIA. Viral antigens (HBsAg, and influenza virus) are detected by SP-RIA on the film with a sensitivity of about 2-3 ng/ml or 40-60 pg/assay. The use of polyethylene film allows one to record RIA autographically. The use of micro amounts of reagents and specimens tested is an added advantage. No special equipment is necessary, the method is inexpensive, easy to perform and may be used for mass screening. (Auth.). 7 refs.; 4 figs.

  20. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo (Egypt); Che, Xibing; Sung, Phillip; Sommer, Marvin H. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Hay, John [Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY (United States); Arvin, Ann M. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States)

    2016-05-15

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  1. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    International Nuclear Information System (INIS)

    Khalil, Mohamed I.; Che, Xibing; Sung, Phillip; Sommer, Marvin H.; Hay, John; Arvin, Ann M.

    2016-01-01

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  2. Early events in the pathogenesis of foot-and-mouth disease in pigs; identification of oropharyngeal tonsils as sites of primary and sustained viral replication.

    Directory of Open Access Journals (Sweden)

    Carolina Stenfeldt

    Full Text Available A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18-24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs.

  3. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication

    International Nuclear Information System (INIS)

    Li Zengi; Brister, J. Rodney; Im, Dong-Soo; Muzyczka, Nicholas

    2003-01-01

    Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site

  4. Rhesus monkey rhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication

    International Nuclear Information System (INIS)

    DeWire, Scott M.; Money, Eric S.; Krall, Stuart P.; Damania, Blossom

    2003-01-01

    Rhesus monkey rhadinovirus (RRV) is a γ-2-herpesvirus that is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). Lack of an efficient culture system to grow high titers of virus, and the lack of an in vivo animal model system, has hampered the study of KSHV replication and pathogenesis. RRV is capable of replicating to high titers on fibroblasts, thus facilitating the construction of recombinant rhadinoviruses. In addition, the ability to experimentally infect naieve rhesus macaques with RRV makes it an excellent model system to study γ-herpesvirus replication. Our study describes, for the first time, the construction of a GFP-expressing RRV recombinant virus using a traditional homologous recombination strategy. We have also developed two new methods for determining viral titers of RRV including a traditional viral plaque assay and a quantitative real-time PCR assay. We have compared the replication of wild-type RRV with that of the RRV-GFP recombinant virus in one-step growth curves. We have also measured the sensitivity of RRV to a small panel of antiviral drugs. The development of both the recombination strategy and the viral quantitation assays for RRV will lay the foundation for future studies to evaluate the contribution of individual genes to viral replication both in vitro and in vivo

  5. Morphological correlates of genital HPV infection: Viral replication, transcription and gene expression

    International Nuclear Information System (INIS)

    Crum, C.P.; Friedman, D.; Nuovo, G.; Silverstein, S.J.

    1987-01-01

    Current studies indicate a strong correlation between specific morphological changes and the presence of certain HPV strains in precancerous squamous epithelium of the cervix, vulva and vagina. HPV type 16 is the most commonly detected HPV type in cervical lesions in our experience, and 85% of these lesions exhibit some morphological features associated with aneuploid epithelium (CIN). However, over 50% of these lesions containing HPV 16 DNA exhibit, in addition, foci of epithelium indistinguishable from condyloma, although in our experience, only one HPV type(16) is detected in the majority of these lesions. DNA-DNA in situ hybridization analysis of these lesions containing HPV 16 DNA has demonstrated nucleic acids in areas resembling both condyloma and CIN, with the greatest concentration in mature cells containing cytoplasmic maturation. Ten percent of lesions containing HPV 16 produce detectable capsid antigens, and we have confirmed the presence of these antigens in the same areas which hybridize in-situ for HPV DNA. Recent studies using biotin and S-35 labeled RNa probes constructed in GEM-1 vectors indicate that early HPV genes are expressed primarily in the upper (more mature) regions of the neoplastic epithelium. Thus maturation appears to exert a positive influence on a variety of HPV functions in neoplastic epithelium, including DNA replication, early and late gene expression. It is possible that patterns of gene expression may vary between lesions associated with different HPV types or different morphologies. This possibility is being explored

  6. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Chiaki [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Higashi, Chizuka; Niinaka, Yasufumi [Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Yamada, Koji [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Noguchi, Kohji [Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome

  7. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs.

    Science.gov (United States)

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J; Xing, Zheng

    2016-07-29

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs*

    Science.gov (United States)

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J.; Xing, Zheng

    2016-01-01

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. PMID:27226560

  9. Antigenic variability in bovine viral diarrhea virus (BVDV) isolates from alpaca (Vicugna pacos), llama (Lama glama) and bovines in Chile.

    Science.gov (United States)

    Aguirre, I M; Quezada, M P; Celedón, M O

    2014-01-31

    Llamas and alpacas are domesticated South American camelids (SACs) important to ancestral population in the Altiplano region, and to different communities where they have been introduced worldwide. These ungulates have shown to be susceptible to several livestock viral pathogens such as members of the Pestivirus genus and mainly to bovine viral diarrhea virus (BVDV). Seventeen Chilean BVDV isolates were analyzed by serum cross neutralization with samples obtained from five llama, six alpacas, three bovines, plus three reference strains belonging to different subgroups and genotypes. The objective was to describe antigenic differences and similarities among them. Antigenic comparison showed significant differences between different subgroups. Consequently, antigenic similarities were observed among isolates belonging to the same subgroup and also between isolates from different animal species belonging the same subgroup. Among the analyzed samples, one pair of 1b subgroup isolates showed significant antigenic differences. On the other hand, one pair of isolates from different subgroups (1b and 1j) shared antigenic similarities indicating antigenic relatedness. This study shows for the first time the presence of antigenic differences within BVDV 1b subgroup and antigenic similarities within 1j subgroup isolates, demonstrating that genetic differences within BVDV subgroups do not necessary corresponds to differences on antigenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.

    Science.gov (United States)

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco; Marcello, Alessandro

    2014-06-01

    Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1(-/-) mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR(-/-) fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1(-/-) mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication

  12. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein

    NARCIS (Netherlands)

    van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M

    2016-01-01

    Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant

  13. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape

    NARCIS (Netherlands)

    Lebbink, Robert Jan; de Jong, Dorien C M; Wolters, Femke; Kruse, Elisabeth M; van Ham, Petra M; Wiertz, Emmanuel J H J; Nijhuis, Monique

    2017-01-01

    HIV presents one of the highest evolutionary rates ever detected and combination antiretroviral therapy is needed to overcome the plasticity of the virus population and control viral replication. Conventional treatments lack the ability to clear the latent reservoir, which remains the major obstacle

  14. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  15. Orthoretroviral-like prototype foamy virus gag-pol expression is compatible with viral replication

    Directory of Open Access Journals (Sweden)

    Reh Juliane

    2011-08-01

    Full Text Available Abstract Background Foamy viruses (FVs unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. Results Several Prototype FV (PFV Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85PR-RT and p40IN Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71Gag

  16. Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane.

    Directory of Open Access Journals (Sweden)

    Chingkai Chuang

    2014-02-01

    Full Text Available RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs that drive viral replication. The host lipins (phosphatidate phosphatases are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase, which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.

  17. Chloroquine and its derivatives exacerbate B19V-associated anemia by promoting viral replication.

    Directory of Open Access Journals (Sweden)

    Claudia Bönsch

    Full Text Available BACKGROUND: An unexpectedly high seroprevalence and pathogenic potential of human parvovirus B19 (B19V have been observed in certain malaria-endemic countries in parallel with local use of chloroquine (CQ as first-line treatment for malaria. The aims of this study were to assess the effect of CQ and other common antimalarial drugs on B19V infection in vitro and the possible epidemiological consequences for children from Papua New Guinea (PNG. METHODOLOGY/PRINCIPAL FINDINGS: Viral RNA, DNA and proteins were analyzed in different cell types following infection with B19V in the presence of a range of antimalarial drugs. Relationships between B19V infection status, prior 4-aminoquinoline use and anemia were assessed in 200 PNG children <10 years of age participating in a case-control study of severe infections. In CQ-treated cells, the synthesis of viral RNA, DNA and proteins was significantly higher and occurred earlier than in control cells. CQ facilitates B19V infection by minimizing intracellular degradation of incoming particles. Only amodiaquine amongst other antimalarial drugs had a similar effect. B19V IgM seropositivity was more frequent in 111 children with severe anemia (hemoglobin <50 g/L than in 89 healthy controls (15.3% vs 3.4%; P = 0.008. In children who were either B19V IgM or PCR positive, 4-aminoquinoline use was associated with a significantly lower admission hemoglobin concentration. CONCLUSIONS/SIGNIFICANCE: Our data strongly suggest that 4-aminoquinoline drugs and their metabolites exacerbate B19V-associated anemia by promoting B19V replication. Consideration should be given for choosing a non-4-aminoquinoline drug to partner artemisinin compounds in combination antimalarial therapy.

  18. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  19. Role of Bovine Adenovirus-3 33K protein in viral replication

    International Nuclear Information System (INIS)

    Kulshreshtha, Vikas; Babiuk, Lorne A.; Tikoo, Suresh K.

    2004-01-01

    The L6 region of bovine adenovirus type (BAdV)-3 encodes a nonstructural protein named 33K. To identify and characterize the 33K protein, rabbit polyclonal antiserum was raised against a 33K-GST fusion protein expressed in bacteria. Anti-33K serum immunoprecipitated a protein of 42 kDa in in vitro translated and transcribed mRNA of 33K. However, three proteins of 42, 38, and 33 kDa were detected in BAdV-3 infected cells. To determine the role of this protein in virus replication, a recombinant BAV-33S1 containing insertional inactivation of 33K (a stop codon created at the seventh amino acid of 33K ORF) was constructed. Although BAV-33S1 could be isolated, the mutant showed a severe defect in the production of progeny virus. Inactivation of the 33K gene showed no effect on early and late viral gene expression in cells infected with BAV-33S1. However, formation of mature virions was significantly reduced in cells infected with BAV-33S1. Surprisingly, insertional inactivation of 33K at amino acid 97 (pFBAV-33.KS2) proved lethal for virus production. Although expression of early or late genes was not affected, no capsid formation could be observed in mutant DNA-transfected cells. These results suggest that 33K is required for capsid assembly and efficient DNA capsid interaction

  20. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

    Directory of Open Access Journals (Sweden)

    Dan Dou

    2017-07-01

    Full Text Available Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.

  1. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    Science.gov (United States)

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  2. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor.

    Directory of Open Access Journals (Sweden)

    Rachel S Leibman

    2017-10-01

    Full Text Available HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy.

  3. Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication.

    Science.gov (United States)

    Fu, Yuxuan; Xu, Wentao; Chen, Deyan; Feng, Chunhong; Zhang, Li; Wang, Xiaohui; Lv, Xiaowen; Zheng, Nan; Jin, Yu; Wu, Zhiwei

    2015-12-01

    Enterovirus 71 (EV71), the etiological agent of hand-foot-and-mouth disease, has increasingly become a public health challenge around the world. Previous studies reported that EV71 infection can induce autophagic machinery to enhance viral replication in vitro and in vivo, but did not address the underlying mechanisms. Increasing evidence suggests that autophagy, in a virus-specific manner, may function to degrade viruses or facilitate viral replication. In this study, we reported that EV71 infection of human epidermoid carcinoma (Hep2) and African green monkey kidney cells (Vero) induced autophagy, which is beneficial for viral replication. Our investigation of the mechanisms revealed that EV71 infection resulted in the reduction of cellular miR-30a, which led to the inhibition of Beclin-1, a key autophagy-promoting gene that plays important roles at the early phase of autophagosome formation. We provided further evidence that by modulating cellular miR-30a level through either overexpression or inhibition, one can inhibit or promote EV71 replication, respectively, through regulating autophagic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication

    Directory of Open Access Journals (Sweden)

    Stacia L. Phillips

    2016-01-01

    Full Text Available Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches.

  5. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus.

    Directory of Open Access Journals (Sweden)

    Vidya P Nair

    2016-04-01

    Full Text Available Hepatitis E virus (HEV causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4. Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp, X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1 and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient

  6. Pelacakan Secara Imunohistokimiawi Antigen Virus pada Ayam yang Diinfeksi dengan Virus Penyakit Tetelo (IMMUNOHISTOCHEMICAL DETECTION OF VIRAL ANTIGEN IN TISSUE OF CHICKENS EXPERIMENTALLY INFECTED WITH NEWCASTLE DISEASE VIRUS

    Directory of Open Access Journals (Sweden)

    Anak Agung Ayu Mirah Adi

    2013-07-01

    Full Text Available In order to study the distribution of Newcastle disease virus (NDV following infection, chickenswere experimentally infected with visceretropic velogenic NDV isolate. Monoclonal antibodies (mAbsagainst the NDV LaSota vaccine strain were then produced to detect viral antigen in the infectedorgans. The mAbs were firstly tested for their specificity by enzyme linked immunosorbent assay(ELISA using NDV and normal allantoic fluids as antigens. Eight mAbs specific against NDVwere isolated and two mAbs were used for immunodetection of NDV antigen in chicken’s tissues.By immunohistochemistry labeled streptavidin-biotin (LSAB staining NDV–antigen was detectedin paraffin embedded tissues of NDV-infected chickens. NDV antigen was not detected in noninfected chickens. In the infected chickens, high intensity of NDV antigen was detected in thelymphoid tissues, lung and intestine. The NDV antigen with a lesser intensity was detected in thebrain, trachea, liver and myocardium. This study shows that although viscerotropic velogenicNDV isolate can infect almost all organs, the main target of infection are lung, intestine andlymphoids tissues

  7. Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories

    Directory of Open Access Journals (Sweden)

    Helene eSanfacon

    2013-01-01

    Full Text Available Formation of plant virus membrane-associated replication factories requires the association of viral replication proteins and viral RNA with intracellular membranes, the recruitment of host factors and the modification of membranes to form novel structures that house the replication complex. Many viruses encode integral membrane proteins that act as anchors for the replication complex. These hydrophobic proteins contain trans-membrane domains and/or amphipathic helices that associate with the membrane and modify its structure. The comovirus Co-Pro and NTP-binding (NTB, putative helicase proteins and the cognate nepovirus X2 and NTB proteins are among the best characterized plant virus integral membrane replication proteins and are functionally related to the picornavirus 2B, 2C and 3A membrane proteins. The identification of membrane-association domains and analysis of the membrane topology of these proteins is discussed. The evidence suggesting that these proteins have the ability to induce membrane proliferation, alter the structure and integrity of intracellular membranes and modulate the induction of symptoms in infected plants is also reviewed. Finally, areas of research that need further investigation are highlighted.

  8. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B

    International Nuclear Information System (INIS)

    Stoop, Jeroen N.; Molen, Renate G. van der; Kuipers, Ernst J.; Kusters, Johannes G.; Janssen, Harry L.A.

    2007-01-01

    Regulatory T cells (Treg) play a key role in the impaired immune response that is typical for a chronic Hepatitis B virus (HBV) infection. To gain more insight in the mechanism that is responsible for this impaired immune response, the effect of viral load reduction resulting from treatment with the nucleotide analogue adefovir dipivoxil on the percentages of Treg and HBV-specific T-cell responses was analyzed. Peripheral blood mononuclear cells (PBMC) of 12 patients were collected at baseline and during treatment. In parallel to the decline in viral load, we found a decline in circulating Treg, combined with an increase in HBV core antigen-specific IFN-γ production and proliferation. The production of IL10 did not decrease during therapy. In conclusion, adefovir induced viral load reduction results in a decline of circulating Treg together with a partial recovery of the immune response

  9. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment.

    Science.gov (United States)

    Shen, Wen-Fan; Galula, Jedhan Ucat; Chang, Gwong-Jen J; Wu, Han-Chung; King, Chwan-Chuen; Chao, Day-Yu

    2017-04-01

    Early diagnosis of dengue virus (DENV) infection to monitor the potential progression to hemorrhagic fever can influence the timely management of dengue-associated severe illness. Nonstructural protein 1 (NS1) antigen detection in acute serum specimens has been widely accepted as an early diagnostic assay for dengue infection; however, lower sensitivity of the NS1 antigen-capture enzyme-linked immunosorbent assay (Ag-ELISA) in secondary dengue viral infection has been reported. In this study, we developed two forms of Ag-ELISA capable of detecting E-Ag containing virion and virus-like particles, and secreted NS1 (sNS1) antigens, respectively. The temporal kinetics of viral RNA, sNS1, and E-Ag were evaluated based on the in vitro infection experiment. Meanwhile, a panel of 62 DENV-2 infected patients' sera was tested. The sensitivity was 3.042 ng/mL and 3.840 ng/mL for sNS1 and E, respectively. The temporal kinetics of the appearance of viral RNA, E, NS1, and infectious virus in virus-infected tissue culture media suggested that viral RNAs and NS1 antigens could be detected earlier than E-Ag and infectious virus. Furthermore, a panel of 62 sera from patients infected by DENV Serotype 2 was tested. Treating clinical specimens with the dissociation buffer increased the detectable level of E from 13% to 92% and NS1 antigens from 40% to 85%. Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection. Copyright © 2015. Published by Elsevier B.V.

  10. Amino acid substitutions within the heptad repeat domain 1 of murine coronavirus spike protein restrict viral antigen spread in the central nervous system

    International Nuclear Information System (INIS)

    Tsai, Jean C.; Groot, Linda de; Pinon, Josefina D.; Iacono, Kathryn T.; Phillips, Joanna J.; Seo, Suhun; Lavi, Ehud; Weiss, Susan R.

    2003-01-01

    Targeted recombination was carried out to select mouse hepatitis viruses (MHVs) in a defined genetic background, containing an MHV-JHM spike gene encoding either three heptad repeat 1 (HR1) substitutions (Q1067H, Q1094H, and L1114R) or L1114R alone. The recombinant virus, which expresses spike with the three substitutions, was nonfusogenic at neutral pH. Its replication was significantly inhibited by lysosomotropic agents, and it was highly neuroattenuated in vivo. In contrast, the recombinant expressing spike with L1114R alone mediated cell-to-cell fusion at neutral pH and replicated efficiently despite the presence of lysosomotropic agents; however, it still caused only subclinical morbidity and no mortality in animals. Thus, both recombinant viruses were highly attenuated and expressed viral antigen which was restricted to the olfactory bulbs and was markedly absent from other regions of the brains at 5 days postinfection. These data demonstrate that amino acid substitutions, in particular L1114R, within HR1 of the JHM spike reduced the ability of MHV to spread in the central nervous system. Furthermore, the requirements for low pH for fusion and viral entry are not prerequisites for the highly attenuated phenotype

  11. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  12. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    2009-03-01

    Full Text Available Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.

  13. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    Directory of Open Access Journals (Sweden)

    El Andaloussi Samir

    2011-05-01

    Full Text Available Abstract Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s. Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s, which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for

  14. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  15. The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate.

    Science.gov (United States)

    Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor

    2014-02-20

    Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.

  16. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1979-01-01

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  17. Influenza virus gene expression: viral RNA replication in vivo and in vitro

    International Nuclear Information System (INIS)

    Shapiro, G.I.

    1987-01-01

    To develop an overall scheme for the control of influenza virus gene expression, single-stranded M13 DNAs specific for the various genomic segments were used to analyze the synthesis of virus-specific RNAs in infected cells. The results showed that virus infection is divided into two distinct phases. During the early phase, the syntheses of specific virion RNAs (vRNAs), viral mRNAs, and viral proteins were coupled. This phase lasted for 2.5 hours in BHK-21 cells, the time when the rate of synthesis of all the viral mRNAs was maximal. During the late phase, the synthesis of all the vRNAs remained at or near maximum, whereas the rate of synthesis of all the viral mRNAs declined dramatically. Viral mRNA and protein syntheses were also not coupled, as the synthesis of all the viral proteins continued at maximum levels, indicating that protein synthesis during this phase was directed principally by previously synthesized viral mRNAs. Pulses with [ 3 H]uridine and nonaqueous fractionation of cells were used to show that influenza vRNA, like viral mRNAs, are synthesized in the nucleus and efficiently transported to the cytoplasm. In contrast, the full-length transcripts of the vRNAs, the templates for new vRNA synthesis, were synthesized only at early times, and remained sequestered in the nucleus to direct vRNA synthesis throughout infection

  18. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  19. The multi-targeted kinase inhibitor sorafenib inhibits enterovirus 71 replication by regulating IRES-dependent translation of viral proteins.

    Science.gov (United States)

    Gao, Meng; Duan, Hao; Liu, Jing; Zhang, Hao; Wang, Xin; Zhu, Meng; Guo, Jitao; Zhao, Zhenlong; Meng, Lirong; Peng, Yihong

    2014-06-01

    The activation of ERK and p38 signal cascade in host cells has been demonstrated to be essential for picornavirus enterovirus 71 (EV71) replication and up-regulation of virus-induced cyclooxygenase-2 (COX-2)/prostaglandins E2 (PGE2) expression. The aim of this study was to examine the effects of sorafenib, a clinically approved anti-cancer multi-targeted kinase inhibitor, on the propagation and pathogenesis of EV71, with a view to its possible mechanism and potential use in the design of therapy regimes for Hand foot and mouth disease (HFMD) patients with life threatening neurological complications. In this study, non-toxic concentrations of sorafenib were shown to inhibit the yield of infectious progeny EV71 (clinical BC08 strain) by about 90% in three different cell types. A similar inhibitory effect of sorafenib was observed on the synthesis of both viral genomic RNA and the VP1 protein. Interestingly, sorafenib exerted obvious inhibition of the EV71 internal ribosomal entry site (IRES)-mediated translation, the first step in picornavirus replication, by linking it to a firefly luciferase reporter gene. Sorafenib was also able to prevent both EV71-induced CPE and the activation of ERK and p38, which contributes to up-regulation COX-2/PGE2 expression induced by the virus. Overall, this study shows that sorafenib strongly inhibits EV71 replication at least in part by regulating viral IRES-dependent translation of viral proteins, indicating a novel potential strategy for the treatment of HFMD patients with severe neurological complications. To our knowledge, this is the first report that investigates the mechanism by which sorafenib inhibits EV71 replication. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used

  1. Viral replication in excised fin tissues (VREFT) corresponds with prior exposure of Pacific herring, Clupea pallasii (Valenciennes), to viral haemorrhagic septicaemia virus (VHSV)

    Science.gov (United States)

    Grady, C.A.; Gregg, J.L.; Wade, R.M.; Winton, J.R.; Hershberger, P.K.

    2011-01-01

    Procedures for a viral replication in excised fin tissue (VREFT) assay were adapted to Pacific herring, Clupea pallasii, and optimized both to reduce processing time and to provide the greatest resolution between na??ve herring and those previously exposed to viral haemorrhagic septicaemia virus (VHSV), Genogroup IVa. The optimized procedures included removal of the left pectoral fin from a euthanized fish, inoculation of the fin with >105 plaque-forming units (PFU) mL-1 VHSV for 1 h, rinsing the fin in fresh medium six times to remove unadsorbed virions, incubation of the fin in fresh medium for 4 days and enumeration of the viral titre in a sample of the incubation medium by plaque assay. The optimized VREFT assay was effective at identifying the prior exposure history of laboratory-reared Pacific herring to VHSV. The geometric mean VREFT value was significantly greater (P < 0.01) among na??ve herring (1.2 ?? 103 PFU mL-1) than among groups that survived exposure to VHSV (1.0-2.9 ?? 102 PFU mL-1); additionally, the proportion of cultures with no detectable virus was significantly greater (P = 0.0002) among fish that survived exposure to VHSV (39-47%) than among na??ve fish (3.3%). The optimized VREFT assay demonstrates promise for identifying VHSV exposure history and forecasting disease potential in populations of wild Pacific herring. ?? 2010 Blackwell Publishing Ltd.

  2. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...

  3. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  4. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    Science.gov (United States)

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  5. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  6. A viral, transporter associated with antigen processing (TAP)-independent, high affinity ligand with alternative interactions endogenously presented by the nonclassical human leukocyte antigen E class I molecule.

    Science.gov (United States)

    Lorente, Elena; Infantes, Susana; Abia, David; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Mir, Carmen; Morreale, Antonio; Admon, Arie; López, Daniel

    2012-10-12

    The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8(+) lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.

  7. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Directory of Open Access Journals (Sweden)

    Zihua Wang

    Full Text Available Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV, a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg RNA which is also required as bicistronic mRNA for the capsid (core protein and the reverse transcriptase (Pol; their open reading frames (ORFs overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES. We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR and humanized Renilla green fluorescent protein (hrGFP produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to

  8. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    Science.gov (United States)

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication

    Science.gov (United States)

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication. PMID:21775444

  10. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    OpenAIRE

    Mukherjee, Sourav; Weiner, Warren S.; Schroeder, Chad E.; Simpson, Denise S.; Hanson, Alicia M.; Sweeney, Noreena L.; Marvin, Rachel K.; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J.; Frick, David N.

    2014-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previousl...

  11. Stem cell gene therapy for HIV: strategies to inhibit viral entry and replication.

    Science.gov (United States)

    DiGiusto, David L

    2015-03-01

    Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of "cell engineering" approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches.

  12. Localization of viral antigens in leaf protoplasts and plants by immunogold labelling

    NARCIS (Netherlands)

    Lent, van J.W.M.

    1988-01-01

    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by

  13. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication

    International Nuclear Information System (INIS)

    Sriram, Bandi; Thakral, Deepshi; Panda, Subrat Kumar

    2003-01-01

    The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by ∼37 and ∼60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes

  14. Conserved elements within the genome of foot-and-mouth disease virus; their influence on viral replication

    DEFF Research Database (Denmark)

    Kjær, Jonas

    -and-mouth disease virus (FMDV) have been identified, e.g. the IRES. Such elements can be crucial for the efficient replication of the genomic RNA. A better understanding of the influence of these elements is required to identify currently unrecognized interactions within the viruses which may be important...... for the development of anti-viral agents. SHAPE analysis of the entire FMDV genome (Poulsen, 2015) has identified three conserved RNA structures within the coding regions for 2B, 3C and 3D (RNA-dependent RNA polymerase) which might have an important role in virus replication. The FMDV 2A peptide, another conserved...... polypeptide. The nature of this “cleavage” has so far not been investigated in the context of the full-length FMDV RNA within cells. The focus of this PhD thesis has been to characterize these elements and their influence on the FMDV replication. In order to fulfil the aims of this thesis a series of studies...

  15. Retinoid X Receptor α-Dependent HBV Minichromosome Remodeling and Viral Replication.

    Science.gov (United States)

    Zhang, Yan; He, Song; Guo, Jin-Jun; Peng, Hong; Fan, Jia-Hao; Li, Qing-Ling

    2017-01-01

    The HBV covalently closed circular DNA (cccDNA) is organized into a minichromosome in the nuclei of infected hepatocytes through interactions with histone and nonhistone proteins. Retinoid X receptor α (RXRα), a liver-enriched nuclear receptor, participates in regulation of HBV replication and transcription through modulation of HBV enhancer 1 and core promoter activity. This study investigated RXRα involvement in HBV cccDNA epigenetic modifications. Quantitative cccDNA chromatin immunoprecipitation (ChIP) was applied to study the recruitment of RXRα, histones, and chromatin-modifying enzymes to HBV minichromosome in HepG2 cells after transfection of the linear HBV genome. RXRα Was found to directly bind to HBV cccDNA; recruitment of RXRα to HBV mini-chromosome paralleled HBV replication, histone recruitment, and histone acetylation in HBVcccDNA. Moreover, RXRα overexpression or knock-down significantly increased or impaired the recruitment of the p300 acetyltransferase to cccDNAminichromosome. Our results confirmed the regulation of RXRα on HBV replication in vitro and demonstrated the modulation of RXRα on HBV cccDNA epigenetics. These findings provide a profound theoretical and experimental basis for late-model antiviral treatment acting on the HBV cccDNA and minichromosome.

  16. Prior Virus Exposure Alters the Long-Term Landscape of Viral Replication during Feline Lentiviral Infection

    Directory of Open Access Journals (Sweden)

    Sue VandeWoude

    2011-10-01

    Full Text Available We developed a feline model of lentiviral cross-species transmission using a puma lentivirus (PLV or FIVPco which infects domestic cats but does not cause disease. Infection with PLV protects cats from CD4+ T-cell decline caused by subsequent infection with virulent feline immunodeficiency virus (FIV. Previous studies implicate innate immune and/or cellular restriction mechanisms for FIV disease attenuation in PLV-infected cats. In this study, we evaluated viral infection and cytokine mRNA transcription in 12 different tissue reservoirs approximately five months post infection. We quantitated tissue proviral load, viral mRNA load and relative transcription of IL-10, IL-12p40 and IFNγ from tissues of cats exposed to FIV, PLV or both viruses and analyzed these parameters using a multivariate statistical approach. The distribution and intensity of FIV infection and IFNγ transcription differed between single and co-infected cats, characterized by higher FIV proviral loads and IFNγ expression in co-infected cat tissues. Variability in FIV mRNA load and IFNγ was significantly more constrained in co-infected versus singly infected cat tissues. Single-infected:co-infected ratios of FIV mRNA load compared to FIV proviral load indicated that active viral transcription was apparently inhibited during co-infection. These results indicate that previous PLV infection increases activation of tissue innate immunity and constrains the ability of FIV to productively infect tissue reservoirs of infection for months, independent of FIV proviral load, supporting a model in which innate immunity and/or modulation of target cell susceptibility play a key role in PLV-induced protection from FIV disease.

  17. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  18. Reactivation of viral replication in anti-HBe positive chronic HBsAg carriers

    DEFF Research Database (Denmark)

    Krogsgaard, K; Aldershvile, J; Kryger, Peter

    1990-01-01

    Reactivation of hepatitis B virus replication was investigated in an unselected group of 44 HBV DNA negative, anti-HBe positive chronic HBsAg carriers. Twenty-five patients (54%) were intravenous drug addicts and 7 (16%) were male homosexuals. Sixteen patients had evidence of delta infection...... to an annual reactivation rate of 5%. Reactivation in four patients was detected by reversion to HBV DNA positivity only, whereas HBeAg/anti-HBe status remained unchanged. Two patients became both HBV DNA and HBeAg positive. None of the patients developed hepatitis-like symptoms and transaminase elevation...

  19. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains.

    Science.gov (United States)

    Martínez-Betancur, Viviana; Marín-Villa, Marcel; Martínez-Gutierrez, Marlén

    2014-08-01

    Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection. © 2013 Wiley Periodicals, Inc.

  20. Roles of Polypyrimidine Tract Binding Proteins in Major Immediate-Early Gene Expression and Viral Replication of Human Cytomegalovirus▿

    Science.gov (United States)

    Cosme, Ruth S. Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-01-01

    Human cytomegalovirus (HCMV), a member of the β subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns. PMID:19144709

  1. Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus.

    Science.gov (United States)

    Cosme, Ruth S Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-04-01

    Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.

  2. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses.

    Science.gov (United States)

    Nagy, Peter D; Pogany, Judit; Xu, Kai

    2016-03-03

    Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.

  3. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  4. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication.

    Science.gov (United States)

    Wang, Weiping; Manna, David; Simmons, Daniel T

    2007-05-01

    The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.

  5. CD200R1 supports HSV-1 viral replication and licenses pro-inflammatory signaling functions of TLR2.

    Directory of Open Access Journals (Sweden)

    Roy J Soberman

    Full Text Available The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1(-/- mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1 infection. CD200R1(-/- peritoneal macrophages demonstrated a 70-75% decrease in the generation of IL-6 and CCL5 (Rantes in response to the TLR2 agonist Pam(2CSK(4 and to HSV-1. CD200R1(-/- macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1(-/- mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1(-/- mice and CD200R1(-/- fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in "licensing" pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.

  6. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  7. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  8. A 3'-end structure in RNA2 of a crinivirus is essential for viral RNA synthesis and contributes to replication-associated translation activity.

    Science.gov (United States)

    Mongkolsiriwattana, Chawin; Zhou, Jaclyn S; Ng, James C K

    2016-10-03

    The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.

  9. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication.

    Directory of Open Access Journals (Sweden)

    Masha Sorin

    2009-06-01

    Full Text Available HIV-1 integrase (IN is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD, a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1 virions in an HIV-1 IN-dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1(H141A was utilized. Incorporation of HDAC1(H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1(H141A decreased the infectivity of HIV-1 (but not SIV virions. The block in infectivity due to virion-associated HDAC1(H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post

  10. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Directory of Open Access Journals (Sweden)

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  11. Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells.

    Science.gov (United States)

    Laval, Kathlyn; Favoreel, Herman W; Poelaert, Katrien C K; Van Cleemput, Jolien; Nauwynck, Hans J

    2015-11-01

    Equine herpesvirus type 1 (EHV-1) is a main cause of respiratory disease, abortion, and encephalomyelopathy in horses. Monocytic cells (CD172a(+)) are the main carrier cells of EHV-1 during primary infection and are proposed to serve as a "Trojan horse" to facilitate the dissemination of EHV-1 to target organs. However, the mechanism by which EHV-1 is transferred from CD172a(+) cells to endothelial cells (EC) remains unclear. The aim of this study was to investigate EHV-1 transmission between these two cell types. We hypothesized that EHV-1 employs specific strategies to promote the adhesion of infected CD172a(+) cells to EC to facilitate EHV-1 spread. Here, we demonstrated that EHV-1 infection of CD172a(+) cells resulted in a 3- to 5-fold increase in adhesion to EC. Antibody blocking experiments indicated that α4β1, αLβ2, and αVβ3 integrins mediated adhesion of infected CD172a(+) cells to EC. We showed that integrin-mediated phosphatidylinositol 3-kinase (PI3K) and ERK/MAPK signaling pathways were involved in EHV-1-induced CD172a(+) cell adhesion at early times of infection. EHV-1 replication was enhanced in adherent CD172a(+) cells, which correlates with the production of tumor necrosis factor alpha (TNF-α). In the presence of neutralizing antibodies, approximately 20% of infected CD172a(+) cells transferred cytoplasmic material to uninfected EC and 0.01% of infected CD172a(+) cells transmitted infectious virus to neighboring cells. Our results demonstrated that EHV-1 infection induces adhesion of CD172a(+) cells to EC, which enhances viral replication, but that transfer of viral material from CD172a(+) cells to EC is a very specific and rare event. These findings give new insights into the complex pathogenesis of EHV-1. Equine herpesvirus type 1 (EHV-1) is a highly prevalent pathogen worldwide, causing frequent outbreaks of abortion and myeloencephalopathy, even in vaccinated horses. After primary replication in the respiratory tract, EHV-1 disseminates

  12. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239.

    Science.gov (United States)

    Martins, Mauricio A; Wilson, Nancy A; Piaskowski, Shari M; Weisgrau, Kim L; Furlott, Jessica R; Bonaldo, Myrna C; Veloso de Santana, Marlon G; Rudersdorf, Richard A; Rakasz, Eva G; Keating, Karen D; Chiuchiolo, Maria J; Piatak, Michael; Allison, David B; Parks, Christopher L; Galler, Ricardo; Lifson, Jeffrey D; Watkins, David I

    2014-07-01

    Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by

  13. Curaxin CBL0100 Blocks HIV-1 Replication and Reactivation through Inhibition of Viral Transcriptional Elongation

    Directory of Open Access Journals (Sweden)

    Maxime J. Jean

    2017-10-01

    Full Text Available Despite combination antiretroviral therapy (cART, acquired immunodeficiency syndrome (AIDS, predominantly caused by the human immunodeficiency virus type 1 (HIV-1, remains incurable. The barrier to a cure lies in the virus' ability to establish a latent infection in HIV/AIDS patients. Unsurprisingly, efforts for a sterilizing cure have focused on the “shock and kill” strategy using latency-reversing agents (LRAs to complement cART in order to eliminate these latent reservoirs. However, this method faces numerous challenges. Recently, the “block and lock” strategy has been proposed. It aims to reinforce a deep state of latency and prevent sporadic reactivation (“blip” of HIV-1 using latency-promoting agents (LPAs for a functional cure. Our studies of curaxin 100 (CBL0100, a small-molecule targeting the facilitates chromatin transcription (FACT complex, show that it blocks both HIV-1 replication and reactivation in in vitro and ex vivo models of HIV-1. Mechanistic investigation elucidated that CBL0100 preferentially targets HIV-1 transcriptional elongation and decreases the occupancy of RNA Polymerase II (Pol II and FACT at the HIV-1 promoter region. In conclusion, CBL0100 is a newly identified inhibitor of HIV-1 transcription that can be used as an LPA in the “block and lock” cure strategy.

  14. The effect of interferons and viral proteins on antigen-presenting cells in chronic hepatitis B

    NARCIS (Netherlands)

    A. Boltjes (Arjan)

    2014-01-01

    markdownabstract__Abstract__ The innate immune system forms the so-called first line of defense against invading pathogens like viruses. Innate immune cells include phagocytes like monocytes, macrophages and dendritic cells (DC). Phagocytes sample their environments, binding and taking up viral

  15. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    Science.gov (United States)

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  16. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface.

    Directory of Open Access Journals (Sweden)

    Blaise Ndjamen

    2014-03-01

    Full Text Available The Herpes Simplex Virus 1 (HSV-1 glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG. gE-gI can also participate in antibody bipolar bridging (ABB, a process by which the antigen-binding fragments (Fabs of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.

  17. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication

    OpenAIRE

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication...

  18. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  19. Feline Infectious Peritonitis: Immunohistochemical Features of Ocular Inflammation and the Distribution of Viral Antigens in Structures of the Eye.

    Science.gov (United States)

    Ziółkowska, Natalia; Paździor-Czapula, Katarzyna; Lewczuk, Bogdan; Mikulska-Skupień, Elżbieta; Przybylska-Gornowicz, Barbara; Kwiecińska, Kamila; Ziółkowski, Hubert

    2017-11-01

    Feline infectious peritonitis (FIP) is a serious, widely distributed systemic disease caused by feline coronavirus (FCoV), in which ocular disease is common. However, questions remain about the patterns of ocular inflammation and the distribution of viral antigen in the eyes of cats with FIP. This study characterized the ocular lesions of FIP including the expression of glial fibrillary acidic protein and proliferating cell nuclear antigen by Müller cells in the retina in cases of FIP and to what extent macrophages are involved in ocular inflammation in FIP. Immunohistochemistry for FCoV, CD3, CD79a, glial fibrillary acidic protein, calprotectin, and proliferating cell nuclear antigen was performed on paraffin sections from 15 naturally occurring cases of FIP and from controls. Glial fibrillary acidic protein expression was increased in the retina in cases of FIP. Müller cell proliferation was present within lesions of retinal detachment. Macrophages were present in FIP-associated ocular lesions, but they were the most numerous inflammatory cells only within granulomas (2/15 cats, 13%). In cases of severe inflammation of the ciliary body with damage to blood vessel walls and ciliary epithelium (3/15, 20%), some macrophages expressed FCoV antigens, and immunolabeling for calprotectin on consecutive sections suggested that these FCoV-positive macrophages were likely to be recently derived from blood. In cases of severe and massive inflammation of most ocular structures (4/15, 26%), B cells and plasma cells predominated over T cells and macrophages. These results indicate that gliosis can be present in FIP-affected retinas and suggest that breakdown of the blood-ocular barrier can allow FCoV-bearing macrophages to access the eye.

  20. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  1. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  2. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  3. The impact of early immune destruction on the kinetics of postacute viral replication in rhesus monkey infected with the simian-human immunodeficiency virus 89.6P

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Schleif, William A.; Casimiro, Danilo R.; Handt, Larry; Chen, Minchun; Davies, Mary-Ellen; Liang Xiaoping; Fu Tongming; Tang Aimin; Wilson, Keith A.; McElhaugh, Michael; Carella, Anthony; Tan, Charles; Connolly, Brett; Hill, Susan; Klein, Hilton; Emini, Emilio A.; Shiver, John W.

    2004-01-01

    Set-point viral load is positively correlated with the extent of initial viral replication in pathogenic simian-human immunodeficiency virus (SHIV) infection. To elucidate the mechanisms underlying the correlation, we conducted a systematic investigation in rhesus monkeys infected with the highly pathogenic SHIV 89.6P. This model is widely used in the preclinical evaluation of AIDS vaccine candidates and a thorough understanding of the model's biology is important to the proper interpretation of these evaluations. We found that the levels of peak viremia were positively correlated not only with the levels of set-point viremia but, importantly, with the extent of initial overall immune destruction as indicated by the degree of CD4 + T cell depletion and lymph node germinal center (GC) formation. The extent of initial overall immune destruction was inversely correlated with subsequent development and maintenance of virus-specific cellular and humoral immune responses. Thus, these data suggest that the extent of early immune damage determines the development and durability of virus-specific immunity, thereby playing a critical role in establishing the levels of set-point viral replication in SHIV infection. Vaccines that limit both the initial viral replication and the extent of early immune damage will therefore mediate long-term virus replication control and mitigation of long-term immune destruction in this model of immunodeficiency virus infection

  4. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Detection of Porcine Circovirus Type 2 and Viral Replication by In Situ Hybridization in Primary Lymphoid Organs From Naturally and Experimentally Infected Pigs

    DEFF Research Database (Denmark)

    Hansen, Mette Sif; Segalés, J.; Fernandes, L.

    2013-01-01

    was not detected in the experimentally PCV2-inoculated pigs or the control animals. Among the PMWS-affected pigs, 19 of 20 (95%) thymuses were positive for PCV2 by CP ISH, and 7 of 19 (37%) of these also supported viral replication. By CP ISH, PCV2 was detected in 16 of 33 (48%) bone marrow samples, and 5 of 16...

  6. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  7. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  8. A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase

    Science.gov (United States)

    Paeshuyse, Jan; Leyssen, Pieter; Mabery, Eric; Boddeker, Nina; Vrancken, Robert; Froeyen, Matheus; Ansari, Israrul H.; Dutartre, Hélène; Rozenski, Jef; Gil, Laura H. V. G.; Letellier, Carine; Lanford, Robert; Canard, Bruno; Koenen, Frank; Kerkhofs, Pierre; Donis, Ruben O.; Herdewijn, Piet; Watson, Julia; De Clercq, Erik; Puerstinger, Gerhard; Neyts, Johan

    2006-01-01

    We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 ± 0.01 μM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 ± 0.02 μM) and production of infectious virus (EC50 = 0.074 ± 0.003 μM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was ∼2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed. PMID:16352539

  9. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  10. The diagnosis of symptomatic acute antiretroviral syndrome during the window period with antigen/antibody testing and HIV viral load

    Directory of Open Access Journals (Sweden)

    Daniel O. Griffin

    Full Text Available Despite much focus on moving toward a cure to end the epidemic human immunodeficiency virus (HIV epidemic there are still thousands of new infections occurring every year in the United States. Although there is ongoing transmission of HIV in the United States and a growing population of people living with HIV, the acute presentation of HIV infection can be challenging to diagnose and is often not considered when patients present to healthcare providers. Although in certain states there are HIV testing laws that require that all persons between the ages of 13 and 64 be offered HIV testing in an opt-out approach, many patient presenting with an acute illness, that would warrant diagnostic testing for HIV, leave without having an HIV test performed for either diagnostic or screening purposes.We describe the case of a woman who presented to medical attention with symptoms later confirmed to be due to acute HIV infection. She was initially discharged from the hospital and only underwent HIV testing with confirmation of her diagnosis after readmission. We describe the algorithm where fourth generation testing combined with HIV viral load testing allowed for the diagnosis of acute HIV prior to the development of a specific immunoglobulin response. Consideration of this diagnosis, improved HIV screening, and understanding of the use of antigen/antibody screening tests, combined with Multispot and HIV viral RNA detection, when appropriate, can allow for early diagnosis of HIV before progression of disease and before undiagnosed patient spread the infection to new contacts.

  11. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    Science.gov (United States)

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  13. Ultraviolet-irradiated simian virus 40 activates a mutator function in rat cells under conditions preventing viral DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, J.; Su, Z.Z.; Dinsart, C.; Rommelaere, J. (Universite libre de Bruxelles, Rhode St Genese (Belgium))

    The UV-irradiated temperature-sensitive early SV40 mutant tsA209 is able to activate at the nonpermissive temperature the expression of mutator and recovery functions in rat cells. Unirradiated SV40 activates these functions only to a low extent. The expression of these mutator and recovery functions in SV40-infected cells was detected using the single-stranded DNA parvovirus H-1 as a probe. Because early SV40 mutants are defective in the initiation of viral DNA synthesis at the nonpermissive temperature, these results suggest that replication of UV-damaged DNA is not a prerequisite for the activation of mutator and recovery functions in mammalian cells. The expression of the mutator function is dose-dependent, i.e., the absolute number of UV-irradiated SV40 virions introduced per cell determines its level. Implications for the interpretation of mutation induction curves in the progeny of UV-irradiated SV40 in permissive host cells are discussed.

  14. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  15. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Directory of Open Access Journals (Sweden)

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  16. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway.

    Science.gov (United States)

    Ling, Shifeng; Luo, Mingyang; Jiang, Shengnan; Liu, Jiayu; Ding, Chunying; Zhang, Qinghuan; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-05-01

    Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  18. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein.

    Directory of Open Access Journals (Sweden)

    Dorothee A Vogt

    Full Text Available The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web and assists viral assembly in the close vicinity of lipid droplets (LDs. To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1-31, a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47 as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon, indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47--via its interaction with NS5A--serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.

  19. Myxoma virus protein M029 is a dual function immunomodulator that inhibits PKR and also conscripts RHA/DHX9 to promote expanded host tropism and viral replication.

    Directory of Open Access Journals (Sweden)

    Masmudur M Rahman

    Full Text Available Myxoma virus (MYXV-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR and RNA helicase A (RHA/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication

  20. Myxoma Virus Protein M029 Is a Dual Function Immunomodulator that Inhibits PKR and Also Conscripts RHA/DHX9 to Promote Expanded Host Tropism and Viral Replication

    Science.gov (United States)

    Rahman, Masmudur M.; Liu, Jia; Chan, Winnie M.; Rothenburg, Stefan; McFadden, Grant

    2013-01-01

    Myxoma virus (MYXV)-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID) and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR) and RNA helicase A (RHA)/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication specifically in myeloid

  1. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Tim J Bull

    Full Text Available BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5 and Modified Vaccinia Ankara (MVA delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium

  2. Early viral replication and induced or constitutive immunity in rainbow trout families with differential resistance to Infectious hematopoietic necrosis virus (IHNV)

    Science.gov (United States)

    Purcell, M.K.; LaPatra, S.E.; Woodson, J.C.; Kurath, G.; Winton, J.R.

    2010-01-01

    The main objective of this study was to assess correlates of innate resistance in rainbow trout full-sibling families that differ in susceptibility to Infectious hematopoietic necrosis virus (IHNV). As part of a commercial breeding program, full-sibling families were challenged with IHNV by waterborne exposure at the 1 g size to determine susceptibility to IHNV. Progeny from select families (N = 7 families) that varied in susceptibility (ranging from 32 to 90% cumulative percent mortality (CPM)) were challenged again at the 10 g size by intra-peritoneal injection and overall mortality, early viral replication and immune responses were evaluated. Mortality challenges included 20–40 fish per family while viral replication and immune response studies included 6 fish per family at each time point (24, 48 and 72 h post-infection (hpi)). CPM at the 1 g size was significantly correlated with CPM at the 10 g size, indicating that inherent resistance was a stable trait irrespective of size. In the larger fish, viral load was measured by quantitative reverse-transcriptase PCR in the anterior kidney and was a significant predictor of family disease outcome at 48 hpi. Type I interferon (IFN) transcript levels were significantly correlated with an individual's viral load at 48 and 72 hpi, while type II IFN gene expression was significantly correlated with an individual's viral load at 24 and 48 hpi. Mean family type I but not type II IFN gene expression was weakly associated with susceptibility at 72 hpi. There was no association between mean family susceptibility and the constitutive expression of a range of innate immune genes (e.g. type I and II IFN pathway genes, cytokine and viral recognition receptor genes). The majority of survivors from the challenge had detectable serum neutralizing antibody titers but no trend was observed among families. This result suggests that even the most resistant families experienced sufficient levels of viral replication to trigger specific

  3. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seho [Department of Life Science, Dongguk Univ-Seoul, Seoul 100-715 (Korea, Republic of); Lim, Chunghun [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Jae Young [Department of Life Science, Dongguk Univ-Seoul, Seoul 100-715 (Korea, Republic of); Song, Yoon-Jae [Department of Life Science, Kyungwon University, Seongnam-Si, Kyeonggi-Do 461-701 (Korea, Republic of); Park, Junsoo [Division of Biological Science and Technology, Yonsei University, Wonju 220-100 (Korea, Republic of); Choe, Joonho [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Seo, Taegun, E-mail: tseo@dongguk.edu [Department of Life Science, Dongguk Univ-Seoul, Seoul 100-715 (Korea, Republic of)

    2010-04-16

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  4. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    International Nuclear Information System (INIS)

    Cha, Seho; Lim, Chunghun; Lee, Jae Young; Song, Yoon-Jae; Park, Junsoo; Choe, Joonho; Seo, Taegun

    2010-01-01

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  5. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    Science.gov (United States)

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  6. Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection.

    Directory of Open Access Journals (Sweden)

    Emily Adland

    2015-06-01

    Full Text Available HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004. The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001, but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007. Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002. In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression.

  7. Metabolic Abnormalities and Viral Replication is Associated with Biomarkers of Vascular Dysfunction in HIV-Infected Children

    Science.gov (United States)

    Miller, Tracie L.; Borkowsky, William; DiMeglio, Linda A.; Dooley, Laurie; Geffner, Mitchell E.; Hazra, Rohan; McFarland, Elizabeth J.; Mendez, Armando J.; Patel, Kunjal; Siberry, George K.; Van Dyke, Russell B.; Worrell, Carol J.; Jacobson, Denise L.

    2011-01-01

    Objectives Human immunodeficiency virus (HIV)-infected children may be at risk for premature cardiovascular disease. We compared levels of biomarkers of vascular dysfunction among HIV-infected children with and without hyperlipidemia to HIV-exposed, uninfected children (HEU) enrolled in the Pediatric HIV/AIDS Cohort Study (PHACS), and determined factors associated with these biomarkers. Design Prospective cohort study Methods Biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP1)); coagulant dysfunction (fibrinogen and P-selectin); endothelial dysfunction (soluble intracellular cell adhesion molecule-1 (sICAM), soluble vascular cell adhesion molecule-1 (sVCAM), and E-selectin); and metabolic dysfunction (adiponectin) were measured in 226 HIV-infected and 140 HEU children. Anthropometry, body composition, lipids, glucose, insulin, HIV disease severity, and antiretroviral therapy were recorded. Results The median ages were 12.3 y (HIV-infected) and 10.1 y (HEU). Body mass index (BMI) Z-scores, waist and hip circumference, and percent body fat were lower among HIV-infected. Total and non-HDL cholesterol and triglycerides were higher in HIV-infected children. HIV-infected children had higher MCP-1, fibrinogen, sICAM, and sVCAM levels. In multivariable analyses in the HIV-infected children alone, BMI z-score was associated with higher CRP and fibrinogen, but lower MCP-1 and sVCAM. Unfavorable lipid profiles were positively associated with IL6, MCP1, fibrinogen, and P- and E-selectin, whereas increased HIV viral load was associated with markers of inflammation (MCP1 and CRP) and endothelial dysfunction (sICAM and sVCAM). Conclusions HIV-infected children have higher levels of biomarkers of vascular dysfunction than do HEU children. Risk factors associated with higher biomarkers include unfavorable lipid levels and active HIV replication. PMID:22136114

  8. DNA-Binding Properties of African Swine Fever Virus pA104R, a Histone-Like Protein Involved in Viral Replication and Transcription.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Coelho, João; Leitão, Alexandre; Martins, Carlos; Ferreira, Fernando

    2017-06-15

    African swine fever virus (ASFV) codes for a putative histone-like protein (pA104R) with extensive sequence homology to bacterial proteins that are implicated in genome replication and packaging. Functional characterization of purified recombinant pA104R revealed that it binds to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) over a wide range of temperatures, pH values, and salt concentrations and in an ATP-independent manner, with an estimated binding site size of about 14 to 16 nucleotides. Using site-directed mutagenesis, the arginine located in pA104R's DNA-binding domain, at position 69, was found to be relevant for efficient DNA-binding activity. Together, pA104R and ASFV topoisomerase II (pP1192R) display DNA-supercoiling activity, although none of the proteins by themselves do, indicating that the two cooperate in this process. In ASFV-infected cells, A104R transcripts were detected from 2 h postinfection (hpi) onward, reaching a maximum concentration around 16 hpi. pA104R was detected from 12 hpi onward, localizing with viral DNA replication sites and being found exclusively in the Triton-insoluble fraction. Small interfering RNA (siRNA) knockdown experiments revealed that pA104R plays a critical role in viral DNA replication and gene expression, with transfected cells showing lower viral progeny numbers (up to a reduction of 82.0%), lower copy numbers of viral genomes (-78.3%), and reduced transcription of a late viral gene (-47.6%). Taken together, our results strongly suggest that pA104R participates in the modulation of viral DNA topology, probably being involved in viral DNA replication, transcription, and packaging, emphasizing that ASFV mutants lacking the A104R gene could be used as a strategy to develop a vaccine against ASFV. IMPORTANCE Recently reintroduced in Europe, African swine fever virus (ASFV) causes a fatal disease in domestic pigs, causing high economic losses in affected countries, as no vaccine or treatment is currently

  9. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    International Nuclear Information System (INIS)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel; Lagaudrière-Gesbert, Cécile

    2012-01-01

    Highlights: ► P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. ► HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. ► HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  10. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France); Lagaudriere-Gesbert, Cecile, E-mail: cecile.lagaudriere-gesbert@u-psud.fr [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  11. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication.

    Science.gov (United States)

    Edwards, Terri G; Bloom, David C; Fisher, Chris

    2018-03-15

    The ATM and Rad3-related (ATR) protein kinase and its downstream effector Chk1 are key sensors and organizers of the DNA damage response (DDR) to a variety of insults. Previous studies of herpes simplex virus 1 (HSV-1) showed no evidence for activation of the ATR pathway. Here we demonstrate that both Chk1 and ATR were phosphorylated by 3 h postinfection (h.p.i.). Activation of ATR and Chk1 was observed using 4 different HSV-1 strains in multiple cell types, while a specific ATR inhibitor blocked activation. Mechanistic studies point to early viral gene expression as a key trigger for ATR activation. Both pATR and pChk1 localized to the nucleus within viral replication centers, or associated with their periphery, by 3 h.p.i. Significant levels of pATR and pChk1 were also detected in the cytoplasm, where they colocalized with ICP4 and ICP0. Proximity ligation assays confirmed that pATR and pChk1 were closely and specifically associated with ICP4 and ICP0 in both the nucleus and cytoplasm by 3 h.p.i., but not with ICP8 or ICP27, presumably in a multiprotein complex. Chemically distinct ATR and Chk1 inhibitors blocked HSV-1 replication and infectious virion production, while inhibitors of ATM, Chk2, and DNA-dependent protein kinase (DNA-PK) did not. Together our data show that HSV-1 activates the ATR pathway at early stages of infection and that ATR and Chk1 kinase activities play important roles in HSV-1 replication fitness. These findings indicate that the ATR pathway may provide insight for therapeutic approaches. IMPORTANCE Viruses have evolved complex associations with cellular DNA damage response (DDR) pathways, which sense troublesome DNA structures formed during infection. The first evidence for activation of the ATR pathway by HSV-1 is presented. ATR is activated, and its downstream target Chk1 is robustly phosphorylated, during early stages of infection. Both activated proteins are found in the nucleus associated with viral replication compartments and in

  12. Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells.

    Science.gov (United States)

    Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis

    2016-04-01

    Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cell culture-adaptive mutations of NS5A affect replication of hepatitis C virus differentially depending on the viral genotypes.

    Science.gov (United States)

    Chung, Aeri; Jin, Bora; Han, Kwang-Hyub; Ahn, Sang Hoon; Kim, Seungtaek

    2017-01-01

    Most of HCV RNAs require cell culture-adaptive mutations for efficient replication in cell culture and a number of such mutations have been described including a well-known S2204I substitution mutation in NS5A protein. In contrast, the replication of genotype 2a JFH1 RNA in cell culture does not require any cell culture-adaptive mutation. Rather, the presence of S2204I mutation impaired the JFH1 RNA replication. In this study, we examined the effect of reversions and substitutions of NS5A cell culture-adaptive mutations on virus replication in different genotypic backgrounds after either placing genotype 1a NS5A in the genotype 2a JFH1 or vice versa. The results from this investigation suggest that the S2204I mutation affects HCV RNA replication differentially depending on the viral genotypes but that the effect was not simply explained by the genotypic background. Perhaps, the effect of the S2204I mutation on HCV replication reflects both intra- and intergenic interactions of NS5A protein. J. Med. Virol. 89:146-152, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome.

    Science.gov (United States)

    Loncoman, Carlos A; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Diaz-Méndez, Andrés; Browning, Glenn F; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M

    2017-12-01

    Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1 ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in

  15. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication.

    Directory of Open Access Journals (Sweden)

    Deepika Bhullar

    Full Text Available Japanese encephalitis virus (JEV has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5'- and 3'-non-coding regions (NCRs. The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB interacts in vitro with both the 5'-NCR of the positive-sense genomic RNA--5NCR(+, and its complementary sequence in the negative-sense replication intermediate RNA--3NCR(-. The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(- RNA with viral RNA-dependent RNA polymerase (NS5 protein, an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.

  16. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.

    Science.gov (United States)

    Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon

    2015-08-01

    The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription

  17. Merkel cell carcinoma: histopathologic and prognostic features according to the immunohistochemical expression of Merkel cell polyomavirus large T antigen correlated with viral load.

    Science.gov (United States)

    Leroux-Kozal, Valérie; Lévêque, Nicolas; Brodard, Véronique; Lesage, Candice; Dudez, Oriane; Makeieff, Marc; Kanagaratnam, Lukshe; Diebold, Marie-Danièle

    2015-03-01

    Merkel cell carcinoma (MCC) is a neuroendocrine skin malignancy frequently associated with Merkel cell polyomavirus (MCPyV), which is suspected to be oncogenic. In a series of MCC patients, we compared clinical, histopathologic, and prognostic features according to the expression of viral large T antigen (LTA) correlated with viral load. We evaluated the LTA expression by immunohistochemistry using CM2B4 antibody and quantified viral load by real-time polymerase chain reaction. We analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples (n = 36) and corresponding fresh-frozen biopsies when available (n = 12), of the primary tumor and/or metastasis from 24 patients. MCPyV was detected in 88% and 58% of MCC patients by real-time polymerase chain reaction and immunohistochemistry, respectively. The relevance of viral load measurements was demonstrated by the strong consistency of viral load level between FFPE and corresponding frozen tissues as well as between primary tumor and metastases. From FFPE samples, 2 MCC subgroups were distinguished based on a viral load threshold defined by the positivity of CM2B4 immunostaining. In the LTA-negative subgroup with no or low viral load (nonsignificant), tumor cells showed more anisokaryosis (P = .01), and a solar elastosis around the tumor was more frequently observed (P = .03). LTA-positive MCCs with significant viral load had a lower proliferation index (P = .03) and a longer survival of corresponding patients (P = .008). Depending on MCPyV involvement, 2 MCC subgroups can be distinguished on histopathologic criteria, and the CM2B4 antibody is able to differentiate them reliably. Furthermore, the presence of a significant viral load in tumors is predictive of better prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Autoimmune hepatitis-specific antibodies against soluble liver antigen and liver cytosol type 1 in patients with chronic viral hepatitis.

    Science.gov (United States)

    Rigopoulou, Eirini I; Mytilinaiou, Maria; Romanidou, Ourania; Liaskos, Christos; Dalekos, George N

    2007-02-04

    Non-organ specific autoantibodies are highly prevalent in patients with chronic hepatitis C (HCV). Among them, anti-liver kidney microsomal type 1 (LKM1) antibody--the serological marker of type 2 autoimmune hepatitis (AIH-2)--is detected in up to 11% of the HCV-infected subjects. On the other hand, anti-liver cytosol type 1 antibodies (anti-LC1)--either in association with anti-LKM1, or in isolation--and anti-soluble liver antigen antibodies (anti-SLA) have been considered as useful and specific diagnostic markers for AIH. However, their specificity for AIH has been questioned by some recent studies, which have shown the detection of anti-LC1 and anti-SLA by immunoprecipitation assays in HCV patients irrespective of their anti-LKM1 status. The aim of the present study was to test the anti-LC1 and anti-SLA presence by specific enzyme linked immunosorbent assays (ELISAs), in a large group of Greek HCV-infected patients with or without anti-LKM1 reactivity as firstly, immunoprecipitation assays are limited to few specialized laboratories worldwide and cannot be used routinely and secondly, to assess whether application of such tests has any relevance in the context of patients with viral hepatitis since antibody detection based on such ELISAs has not been described in detail in large groups of HCV patients. One hundred and thirty eight consecutive HCV patients (120 anti-LKM1 negative and 18 anti-LKM1 positive) were investigated for the presence of anti-LC1 and anti-SLA by commercial ELISAs. A similar number (120) of chronic hepatitis B virus (HBV) infected patients seronegative for anti-LKM1 was also tested as pathological controls. Six out of 18 (33%) anti-LKM(pos)/HCV(pos) patients tested positive for anti-LC1 compared to 1/120 (0.83%) anti-LKM(neg)/HCV(pos) patients and 0/120 (0%) of the anti-LKM1(neg)/HBV(pos) patients (p LKM1) or HBV-infected patients. We showed that anti-LC1 and anti-SLA autoantibodies are not detected by conventional assays in a large group of

  19. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  20. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  1. The Kinase STK3 Interacts with the Viral Structural Protein VP1 and Inhibits Foot-and-Mouth Disease Virus Replication

    Science.gov (United States)

    Xue, Qiao

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects domestic and wild cloven-hoofed animals. The structural protein VP1 plays an important role in FMDV pathogenesis. However, the interacting partners of VP1 in host cells and the effects of these interactions in FMDV replication remain incompletely elucidated. Here, we identified a porcine cell protein, serine/threonine kinase 3 (STK3), which interacts with FMDV VP1 using the yeast two-hybrid system. The VP1-STK3 interaction was further confirmed by coimmunoprecipitation experiments in human embryonic kidney 293T and porcine kidney 15 (PK-15) cells. The carboxyl-terminal region (amino acids 180–214) of VP1 was essential for its interaction with STK3. The effects of overexpression and underexpressing of STK3 in PK-15 cells were assessed, and the results indicated that STK3 significantly inhibited FMDV replication. Our data expand the role of STK3 during viral infection, provide new information regarding the host cell kinases that are involved in viral replication, and identify potential targets for future antiviral strategies. PMID:29226127

  2. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    Science.gov (United States)

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  3. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication

    Directory of Open Access Journals (Sweden)

    Jiun-Yan Huang

    2017-09-01

    Full Text Available Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5′ untranslated region (UTR of at least three viral genes (vp26, vp28, and wssv102, and plasmids that were controlled by the 5′ UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host–virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.

  4. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication.

    Science.gov (United States)

    Huang, Jiun-Yan; Kang, Shih-Ting; Chen, I-Tung; Chang, Li-Kwan; Lin, Shih-Shun; Kou, Guang-Hsiung; Chu, Chia-Ying; Lo, Chu-Fang

    2017-01-01

    Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5' untranslated region (UTR) of at least three viral genes ( vp26, vp28 , and wssv102 ), and plasmids that were controlled by the 5' UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host-virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.

  5. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  6. The P2 of Wheat yellow mosaic virus rearranges the endoplasmic reticulum and recruits other viral proteins into replication-associated inclusion bodies.

    Science.gov (United States)

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Chen, Jianping

    2014-06-01

    Viruses commonly modify host endomembranes to facilitate biological processes in the viral life cycle. Infection by viruses belonging to the genus Bymovirus (family Potyviridae) has long been known to induce the formation of large membranous inclusion bodies in host cells, but their assembly and biological roles are still unclear. Immunoelectron microscopy of cells infected with the bymovirus Wheat yellow mosaic virus (WYMV) showed that P1, P2 and P3 are the major viral protein constituents of the membranous inclusions, whereas NIa-Pro (nuclear inclusion-a protease) and VPg (viral protein genome-linked) are probable minor components. P1, P2 and P3 associated with the endoplasmic reticulum (ER), but only P2 was able to rearrange ER and form large aggregate structures. Bioinformatic analyses and chemical experiments showed that P2 is an integral membrane protein and depends on the active secretory pathway to form aggregates of ER membranes. In planta and in vitro assays demonstrated that P2 interacts with P1, P3, NIa-Pro or VPg and recruits these proteins into the aggregates. In vivo RNA labelling using WYMV-infected wheat protoplasts showed that the synthesis of viral RNAs occurs in the P2-associated inclusions. Our results suggest that P2 plays a major role in the formation of membranous compartments that house the genomic replication of WYMV. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  7. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  8. Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process.

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-11-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5' end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3' end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.

  9. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Science.gov (United States)

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  10. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Directory of Open Access Journals (Sweden)

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  11. Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication.

    Science.gov (United States)

    Nakamura, Shoko; Horie, Masayuki; Daidoji, Tomo; Honda, Tomoyuki; Yasugi, Mayo; Kuno, Atsushi; Komori, Toshihisa; Okuzaki, Daisuke; Narimatsu, Hisashi; Nakaya, Takaaki; Tomonaga, Keizo

    2016-02-15

    Influenza A virus (IAV) affects the upper and lower respiratory tracts and rapidly induces the expression of mucins, which are common O-glycosylated proteins, on the epithelial surfaces of the respiratory tract. Although mucin production is associated with the inhibition of virus transmission as well as characteristic clinical symptoms, little is known regarding how mucins are produced on the surfaces of respiratory epithelial cells and how they affect IAV replication. In this study, we found that two microRNAs (miRNAs), miR-17-3p and miR-221, which target GalNAc transferase 3 (GALNT3) mRNA, are rapidly downregulated in human alveolar basal epithelial cells during the early stage of IAV infection. We demonstrated that the expression of GALNT3 mRNA is upregulated in an IAV replication-dependent fashion and leads to mucin production in bronchial epithelial cells. A lectin microarray analysis revealed that the stable expression of GALNT3 by human alveolar basal epithelial cells induces mucin-type O-glycosylation modifications similar to those present in IAV-infected cells, suggesting that GALNT3 promotes mucin-type O-linked glycosylation in IAV-infected cells. Notably, analyses using short interfering RNAs and miRNA mimics showed that GALNT3 knockdown significantly reduces IAV replication. Furthermore, IAV replication was markedly decreased in embryonic fibroblast cells obtained from galnt3-knockout mice. Interestingly, IAV-infected galnt3-knockout mice exhibited high mortality and severe pathological alterations in the lungs compared to those of wild-type mice. Our results demonstrate not only the molecular mechanism underlying rapid mucin production during IAV infection but also the contribution of O-linked glycosylation to the replication and propagation of IAV in lung cells. Viral infections that affect the upper or lower respiratory tracts, such as IAV, rapidly induce mucin production on the epithelial surfaces of respiratory cells. However, the details of how

  12. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Science.gov (United States)

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  13. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis

    Science.gov (United States)

    Rey, Félix A.

    2017-01-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation. PMID:28151973

  14. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Directory of Open Access Journals (Sweden)

    Danilo Dubrau

    2017-02-01

    Full Text Available The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132, which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  15. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8

    NARCIS (Netherlands)

    Coetzee, M.P.A.; Vuuren, van M.; Stokstad, M.; Myrmel, M.; Gennip, van H.G.P.; Rijn, van P.A.; Venter, E.H.

    2014-01-01

    Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the

  16. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection.

    Directory of Open Access Journals (Sweden)

    Indrani Das

    Full Text Available BACKGROUND: The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV emphasize the need to understand the biology of the virus for developing effective antiviral therapies. METHODS AND FINDINGS: In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90 mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27 and Indian outbreak strain of 2006 (DRDE-06. Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. CONCLUSION: Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06

  17. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus

    International Nuclear Information System (INIS)

    Zhang Jing; Yamada, Osamu; Sakamoto, Takashi; Yoshida, Hiroshi; Iwai, Takahiro; Matsushita, Yoshihisa; Shimamura, Hideo; Araki, Hiromasa; Shimotohno, Kunitada

    2004-01-01

    Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bγ), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects

  18. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    Science.gov (United States)

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  19. Antigenic differences between bovine viral diarrhea viruses and HoBi virus: Possible impacts on diagnosis and control

    Science.gov (United States)

    Compare antigenic differences between HoBi virus and BVDV strains that might impact on diagnostics and control. Eighteen non-cytopathic isolates of pestiviruses including the 5 genotypic groups (BVDV1a-c, BVDV2, BDV) and HoBi virus, were tested using antigen capture enzyme-linked immunosorbent assay...

  20. Detection of human parvovirus 4 viremia in the follow-up blood samples from seropositive individuals suggests the existence of persistent viral replication or reactivation of latent viral infection.

    Science.gov (United States)

    Chen, Mao-Yuan; Hung, Chien-Ching; Lee, Kuang-Lun

    2015-06-19

    The transmission routes for human parvovirus 4 (PARV4) infections in areas with high seroprevalence are not known. In the work described here, persistent PARV4 viral replication was investigated by conducting a longitudinal study. Ten healthcare workers each provided a blood sample at the beginning of the study (first sample) and 12 months later (second sample). The paired samples were tested for PARV4-positivity by immunoblotting analysis and nested polymerase chain reactions. IgG antibodies against PARV4 were detected in six participants, three of whom also had IgM antibodies against PARV4. The immunoblotting results did not vary over time. PARV4 DNA was detected in the first blood sample from one participant who had IgG antibodies against PARV4 and in the second blood samples from 2 participants who had IgG and IgM antibodies against PARV4. Detection of PARV4 DNA in the second blood samples from two seropositive participants suggests the existence of persistent PARV4 replication or reactivation of inactive virus in the tissues. The finding of persistent or intermittent PARV4 replication in individuals with past infections provides an important clue toward unraveling the non-parenteral transmission routes of PARV4 infection in areas where the virus is endemic.

  1. Replacement of Murine Leukemia Virus Readthrough Mechanism by Human Immunodeficiency Virus Frameshift Allows Synthesis of Viral Proteins and Virus Replication

    Science.gov (United States)

    Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy

    2003-01-01

    Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361

  2. Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-06-01

    Full Text Available Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions.

  3. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  4. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Directory of Open Access Journals (Sweden)

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  5. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Haixu; Ji, Xinqin; Zhao, Jiafu; Xu, Houqiang; Hu, Yan; Deng, Shanshan; Hu, Shunlin; Liu, Xiufan

    2018-12-31

    The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336-433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.

  6. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    International Nuclear Information System (INIS)

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory

    2007-01-01

    Frog virus 3 (FV3) is a large DNA virus that encodes ∼ 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-IIα). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-IIα triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins

  7. Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2.

    Science.gov (United States)

    McCune, Broc T; Tang, Wei; Lu, Jia; Eaglesham, James B; Thorne, Lucy; Mayer, Anne E; Condiff, Emily; Nice, Timothy J; Goodfellow, Ian; Krezel, Andrzej M; Virgin, Herbert W

    2017-07-11

    The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the

  8. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting

    Energy Technology Data Exchange (ETDEWEB)

    Hornig, Julia; Choi, K. Yeon; McGregor, Alistair, E-mail: mcgregor@medicine.tamhsc.edu

    2017-04-15

    Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.

  9. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting

    Science.gov (United States)

    Hornig, Julia; Choi, K. Yeon; McGregor, Alistair

    2017-01-01

    Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection. PMID:28189970

  10. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  11. Assessing Zika virus replication and the development of Zika-specific antibodies after a mid-gestation viral challenge in guinea pigs.

    Science.gov (United States)

    Bierle, Craig J; Fernández-Alarcón, Claudia; Hernandez-Alvarado, Nelmary; Zabeli, Jason C; Janus, Bradley C; Putri, Dira S; Schleiss, Mark R

    2017-01-01

    Primary Zika virus (ZIKV) infections that occur during pregnancy can cause spontaneous abortion and profoundly disrupt fetal development. While the full range of developmental abnormalities associated with congenital Zika syndrome is not yet known, severe cases of the syndrome can present with microcephaly, extensive neurologic and ocular damage, and pronounced joint malformations. Animal models that accurately recapitulate congenital Zika syndrome are urgently needed for vaccine development and for the study of ZIKV pathogenesis. As guinea pigs have successfully been used to model transplacental infections by cytomegalovirus, syphilis, and Listeria monocytogenes, we sought to test whether ZIKV could productively infect guinea pigs and whether viral transmission with attendant fetal pathology would occur after a mid-gestation viral challenge. We found that guinea pig cells supported ZIKV replication in vitro. Experimental infection of non-pregnant animals did not result in overt disease but low-level, detectable viremia was observed. When pregnant guinea pigs were challenged with ZIKV at between 18 and 21 days gestational age, ZIKV was not detected in maternal or pup blood, plasma, or tissues and no significant differences in maternal weight gain or pup size were observed following challenge. Nonetheless, a robust antibody response against ZIKV was detected in both the pups and dams. These results suggest that, while guinea pigs can model aspects of the immune response to ZIKV infection during pregnancy, naturally circulating ZIKV strains are not pathogenic during the pregnancy of immunocompetent guinea pigs and do not interfere with normal pup development.

  12. Assessing Zika virus replication and the development of Zika-specific antibodies after a mid-gestation viral challenge in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Craig J Bierle

    Full Text Available Primary Zika virus (ZIKV infections that occur during pregnancy can cause spontaneous abortion and profoundly disrupt fetal development. While the full range of developmental abnormalities associated with congenital Zika syndrome is not yet known, severe cases of the syndrome can present with microcephaly, extensive neurologic and ocular damage, and pronounced joint malformations. Animal models that accurately recapitulate congenital Zika syndrome are urgently needed for vaccine development and for the study of ZIKV pathogenesis. As guinea pigs have successfully been used to model transplacental infections by cytomegalovirus, syphilis, and Listeria monocytogenes, we sought to test whether ZIKV could productively infect guinea pigs and whether viral transmission with attendant fetal pathology would occur after a mid-gestation viral challenge. We found that guinea pig cells supported ZIKV replication in vitro. Experimental infection of non-pregnant animals did not result in overt disease but low-level, detectable viremia was observed. When pregnant guinea pigs were challenged with ZIKV at between 18 and 21 days gestational age, ZIKV was not detected in maternal or pup blood, plasma, or tissues and no significant differences in maternal weight gain or pup size were observed following challenge. Nonetheless, a robust antibody response against ZIKV was detected in both the pups and dams. These results suggest that, while guinea pigs can model aspects of the immune response to ZIKV infection during pregnancy, naturally circulating ZIKV strains are not pathogenic during the pregnancy of immunocompetent guinea pigs and do not interfere with normal pup development.

  13. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA.

    Science.gov (United States)

    Wong, K T; Ng, K Y; Ong, K C; Ng, W F; Shankar, S K; Mahadevan, A; Radotra, B; Su, I J; Lau, G; Ling, A E; Chan, K P; Macorelles, P; Vallet, S; Cardosa, M J; Desai, A; Ravi, V; Nagata, N; Shimizu, H; Takasaki, T

    2012-08-01

    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  14. Persistence of ZIKV-RNA in the cellular fraction of semen is accompanied by a surrogate-marker of viral replication. Diagnostic implications for sexual transmission.

    Science.gov (United States)

    Biava, Mirella; Caglioti, Claudia; Castilletti, Concetta; Bordi, Licia; Carletti, Fabrizio; Colavita, Francesca; Quartu, Serena; Nicastri, Emanuele; Iannetta, Marco; Vairo, Francesco; Liuzzi, Giuseppina; Taglietti, Fabrizio; Ippolito, Giuseppe; Capobianchi, Maria Rosaria; Lalle, Eleonora

    2018-01-01

    As asymptomatic infections represent 80% of ZIKV-infected individuals, sexual transmission is a rising concern. Recent studies highlighted a preferential association of ZIKV with the cellular fraction (CF) of different specimen types. Our aim was to evaluate the presence of ZIKV-RNA in different body fluids, focusing on semen specimens to assess the ZIKV-RNA content in either the unfractionated sample, its CF or seminal plasma (SP). In addition, to establish if the presence of ZIKV genome was associated with active virus replication, we measured the levels of negative-strand ZIKV-RNA. ZIKV total-RNA was detected in blood, urine and unfractionated semen, and neg-RNA in semen CF and SP samples longitudinally collected from two ZIKV-positive men followed at the National Institute for Infectious Diseases "L. Spallanzani", Italy. In both patients, ZIKV total-RNA was detected in CF with ct values always lower than in the corresponding unfractionated samples, and was observed even in the CF from negative unfractionated semen samples. In Patient 2, neg-RNA was also detected in CF, suggesting ongoing viral replication. Our results demonstrate higher clinical sensitivity of CF as compared to whole semen testing, emphasizing the need to extend ZIKV-RNA testing to CF, to rule out virus presence and the possible risk of sexual transmission.

  15. CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication

    Directory of Open Access Journals (Sweden)

    Renée L. Finnen

    2018-05-01

    Full Text Available Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated.

  16. A screen for genetic suppressor elements of hepatitis C virus identifies a supercharged protein inhibitor of viral replication.

    Directory of Open Access Journals (Sweden)

    Rudo L Simeon

    Full Text Available Genetic suppressor elements (GSEs are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection. A 244 amino acid gene fragment, B1, was strongly enriched after 5 rounds of selection. B1 derives from a single-base frameshift of the enhanced green fluorescent protein (eGFP which was used as a filler during fragment cloning. B1 has a very high net positive charge of 43 at neutral pH and a high charge-to-mass (kDa ratio of 1.5. We show that B1 expression specifically inhibits HCV replication. In addition, five highly positively charged B1 fragments produced from progressive truncation at the C-terminus all retain the ability to inhibit HCV, suggesting that a high positive charge, rather than a particular motif in B1, likely accounts for B1's anti-HCV activity. Another supercharged protein, +36GFP, was also found to strongly inhibit HCV replication when added to cells at the time of infection. This study reports a new methodology for HCV inhibitor screening and points to the anti-HCV potential of positively charged proteins/peptides.

  17. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    Science.gov (United States)

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P < .0001). This observation could provide impetus for further research to elucidate the clinical usefulness of the qHBsAg and HBcrAg assays.

  18. Hibiscus Chlorotic Ringspot Virus Coat Protein Is Essential for Cell-to-Cell and Long-Distance Movement but Not for Viral RNA Replication

    Science.gov (United States)

    Niu, Shengniao; Gil-Salas, Francisco M.; Tewary, Sunil Kumar; Samales, Ashwin Kuppusamy; Johnson, John; Swaminathan, Kunchithapadam; Wong, Sek-Man

    2014-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro. PMID:25402344

  19. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Shengniao Niu

    Full Text Available Hibiscus chlorotic ringspot virus (HCRSV is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP functions on virus replication and movement in kenaf (Hibiscus cannabinus L., two HCRSV mutants, designated as p2590 (A to G in which the first start codon ATG was replaced with GTG and p2776 (C to G in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro.

  20. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control.

    Directory of Open Access Journals (Sweden)

    Karoly Toth

    2015-08-01

    Full Text Available Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as

  1. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment

    Directory of Open Access Journals (Sweden)

    Wen-Fan Shen

    2017-04-01

    Conclusion: Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection.

  2. Comparative analysis of seven viral nuclear export signals (NESs reveals the crucial role of nuclear export mediated by the third NES consensus sequence of nucleoprotein (NP in influenza A virus replication.

    Directory of Open Access Journals (Sweden)

    Nopporn Chutiwitoonchai

    Full Text Available The assembly of influenza virus progeny virions requires machinery that exports viral genomic ribonucleoproteins from the cell nucleus. Currently, seven nuclear export signal (NES consensus sequences have been identified in different viral proteins, including NS1, NS2, M1, and NP. The present study examined the roles of viral NES consensus sequences and their significance in terms of viral replication and nuclear export. Mutation of the NP-NES3 consensus sequence resulted in a failure to rescue viruses using a reverse genetics approach, whereas mutation of the NS2-NES1 and NS2-NES2 sequences led to a strong reduction in viral replication kinetics compared with the wild-type sequence. While the viral replication kinetics for other NES mutant viruses were also lower than those of the wild-type, the difference was not so marked. Immunofluorescence analysis after transient expression of NP-NES3, NS2-NES1, or NS2-NES2 proteins in host cells showed that they accumulated in the cell nucleus. These results suggest that the NP-NES3 consensus sequence is mostly required for viral replication. Therefore, each of the hydrophobic (Φ residues within this NES consensus sequence (Φ1, Φ2, Φ3, or Φ4 was mutated, and its viral replication and nuclear export function were analyzed. No viruses harboring NP-NES3 Φ2 or Φ3 mutants could be rescued. Consistent with this, the NP-NES3 Φ2 and Φ3 mutants showed reduced binding affinity with CRM1 in a pull-down assay, and both accumulated in the cell nucleus. Indeed, a nuclear export assay revealed that these mutant proteins showed lower nuclear export activity than the wild-type protein. Moreover, the Φ2 and Φ3 residues (along with other Φ residues within the NP-NES3 consensus were highly conserved among different influenza A viruses, including human, avian, and swine. Taken together, these results suggest that the Φ2 and Φ3 residues within the NP-NES3 protein are important for its nuclear export function

  3. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  4. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice

    DEFF Research Database (Denmark)

    Bassi, Maria R; Larsen, Mads Andreas Bay; Kongsgaard, Michael

    2016-01-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should...... be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using......, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both...

  5. Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma.

    Science.gov (United States)

    Skappak, Christopher; Ilarraza, Ramses; Wu, Ying-Qi; Drake, Matthew G; Adamko, Darryl J

    2017-01-01

    Asthma exacerbation can be a life-threatening condition, and is most often triggered by common respiratory viruses. Poor asthma control and worsening of respiratory function is associated with increased airway inflammation, including eosinophilia. Prevention of asthma exacerbation relies on treatment with corticosteroids, which preferentially inhibit allergic inflammation like eosinophils. Human studies demonstrate that inactivated virus can trigger eosinophil activation in vitro through antigen presentation and memory CD4+ lymphocytes. We hypothesized that animals with immunologic memory to a respiratory virus would also develop airway hyperresponsiveness in response to a UV-inactivated form of the virus if they have pre-existing allergic airway inflammation. Guinea pigs were ovalbumin-sensitized, infected with live parainfluenza virus (PIV), aerosol-challenged with ovalbumin, and then re-inoculated 60 days later with live or UV-inactivated PIV. Some animals were either treated with dexamethasone prior to the second viral exposure. Lymphocytes were isolated from parabronchial lymph nodes to confirm immunologic memory to the virus. Airway reactivity was measured and inflammation was assessed using bronchoalveolar lavage and lung histology. The induction of viral immunologic memory was confirmed in infected animals. Allergen sensitized and challenged animals developed airway hyperreactivity with eosinophilic airway inflammation when re-exposed to UV-inactivated PIV, while non-sensitized animals did not. Airway hyperreactivity in the sensitized animals was inhibited by pre-treatment with dexamethasone. We suggest that the response of allergic inflammation to virus antigen is a significant factor causing asthma exacerbation. We propose that this is one mechanism explaining how corticosteroids prevent virus-induced asthma attack.

  6. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication.

    Science.gov (United States)

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-09-20

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5'-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5'-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal

  7. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro

    Directory of Open Access Journals (Sweden)

    Wimmer Eckard

    2005-11-01

    Full Text Available Abstract Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.

  8. Immunity to tumour antigens.

    Science.gov (United States)

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  9. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    Science.gov (United States)

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in

  10. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  11. Autoimmune hepatitis-specific antibodies against soluble liver antigen and liver cytosol type 1 in patients with chronic viral hepatitis

    OpenAIRE

    Rigopoulou, Eirini I; Mytilinaiou, Maria; Romanidou, Ourania; Liaskos, Christos; Dalekos, George N

    2007-01-01

    Background Non-organ specific autoantibodies are highly prevalent in patients with chronic hepatitis C (HCV). Among them, anti-liver kidney microsomal type 1 (LKM1) antibody – the serological marker of type 2 autoimmune hepatitis (AIH-2)- is detected in up to 11% of the HCV-infected subjects. On the other hand, anti-liver cytosol type 1 antibodies (anti-LC1) – either in association with anti-LKM1, or in isolation- and anti-soluble liver antigen antibodies (anti-SLA) have been considered as us...

  12. Expression of an IRF-3 fusion protein and mouse estrogen receptor, inhibits hepatitis C viral replication in RIG-I-deficient Huh 7.5 cells

    Directory of Open Access Journals (Sweden)

    Liu Chen

    2011-09-01

    Full Text Available Abstract Interferon Regulatory Factor-3 (IRF-3 plays a central role in the induction of interferon (IFN production and succeeding interferon-stimulated genes (ISG expression en route for restraining hepatitis C virus (HCV infection. Here, we established a stable Huh7.5-IRF3ER cell line expressing a fusion protein of IRF-3 and mouse estrogen receptor (ER to examine IFN production and anti-HCV effects of IRF-3 in retinoic acid inducible-gene-I (RIG-I deficient Huh 7.5 cells. Homodimerization of the IRF-3ER fusion protein was detected by Western blotting after treatment with the estrogen receptor agonist 4-hydrotamoxifen (4-HT in Huh7.5-IRF3ER cells. Expression of IFN-α, IFN-β, and their inhibitory effects on HCV replication were demonstrated by real-time polymerase chain reaction (PCR. Peak expression of IFN-α and IFN-β was achieved 24-hours post 4-HT treatment, coinciding with the appearance of phosphorylated signal transducer and activator of transcription (STAT proteins. Additionally, HCV viral replication declined in time-dependent fashion. In previous studies, a novel IFN-mediated pathway regulating expression of 1-8U and heterogeneous nuclear ribonucleoprotein M (hnRNP M inhibited HCV internal ribosomal entry site (IRES-dependent translation. When expression of ISGs such as 1-8U and hnRNP M were measured in 4-HT-treated Huh7.5-IRF3ER cells, both genes were positively regulated by activation of the IRF-3ER fusion protein. In conclusion, the anti-HCV effects of IRF-3ER homodimerization inhibited HCV RNA replication as well as HCV IRES-dependent translation in Huh7.5-IRF3ER cells. The results of this study indicate that IRF-3ER homodimerization is a key step to restore IFN expression in Huh7.5-IRF3ER cells and in achieving its anti-HCV effects.

  13. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    Science.gov (United States)

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  14. The Genomic Replication of the Crenarchaeal Virus SIRV2

    DEFF Research Database (Denmark)

    Martinez Alvarez, Laura

    reinitiation events may partially explain the branched topology of the viral replication intermediates. We also analyzed the intracellular location of viral replication, showing the formation of viral peripheral replication centers in SIRV2-infected cells, where viral DNA synthesis and replication...

  15. Metabolism goes viral.

    Science.gov (United States)

    Miyake-Stoner, Shigeki J; O'Shea, Clodagh C

    2014-04-01

    Viral and cellular oncogenes converge in targeting critical protein interaction networks to reprogram the cellular DNA and protein replication machinery for pathological replication. In this issue, Thai et al. (2014) show that adenovirus E4ORF1 activates MYC glycolytic targets to induce a Warburg-like effect that converts glucose into nucleotides for viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine.

    Science.gov (United States)

    Ovsyannikova, Inna G; Jacobson, Robert M; Dhiman, Neelam; Vierkant, Robert A; Pankratz, V Shane; Poland, Gregory A

    2008-05-01

    Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. To identify genetic factors that might contribute to variations in mumps vaccine-induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12-18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. These data suggest the important role of HLA and immunoregulatory cytokine receptor

  17. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  18. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement.

    Science.gov (United States)

    Cho, Sang-Yun; Cho, Won Kyong; Sohn, Seong-Han; Kim, Kook-Hyung

    2012-01-06

    Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus.

    Science.gov (United States)

    Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya

    2004-12-24

    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.

  2. Expression and characterization of highly antigenic domains of chicken anemia virus viral VP2 and VP3 subunit proteins in a recombinant E. coli for sero-diagnostic applications

    Science.gov (United States)

    2013-01-01

    Background Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. Generally, CAV infection occurs via vertical transmission in young chicks that are less than two weeks old, which are very susceptible to the disease. Therefore, epidemiological investigations of CAV infection and/or the evaluation of the immunization status of chickens is necessary for disease control. Up to the present, systematically assessing viral protein antigenicity and/or determining the immunorelevant domain(s) of viral proteins during serological testing for CAV infection has never been performed. The expression, production and antigenic characterization of CAV viral proteins such as VP1, VP2 and VP3, and their use in the development of diagnostic kit would be useful for CAV infection prevention. Results Three CAV viral proteins VP1, VP2 and VP3 was separately cloned and expressed in recombinant E. coli. The purified recombinant CAV VP1, VP2 and VP3 proteins were then used as antigens in order to evaluate their reactivity against chicken sera using indirect ELISA. The results indicated that VP2 and VP3 show good immunoreactivity with CAV-positive chicken sera, whereas VP1 was found to show less immunoreactivity than VP2 and VP3. To carry out the further antigenic characterization of the immunorelevant domains of the VP2 and VP3 proteins, five recombinant VP2 subunit proteins (VP2-435N, VP2-396N, VP2-345N, VP2-171C and VP2-318C) and three recombinant VP3 subunit proteins (VP3-123N, VP3-246M, VP3-366C), spanning the defined regions of VP2 and VP3 were separately produced by an E. coli expression system. These peptides were then used as antigens in indirect ELISAs against chicken sera. The results of these ELISAs using truncated recombinant VP2 and VP3 subunit proteins as coating antigen showed that VP2-345N, VP2-396N and VP3-246M gave good immunoreactivity with CAV-positive chicken sera compared to the other

  3. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    Directory of Open Access Journals (Sweden)

    Caroline M Li

    Full Text Available We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE. In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40 origin of DNA replication and the viral large tumor antigen (T-antigen protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA, DNA topoisomerase I (topo I, DNA polymerase δ (Pol δ, DNA polymerase ɛ (Pol ɛ, replication protein A (RPA and replication factor C (RFC. Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  4. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    Science.gov (United States)

    Li, Caroline M; Miao, Yunan; Lingeman, Robert G; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  5. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  6. Functional analysis of the cloverleaf-like structure in the 3' untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement

    International Nuclear Information System (INIS)

    Chen, I-H.; Meng Hsiao; Hsu, Y.-H.; Tsai, C.-H.

    2003-01-01

    The 3' untranslated region (UTR) of bamboo mosaic potexvirus (BaMV) RNA was identified to fold into a tertiary structure comprising a cloverleaf-like structure designated ABC domain followed by a major stem-loop D, which in turn is followed by a pseudoknot E and a poly(A) tail. The coat protein accumulation level of the mutant, BaMV40A/ΔABC, lacking ABC domain was just 15% that of wild-type when inoculated into protoplasts of Nicotiana benthamiana. This suggested that ABC domain might play an important role in BaMV RNA replication. To define the precise role of each of the three stem-loops of ABC domain in RNA replication, three mutants BaMV40B and C each lacking stem-loop A, B, and C, respectively, were created. Our results showed that accumulation of viral products of mutants BaMV40B and C were not as efficient as wild-type. On the contrary, level of accumulation of viral products of BaMVA was similar to that of wild-type in protoplasts and inoculated leaves. Interestingly, the accumulation of viral products was not as efficient as that of wild-type in systemic leaves, implying that stem-loop A is dispensable for replication, but signifies a role in systemic accumulation. Using UV cross-linking and competition experiments, it was demonstrated that the E. coli expressed helicase domain of BaMV ORF1 can preferentially interact with the ABC domain

  7. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies. PMID:23966403

  8. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    International Nuclear Information System (INIS)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication

  9. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  10. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  11. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  12. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA

    NARCIS (Netherlands)

    Langereis, Martijn A|info:eu-repo/dai/nl/304823597; Feng, Qian; Nelissen, Frank H T; Virgen-Slane, Richard; van der Heden van Noort, Gerbrand J; Maciejewski, Sonia; Filippov, Dmitri V; Semler, Bert L; van Delft, Floris L; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723

    Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for

  13. The virion-associated open reading frame 49 of murine gammaherpesvirus 68 promotes viral replication both in vitro and in vivo as a derepressor of RTA.

    Science.gov (United States)

    Noh, Cheol-Woo; Cho, Hye-Jeong; Kang, Hye-Ri; Jin, Hyun Yong; Lee, Shaoying; Deng, Hongyu; Wu, Ting-Ting; Arumugaswami, Vaithilingaraja; Sun, Ren; Song, Moon Jung

    2012-01-01

    Replication and transcription activator (RTA), an immediate-early gene, is a key molecular switch to evoke lytic replication of gammaherpesviruses. Open reading frame 49 (ORF49) is conserved among gammaherpesviruses and shown to cooperate with RTA in regulating virus lytic replication. Here we show a molecular mechanism and in vivo functions of murine gammaherpesvirus 68 (MHV-68 or γHV-68) ORF49. MHV-68 ORF49 was transcribed and translated as a late gene. The ORF49 protein was associated with a virion, interacting with the ORF64 large tegument protein and the ORF25 capsid protein. Moreover, ORF49 directly bound to RTA and its negative cellular regulator, poly(ADP-ribose) polymerase-1 (PARP-1), and disrupted the interactions of RTA and PARP-1. Productive replication of an ORF49-deficient mutant virus (49S) was attenuated in vivo as well as in vitro. Likewise, latent infection was also impaired in the spleen of 49S-infected mice. Taken together, our results suggest that the virion-associated ORF49 protein may promote virus replication both in vitro and in vivo by providing an optimal environment in the early phase of virus infection as a derepressor of RTA.

  14. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Mauro Tognon

    Full Text Available Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18-65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.

  15. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir

    Directory of Open Access Journals (Sweden)

    Chou Sunwen

    2009-01-01

    Full Text Available Abstract The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.

  16. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  17. Synthesis of viral DNA forms in Nicotiana plumbaginifolia protoplasts inoculated with cassava latent virus (CLV); evidence for the independent replication of one component of the CLV genome.

    OpenAIRE

    Townsend, R; Watts, J; Stanley, J

    1986-01-01

    Totipotent leaf mesophyll protoplasts of Nicotiana plumbaginifolia, Viviani were inoculated with cassava latent virus (CLV) or with full length copies of CLV genomic DNAs 1 and 2 excised from replicative forms of M13 clones. Virus specific DNAs began to appear 48-72h after inoculation with virus or cloned DNAs, coincident with the onset of host cell division. Infected cells accumulated supercoiled forms of DNAs 1 and 2 as well as progeny single-stranded (ss) virion (+) sense DNAs representing...

  18. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

    Science.gov (United States)

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-30

    To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.

  19. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-01-01

    Full Text Available Abstract Background To be transmitted by its mosquito vector, dengue virus (DENV must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi. The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands differed in their response to DENV-2 infection.

  20. Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa.

    Science.gov (United States)

    Hofmann-Lehmann, R; Fehr, D; Grob, M; Elgizoli, M; Packer, C; Martenson, J S; O'Brien, S J; Lutz, H

    1996-09-01

    While viral infections and their impact are well studied in domestic cats, only limited information is available on their occurrence in free-ranging lions. The goals of the present study were (i) to investigate the prevalence of antibodies to feline calicivirus (FCV), herpesvirus (FHV), coronavirus (FCoV), parvovirus (FPV), and immunodeficiency virus (FIV) and of feline leukemia virus (FeLV) antigen in 311 serum samples collected between 1984 and 1991 from lions inhabiting Tanzania's national parks and (ii) to evaluate the possible biological importance and the interrelationship of these viral infections. Antibodies to FCV, never reported previously in free-ranging lions, were detected in 70% of the sera. In addition, a much higher prevalence of antibodies to FCoV (57%) was found than was previously reported in Etosha National Park and Kruger National Park. Titers ranged from 25 to 400. FeLV antigen was not detectable in any of the serum samples. FCoV, FCV, FHV, and FIV were endemic in the Serengeti, while a transient elevation of FPV titers pointed to an outbreak of FPV infection between 1985 and 1987. Antibody titers to FPV and FCV were highly prevalent in the Serengeti (FPV, 75%; FCV, 67%) but not in Ngorongoro Crater (FPV, 27%; FCV, 2%). These differences could be explained by the different habitats and biological histories of the two populations and by the well-documented absence of immigration of lions from the Serengeti plains into Ngorongoro Crater after 1965. These observations indicate that, although the pathological potential of these viral infections seemed not to be very high in free-ranging lions, relocation of seropositive animals by humans to seronegative lion populations must be considered very carefully.

  1. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    Science.gov (United States)

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    Science.gov (United States)

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. The role of inducer cells in mediating in vitro suppression of feline immunodeficiency virus replication

    International Nuclear Information System (INIS)

    Phadke, Anagha P.; Choi, In-Soo; Li Zhongxia; Weaver, Eric; Collisson, Ellen W.

    2004-01-01

    CD8 + T-cell-mediated suppression of feline immunodeficiency virus (FIV) replication has been described by several groups, although the mechanisms of activation and conditions for viral suppression vary with the methodologies. We have previously reported that CD8 + T-cell-mediated suppression of FIV replication required inducer cell stimulation of the effector cells. The focus of the present study was to examine the essential role of inducer cells required for the induction of this soluble anti-FIV activity. Both FIV-PPR-infected T cells and feline skin fibroblasts (FSF) infected with an alphavirus vector expressing FIV capsid or the irrelevant antigen lacZ, stimulated autologous or heterologous effector cells to produce supernatants that suppressed FIV replication. Thus, induction of this suppression of FIV replication did not strictly require autologous inducer cells and did not require the presence of FIV antigen. Anti-viral activity correlated with the presence of CD8 + T cells. Suppression was maximal when the inducer cells and the effector cells were in contact with each other, because separation of the inducer and effector cells by a 0.45-μm membrane reduced FIV suppression by approximately 50%. These findings emphasize the importance for membrane antigen interactions and cytokines in the optimal induction of effector cell synthesis of the soluble anti-FIV activity

  4. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    International Nuclear Information System (INIS)

    Kim, Seong K.; Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-01-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: → We examine the functional domains of IR2P that mediates negative regulation. → IR2P inhibits at the transcriptional level. → DNA-binding mutant or TFIIB-binding mutant fails to inhibit. → C-terminal aa 707 to 1116 are required for full inhibition. → Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  5. Human cellular restriction factors that target HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2009-09-01

    Full Text Available Abstract Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, bone marrow stromal cell antigen 2 (BST-2, cyclophilin A, tripartite motif protein 5 alpha (Trim5α, and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.

  6. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo

    International Nuclear Information System (INIS)

    Rivera, Angel A.; Wang Minghui; Suzuki, Kaori; Uil, Taco G.; Krasnykh, Victor; Curiel, David T.; Nettelbeck, Dirk M.

    2004-01-01

    The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdΔE1AIL), the early gene E2B (AdΔE2BIL), or the late fiber gene (AdΔfiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdΔE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdΔE1AIL) to six (AdΔfiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdΔE2BIL, AdΔfiberIL, and AdTL. AdΔfiberIL and the parental virus, Ad5-Δ24, resulted in similar cytotoxicity, but AdΔE2BIL and AdΔE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdΔE2BIL and AdΔfiberIL, but substantial for AdΔE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression

  7. A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

    Directory of Open Access Journals (Sweden)

    Mary E. Piper

    2010-03-01

    Full Text Available Rift Valley fever virus (RVFV is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication.

  8. A novel system for identification of inhibitors of rift valley Fever virus replication.

    Science.gov (United States)

    Piper, Mary E; Gerrard, Sonja R

    2010-03-01

    Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication.

  9. INDUCTION OF A SECRETORY IGA RESPONSE IN THE MURINE FEMALE UROGENITAL TRACT BY IMMUNIZATION OF THE LUNGS WITH LIPOSOME-SUPPLEMENTED VIRAL SUBUNIT ANTIGEN

    NARCIS (Netherlands)

    DEHAAN, A; RENEGAR, KB; SMALL, PA; WILSCHUT, J

    This study demonstrates that liposomes administered to the lower respiratory tract of mice have the capacity to stimulate secretory IgA (s-IgA) antibody production in the female urogenital system. Total respiratory tract immunization of mice with influenza virus subunit antigen simply mixed with

  10. IMMUNOGENICITY OF HUMAN MESENCHYMAL STEM CELLS IN HLA-CLASS I RESTRICTED T CELL RESPONSES AGAINST VIRAL OR TUMOR-ASSOCIATED ANTIGENS

    OpenAIRE

    Morandi, Fabio; Raffaghello, Lizzia; Bianchi, Giovanna; Meloni, Francesca; Salis, Annalisa; Millo, Enrico; Ferrone, Soldano; Barnaba, Vincenzo; Pistoia, Vito

    2008-01-01

    Human mesenchymal stem cells (MSC) are immunosuppressive and poorly immunogenic, but may act as antigen-presenting cells (APC) for CD4+ T cell responses; here we have investigated their ability to serve as APC for in vitro CD8+ T cell responses.

  11. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction

    International Nuclear Information System (INIS)

    Mo Hongmei; Konstantinidis, Alex K.; Stewart, Kent D.; Dekhtyar, Tatyana; Ng, Teresa; Swift, Kerry; Matayoshi, Edmund D.; Kati, Warren; Kohlbrenner, William; Molla, Akhteruzzaman

    2004-01-01

    The human immunodeficiency virus type 1 (HIV-1) gp41 plays an important role in mediating the fusion of HIV with host cells. During the fusion process, three N-terminal helices and three C-terminal helices pack in an anti-parallel direction to form a six-helix bundle. X-ray crystallographic analysis of the gp41 core demonstrated that within each coiled-coil interface, there is a deep and large pocket, formed by a cluster of residues in the N-helix coiled-coil. In this report, we systematically analyzed the role of seven conserved residues that are either lining or packing this pocket on the infectivity and interhelical interaction using novel approaches. Our results show that residues L568, V570, W571, and K574 of the N-helix that are lining the side chain and right wall of the pocket are important for establishing a productive infection. Mutations V570A and W571A completely abolished replication, while replication of the L568A and K574A mutants was significantly attenuated relative to wild type. Similarly, residues W628, W631, and I635 of the C-helix that insert into the pocket are essential for infectivity. The impaired infectivity of these seven mutants is in part attributed to the loss in binding affinity of the interhelical interaction. Molecular modeling of the crystal structure of the coiled-coil further shows that alanine substitution of those residues disrupts the hydrophobic interaction between the N- and C-helix. These results suggest that the conserved residues in the coiled-coil domain play a key role in HIV infection and this coiled-coil pocket is a good target for development of inhibitors against HIV. In addition, our data indicate that the novel fluorescence polarization assay described in this study could be valuable in screening for inhibitors that block the interhelical interaction and HIV entry

  12. Anti-N-methyl-D-aspartate receptor encephalitis with serum anti-thyroid antibodies and IgM antibodies against Epstein-Barr virus viral capsid antigen: a case report and one year follow-up

    Directory of Open Access Journals (Sweden)

    Xu Chun-Ling

    2011-11-01

    Full Text Available Abstract Background Anti-N-methyl-D-aspartate receptor encephalitis is an increasingly common autoimmune disorder mediated by antibodies to certain subunit of the N-methyl-D-aspartate receptor. Recent literatures have described anti-thyroid and infectious serology in this encephalitis but without follow-up. Case presentation A 17-year-old Chinese female patient presented with psychiatric symptoms, memory deficits, behavioral problems and seizures. She then progressed through unresponsiveness, dyskinesias, autonomic instability and central hypoventilation during treatment. Her conventional blood work on admission showed high titers of IgG antibodies to thyroglobulin, thyroid peroxidase and IgM antibodies to Epstein-Barr virus viral capsid antigen. An immature ovarian teratoma was found and removal of the tumor resulted in a full recovery. The final diagnosis of anti-N-methyl-D-aspartate receptor encephalitis was made by the identification of anti-N-methyl-D-aspartate receptor antibodies in her cerebral spinal fluid. Pathology studies of the teratoma revealed N-methyl-D-aspartate receptor subunit 1 positive ectopic immature nervous tissue and Epstein-Barr virus latent infection. She was discharged with symptoms free, but titers of anti-thyroid peroxidase and anti-thyroglobulin antibodies remained elevated. One year after discharge, her serum remained positive for anti-thyroid peroxidase and anti-N-methyl-D-aspartate receptor antibodies, but negative for anti-thyroglobulin antibodies and IgM against Epstein-Barr virus viral capsid antigen. Conclusions Persistent high titers of anti-thyroid peroxidase antibodies from admission to discharge and until one year later in this patient may suggest a propensity to autoimmunity in anti- N-methyl-D-aspartate receptor encephalitis and support the idea that neuronal and thyroid autoimmunities represent a pathogenic spectrum. Enduring anti-N-methyl-D-aspartate receptor antibodies from admission to one year

  13. PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, Penaeus monodon, Promoted White Spot Syndrome Virus Replication

    Science.gov (United States)

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410–fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway. PMID:24637711

  14. HIV Viral Load

    Science.gov (United States)

    ... PF4 Antibody Hepatitis A Testing Hepatitis B Testing Hepatitis C Testing HER2/neu Herpes Testing High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV Antiretroviral Drug Resistance Testing, Genotypic HIV Viral Load HLA Testing HLA- ...

  15. Effect of multiple infections with white spot syndrome virus and Vibrio anguillarum on Pacific white shrimp Litopenaeus vannamei (L.): mortality and viral replication.

    Science.gov (United States)

    Jang, I K; Qiao, G; Kim, S-K

    2014-10-01

    Multiple infections are commonly found in practical shrimp culture and may cause more serious consequences than infections by one pathogen only. Therefore, this study was conducted to evaluate the effect of multiple infections with white spot syndrome virus (WSSV) and Vibrio anguillarum on Pacific white shrimp Litopenaeus vannamei (L.), mortality, WSSV replication in vivo and host immune response. In the WSSV single-infection group (WSSV load, 2 × 10(2) copies μL(-1)), mean cumulative mortality was 29.2%. In the V. anguillarum single-infection group, cumulative mortality was 12.5% when shrimp were challenged by 10(5) CFU mL(-1) of bacteria. In the co- and super-infection groups, 37.5% and 50% cumulative mortalities, respectively, were observed at a lower bacterial concentration of 10(3) CFU mL(-1), suggesting that shrimp with multiple infections died earlier and more frequently than singly infected shrimp. WSSV load after injection was tracked over time by TaqMan quantitative PCR. WSSV load increased more rapidly in the multiple-infection groups than in the single-infection group. Additionally, mRNA expression of the genes encoding prophenoloxidase 1 and 2, which are closely involved in innate immunity in shrimp, was down-regulated more extensively in multiple-infection groups than in single-infection groups, as indicated by quantitative reverse-transcription PCR. © 2013 John Wiley & Sons Ltd.

  16. The Consequences of Reconfiguring the Ambisense S Genome Segment of Rift Valley Fever Virus on Viral Replication in Mammalian and Mosquito Cells and for Genome Packaging

    Science.gov (United States)

    Elliott, Richard M.

    2014-01-01

    Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N) protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome. PMID:24550727

  17. Replication, gene expression and particle production by a consensus Merkel Cell Polyomavirus (MCPyV genome.

    Directory of Open Access Journals (Sweden)

    Friederike Neumann

    Full Text Available Merkel Cell Polyomavirus (MCPyV genomes are clonally integrated in tumor tissues of approximately 85% of all Merkel cell carcinoma (MCC cases, a highly aggressive tumor of the skin which predominantly afflicts elderly and immunosuppressed patients. All integrated viral genomes recovered from MCC tissue or MCC cell lines harbor signature mutations in the early gene transcript encoding for the large T-Antigen (LT-Ag. These mutations selectively abrogate the ability of LT-Ag to support viral replication while still maintaining its Rb-binding activity, suggesting a continuous requirement for LT-Ag mediated cell cycle deregulation during MCC pathogenesis. To gain a better understanding of MCPyV biology, in vitro MCPyV replication systems are required. We have generated a synthetic MCPyV genomic clone (MCVSyn based on the consensus sequence of MCC-derived sequences deposited in the NCBI database. Here, we demonstrate that transfection of recircularized MCVSyn DNA into some human cell lines recapitulates efficient replication of the viral genome, early and late gene expression together with virus particle formation. However, serial transmission of infectious virus was not observed. This in vitro culturing system allows the study of viral replication and will facilitate the molecular dissection of important aspects of the MCPyV lifecycle.

  18. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  19. Replication of simian virus 40 in simian virus 40-transformed hamster kidney cells induced by mitomycin C or 60Co γ irradiation

    International Nuclear Information System (INIS)

    Rakusanova, T.; Smales, W.P.; Kaplan, J.C.; Black, P.H.

    1978-01-01

    Several clones of simian virus 40 (SV40)-transformed hamster kidney cells, which are heterogeneous for induction of infectious SV40, have been studied. SV40 yields are low after induction with 60 Co γ irradiation or mitomycin C. In order to clarify the mechanism(s) by which virus is produced in induced cells, we analyzed the replication of viral DNA and production of virion (V) antigen and infectious virus after induction in various clones as well as in lytically infected permissive cells. Cells replicating SV40 DNA or synthesizing V antigen were visualized by in situ hybridization and immunofluorescence techniques, respectively. Only some cells in induced cultures were found to produce SV40 and those which did were less efficient than lytically infected monkey cells. Mitomycin C or 60 Co γ irradiation acted by inducing more cells to replicate virus rather than by increasing the amount of SV40 released from individual cells. A greater proportion of cells could be induced to replicate SV40 DNA than to synthesize V antigen in all induced clones studied. Also, SV40 DNA replication was induced at lower doses of γ irradiation than the production of either V antigen or infectious virus suggesting that synthesis of late virus protein is more restricted in induced cells than is replication of SV40 DNA. These findings indicate that one of the effects of induction treatments on SV40-transformed hamster cells is an enhancement of the cells' capacity to support SV40 replication

  20. Tumour necrosis factor-α stimulates HIV-1 replication in single-cycle infection of human term placental villi fragments in a time, viral dose and envelope dependent manner

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2006-06-01

    Full Text Available Abstract Background The placenta plays an important role in the control of in utero HIV-1 mother-to-child transmission (MTCT. Proinflammatory cytokines in the placental environment are particularly implicated in this control. We thus investigated the effect of TNF-α on HIV-1 expression in human placental tissues in vitro. Results Human placental chorionic villi fragments were infected with varying doses of luciferase reporter HIV-1 pseudotypes with the R5, X4-Env or the vesicular stomatitis virus protein G (VSV-G. Histocultures were then performed in the presence or absence of recombinant human TNF-α. Luciferase activity was measured at different time points in cell lysates or on whole fragments using ex vivo imaging systems. A significant increase in viral expression was detected in placental fragments infected with 0.2 ng of p24 antigen/fragment (P = 0.002 of VSV-G pseudotyped HIV-1 in the presence of TNF-α seen after 120 hours of culture. A time independent significant increase of viral expression by TNF-α was observed with higher doses of VSV-G pseudotyped HIV-1. When placental fragments were infected with R5-Env pseudotyped HIV-1, a low level of HIV expression at 168 hours of culture was detected for 3 of the 5 placentas tested, with no statistically significant enhancement by TNF-α. Infection with X4-Env pseudotyped HIV-1 did not lead to any detectable luciferase activity at any time point in the absence or in the presence of TNF-α. Conclusion TNF-α in the placental environment increases HIV-1 expression and could facilitate MTCT of HIV-1, particularly in an inflammatory context.

  1. Evaluation of envelope glycoprotein E(rns) of an atypical bovine pestivirus as antigen in a microsphere immunoassay for the detection of antibodies against bovine viral diarrhea virus 1 and atypical bovine pestivirus.

    Science.gov (United States)

    Vijayaraghavan, Balaje; Xia, Hongyan; Harimoorthy, Rajiv; Liu, Lihong; Belák, Sándor

    2012-11-01

    Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  3. Influence of plasminogen activator inhibitor-1 (SERPINE1) 4G/5G polymorphism on circulating SERPINE-1 antigen expression in HCC associated with viral infection.

    Science.gov (United States)

    Divella, Rosa; Mazzocca, Antonio; Gadaleta, Cosimo; Simone, Giovanni; Paradiso, Angelo; Quaranta, Michele; Daniele, Antonella

    2012-01-01

    Hepatocarcinogenesis is heavily influenced by chronic hepatitis B (HBV) and C (HCV) infection. Elevated levels of plasminogen activator inhibitor-1 (SERPINE1/PAI-1) have been reported in patients with hepatocellular carcinoma (HCC) associated with viral infection. The gene encoding SERPINE1 is highly polymorphic and the frequently associated 4/5 guanosine (4G/5G) polymorphism in the gene promoter may influence its expression. Here, we investigated the distribution of genotypes and the frequency of alleles of the 4G/5G polymorphism in patients with HCC, the influence of the 4G/5G polymorphism on plasma SERPINE1 levels and its association with viral infection. A total of 75 patients with HCC were enrolled: 32 (42.6%) were HBV(+)/HCV(+), 11 (14.6%) were only HCV(+), and 32 (42.6%) were negative for both viruses. A control group of healthy donors was also enrolled (n=50). SERPINE1 plasma concentrations were determined by ELISA and the detection of the promoter 4G/5G polymorphism was performed by an allele-specific PCR analysis. We found that the frequency of both the 4G/4G genotype (p=0.02) and the 4G allele (p=0.006) were significantly higher in patients with HCC compared to the control group, and particularly higher in patients with HCC co-infected with HBV(+)/HCV(+) than in those with no viral infection. We also found that patients with the 4G/4G genotype had significantly higher plasma SERPINE1 protein levels when compared with patients with the 4G/5G or 5G/5G genotype (p5G SERPINE1 polymorphism with a higher level of SERPINE1 protein in patients with HCC with HBV(+)/HCV(+) than those without infection, suggest the presence of two distinct pathogenic mechanisms in hepatocarcinogenesis, depending on the etiology.

  4. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome.

    Science.gov (United States)

    Szymula, Agnieszka; Palermo, Richard D; Bayoumy, Amr; Groves, Ian J; Ba Abdullah, Mohammed; Holder, Beth; White, Robert E

    2018-02-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells.

  5. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome

    Science.gov (United States)

    Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.

    2018-01-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212

  6. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Science.gov (United States)

    Venkataswamy, Manjunatha M; Ng, Tony W; Kharkwal, Shalu S; Carreño, Leandro J; Johnson, Alison J; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J; Cox, Liam R; Besra, Gurdyal S; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F; Panas, Michael W; Gillard, Geoffrey O; Sixsmith, Jaimie D; Korioth-Schmitz, Birgit; Schmitz, Joern E; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  7. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Directory of Open Access Journals (Sweden)

    Manjunatha M Venkataswamy

    Full Text Available Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag. We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  8. Prevalence of Bovine Viral Diarrhoea Virus antibodies and antigen among the aborted cows in industrial dairy cattle herds in Mashhad area of Iran

    Directory of Open Access Journals (Sweden)

    Naseri, Z.

    2011-06-01

    Full Text Available The measurement of antibody responses of animals exposed to BVDV either through a natural exposure or an immunization protocol is still a standard procedure. For BVDV, the test formats have been largely limited to ELISA which is a valuable diagnostic test to measure the level of BVDV specific antibodies as well as antigen in blood samples. In the present study, 120 blood samples were collected from the cows with the history of abortion in different period of pregnancy from different industrial dairy cattle herds of Mashhad area of Iran. Also 30 samples were collected from the cows with no history of abortion as control. The presence of antibody against BVDV from the 120 serum samples was investigated by indirect ELISA. From 120 serum samples which were collected from aborted cows, 89 samples were positive (%74.16. From these positive samples, 12(13.48%, 54 (60.68% and 23 (25.84% samples belong to the first, second and third trimester of pregnancy, respectively. From 89 positive samples, 12 (13.48% samples were related to stillbirth and 8 (8.99% samples were belongs to the mummified fetus. From 89 positive samples, 71 (79.78% were related to cattle between 2-5 years old and 18 (20.22% were associated to cattle more than 5 years old. In control group, 20 samples (66.66% were antibody positive. Also the presence of BVDV antigen in serum samples was investigated by Ag-capture ELISA. From 120 serum samples, 2 samples were positive (1.67%, which belongs to the second period of pregnancy. In control group, none of the samples were antigen positive. The results of this study showed that the prevalence of BVDV infection is high among the aborted cows of Mashhad area. Although this prevalence is higher than the control group, the observed difference is not significant.

  9. Long-term outcome of hepatitis B e antigen-positive patients with compensated cirrhosis treated with interferon alfa. European Concerted Action on Viral Hepatitis (EUROHEP)

    DEFF Research Database (Denmark)

    Fattovich, G; Giustina, G; Realdi, G

    1997-01-01

    The aim of this study was to evaluate whether interferon alfa (IFN-alpha) treatment-associated virological and biochemical remission improves survival in a cohort of 90 white patients with compensated cirrhosis caused by hepatitis B (Child A) followed for a mean period of 7 years. Inclusion...... criteria were biopsy-proven cirrhosis, hepatitis B e antigen (HBeAg) positivity, abnormal serum aminotransferase levels, exclusion of hepatitis delta virus, and absence of complications of cirrhosis. Of the 40 IFN-treated patients, 27 (67%) showed sustained HBeAg loss with alanine aminotransferase (ALT...

  10. Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses.

    Science.gov (United States)

    Paroni, Moira; Maltese, Virginia; De Simone, Marco; Ranzani, Valeria; Larghi, Paola; Fenoglio, Chiara; Pietroboni, Anna M; De Riz, Milena A; Crosti, Maria C; Maglie, Stefano; Moro, Monica; Caprioli, Flavio; Rossi, Riccardo; Rossetti, Grazisa; Galimberti, Daniela; Pagani, Massimiliano; Scarpini, Elio; Abrignani, Sergio; Geginat, Jens

    2017-09-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. We analyzed CD4 + helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. T H 1/T H 17 central memory (T H 1/T H 17 CM ) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. T H 1/T H 17 CM cells were closely related to conventional T H 17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing T H 1 and T H 1/T H 17 subsets. However, while T H 1 cells responded consistently to viruses, T H 1/T H 17 CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive T H 1/T H 17 CM cells but also blocked virus-specific T H 1 cells. We propose that autoreactive T H 1/T H 17 CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas T H 1 cells perform immune surveillance. Thus the selective targeting of T H 1/T H 17 cells could inhibit relapses without causing John

  11. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  12. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen.

    Science.gov (United States)

    Elgaied, Lamiaa; Salem, Reda; Elmenofy, Wael

    2017-08-01

    DNA encoding the coat protein (CP) of an Egyptian isolate of tomato yellow leaf curl virus (TYLCV) was inserted into the genome of Autographa californica nucleopolyhedrovirus (AcNPV) under the control of polyhedrin promoter. The generated recombinant baculovirus construct harboring the coat protein gene was characterized using PCR analysis. The recombinant coat protein expressed in infected insect cells was used as a coating antigen in an indirect Enzyme-linked immunosorbent assay (ELISA) and dot blot to test its utility for the detection of antibody generated against TYLCV virus particles. The results of ELISA and dot blot showed that the TYLCV-antibodies reacted positively with extracts of infected cells using the recombinant virus as a coating antigen with strong signals as well as the TYLCV infected tomato and beat plant extracts as positive samples. Scanning electron microscope examination showed that the expressed TYLCV coat protein was self-assembled into virus-like particles (VLPs) similar in size and morphology to TYLCV virus particles. These results concluded that, the expressed coat protein of TYLCV using baculovirus vector system is a reliable candidate for generation of anti-CP antibody for inexpensive detection of TYLCV-infected plants using indirect CP-ELISA or dot blot with high specificity.

  13. A novel chromosome region maintenance 1-independent nuclear export signal of the large form of hepatitis delta antigen that is required for the viral assembly.

    Science.gov (United States)

    Lee, C H; Chang, S C; Wu, C H; Chang, M F

    2001-03-16

    Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus, as it requires hepatitis B virus for virion production and transmission. We have previously demonstrated that sequences within the C-terminal 19-amino acid domain flanking the isoprenylation motif of the large hepatitis delta antigen (HDAg-L) are important for virion assembly. In this study, site-directed mutagenesis and immunofluorescence staining demonstrated that in the absence of hepatitis B virus surface antigen (HBsAg), the wild-type HDAg-L was localized in the nuclei of transfected COS7 cells. Nevertheless, in the presence of HBsAg, the HDAg-L became both nuclei- and cytoplasm-distributed in about half of the cells. An HDAg-L mutant with a substitution of Pro-205 to alanine could neither form HDV-like particles nor shift the subcellular localization in the presence of HBsAg. In addition, nuclear trafficking of HDAg-L in heterokaryons indicated that HDAg-L is a nucleocytoplasmic shuttling protein. A proline-rich HDAg peptide spanning amino acid residues 198 to 210, designated NES(HDAg-L), can function as a nuclear export signal (NES) in Xenopus oocytes. Pro-205 is critical for the NES function. Furthermore, assembly of HDV is insensitive to leptomycin B, indicating that the NES(HDAg-L) directs nuclear export of HDAg-L to the cytoplasm via a chromosome region maintenance 1-independent pathway.

  14. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories.

    Directory of Open Access Journals (Sweden)

    Jovan Nikolic

    2016-10-01

    Full Text Available Stress granules (SGs are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1, T-cell intracellular antigen 1 (TIA-1 and poly(A-binding protein (PABP in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs. Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection.

  15. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P

    2009-01-01

    It has recently been demonstrated that a recombinant replication-deficient human adenovirus 5 (Ad5) vector expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) fused to the p31 invariant (Ii) chain confers broad, long-lasting T-cell immunity that completely protects C57BL/6 mice...... with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8(+) T cells. Finally, priming with the naked...

  16. Construction of a hepatitis B virus neutralizing chimeric monoclonal antibody recognizing escape mutants of the viral surface antigen (HBsAg).

    Science.gov (United States)

    Golsaz-Shirazi, Forough; Amiri, Mohammad Mehdi; Farid, Samira; Bahadori, Motahareh; Bohne, Felix; Altstetter, Sebastian; Wolff, Lisa; Kazemi, Tohid; Khoshnoodi, Jalal; Hojjat-Farsangi, Mohammad; Chudy, Michael; Jeddi-Tehrani, Mahmood; Protzer, Ulrike; Shokri, Fazel

    2017-08-01

    Hepatitis B virus (HBV) infection is a global burden on the health-care system and is considered as the tenth leading cause of death in the world. Over 248 million patients are currently suffering from chronic HBV infection worldwide and annual mortality rate of this infection is 686000. The "a" determinant is a hydrophilic region present in all antigenic subtypes of hepatitis B surface antigen (HBsAg), and antibodies against this region can neutralize the virus and are protective against all subtypes. We have recently generated a murine anti-HBs monoclonal antibody (4G4), which can neutralize HBV infection in HepaRG cells and recognize most of the escape mutant forms of HBsAg. Here, we describe the production and characterization of the chimeric human-murine antibody 4G4 (c-4G4). Variable region genes of heavy and light chains of the m-4G4 were cloned and fused to constant regions of human kappa and IgG1 by splice overlap extension (SOE) PCR. The chimeric antibody was expressed in Chinese Hamster Ovary (CHO)-K1 cells and purified from culture supernatant. Competition ELISA proved that both antibodies bind the same epitope within HBsAg. Antigen-binding studies using ELISA and Western blot showed that c-4G4 has retained the affinity and specificity of the parental murine antibody, and displayed a similar pattern of reactivity to 13 escape mutant forms of HBsAg. Both, the parental and c-4G4 showed a comparably high HBV neutralization capacity in cell culture even at the lowest concentration (0.6μg/ml). Due to the ability of c-4G4 to recognize most of the sub-genotypes and escape mutants of HBsAg, this antibody either alone or in combination with other anti-HBs antibodies could be considered as a potent alternative for Hepatitis B immune globulin (HBIG) as an HBV infection prophylactic or for passive immunotherapy against HBV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  18. Diagnóstico rápido de citomegalovirus (CMV en pacientes inmunocomprometidos mediante anticuerpos monoclonales que reconocen proteinas precoces virales Rapid diagnosis of cytomegalovirus infection in immunocompromised patients by using monoclonal antibodies against early viral antigens

    Directory of Open Access Journals (Sweden)

    Maritza Alvarez

    1989-06-01

    Full Text Available Se aplicó la técnica de detección de antigenos precoces fluorescentes (DAPF usando el anticuerpo monoclonal E-13 McAb, mediante el cual se lograron detectar 15 casos positivos a CMV de 75 muestras de orina o sangre ("buffy coat" tomadas de 52 pacientes inmunocomprometidos ingresados en el Instituto de Nefrología de ciudad Habana. Aplicando las técnicas clásicas de aislamiento en fibroblastos humanos diploides (MRC-5, se lograron aislar 12 cepas de CMV de casos previamente positivos por DAPF; lográndose además un aislamiento en una muestra reportada negativa por fluorescencia. Se observó una coincidencia de un 80% entre ambas técnicas. Se detectó la presencia de anticuerpos IgG contra CMV en todos los casos estudiados, utilizando para ello la técnica ELISA.A technique was applied to detect early fluorescent antigens (DEFA of cytomegalovirus (CMV using the E13 monoclonal antibodies in 52 immunocompromised patients hospitalized in the Nephrology Institute of Havana. Of the 75 urine or blood (buffy coat samples taken, 15 were found positive to CMV. Using classical diploide human fibroblast isolation technique, 12 CMV strains were isloation of previously detected positive samples by DEFA. In addition, CMV was isolated from one sample reported to be negative by DEFA. A coincidence of 80% was found between both techniques. With the ELISA test, all the sample studied have IgG antibodies to CMV.

  19. Hepatitis B surface antigen titer is a good indicator of durable viral response after entecavir off-treatment for chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Han Ah Lee

    2016-09-01

    Full Text Available Background/Aims Clear indicators for stopping antiviral therapy in chronic hepatitis B (CHB patients are not yet available. Since the level of hepatitis B surface antigen (HBsAg is correlated with covalently closed circular DNA, the HBsAg titer might be a good indicator of the off-treatment response. This study aimed to determine the relationship between the HBsAg titer and the entecavir (ETV off-treatment response. Methods This study analyzed 44 consecutive CHB patients (age, 44.6±11.4 years, mean±SD; men, 63.6%; positive hepatitis B envelope antigen (HBeAg at baseline, 56.8%; HBV DNA level, 6.8±1.3 log10 IU/mL treated with ETV for a sufficient duration and in whom treatment was discontinued after HBsAg levels were measured. A virological relapse was defined as an increase in serum HBV DNA level of >2000 IU/mL, and a clinical relapse was defined as a virological relapse with a biochemical flare, defined as an increase in the serum alanine aminotransferase level of >2 × upper limit of normal. Results After stopping ETV, virological relapse and clinical relapse were observed in 32 and 24 patients, respectively, during 20.8±19.9 months of follow-up. The cumulative incidence rates of virological relapse were 36.2% and 66.2%, respectively, at 6 and 12 months, and those of clinical relapse were 14.3% and 42.3%. The off-treatment HBsAg level was an independent factor associated with clinical relapse (hazard ratio, 2.251; 95% confidence interval, 1.076–4.706; P=0.031. When patients were grouped according to off-treatment HBsAg levels, clinical relapse did not occur in patients with an off-treatment HBsAg level of ≤2 log10 IU/mL (n=5, while the incidence rates of clinical relapse at 12 months after off-treatment were 28.4% and 55.7% in patients with off-treatment HBsAg levels of >2 and ≤3 log10 IU/mL (n=11 and >3 log10 IU/mL (n=28, respectively. Conclusion The off-treatment HBsAg level is closely related to clinical relapse after treatment

  20. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Directory of Open Access Journals (Sweden)

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  1. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    International Nuclear Information System (INIS)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit; Kundu, Chanakya N.; Verma, Subhash C.; Choudhuri, Tathagata

    2014-01-01

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways

  2. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Kundu, Chanakya N. [School of Biotechnology, KIIT University, Bhubaneswar (India); Verma, Subhash C. [Department of Microbiology and Immunology, University of Nevada, School of Medicine, Reno, NV 89557 (United States); Choudhuri, Tathagata, E-mail: tatha@ils.res.in [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Department of Biotechnology, Siksha Bhavana, Visva Bharati, Santiniketan, Bolpur (India)

    2014-01-05

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.

  3. Contribution of viral recombinants to the study of the immune response against the Epstein-Barr virus.

    Science.gov (United States)

    Delecluse, Henri-Jacques; Feederle, Regina; Behrends, Uta; Mautner, Josef

    2008-12-01

    Over the past two decades, Epstein-Barr virus (EBV) mutants have become valuable tools for the analysis of viral functions. Several experimental strategies are currently used to generate recombinant mutant genomes that carry alterations in one or several viral genes. The probably most versatile approach utilizes bacterial artificial chromosomes (BAC) carrying parts or the whole EBV genome, which permits extensive genetic manipulations in Escherichia coli cells. The 'mini-EBVs', for example, which contain roughly half of the wild type viral information, efficiently transform primary B cells and have been used as gene vectors for foreign antigens. After expression in lymphoblastoid cell lines (LCLs), these antigens are efficiently presented on MHC molecules and recognized by antigen-specific T cells. These vectors, however, cannot undergo lytic replication and require a helper cell line for efficient replication and DNA packaging. Further experimental systems include the complete viral genome cloned onto a BAC. These mutants can typically be complemented by expression plasmids, some of which are expressed on EBV-derived vectors and can be propagated without requirement of a helper cell line. Over the last years, these viral recombinants have been utilized increasingly to analyse different aspects of the immune response against EBV. Immunological applications are manifold and steadily growing and include crude screening of T cell clones for their specificity towards latent versus lytic antigens, or more detailed analyses in which the exact specificity of T cells is determined using EBV mutants that lack a single viral antigen. Other applications include detailed analysis of protein domains important for immune recognition, e.g. Gly-Ala repeats in the EBV nuclear antigen 1 (EBNA1) protein, expansion of T cell clones directed against virion structures using virus-like particles and phenotypic analysis of virus mutants defective in infection. Future developments might

  4. Binding of the heterogeneous ribonucleoprotein K (hnRNP K to the Epstein-Barr virus nuclear antigen 2 (EBNA2 enhances viral LMP2A expression.

    Directory of Open Access Journals (Sweden)

    Henrik Gross

    Full Text Available The Epstein-Barr Virus (EBV -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively. EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2 Type 1. The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3 which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K. Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.

  5. Viral Meningitis

    Science.gov (United States)

    ... better from treatment such as an antiviral medicine. Antibiotics do not help viral infections, so they are not useful in the treatment of viral meningitis. However, antibiotics do fight bacteria, so they are very important ...

  6. Pharyngitis - viral

    Science.gov (United States)

    ... throat is due to a viral infection. The antibiotics will not help. Using them to treat viral infections helps bacteria become resistant to antibiotics. With some sore throats (such as those caused ...

  7. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  8. Distributional Replication

    OpenAIRE

    Beare, Brendan K.

    2009-01-01

    Suppose that X and Y are random variables. We define a replicating function to be a function f such that f(X) and Y have the same distribution. In general, the set of replicating functions for a given pair of random variables may be infinite. Suppose we have some objective function, or cost function, defined over the set of replicating functions, and we seek to estimate the replicating function with the lowest cost. We develop an approach to estimating the cheapest replicating function that i...

  9. Replication Catastrophe

    DEFF Research Database (Denmark)

    Toledo, Luis; Neelsen, Kai John; Lukas, Jiri

    2017-01-01

    Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA...... breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication...... checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under...

  10. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    Science.gov (United States)

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the

  11. Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses

    Directory of Open Access Journals (Sweden)

    Zhou Bin

    2005-04-01

    Full Text Available Abstract Background Flaviviruses, which include Dengue (DV and West Nile (WN, mutate in response to immune system pressure. Identifying escape mutants, variant progeny that replicate in the presence of neutralizing antibodies, is a common way to identify functionally important residues of viral proteins. However, the mutations typically occur at variable positions on the viral surface that are not essential for viral replication. Methods are needed to determine the true targets of the neutralizing antibodies. Results Stereophysicochemical variability plots (SVPs, 3-D images of protein structures colored according to variability, as determined by our PCPMer program, were used to visualize residues conserved in their physical chemical properties (PCPs near escape mutant positions. The analysis showed 1 that escape mutations in the flavivirus envelope protein are variable residues by our criteria and 2 two escape mutants found at the same position in many flaviviruses sit above clusters of conserved residues from different regions of the linear sequence. Conservation patterns in T-cell epitopes in the NS3- protease suggest a similar mechanism of immune system evasion. Conclusion The SVPs add another dimension to structurally defining the binding sites of neutralizing antibodies. They provide a useful aid for determining antigenically important regions and designing vaccines.

  12. A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

    OpenAIRE

    Piper, Mary E.; Gerrard, Sonja R.

    2010-01-01

    Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly ...

  13. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  14. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  15. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  16. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins. PMID:28713333

  17. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    OpenAIRE

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. Th...

  18. Rapid and highly fieldable viral diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.

    2016-12-20

    The present invention relates to a rapid, highly fieldable, nearly reagentless diagnostic to identify active RNA viral replication in a live, infected cells, and more particularly in leukocytes and tissue samples (including biopsies and nasal swabs) using an array of a plurality of vertically-aligned nanostructures that impale the cells and introduce a DNA reporter construct that is expressed and amplified in the presence of active viral replication.

  19. Effect of cell culture system on the production of human viral antigens Efeito do sistema de cultura celular na produção de antígenos virais humanos

    Directory of Open Access Journals (Sweden)

    Ronaldo Zucatelli Mendonça

    2004-06-01

    Full Text Available A comparative study was performed in the production of different viral antigens by using microcarrier systems and traditional systems. Vero, BHK and MA 104 cells were cultivated in microcarriers (2mg/ml using a bioreactor with a working capacity of 3.7 liters, in parallel with conventional Roux bottles. After four days (BHK cells, and seven days of culture (Vero and MA-104 cells, the cells were infected with 0.1 MOI (multiplicity of infection of rabies virus, measles virus, poliovirus and rotavirus. The yields of the cells and virus in microcarriers and in the conventional system were determined. It was observed that in the microcarrier system, an average increase of twenty-fold more cells/ml was obtained in relation to the conventional monolayer culture, using Roux bottle. On the other hand, cells grown in Roux bottles presented 1.3 to 6.7 more viruses/ml culture than those in the microcarrier systems. However, the overall data showed that yieldings, in terms of viruses per batch, were statistically similar for both systems (p > 0.05. The amount of viral antigen production seems to depend not only on cell concentration, but also on other culture factors such as the characteristic of the cell-growth surface. Thus, the present findings provide a baseline for further improvements and strategies to be established for a scaling-up virus production since depending on the type of virus the optimal conditions found for a small-scale virus production seem unsuitable for large-scale production, requiring new standardization and evaluation.Foi realizado estudo comparativo na produção de diferentes antígenos virais usando sistema de microcarregador e sistema tradicional. Células Vero, BHK e MA-104 foram cultivadas em microcarregadores (2mg/ml utilizando-se biorreatores com capacidade de 3,7 litros e, em paralelo, no sistema convencional com garrafas Roux. Após quatro dias de cultura para as células BHK e sete dias para as células Vero e MA-104, as c

  20. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  1. Detection of PMTV Using Polyclonal Antibodies Raised Against a Capsid-Specific Peptide Antigen / Detección de PMTV Utilizando Anticuerpos Policlonales Contra un Péptido Antigénico Derivado de la Cápside Viral

    Directory of Open Access Journals (Sweden)

    Yuliana Gallo García

    2013-12-01

    Full Text Available Potato mop-top virus (PMTV; genus Pomovirus;family Virgaviridae is the causing agent of the spraing disease in potato (Solanum tuberosum. PMTV is transmitted by Spongospora subterranea f. sp. subterranea (Sss. This disease has a widespread distribution in potato growing regions around the world. The possibility of obtaining strain specific antibodies at low cost can greatly increase the sensitivity and use of serological tests in seed certification programs, plant breeding and quarantine regulations to avoid dissemination of this injurious virus. This work presents an alternative procedure for the production of PMTV specific antibodies useful in serological test such as ELISAand lateral flow. In contrast to standard methods requiring theisolation of viral particles or expression of recombinant capsid, this method uses peptides mimicking the N-terminal region of PMTV capsid protein as antigen for the production of specific polyclonal antibodies. The antibodies were tested against bait plants grown in soil infested with viruliferous Sss, as well as potato plants obtained from naturally Sss infested fields in Colombia. PMTV was detected in 9/14 and 24/28 foliage samples of N. benthamiana and S. phureja, respectively. In the case of field plants, the virus wasdetected in eight out of 12 root tissues evaluated. The minimumpeptide concentration detected by ELISA was of the order of 0.1 nM. / Potato mop-top virus (PMTV; género Pomovirus; familia Virgaviridae es transmitido por Spongospora subterranea f. sp. subterranea (Sss, agente causal de la sarna polvosa de la papa. Esta enfermedad tiene una amplia distribución en las regiones cultivadoras de papa alrededor del mundo. La posibilidad de obtener anticuerpos específicos contra cepas de este virus, puede incrementar la sensibilidad y la utilización de pruebas serológicas en programas de certificación de semilla, mejoramiento genético y regulaciones cuarentenarias que eviten su diseminaci

  2. Vaccines prepared from translation products of cloned viral genes

    International Nuclear Information System (INIS)

    Patzer, J.; Obijeski, J.F.

    1985-01-01

    With the advent of recombinant DNA (rDNA) techniques and their application to viruses for vaccine research, there has been an explosion of information about the molecular structure and replication of many viruses. rDNA technology in conjunction with several other emerging technologies, e.g. monoclonal antibodies, solid phase synthesis of peptides and prediction of protein conformation on the basis of amino acid sequence, has provided a powerful battery of techniques that in many cases has allowed the identification of specific sites on the virion surface that elicit neutralizing antibodies. Knowledge of these sites allows one to design a subunit vaccine that utilizes one of the virion proteins or regions of a particular protein in the absence of any other viral proteins or the viral nucleic acid. The advantages of this approach are: that there are no potentially infectious agents contained in the vaccine if the inactivation procedure is incomplete, there is less chance of complications from the vaccine due to nonessential viral components in the vaccine, a purified protein or polypeptide is usually more stable than virus particles during storage, and many times larger quanitities of an antigen can be produced by rDNA techniques than by classical vaccine methods

  3. Viral Marketing

    OpenAIRE

    Sorina Raula Gîrboveanu; Silvia Puiu

    2008-01-01

    With consumers showing increasing resistance to traditional forms of advertising such as TV or newspaper ads, marketers have turned to alternate strategies, including viral marketing. Viral marketing exploits existing social networks by encouraging customers to share product information with their friends.In our study we are able to directly observe the effectiveness of person to person word of mouth advertising for hundreds of thousands of products for the first time

  4. Viral-Associated GN: Hepatitis C and HIV.

    Science.gov (United States)

    Kupin, Warren L

    2017-08-07

    Viruses are capable of inducing a wide spectrum of glomerular disorders that can be categorized on the basis of the duration of active viremia: acute, subacute, or chronic. The variable responses of the adaptive immune system to each time period of viral infection results mechanistically in different histologic forms of glomerular injury. The unique presence of a chronic viremic carrier state with either hepatitis C (HCV) or HIV has led to the opportunity to study in detail various pathogenic mechanisms of viral-induced glomerular injury, including direct viral infection of renal tissue and the development of circulating immune complexes composed of viral antigens that deposit along the glomerular basement membrane. Epidemiologic data show that approximately 25%-30% of all HIV patients are coinfected with HCV and 5%-10% of all HCV patients are coinfected with HIV. This situation can often lead to a challenging differential diagnosis when glomerular disease occurs in this dual-infected population and requires the clinician to be familiar with the clinical presentation, laboratory workup, and pathophysiology behind the development of renal disease for both HCV and HIV. Both of these viruses can be categorized under the new classification of infection-associated GN as opposed to being listed as causes of postinfectious GN as has previously been applied to them. Neither of these viruses lead to renal injury after a latent period of controlled and inactive viremia. The geneses of HCV- and HIV-associated glomerular diseases share a total dependence on the presence of active viral replication to sustain renal injury so the renal disease cannot be listed under "postinfectious" GN. With the new availability of direct-acting antivirals for HCV and more effective combined antiretroviral therapy for HIV, successful remission and even regression of glomerular lesions can be achieved if initiated at an early stage. Copyright © 2017 by the American Society of Nephrology.

  5. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.

    Science.gov (United States)

    Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker

    2015-11-01

    It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  6. Valuable Virality

    NARCIS (Netherlands)

    Akpinar, E.; Berger, Jonah

    2017-01-01

    Given recent interest in social media, many brands now create content that they hope consumers will view and share with peers. While some campaigns indeed go “viral,” their value to the brand is limited if they do not boost brand evaluation or increase purchase. Consequently, a key question is how

  7. Viral hepatitis

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Bukh, Jens

    2013-01-01

    With millions of humans infected yearly with HCV, leading to cirrhosis and cancer, a vaccine is urgently needed. Cultured virus particles constitute the antigen in most antiviral vaccines. A study in mice demonstrated induction of neutralizing antibodies by immunization with cell-culture-derived ...

  8. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    Science.gov (United States)

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  9. APLASTIC ANEMIA AND VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    Laura Cudillo

    2009-11-01

    Liver histology is characterized by T cell infiltrating the parenchyma as reported in acute hepatitis. Recently in HAA it has been demonstrated intrahepatic  and blood lymphocytes with  T cell repertoire similar to that of confirmed viral acute hepatitis. The expanded T cell clones return to a normal distribution after response to immunosuppressive treatment, suggesting the antigen or T cell clearance. Therapeutic options are the same as acquired aplastic anemia.

  10. In vitro replication of poliovirus

    International Nuclear Information System (INIS)

    Lubinski, J.M.

    1986-01-01

    Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis of the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' 32 P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed

  11. [Immunotherapy for refractory viral infections].

    Science.gov (United States)

    Morio, Tomohiro; Fujita, Yuriko; Takahashi, Satoshi

    Various antiviral agents have been developed, which are sometimes associated with toxicity, development of virus-resistant strain, and high cost. Virus-specific T-cell (VST) therapy provides an alternative curative therapy that can be effective for a prolonged time without eliciting drug resistance. VSTs can be directly separated using several types of capture devices and can be obtained by stimulating peripheral blood mononuclear cells with viral antigens (virus, protein, or peptide) loaded on antigen-presenting cells (APC). APC can be transduced with virus-antigen coding plasmid or pulsed with overlapping peptides. VST therapy has been studied in drug non-responsive viral infections after hematopoietic cell transplantation (HCT). Several previous studies have demonstrated the efficacy of VST therapy without significant severe GVHD. In addition, VSTs from a third-party donor have been prepared and administered for post-HCT viral infection. Although target viruses of VSTs include herpes virus species and polyomavirus species, a wide variety of pathogens, such as papillomavirus, intracellular bacteria, and fungi, can be treated by pathogen-specific T-cells. Perhaps, these specific T-cells could be used for opportunistic infections in other immunocompromised hosts in the near future.

  12. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  13. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  14. Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells

    International Nuclear Information System (INIS)

    Mu, Yang; Li, Liangliang; Zhang, Beibei; Huang, Baicheng; Gao, Jiming

    2015-01-01

    Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5 Δ84-96 (aa 84-96 deletion), and GP5 Δ97-119 (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5 Δ97-119 , but not full-length or GP5 Δ84-96 , induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5 Δ84-96 inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5 Δ97-119 expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5 Δ84-96 was significantly inhibited

  15. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée; Choumet, Valérie

    2017-08-04

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti . The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.

  16. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness.

    Directory of Open Access Journals (Sweden)

    Luke Uebelhoer

    2008-09-01

    Full Text Available Mechanisms by which hepatitis C virus (HCV evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA class I-restricted epitopes targeted by CD8(+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC anchor and T cell receptor (TCR contact residues. Only one of these amino acid substitutions at position 9 (P9 of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7 TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily

  17. The Lysine Residues within the Human Ribosomal Protein S17 Sequence Naturally Inserted into the Viral Nonstructural Protein of a Unique Strain of Hepatitis E Virus Are Important for Enhanced Virus Replication

    Science.gov (United States)

    Kenney, Scott P.

    2015-01-01

    ABSTRACT Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Due largely to the lack of an efficient cell culture system for HEV, the molecular mechanisms of HEV replication and pathogenesis are poorly understood. Recently, a unique genotype 3 strain of HEV recovered from a chronically infected patient was adapted for growth in HepG2C3A human hepatoma cells. The adaptation of the Kernow C-1 P6 HEV to propagate in HepG2C3A cells selected for a rare virus recombinant that contains an insertion of a 171-nucleotide sequence encoding amino acids 21 to 76 of the human ribosomal protein S17 (RPS17) within the hypervariable region (HVR) of the HEV ORF1 protein. When the RPS17 insertion was placed into a strain of genotype 1 HEV which infects only humans, it expanded the host range of the virus, allowing it to infect cell lines from multiple animal species, including cow, dog, cat, chicken, and hamster. In this study, we utilized forward and reverse genetics to attempt to define which aspects of the RPS17 insertion allow for the ability of the Kernow C-1 P6 HEV to adapt in cell culture and allow for expanded host tropism. We demonstrate that the RPS17 sequence insertion in HEV bestows novel nuclear/nucleolar trafficking capabilities to the ORF1 protein of Kernow P6 HEV and that lysine residues within the RPS17 insertion, but not nuclear localization of the ORF1 protein, correlate with the enhanced replication of the HEV Kernow C-1 P6 strain. The results from this study have important implications for understanding the mechanism of cross-species infection and replication of HEV. IMPORTANCE HEV is an important pathogen worldwide. The virus causes high mortality (up to 30%) in pregnant women and has been recognized to cause chronic hepatitis in immunocompromised populations. The life cycle of HEV has been understudied due to a lack of sufficient cell culture systems in which to propagate the virus. Recently, insertions and rearrangements of the

  18. Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Takahiro Kawagishi

    2016-02-01

    Full Text Available Nelson Bay orthoreoviruses (NBVs are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics.

  19. NYVAC vector modified by C7L viral gene insertion improves T cell immune responses and effectiveness against leishmaniasis.

    Science.gov (United States)

    Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M

    2016-07-15

    The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Viral Evasion of Natural Killer Cell Activation.

    Science.gov (United States)

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  1. Viral Evasion of Natural Killer Cell Activation

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-04-01

    Full Text Available Natural killer (NK cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  2. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  3. Murine leukemia virus (MLV replication monitored with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Bittner Alexandra

    2004-12-01

    Full Text Available Abstract Background Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results We inserted the coding sequences for green fluorescent protein (GFP into the proline-rich region (PRR of the ecotropic envelope protein (Env and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.

  4. Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV Vulnerable to Clearance by CD8 T Cells

    Directory of Open Access Journals (Sweden)

    Julia A. Sung

    2017-09-01

    Full Text Available Latently human immunodeficiency virus (HIV-infected cells are transcriptionally quiescent and invisible to clearance by the immune system. To demonstrate that the latency reversing agent vorinostat (VOR induces a window of vulnerability in the latent HIV reservoir, defined as the triggering of viral antigen production sufficient in quantity and duration to allow for recognition and clearance of persisting infection, we developed a latency clearance assay (LCA. The LCA is a quantitative viral outgrowth assay (QVOA that includes the addition of immune effectors capable of clearing cells expressing viral antigen. Here we show a reduction in the recovery of replication-competent virus from VOR exposed resting CD4 T cells following addition of immune effectors for a discrete period. Take home message: VOR exposure leads to sufficient production of viral protein on the cell surface, creating a window of vulnerability within this latent reservoir in antiretroviral therapy (ART-suppressed HIV-infected individuals that allows the clearance of latently infected cells by an array of effector mechanisms.

  5. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  6. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  7. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    Science.gov (United States)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  8. Ultrastructural Characterization of Zika Virus Replication Factories

    Directory of Open Access Journals (Sweden)

    Mirko Cortese

    2017-02-01

    Full Text Available Summary: A global concern has emerged with the pandemic spread of Zika virus (ZIKV infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs. Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton. : Cortese et al. show that ZIKV infection in both human hepatoma and neuronal progenitor cells induces drastic structural modification of the cellular architecture. Microtubules and intermediate filaments surround the viral replication factory composed of vesicles corresponding to ER membrane invagination toward the ER lumen. Importantly, alteration of microtubule flexibility impairs ZIKV replication. Keywords: Zika virus, flavivirus, human neural progenitor cells, replication factories, replication organelles, microtubules, intermediate filaments, electron microscopy, electron tomography, live-cell imaging

  9. Effect of low-dose gamma radiation on HIV replication in human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada); Conway, B. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada)]|[British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada). Dept. of Medicine; Montaner, J.S.G. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada)]|[British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada). Dept. of Medicine]|[Canadian HIV Trials Network, Vancouver (Canada); O`Shaughnessy, M.V. [British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada)]|[British Columbia Centre for Excellence in HIV/AIDS, British Columbia (Canada). Faculty of Medicine]|[Canadian HIV Trials Network, Vancouver (Canada); Greenstock, C.L. [AECL Research, Chalk River, Ontario (Canada). Radiation Biology and Health Physics Branch

    1996-08-01

    Recent studies have demonstrated that UV light and x-irradiation enhance human immunodeficiency virus (HIV) gene expression. There are few published data on related effects of {gamma}-radiation. This may be of clinical relevance, as radiotherapy has been used extensively for the treatment of acquired immunodeficiency syndrome associated conditions. We have studied the effects of {gamma}-radiation on HIV replication in mono-nuclear cells (MC). These cells were obtained from five seronegative healthy donors, exposed to 0-200 cGy {gamma}-radiation, stimulated with phytohemagglutinin-P (PHA-P) for 24 h, infected with a laboratory strain of HIV (HTLV-IIIB, multiplicity of infection = 0.001), then carried in culture for 14 days. Overall, when considering p24 antigen levels on days 7 and 11 in cultures established from cells exposed to 50 cGy, the maximal levels were significantly higher than those measured in the parallel control cultures taken as a whole (P < 0.05), with viral replication enhanced as much as 1000-fold in one case. No significant cytotoxicity was observed following exposure to doses up to 50 cGy. The mechanism of the observed effect remains unknown but may relate to direct gene activation and/or free radical generation, leading to such activation. To date, there is no evidence that viral stimulation occurs following therapeutic radiation in a clinical setting. (author).

  10. Effect of low-dose gamma radiation on HIV replication in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Xu, Y.; Conway, B.; O'Shaughnessy, M.V.; Greenstock, C.L.

    1996-01-01

    Recent studies have demonstrated that UV light and x-irradiation enhance human immunodeficiency virus (HIV) gene expression. There are few published data on related effects of γ-radiation. This may be of clinical relevance, as radiotherapy has been used extensively for the treatment of acquired immunodeficiency syndrome associated conditions. We have studied the effects of γ-radiation on HIV replication in mono-nuclear cells (MC). These cells were obtained from five seronegative healthy donors, exposed to 0-200 cGy γ-radiation, stimulated with phytohemagglutinin-P (PHA-P) for 24 h, infected with a laboratory strain of HIV (HTLV-IIIB, multiplicity of infection = 0.001), then carried in culture for 14 days. Overall, when considering p24 antigen levels on days 7 and 11 in cultures established from cells exposed to 50 cGy, the maximal levels were significantly higher than those measured in the parallel control cultures taken as a whole (P < 0.05), with viral replication enhanced as much as 1000-fold in one case. No significant cytotoxicity was observed following exposure to doses up to 50 cGy. The mechanism of the observed effect remains unknown but may relate to direct gene activation and/or free radical generation, leading to such activation. To date, there is no evidence that viral stimulation occurs following therapeutic radiation in a clinical setting. (author)

  11. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  12. The Ins and Outs of Viral Infection: Keystone Meeting Review

    Directory of Open Access Journals (Sweden)

    Sara W. Bird

    2014-09-01

    Full Text Available Newly observed mechanisms for viral entry, assembly, and exit are challenging our current understanding of the replication cycle of different viruses. To address and better understand these mechanisms, a Keystone Symposium was organized in the snowy mountains of Colorado (“The Ins and Outs of Viral Infection: Entry, Assembly, Exit, and Spread”; 30 March–4 April 2014, Beaver Run Resort, Breckenridge, Colorado, organized by Karla Kirkegaard, Mavis Agbandje-McKenna, and Eric O. Freed. The meeting served to bring together cell biologists, structural biologists, geneticists, and scientists expert in viral pathogenesis to discuss emerging mechanisms of viral ins and outs. The conference was organized around different phases of the viral replication cycle, including cell entry, viral assembly and post-assembly maturation, virus structure, cell exit, and virus spread. This review aims to highlight important topics and themes that emerged during the conference.

  13. Inhibition of HSV-1 replication by laser diode-irradiation: possible mechanism of action.

    Science.gov (United States)

    Donnarumma, G; De Gregorio, V; Fusco, A; Farina, E; Baroni, A; Esposito, V; Contaldo, M; Petruzzi, M; Pannone, G; Serpico, R

    2010-01-01

    Herpes labialis are the most frequent clinical manifestations of HSV-1 infection. Epithelial cells are able to respond to HSV-1 presence inducing the expression of IL-6, IL-1, TNF-α and IL-8. These proinflammatory cytokines have a function in the acute-phase response mediation, chemotaxis, inflammatory cell activation and antigen-presenting cells. In the human epithelial cell models, it has been demonstrated that, after an early induction of proinflammatory host response, HSV-1 down-modulates the proinflammatory cytokine production through the accumulation of two viral proteins, ICP4 and ICP27, whose transcription is induced by tegument protein VP16. These viral proteins, through the decreasing of stabilizing the mRNAs of proinflammatory genes, delay cytokine production to an extent that allows the virus to replicate. Moreover, viral transactivating proteins, ICP-0 and VP-16 induce IL-10 expression. The conventional treatment of herpes labialis involves the topical and systemic use of antiviral drugs but it is necessary to find new therapies that can act in a selective and non-cytotoxic manner in viral infection. Laser diode therapy has been considered as a non-invasive alternative treatment to the conventional treatment of herpes labialis in pain therapy, in modulation of inflammation and in wound healing. This study aims to report a possible mechanism of action of laser diode irradiation in prevention and reduction of severity of labial manifestations of herpes labialis virus. We investigated, in an in vitro model of epithelial cells HaCat, the laser-effect on HSV-1 replication and we evaluated the modulation of expression of certain proinflammatory cytokines (TNF-α, IL-1β and IL-6), antimicrobial peptide HBD2, chemokine IL-8 and the immunosuppressive cytokine, IL-10. Our results lead us to hypothesize that LD-irradiation acts in the final stage of HSV-1 replication by limiting viral spread from cell to cell and that laser therapy acts also on the host immune

  14. The laboratory diagnosis of acute viral hepatitis

    African Journals Online (AJOL)

    defined level and is thus indicative of recent infection as IgM anti-HBc may persist in low titres for a prolonged period. SAMJ. ARTICLES. Detection of HBeAg in the serum is important in the clinical evaluation of a patient with HBV infection as it usually correlates with viral replication, active liver damage and infectivity.3 ...

  15. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  16. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  17. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    Science.gov (United States)

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and

  18. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    Directory of Open Access Journals (Sweden)

    Jill A Dembowski

    2015-05-01

    Full Text Available Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics

  19. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation.

    Science.gov (United States)

    Heilingloh, Christiane S; Kummer, Mirko; Mühl-Zürbes, Petra; Drassner, Christina; Daniel, Christoph; Klewer, Monika; Steinkasserer, Alexander

    2015-11-01

    Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human

  20. Identification of the determinants of efficient Pestivirus replication

    OpenAIRE

    Risager, Peter Christian; Belsham, Graham; Rasmussen, Thomas Bruun

    2013-01-01

    The key for the survival of a virus is to copy its own genome into progeny genomes that allows continued reproduction. The mechanism behind this "copy function" or "replication" is a wellorganized process that involves the formation of a replication complex in the cell and interactions between the viral proteins. The replication process in single-stranded RNA viruses of positive polarity requires a particular enzyme, an RNA dependent RNA polymerase, that has no direct counterpart elsewhere in...

  1. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  2. A competitive-inhibiton radioimmunoassay for influenza virus envelope antigens

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Vareckova, E.; Polakova, K.

    1976-01-01

    A double-antibody competitive-inhibition radioimmunoassay for influenza virus envelope antigens is described. A viral antigen preparation from influenza A virus recombinant MRC11 [antigenically identical to A/Port Chalmers/1/73 (H3N2)] consisting of haemagglutinin and neuraminidase was labelled with radioiodine. Rabbit antisera were allowed to react with the labelled antigen and the resultant antigen-antibody complexes were precipitated with the appropriate antiglobulin. The competitive-inhibition radioimmunoassay very sensitively elucidated differences even among closely related influenza virus strains. Attempts have been made to eliminate neuraminidase from radioimmunoprecipitation to obtain a competitive-inhibition radioimmunoassay system for haemagglutinin alone. (author)

  3. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence.

    Directory of Open Access Journals (Sweden)

    Subhash C Verma

    Full Text Available Kaposi's sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi's sarcoma (KS, Primary Effusion Lymphoma (PEL and Multicentric Castleman's Disease (MCD. KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA. LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs. We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET to demonstrate their association.

  4. Reactivation of DNA replication of the parvovirus MVM in UV preirradiated mouse cells

    Energy Technology Data Exchange (ETDEWEB)

    Vos, J.M.; Rommelaere, J. (Universite Libre de Bruxelles, Rhode-St-Genese (Belgium))

    1982-07-01

    The parvovirus Minute-Virus-of-Mice (MVM) was used to probe the DNA replication activities expressed by mouse fibroblasts. This system allowed us to study quantitatively the effect of UV-induced DNA lesions on the progression of DNA replication in vivo. MVM was UV-irradiated prior to infection. Pyrimidine dimers induced in the viral genome account for the reduced level of intracellular viral DNA synthesis, assuming that most of these lesions block viral DNA replication in unirradiated cells. The inhibition of damaged MVM DNA synthesis is less severe if the host cells themselves are irradiated prior to virus infection. This stimulation of viral DNA replication in pretreated cells might account for the UV-enhanced viral reactivation phenomenon, i.e. the increased survival of nuclear-replicating viruses propagated in cells preexposed to various genotoxic agents.

  5. Reactivation of DNA replication of the parvovirus MVM in UV preirradiated mouse cells

    International Nuclear Information System (INIS)

    Vos, J.M.; Rommelaere, Jean

    1982-01-01

    The parvovirus Minute-Virus-of-Mice (MVM) was used to probe the DNA replication activities expressed by mouse fibroblasts. This system allowed us to study quantitatively the effect of UV-induced DNA lesions on the progression of DNA replication in vivo. MVM was UV-irradiated prior to infection. Pyrimidine dimers induced in the viral genome account for the reduced level of intracellular viral DNA synthesis, assuming that most of these lesions block viral DNA replication in unirradiated cells. The inhibition of damaged MVM DNA synthesis is less severe if the host cells themselves are irradiated prior to virus infection. This stimulation of viral DNA replication in pretreated cells might account for the UV-enhanced viral reactivation phenomenon, i.e. the increased survival of nuclear-replicating viruses propagated in cells preexposed to various genotoxic agents [fr

  6. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    /1968 virus from its putative human and avian precursors. We show that the avian PB1 segment increased activity of the viral polymerase and facilitated viral replication. Our results suggest that in addition to the acquisition of antigenically novel HA (i.e., antigenic shift), enhanced viral polymerase activity is required for the emergence of pandemic influenza viruses from their seasonal human precursors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells.

    Science.gov (United States)

    Strang, Blair L

    2015-02-01

    In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus. © 2015 The Authors.

  8. Prelife catalysts and replicators

    OpenAIRE

    Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Life is based on replication and evolution. But replication cannot be taken for granted. We must ask what there was prior to replication and evolution. How does evolution begin? We have proposed prelife as a generative system that produces information and diversity in the absence of replication. We model prelife as a binary soup of active monomers that form random polymers. ‘Prevolutionary’ dynamics can have mutation and selection prior to replication. Some sequences might have catalytic acti...

  9. IPNV with high and low virulence: host immune responses and viral mutations during infection

    Directory of Open Access Journals (Sweden)

    Skjesol Astrid

    2011-08-01

    Full Text Available Abstract Background Infectious pancreatic necrosis virus (IPNV is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR, which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described. Methods In this study we compared two field isolates of IPNV (NFH-Ar and NFH-El. The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney. Results Significant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i. was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin was observed at 13 d p.i. (NFH-Ar and 29 d p.i. (both isolates

  10. Effect of HCV Core Antigen and RNA Clearance during Therapy with Direct Acting Antivirals on Hepatic Stiffness Measured with Shear Wave Elastography in Patients with Chronic Viral Hepatitis C

    Directory of Open Access Journals (Sweden)

    Mariusz Łucejko

    2018-01-01

    Full Text Available To assess a combination of novel measures of therapeutic success in the treatment of chronic hepatitis C (CHC infection, we evaluated liver stiffness (LS with shear wave elastography and hepatitis C virus core antigen (HCVcAg concentrations. We followed 34 patients during and after treatment with direct acting antivirals. All patients achieved a sustained virologic and serologic response and a significant increase of albumin levels. Decreases of alanine aminotransferase (ALT activity and alpha-fetoprotein (AFP level were observed during the treatment and follow-up period. A significant decrease in LS was observed between baseline, end of treatment (EOT, and at 24- and 96-week post-treatment follow-up. LS decline between EOT and 96-week follow-up (FU96 was observed in 79% of patients. Significant LS changes were seen in patients with advanced fibrosis, particularly in cirrhotics and in patients with ALT exceeding 100 IU/mL. There was a positive correlation between ALT activity and LS changes at the baseline versus FU96. A negative correlation was demonstrated between individual HCVcAg baseline concentrations and reduction of LS at the baseline versus FU96. In conclusion, we observed that LS significantly declined during and after antiviral treatment. It was accompanied by improvement in some liver function measures, and disappearance of both HCVcAg and HCV ribonucleic acid (HCV RNA.

  11. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection

    Directory of Open Access Journals (Sweden)

    Marcia Bellon

    2017-10-01

    Full Text Available The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV, Hepatitis B/C/D virus (HBV/HCV/HDV, human herpesvirus 8 (HHV-8, human immunodeficiency virus (HIV, human T-cell leukemia virus type I (HTLV-I, human papillomavirus (HPV, herpes simplex virus-1/2(HSV-1/2, and Varicella–Zoster virus (VZV. Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.

  12. Complexities in Isolation and Purification of Multiple Viruses from Mixed Viral Infections: Viral Interference, Persistence and Exclusion.

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    Full Text Available Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV and foot-and-mouth disease virus (FMDV mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP. PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of

  13. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model.

    Science.gov (United States)

    Sreenivasan, Chithra; Thomas, Milton; Sheng, Zizhang; Hause, Ben M; Collin, Emily A; Knudsen, David E B; Pillatzki, Angela; Nelson, Eric; Wang, Dan; Kaushik, Radhey S; Li, Feng

    2015-12-01

    Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs

  14. In vitro infection of salmonid epidermal tissues by infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus

    Science.gov (United States)

    Yamamoto, T.; Batts, W.N.; Winton, J.R.

    1992-01-01

    The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.

  15. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin.

    Science.gov (United States)

    Stoppani, Elena; Bassi, Ivan; Dotti, Silvia; Lizier, Michela; Ferrari, Maura; Lucchini, Franco

    2015-08-01

    Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Viral Interference and Persistence in Mosquito-Borne Flaviviruses

    Directory of Open Access Journals (Sweden)

    Juan Santiago Salas-Benito

    2015-01-01

    Full Text Available Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.

  17. COPI is required for enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 (EV71, a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11, is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies.

  18. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    International Nuclear Information System (INIS)

    Mathew, Shomita S.; Bridge, Eileen

    2007-01-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci

  19. Correlation of hepatospleno-scintigraphic findings with HBe antigenicity in chronic hepatitis B

    Energy Technology Data Exchange (ETDEWEB)

    Song, K S; Chun, K S; Chung, S K; Bahk, Y W [Catholic Medical College, Seoul (Korea, Republic of)

    1983-12-15

    Radioimmunoassay plays an important role in diagnosing the hepatitis B and in clinical assessment of the course of the disease as well. Among a number of antigens, antibodies and enzymes related with hepatitis, HBe Ag, DNA polymerase, IgM-HBc-antibody, {delta} Ag have been known as useful indicators of ongoing infectivity of hepatitis B. The present study has been undertaken to correlate the HBe antigenicity with hepatospleno-scintigraphic findings in hepatitis. The study covered a 10 month period from September 1982 through to July 1983. We reviewed and analyzed the hepatospeno-scintgraphic findings and the results of radioimmuassays in 32 patients of chronic hepatitis seen at St. Mary Hospital, Catholic Medical College. Hepatitis B was diagnosed either when HBs Ag was positive or Anti-HBc wa positive even if HBs Ag was negative. We classified the HBe antigenicity into two groups of HBe Ag(+) and HBe(-) and analyzed the scintgraphic findings in terms of liver size, motting, splenomegaly and splenic shift. From the present study, it is concluded that the activity of hepatitis B can not be assessed by the findings of hepatospleno-scintigram so far as the activity is determined on the basis of the positive HBe Ag, which has been believed to indicated continuing viral replication.

  20. Correlation of hepatospleno-scintigraphic findings with HBe antigenicity in chronic hepatitis B

    International Nuclear Information System (INIS)

    Song, K. S.; Chun, K. S.; Chung, S. K.; Bahk, Y. W.

    1983-01-01

    Radioimmunoassay plays an important role in diagnosing the hepatitis B and in clinical assessment of the course of the disease as well. Among a number of antigens, antibodies and enzymes related with hepatitis, HBe Ag, DNA polymerase, IgM-HBc-antibody, δ Ag have been known as useful indicators of ongoing infectivity of hepatitis B. The present study has been undertaken to correlate the HBe antigenicity with hepatospleno-scintigraphic findings in hepatitis. The study covered a 10 month period from September 1982 through to July 1983. We reviewed and analyzed the hepatospeno-scintgraphic findings and the results of radioimmuassays in 32 patients of chronic hepatitis seen at St. Mary Hospital, Catholic Medical College. Hepatitis B was diagnosed either when HBs Ag was positive or Anti-HBc wa positive even if HBs Ag was negative. We classified the HBe antigenicity into two groups of HBe Ag(+) and HBe(-) and analyzed the scintgraphic findings in terms of liver size, motting, splenomegaly and splenic shift. From the present study, it is concluded that the activity of hepatitis B can not be assessed by the findings of hepatospleno-scintigram so far as the activity is determined on the basis of the positive HBe Ag, which has been believed to indicated continuing viral replication

  1. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    Science.gov (United States)

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  2. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  3. Inhibition of human T cell leukemia virus type 2 replication by the suppressive action of class II transactivator and nuclear factor Y.

    Science.gov (United States)

    Tosi, Giovanna; Pilotti, Elisabetta; Mortara, Lorenzo; De Lerma Barbaro, Andrea; Casoli, Claudio; Accolla, Roberto S

    2006-08-22

    The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells.

  4. Dengue virus replicates and accumulates in Aedes aegypti salivary glands

    Energy Technology Data Exchange (ETDEWEB)

    Raquin, Vincent, E-mail: vincent.raquin@univ-lyon1.fr [Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris (France); Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris (France); Lambrechts, Louis, E-mail: louis.lambrechts@pasteur.fr [Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris (France); Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris (France)

    2017-07-15

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidence that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.

  5. Dengue virus replicates and accumulates in Aedes aegypti salivary glands

    International Nuclear Information System (INIS)

    Raquin, Vincent; Lambrechts, Louis

    2017-01-01

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidence that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.

  6. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  7. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    Science.gov (United States)

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  8. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  9. Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-beta1.

    Science.gov (United States)

    Bácsi, A; Aranyosi, J; Beck, Z; Ebbesen, P; Andirkó, I; Szabó, J; Lampé, L; Kiss, J; Gergely, L; Tóth, F D

    1999-10-01

    Although syncytiotrophoblast (ST) cells can be infected by human cytomegalovirus (HCMV), in vitro studies have indicated that ST cells do not support the complete viral reproductive cycle, or HCMV replication may occur in less than 3% of ST cells. The present study tested the possibility that placental macrophages might enhance activation of HCMV carried in ST cells and, further, that infected ST cells would be capable of transmitting virus to neighboring macrophages. For this purpose, we studied HCMV replication in ST cells grown alone or cocultured with uninfected placental macrophages. Our results demonstrated that HCMV gene expression in ST cells was markedly upregulated by coculture with macrophages, resulting in release of substantial amounts of infectious virus from HCMV-infected ST cells. After having become permissive for viral replication, ST cells delivered HCMV to the cocultured macrophages, as evidenced by detection of virus-specific antigens in these cells. The stimulatory effect of coculture on HCMV gene expression in ST cells was mediated by marked interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) release from macrophages, an effect caused by contact between the different placental cells. Our findings indicate an interactive role for the ST layer and placental macrophages in the dissemination of HCMV among placental tissue. Eventually, these interactions may contribute to the transmission of HCMV from mother to the fetus.

  10. Understanding original antigenic sin in influenza with a dynamical system.

    Science.gov (United States)

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  11. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  12. Evaluation of an Antigen-Antibody

    African Journals Online (AJOL)

    GB

    replication would lead to the production of various antigens. Today with BMT history of over 30 years, infection ... Study design: The study involved both retrospective and prospective laboratory-based analysis of ..... core protein of a molecular mass 19 x 103 Da, one picogram (pg) of virus core corresponds to 1.3 x. 105 HCV ...

  13. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication

    Directory of Open Access Journals (Sweden)

    Molly L. Bristol

    2016-06-01

    Full Text Available Human papillomaviruses (HPVs are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1, does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer.

  14. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication.

    Science.gov (United States)

    Bristol, Molly L; Wang, Xu; Smith, Nathan W; Son, Minkyeong P; Evans, Michael R; Morgan, Iain M

    2016-06-22

    Human papillomaviruses (HPVs) are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR) pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs) could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1), does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer.

  15. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    2011-02-01

    Full Text Available HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages.Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048.These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages

  16. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10−5). While the association was not genome-wide significant (p<1×10−7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10−6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance These findings suggest that

  17. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus

    International Nuclear Information System (INIS)

    Salfeld, J.; Pfaff, E.; Noah, M.; Schaller, H.

    1989-01-01

    The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen [HBcAg]) and a secreted processed protein (p17e, serologically defined as HBe antigen [HBeAg]). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis virus nucleocapsid

  18. Carcinoma-associated antigens

    International Nuclear Information System (INIS)

    Bartorelli, A.; Accinni, R.

    1981-01-01

    This invention relates to novel antigens associated with breast carcinoma, anti-sera specific to said antigens, 125 I-labeled forms of said antigens and methods of detecting said antigens in serum or plasma. The invention also relates to a diagnostic kit containing standardised antigens or antisera or marked forms thereof for the detection of said antigens in human blood, serum or plasma. (author)

  19. Maintenance of T1 response as induced during PEG-IFNalpha plus ribavirin therapy controls viral replication in genotype-1 patients with chronic hepatitis C La respuesta inmune T1 inducida durante el tratamiento con PEG-IFNα mαs ribavirina controla la replicaciσn viral en pacientes con hepatitis crónica C

    Directory of Open Access Journals (Sweden)

    M. Trapero

    2005-07-01

    (1-1,2 g/día durante 48 semanas. Los 28 pacientes (edad media 45 ± 8 años finalizaron el tratamiento y seguimiento: 12 (43% presentaron respuesta viral sostenida (RVS, 13 recidivaron (47% y sólo 3 fueron no respondedores (10%. Se estudiaron 16 controles sanos (edad media de 39 ± 17 años. Se analizó mediante citometría de flujo la producción intracitoplásmica de IL-4, IFNγ y TNFα por los linfocitos T CD8+ en reposo y tras ser estimulados con un ιster de forbol. Anαlisis estadístico: t de Student, test de χ² y ANOVA; se agrupan los pacientes recidivantes y no respondedores para obtener mayor potencia estadística. Resultados: no se encontraron diferencias significativas entre los niveles de citocinas de controles sanos y pacientes con HCC. Al tercer mes de tratamiento, los niveles de IL-4 inducidos tendían a ser menores en los pacientes que obtuvieron una RVS que en el resto de pacientes (0,97 vs. 2,58; p = 0,1; tampoco se encontró significación estadística en relación a los niveles de IIFNγ y de TTNFα. Al final del tratamiento, la producciσn de IIFNγ estimulado fue significativamente mayor en los pacientes que obtuvieron una RVS (20 vs. 8; p < 0,05. Por el contrario, la producción de IL-4 fue mayor en los pacientes no respondedores, aunque estos datos no alcanzaron significación estadística (p < 0,1. No se encontraron diferencias en relación con los niveles de TTNFα (14 vs. 7; p < 0,2. Conclusiones: el mantenimiento de la respuesta inmune tipo T1 durante el tratamiento combinado, medida en función de la síntesis de IIFNγ por los linfocitos T CD8, se asocia con RVS y sugiere el control de la replicaciσn y el aclaramiento posterior de los pacientes infectados con el genotipo 1 del VHC.

  20. Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo

    Science.gov (United States)

    Oshiumi, Hiroyuki; Mengao, Deng; Takaki, Hiromi; Matsumoto, Misako; Aly, Hussein H.; Watashi, Koichi; Chayama, Kazuaki; Seya, Tsukasa

    2016-01-01

    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy. PMID:27626689

  1. Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell. The present study demonstrates the disruption of the host G2/M cell cycle checkpoint regulation as an associated function of LANA. DNA profile of LANA expressing human B-cells demonstrated the ability of this nuclear antigen in relieving the drug (Nocodazole induced G2/M checkpoint arrest. Caffeine suppressed nocodazole induced G2/M arrest indicating involvement of the ATM/ATR. Notably, we have also shown the direct interaction of LANA with Chk2, the ATM/ATR signalling effector and is responsible for the release of the G2/M cell cycle block.

  2. Original antigenic sin responses to influenza viruses.

    Science.gov (United States)

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  3. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  4. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  5. Avances recientes en HIV/SIDA: Patogénesis, historia natural y carga viral

    Directory of Open Access Journals (Sweden)

    Rafael E Campo

    1996-10-01

    Full Text Available Results of recent investigations have given us a new understanding of the pathogenesis of HIV infection. This findings provide us with a kinetic model of pathogenesis in which continuous, high-grade viral replication. This findings provide us with a kinetic model of pathogenesis in which continuous, high-grade viral replication is the principal force driving the destruction of CD4 lymphocytes. This knowledge will lead us to design better treatment strategies directed to curtail viral replication and prevent the emergence of viral resistance, and the use of combination antiretroviral therapy is a first example of these new strategies. The concept of viral load is introduced, and we discuss the usefulness of viral load in the clinical prognosis of this disease, and its use as an aid in the decision-making process when starling or mordifyng antiretroviral therapy in our patients. (Rev Med Hered 1996; 7: 182-188.

  6. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    Science.gov (United States)

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  8. Hepatitis C Virus: Viral Quasispecies and Genotypes

    Directory of Open Access Journals (Sweden)

    Kyoko Tsukiyama-Kohara

    2017-12-01

    Full Text Available Hepatitis C virus (HCV mainly replicates in the cytoplasm, where it easily establishes persistent infection, resulting in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Due to its high rate of mutation, HCV forms viral quasispecies, categorized based on the highly variable regions in the envelope protein and nonstructural 5A protein. HCV possesses seven major genotypes, among which genotype 1 is the most prevalent globally. The distribution of HCV genotypes varies based on geography, and each genotype has a different sensitivity to interferon treatment. Recently-developed direct-acting antivirals (DAAs, which target viral proteases or polymerases, mediate drastically better antiviral effects than previous therapeutics. Although treatment with DAAs has led to the development of drug-resistant HCV mutants, the most recently approved DAAs show improved pan-genomic activity, with a higher barrier to viral resistance.

  9. Hepatitis C Virus: Viral Quasispecies and Genotypes.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2017-12-22

    Hepatitis C virus (HCV) mainly replicates in the cytoplasm, where it easily establishes persistent infection, resulting in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Due to its high rate of mutation, HCV forms viral quasispecies, categorized based on the highly variable regions in the envelope protein and nonstructural 5A protein. HCV possesses seven major genotypes, among which genotype 1 is the most prevalent globally. The distribution of HCV genotypes varies based on geography, and each genotype has a different sensitivity to interferon treatment. Recently-developed direct-acting antivirals (DAAs), which target viral proteases or polymerases, mediate drastically better antiviral effects than previous therapeutics. Although treatment with DAAs has led to the development of drug-resistant HCV mutants, the most recently approved DAAs show improved pan-genomic activity, with a higher barrier to viral resistance.

  10. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    International Nuclear Information System (INIS)

    Zhang, Shu-Cheng; Wang, Wei-Lin; Cai, Wei-Song; Jiang, Kai-Lei; Yuan, Zheng-Wei

    2012-01-01

    Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment

  11. Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle.

    Directory of Open Access Journals (Sweden)

    Wesley H Stepp

    2017-10-01

    Full Text Available We have shown previously that Sp100 (a component of the ND10 nuclear body represses transcription, replication and establishment of incoming human papillomavirus (HPV DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying viral genomes to repress viral processes. We find that Sp100 localizes to HPV16 replication foci generated in primary keratinocytes, to HPV31 replication foci that form in differentiated cells, and to HPV16 replication foci in CIN 1 cervical biopsies. To analyze this further, Sp100 was down regulated by siRNA treatment of differentiating HPV31 containing cells and levels of viral transcription and replication were assessed. This revealed that Sp100 represses viral transcription and replication in differentiated cells. Analysis of Sp100 binding to viral chromatin showed that Sp100 bound across the viral genome, and that binding increased at late stages of infection. Therefore, Sp100 represses the HPV life cycle at both early and late stages of infection.

  12. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  13. DNA intercalator stimulates influenza transcription and virus replication

    Directory of Open Access Journals (Sweden)

    Poon Leo LM

    2011-03-01

    Full Text Available Abstract Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII. In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD, was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPIIa in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPIIa to hyperphosphorylated RNAPII (RNAPIIo.

  14. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  15. Mobil Viral Pazarlama

    OpenAIRE

    Barutçu, Süleyman

    2011-01-01

    OBJECTIVE: Mobile Viral Marketing, with using mobile phones, is one of the most importantinnovations after Word of Mouth Marketing performed by face to face amongpeople and Viral Marketing performed in the İnternet. The main objective of thisstudy is to call marketing communicators’ and academicians’ attentions whowant to increase the recognition of companies’ products, services and brands tobecome a current issue in the marketplace using Mobile Viral Marketingapplications by reason of techno...

  16. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  17. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    KAUST Repository

    Knodel, Markus; Reiter, Sebastian; Targett-Adams, Paul; Grillo, Alfio; Herrmann, Eva; Wittum, Gabriel

    2017-01-01

    virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural

  18. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  19. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    NARCIS (Netherlands)

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  20. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.