Replica symmetric spin glass field theory
Energy Technology Data Exchange (ETDEWEB)
Temesvari, T. [Research Group for Theoretical Physics of the Hungarian Academy of Sciences, Eoetvoes University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary)]. E-mail: temtam@helios.elte.hu
2007-06-18
A new powerful method to test the stability of the replica symmetric spin glass phase is proposed by introducing a replicon generator function g(v). Exact symmetry arguments are used to prove that its extremum is proportional to the inverse spin glass susceptibility. By the idea of independent droplet excitations a scaling form for g(v) can be derived, whereas it can be exactly computed in the mean field Sherrington-Kirkpatrick model. It is shown by a first order perturbative treatment that the replica symmetric phase is unstable down to dimensions d < or approx. 6, and the mean field scaling function proves to be very robust. Although replica symmetry breaking is escalating for decreasing dimensionality, a mechanism caused by the infrared divergent replicon propagator may destroy the mean field picture at some low enough dimension.
Replica symmetric spin glass field theory
Temesvári, T.
2007-06-01
A new powerful method to test the stability of the replica symmetric spin glass phase is proposed by introducing a replicon generator function g(v). Exact symmetry arguments are used to prove that its extremum is proportional to the inverse spin glass susceptibility. By the idea of independent droplet excitations a scaling form for g(v) can be derived, whereas it can be exactly computed in the mean field Sherrington-Kirkpatrick model. It is shown by a first order perturbative treatment that the replica symmetric phase is unstable down to dimensions d≲6, and the mean field scaling function proves to be very robust. Although replica symmetry breaking is escalating for decreasing dimensionality, a mechanism caused by the infrared divergent replicon propagator may destroy the mean field picture at some low enough dimension.
The replica symmetric solution for orthogonally constrained Heisenberg model on Bethe lattice
Concetti, Francesco
2017-02-01
In this paper, we study the thermodynamic properties of a system of D-components classical Heisenberg spins lying on the vertices of a random regular graph, with an unconventional first neighbor non-random interaction J{{≤ft({{\\mathbf{S}}i}\\centerdot {{\\mathbf{S}}k}\\right)}2} . We can consider this model as a continuum version of anti-ferromagnetic D-states Potts model. We compute the paramagnetic free energy, using a new approach, presented in this paper for the first time, based on the replica method. Through the linear stability analysis, we obtain an instability line on the temperature-connectivity plane that provides a bound to the appearance of a phase transition. We also argue about the character of the instability observed.
Replica symmetry breaking for anisotropic magnets with quenched disorder
Kogan, E.; Kaveh, M.
2017-01-01
We study critical behaviour of a magnet with cubic anisotropy and quenched scalar disorder which is taken into account by replica method. We derive to first order in ε approximation the renormalization group equations taking into account possible replica symmetry breaking. We study the stability of the replica symmetric fixed points with respect to perturbations without (in general case) replica symmetry. However, we find that if a fixed point is stable with respect to replica symmetric deviations, it is also stable with respect to deviations without replica symmetry.
On the quantum levels of isolated spherically symmetric gravitational systems
Kastrup, H A
1996-01-01
The known canonical quantum theory of a spherically symmetric pure (Schwarzschild) gravitational system describes isolated black holes by plane waves exp(-iMc^2\\tau/\\hbar) with respect to their continuous masses M and the proper time \\tau of observers at spatial infinity. On the other hand Bekenstein and Mukhanov postulated discrete mass levels for such black holes in the spirit of the Bohr- Sommerfeld quantisation in atomic physics. The two approaches can be related by postulating periodic boundary conditions in time for the plane waves and by iden- tifying the period \\Delta in real time with the period \\Delta_H = 8\\pi GM/c^3 in Euclidean time. This yields the mass spectrum M_n = (1/2)\\sqrt{n}m_P, n=1,2,...
Osipov, Vladimir Al
2007-01-01
Motivated by the ongoing discussion about a seeming asymmetry in the performance of fermionic and bosonic replicas, we present an exact, nonperturbative approach to zero-dimensional replica field theories belonging to the broadly interpreted "beta=2" Dyson symmetry class. We then utilise the formalism developed to demonstrate that the bosonic replicas do correctly reproduce the microscopic spectral density in the QCD inspired chiral Gaussian unitary ensemble. This disproves the myth that the bosonic replica field theories are intrinsically faulty.
Spontaneous versus explicit replica symmetry breaking in the theory of disordered systems
Mouhanna, D.; Tarjus, G.
2010-05-01
We investigate the relation between spontaneous and explicit replica symmetry breaking in the theory of disordered systems. On general ground, we prove the equivalence between the replicon operator associated with the stability of the replica-symmetric solution in the standard replica scheme and the operator signaling a breakdown of the solution with analytic field dependence in a scheme in which replica symmetry is explicitly broken by applied sources. This opens the possibility to study, via the recently developed functional renormalization group, unresolved questions related to spontaneous replica symmetry breaking and spin-glass behavior in finite-dimensional disordered systems.
An Arbitrary 2D Structured Replica Control Protocol
Basmadjian, Robert; Meer, Hermann,
2011-01-01
Traditional replication protocols that logically arrange the replicas into a specific structure have reasonable availability, lower communication cost as well as system load than those that do not require any logical organisation of replicas. We propose in this paper the A2DS protocol: a single protocol that, unlike the existing proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any replica of every level of the structure whereas write operations are ...
Ajamian, John
2016-09-01
The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.
Krstevski, Vangel
2013-01-01
a in various deployment scenarios.Hyper-V Replica Essentials is for Windows Server administrators who want to improve their system availability and speed up disaster recovery. You will need experience in Hyper-V deployment because Hyper-V Replica is built in the Hyper-V platform.
Kunszt, Peter Z; Stockinger, Heinz; Stockinger, Kurt
2005-01-01
Data replication is one of the best known strategies to achieve high levels of availability and fault tolerance, as well as minimal access times for large, distributed user communities using a world-wide Data Grid. In certain scientific application domains, the data volume can reach the order of several petabytes; in these domains, data replication and access optimization play an important role in the manageability and usability of the Grid. In this paper, we present the design and implementation of a replica management Grid middleware that was developed within the EDG project left bracket European Data Grid Project (EDG), http://www.eu-egee.org right bracket and is designed to be extensible so that user communities can adjust its detailed behavior according to their QoS requirements.
A nine-level hybrid symmetric cascaded multilevel converter for induction motor drive
Indian Academy of Sciences (India)
INDRAJIT SARKAR; B G FERNANDES
2017-08-01
A nine-level hybrid symmetric cascaded multilevel converter (MLC) fed induction motor drive is proposed in this paper. The proposed converter is capable of producing nine output voltage levels by using the same number of power cells as that of conventional five-level symmetric cascaded H-bridge converter. Eachphase in this configuration consists of one five-level transistor-clamped H-Bridge (TCHB) power cell and one three-level H-bridge power cell with equal dc link voltages, and they are connected in cascade. Due to cascade connection and equal dc link voltage, the power shared by each power cell is nearly equal. Near-equal power sharing enables the feature of improving input current quality by using an appropriate phase-shifting multiwinding transformer at the converter input. In this paper, the operation of the converter is explained using staircase and hybrid multi-carrier sine PWM techniques. Further, a detailed analysis for the variations in the dc link capacitor voltages and the dc link mid-point voltage in TCHB power cell is carried out, and the analytical expressions thus obtained are presented. The performance of proposed system is analysed by simulating a 500 hp induction motor drive system in MATLAB/Simulink environment. A laboratory prototype is also developed to validate the claims experimentally.
Response Time Optimization for Replica Selection Service in Data Grids
Directory of Open Access Journals (Sweden)
Husni H.E. AL-Mistarihi
2008-01-01
Full Text Available Problem Statement: Data Grid architecture provides a scalable infrastructure for grid services in order to manage data files and their corresponding replicas that were distributed across the globe. The grid services are designed to support a variety of data grid applications (jobs and projects. Replica selection is a high-level service that chooses a replica location from among many distributed replicas with the minimum response time for the users' jobs. Estimating the response time accurately in the grid environment is not an easy task. The current systems expose high response time in selecting the required replicas because the response time is estimated by considering the data transfer time only. Approach: We proposed a replica selection system that selects the best replica location for the users' running jobs in a minimum response time that can be estimated by considering new factors besides the data transfer time, namely, the storage access latency and the replica requests that waiting in the storage queue. Results: The performance of the proposed system was compared with a similar system that exists in the literature namely, SimpleOptimiser. The simulation results demonstrated that our system performed better than the SimpleOptimiser on an average of 6%. Conclusions: The proposed system can select the best replica location in a lesser response time than the SimpleOptimise. The efficiency of the proposed system is 6% higher than the SimpleOptimise. The efficiency level has a high impact on the quality of service that is perceived by grid users in a data grid environment where the data files are relatively big. For example, the data files produced from the scientific applications are of the size hundreds of Terabytes.
Replica trick for rare samples
Rizzo, Tommaso
2014-05-01
In the context of disordered systems with quenched Hamiltonians I address the problem of characterizing rare samples where the thermal average of a specific observable has a value different from the typical one. These rare samples can be selected through a variation of the replica trick which amounts to replicating the system and dividing the replicas intwo two groups containing, respectively, M and -M replicas. Replicas in the first (second) group experience a positive (negative) small field O (1/M) conjugate to the observable considered and the M →∞ limit is to be taken in the end. Applications to the random-field Ising model and to the Sherrington-Kirkpatrick model are discussed.
A Symmetric Chaos-Based Image Cipher with an Improved Bit-Level Permutation Strategy
Directory of Open Access Journals (Sweden)
Chong Fu
2014-02-01
Full Text Available Very recently, several chaos-based image ciphers using a bit-level permutation have been suggested and shown promising results. Due to the diffusion effect introduced in the permutation stage, the workload of the time-consuming diffusion stage is reduced, and hence the performance of the cryptosystem is improved. In this paper, a symmetric chaos-based image cipher with a 3D cat map-based spatial bit-level permutation strategy is proposed. Compared with those recently proposed bit-level permutation methods, the diffusion effect of the new method is superior as the bits are shuffled among different bit-planes rather than within the same bit-plane. Moreover, the diffusion key stream extracted from hyperchaotic system is related to both the secret key and the plain image, which enhances the security against known/chosen plaintext attack. Extensive security analysis has been performed on the proposed scheme, including the most important ones like key space analysis, key sensitivity analysis, plaintext sensitivity analysis and various statistical analyses, which has demonstrated the satisfactory security of the proposed scheme
Coherence across consciousness levels: Symmetric visual displays spare working memory resources.
Dumitru, Magda L
2015-12-15
Two studies demonstrate that the need for coherence could nudge individuals to use structural similarities between binary visual displays and two concurrent cognitive tasks to unduly solve the latter in similar fashion. In an overt truth-judgement task, participants decided whether symmetric colourful displays matched conjunction or disjunction descriptions (e.g., "the black and/or the orange"). In the simultaneous covert categorisation task, they decided whether a colour name (e.g., "black") described a two-colour object or half of a single-colour object. Two response patterns emerged as follows. Participants either acknowledged or rejected matches between disjunction descriptions and two visual stimuli and, similarly, either acknowledged or rejected matches between single colour names and two-colour objects or between single colour names and half of single-colour objects. These findings confirm the coherence hypothesis, highlight the role of coherence in preserving working-memory resources, and demonstrate an interaction between high-level and low-level consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.
Hamiltonian replica exchange molecular dynamics using soft-core interactions.
Hritz, Jozef; Oostenbrink, Chris
2008-04-14
To overcome the problem of insufficient conformational sampling within biomolecular simulations, we have developed a novel Hamiltonian replica exchange molecular dynamics (H-REMD) scheme that uses soft-core interactions between those parts of the system that contribute most to high energy barriers. The advantage of this approach over other H-REMD schemes is the possibility to use a relatively small number of replicas with locally larger differences between the individual Hamiltonians. Because soft-core potentials are almost the same as regular ones at longer distances, most of the interactions between atoms of perturbed parts will only be slightly changed. Rather, the strong repulsion between atoms that are close in space, which in many cases results in high energy barriers, is weakened within higher replicas of our proposed scheme. In addition to the soft-core interactions, we proposed to include multiple replicas using the same Hamiltonian/level of softness. We have tested the new protocol on the GTP and 8-Br-GTP molecules, which are known to have high energy barriers between the anti and syn conformation of the base with respect to the sugar moiety. During two 25 ns MD simulations of both systems the transition from the more stable to the less stable (but still experimentally observed) conformation is not seen at all. Also temperature REMD over 50 replicas for 1 ns did not show any transition at room temperature. On the other hand, more than 20 of such transitions are observed in H-REMD using six replicas (at three different Hamiltonians) during 6.8 ns per replica for GTP and 12 replicas (at six different Hamiltonians) during 8.7 ns per replica for 8-Br-GTP. The large increase in sampling efficiency was obtained from an optimized H-REMD scheme involving soft-core potentials, with multiple simulations using the same level of softness. The optimization of the scheme was performed by fast mimicking [J. Hritz and C. Oostenbrink, J. Chem. Phys. 127, 204104 (2007)].
Replica trick and string winding
Prudenziati, Andrea; Trancanelli, Diego
2017-07-01
We apply the replica trick to compute the entropy of a cylinder amplitude in string theory. We focus on the contribution from nonperturbative winding modes and impose tadpole cancellation to understand the correct prescription for integrating over moduli. Choosing the entangling surface to cut longitudinally over the whole length of the cylinder, we obtain an answer that is interpreted as the entropy of a density matrix. We recast this result in target space language, in both the open and closed string picture.
Replica trick and string winding
Prudenziati, Andrea
2016-01-01
We apply the replica trick to compute the entropy of a cylinder amplitude in string theory. We focus on the contribution from non-perturbative winding modes and impose tadpole cancellation to understand the correct prescription for integrating over moduli. Choosing the entangling surface to cut longitudinally over the whole length of the cylinder, we obtain an answer that is interpreted as the entropy of a density matrix. We recast this result in target space language, both in the open and closed string picture.
Weak response of cold symmetric nuclear matter at three-body cluster level
Lovato, Alessandro; Benhar, Omar
2012-01-01
We studied the Fermi and Gamow-Teller responses of cold symmetric nuclear matter within a unified dynamical model, suitable to account for both short- and long-range correlation effects. The formalism of correlated basis functions has been used to construct two-body effective interactions and one-body effective weak operators. The inclusion of the three-body cluster term allowed for incorporating in the effective interaction a realistic model of three- nucleon forces, namely the UIX potential. Moreover, the sizable unphysical dependence of the effective weak operator is removed once the three-body cluster term is taken into account.
Ostermeir, Katja; Zacharias, Martin
2014-01-15
A Hamiltonian Replica-Exchange Molecular Dynamics (REMD) simulation method has been developed that employs a two-dimensional backbone and one-dimensional side chain biasing potential specifically to promote conformational transitions in peptides. To exploit the replica framework optimally, the level of the biasing potential in each replica was appropriately adapted during the simulations. This resulted in both high exchange rates between neighboring replicas and improved occupancy/flow of all conformers in each replica. The performance of the approach was tested on several peptide and protein systems and compared with regular MD simulations and previous REMD studies. Improved sampling of relevant conformational states was observed for unrestrained protein and peptide folding simulations as well as for refinement of a loop structure with restricted mobility of loop flanking protein regions.
Energy Technology Data Exchange (ETDEWEB)
Lopez-Moreno, Enrique; Grether, M; Velazquez, Victor, E-mail: elm@hp.fciencias.unam.mx [Facultad de Ciencias, Departamento de Fisica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, 04510 Mexico DF (Mexico)
2011-11-25
A general spin system with a nonaxially symmetric Hamiltonian containing J{sub x}, J{sub z}-linear and J{sub z}-quadratic terms, widely used in many-body fermionic and bosonic systems and in molecular magnetism, is considered for the variations of general parameters describing intensity interaction changes of each of its terms. For this model Hamiltonian, a semiclassical energy surface (ES) is obtained by means of the coherent-state formalism. An analysis of this ES function, based on catastrophe theory, determines the separatrix in the control parameter space of the system Hamiltonian: the loci of singularities representing semiclassical phase transitions. Here we show that distinct regions of qualitatively different spectrum structures, as well as a singular behavior of quantum states, are ruled by this separatrix: here we show that the separatrix not only describes ground-state singularities, which have been associated with quantum phase transitions, but also reveals the structure of the excited spectrum, distinguishing different quantum phases within the parameter space. Finally, we consider magnetic susceptibility and heat capacity of the system at finite temperature, in order to study thermal properties and thermodynamical phase transitions in the perspective of the separatrix of this Hamiltonian system. (paper)
Ellsworth, J. L.; Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.
2014-01-01
We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ˜6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 107 per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.
Replica Fourier Transform: Properties and applications
Directory of Open Access Journals (Sweden)
A. Crisanti
2015-02-01
Full Text Available The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically.
Two phase decision algorithm of replica allocation
Institute of Scientific and Technical Information of China (English)
Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi
2006-01-01
In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.
Generalized gravitational entropy without replica symmetry
Camps, Joan; Kelly, William R.
2015-03-01
We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.
Generalized gravitational entropy without replica symmetry
Camps, Joan
2014-01-01
We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study Einstein-Gauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.
A simple asynchronous replica-exchange implementation
Bussi, Giovanni
2008-01-01
We discuss the possibility of implementing asynchronous replica-exchange (or parallel tempering) molecular dynamics. In our scheme, the exchange attempts are driven by asynchronous messages sent by one of the computing nodes, so that different replicas are allowed to perform a different number of time-steps between subsequent attempts. The implementation is simple and based on the message-passing interface (MPI). We illustrate the advantages of our scheme with respect to the standard synchronous algorithm and we benchmark it for a model Lennard-Jones liquid on an IBM-LS21 blade center cluster.
Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics
Buin, Andrei
2015-06-18
© 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper bound of the Bohr radius of 45 Å that agrees well with literature values. When the quantum dots are stoichiometric, they are trap-free and have nearly symmetric contributions to confinement from the valence and conduction bands. We further show that surface-associated conduction bandedge states in perovskite nanocrystals lie below the bulk states, which could explain the difference in Urbach tails between mesoporous and planar perovskite films. In addition to conventional molecular dynamics (MD), we implement an enhanced phase-space sampling algorithm, replica exchange molecular dynamics (REMD). We find that in simulation of methylammonium orientation and global minima, REMD outperforms conventional MD. To the best of our knowledge, this is the first REMD implementation for realistic-sized systems in the realm of DFT calculations.
Moura, André L; Raposo, Ernesto P; Gomes, Anderson S L; de Araújo, Cid B
2016-01-01
The recent reports of the replica symmetry breaking (RSB) phenomenon in photonic experiments [1-5] boosted the understanding of the role of disorder in multimode lasers, as well as helped to settle enlightening connections [6-13] with the statistical physics of complex systems. RSB manifests when identically-prepared system replicas reach distinct states, yielding different measures of observable quantities [14]. Here we demonstrate the RSB in the spontaneous mode-locking regime of a conventional multimode Nd:YAG laser in a closed cavity. The underlying mechanism is quite distinct from that of the RSB spinglass phase in cavityless random lasers with incoherently-oscillating modes. Here, a specific nonuniform distribution of the gain takes place in each pulse, and frustration is induced since the coherent oscillation of a given subset of longitudinal modes dominates and simultaneously inhibits the others. Nevertheless, when high losses are introduced only the replica-symmetric amplified stimulation emission is...
How could the replica method improve accuracy of performance assessment of channel coding?
Kabashima, Yoshiyuki
2009-12-01
We explore the relation between the techniques of statistical mechanics and information theory for assessing the performance of channel coding. We base our study on a framework developed by Gallager in IEEE Trans. Inform. Theory IT-11, 3 (1965), where the minimum decoding error probability is upper-bounded by an average of a generalized Chernoff's bound over a code ensemble. We show that the resulting bound in the framework can be directly assessed by the replica method, which has been developed in statistical mechanics of disordered systems, whereas in Gallager's original methodology further replacement by another bound utilizing Jensen's inequality is necessary. Our approach associates a seemingly ad hoc restriction with respect to an adjustable parameter for optimizing the bound with a phase transition between two replica symmetric solutions, and can improve the accuracy of performance assessments of general code ensembles including low density parity check codes, although its mathematical justification is still open.
Evaluation of generalized degrees of freedom for sparse estimation by replica method
Sakata, A.
2016-12-01
We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.
Vasiljević, Gorazd
2014-01-01
This BSc thesis deals with certain topics from graph theory. When we talk about studying graphs, we usually mean studying their structure and their structural properties. By doing that, we are often interested in automorphisms of a graph (symmetries), which are permutations of its vertex set, preserving adjacency. There exist graphs, which are symmetric enough, so that automorhism group acts transitively on their vertex set. This means that for any pair of vertices of the graph, there is an a...
RRS: Replica Registration Service for Data Grids
Energy Technology Data Exchange (ETDEWEB)
Shoshani, Arie; Sim, Alex; Stockinger, Kurt
2005-07-15
Over the last few years various scientific experiments and Grid projects have developed different catalogs for keeping track of their data files. Some projects use specialized file catalogs, others use distributed replica catalogs to reference files at different locations. Due to this diversity of catalogs, it is very hard to manage files across Grid projects, or to replace one catalog with another. In this paper we introduce a new Grid service called the Replica Registration Service (RRS). It can be thought of as an abstraction of the concepts for registering files and their replicas. In addition to traditional single file registration operations, the RRS supports collective file registration requests and keeps persistent registration queues. This approach is of particular importance for large-scale usage where thousands of files are copied and registered. Moreover, the RRS supports a set of error directives that are triggered in case of registration failures. Our goal is to provide a single uniform interface for various file catalogs to support the registration of files across multiple Grid projects, and to make Grid clients oblivious to the specific catalog used.
Novel algorithm for distributed replicas management based on dynamic programming
Institute of Scientific and Technical Information of China (English)
Wang Tao; Lu Xianliang; Hou Mengshu
2006-01-01
Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccurate in some actual systems. To address such problem, a novel algorithm is proposed based on dynamic programming to manage the number and distribution of replicas in different nodes. By using Markov model, replicas management is organized as a multi-phase process, and the recursion equations are provided. In this algorithm, the heterogeneity of nodes, the expense for maintaining replicas and the engaged space have been considered. Under these restricted conditions, this algorithm realizes high data reliability in a distributed system. The results of case analysis prove the feasibility of the algorithm.
An Adaptive Replica Allocation Algorithm in Mobile Ad Hoc Networks
Institute of Scientific and Technical Information of China (English)
JingZheng; JinshuSu; KanYang
2004-01-01
In mobile ad hoc networks (MANET), nodes move freely and the distribution of access requests changes dynamically. Replica allocation in such a dynamic environment is a significant challenge. In this paoer, a dynamic adaptive replica allocation algorithm that can adapt to the nodes motion is proposed to minimize the communication cost of object access. When changes occur in the access requests of the object or the network topology, each replica node collects access requests from its neighbors and makes decisions locally to expand replica to neighbors or to relinquish the replica. The algorithm dynamically adapts the replica allocation scheme to a local optimal one. Simulation results show that our algorithms efficiently reduce the communication cost of object access in MANET environment.
Exchange frequency in replica exchange molecular dynamics
Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.
2008-01-01
The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.
Reliability of the impression replica technique.
Falk, Anders; Vult von Steyern, Per; Fransson, Håkan; Thorén, Margareta Molin
2015-01-01
The aim of this study was to evaluate the reliability of the impression replica technique with a four-unit zirconia fixed dental prosthesis (FDP). Marginal and internal fit were measured by repeatedly placing the FDP on an epoxy cast using light-body silicone material corresponding to cement. All measured marginal and internal fit points showed varying values. The greatest variations were seen at the most distal margin (33 μm) and at the distal abutment of the FDP (77 μm). The results showed that the technique gives moderate variations and is a useful method to evaluate marginal and internal fit.
The Symmetricity of Normal Modes in Symmetric Complexes
Song, Guang
2016-01-01
In this work, we look at the symmetry of normal modes in symmetric structures, particularly structures with cyclic symmetry. We show that normal modes of symmetric structures have different levels of symmetry, or symmetricity. One novel theoretical result of this work is that, for a ring structure with $m$ subunits, the symmetricity of the normal modes falls into $m$ groups of equal size, with normal modes in each group having the same symmetricity. The normal modes in each group can be computed separately, using a much smaller amount of memory and time (up to $m^3$ less), thus making it applicable to larger complexes. We show that normal modes with perfect symmetry or anti-symmetry have no degeneracy while the rest of the modes have a degeneracy of two. We show also how symmetry in normal modes correlates with symmetry in structure. While a broken symmetry in structure generally leads to a loss of symmetricity in symmetric normal modes, the symmetricity of some symmetric normal modes is preserved even when s...
Institute of Scientific and Technical Information of China (English)
Liu Yu-Min; Yu Zhong-Yuan
2009-01-01
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
Spin Glass Field Theory with Replica Fourier Transforms
Pimentel, Iveta R.; De Dominicis, Cirano
We develop a field theory for spin glasses using Replica Fourier Transforms (RFT). We present the formalism for the case of replica symmetry and the case of replica symmetry breaking on an ultrametric tree, with the number of replicas n and the number of replica symmetry breaking steps R generic integers. We show how the RFT applied to the two-replica fields allows to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal matrix. The formalism allows to express any i-replica vertex in the new RFT basis and hence enables to perform a standard perturbation expansion. We apply the formalism to calculate the contribution of the Gaussian fluctuations around the Parisi's solution for the free-energy of an Ising spin glass.
Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav
2014-01-01
Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.
Zacharias, Martin
2008-03-01
Coarse-grained elastic network models (ENM) of proteins can be used efficiently to explore the global mobility of a protein around a reference structure. A new Hamiltonian-replica exchange molecular dynamics (H-RexMD) method has been designed that effectively combines information extracted from an ENM analysis with atomic-resolution MD simulations. The ENM analysis is used to construct a distance-dependent penalty (flooding or biasing) potential that can drive the structure away from its current conformation in directions compatible with the ENM model. Various levels of the penalty or biasing potential are added to the force field description of the MD simulation along the replica coordinate. One replica runs at the original force field. By focusing the penalty potential on the relevant soft degrees of freedom the method avoids the rapid increase of the replica number with increasing system size to cover a desired temperature range in conventional (temperature) RexMD simulations. The application to domain motions in lysozyme of bacteriophage T4 and to peptide folding indicates significantly improved conformational sampling compared to conventional MD simulations.
Fret Replica Inspection Laser Scanner (FRILS)
Energy Technology Data Exchange (ETDEWEB)
Kretz, S.; Hanley, K., E-mail: steve.kretz@opg.com, E-mail: kelly.hanley@opg.com [Ontario Power Generation, Inspection Maintenance and Commercial Services, Pickering, Ontario (Canada)
2008-07-01
In the stress analysis of flaws and artifacts found in pressure tubes, it is crucial to have detailed knowledge of the flaw geometry. Fuel channel inspections by ultrasonic or eddy current inspection methods alone cannot provide the complete required geometry information. Replicas, which are a negative impression of surface pressure tube indications, are scanned with a laser system which will provide the additional detail required. FRILS was initially developed in 1993 to establish in-house capability of profiling indications on the inside diameter surface of pressure tubes. The need of this profiling was initially a response to the discovery of fuel bundle bearing pad fretting (FBBPF) caused by flow induced fuel bundle vibration. The benefits of the system were soon realized as a tool for profiling debris type indications. Although the primary use of FRILS is to profile FBBBF and Debris Fretting, since its inception the FRILS inspection system has become an instrumental tool in flaw assessment for: Fuel Bundle Bearing Pad Frets (FBBPF); Debris Frets; Scratches; Crevice Corrosion; Oxide Jacking; Areas of surface roughness; and, Weld Profiling. Replicas are collected via acquisition from tooling on both the Channel and Gauging Apparatus for Reactors (CIGAR) and the Advanced Non-Destructive Examination (ANDE) systems. The ANDE system is a high speed data acquisition system which includes both an ultrasonic inspection tool and a replication tool. Although both of these tools were designed to be delivered with the UDM, the platform for these tools was built with flexibility allowing for adoption to other delivery systems. These tools were based on the experience of the CIGAR inspection system. The CIGAR system has also undergone many system upgrades resulting in reduced inspection times. The FRILS system - Fret Replication Inspection Laser Scanner system was developed and has been upgraded to meet the demands of the improved inspection and replication systems. FRILS
Asynchronous replica exchange software for grid and heterogeneous computing
Gallicchio, Emilio; Xia, Junchao; Flynn, William F.; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M.
2015-11-01
Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.
Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing
Gallicchio, Emilio; Xia, Junchao; Flynn, William F.; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M.
2015-01-01
Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices. PMID:27103749
SRF Cavity Surface Topography Characterization Using Replica Techniques
Energy Technology Data Exchange (ETDEWEB)
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.
Hamiltonian replica-exchange in GROMACS: a flexible implementation
Bussi, Giovanni
2013-01-01
A simple and general implementation of Hamiltonian replica exchange for the popular molecular-dynamics software GROMACS is presented. In this implementation, arbitrarily different Hamiltonians can be used for the different replicas without incurring in any significant performance penalty. The implementation was validated on a simple toy model - alanine dipeptide in water - and applied to study the rearrangement of an RNA tetraloop, where it was used to compare recently proposed force-field co...
Hamiltonian replica-exchange in GROMACS: a flexible implementation
Bussi, Giovanni
2013-01-01
A simple and general implementation of Hamiltonian replica exchange for the popular molecular-dynamics software GROMACS is presented. In this implementation, arbitrarily different Hamiltonians can be used for the different replicas without incurring in any significant performance penalty. The implementation was validated on a simple toy model - alanine dipeptide in water - and applied to study the rearrangement of an RNA tetraloop, where it was used to compare recently proposed force-field corrections.
Elastomer and resin replicas for sem observation of metallic materials
Palin-Luc, Thierry; Sellier, E.; D?Errico, F.; Vanhaeren, M.
2002-01-01
International audience; The replica technique is often used to study damage evolution at the surface of specimens or industrial components and understand the physicial phenomena responsible for fatigue crack initiation before failure. Replicas are usually made from acetate cellulose film. This paper presents an alternative technique generally used by archaeologists to study lithic use-wear and bone modification. A mold is made from a dental elastomer (silicon based impression material) and a ...
JavaFIRE: A Replica and File System for Grids
Petek, Marko; da Silva Gomes, Diego; Resin Geyer, Claudio Fernando; Santoro, Alberto; Gowdy, Stephen
2012-12-01
The work is focused on the creation of a replica and file transfers system for Computational Grids inspired on the needs of the High Energy Physics (HEP). Due to the high volume of data created by the HEP experiments, an efficient file and dataset replica system may play an important role on the computing model. Data replica systems allow the creation of copies, distributed between the different storage elements on the Grid. In the HEP context, the data files are basically immutable. This eases the task of the replica system, because given sufficient local storage resources any dataset just needs to be replicated to a particular site once. Concurrent with the advent of computational Grids, another important theme in the distributed systems area that has also seen some significant interest is that of peer-to-peer networks (p2p). P2p networks are an important and evolving mechanism that eases the use of distributed computing and storage resources by end users. One common technique to achieve faster file download from possibly overloaded storage elements over congested networks is to split the files into smaller pieces. This way, each piece can be transferred from a different replica, in parallel or not, optimizing the moments when the network conditions are better suited to the transfer. The main tasks achieved by the system are: the creation of replicas, the development of a system for replicas transfer (RFT) and for replicas location (RLS) with a different architecture that the one provided by Globus and the development of a system for file transfer in pieces on computational grids with interfaces for several storage elements. The RLS uses a p2p overlay based on the Kademlia algorithm.
Injection Compression Molding of Replica Molds for Nanoimprint Lithography
Directory of Open Access Journals (Sweden)
Keisuke Nagato
2014-03-01
Full Text Available As a breakthrough in the cost and durability of molds for nanoimprint lithography (NIL, replica molds are fabricated by injection compression molding (ICM. ICM is commonly used for optical disks such as DVDs or Blu-ray disks and is also a practical fabrication method for nanostructures. In this paper, I successfully demonstrated the fabrication of cycloolefin polymer replica molds with structures smaller than 60 nm by ICM. Furthermore, ultraviolet (UV-NIL using these replica molds was demonstrated. UV-cured resist was replicated over an area of 60 mm diameter. The degree of replication by UV-NIL in the first usage of each replica mold had good repeatability. Because ICM is a high-throughput, low-cost process, the replica mold can be disposed of after a certain time for UV-NIL. This method leads to a high-integrity UV-NIL process of patterned media because multiple large-area replica molds can be fabricated simultaneously.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices
de Dominicis, C.; Carlucci, D. M.; Temesvári, T.
1997-01-01
The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.
Symmetric Powers of Symmetric Bilinear Forms
Institute of Scientific and Technical Information of China (English)
Se(a)n McGarraghy
2005-01-01
We study symmetric powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties and compute their classical invariants. We relate these to earlier results on exterior powers of such forms.
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Hu, X.; Fan, M.; Rong, W.; Lo, E.C.; Bronkhorst, E.M.; Frencken, J.E.F.M.
2014-01-01
The aim of this study was to test the hypothesis that the colour photograph method has a higher level of validity for assessing sealant retention than the visual clinical examination and replica methods. Sealed molars were assessed by two evaluators. The scores for the three methods were compared ag
Chambler, A F; Chapman-Sheath, P J; Pearse, M F; Hollingdale, J
1997-10-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol.
Roe, Daniel R; Bergonzo, Christina; Cheatham, Thomas E
2014-04-03
Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency.
Atak, Onur; Huybrechs, Daan; Pluymers, Bert; Desmet, Wim
2014-07-01
Sonic crystals can be used as acoustic lenses in certain frequencies and the design of such systems by creating vacancies and using genetic algorithms has been proven to be an effective method. So far, rigid cylinders have been used to create such acoustic lens designs. On the other hand, it has been proven that Helmholtz resonators can be used to construct acoustic lenses with higher refraction index as compared to rigid cylinders, especially in low frequencies by utilizing their local resonances. In this paper, these two concepts are combined to design acoustic lenses that are based on Helmholtz resonators. The Multi-Level Wave Based Method is used as the prediction method. The benefits of the method in the context of design procedure are demonstrated. In addition, symmetric boundary conditions are derived for more efficient calculations. The acoustic lens designs that use Helmholtz resonators are compared with the acoustic lens designs that use rigid cylinders. It is shown that using Helmholtz resonator based sonic crystals leads to better acoustic lens designs, especially at the low frequencies where the local resonances are pronounced.
Standard practice for production and evaluation of field metallographic replicas
American Society for Testing and Materials. Philadelphia
2001-01-01
1.1 This practice covers recognized methods for the preparation and evaluation of cellulose acetate or plastic film replicas which have been obtained from metallographically prepared surfaces. It is designed for the evaluation of replicas to ensure that all significant features of a metallographically prepared surface have been duplicated and preserved on the replica with sufficient detail to permit both LM and SEM examination with optimum resolution and sensitivity. 1.2 This practice may be used as a controlling document in commercial situations. 1.3 The values stated in SI units are to be regarded as the standard. Inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Time evolution of the autocorrelation function in dynamical replica theory
Sakata, A.
2013-04-01
Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.
Fractographic ceramic failure analysis using the replica technique
Scherrer, Susanne S.; Quinn, Janet B.; Quinn, George D.; Anselm Wiskott, H. W.
2007-01-01
Objectives To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures. Methods The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin. Results For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces. Significance The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations. PMID:17270267
Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.
Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M
2016-08-25
Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.
Replica calibration artefacts for optical 3D scanning of micro parts
DEFF Research Database (Denmark)
De Chiffre, Leonardo; Carmignato, S.; Cantatore, Angela
2009-01-01
This work deals with development of calibration artefacts produced by using hard replica materials, achieving high quality geometrical reproduction of suitable reference artefacts, high stability, and high surface cooperativeness. An investigation was carried out using a replica material for dental...
Canteaut, Anne; Videau, Marion
2005-01-01
http://www.ieee.org/; We present an extensive study of symmetric Boolean functions, especially of their cryptographic properties. Our main result establishes the link between the periodicity of the simplified value vector of a symmetric Boolean function and its degree. Besides the reduction of the amount of memory required for representing a symmetric function, this property has some consequences from a cryptographic point of view. For instance, it leads to a new general bound on the order of...
DÍaz, R.; Rivas, M.
2010-01-01
In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.
Data-Replicas Scheduler for Heterogeneous MapReduce Cluster
Directory of Open Access Journals (Sweden)
Yang Yang
2013-05-01
Full Text Available Large scale data processing has rapidly increased in nowadays. MapReduce programming model, which is firstly mentioned in functional languages, appeared in distributed system and perform excellently in large scale data processing since 2006. Hadoop, which is the most popular framework of open-sourced MapReduce runtime environment, supplies reliable, scalable and distributed system processing large scale data across clusters of computers using this virtue programming model. In this system, files are split into many blocks and all blocks are replicated over several computers in clusters. To process these blocks efficiently, each job runs parallel and is divided into many tasks which deals with a file block. In order to fully take advantage of network bandwidth these systems, data locality is paid more and more attentions. Considering the existence of data-replica blocks, we propose a data-replicas scheduler which includes task scheduling and data allocation. The data-replicas scheduler takes fully advantage of data replicas in local Data node, reduce the costs of data transfer and improve the system performance. The results of experiments show that our scheduler not only improves the CPU ratio, but also reduces the packets that transfer in the network.
Replicas in Caravaggio's paintings: the correct use of scientific analysis
Diana, Maurizio; Moioli, Pietro; Seccaroni, Claudio
1998-05-01
Painting techniques and materials employed by Caravaggio are analyzed by X-ray fluorescence and radiography of unquestioned genuine works and compared to replicas of his earlier work. This approach is important in the attribution of recently discovered paintings and copies from the XVII century.
Replica-Based High-Performance Tuple Space Computing
DEFF Research Database (Denmark)
Andric, Marina; De Nicola, Rocco; Lluch Lafuente, Alberto
2015-01-01
We present the tuple-based coordination language RepliKlaim, which enriches Klaim with primitives for replica-aware coordination. Our overall goal is to offer suitable solutions to the challenging problems of data distribution and locality in large-scale high performance computing. In particular,...
Inverse Symmetric Inflationary Attractors
Odintsov, S D
2016-01-01
We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
ATLAS Replica Management in Rucio: Replication Rules and Subscriptions
Barisits, M; The ATLAS collaboration; Garonne, V; Lassnig, M; Stewart, G; Beermann, T; Vigne, R; Goossens, L; Nairz, A; Molfetas, A
2014-01-01
The ATLAS Distributed Data Management system stores more than 150PB of physics data across 120 sites globally. To cope with the anticipated ATLAS workload of the coming decade, Rucio, the next-generation data management system has been developed. Replica management, as one of the keys aspects of the system, has to satisfy critical performance requirements in order to keep pace with the experiment’s high rate of continual data generation. The challenge lies in meeting these performance objectives while still giving the system users and applications a powerful toolkit to control their data workflows. In this work we present the concept, design and implementation of the replica management in Rucio. We will specifically introduce the workflows behind replication rules, their formal language definition, weighting and site selection. Furthermore we will present the subscription component, which offers functionality for users to proclaim interest in data that has not been created yet. This contribution describes t...
ATLAS Replica Management in Rucio: Replication Rules and Subscriptions
Barisits, M; The ATLAS collaboration; Garonne, V; Lassnig, M; Stewart, G; Beermann, T; Vigne, R; Goossens, L; Nairz, A; Molfetas, A
2013-01-01
The ATLAS Distributed Data Management system stores more than 150PB of physics data across 120 sites globally. To cope with the anticipated ATLAS workload of the coming decade, Rucio, the next-generation data management system has been developed. Replica management, as one of the keys aspects of the system, has to satisfy critical performance requirements in order to keep pace with the experiment’s high rate of continual data generation. The challenge lies in meeting these performance objectives while still giving the system users and applications a powerful toolkit to control their data workflows. In this work we present the concept, design and implementation of the replica management in Rucio. We will specifically introduce the workflows behind replication rules, their formal language definition, weighting and site selection. Furthermore we will present the subscription component, which offers functionality for users to proclaim interest in data that has not been created yet. This contribution describes t...
An adaptive range-query optimization technique with distributed replicas
Institute of Scientific and Technical Information of China (English)
Sayar Ahmet; Pierce Marlon; Fox C.Geoffrey
2014-01-01
Replication is an approach often used to speed up the execution of queries submitted to a large dataset. A compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a distributed replica of a dataset exists. The aim is to partition the query payload (and its range) into subsets and distribute those to the replica nodes in a way that minimizes a client’s response time. However, since query size and distribution characteristics of data (data dense/sparse regions) in varying ranges are not known a priori, performing efficient load balancing and parallel processing over the unpredictable workload is difficult. A technique based on the creation and manipulation of dynamic spatial indexes for query payload estimation in distributed queries was proposed. The effectiveness of this technique was demonstrated on queries for analysis of archived earthquake-generated seismic data records.
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1977-08-01
Causally symmetric spacetimes are spacetimes with J/sup +/(S) isometric to J/sup -/(S) for some set S. We discuss certain properties of these spacetimes, showing for example that, if S is a maximal Cauchy surface with matter everywhere on S, then the spacetime has singularities in both J/sup +/(S) and J/sup -/(S). We also consider totally vicious spacetimes, a class of causally symmetric spacetimes for which I/sup +/(p) =I/sup -/(p) = M for any point p in M. Two different notions of stability in general relativity are discussed, using various types of causally symmetric spacetimes as starting points for perturbations.
Symmetrization and Applications
Kesavan, S
2006-01-01
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applicat
Replica symmetry breaking in cold atoms and spin glasses
Rotondo, P.; Tesio, E.; Caracciolo, S.
2015-01-01
We consider a system composed by N atoms trapped within a multimode cavity, whose theoretical description is captured by a disordered multimode Dicke model. We show that in the resonant, zero-field limit the system exactly realizes the Sherrington-Kirkpatrick model. Upon a redefinition of the temperature, the same dynamics is realized in the dispersive, strong-field limit. This regime also gives access to spin-glass observables which can be used to detect replica symmetry breaking.
Replica inference approach to unsupervised multiscale image segmentation.
Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar
2012-01-01
We apply a replica-inference-based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent." Within our multiresolution approach, we compute information-theory-based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations manifest by information theory overlaps. We further employ such information theory measures (such as normalized mutual information and variation of information), thermodynamic quantities such as the system entropy and energy, and dynamic measures monitoring the convergence time to viable solutions as metrics for transitions between various solvable and unsolvable phases. Within the solvable phase, transitions between contending solutions (such as those corresponding to segmentations on different scales) may also appear. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed at both zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentations appear within the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.
Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo
2014-11-01
The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.
Rash, John E; Kamasawa, Naomi; Davidson, Kimberly G V; Yasumura, Thomas; Pereda, Alberto E; Nagy, James I
2012-06-01
Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.
Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.
Pellicane, G; Caccamo, C; Wilson, D S; Lee, L L
2004-06-01
We present a self-consistent integral equation theory for a binary liquid in equilibrium with a disordered medium, based on the formalism of the replica Ornstein-Zernike (ROZ) equations. Specifically, we derive direct formulas for the chemical potentials and the zero-separation theorems (the latter provide a connection between the chemical potentials and the fluid cavity distribution functions). Next we solve a modified-Verlet closure to ROZ equations, which has built-in parameters that can be adjusted to satisfy the zero-separation theorems. The degree of thermodynamic consistency of the theory is also kept under control. We model the binary fluid in random pores as a symmetrical binary mixture of nonadditive hard spheres in a disordered hard-sphere matrix and consider two different values of the nonadditivity parameter and of the quenched matrix packing fraction, at different mixture concentrations. We compare the theoretical structural properties as obtained through the present approach with Percus-Yevick and Martinov-Sarkisov integral equation theories, and assess both structural and thermodynamic properties by performing canonical standard and biased grand canonical Monte Carlo simulations. Our theory appears superior to the other integral equation schemes here examined and provides reliable estimates of the chemical potentials. This feature should be useful in studying the fluid phase behavior of model adsorbates in random pores in general.
Townson, Jason L; Lin, Yu-Shen; Chou, Stanley S; Awad, Yasmine H; Coker, Eric N; Brinker, C Jeffrey; Kaehr, Bryan
2014-12-08
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. The simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.
Zhang, Wang; Zhang, Di; Fan, Tongxiang; Ding, Jian; Gu, Jiajun; Guo, Qixin; Ogawa, Hiroshi
2006-09-01
Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microstructure details are maintained faithfully in the ZnO replica. A computer model was established to simulate the diffraction spectral results, which agreed well with the OM images.
N>=2 symmetric superpolynomials
Alarie-Vézina, L; Mathieu, P
2015-01-01
The theory of symmetric functions has been extended to the case where each variable is paired with an anticommuting one. The resulting expressions, dubbed superpolynomials, provide the natural N=1 supersymmetric version of the classical bases of symmetric functions. Here we consider the case where two independent anticommuting variables are attached to each ordinary variable. The N=2 super-version of the monomial, elementary, homogeneous symmetric functions, as well as the power sums, are then constructed systematically (using an exterior-differential formalism for the multiplicative bases), these functions being now indexed by a novel type of superpartitions. Moreover, the scalar product of power sums turns out to have a natural N=2 generalization which preserves the duality between the monomial and homogeneous bases. All these results are then generalized to an arbitrary value of N. Finally, for N=2, the scalar product and the homogenous functions are shown to have a one-parameter deformation, a result that...
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Symmetric tensor decomposition
Brachat, Jerome; Mourrain, Bernard; Tsigaridas, Elias
2009-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on th...
Multiparty Symmetric Sum Types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Replica location mechanism in data grid based on ED-Chord
Institute of Scientific and Technical Information of China (English)
2008-01-01
A peer-to-peer hierarchical replica location mechanism(PRLM)was designed for data grids to provide better load balancing capability and scalability.Global replica indexes of the PRLM are organized based on even distributed Chord(ED-Chord)structure.The locality can optimize queries on local replica indexes of virtual organizations.ED-Chord protocol collects the node identifiers information using a distributed method and assigns optimal identifiers for new nodes to make them more uniformly distributed in the entire identifier space.Theoretical analysis and simulations show that PRLM provides good performance,scalability and load balancing capability for replica location in data grids.
Progressive symmetric erythrokeratoderma
Directory of Open Access Journals (Sweden)
Gharpuray Mohan
1990-01-01
Full Text Available Four patients had symmetrically distributed hyperkeratotic plaques on the trunk and extremities; The lesions in all of them had appeared during infancy, and after a brief period of progression, had remained static, All of them had no family history of similar skin lesions. They responded well to topical applications of 6% salicylic acid in 50% propylene glycol. Unusual features in these cases of progressive symmetric erythrokeratoderma were the sparing of palms and soles, involvement of the trunk and absence of erythema.
Replica Analysis for Portfolio Optimization with Single-Factor Model
Shinzato, Takashi
2017-06-01
In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.
REPLICA ORNSTEIN-ZERNIKE EQUATIONS FOR POSITIONALLY FROZEN HEISENBERG SYSTEMS
Directory of Open Access Journals (Sweden)
E.Lomba
2003-01-01
Full Text Available We present the formulation of the Replica Ornstein-Zernike equations for a model of positionally frozen disordered Heisenberg spin system. The results are obtained for various models, one in which the particle positions correspond to a frozen hard sphere fluid, another system in which the configurations are generated by a random insertion of hard spheres, a system of randomly distributed spins, and finally a system corresponding to a soft sphere fluid quenched at high and low temperatures. We will see that the orientational structure of the spin system is fairly well reproduced by the integral equation which, however, does not correctly account for the critical behaviour.
Symmetric Spaces in Supergravity
Ferrara, Sergio
2008-01-01
We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.
Distributed Searchable Symmetric Encryption
Bösch, Christoph; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter; Jonker, Willem
2014-01-01
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Gutierrez, German [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico)
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Replica approach to mean-variance portfolio optimization
Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre
2016-12-01
We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r = N/T portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r = 1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1 - r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.
Generating Scaled Replicas of Real-World Complex Networks
Staudt, Christian L; Safro, Ilya; Gutfraind, Alexander; Meyerhenke, Henning
2016-01-01
Research on generative models plays a central role in the emerging field of network science, studying how statistical patterns found in real networks can be generated by formal rules. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how models can be fitted to an original network to produce a structurally similar replica, and (c) aim for producing much larger networks than the original exemplar. In a comparative experimental study, we find ReCoN often superior to many other state-of-the-art network generation methods. Our design yields a scalable and effective tool for replicating a given network while preserving important properties at both micro- and macroscopic scales and (optionally) scaling the replica by orders of magnitude in size. We recommend ReCoN as a general practical method for creating realistic test data for the enginee...
Generating functions for symmetric and shifted symmetric functions
Jing, Naihuan; Rozhkovskaya, Natasha
2016-01-01
We describe generating functions for several important families of classical symmetric functions and shifted Schur functions. The approach is originated from vertex operator realization of symmetric functions and offers a unified method to treat various families of symmetric functions and their shifted analogues.
Generating functions for symmetric and shifted symmetric functions
Jing, Naihuan; Rozhkovskaya, Natasha
2016-01-01
We describe generating functions for several important families of classical symmetric functions and shifted Schur functions. The approach is originated from vertex operator realization of symmetric functions and offers a unified method to treat various families of symmetric functions and their shifted analogues.
DEFF Research Database (Denmark)
Stöhr, Frederik; Michael-Lindhard, Jonas; Simons, Hugh
2015-01-01
We have used replica molding and large-range atomic force microscopy to characterize the threedimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow c...
Finite size corrections in the random energy model and the replica approach
Derrida, Bernard; Mottishaw, Peter
2015-01-01
We present a systematic and exact way of computing finite size corrections for the random energy model, in its low temperature phase. We obtain explicit (though complicated) expressions for the finite size corrections of the overlap functions. In its low temperature phase, the random energy model is known to exhibit Parisi's broken symmetry of replicas. The finite size corrections given by our exact calculation can be reproduced using replicas if we make specific assumptions about the fluctuations (with negative variances!) of the number and sizes of the blocks when replica symmetry is broken. As an alternative we show that the exact expression for the non-integer moments of the partition function can be written in terms of coupled contour integrals over what can be thought of as ‘complex replica numbers’. Parisi's one step replica symmetry breaking arises naturally from the saddle point of these integrals without making any ansatz or using the replica method. The fluctuations of the ‘complex replica numbers’ near the saddle point in the imaginary direction correspond to the negative variances we observed in the replica calculation. Finally our approach allows one to see why some apparently diverging series or integrals are harmless.
Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.
2014-01-01
Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…
Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.
2014-01-01
Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…
Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates.
Lakhtakia, Akhlesh; Martín-Palma, Raúl J; Motyka, Michael A; Pantano, Carlo G
2009-09-01
The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas.
Coexistence of Replica Bands and Superconductivity in FeSe Monolayer Films
Rebec, S. N.; Jia, T.; Zhang, C.; Hashimoto, M.; Lu, D.-H.; Moore, R. G.; Shen, Z.-X.
2017-02-01
To elucidate the mechanisms behind the enhanced Tc in monolayer (1 ML) FeSe on SrTiO3 (STO), we grew highly strained 1 ML FeSe on the rectangular (100) face of rutile TiO2 , and observed the coexistence of replica bands and superconductivity with a Tc of 63 K. From the similar Tc between this system and 1ML FeSe on STO (001), we conclude that strain and dielectric constant are likely unimportant to the enhanced Tc in these systems. A systematic comparison of 1 ML FeSe on TiO2 with other systems in the FeSe family shows that while charge transfer alone can enhance Tc, it is only with the addition of interfacial electron-phonon coupling that Tc can be increased to the level seen in 1 ML FeSe on STO.
EQUIFOCAL HYPERSURFACES IN SYMMETRIC SPACES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This note investigates the multiplicity problem of principal curvatures of equifocal hyper surfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.
Homogenous finitary symmetric groups
Directory of Open Access Journals (Sweden)
Otto. H. Kegel
2015-03-01
Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Symmetrization Selection Rules, 1
Page, P R
1996-01-01
We introduce a category of strong and electromagnetic interaction selection rules for the two-body connected decay and production of exotic J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, ... hybrid and four-quark mesons. The rules arise from symmetrization in states in addition to Bose symmetry and CP invariance. Examples include various decays to \\eta'\\eta, \\eta\\pi, \\eta'\\pi and four-quark interpretations of a 1^{-+} signal.
Symmetrization Selection Rules, 2
Page, P R
1996-01-01
We introduce strong interaction selection rules for the two-body decay and production of hybrid and conventional mesons coupling to two S-wave hybrid or conventional mesons. The rules arise from symmetrization in states in the limit of non-relativistically moving quarks. The conditions under which hybrid coupling to S-wave states is suppressed are determined by the rules, and the nature of their breaking is indicated.
Replica analysis for the duality of the portfolio optimization problem
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions
Charbonneau, Patrick; Yaida, Sho
2017-05-01
The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon—the Gardner transition—has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, du=6 . Here, we obtain evidence for the existence of these transitions in d
Searching near-replicas of images via clustering
Chang, Edward Y.; Li, Chen; Wang, James Z.; Mork, Peter; Wiederhold, Gio
1999-08-01
Internet piracy has been one of the major concerns for Web publishing. In this study we present a system, RIME, that we have prototyped for detecting unauthorized image copying on the WWW. To speed up the copy detection, RIME uses a new clustering/hashing approach that first clusters similar images on adjacent disk cylinders and then builds indexes to access the clusters made in this way. Searching for the replicas of an image often takes just one IO to loop up the location of the cluster containing similar objects and one sequential file IO to read in this cluster. Our experimental results show that RIME can detect images copies both more efficiently and effectively than the traditional content- based image retrieval systems that use tree-like structures to index images. In addition, RIME copes well with image format conversion, resampling, requantization and geometric transformation.
Replica exchange Monte Carlo applied to hard spheres.
Odriozola, Gerardo
2009-10-14
In this work a replica exchange Monte Carlo scheme which considers an extended isobaric-isothermal ensemble with respect to pressure is applied to study hard spheres (HSs). The idea behind the proposal is expanding volume instead of increasing temperature to let crowded systems characterized by dominant repulsive interactions to unblock, and so, to produce sampling from disjoint configurations. The method produces, in a single parallel run, the complete HS equation of state. Thus, the first order fluid-solid transition is captured. The obtained results well agree with previous calculations. This approach seems particularly useful to treat purely entropy-driven systems such as hard body and nonadditive hard mixtures, where temperature plays a trivial role.
Scalable replica-exchange framework for Wang-Landau sampling.
Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P
2014-08-01
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Scalable replica-exchange framework for Wang-Landau sampling
Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P.
2014-08-01
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Scalable replica-exchange framework for Wang Landau sampling
Energy Technology Data Exchange (ETDEWEB)
Vogel, Thomas [University of Georgia, Athens, GA; Li, Ying Wai [ORNL; Wuest, Thomas [Swiss Federal Research Institute, Switzerland; Landau, David P [University of Georgia, Athens, GA
2014-01-01
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general, current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Vertices from replica in a random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Brezin, E [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond 75231, Paris Cedex 05 (France); Hikami, S [Department of Basic Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153 (Japan)
2007-11-09
Kontsevich's work on Airy matrix integrals has led to explicit results for the intersection numbers of the moduli space of curves. In a subsequent work Okounkov rederived these results from the edge behavior of a Gaussian matrix integral. In our work we consider the correlation functions of vertices in a Gaussian random matrix theory, with an external matrix source. We deal with operator products of the form <{pi}{sub i=1}{sup n}1/N tr M{sup k{sub i}}>, in a 1/N expansion. For large values of the powers k{sub i}, in an appropriate scaling limit relating large k's to large N, universal scaling functions are derived. Furthermore, we show that the replica method applied to characteristic polynomials of the random matrices, together with a duality exchanging N and the number of points, provides a new way to recover Kontsevich's results on these intersection numbers.
Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture
Directory of Open Access Journals (Sweden)
Filippo Stanco
2013-01-01
Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.
云计算环境下的动态数据副本管理策略%Dynamic data replica management strategy in cloud computing environment
Institute of Scientific and Technical Information of China (English)
邓见光; 赵跃龙; 袁华强
2015-01-01
Focusing on the frequent single point of failure in cloud computer system ,a dynamic data replica management strategy was proposed in cloud computer environment .The replica placement de-cision of the proposed replica management strategy was made by specifically analyzing the state param-eters of target node ,including the current load condition ,the size of the current available storage ca-pacity ,the communication bandwidth ,the historical access record and its historical failure record . And at the same time ,a higher priority was provided to the bigger file replica in the decision-making of replica replacement .Experimental results illustrate that the proposed dynamic replica management strategy is stable in the criterion of average data access distance ,and w hich outperforms other several classic replica strategy in the measurements of the system load balance level and the average task exe-cution time .%针对云计算系统中的单点失效问题 ,提出一种云计算环境下的动态数据副本管理策略 .该管理策略通过综合考虑目标放置节点的当前负载状况、可用存储空间大小、通信带宽以及其历史访问记录和历史失效记录等状态参数来进行数据文件的副本放置决策 ,并在进行副本置换操作时给予大尺寸数据文件副本更高的优先权 .测试结果表明 :该管理策略具有较为稳定的平均数据访问距离 ,且在云计算系统的负载均衡水平和平均任务执行时间指标上优于另外几种经典的副本策略 .
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of total degree d as a sum of powers of linear forms (Waring’s problem), incidence properties on secant varieties of the Veronese variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester’s approach from the dual point of view...
Symmetrically Constrained Compositions
Beck, Matthias; Lee, Sunyoung; Savage, Carla D
2009-01-01
Given integers $a_1, a_2, ..., a_n$, with $a_1 + a_2 + ... + a_n \\geq 1$, a symmetrically constrained composition $\\lambda_1 + lambda_2 + ... + lambda_n = M$ of $M$ into $n$ nonnegative parts is one that satisfies each of the the $n!$ constraints ${\\sum_{i=1}^n a_i \\lambda_{\\pi(i)} \\geq 0 : \\pi \\in S_n}$. We show how to compute the generating function of these compositions, combining methods from partition theory, permutation statistics, and lattice-point enumeration.
Internal structure analysis of particle-double network gels used in a gel organ replica
Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-11-01
The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Sirsi, Swarnamala; Hegde, Subramanya
2011-01-01
Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...
Directory of Open Access Journals (Sweden)
Giuseppe Di Maio
2008-04-01
Full Text Available The subject of hyperspace topologies on closed or closed and compact subsets of a topological space X began in the early part of the last century with the discoveries of Hausdorff metric and Vietoris hit-and-miss topology. In course of time, several hyperspace topologies were discovered either for solving some problems in Applied or Pure Mathematics or as natural generalizations of the existing ones. Each hyperspace topology can be split into a lower and an upper part. In the upper part the original set inclusion of Vietoris was generalized to proximal set inclusion. Then the topologization of the Wijsman topology led to the upper Bombay topology which involves two proximities. In all these developments the lower topology, involving intersection of finitely many open sets, was generalized to locally finite families but intersection was left unchanged. Recently the authors studied symmetric proximal topology in which proximity was used for the first time in the lower part replacing intersection with its generalization: nearness. In this paper we use two proximities also in the lower part and we obtain the lower Bombay hypertopology. Consequently, a new hypertopology arises in a natural way: the symmetric Bombay topology which is the join of a lower and an upper Bombay topology.
Plane symmetric cosmological models
Yadav, Anil Kumar; Ray, Saibal; Mallick, A
2016-01-01
In this work, we perform the Lie symmetry analysis on the Einstein-Maxwell field equations in plane symmetric spacetime. Here Lie point symmetries and optimal system of one dimensional subalgebras are determined. The similarity reductions and exact solutions are obtained in connection to the evolution of universe. The present study deals with the electromagnetic energy of inhomogeneous universe where $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, it is assumed that the free gravitational field is Petrov type-II non-degenerate. The electromagnetic field tensor $F_{12}$ is found to be positive and increasing function of time. As a special case, to validate the solution set, we discuss some physical and geometric properties of a specific sub-model.
Institute of Scientific and Technical Information of China (English)
傅育熙
1998-01-01
An alternative presentation of the π－calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π－calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.
Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns
Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelic, D.
2012-01-01
The paper presents a comparative study of the measuring values of the marginal gap related to the ceramic crowns made by dental CAD/CAM system using the replica technique and SEM. The study was conducted using three experimental groups, which consisted of ceramic crowns manufactured by the Cerec CAD/CAM system. The scanning procedure was carried out using three specialized dental 3D digitization systems from the Cerec family - two types of extraoral optical scanning systems and an intraoral optical scanner. Measurements of the marginal gap were carried out using the replica technique and SEM. The comparison of aggregate values of the marginal gap using the replica technique showed a statistically significant difference between the systems. The measured values of marginal gaps of ceramic crowns using the replica technique were significantly lower compared to those measured by SEM. The results indicate that the choice of technique for measuring the accuracy of ceramic crowns influences the final results of investigation.
Laak, J.A.W.M. van der; Dijkman, H.B.P.M.; Pahlplatz, M.M.M.
2006-01-01
The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the pre
Vogel, Thomas
2015-01-01
We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.
Rapid prototyping of replica knee implants for in vitro testing
Directory of Open Access Journals (Sweden)
Verjans Mark
2016-09-01
Full Text Available The understanding of the complex biomechanics of the knee is a key for an optimal implant design. To easily investigate the influence of prosthetic designs on knee biomechanics a rapid prototyping workflow for knee implants has been developed and evaluated. Therefore, different manufacturing technologies and post-treatment methods have been examined and overall seven different replica knee implants were manufactured. For evaluation, the manufacturing properties such as surface accuracy and roughness were determined and kinematic behaviour was investigated in a novel knee testing rig. It was carried out that PolyJet-Modelling with a sanded surface resulted in changed kinematic patterns compared to a usual CoCr-UHMWPE implant. However, fused deposition modelling using ABS and subsequent surface smoothening with acetone vapor showed the lowest roughness of the manufactured implants and only minor kinematic differences. For this reason this method constitutes a promising approach towards an optimal implant design for improved patient-satisfaction and long lifetime of the implant. Finally the workflow is not only limited to the knee.
Critiques, replicas and proposals for the New Urbanism Vision
Directory of Open Access Journals (Sweden)
Alaide Retana
2014-03-01
Full Text Available The new urbanism (NU is a vision of planning and urban design emerged in 1993, which finds its basis in the design of traditional communities. This trend has had various criticisms and replicas, which were reviewed in relation to urban sprawl, transportation, re-densifying, mix of uses of land, design, gentrification, pedestrianization and safety, which were analyzed in the neighborhood of Santa Barbara in Toluca, Mexico. This area was chosen for being traditional and forming part of the historical center of the city, which even though it was not designed under the guidelines of the NU, it has the quality of traditional, from which the NU would theoretically has taken its essence. The objective of this analysis is to establish whether the NU has the essence of a traditional Mexican neighborhood, as well as to check if the criticisms of the NU are informed when applied to a space belonging to a Mexican historic center that has been abandoned by problems of insecurity and degradation. The general conclusion is that the traditional neighborhoods have provided design elements to the NU, which will refute some of the criticisms, however, proposals for NU in neighborhoods of his-toric centers have to be based on the community, the architecture and existing urbanism, since these elements are those that give the identity.
Energy Technology Data Exchange (ETDEWEB)
Kamberaj, Hiqmet, E-mail: hkamberaj@ibu.edu.mk [Department of Computer Engineering, International Balkan University, Tashko Karadza 11A, Skopje (Macedonia, The Former Yugoslav Republic of)
2015-09-28
In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.
Design of replica bit line control circuit to optimize power for SRAM
Pengjun, Wang; Keji, Zhou; Huihong, Zhang; Daohui, Gong
2016-12-01
A design of a replica bit line control circuit to optimize power for SRAM is proposed. The proposed design overcomes the limitations of the traditional replica bit line control circuit, which cannot shut off the word line in time. In the novel design, the delay of word line enable and disable paths are balanced. Thus, the word line can be opened and shut off in time. Moreover, the chip select signal is decomposed, which prevents feedback oscillations caused by the replica bit line and the replica word line. As a result, the switch power caused by unnecessary discharging of the bit line is reduced. A 2-kb SRAM is fully custom designed in an SMIC 65-nm CMOS process. The traditional replica bit line control circuit and the new replica bit line control circuit are used in the designed SRAM, and their performances are compared with each other. The experimental results show that at a supply voltage of 1.2 V, the switch power consumption of the memory array can be reduced by 53.7%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002, 61474068), and the K. C. Wong Magna Fund in Ningbo University.
Energy Technology Data Exchange (ETDEWEB)
Silva V, Y. [FIME-UANL, Pedro A. del Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon (Mexico); Castillo M, M.T.; Bautista M, J.P. [DRPMZA/INAH. Direccion de Registro Publico de Monumentos y Zonas Arqueologicas, Victoria 110, Copilco El Bajo, 04340 Mexico D.F. (Mexico); Arenas A, J. [IFUNAM, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)]. e-mail: ysilva@fisica.unam.mx
2006-07-01
The lack of archaeological context determining if the manufacture of two human skulls adorned with turquoise inlays have pre-Columbian origin or not (replicas), led to perform other studies. Under these conditions, besides orthodox methodology commonly used to assign chronology and cultural aspects as form, style, decoration, iconography, etc., it was necessary to obtain more results based on the use of characterization techniques. The techniques employed were Scanning Electron Microscopy (SEM), X-Ray Energy Dispersive Spectroscopy (EDS), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR), in order to determine the manufacture techniques and chemical composition of the materials used for the cementant. SEM analysis showed the presence of zones composed by Ca, O, C and Al. In some cases Mg, Cl, Fe and Pb were identified. High concentration of Cu was present in all samples, due to residues of turquoise inlays (CuAI{sub 6}(PO{sub 4}){sub 4}(OH){sub 8}(H{sub 2}O){sub 4}) with which the skulls were decorated. In the cementant was identified the Ca as base element of the cementant, as well as particles < 100 nm with irregular morphology and other amorphous zones. FTIR spectrums indicated the presence of organic substances that could be used as agglutinating in the cementant. The current work shows a progress identifying involved techniques in the manufacturing of two human skulls with turquoise inlays. (Author)
Representation of Fuzzy Symmetric Relations
1986-03-19
Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
Plemmons G. Golub and A. Sameh. High-speed computing : scientific appli- cations and algorithm design. University of Illinois Press, Champaign, Illinois , 1988...16. SECURITY CLASSIFICATION OF: Sparse symmetric eigenvalue problems arise in many computational science and engineering applications such as...Eigenvalue Problem Solvers Report Title Sparse symmetric eigenvalue problems arise in many computational science and engineering applications such as
Ahcan, Uros; Bracun, Drago; Zivec, Katarina; Pavlic, Rok; Butala, Peter
2012-04-01
Aesthetically pleasing and symmetrical breasts are the goal of reconstructive breast surgery. Sometimes, however, multiple procedures are needed to improve a reconstructed breast's symmetry and appearance. In order to avoid additional corrective procedures, we have developed a new method that uses a reverse engineering technique to produce what we call a new breast replica cast (NBRC). The NBRC is a mould of the contralateral healthy breast, designed according to preoperative laser 3D images. During surgery, the mould is used to help shape the new breast. With this method, we are able to achieve breast symmetry in terms of volume, projection, contour, and position on the chest wall more accurately, more quickly, and more safely than before. Copyright © 2011 Elsevier Ltd. All rights reserved.
An ingenious replica templated from the light trapping structure in butterfly wing scales
Han, Zhiwu; Niu, Shichao; Yang, Meng; Zhang, Junqiu; Yin, Wei; Ren, Luquan
2013-08-01
Although the physical mechanism of light trapping property of butterfly wings is well understood, it remains a challenge to create artificial replicas of these natural functional structures. Here, we synthesized a SiO2 inverse replica of a light trapping structure in butterfly wing scales using a method combining a sol-gel process and subsequent selective etching. First, the reflectance spectrum was taken to measure the reflectivity. Then, FESEM and TEM were used to observe the coupling structure of scales and the replicas. Afterwards, assisted by SEM and TEM data, 3D optimized models of the structures and fabrication process were generated by software. Finally, the parametric comparisons of the morphologies and structures between the original template and the inverse SiO2 replica were carefully conducted, and it was found that the original structures of bio-templates were well inherited by the structures of the inverse replica. This work would open up possibilities for an extensive study of mimicking novel bio-inspired functional materials, and the reported biomimetic technique confirms the feasibility of extending the functional structures in butterfly wings to particular optical devices in the field of space exploration, space equipment, photoelectrical devices and photo-induced sensors.Although the physical mechanism of light trapping property of butterfly wings is well understood, it remains a challenge to create artificial replicas of these natural functional structures. Here, we synthesized a SiO2 inverse replica of a light trapping structure in butterfly wing scales using a method combining a sol-gel process and subsequent selective etching. First, the reflectance spectrum was taken to measure the reflectivity. Then, FESEM and TEM were used to observe the coupling structure of scales and the replicas. Afterwards, assisted by SEM and TEM data, 3D optimized models of the structures and fabrication process were generated by software. Finally, the parametric
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Generation and classification of robust remote symmetric Dicke states
Institute of Scientific and Technical Information of China (English)
Zhu Yan-Wu; Gao Ke-Lin
2008-01-01
In this paper,we present an approach to generating arbitrary symmetric Dicke states with distant trapped ions and linear optics.Distant trapped ions can be prepared in the symmetric Dicke states by using two photon-number-resolving detectors and a polarization beam splitter.The atomic symmetric Dicke states are robust against decoherence,for atoms are in a metastable level.We discuss the experimental feasibility of our scheme with current technology.Finally,we discuss the classification of arbitrary n-qubit symmetric Dicke states under statistical local operation and classical communication and prove the existence of[n/2]inequivalent classes of genuine entanglement of n-qubit symmetric Dicke states.
MINIMIZATION PROBLEM FOR SYMMETRIC ORTHOGONAL ANTI-SYMMETRIC MATRICES
Institute of Scientific and Technical Information of China (English)
Yuan Lei; Anping Liao; Lei Zhang
2007-01-01
By applying the generalized singular value decomposition and the canonical correlation decomposition simultaneously, we derive an analytical expression of the optimal approximate solution (X), which is both a least-squares symmetric orthogonal anti-symmetric solution of the matrix equation ATXA ＝ B and a best approximation to a given matrix X*.Moreover, a numerical algorithm for finding this optimal approximate solution is described in detail, and a numerical example is presented to show the validity of our algorithm.
Inversion-symmetric topological insulators
Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei
2011-06-01
We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion
Indian Academy of Sciences (India)
Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati
2009-03-01
An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.
Quantum unharmonic symmetrical oscillators using elliptic functions
Energy Technology Data Exchange (ETDEWEB)
Sanchez, A.M.; Bejarano, J.d.
1986-04-21
The authors study in the JWKB approximation the energy levels of the symmetric anharmonic oscillators V(x) Ax/sup 2/ + Bx/sup 4/ for different signs and values of A and B. Comparisons are made with published results for specific cases and with numerical calculations. An additional example is given of exact value, to add to the very rare catalogue of known examples.
Assessment of hydro/oleophobicity for shark skin replica with riblets.
Kim, Tae Wan
2014-10-01
The shark skin has a unique skin structure which enables the shark to swim faster and more efficiently due to an intriguing three-dimensional rib pattern. Shark skin has also known as having functional performances such as self cleaning and anti-fouling as well as excellent drag reduction due to a hierarchical structure built up by micro grooves and nano-long chain mucus drag reduction interface around the shark body. In this study, the wetting properties for the biomimetic surfaces that replicate shark skin are assessed. First of all, the shark skin replicas are obtained using the micro molding technique directly from a shark skin template. The quantitative replication precision of the shark skin replicas is evaluated comparing with the geometry of shark skin template using 3D and 2D surface profiles are measured. Then contact angles in the conditions of solid-air-water, solid-air-oil and solid-water-oil interfaces are evaluated for shark skin replicas. The effect of Teflon coating on the wetting properties of shark skin replicas is also observed. The results show the shark skin replica by the micro molding technique gives better effect on the wetting performance, and the micro riblets on shark skin improve the wettability feature.
Huang, Kun; García, Angel E
2014-10-14
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.
The Symmetric Solutions of Affiliated Value Model
Institute of Scientific and Technical Information of China (English)
Che Ka-jia; Li Zhi-chen
2004-01-01
In a symmetric affiliated value model, this paper analyses High-Technology industrial firms' competitive strategy in research and development (R&D). We obtain the symmetric Bayesian Nash Equilibrium functions with or without government's prize:b1(x)=v(x,x)Fn-1(x|x)-∫x0Fn-1(y|y)dv(y,y), b2(x)=∫x0[v(y,y)+v0]dFn-1(y|y), and b3(x)=∫x0v(y,y)(fn-1(y|y))/(1-Fn-1(y|y))dy. We find the firm's investment level will increase in prize, only when the constant prize v0≥v(y,y)(Fn-1(y|y))/(1-Fn-1(y|y)), does the firm invest more aggressively with constant prize than with variable prize.
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.
2012-02-01
We present the results of a large-scale numerical study of the equilibrium three-dimensional Ising spin glass with Gaussian disorder. Using replica exchange (parallel tempering) Monte Carlo, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the replica exchange Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations (N <=10^3 spins) down to very low temperatures (T 0.2Tc) is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free energy landscape. We also discuss the size dependence of several static quantities.
Ito, Shingo; Irle, Stephan; Okamoto, Yuko
2016-07-01
The replica-exchange umbrella sampling (REUS) method combines replica-exchange and umbrella sampling methods and allows larger conformational sampling than conventional simulation methods. This method has been used in many studies to understand docking mechanisms and the functions of molecules. However, REUS has not been combined with quantum chemical codes. Therefore, we implemented the REUS simulation technique in the DFTB + quantum chemistry code utilizing approximate density functional theory. We performed REUS simulations of an intra-molecular proton transfer reaction of malonaldehyde and a formation of a phthalocyanine from four phthalonitriles and one iron atom to validate the reliability of our implemented REUS-DFTB + combination.
Nickel replicas as calibration reference standards for industrial surface texture instruments
DEFF Research Database (Denmark)
Sammatini-Malberg, Maria-Pia
The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale.......The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale....
Institute of Scientific and Technical Information of China (English)
高辉; 张冬悦; 赵俊涛; 吴吉红
2012-01-01
Internet of Things has a large amount of data,heterogeneous node,extensive distribution,etc.Replica can improve data access performance.According to the requirements of fast and efficient replica location for the Internet of things,a replica location method based on the class of small world-the class level and the domain level in the Internet of Things is presented.From the local clustering of data access in the Internet of Things,nodes are divided into the class level and domain level.Given the class-domain data access characteristics,two-way circular message diffusion mechanism to achieve replica of the local and global location is proposed to increase the replica location efficiency.%物联网具有数据量大,节点异构且分布广泛等特点。采用副本存储可以提高数据访问性能。针对物联网中对副本定位快速高效要求的问题,提出一种基于小世界的类-域层次的物联网中副本定位方法。从物联网中数据访问的局部聚类性考虑,将节点划分为类层次和域层次,分别采用根据类-域数据访问特点的双向环形消息扩散机制,实现副本的局部和全局定位,从而提高副本定位的效率。
DEFF Research Database (Denmark)
Baruffi, Federico; Parenti, Paolo; Cacciatore, Francesco
2017-01-01
the replica molding technology. The method consists of obtaining a replica of the feature that is inaccessible for standard measurement devices and performing its indirect measurement. This paper examines the performance of a commercial replication media applied to the indirect measurement of micromilled...
Particle-vortex symmetric liquid
Mulligan, Michael
2016-01-01
We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
Valle, Francesco; Bianchi, Michele; Tortorella, Silvia; Pierini, Giovanni; Biscarini, Fabio; D'Elia, Marcello
2012-10-10
A novel application of replica molding to a forensic problem, viz. the accurate reproduction of the case head of gun and rifle cartridges, prior and after been shot, is presented. The fabrication of an arbitrary number of identical copies of the region hit by the firing pin and by the breech face is described. The replicas can be (i) handled without damaging the original evidence, (ii) distributed to different law enforcement agencies for comparison against other evidences found on crime scenes or ballistic tests of seized firearms, (iii) maintained on a file by the laboratories. A detailed analysis of the morphological features of the replicas has been carried out by standard microscopy techniques as well as by advanced microscopy such as scanning probe and scanning electron leading to a quantitative morphological characterization of the case heads down to the nanometer scale. The assignment of the cartridge replicas to the shooting weapon is demonstrated to hold below the micron scale, while it is hindered at the nanometer level both by the manufacturing differences and by eventual modifications occurring on the firing pin.
Shea, Joan-Emma; Levine, Zachary A
2016-01-01
The simulation of protein aggregation poses several computational challenges due to the disparate time and lengths scales that are involved. This chapter focuses on the use of atomistically detailed simulations to probe the initial steps of aggregation, with an emphasis on the Tau peptide as a model system, run under a replica exchange molecular dynamics protocol.
Nickel replicas as calibration reference standards for industrial surface texture instruments
DEFF Research Database (Denmark)
Sammatini-Malberg, Maria-Pia
The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale....
Investigation of the Airflow inside Realistic and Semi-Realistic Replicas of Human Airways
Directory of Open Access Journals (Sweden)
Lizal Frantisek
2015-01-01
Full Text Available Measurement of velocity in human lungs during breathing cycle is a challenging task for researchers, since the measuring location is accessible only with significant difficulties. A special measuring rig consisting of optically transparent replica of human lungs, breathing simulator, particle generator and Laser-Doppler anemometer was developed and used for investigation of the velocity in specific locations of lungs during simulated breathing cycle. Experiments were performed on two different replicas of human lungs in corresponding measuring points to facilitate the analysis of the influence of the geometry and its simplification on the flow. The analysis of velocity course and turbulence intensity revealed that special attention should be devoted to the modelling of vocal cords position during breathing, as the position of laryngeal jet created by vocal cords significantly influences velocity profiles in trachea. The shapes of velocity courses during expiration proved to be consistent for both replicas; however magnitudes of peak expiratory velocity differ between the corresponding measuring points in both the replicas.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E.; Landau, David P.
2015-09-01
We considered a higher-dimensional extension for the replica-exchange Wang- Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this difficulty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
Energy Technology Data Exchange (ETDEWEB)
Valentim, Alexandra [University of Georgia, Athens, GA; Rocha, Julio C. S. [Universidade Federal de Minas Gerais; Tsai, Shan-Ho [University of Georgia, Athens, GA; Li, Ying Wai [ORNL; Eisenbach, Markus [ORNL; Fiore, Carlos E [University of Sao Paulo, BRAZIL; Landau, David P [University of Georgia, Athens, GA
2015-01-01
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
Valentim, Alexandra; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E; Landau, David P
2015-01-01
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this difficulty,...
Fast Optimal Replica Placement with Exhaustive Search Using Dynamically Reconfigurable Processor
Directory of Open Access Journals (Sweden)
Hidetoshi Takeshita
2011-01-01
Full Text Available This paper proposes a new replica placement algorithm that expands the exhaustive search limit with reasonable calculation time. It combines a new type of parallel data-flow processor with an architecture tuned for fast calculation. The replica placement problem is to find a replica-server set satisfying service constraints in a content delivery network (CDN. It is derived from the set cover problem which is known to be NP-hard. It is impractical to use exhaustive search to obtain optimal replica placement in large-scale networks, because calculation time increases with the number of combinations. To reduce calculation time, heuristic algorithms have been proposed, but it is known that no heuristic algorithm is assured of finding the optimal solution. The proposed algorithm suits parallel processing and pipeline execution and is implemented on DAPDNA-2, a dynamically reconfigurable processor. Experiments show that the proposed algorithm expands the exhaustive search limit by the factor of 18.8 compared to the conventional algorithm search limit running on a Neumann-type processor.
Axially Symmetric, Spatially Homothetic Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2002-01-01
We show that the existence of appropriate spatial homothetic Killing vectors is directly related to the separability of the metric functions for axially symmetric spacetimes. The density profile for such spacetimes is (spatially) arbitrary and admits any equation of state for the matter in the spacetime. When used for studying axisymmetric gravitational collapse, such solutions do not result in a locally naked singularity.
Shearfree Spherically Symmetric Fluid Models
Sharif, M
2013-01-01
We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.
Particle-vortex symmetric liquid
Mulligan, Michael
2017-01-01
We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
Vassiliev Invariants from Symmetric Spaces
DEFF Research Database (Denmark)
Biswas, Indranil; Gammelgaard, Niels Leth
We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space. Among the Lie algebra weight systems, they are ......, they are exactly characterized by having the symmetries of the Riemann curvature tensor....
Thermophoresis of Axially Symmetric Bodies
2007-11-02
Sweden Abstract. Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit...derived. Asymptotic solutions are studied. INTRODUCTION Thermophoresis as a phenomenon has been known for a long time, and several authors have approached
Axiomatizations of symmetrically weighted solutions
Kleppe, John; Reijnierse, Hans; Sudhölter, P.
2013-01-01
If the excesses of the coalitions in a transferable utility game are weighted, then we show that the arising weighted modifications of the well-known (pre)nucleolus and (pre)kernel satisfy the equal treatment property if and only if the weight system is symmetric in the sense that the weight of a su
Computationally Efficient Searchable Symmetric Encryption
Liesdonk, van Peter; Sedghi, Saeed; Doumen, Jeroen; Hartel, Pieter; Jonker, Willem; Jonker, Willem; Petkovic, Milan
2010-01-01
Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are
Symmetrical progressive erythro-keratoderma
Directory of Open Access Journals (Sweden)
Sunil Gupta
1999-01-01
Full Text Available A 13-year-old male child had gradually progressive, bilaterall, symmetrical, erythematous hyperkeratotic plaques over knees, elbows, natal cleft, dorsa of hands and feet with palmoplantar keratoderma. High arched palate, fissured tongue and sternal depression (pectus-excavatum were unusual associations.
Understanding symmetrical components for power system modeling
Das, J C
2017-01-01
This book utilizes symmetrical components for analyzing unbalanced three-phase electrical systems, by applying single-phase analysis tools. The author covers two approaches for studying symmetrical components; the physical approach, avoiding many mathematical matrix algebra equations, and a mathematical approach, using matrix theory. Divided into seven sections, topics include: symmetrical components using matrix methods, fundamental concepts of symmetrical components, symmetrical components –transmission lines and cables, sequence components of rotating equipment and static load, three-phase models of transformers and conductors, unsymmetrical fault calculations, and some limitations of symmetrical components.
Itoh, Satoru G; Okumura, Hisashi
2013-11-05
We propose the Hamiltonian replica-permutation method (RPM) (or multidimensional RPM) for molecular dynamics and Monte Carlo simulations, in which parameters in the Hamiltonian are permuted among more than two replicas with the Suwa-Todo algorithm. We apply the Coulomb RPM, which is one of realization of the Hamiltonian RPM, to an alanine dipeptide and to two amyloid-β(29-42) molecules. The Hamiltonian RPM realizes more efficient sampling than the Hamiltonian replica-exchange method. We illustrate the protein misfolding funnel of amyloid-β(29-42) and reveal its dimerization pathways.
Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron
Györgyi, G.
2001-02-01
In this article we review the framework for spontaneous replica symmetry breaking. Subsequently that is applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron, i.e., simple perceptron. It is shown that in the neuron problem, the general formula that is at the core of all problems admitting Parisi's replica symmetry breaking ansatz with a one-component order parameter appears. The details of Parisi's method are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and the Green function technique is introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The Green function of the Fokker-Planck equation due to Sompolinsky turns out to play the role of the statistical mechanical Green function in the graph rules for replica correlators. The subsequently obtained graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x( q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them is one similar to the Parisi phase in long-range interaction spin glasses. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the
The antipodal sets of compact symmetric spaces
National Research Council Canada - National Science Library
Liu, Xingda; Deng, Shaoqiang
2014-01-01
We study the antipodal set of a point in a compact Riemannian symmetric space. It turns out that we can give an explicit description of the antipodal set of a point in any connected simply connected compact Riemannian symmetric space...
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...... normalisation, where all rules dual to standard ones are permuted up in the derivation. The result is a decomposition theorem having cut elimination and interpolation as corollaries.......We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus...
Symmetric two-coordinate photodiode
Directory of Open Access Journals (Sweden)
Dobrovolskiy Yu. G.
2008-12-01
Full Text Available The two-coordinate photodiode is developed and explored on the longitudinal photoeffect, which allows to get the coordinate descriptions symmetric on the steepness and longitudinal resistance great exactness. It was shown, that the best type of the coordinate description is observed in the case of scanning by the optical probe on the central part of the photosensitive element. The ways of improvement of steepness and linear of its coordinate description were analyzed.
Rotationally symmetric viscous gas flows
Weigant, W.; Plotnikov, P. I.
2017-03-01
The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
Beyond Storage Capacity in a Single Model Neuron: Continuous Replica Symmetry Breaking
Györgyi, G.; Reimann, P.
2000-10-01
A single McCulloch-Pitts neuron, that is, the simple perceptron is studied, with focus on the region beyond storage capacity. It is shown that Parisi's hierarchical ansatz for the overlap matrix of the synaptic couplings with so called continuous replica symmetry breaking is a solution, and as we propose it is the exact one, to the equilibrium problem. We describe some of the most salient features of the theory and give results about the low temperature region. In particular, the basics of the Parisi technique and the way to calculate thermodynamical expectation values is explained. We have numerically extremized the replica free energy functional for some parameter settings, and thus obtained the order parameter function, i.e., the probability distribution of overlaps. That enabled us to evaluate the probability density of the local stability parameter. We also performed a simulation and found a local stability density closer to the theoretical curve than previous numerical results were.
Brown, Sandra E
2014-01-01
Classical free energies for the cage and prism isomers of water hexamer computed by the self- consistent phonons (SCP) method and reversible scaling (RS) method are presented for several flexible water potentials. Both methods have been augmented with a rotational correction for improved accuracy when working with clusters. Comparison of the SCP results with the RS results suggests a fairly broad temperature range over which the SCP approximation can be expected to give accurate results for systems of water clusters, and complements a previously reported assessment of SCP. Discrepancies between the SCP and RS results presented here, and recently published replica exchange molecular dynamics (REMD) results bring into question the convergence of the REMD and accompanying replica exchange path integral molecular dynamics results. In addition to the ever-present specter of unconverged results, several possible sources for the discrepancy are explored based on inherent characteristics of the methods used.
Kaivarainen, A
2001-01-01
The original mechanism of bivacuum mediated Mind-Matter and Mind-Mind interaction, proposed here, is based on the following stages of long term efforts: New dynamic models of bivacuum, sub-elementary particles and corpuscle-wave [C-W] duality, as a background of Superunification; New Hierarchic theory of liquids and solids; New Hierarchic model of elementary act of consciousness; Virtual Replica (VR)of matter, including living organisms, in bivacuum; The distant resonant [Mind-Bivacuum-Matter] and [Mind-Bivacuum-Mind] interaction, mediated by Bivacuum oscillation (BvO, accompanied by virtual particles/antiparticles pressure oscillation. The latter factor is related to oscillation of vacuum permittivity and permeability. The virtual replica (VR) of condensed matter (living organisms in private case), may influence the properties of virtual pressure of bivacuum in following manner: 1) changing the amplitude of virtual pressure waves (VPW) in-phase with Bivacuum oscillations (BvO). This factor is dependent on fr...
Performance of replica-exchange Wang-Landau sampling for the study of spin systems
Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Wüst, Thomas; Landau, David P.
2014-03-01
The recently proposed replica-exchange Wang-Landau sampling (REWL) is a novel, massively parallel Monte Carlo method which allows for the parallelization of Wang-Landau sampling based on a replica-exchange framework. The robustness of the scheme is demonstrated by its broad applicability on a variety of spin systems: from the simplest models with discrete or continuous energy domains, to complex systems captured by large-scale first principles density functional theory calculations. The accuracy of REWL is studied by comparing the thermodynamic properties with exact solutions and results obtained by the original, serial Wang-Landau sampling. The principles for the speed-up, the strong and weak scaling behavior of REWL are also investigated when different parameter settings are employed. We will show, with the aid of selected spin systems, that the method accelerates the simulations significantly with a possible improved accuracy. Phys. Rev. Lett. 110, 210603 (2013)
Enhanced Conformational Sampling using Replica Exchange with Collective-Variable Tempering
Gil-Ley, Alejandro
2015-01-01
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strength of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.
Vreede, Jocelyne; Wolf, Maarten G; de Leeuw, Simon W; Bolhuis, Peter G
2009-05-07
Hydrogen bonds play an important role in stabilizing (meta-)stable states in protein folding. Hence, they can potentially be used as a way to bias these states in molecular simulation methods. Previously, Wolf et al. showed that applying repulsive and attractive hydrogen bond biasing potentials in an alternating way significantly accelerates the folding process (Wolf, M. G.; de Leeuw, S. W. Biophys. J. 2008, 94, 3742). As the biasing potentials are only active during a fixed time interval, this alternating scheme does not represent a thermodynamic equilibrium. In this work, we present a Hamiltonian replica exchange molecular dynamics (REMD) scheme that aims to shuffle and reorder hydrogen bonds in the protein backbone. We therefore apply adapted hydrogen bond potentials in a Hamiltonian REMD scheme, which we call hydrogen bond switching (HS). To compare the performance of the HS to a standard REMD method, we performed HS and temperature REMD simulations of a beta-heptapeptide in methanol. Both methods sample the conformational space to a similar extent. As the HS simulation required only five replicas, while the REMD simulation required 20 replicas, the HS method is significantly more efficient. We tested the HS method also on a larger system, 16-residue polyalanine in water. Both of the simulations starting from a completely unfolded and a folded conformation resulted in an ensemble with, apart from the starting structure, similar conformational minima. We can conclude that the HS method provides an efficient way to sample the conformational space of a protein, without requiring knowledge of the folded states beforehand. In addition, these simulations revealed that convergence was hampered by replicas having a preference for specific biasing potentials. As this sorting effect is inherent to any Hamiltonian REMD method, finding a solution will result in an additional increase in the efficiency of Hamiltonian REMD methods in general.
PHYSICAL DISABILITY, STIGMA, AND PHYSICAL ACTIVITY IN CHILDREN: A REPLICA STUDY
Gebhardt, Markus; MORA Julio G.; SCHWAB Susanne
2016-01-01
Introduction: Stereotypes can be reduced through positive descriptions. A stigma that able-bodied adults have towards children with physical disability can be reduced when the child is portrayed as being active. The study found out that a sporty active child, who uses a wheelchair, is perceived as more competent than the sporty active able-bodied child. Objective: This study is a replica study to support the hypotheses and to examine the stereotypes of able-bodied adults towards children w...
Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method
Directory of Open Access Journals (Sweden)
Li Husheng
2005-01-01
Full Text Available For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact of channel estimation errors on multiuser detection (MUD is analyzed under the framework of the replica method. System performance is obtained in the large system limit for optimal MUD, linear MUD, and turbo MUD, and is validated by numerical results for finite systems.
A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang-Landau sampling
Li, Ying Wai; Wüst, Thomas; Landau, David P
2014-01-01
We introduce a generic, parallel Wang-Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang-Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.
A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang-Landau sampling
Li, Ying Wai; Vogel, Thomas; Wüst, Thomas; Landau, David P.
2014-05-01
We introduce a generic, parallel Wang-Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang-Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.
A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang Landau sampling
Energy Technology Data Exchange (ETDEWEB)
Li, Ying Wai [ORNL; Vogel, Thomas [Los Alamos National Laboratory (LANL); Wuest, Thomas [Swiss Federal Research Institute, Switzerland; Landau, David P [University of Georgia, Athens, GA
2014-01-01
We introduce a generic, parallel Wang Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.
Protein-ligand docking using hamiltonian replica exchange simulations with soft core potentials.
Luitz, Manuel P; Zacharias, Martin
2014-06-23
Molecular dynamics (MD) simulations in explicit solvent allow studying receptor-ligand binding processes including full flexibility of the binding partners and an explicit inclusion of solvation effects. However, in MD simulations, the search for an optimal ligand-receptor complex geometry is frequently trapped in locally stable non-native binding geometries. A Hamiltonian replica-exchange (H-REMD)-based protocol has been designed to enhance the sampling of putative ligand-receptor complexes. It is based on softening nonbonded ligand-receptor interactions along the replicas and one reference replica under the control of the original force field. The efficiency of the method has been evaluated on two receptor-ligand systems and one protein-peptide complex. Starting from misplaced initial docking geometries, the H-REMD method reached in each case the known binding geometry significantly faster than a standard MD simulation. The approach could also be useful to identify and evaluate alternative binding geometries in a given binding region with small relative differences in binding free energy.
Nagai, Tetsuro
2017-01-01
Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, https://doi.org/10.1063/1.3369626" xlink:type="simple">J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.
Karakaya, S; Sengun, A; Ozer, F
2005-06-01
This study was aimed at investigating the internal adaptation of a ceramic (Ceramco II) and two composite resin inlay materials (SureFil and 3M Filtek Z 250) using silicon replica technique as an indicator. Forty-five standard mesial-occlusal-distal (MOD) cavities were prepared into brass moulds by using computer numerically controlled system. Inlays were prepared according to manufacturers' instructions with indirect methods. Replicas of the prepared cavities and inlays were produced with a polyvinyl siloxane material (Elite H-D). The spaces between inlays and cavities were filled by different coloured light-body polyvinyl siloxane material. Two parallel slices (mesio-distally) were obtained from the replicas with a sharp blade. Different coloured polyvinyl siloxane material thickness between cavity and inlay was measured at seven points (mesial, occlusal and distal). The data were evaluated with anova and Tukey's honestly significantly different (HSD) statistical tests. In the SureFil and Ceramco II groups, the sizes of the contraction gaps at mesial and distal gingival floors were greater than that of the occlusal marginal walls. In comparison of gap formation at occlusal regions, while the 3M composite group showed highest gap values (204.33 +/- 75.45 microm), the Ceramco II group revealed the lowest (141.17 +/- 23.66 microm) (P 0.05). In conclusion, our results showed that ceramic inlays did not confer any big advantage for internal adaptation over the composite inlays.
Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas
Institute of Scientific and Technical Information of China (English)
YE XiaoZhou; QI LiMin
2014-01-01
Monolayer colloidal crystals（MCCs）are two-dimensional（2D）colloidal crystals consisting of a monolayer of monodisperse colloidal particles arrayed with a 2D periodic order.In recent years,MCCs have attracted intensive interest because they can act as 2D photonic crystals and be used as versatile templates for fabrication of various 2D nanostructure arrays.In this review,we provide an overview of the recent progress in the controllable fabrication of MCCs and their inverse replicas.First,some newly-developed methods for the self-assembly of MCCs based on different strategies including interfacial assembly and convective assembly are introduced.Second,some representative novel methods regarding the fabrication of various functional2D inverse replicas of MCCs,such as 2D arrays of nanobowls,nanocaps,and hollow spheres,as well as 2D monolayer inverse opals（MIOs）,are described.In addition,the potential applications of MCCs and their inverse replicas are discussed.
Characterization of Nb SRF cavity materials by white light interferometry and replica techniques
Energy Technology Data Exchange (ETDEWEB)
Xu, Chen [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael, E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States)
2013-06-01
Much work has shown that the topography of the interior surface is an important contributor to the performance of Nb superconducting radiofrequency (SRF) accelerator cavities. Micron-scale topography is implicated in non-linear loss mechanisms that limit the useful accelerating gradient range and impact cryogenic cost. Aggressive final chemical treatments in cavity production seek to reliably obtain “smoothest” surfaces with superior performance. Process development suffers because the cavity interior surface cannot be viewed directly without cutting out pieces, rendering the cavities unavailable for further study. Here we explore replica techniques as an alternative, providing imprints of cavity internal surface that can be readily examined. A second matter is the topography measurement technique used. Atomic force microscopy (AFM) has proven successful, but too time intensive for routine use in this application. We therefore introduce white light interferometry (WLI) as an alternative approach. We examined real surfaces and their replicas, using AFM and WLI. We find that the replica/WLI is promising to provide the large majority of the desired information, recognizing that a trade-off is being made between best lateral resolution (AFM) and the opportunity to examine much more surface area (WLI).
Energy Technology Data Exchange (ETDEWEB)
Zhang Wang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China); Zhang Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China)], E-mail: zhangdi@sjtu.edu.cn; Fan Tongxiang; Ding Jian; Gu Jiajun [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China); Guo Qixin; Ogawa, Hiroshi [Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502 (Japan)
2009-01-01
Papilio paris butterflies have an iridescent blue color patch on their hind wings which is visible over a wide viewing angle. Optical and scanning electron microscopy observations of scales from the wings show that the blue color scales have very different microstructure to the matt black ones which also populate the wings. Scanning electron micrographs of the blue scales show that their surfaces comprise a regular two-dimensional array of concavities. By contrast the matt black scales have fine, sponge-like structure, between the ridges and the cross ribs in the scales. Using both types of scale as bio-templates, we obtain zinc oxide (ZnO) replicas of the microstructures of the original scales. Room temperature (T = 300 K) cathodoluminescence spectra of these ZnO replicas have also been studied. Both spectra show a similar sharp near-band-edge emission, but have different green emission, which we associate with the different microstructures of the ZnO replicas.
Symmetric products of mixed Hodge modules
Maxim, Laurentiu; Schuermann, Joerg
2010-01-01
Generalizing a theorem of Macdonald, we show a formula for the mixed Hodge structure on the cohomology of the symmetric products of bounded complexes of mixed Hodge modules by showing the existence of the canonical action of the symmetric group on the multiple external self-products of complexes of mixed Hodge modules. We also generalize a theorem of Hirzebruch and Zagier on the signature of the symmetric products of manifolds to the case of the symmetric products of symmetric parings on bounded complexes with constructible cohomology sheaves where the pairing is not assumed to be non-degenerate.
Singular Value Decomposition for Unitary Symmetric Matrix
Institute of Scientific and Technical Information of China (English)
ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda
2003-01-01
A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Discrete Torsion and Symmetric Products
Dijkgraaf, R
1999-01-01
In this note we point out that a symmetric product orbifold CFT can be twisted by a unique nontrivial two-cocycle of the permutation group. This discrete torsion changes the spins and statistics of corresponding second-quantized string theory making it essentially ``supersymmetric.'' The long strings of even length become fermionic (or ghosts), those of odd length bosonic. The partition function and elliptic genus can be described by a sum over stringy spin structures. The usual cubic interaction vertex is odd and nilpotent, so this construction gives rise to a DLCQ string theory with a leading quartic interaction.
A charged spherically symmetric solution
Indian Academy of Sciences (India)
K Moodley; S D Maharaj; K S Govinder
2003-09-01
We ﬁnd a solution of the Einstein–Maxwell system of ﬁeld equations for a class of accelerating, expanding and shearing spherically symmetric metrics. This solution depends on a particular ansatz for the line element. The radial behaviour of the solution is fully speciﬁed while the temporal behaviour is given in terms of a quadrature. By setting the charge contribution to zero we regain an (uncharged) perfect ﬂuid solution found previously with the equation of state =+ constant, which is a generalisation of a stiff equation of state. Our class of charged shearing solutions is characterised geometrically by a conformal Killing vector.
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
Schwarz Methods: To Symmetrize or Not to Symmetrize
Holst, Michael
2010-01-01
A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of non-variational and non-convergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.
Lagrangian formulation of symmetric space sine-Gordon models
Bakas, Ioannis; Shin, H J; Park, Q Han
1996-01-01
The symmetric space sine-Gordon models arise by conformal reduction of ordinary 2-dim \\sigma-models, and they are integrable exhibiting a black-hole type metric in target space. We provide a Lagrangian formulation of these systems by considering a triplet of Lie groups F \\supset G \\supset H. We show that for every symmetric space F/G, the generalized sine-Gordon models can be derived from the G/H WZW action, plus a potential term that is algebraically specified. Thus, the symmetric space sine-Gordon models describe certain integrable perturbations of coset conformal field theories at the classical level. We also briefly discuss their vacuum structure, Backlund transformations, and soliton solutions.
Energy Technology Data Exchange (ETDEWEB)
Storesund, Jan [Det Norske Veritas AB, Stockholm (Sweden)
2000-08-01
Replica testing is a non-destructive testing method where the microstructure of the surface of a component is replicated. This involves careful metallographical preparation which in some points also should be adapted to the aims of the investigation. There are published guidelines for replica testing of high temperature components in power plant, for instance by Nordtest, but these may be considered to be insufficient to assure the required quality and reproducibility of the replicas. There are no certification systems for the replica method in Sweden as well as abroad and the experience has shown that differences in the performance that existing praxis can involve may give significant influence on the results when the replicas are evaluated. In the present project recommendations have been compiled for replica testing with regard to creep damage on occurring heat resistant steel types in Swedish power plants. The recommendations consist of guidelines for metallographical replication in the field and cover: - Test positions at weldments and pipe bends; - Equipment; - Rough and fine grinding; - Macro-etching; - Electrolytic and mechanical polishing; - Etching; - Replication; - Documentation and storage; - Personnel. They describe differences in the testing of the different materials and the purpose is to assure replica testing of the highest quality and reproducibility. The recommendations have been compiled by use of guidelines and company standards as a starting point. Some points in the recommendations refer to trials for verification which have been carried out within the frame of the project. The trials have been focused on the appearance of creep damage and microstructure in different established methods for polishing and etching. Comments and closer descriptions for some points of the test procedures are given in an appendix to the recommendations.
Symmetric Circular Matchings and RNA Folding
DEFF Research Database (Denmark)
Hofacker, Ivo L.; Reidys, Christian; Stadler, Peter F.
2012-01-01
RNA secondary structures can be computed as optimal solutions of certain circular matching problems. An accurate treatment of this energy minimization problem has to account for the small --- but non-negligible --- entropic destabilization of secondary structures with non-trivial automorphisms....... Such intrinsic symmetries are typically excluded from algorithmic approaches, however, because the effects are small, they play a role only for RNAs with symmetries at sequence level, and they appear only in particular settings that are less frequently used in practical application, such as circular folding...... or the co-folding of two or more identical RNAs. Here, we show that the RNA folding problem with symmetry terms can still be solved with polynomial-time algorithms. Empirically, the fraction of symmetric ground state structures decreases with chain length, so that the error introduced by neglecting...
Fine Spectra of Symmetric Toeplitz Operators
Directory of Open Access Journals (Sweden)
Muhammed Altun
2012-01-01
Full Text Available The fine spectra of 2-banded and 3-banded infinite Toeplitz matrices were examined by several authors. The fine spectra of n-banded triangular Toeplitz matrices and tridiagonal symmetric matrices were computed in the following papers: Altun, “On the fine spectra of triangular toeplitz operators” (2011 and Altun, “Fine spectra of tridiagonal symmetric matrices” (2011. Here, we generalize those results to the (2+1-banded symmetric Toeplitz matrix operators for arbitrary positive integer .
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Symmetric functions and Hall polynomials
MacDonald, Ian Grant
1998-01-01
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...
A Minimally Symmetric Higgs Boson
Low, Ian
2014-01-01
Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)xU(1) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal in all models where the Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB). Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.
Computing symmetric colorings of the dihedral group
Zelenyuk, Yuliya
2016-06-01
A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.
Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.
Directory of Open Access Journals (Sweden)
Yoel E Stuart
Full Text Available Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.
Multiple replica repulsion technique for efficient conformational sampling of biological systems.
Malevanets, Anatoly; Wodak, Shoshana J
2011-08-17
Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed "multiple replica repulsion" (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Time-reversal focusing of an expanding soliton gas in disordered replicas
Fratalocchi, Andrea
2011-05-31
We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time-reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schrödinger equation.
Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass
Hukushima; Kawamura
2000-02-01
Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.
Imagawa, Daisuke; Kawamura, Hikaru
2004-02-20
The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.
Investigation on a replica step gauge for optical 3D scanning of micro parts
DEFF Research Database (Denmark)
Cantatore, Angela; De Chiffre, Leonardo; Carmignato, S.
2010-01-01
. The stability over time of the step gauge was evaluated by repetitive measurement campaigns over a period of eight months, using measurements taken with a tactile CMM and with an optical scanner. Surface cooperativeness was investigated by measuring artefact grooves and pitch and comparing results with tactile......This work deals with investigation of the stability over time and surface cooperativeness of a calibration artefact intended for optical scanner verification. A replica step gauge with 11 grooves, made of bisacryl material for dental applications (luxabite) and previously fabricated was studied...
Energy Technology Data Exchange (ETDEWEB)
Perera, Meewanage Dilina N [ORNL; Li, Ying Wai [ORNL; Eisenbach, Markus [ORNL; Vogel, Thomas [Los Alamos National Laboratory (LANL); Landau, David P [University of Georgia, Athens
2015-01-01
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
Doi, Hideo; Yasuoka, Kenji
2017-05-01
Confined systems exhibit interesting properties that are applied to the fields of lubrication, adhesion and nanotechnology. The replica exchange molecular simulation method was applied to calculate the phase equilibrium points of Lennard-Jones particles in a two-dimensional confined system. The liquid-solid phase equilibrium points and the solid structure with a dependency of the slit width were determined and the order parameter of the solid structure was analyzed. Such confined systems are shown to be favorable for manipulation of the phase equilibrium points.
Anti-stiction coating of PDMS moulds for rapid microchannel fabrication by double replica moulding
DEFF Research Database (Denmark)
Zhuang, Guisheng; Kutter, Jörg Peter
2011-01-01
), which resulted in an anti-stiction layer for the improved release after PDMS casting. The deposition of FDTS on an O2 plasma-activated surface of PDMS produced a reproducible and well-performing anti-stiction monolayer of fluorocarbon, and we used the FDTS-coated moulds as micro-masters for rapid......In this paper, we report a simple and precise method to rapidly replicate master structures for fast microchannel fabrication by double replica moulding of polydimethylsiloxane (PDMS). A PDMS mould was surface-treated by vapour phase deposition of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS...
Olson, Mark A; Lee, Michael S; Yeh, In-Chul
2017-01-28
This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc.
Ostermeir, Katja; Zacharias, Martin
2014-12-01
Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations.
Automorphism groups of causal symmetric spaces of Cayley type and bounded symmetric domains
Institute of Scientific and Technical Information of China (English)
Soji; Kaneyuki
2005-01-01
Symmetric spaces of Cayley type are a higher dimensional analogue of a onesheeted hyperboloid in R3. They form an important class of causal symmetric spaces. To a symmetric space of Cayley type M, one can associate a bounded symmetric domain of tube type D. We determine the full causal automorphism group of M. This clarifies the relation between the causal automorphism group and the holomorphic automorphism group of D.
Partially locally rotationally symmetric perfect fluid cosmologies
Mustapha, N; Van Elst, H; Marklund, M; Mustapha, Nazeem; Ellis, George F R; Elst, Henk van; Marklund, Mattias
2000-01-01
We show that there are no new consistent perfect fluid cosmologies with the kinematic variables and the electric and magnetic parts of the Weyl curvature all rotationally symmetric about a common axis in an open neighbourhood ${\\cal U}$ of an event. The consistent solutions of this kind are either locally rotationally symmetric, or are subcases of the Szekeres model.
CANONICAL EXTENSIONS OF SYMMETRIC LINEAR RELATIONS
Sandovici, Adrian; Davidson, KR; Gaspar, D; Stratila, S; Timotin, D; Vasilescu, FH
2006-01-01
The concept of canonical extension of Hermitian operators has been recently introduced by A. Kuzhel. This paper deals with a generalization of this notion to the case of symmetric linear relations. Namely, canonical regular extensions of symmetric linear relations in Hilbert spaces are studied. The
Symmetric products, permutation orbifolds and discrete torsion
Bántay, P
2000-01-01
Symmetric product orbifolds, i.e. permutation orbifolds of the full symmetric group S_{n} are considered by applying the general techniques of permutation orbifolds. Generating functions for various quantities, e.g. the torus partition functions and the Klein-bottle amplitudes are presented, as well as a simple expression for the discrete torsion coefficients.
Joglekar, Yogesh N
2010-01-01
We study the properties of a parity- and time-reversal- (PT) symmetric tight-binding chain of size N with position-dependent hopping amplitude. In contrast to the fragile PT-symmetric phase of a chain with constant hopping and imaginary impurity potentials, we show that, under very general conditions, our model is {\\it always} in the PT-symmetric phase. We numerically obtain the energy spectrum and the density of states of such a chain, and show that they are widely tunable. By studying the size-dependence of inverse participation ratios, we show that although the chain is not translationally invariant, most of its eigenstates are extended. Our results indicate that tight-binding models with non-Hermitian PT-symmetric hopping have a robust PT-symmetric phase and rich dynamics.
Classification of Entanglement in Symmetric States
Aulbach, Martin
2011-01-01
Quantum states that are symmetric with respect to permutations of their subsystems appear in a wide range of physical settings, and they have a variety of promising applications in quantum information science. In this thesis the entanglement of symmetric multipartite states is categorised, with a particular focus on the pure multi-qubit case and the geometric measure of entanglement. An essential tool for this analysis is the Majorana representation, a generalisation of the single-qubit Bloch sphere representation, which allows for a unique representation of symmetric n qubit states by n points on the surface of a sphere. Here this representation is employed to search for the maximally entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an intuitive visual understanding of the upper bound on the maximal symmetric entanglement is given. Furthermore, it will be seen that the Majorana representation facilitates the characterisation of entanglement equivalence classes such as Stoc...
Wang, Kai; Chodera, John D; Yang, Yanzhi; Shirts, Michael R
2013-12-01
We present a method to identify small molecule ligand binding sites and poses within a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand to an unphysical end state where the ligand does not interact with the protein. As replicas explore the space of Hamiltonians interpolating between these states, the ligand can rapidly escape local minima and explore potential binding sites. Geometric restraints keep the ligands from leaving the vicinity of the protein and an alchemical pathway designed to increase phase space overlap between intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the Hamiltonian exchange framework, we can also extract binding free energy estimates for all putative binding sites. We present results of this methodology applied to the T4 lysozyme L99A model system for three known ligands and one non-binder as a control, using an implicit solvent. We find that our methodology identifies known crystallographic binding sites consistently and accurately for the small number of ligands considered here and gives free energies consistent with experiment. We are also able to analyze the contribution of individual binding sites to the overall binding affinity. Our methodology points to near term potential applications in early-stage structure-guided drug discovery.
Curuksu, Jeremy; Zacharias, Martin
2009-03-14
Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.
Meng, Yilin; Dashti, Danial Sabri; Roitberg, Adrian E
2011-09-13
Alchemical free energy calculations play a very important role in the field of molecular modeling. Efforts have been made to improve the accuracy and precision of those calculations. One of the efforts is to employ a Hamiltonian replica exchange molecular dynamics (H-REMD) method to enhance conformational sampling. In this paper, we demonstrated that HREMD method not only improves convergence in alchemical free energy calculations but also can be used to compute free energy differences directly via the Free Energy Perturbation (FEP)algorithm. We show a direct mapping between the H-REMD and the usual FEP equations, which are then used directly to compute free energies. The H-REMD alchemical free energy calculation (Replica exchange Free Energy Perturbation, REFEP) was tested on predicting the pK(a) value of the buried Asp26 in thioredoxin. We compare the results of REFEP with TI and regular FEP simulations. REFEP calculations converged faster than those from TI and regular FEP simulations. The final predicted pK(a) value from the H-REMD simulation was also very accurate, only 0.4 pK(a) unit above the experimental value. Utilizing the REFEP algorithm significantly improves conformational sampling, and this in turn improves the convergence of alchemical free energy simulations.
Xia, Junchao; Flynn, William F; Gallicchio, Emilio; Zhang, Bin W; He, Peng; Tan, Zhiqiang; Levy, Ronald M
2015-09-05
We describe methods to perform replica exchange molecular dynamics (REMD) simulations asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations on grid computing networks consisting of heterogeneous and distributed computing environments as well as on homogeneous high-performance clusters. We have implemented these methods on NSF (National Science Foundation) XSEDE (Extreme Science and Engineering Discovery Environment) clusters and BOINC (Berkeley Open Infrastructure for Network Computing) distributed computing networks at Temple University and Brooklyn College at CUNY (the City University of New York). They are also being implemented on the IBM World Community Grid. To illustrate the methods, we have performed extensive (more than 60 ms in aggregate) simulations for the beta-cyclodextrin-heptanoate host-guest system in the context of one- and two-dimensional ASyncRE, and we used the results to estimate absolute binding free energies using the binding energy distribution analysis method. We propose ways to improve the efficiency of REMD simulations: these include increasing the number of exchanges attempted after a specified molecular dynamics (MD) period up to the fast exchange limit and/or adjusting the MD period to allow sufficient internal relaxation within each thermodynamic state. Although ASyncRE simulations generally require long MD periods (>picoseconds) per replica exchange cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the combination of the MD period and the number of exchanges attempted per cycle.
Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
Berg, Emily J; Weisman, Jessica L; Oldham, Michael J; Robinson, Risa J
2010-04-19
Inhaled particles reaching the alveolar walls have the potential to cross the blood-gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung.
Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke
2016-12-01
Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.
PHYSICAL DISABILITY, STIGMA, AND PHYSICAL ACTIVITY IN CHILDREN: A REPLICA STUDY
Directory of Open Access Journals (Sweden)
Markus GEBHARDT
2016-04-01
Full Text Available Introduction: Stereotypes can be reduced through positive descriptions. A stigma that able-bodied adults have towards children with physical disability can be reduced when the child is portrayed as being active. The study found out that a sporty active child, who uses a wheelchair, is perceived as more competent than the sporty active able-bodied child. Objective: This study is a replica study to support the hypotheses and to examine the stereotypes of able-bodied adults towards children with and without (physical disabilities. Methods: This study presents two experimental replica studies using a 2 (physical activity x 2 (sporty activities. The dependent variables were the perception of competencies and warmth according to Stereotype Content Model (SCM. Study 1 is an online experiment with 355 students of the Open University of Hagen. Study 2 surveys 1176 participants (from Munich and Graz with a paper-pencil-questionnaire. Results: The significant interaction effect was not supported by our studies. The sporty able-bodied child was rated higher in competences than the sporty child, who use a wheelchair. Sporting activity only reduces the stigma towards children with a physical disability slightly. Conclusion: The stigma towards children with physical disability can be reduced when the child is portrayed as being active, but the effect was not strong enough to chance the original classification by the SCM.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Symmetric Structure in Logic Programming
Institute of Scientific and Technical Information of China (English)
Jin-Zhao Wu; Harald Fecher
2004-01-01
It is argued that some symmetric structure in logic programs could be taken into account when implementing semantics in logic programming. This may enhance the declarative ability or expressive power of the semantics. The work presented here may be seen as representative examples along this line. The focus is on the derivation of negative information and some other classic semantic issues. We first define a permutation group associated with a given logic program. Since usually the canonical models used to reflect the common sense or intended meaning are minimal or completed models of the program, we expose the relationships between minimal models and completed models of the original program and its so-called G-reduced form newly-derived via the permutation group defined. By means of this G-reduced form, we introduce a rule to assume negative information termed G-CWA, which is actually a generalization of the GCWA. We also develop the notions of G-definite, G-hierarchical and G-stratified logic programs, which are more general than definite, hierarchical and stratified programs, and extend some well-known declarative and procedural semantics to them, respectively.
PT-Symmetric Quantum Electrodynamics
Bender, C M; Milton, K A; Shajesh, K V; Bender, Carl M.; Cavero-Pelaez, Ines; Milton, Kimball A.
2005-01-01
The Hamiltonian for quantum electrodynamics becomes non-Hermitian if the unrenormalized electric charge $e$ is taken to be imaginary. However, if one also specifies that the potential $A^\\mu$ in such a theory transforms as a pseudovector rather than a vector, then the Hamiltonian becomes PT symmetric. The resulting non-Hermitian theory of electrodynamics is the analog of a spinless quantum field theory in which a pseudoscalar field $\\phi$ has a cubic self-interaction of the form $i\\phi^3$. The Hamiltonian for this cubic scalar field theory has a positive spectrum, and it has recently been demonstrated that the time evolution of this theory is unitary. The proof of unitarity requires the construction of a new operator called C, which is then used to define an inner product with respect to which the Hamiltonian is self-adjoint. In this paper the corresponding C operator for non-Hermitian quantum electrodynamics is constructed perturbatively. This construction demonstrates the unitarity of the theory. Non-Hermit...
Substring-Searchable Symmetric Encryption
Directory of Open Access Journals (Sweden)
Chase Melissa
2015-06-01
Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.
Cavalli, Andrea; Camilloni, Carlo; Vendruscolo, Michele
2013-03-07
In order to characterise the dynamics of proteins, a well-established method is to incorporate experimental parameters as replica-averaged structural restraints into molecular dynamics simulations. Here, we justify this approach in the case of interproton distance information provided by nuclear Overhauser effects by showing that it generates ensembles of conformations according to the maximum entropy principle. These results indicate that the use of replica-averaged structural restraints in molecular dynamics simulations, given a force field and a set of experimental data, can provide an accurate approximation of the unknown Boltzmann distribution of a system.
Symmetric Partial Derivatives%对称偏导数
Institute of Scientific and Technical Information of China (English)
徐永平
2001-01-01
In this paper, symmetric partial derivatives and symmetric total differential of a function of several variables are defined. The relationship between partial derivative and the symmetric partial derivative, the total differential and the symmetric total derivative are discussed. By means of the concept of symmetric partial derivatives, the existence theorem of the total differential of a function of several is obtained.
The symmetric extendibility of quantum states
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Random matrix theory and symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Caselle, M.; Magnea, U
2004-05-01
In this review we discuss the relationship between random matrix theories and symmetric spaces. We show that the integration manifolds of random matrix theories, the eigenvalue distribution, and the Dyson and boundary indices characterizing the ensembles are in strict correspondence with symmetric spaces and the intrinsic characteristics of their restricted root lattices. Several important results can be obtained from this identification. In particular the Cartan classification of triplets of symmetric spaces with positive, zero and negative curvature gives rise to a new classification of random matrix ensembles. The review is organized into two main parts. In Part I the theory of symmetric spaces is reviewed with particular emphasis on the ideas relevant for appreciating the correspondence with random matrix theories. In Part II we discuss various applications of symmetric spaces to random matrix theories and in particular the new classification of disordered systems derived from the classification of symmetric spaces. We also review how the mapping from integrable Calogero-Sutherland models to symmetric spaces can be used in the theory of random matrices, with particular consequences for quantum transport problems. We conclude indicating some interesting new directions of research based on these identifications.
Fan, Hao; Periole, Xavier; Mark, Alan E.
2012-01-01
The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment, spe
Coscheduling Technique for Symmetric Multiprocessor Clusters
Energy Technology Data Exchange (ETDEWEB)
Yoo, A B; Jette, M A
2000-09-18
Coscheduling is essential for obtaining good performance in a time-shared symmetric multiprocessor (SMP) cluster environment. However, the most common technique, gang scheduling, has limitations such as poor scalability and vulnerability to faults mainly due to explicit synchronization between its components. A decentralized approach called dynamic coscheduling (DCS) has been shown to be effective for network of workstations (NOW), but this technique is not suitable for the workloads on a very large SMP-cluster with thousands of processors. Furthermore, its implementation can be prohibitively expensive for such a large-scale machine. IN this paper, they propose a novel coscheduling technique based on the DCS approach which can achieve coscheduling on very large SMP-clusters in a scalable, efficient, and cost-effective way. In the proposed technique, each local scheduler achieves coscheduling based upon message traffic between the components of parallel jobs. Message trapping is carried out at the user-level, eliminating the need for unsupported hardware or device-level programming. A sending process attaches its status to outgoing messages so local schedulers on remote nodes can make more intelligent scheduling decisions. Once scheduled, processes are guaranteed some minimum period of time to execute. This provides an opportunity to synchronize the parallel job's components across all nodes and achieve good program performance. The results from a performance study reveal that the proposed technique is a promising approach that can reduce response time significantly over uncoordinated time-sharing and batch scheduling.
Itoh, Satoru G; Okumura, Hisashi
2016-07-14
Oligomers of amyloid-β peptides (Aβ) are formed during the early stage of the amyloidogenesis process and exhibit neurotoxicity. The oligomer formation process of Aβ and even that of Aβ fragments are still poorly understood, though understanding of these processes is essential for remedying Alzheimer's disease. In order to better understand the oligomerization process of the C-terminal Aβ fragment Aβ(29-42) at the atomic level, we performed the Hamiltonian replica-permutation molecular dynamics simulation with Aβ(29-42) molecules using the explicit water solvent model. We observed that oligomers increased in size through the sequential addition of monomers to the oligomer, rather than through the assembly of small oligomers. Moreover, solvent effects played an important role in this oligomerization process.
A class of symmetric controlled quantum operations
Vaccaro, J A; Huelga, S F; Vaccaro, John A.
2001-01-01
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric.
A class of symmetric controlled quantum operations
Energy Technology Data Exchange (ETDEWEB)
Vaccaro, John A.; Steuernagel, O.; Huelga, S.F. [Division of Physics and Astronomy, Department of Physical Sciences, University of Hertfordshire, Hatfield (United Kingdom)
2001-09-07
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric. (author)
Nilpotent orbits in real symmetric pairs
Dietrich, Heiko; Ruggeri, Daniele; Trigiante, Mario
2016-01-01
In the classification of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determining the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of SL_2(R)^4 acting on the fourth tensor power of the natural 2-dimensional SL_2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.
PT-Symmetric Quantum Field Theory
Milton, K A
2003-01-01
In the context of the PT-symmetric version of quantum electrodynamics, it is argued that the C operator introduced in order to define a unitary inner product has nothing to do with charge conjugation.
Symmetric centres of braided monoidal categories
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper introduces the concept of‘symmetric centres' of braided monoidal categories. Let H be a Hopf algebra with bijective antipode over a field k. We address the symmetric centre of the Yetter-Drinfel'd module category HH(yD) and show that a left Yetter-Drinfel'd module M belongs to the symmetric centre of HH(yD) if and only if M is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of H(M) to induce the braid of (H(H)(A),(○)A,A,φ,l,r), or equivalently, the braid of (A#H(H),(○)A,A,φ,l,r), where A is a quantum commutative H-module algebra.
Martingale Rosenthal inequalities in symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Astashkin, S V [Samara State University, Samara (Russian Federation)
2014-12-31
We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.
Resistor Networks based on Symmetrical Polytopes
National Research Council Canada - National Science Library
Moody, Jeremy; Aravind, P.K
2015-01-01
This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors...
Spherically symmetric brane spacetime with bulk gravity
Chakraborty, Sumanta; SenGupta, Soumitra
2015-01-01
Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.
Arenzon, Jeferson J.
1999-03-01
An infinite range spin-glass-like model for granular systems is introduced and studied through the replica mean-field formalism. Equilibrium, density-dependent properties under vibration and gravity are obtained that qualitatively resemble the results from real and numerical experiments.
Borojeni, Azadeh A T; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H
2015-07-16
This work describes in vitro measurement of the total pressure loss at varying flow rate through anatomically realistic conducting airway replicas of 10 children, 4 to 8 years old, and 5 adults. Experimental results were compared with analytical predictions made using published airway resistance models. For the adult replicas, the model proposed by van Ertbruggen et al. (2005. J. Appl. Physiol. 98, 970-980) most accurately predicted central conducting airway resistance for inspiratory flow rates ranging from 15 to 90 L/min. Models proposed by Pedley et al. (1970. J. Respir. Physiol. 9, 371-386) and by Katz et al. (2011. J. Biomech. 44, 1137-1143) also provided reasonable estimates, but with a tendency to over predict measured pressure loss for both models. For child replicas, the Pedley and Katz models both provided good estimation of measured pressure loss at flow rates representative of resting tidal breathing, but under predicted measured values at high inspiratory flow rate (60 L/min). The van Ertbruggen model, developed based on flow simulations performed in an adult airway model, tended to under predict measured pressure loss through the child replicas across the range of flow rates studied (2 to 60 L/min). These results are intended to provide guidance for selection of analytical pressure loss models for use in predicting airway resistance and ventilation distribution in adults and children. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ding, Chao; Yang, Lijun; Wu, Meng
2017-01-01
Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies. PMID:28098846
Ding, Chao; Yang, Lijun; Wu, Meng
2017-01-15
Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies.
Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics
Wabik, Jacek; Gront, Dominik; Kouza, Maksim; Kolinski, Andrzej
2013-01-01
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics
Directory of Open Access Journals (Sweden)
Andrzej Koliński
2013-05-01
Full Text Available We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics.
Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej
2013-05-10
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics.
Camilloni, Carlo; Vendruscolo, Michele
2014-06-25
The characterization of denatured states of proteins is challenging because the lack of permanent structure in these states makes it difficult to apply to them standard methods of structural biology. In this work we use all-atom replica-averaged metadynamics (RAM) simulations with NMR chemical shift restraints to determine an ensemble of structures representing an acid-denatured state of the 86-residue protein ACBP. This approach has enabled us to reach convergence in the free energy landscape calculations, obtaining an ensemble of structures in relatively accurate agreement with independent experimental data used for validation. By observing at atomistic resolution the transient formation of native and non-native structures in this acid-denatured state of ACBP, we rationalize the effects of single-point mutations on the folding rate, stability, and transition-state structures of this protein, thus characterizing the role of the unfolded state in determining the folding process.
Shear modulus of glasses: results from the full replica-symmetry-breaking solution.
Yoshino, Hajime; Zamponi, Francesco
2014-08-01
We compute the shear modulus of amorphous hard and soft spheres, using the exact solution in infinite spatial dimensions that has been developed recently. We characterize the behavior of this observable in the whole phase diagram, and in particular around the glass and jamming transitions. Our results are consistent with other theoretical approaches, which are unified within this general picture, and they are also consistent with numerical and experimental results. Furthermore, we discuss some properties of the out-of-equilibrium dynamics after a deep quench close to the jamming transition, and we show that a combined measure of the shear modulus and of the mean square displacement allows one to probe experimentally the complex structure of phase space predicted by the full replica-symmetry-breaking solution.
Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation.
Xue, Xu; Yongjun, Wang; Zhihong, Li
2015-01-21
Riboswitches are cis-acting RNA fragments that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket, representing an inviting new class of biomolecular target for the development of antibiotics. To understand the folding mechanism of SAM-II riboswitch, occurring predominantly in proteobacteria, a 100ns replica-exchange molecular dynamics simulation in explicit solvent is performed. Our results show that this RNA pseudoknot has multiple folding pathways, and various intermediate structures. The resultant riboswitch conformational transition map is well consistent with the recent fluorescence measurement, which confirms the dynamical properties of this pseudoknot. Moreover, a novel transition pathway is predicted. The global folding dynamics is mainly coupled with the helix rather than the loop region. The potential folding pathways of the riboswitch presented here should lead to a deeper understanding of the folding mechanism of the riboswitch, as well as the conformational change of RNA pseudoknot.
Characterizing folding funnels with replica exchange Wang-Landau simulation of lattice proteins.
Shi, Guangjie; Wüst, Thomas; Landau, David P
2016-11-01
We have studied the folding of ribonuclease A by mapping it onto coarse-grained lattice protein models. With replica exchange Wang-Landau sampling, we calculated the free energy vs end-to-end distance as a function of temperature. A mapping to the famous hydrophobic-polar (HP) model shows a relatively shallow folding funnel and flat free energy minimum, reflecting the high degeneracy of the ground state. In contrast, extending the HP model with an additional "neutral" monomer type (i.e., a mapping to the three-letter H0P model) has a well developed, rough free energy funnel with a low degeneracy ground state. In both cases, folding funnels are asymmetric with temperature dependent shape.
Replica-exchange Wang-Landau simulations of the H0P lattice protein model
Shi, Guangjie; Wüst, Thomas; Li, Ying Wai; Landau, David P.
The hydrophobic-polar (HP) lattice protein model has been the subject of intensive investigation in an effort to aid our understanding of protein folding. However, the high ground state degeneracies caused by its simplification stands in contrast to the generally unique native states of natural proteins. Here we proposed a simple modification, by introducing a new type of ``neutral'' monomer, 0, i.e. neither hydrophobic nor polar, thus rendering the model more realistic without increasing the difficulties of sampling significantly. With the replica exchange Wang-Landau (REWL) scheme we investigated several widely studied HP proteins and their H0P counterparts. Dramatic differences in both ground state and thermodynamic properties have been found. For example, the H0P version of Crambin shows more clear two-step folding and 3 order of magnitudes less ground state degeneracy than its HP counterpart. Supported by NSF.
Energy Technology Data Exchange (ETDEWEB)
Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Schelkacheva, T.I., E-mail: tanschelk@gmail.com [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Chtchelkatchev, N.M. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow (Russian Federation); Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation)
2013-02-15
We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington–Kirkpatrick model with arbitrary diagonal operators U{sup -hat} standing instead of Ising spins. We focus on the case when U{sup -hat} is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of U{sup -hat} is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.
Characterizing folding funnels with replica exchange Wang-Landau simulation of lattice proteins
Shi, Guangjie; Wüst, Thomas; Landau, David P.
2016-11-01
We have studied the folding of ribonuclease A by mapping it onto coarse-grained lattice protein models. With replica exchange Wang-Landau sampling, we calculated the free energy vs end-to-end distance as a function of temperature. A mapping to the famous hydrophobic-polar (HP) model shows a relatively shallow folding funnel and flat free energy minimum, reflecting the high degeneracy of the ground state. In contrast, extending the HP model with an additional "neutral" monomer type (i.e., a mapping to the three-letter H0P model) has a well developed, rough free energy funnel with a low degeneracy ground state. In both cases, folding funnels are asymmetric with temperature dependent shape.
Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica.
Artelle, K A; Dumoulin, L K; Reimchen, T E
2011-03-01
Recent evidence suggests that bilateral asymmetry in the amplitude of tail wagging of domestic dogs (Canis familiaris) is associated with approach (right wag) versus withdrawal (left wag) motivation and may be the by-product of hemispheric dominance. We consider whether such asymmetry in motion of the tail, a crucial appendage in intra-specific communication in all canids, provides visual information to a conspecific leading to differential behaviour. To evaluate this, we experimentally investigated the approach behaviour of free-ranging dogs to the asymmetric tail wagging of a life-size robotic dog replica. Our data, involving 452 separate interactions, showed a significantly greater proportion of dogs approaching the model continuously without stopping when the tail wagged to the left, compared with a right wag, which was more likely to yield stops. While the results indicate that laterality of a wagging tail provides behavioural information to conspecifics, the responses are not readily integrated into the predicted behaviour based on hemispheric dominance.
Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.
2013-02-01
We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington-Kirkpatrick model with arbitrary diagonal operators Uˆ standing instead of Ising spins. We focus on the case when Uˆ is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of Uˆ is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.
Pion emission from the T2K replica target: method, results and application
Abgrall, N; Anticic, T; Antoniou, N; Argyriades, J; Baatar, B; Blondel, A; Blumer, J; Bogomilov, M; Bravar, A; Brooks, W; Brzychczyk, J; Bubak, A; Bunyatov, S A; Busygina, O; Christakoglou, P; Chung, P; Czopowicz, T; Davis, N; Debieux, S; Di Luise, S; Dominik, W; Dumarchez, J; Dynowski, K; Engel, R; Ereditato, A; Esposito, L S; Feofilov, G A; Fodor, Z; Ferrero, A; Fulop, A; Gazdzicki, M; Golubeva, M; Grabez, B; Grebieszkow, K; Grzeszczuk, A; Guber, F; Haesler, A; Hakobyan, H; Hasegawa, T; Idczak, R; Igolkin, S; Ivanov, Y; Ivashkin, A; Kadija, K; Kapoyannis, A; Katrynska, N; Kielczewska, D; Kikola, D; Kirejczyk, M; Kisiel, J; Kiss, T; Kleinfelder, S; Kobayashi, T; Kochebina, O; Kolesnikov, V I; Kolev, D; Kondratiev, V P; Korzenev, A; Kowalski, S; Krasnoperov, A; Kuleshov, S; Kurepin, A; Lacey, R; Larsen, D; Laszlo, A; Lyubushkin, V V; Mackowiak-Pawlowska, M; Majka, Z; Maksiak, B; Malakhov, A I; Maletic, D; Marchionni, A; Marcinek, A; Maris, I; Marin, V; Marton, K; Matulewicz, T; Matveev, V; Melkumov, G L; Messina, M; Mrowczynski, St; Murphy, S; Nakadaira, T; Nishikawa, K; Palczewski, T; Palla, G; Panagiotou, A D; Paul, T; Peryt, W; Petukhov, O; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Pulawski, S; Puzovic, J; Rauch, W; Ravonel, M; Renfordt, R; Robert, A; Rohrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rustamov, A; Rybczynski, M; Sadovsky, A; Sakashita, K; Savic, M; Sekiguchi, T; Seyboth, P; Shibata, M; Sipos, M; Skrzypczak, E; Slodkowski, M; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Strobele, H; Susa, T; Szuba, M; Tada, M; Taranenko, A; Tereshchenko, V; Tolyhi, T; Tsenov, R; Turko, L; Ulrich, R; Unger, M; Vassiliou, M; Veberic, D; Vechernin, V V; Vesztergombi, G; Wilczek, A; Wlodarczyk, Z; Wojtaszek-Szwarc, A; Wyszynski, O; Zambelli, L; Zipper, W; Hartz, M; Ichikawa, A K; Kubo, H; Marino, A D; Matsuoka, K; Murakami, A; Nakaya, T; Suzuki, K; Yuan, T; Zimmerman, E D
2013-01-01
The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.
Liu, Wenyuan; Wang, Chao; Li, Yanbin; Lao, Yuyang; Han, Yongjian; Guo, Guang-Can; Zhao, Yong-Hua; He, Lixin
2015-03-01
Tensor network states (TNS) methods combined with the Monte Carlo (MC) technique have been proven a powerful algorithm for simulating quantum many-body systems. However, because the ground state energy is a highly non-linear function of the tensors, it is easy to get stuck in local minima when optimizing the TNS of the simulated physical systems. To overcome this difficulty, we introduce a replica-exchange molecular dynamics optimization algorithm to obtain the TNS ground state, based on the MC sampling technique, by mapping the energy function of the TNS to that of a classical mechanical system. The method is expected to effectively avoid local minima. We make benchmark tests on a 1D Hubbard model based on matrix product states (MPS) and a Heisenberg J1-J2 model on square lattice based on string bond states (SBS). The results show that the optimization method is robust and efficient compared to the existing results.
Moors, Samuel L C; Michielssens, Servaas; Flors, Cristina; Dedecker, Peter; Hofkens, Johan; Ceulemans, Arnout
2008-06-01
The reversibly photoactivatable green fluorescent protein analog Dronpa holds great promise as a marker for various new cellular imaging applications. Using a replica exchange method which combines both Hamiltonian and temperature exchanges, the ground-state dynamics of Dronpa and two mutants with increased switching kinetics, Val157Gly and Met159Thr, were compared. The dominant chromophore state was found to be the cis isomer in all three proteins. The simulation data suggest that both mutations strongly increase the chromophore flexibility and cis-trans isomerization rate. We identify three key amino acids, Val157, Met159, and Phe173, which are able to impede the bottom hula-twist transition path, depending on their position and rotameric state. We believe our insights will help to understand the switching process and provide useful information for the design of new variants with improved fluorescence properties.
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Success and decisiveness on proper symmetric games
Freixas Bosch, Josep; Pons Vallès, Montserrat
2015-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/s10100-013-0332-5 This paper provides a complete study for the possible rankings of success and decisiveness for individuals in symmetric voting systems, assuming anonymous and independent probability distributions. It is proved that for any pair of symmetric voting systems it is always possible to rank success and decisiveness in opposite order whenever the common probability of voting for “acceptance...
Institute of Scientific and Technical Information of China (English)
Jian WANG
2009-01-01
The study of symmetric property in the L2-sense for the non-positive definite operator is motivated by the theory of probability and analysis. This paper presents some sufficient conditions for the existence of symmetric measure for Lévy type operator. Some new examples are illustrated. The present study is an important step for considering various ergodic properties and functional inequalities of Lévy type operator.
Scattering properties of PT-symmetric objects
Miri, Mohammad-Ali; Facao, Margarida; Abouraddy, Ayman F; Bakry, Ahmed; Razvi, Mir A N; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N
2016-01-01
We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.
Long-time atomistic simulations with the Parallel Replica Dynamics method
Perez, Danny
Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
Mirror-Symmetric Matrices and Their Application
Institute of Scientific and Technical Information of China (English)
李国林; 冯正和
2002-01-01
The well-known centrosymmetric matrices correctly reflect mirror-symmetry with no component or only one component on the mirror plane. Mirror-symmetric matrices defined in this paper can represent mirror-symmetric structures with various components on the mirror plane. Some basic properties of mirror-symmetric matrices were studied and applied to interconnection analysis. A generalized odd/even-mode decomposition scheme was developed based on the mirror reflection relationship for mirror-symmetric multiconductor transmission lines (MTLs). The per-unit-length (PUL) impedance matrix Z and admittance matrix Y can be divided into odd-mode and even-mode PUL matrices. Thus the order of the MTL system is reduced from n to k and k+p, where p(≥0)is the conductor number on the mirror plane. The analysis of mirror-symmetric matrices is related to the theory of symmetric group, which is the most effective tool for the study of symmetry.
Integrable Deformations of Strings on Symmetric Spaces
Hollowood, Timothy J; Schmidtt, David M
2014-01-01
A general class of deformations of integrable sigma-models with symmetric space F/G target-spaces are found. These deformations involve defining the non-abelian T dual of the sigma-model and then replacing the coupling of the Lagrange multiplier imposing flatness with a gauged F/F WZW model. The original sigma-model is obtained in the limit of large level. The resulting deformed theories are shown to preserve both integrability and the equations-of-motion, but involve a deformation of the symplectic structure. It is shown that this deformed symplectic structure involves a linear combination of the original Poisson bracket and a generalization of the Faddeev-Reshetikhin Poisson bracket which we show can be re-expressed as two decoupled F current algebras. It is then shown that the deformation can be incorporated into the classical model of strings on R x F/G via a generalization of the Pohlmeyer reduction. In this case, in the limit of large sigma-model coupling it is shown that the theory becomes the relativi...
Plasma Control in Symmetric Mirror Machines
Horton, W.; Rowan, W. L.; Alvarado, Igor; Fu, X. R.; Beklemishev, A. D.
2014-10-01
Plasma confinement in the symmetric rotating mirror plasma at the Budker Institute shows enhanced confinement with high electron temperatures with end plates biasing. Improved confinement is achieved by biasing end plate cells in the expansion tanks so as to achieve an inward pointing radial electric field. The negative potential well produces vortex plasma rotation similar to that in the negative potential well of Ohmic heated tokamaks. This plasma state has similarity with the lower turbulence level regimes documented in the Helimak where negative biasing of the end plates produces an inward radial electric field. To understand this vortex confinement we carry out 3D simulations with nonlinear partial differential equations for the electric potential and density in plasmas with an axially localized region of unfavorable and favorable magnetic curvature. The simulations show that the plasma density rapidly adjusts to be higher in the region of favorable curvature regions and remains relatively well confined while rapidly rotating. The results support the concept of using plasma-biasing electrodes in large expander tanks to achieve enhanced mirror plasma confinement. Supported by US-DoE grant to UT, LANL and the Budker Institute for Nuclear Physics.
Modified reactive tabu search for the symmetric traveling salesman problems
Lim, Yai-Fung; Hong, Pei-Yee; Ramli, Razamin; Khalid, Ruzelan
2013-09-01
Reactive tabu search (RTS) is an improved method of tabu search (TS) and it dynamically adjusts tabu list size based on how the search is performed. RTS can avoid disadvantage of TS which is in the parameter tuning in tabu list size. In this paper, we proposed a modified RTS approach for solving symmetric traveling salesman problems (TSP). The tabu list size of the proposed algorithm depends on the number of iterations when the solutions do not override the aspiration level to achieve a good balance between diversification and intensification. The proposed algorithm was tested on seven chosen benchmarked problems of symmetric TSP. The performance of the proposed algorithm is compared with that of the TS by using empirical testing, benchmark solution and simple probabilistic analysis in order to validate the quality of solution. The computational results and comparisons show that the proposed algorithm provides a better quality solution than that of the TS.
EXCEPTIONAL POINTS IN OPEN AND PT-SYMMETRIC SYSTEMS
Directory of Open Access Journals (Sweden)
Hichem Eleuch
2014-04-01
Full Text Available Exceptional points (EPs determine the dynamics of open quantum systems and cause also PT symmetry breaking in PT symmetric systems. From a mathematical point of view, this is caused by the fact that the phases of the wavefunctions (eigenfunctions of a non-Hermitian Hamiltonian relative to one another are not rigid when an EP is approached. The system is therefore able to align with the environment to which it is coupled and, consequently, rigorous changes of the system properties may occur. We compare analytically as well as numerically the eigenvalues and eigenfunctions of a 2 × 2 matrix that is characteristic either of open quantum systems at high level density or of PT symmetric optical lattices. In both cases, the results show clearly the influence of the environment on the system in the neighborhood of EPs. Although the systems are very different from one another, the eigenvalues and eigenfunctions indicate the same characteristic features.
Symmetric cryptographic protocols for extended millionaires' problem
Institute of Scientific and Technical Information of China (English)
LI ShunDong; WANG DaoShun; DAI YiQi
2009-01-01
Yao's millionaires' problem is a fundamental problem in secure multiparty computation, and its solutions have become building blocks of many secure multiparty computation solutions. Unfortunately,most protocols for millionaires' problem are constructed based on public cryptography, and thus are inefficient. Furthermore, all protocols are designed to solve the basic millionaires' problem, that is,to privately determine which of two natural numbers is greater. If the numbers are real, existing solutions do not directly work. These features limit the extensive application of the existing protocols. This study introduces and refines the first symmetric cryptographic protocol for the basic millionaires' problem, and then extends the symmetric cryptographic protocol to privately determining which of two real numbers is greater, which are called the extended millionaires' problem, and proposes corresponding Constructed based on symmetric cryptography, these protocols are very efficient.
Chiral light by symmetric optical antennas
Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre
2014-01-01
Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...
The Robust Assembly of Small Symmetric Nanoshells.
Wagner, Jef; Zandi, Roya
2015-09-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine.
INERTIA SETS OF SYMMETRIC SIGN PATTERN MATRICES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A sign pattern matrix is a matrixwhose entries are from the set {+ ,- ,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generally investigate the inertia sets of symmetric sign pattern matrices. In particular, nonnegative fri-diagonal sign patterns and the square sign pattern with all + entries are examined. An algorithm is given for generating nonnegative real symmetric Toeplitz matrices with zero diagonal of orders n≥3 which have exactly two negative eigenvalues. The inertia set of the square pattern with all + off-diagonal entries and zero diagonal entries is then analyzed. The types of inertias which can be in the inertia set of any sign pattern are also obtained in the paper. Specifically, certain compatibility and consecutiveness properties are established.
Symmetric States on the Octonionic Bloch Ball
Graydon, Matthew
2012-02-01
Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.
Local neighborliness of the symmetric moment curve
Lee, Seung Jin
2011-01-01
A centrally symmetric analogue of the cyclic polytope, the bicyclic polytope, was defined in [BN08]. The bicyclic polytope is defined by the convex hull of finitely many points on the symmetric moment curve where the set of points has a symmetry about the origin. In this paper, we study the Barvinok-Novik orbitope, the convex hull of the symmetric moment curve. It was proven in [BN08] that the orbitope is locally $k$-neighborly, that is, the convex hull of any set of $k$ distinct points on an arc of length not exceeding $\\phi_k$ in $\\mathbb{S}^1$ is a $(k-1)$-dimensional face of the orbitope for some positive constant $\\phi_k$. We prove that we can choose $\\phi_k $ bigger than $\\gamma k^{-3/2} $ for some positive constant $\\gamma$.
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
Revisiting the optical $PT$-symmetric dimer
Morales, J D Huerta; López-Aguayo, S; Rodríguez-Lara, B M
2016-01-01
Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of $\\mathcal{PT}$-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical $\\mathcal{PT}$-symmetric dimer, a two-waveguide coupler were the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar $N$-waveguide couplers that are the optical realization of Lorentz group in 2+1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of Ehrenfest theorem.
PT-Symmetric Optomechanically-Induced Transparency
Jing, H; Özdemir, S K; Zhang, J; Lü, X -Y; Peng, B; Yang, L; Nori, F
2014-01-01
Optomechanically-induced transparency (OMIT) and the associated slow-light propagation provide the basis for storing photons in nanofabricated phononic devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a reversed, non-amplifying transparency: inverted-OMIT. When the gain-to-loss ratio is steered, the system exhibits a transition from the PT-symmetric phase to the broken-PT-symmetric phase. We show that by tuning the pump power at fixed gain-to-loss ratio or the gain-to-loss ratio at fixed pump power, one can switch from slow to fast light and vice versa. Moreover, the presence of PT-phase transition results in the reversal of the pump and gain dependence of transmission rates. These features provide new tools for controlling light propagation using optomechanical devices.
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
Synthesis of cyclically symmetric five-ports
DEFF Research Database (Denmark)
Guldbrandsen, Tom
1994-01-01
A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found......A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found...
Active Sound Localization in a Symmetric Environment
Directory of Open Access Journals (Sweden)
Jordan Brindza
2013-07-01
Full Text Available Localization for humanoid robots becomes difficult when events that disrupt robot positioning information occur. This holds especially true in symmetric environments because landmark data may not be sufficient to determine orientation. We propose a system of localizing humanoid robots in a known, symmetric environment using a Rao-Blackwellized particle filter and a sound localization system. This system was used in the RoboCup Standard Platform League, and has been found to reduce the amount of own-goals scored as compared with the previously used localization system without sound.
Time-Symmetric Approach to Gravity
Chu, S Y
1998-01-01
Quantization of the time symmetric system of interacting strings requires that gravity, just as electromagnetism in Wheeler-Feynman's time symmetric electro- dynamics, also be an "adjunct field" instead of an independent entity. The "adjunct field" emerges, at a scale large compared to that of the strings, as a "statistic" that summarizes how the string positions in the underlying space- time are "compactified" into those in Minkowski space. We are able to show, WITHOUT adding a scalar curvature term to the string action, that the "adjunct gravitational field" satisfies Einstein's equation with no cosmological term.
Benign symmetric lipomatosis of the knees
Institute of Scientific and Technical Information of China (English)
Zhiqiang Yin; Di Wu; Yixin Ge; Meihua Zhang; Zhigang Bi; Dan Luo
2008-01-01
Benign symmetric lipomatosis(BSL) is a rare disease characterized by the presence of multiple, symmetric and nonencapsulated fat masses in the face, neck and other areas. It is commonly seen in middle-aged Caucasian Mediterranean males, while its etiology is still not clear. The majority of the patients with BSL have a history of alcohol abuse and hepatopathy. BSL of the limbs is very rare. This article reports a unique case of a 60-year-old Chinese woman with involvement of the knees confirmed by the results of magnetic resonance imaging(MRI) and histopathology, which was not described previously in published literatures.
Inflation in spherically symmetric inhomogeneous models
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1986-11-01
Exact analytical solutions of Einstein's equations are found for a spherically symmetric inhomogeneous metric in the presence of a massless scalar field with a flat potential. The process of isotropization and homogenization is studied in detail. It is found that the time dependence of the metric becomes de Sitter for large times. Two cases are studied. The first deals with a homogeneous scalar field, while the second with a spherically symmetric inhomogeneous scalar field. In the former case the metric is of the Robertson-Walker form, while the latter is intrinsically inhomogeneous. 16 refs.
Gomes, Anderson S L; Pincheira, Pablo I R; Moura, André L; Gagné, Mathieu; Kashyap, Raman; Raposo, Ernesto P; de Araújo, Cid B
2016-01-01
The analogue of the paramagnetic to spin-glass phase transition in disordered magnetic systems, leading to the phenomenon of replica symmetry breaking, has been recently demonstrated in a two-dimensional random laser consisting of an organic-based amorphous solid-state thin film. We report here the first demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime based on a unique random fiber grating system, which plays the role of the random scatterers and operates in the Anderson localization regime. The clear transition from a photonic paramagnetic to a photonic spin glass phase, characterized by the probability distribution function of the Parisi overlap, was verified and characterized. In this unique system, the radiation field interacts only with the gain medium, and the fiber grating, which provides the disordered feedback mechanism, does not interfere with the pump.
Jiang, Wei; Roux, Benoît
2010-07-01
Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.
Galeazzi, Fabrizio; Di Giuseppantonio Di Franco, Paola; Matthews, Justin L.
2015-01-01
This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/09647775.2015.1042515 In this paper, we present two experiments designed to compare 2D digital pictures and 3D digital replicas of artefacts, to understand how differently these media facilitate the perception and understanding of our past. Archaeologists and museum experts have commonly used 2D digital pictures to preserve and study artefacts. Recently these scholars ...
Małolepsza, Edyta; Secor, Maxim; Keyes, Tom
2015-10-22
A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed to simulate first-order phase transitions. The properties of the isobaric gREM ensemble are discussed, and a study is presented for the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. Phase diagrams, critical parameters, and a law of corresponding states are obtained.
Multiple Replicas of Block Copolymer Thin Films from a Brushless Organosilicate Substrate
Suh, Hyo Seon; Yoon, Hyunsik; Char, Kookheon
2011-03-01
The chain end-grafted polymer brushes or cross-linked polymer mats have typically been utilized as the surface modification layers to induce the perpendicular orientation of block copolymer (BCP) thin films. Instead of such polymer-based approaches, we have recently introduced a new concept to control the BCP orientation using the brushless organosilicate (OS) substrates, whose surface energy can be finely tuned with thermal treatment. In this brushless case, the BCP chains do not penetrate into the underlying hard OS substrates during thermal annealing of BCP films, therefore, the BCP chains at the interface have no entangled structure with fairly weak adhesion of BCP films against the substrate. Owing to such weak adhesion of BCP films against the OS substrate, the perpendicularly oriented BCP film on a neutral OS substrate could be easily peeled off and transferred to a UV-curable resin applied onto the BCP film. The OS substrate after the peel-off process of a BCP film could regenerate the perpendicularly oriented BCP films since the surface energy of the OS substrate remains intact during the peel-off process. Furthermore, the direct-assembled BCP films on chemically patterned OS substrates could also be peeled off and transferred on to a UV-curable resin, allowing us to produce multiple replicas of direct-assembled BCP thin films from a single chemically patterned OS substrate.
Jo, Sunhwan; Chipot, Christophe; Roux, Benoît
2015-05-12
The performance and accuracy of different simulation schemes for estimating the entropy inferred from free energy calculations are tested. The results obtained from replica-exchange molecular dynamics (REMD) simulations based on a simplified toy model are compared to exact numerically derived ones to assess accuracy and convergence. It is observed that the error in entropy estimation decreases by at least an order of magnitude and the quantities of interest converge much faster when the simulations are coupled via a temperature REMD algorithm and the trajectories from different temperatures are combined. Simulations with the infinite-swapping method and its variants show some improvement over the traditional nearest-neighbor REMD algorithms, but they are more computationally expensive. To test the methodologies further, the free energy profile for the reversible association of two methane molecules in explicit water was calculated and decomposed into its entropic and enthalpic contributions. Finally, a strategy based on umbrella sampling computations carried out via simultaneous temperature and Hamiltonian REMD simulations is shown to yield the most accurate entropy estimation. The entropy profile between the two methane molecules displays the characteristic signature of a hydrophobic interaction.
Directory of Open Access Journals (Sweden)
Nanyu Han
Full Text Available Neuraminidase (NA of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1 was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150 of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
Han, Nanyu; Mu, Yuguang
2013-01-01
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
Zeller, Fabian; Zacharias, Martin
2014-02-11
The accurate calculation of potentials of mean force for ligand-receptor binding is one of the most important applications of molecular simulation techniques. Typically, the separation distance between ligand and receptor is chosen as a reaction coordinate along which a PMF can be calculated with the aid of umbrella sampling (US) techniques. In addition, restraints can be applied on the relative position and orientation of the partner molecules to reduce accessible phase space. An approach combining such phase space reduction with flattening of the free energy landscape and configurational exchanges has been developed, which significantly improves the convergence of PMF calculations in comparison with standard umbrella sampling. The free energy surface along the reaction coordinate is smoothened by iteratively adapting biasing potentials corresponding to previously calculated PMFs. Configurations are allowed to exchange between the umbrella simulation windows via the Hamiltonian replica exchange method. The application to a DNA molecule in complex with a minor groove binding ligand indicates significantly improved convergence and complete reversibility of the sampling along the pathway. The calculated binding free energy is in excellent agreement with experimental results. In contrast, the application of standard US resulted in large differences between PMFs calculated for association and dissociation pathways. The approach could be a useful alternative to standard US for computational studies on biomolecular recognition processes.
Replica analysis of overfitting in regression models for time-to-event data
Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.
2017-09-01
Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.
Replica exchange molecular dynamics study of the truncated amyloid beta (11-40) trimer in solution.
Ngo, Son Tung; Hung, Huynh Minh; Truong, Duc Toan; Nguyen, Minh Tho
2017-01-18
Amyloid beta (Aβ) oligomers are neurotoxic compounds that destroy the brain of Alzheimer's disease patients. Recent studies indicated that the trimer is one of the most cytotoxic forms of low molecular weight Aβ oligomers. As there was limited information about the structure of the Aβ trimer, either by experiment or by computation, we determined in this work the structure of the 3Aβ11-40 oligomer for the first time using the temperature replica exchange molecular dynamics simulations in the presence of an explicit solvent. More than 20.0 μs of MD simulations were performed. The probability of the β-content and random coil structure of the solvated trimer amounts to 42 ± 6 and 49 ± 7% which is in good agreement with experiments. Intermolecular interactions in central hydrophobic cores play a key role in stabilizing the oligomer. Intermolecular polar contacts between D23 and residues 24-29 replace the salt bridge D23-K28 to secure the loop region. The hydrophilic region of the N-terminus is maintained by the intermolecular polar crossing contacts H13A-Q15B and H13B-Q15C. The difference in the free energy of binding between the constituting monomers and the others amounts to -36 ± 8 kcal mol(-1). The collision cross section of the representative structures of the trimer was computed to be 1330 ± 47 Å(2), which is in good agreement with previous experiments.
Optimization of the replica molding process of PDMS using pennate diatoms
Hlúbiková, D.; Luís, A. T.; Vaché, V.; Ector, L.; Hoffmann, L.; Choquet, P.
2012-11-01
Biomimetic fabrication of nanostructured materials has recently attracted the attention of researchers as a cost-effective and easily applicable method of nanotexturing. Different techniques and materials have been used in order to replicate natural patterns, among which polydimethylsiloxane (PDMS Sylgard 184®) was recently used to replicate the micro- and nanoscale patterns from centric diatoms. In this paper, we test the reproducibility and precision of this approach using various morphologically different diatom species trying to optimize the molding parameters. The optimization process is focused on immobilization of diatoms on the glass support, which serves as a master for templating, as well as on the parameters of PDMS fabrication such as the ratio of the curing agent and elastomer, use of vacuum, curing time and temperature. The results indicate that higher ratios of curing agent and elastomer, longer curing time and lower temperature are the most favorable conditions to obtain negative diatom replicas of good quality with features of 50 nm. Although this method can give very precise results producing high-resolution molds with all micro- and nanostructures replicated, we revealed some limitations regarding the size and morphology of the species used. These results indicate that large round and flat diatom species seem to be more suitable for the cast molding.
Protein-Ligand Binding from Distancefield Distances and Hamiltonian Replica Exchange Simulations.
de Ruiter, Anita; Oostenbrink, Chris
2013-02-12
The calculation of protein-ligand binding free energies is an important goal in the field of computational chemistry. Applying path-sampling methods for this purpose involves calculating the associated potential of mean force (PMF) and gives insight into the binding free energy along the binding process. Without a priori knowledge about the binding path, sampling reversible binding can be difficult to achieve. To alleviate this problem, we introduce the distancefield (DF) as a reaction coordinate for such calculations. DF is a grid-based method in which the shortest distance between the binding site and a ligand is determined avoiding routes that pass through the protein. Combining this reaction coordinate with Hamiltonian replica exchange molecular dynamics (HREMD) allows for the reversible binding of the ligand to the protein. A comparison is made between umbrella sampling using regular distance restraints and HREMD with DF restraints to study aspirin binding to the protein phospholipase A2. Although the free energies of binding are similar for both methods, the increased sampling with HREMD has a significant influence on the shape of the PMF. A remarkable agreement between the calculated binding free energies from the PMF and the experimental estimate is obtained.
Enhancing dry adhesives and replica molding with ethyl cyano-acrylate
Bovero, E.; Menon, C.
2014-08-01
The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation.
Replica exchange molecular dynamics simulations of coarse-grained proteins in implicit solvent.
Chebaro, Yassmine; Dong, Xiao; Laghaei, Rozita; Derreumaux, Philippe; Mousseau, Normand
2009-01-08
Current approaches aimed at determining the free energy surface of all-atom medium-size proteins in explicit solvent are slow and are not sufficient to converge to equilibrium properties. To ensure a proper sampling of the configurational space, it is preferable to use reduced representations such as implicit solvent and/or coarse-grained protein models, which are much lighter computationally. Each model must be verified, however, to ensure that it can recover experimental structures and thermodynamics. Here we test the coarse-grained implicit solvent OPEP model with replica exchange molecular dynamics (REMD) on six peptides ranging in length from 10 to 28 residues: two alanine-based peptides, the second beta-hairpin from protein G, the Trp-cage and zinc-finger motif, and a dimer of a coiled coil peptide. We show that REMD-OPEP recovers the proper thermodynamics of the systems studied, with accurate structural description of the beta-hairpin and Trp-cage peptides (within 1-2 A from experiments). The light computational burden of REMD-OPEP, which enables us to generate many hundred nanoseconds at each temperature and fully assess convergence to equilibrium ensemble, opens the door to the determination of the free energy surface of larger proteins and assemblies.
Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.
1998-03-01
We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.
From Dalek half balls to Daft Punk helmets: Mimetic fandom and the crafting of replicas
Directory of Open Access Journals (Sweden)
Matt Hills
2014-06-01
Full Text Available Mimetic fandom is a surprisingly understudied mode of (culturally masculinized fan activity in which fans research and craft replica props. Mimetic fandom can be considered as (inauthentic and (immaterial, combining noncommercial status with grassroots marketing or brand reinforcement as well as fusing an emphasis on material artifacts with Web 2.0 collective intelligence. Simply analyzing mimetic fandom as part of fannish material culture fails to adequately assess the nonmaterial aspects of this collaborative creativity. Two fan cultures are taken as case studies: Dalek building groups and Daft Punk helmet constructors. These diverse cases indicate that mimetic fandom has a presence and significance that moves across media fandoms and is not restricted to the science fiction, fantasy, and horror followings with which it is most often associated. Mimetic fandom may be theorized as an oscillatory activity that confuses binaries and constructions of (academic/fan authenticity. This fan practice desires and pursues a kind of ontological bridging or unity—from text to reality—that is either absent or less dominant in many other fan activities such as cosplay, screen-used prop collecting, and geographical pilgrimage. Fan studies may benefit from reassessing the place of mimesis, especially in order to theorize fan practices that are less clearly transformative in character.
Replica-exchange Wang-Landau simulations of the H0P model of protein folding
Shi, Guangjie; Landau, David P.; Wüst, Thomas; Li, Ying Wai Li
2015-03-01
The hydrophobic-polar (HP) model has served as a coarse-grained lattice protein folding model attracting scientists from various disciplines. However, simplification into H and P monomers may yield high ground state degeneracies which stands in contrast to the generally unique native states of natural proteins. We propose a simple modification, by introducing a new type of ``neutral'' monomer, 0, i.e. neither hydrophobic nor polar, rendering the model more realistic without increasing the difficulties of sampling significantly. With the newly developed parallel Wang-Landau (replica exchange Wang-Landau) scheme and an innovative method of estimating the ground state degeneracies, we investigated some widely studied HP proteins and their H0P counterparts. Dramatic differences in ground state and thermodynamic properties have been observed, e.g. the estimation of ground state degeneracy for the 46mer is 460,000 for the HP version and only 20 for the H0P mapping. Similarly, the specific heat and structural properties: radius of gyration and etc. show more pronounced signals associated with folding. Supported by NSF.
Directory of Open Access Journals (Sweden)
Pereira Jose Carlos
2002-01-01
Full Text Available This is a preliminary study to determine a methodological sequence in vitro which may allow the reproduction of dentin for SEM analysis, after the use of different desensitizing agents. Dentin discs obtained from extracted human third molars were etched with 6% citric acid, an artificial smear layer was created and the surface dentin discs were divided into four quadrants. Quadrants 2, 3 and 4 of each disc were conditioned with 6% citric acid. The desensitizing agents (Oxa-Gel®, Gluma Desensitizer and an experimental agent were applied to quadrants 3 and 4. To evaluate the acid resistance of the treatment, quadrant 4 was etched again with 6% citric acid. An impression was then taken with Aquasil ULV. After a setting period of 6 min, each disc was removed from the impression and stored in a moist-free environment for 24 h at 37ºC. After that time, a low-viscosity epoxy resin (Araltec GY 1109 BR was poured into the impression and cured for 24 h. All specimens were metal-coated for SEM analysis. Comparison of the photomicrographs of dentin discs with their respective impressions and resin replicas showed that this technique can reproduce the characteristics of the dentin surface treated with desensitizing agents.
Arora, Jaspreet Singh; Cremaldi, Joseph C; Holleran, Mary Kathleen; Ponnusamy, Thiruselvam; He, Jibao; Pesika, Noshir S; John, Vijay T
2016-02-02
The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value.
Wille, Marie-Luise; Langton, Christian M
2016-02-01
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Wang, Hongrui; Liu, Hongwei; Cai, Leixin; Wang, Caixia; Lv, Qiang
2017-07-10
In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein-small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein-small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.
Fields, Strings, Matrices and Symmetric Products
Dijkgraaf, R.
1999-01-01
In these notes we review the role played by the quantum mechanics and sigma models of symmetric product spaces in the light-cone quantization of quantum field theories, string theory and matrix theory. Lectures given at the Institute for Theoretical Physics, UC Santa Barbara, January 1998 and the Spring School on String Theory and Mathematics, Harvard University, May 1998.
How Symmetrical Assumptions Advance Strategic Management Research
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Hallberg, Hallberg
2014-01-01
We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other appl...
Noncommutative spherically symmetric spacetimes at semiclassical order
Fritz, Christopher
2016-01-01
Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order $O(\\lambda)$. Here $\\lambda$ is the deformation parameter, plausibly the Planck scale. We find that $r,t,dr,dt$ are all forced to be central, i.e. undeformed at order $\\lambda$, while for each value of $r,t$ we are forced to have a fuzzy sphere of radius $r$ with a unique differential calculus which is necessarily nonassociative at order $\\lambda^2$. We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order $\\lambda$. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order $\\lambda$ whi...
efficient and convenient synthesis of symmetrical carboxylic ...
African Journals Online (AJOL)
Preferred Customer
An efficient and convenient procedure for the synthesis of symmetrical .... solution was stirred for 16 h at 35 °C followed by filtration and washing with ... obtained hydrous zirconia sample was ground to fine powder and immersed in 1 M H2SO4 ..... Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim; 2002.
Designing new symmetrical facial oligothiophene amphiphiles
Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H
2013-01-01
In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr
Tautological Integrals on Symmetric Products of Curves
Institute of Scientific and Technical Information of China (English)
Zhi Lan WANG
2016-01-01
We propose a conjecture on the generating series of Chern numbers of tautological bundles on symmetric products of curves and establish the rank 1 and rank −1 case of this conjecture. Thus we compute explicitly the generating series of integrals of Segre classes of tautological bundles of line bundles on curves, which has a similar structure as Lehn’s conjecture for surfaces.
Jordan algebraic approach to symmetric optimization
Vieira, M.V.C.
2007-01-01
In this thesis we present a generalization of interior-point methods for linear optimization based on kernel functions to symmetric optimization. It covers the three standard cases of conic optimization: linear optimization, second-order cone optimization and semi-definite optimization. We give an
Symmetrized solutions for nonlinear stochastic differential equations
Directory of Open Access Journals (Sweden)
G. Adomian
1981-01-01
Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.
Spectrum generating algebra of the symmetric top
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1998-03-02
We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top. (orig.) 8 refs.
Spectrum generating algebra of the symmetric top
Bijker, R
1997-01-01
We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top.
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
2001-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we e
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating...
Unary self-verifying symmetric difference automata
CSIR Research Space (South Africa)
Marais, Laurette
2016-07-01
Full Text Available We investigate self-verifying nondeterministic finite automata, in the case of unary symmetric difference nondeterministic finite automata (SV-XNFA). We show that there is a family of languages Ln=2 which can always be represented non...
Exterior Powers of Symmetric Bilinear Forms
Institute of Scientific and Technical Information of China (English)
Seán McGarraghy
2002-01-01
We study exterior powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties. The exterior powers are used to obtain annihilating polynomials for quadratic forms in the Witt ring.
PT -symmetric model of immune response
Bender, Carl M.; Ghatak, Ananya; Gianfreda, Mariagiovanna
2017-01-01
The study of PT -symmetric physical systems began in 1998 as a complex generalization of conventional quantum mechanics, but beginning in 2007 experiments began to be published in which the predicted PT phase transition was clearly observed in classical rather than in quantum-mechanical systems. This paper examines the classical PT phase transition in dynamical-system models that are moderately accurate representations of antigen-antibody systems. A surprising conclusion that can be drawn from these models is that it might be possible treat a serious disease in which the antigen concentration grows out of bounds (and the host dies) by injecting a small dose of a second (different) antigen. In this case a PT -symmetric analysis shows there are two possible favorable outcomes. In the unbroken-PT -symmetric phase the disease becomes chronic and is no longer lethal, while in the appropriate broken-PT -symmetric phase the concentration of lethal antigen goes to zero and the disease is completely cured.
Realizability of stationary spherically symmetric transonic accretion
Ray, A K; Ray, Arnab K.
2002-01-01
The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.
Adaptively Secure Computationally Efficient Searchable Symmetric Encryption
Sedghi, S.; Liesdonk, van P.; Doumen, J.M.; Hartel, P.H.; Jonker, W.
2009-01-01
Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are
On balanced truncation for symmetric nonlinear systems
Fujimoto, K.; Scherpen, Jacqueline M.A.
2014-01-01
This paper is concerned with model order reduction based on balanced realization for symmetric nonlinear systems. A new notion of symmetry for nonlinear systems was characterized recently. It plays an important role in linear systems theory and is expected to provide new insights to nonlinear system
Fundamental group of locally symmetric varieties
Sankaran, G K
1995-01-01
Take a bounded symmetric domain D and an arithmetic subgroup \\Gamma of {\\rm Aut}(D). Take the quotient D/\\Gamma, compactify and resolve the singularities. We study the fundamental group of the compact complex manifolds that result from this procedure, and in particular the case of Siegel modular threefolds.
Qp-spaces on bounded symmetric domains
Directory of Open Access Journals (Sweden)
Jonathan Arazy
2008-01-01
Full Text Available We generalize the theory of Qp spaces, introduced on the unit disc in 1995 by Aulaskari, Xiao and Zhao, to bounded symmetric domains in Cd, as well as to analogous Moebius-invariant function spaces and Bloch spaces defined using higher order derivatives; the latter generalization contains new results even in the original context of the unit disc.
Onthe static and spherically symmetric gravitational field
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
Some aspects of symmetric Gamma process mixtures
Naulet, Zacharie; Barat, Eric
2015-01-01
In this article, we present some specific aspects of symmetric Gamma process mixtures for use in regression models. We propose a new Gibbs sampler for simulating the posterior and we establish adaptive posterior rates of convergence related to the Gaussian mean regression problem.
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Directory of Open Access Journals (Sweden)
Beukelaer Herman De
2012-11-01
Full Text Available Abstract Background Sampling core subsets from genetic resources while maintaining as much as possible the genetic diversity of the original collection is an important but computationally complex task for gene bank managers. The Core Hunter computer program was developed as a tool to generate such subsets based on multiple genetic measures, including both distance measures and allelic diversity indices. At first we investigate the effect of minimum (instead of the default mean distance measures on the performance of Core Hunter. Secondly, we try to gain more insight into the performance of the original Core Hunter search algorithm through comparison with several other heuristics working with several realistic datasets of varying size and allelic composition. Finally, we propose a new algorithm (Mixed Replica search for Core Hunter II with the aim of improving the diversity of the constructed core sets and their corresponding generation times. Results Our results show that the introduction of minimum distance measures leads to core sets in which all accessions are sufficiently distant from each other, which was not always obtained when optimizing mean distance alone. Comparison of the original Core Hunter algorithm, Replica Exchange Monte Carlo (REMC, with simpler heuristics shows that the simpler algorithms often give very good results but with lower runtimes than REMC. However, the performance of the simpler algorithms is slightly worse than REMC under lower sampling intensities and some heuristics clearly struggle with minimum distance measures. In comparison the new advanced Mixed Replica search algorithm (MixRep, which uses heterogeneous replicas, was able to sample core sets with equal or higher diversity scores than REMC and the simpler heuristics, often using less computation time than REMC. Conclusion The REMC search algorithm used in the original Core Hunter computer program performs well, sometimes leading to slightly better results
Symmetric Telecloning and Entanglement Distribution of Spin Quantum States
Institute of Scientific and Technical Information of China (English)
WANG Qiong; LI Ji-Xin; ZANG Hao-Sheng
2008-01-01
@@ We propose a physical realization of symmetric telecloning machine for spin quantum states. The concept of area average fidelity is introduced to describe the telecloning quality. It is indicated that for certain input states this quantity may come to an enough high level to satisfy the need of quantum information processing. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the decay ratio of entanglement for the output states is only determined by the parameters of spin chain and waiting time, independent of the initial input states.
Symmetric key structural residues in symmetric proteins with beta-trefoil fold.
Directory of Open Access Journals (Sweden)
Jianhui Feng
Full Text Available To understand how symmetric structures of many proteins are formed from asymmetric sequences, the proteins with two repeated beta-trefoil domains in Plant Cytotoxin B-chain family and all presently known beta-trefoil proteins are analyzed by structure-based multi-sequence alignments. The results show that all these proteins have similar key structural residues that are distributed symmetrically in their structures. These symmetric key structural residues are further analyzed in terms of inter-residues interaction numbers and B-factors. It is found that they can be distinguished from other residues and have significant propensities for structural framework. This indicates that these key structural residues may conduct the formation of symmetric structures although the sequences are asymmetric.
On the origin of the shallow and "replica" bands in FeSe monolayer superconductors
Nekrasov, I. A.; Pavlov, N. S.; Sadovskii, M. V.
2017-03-01
We compare the electronic structures of single FeSe layer films on SrTiO3 substrate (FeSe/STO) and K x Fe2- y Se2 superconductors obtained from extensive LDA and LDA + DMFT calculations with the results of ARPES experiments. It is demonstrated that correlation effects on Fe-3d states are sufficient in principle to explain the formation of the shallow electron-like bands at the M(X)-point. However, in FeSe/STO these effects alone are apparently insufficient for the simultaneous elimination of the hole-like Fermi surface around the Γ-point which is not observed in ARPES experiments. Detailed comparison of ARPES detected and calculated quasiparticle bands shows reasonable agreement between theory and experiment. Analysis of the bands with respect to their origin and orbital composition shows, that for FeSe/STO system the experimentally observed "replica" quasiparticle band at the M-point (usually attributed to forward scattering interactions with optical phonons in SrTiO3 substrate) can be reasonably understood just as the LDA calculated Fe-3d xy band, renormalized by electronic correlations. The only manifestation of the substrate reduces to lifting the degeneracy between Fe-3d xz and Fe-3d yz bands near M-point. For the case of K x Fe2- y Se2 most bands observed in ARPES can also be understood as correlation renormalized Fe-3d LDA calculated bands, with overall semi-quantitative agreement with LDA + DMFT calculations.
FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas
Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia
2014-09-01
We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm-1 and an increase in bands in the region 1730-1680 cm-1 due to carbonyl stretching. We found a broad band around 1635 cm-1 likely due to Cdbnd O stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm-1 was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork (“Racconta storie”, 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.
REPRESENTATION OF SYMMETRIC SUPER-MARTINGALE MULTIPLICATIVE FUNCTIONALS
Institute of Scientific and Technical Information of China (English)
金蒙为; 应坚刚
2002-01-01
The authors introduce concepts of even and odd additive functionals and prove that an even martingale continuous additive functional of a symmetric Markov process vanishes identically.A representation for symmetric super-martingale multiplicative functionals are also given.
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
Four-qubit PPT entangled symmetric states
Tura, J; Hyllus, P; Kuś, M; Samsonowicz, J; Lewenstein, M
2012-01-01
We solve an open question of the existence of four-qubit entangled symmetric states with positive partial transpositions (PPT states). We reach this goal with two different approaches. First, we propose a half-analytical-half-numerical method that allows to construct multipartite PPT entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states. Second, we adapt the algorithm allowing to search for extremal elements in the convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we search for extremal four-qubit PPTESS and show that generically they have ranks (5,7,8). Finally, we provide an exhaustive characterization of these states with respect to their separability properties.
Nonlinear electrodynamics as a symmetric hyperbolic system
Abalos, Fernando; Goulart, Érico; Reula, Oscar
2015-01-01
Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the point-wise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that, the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a non-empty intersection. Namely that there exist families of symmetrizers in the sense of Geroch which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well-posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet and Euler-Heisenberg.
Leptogenesis in left-right symmetric theories
Joshipura, A S; Rodejohann, W
2001-01-01
The masses and mixing of the light left-handed neutrinos can be related to those of the heavy right-handed neutrinos in left-right symmetric theories. Properties of the light neutrinos are measured in terrestrial experiments and the CP-violating decays of their heavy counterparts produce a baryon asymmetry via the well-known leptogenesis mechanism. The left-handed Higgs triplet, present in left-right symmetric theories, modifies the usual see-saw formula. It is possible to relate the lepton asymmetry to the light neutrino parameters when the triplet and the top quark through the usual see-saw mechanism give dominant contribution to the neutrino mass matrix. We find that in this situation the small angle MSW and vacuum solutions produce reasonable asymmetry, whereas the large angle MSW case requires extreme fine-tuning of the three phases in the mixing matrix.
Polymer-based symmetric electrochromic devices
Energy Technology Data Exchange (ETDEWEB)
Arbizzani, Catia; Cerroni, Maria Grazia [Department of Chemistry `G. Ciamician`, University of Bologna, via Selmi 2, 40126 Bologna (Italy); Mastragostino, Marina [Department of Physical Chemistry, University of Palermo, via Archirafi 26, 20123 Palermo (Italy)
1998-12-30
The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompanied by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3`,4`-d]thiophene) (pDTT1) and poly(dithieno[3,4-b:2`,3`-d]thiophene) (pDTT3) are reported and discussed
Matrix calculus for axially symmetric polarized beam.
Matsuo, Shigeki
2011-06-20
The Jones calculus is a well known method for analyzing the polarization of a fully polarized beam. It deals with a beam having spatially homogeneous polarization. In recent years, axially symmetric polarized beams, where the polarization is not homogeneous in its cross section, have attracted great interest. In the present article, we show the formula for the rotation of beams and optical elements on the angularly variant term-added Jones calculus, which is required for analyzing axially symmetric beams. In addition, we introduce an extension of the Jones calculus: use of the polar coordinate basis. With this calculus, the representation of some angularly variant beams and optical elements are simplified and become intuitive. We show definitions, examples, and conversion formulas between different notations.
Maximally Symmetric Spacetimes emerging from thermodynamic fluctuations
Bravetti, A; Quevedo, H
2015-01-01
In this work we prove that the maximally symmetric vacuum solutions of General Relativity emerge from the geometric structure of statistical mechanics and thermodynamic fluctuation theory. To present our argument, we begin by showing that the pseudo-Riemannian structure of the Thermodynamic Phase Space is a solution to the vacuum Einstein-Gauss-Bonnet theory of gravity with a cosmological constant. Then, we use the geometry of equilibrium thermodynamics to demonstrate that the maximally symmetric vacuum solutions of Einstein's Field Equations -- Minkowski, de-Sitter and Anti-de-Sitter spacetimes -- correspond to thermodynamic fluctuations. Moreover, we argue that these might be the only possible solutions that can be derived in this manner. Thus, the results presented here are the first concrete examples of spacetimes effectively emerging from the thermodynamic limit over an unspecified microscopic theory without any further assumptions.
Leptogenesis in left-right symmetric theories
Energy Technology Data Exchange (ETDEWEB)
Joshipura, Anjan S. E-mail: anjan@prl.ernet.in; Paschos, Emmanuel A. E-mail: paschos@physik.uni-dortmund.de; Rodejohann, Werner E-mail: rodejoha@xena.physik.uni-dortmund.de
2001-09-17
The masses and mixing of the light left-handed neutrinos can be related to those of the heavy right-handed neutrinos in left-right symmetric theories. Properties of the light neutrinos are measured in terrestrial experiments and the CP-violating decays of their heavy counterparts produce a baryon asymmetry via the well-known leptogenesis mechanism. The left-handed Higgs triplet, present in left-right symmetric theories, modifies the usual see-saw formula. It is possible to relate the lepton asymmetry to the light neutrino parameters when the triplet and the top quark through the usual see-saw mechanism give the dominant contribution to the neutrino mass matrix. We find that in this situation the small angle MSW and vacuum solutions produce reasonable asymmetry, whereas the large angle MSW case requires extreme fine-tuning of the three phases in the mixing matrix.
Chirally symmetric strong and electroweak interactions
Rajpoot, Subhash
1988-07-01
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3) L×SU(3) R×SU(2) L×SU(2) R×U(1) B- L where quantum chromodynamics originates in the chiral colour group SU(3) L×SU(3) R and the electroweak interaction originates in the ambidextrous electroweak interaction group SU L×SU(2) R×U(1) B- L. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2) L×SU(2) R. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3) C×U(1) em and give masses to all the quarks and leptons of the theory. All fermion masses are “see-saw” masses.
Cusped Wilson lines in symmetric representations
Correa, Diego H; Trancanelli, Diego
2015-01-01
We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-$k$ symmetric representation of the gauge group $U(N)$ for ${\\cal N} = 4$ super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and $k\\sqrt{\\lambda}\\gg N$. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of $k\\gg N$, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large $k$, independently of the contour on which they are supported.
The quantum capacity with symmetric side channels
Smith, G; Winter, A; Smith, Graeme; Smolin, John A.; Winter, Andreas
2006-01-01
We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity communication when assisted by the family of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few genuinely 1-LOCC monotonic entanglement measures.
Static spherically symmetric wormholes with isotropic pressure
Cataldo, Mauricio; Rodríguez, Pablo
2016-01-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there is no spherically symmetric traversable wormholes sustained by sources with a linear equation of state $p=\\omega \\rho$ for the isotropic pressure, independently of the form of the redshift function $\\phi(r)$. We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Spherically Symmetric, Self-Similar Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2001-01-01
Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.
Expansion-free Cylindrically Symmetric Models
Sharif, M
2013-01-01
This paper investigates cylindrically symmetric distribution of an-isotropic fluid under the expansion-free condition, which requires the existence of vacuum cavity within the fluid distribution. We have discussed two family of solutions which further provide two exact models in each family. Some of these solutions satisfy Darmois junction condition while some show the presence of thin shell on both boundary surfaces. We also formulate a relation between the Weyl tensor and energy density.
Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
Resistor Networks based on Symmetrical Polytopes
Directory of Open Access Journals (Sweden)
Jeremy Moody
2015-03-01
Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.
Symmetrical peripheral gangrene associated with peripartum cardiomyopathy
Directory of Open Access Journals (Sweden)
Ajay Jaryal
2013-01-01
Full Text Available Symmetrical peripheral gangrene (SPG is a rare clinical entity. It was first described in late 19 th century and since then has been reported with array of medical conditions mainly those complicated with shock, sepsis, and disseminated intravascular coagulation (DIC. Here in, we describe a parturient with peripartum cardiomyopathy (PPCM and SPG. Clinicians should be aware of this entity as early recognition can help in reducing morbidity and mortality.
On integrability of strings on symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Wulff, Linus [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)
2015-09-17
In the absence of NSNS three-form flux the bosonic string on a symmetric space is described by a symmetric space coset sigma-model. Such models are known to be classically integrable. We show that the integrability extends also to cases with non-zero NSNS flux (respecting the isometries) provided that the flux satisfies a condition of the form H{sub abc}H{sup cde}∼R{sub ab}{sup de}. We then turn our attention to the type II Green-Schwarz superstring on a symmetric space. We prove that if the space preserves some supersymmetry there exists a truncation of the full superspace to a supercoset space and derive the general form of the superisometry algebra. In the case of vanishing NSNS flux the corresponding supercoset sigma-model for the string is known to be integrable. We prove that the integrability extends to the full string by augmenting the supercoset Lax connection with terms involving the fermions which are not captured by the supercoset model. The construction is carried out to quadratic order in these fermions. This proves the integrability of strings on symmetric spaces supported by RR flux which preserve any non-zero amount of supersymmetry. Finally we also construct Lax connections for some supercoset models with non-zero NSNS flux describing strings in AdS{sub 2,3}×S{sup 2,3}×S{sup 2,3}×T{sup 2,3,4} backgrounds preserving eight supersymmetries.
Coefficients of symmetric square L-functions
Institute of Scientific and Technical Information of China (English)
LAU; Yuk-Kam
2010-01-01
Let λsym2f(n) be the n-th coefficient in the Dirichlet series of the symmetric square L-function associated with a holomorphic primitive cusp form f.We prove Ω± results for λsym2f(n) and evaluate the number of positive(resp.,negative) λsym2f(n) in some intervals.
Time-symmetric electrodynamics and quantum measurement
Pegg, D. T.
The application of the Wheeler-Feynman theory of time-symmetric electrodynamics to obtain definite answers to questions concerning the objective existence of quantum states in an optical EPR type of experiment is discussed. This theory allows the influence of the detector on the system being studied to be taken into account. The result is an entirely fresh understanding of experiments of the Kocher-Commins type.
Symmetric Wilson Loops beyond leading order
Chen-Lin, Xinyi
2016-01-01
We study the circular Wilson loop in the symmetric representation of U(N) in $\\mathcal{N} = 4$ super-Yang-Mills (SYM). In the large N limit, we computed the exponentially-suppressed corrections for strong coupling, which suggests non-perturbative physics in the dual holographic theory. We also computed the next-to-leading order term in 1/N, and the result matches with the exact result from the k-fundamental representation.
Symmetric categorial grammar: residuation and Galois connections
Moortgat, Michael
2010-01-01
The Lambek-Grishin calculus is a symmetric extension of the Lambek calculus: in addition to the residuated family of product, left and right division operations of Lambek's original calculus, one also considers a family of coproduct, right and left difference operations, related to the former by an arrow-reversing duality. Communication between the two families is implemented in terms of linear distributivity principles. The aim of this paper is to complement the symmetry between (dual) resid...
Entropy, subentropy and the elementary symmetric functions
Jozsa, Richard; Mitchison, Graeme
2013-01-01
We use complex contour integral techniques to study the entropy H and subentropy Q as functions of the elementary symmetric polynomials, revealing a series of striking properties. In particular for these variables, derivatives of -Q are equal to derivatives of H of one higher order and the first derivatives of H and Q are seen to be completely monotone functions. It then follows that exp (-H) and exp(-Q) are Laplace transforms of infinitely divisible probability distributions.
Compensator configurations for load currents' symmetrization
Rusinaru, D.; Manescu, L. G.; Dinu, R. C.
2016-02-01
This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.
Classification Models for Symmetric Key Cryptosystem Identification
Directory of Open Access Journals (Sweden)
Shri Kant
2012-01-01
Full Text Available The present paper deals with the basic principle and theory behind prevalent classification models and their judicious application for symmetric key cryptosystem identification. These techniques have been implemented and verified on varieties of known and simulated data sets. After establishing the techniques the problems of cryptosystem identification have been addressed.Defence Science Journal, 2012, 62(1, pp.38-45, DOI:http://dx.doi.org/10.14429/dsj.62.1440
SVD row or column symmetric matrix
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new architecture for row or column symmetric matrix called extended matrix is defined, and a precise correspondence of the singular values and singular vectors between the extended matrix and its original (namely, the mother matrix) is derived. As an illustration of potential, we show that, for a class of extended matrices, the singular value decomposition using the mother matrix rather than the extended matrix per se can save the CPU time and memory without loss of numerical precision.
QR factorization for row or column symmetric matrix
Institute of Scientific and Technical Information of China (English)
ZOU; Hongxing(邹红星); WANG; Dianjun(王殿军); DAI; Qionghai(戴琼海); LI; Yanda(李衍达)
2003-01-01
The problem of fast computing the QR factorization of row or column symmetric matrix isconsidered. We address two new algorithms based on a correspondence of Q and R matrices between the rowor column symmetric matrix and its mother matrix. Theoretical analysis and numerical evidence show that, fora class of row or column symmetric matrices, the QR factorization using the mother matrix rather than therow or column symmetric matrix per se can save dramatically the CPU time and memory without loss of anynumerical precision.
Distal symmetrical polyneuropathy: definition for clinical research.
England, J D; Gronseth, G S; Franklin, G; Miller, R G; Asbury, A K; Carter, G T; Cohen, J A; Fisher, M A; Howard, J F; Kinsella, L J; Latov, N; Lewis, R A; Low, P A; Sumner, A J
2005-01-01
The objective of this report was to develop a case definition of "distal symmetrical polyneuropathy" to standardize and facilitate clinical research and epidemiological studies. A formalized consensus process was employed to reach agreement after a systematic review and classification of evidence from the literature. The literature indicates that symptoms alone have relatively poor diagnostic accuracy in predicting the presence of polyneuropathy; signs are better predictors of polyneuropathy than symptoms; and single abnormalities on examination are less sensitive than multiple abnormalities in predicting the presence of polyneuropathy. The combination of neuropathic symptoms, signs, and electrodiagnostic findings provides the most accurate diagnosis of distal symmetrical polyneuropathy. A set of case definitions was rank ordered by likelihood of disease. The highest likelihood of polyneuropathy (useful for clinical trials) occurs with a combination of multiple symptoms, multiple signs, and abnormal electrodiagnostic studies. A modest likelihood of polyneuropathy (useful for field or epidemiological studies) occurs with a combination of multiple symptoms and multiple signs when the results of electrodiagnostic studies are not available. A lower likelihood of polyneuropathy occurs when electrodiagnostic studies and signs are discordant. For research purposes, the best approach for defining distal symmetrical polyneuropathy is a set of case definitions rank ordered by estimated likelihood of disease. The inclusion of this formalized case definition in clinical and epidemiological research studies will ensure greater consistency of case selection.
Neutrino Mass Matrix Predicted From Symmetric Texture
Bando, M; Bando, Masako; Obara, Midori
2003-01-01
Within the framework of grand unified theories, we make full analysis of symmetric texture to see if such texture can reproduce large neutrino mixings, which have recently been confirmed by the observed solar and atmospheric neutrino oscillation experiments. It is found that so-called symmetric texture with anomalous U(1) family symmetry with Froggatt-Nielsen mechanism does not provide a natural explanation of two large mixing angles. On the contrary we should adopt "zero texture" which have been extensively studied by many authors and only this scenario can reproduce two large mixing angles naturally. Under such "zero texture" with minimal symmetric Majorana matrix, all the neutrino masses and mixing angles, 6 quantities, are expressed in terms of up-quark masses, $m_t,m_c,m_u$ with two adjustable parameters. This provides interesting relations among neutrio mixing angles, $\\tan^2 2\\theta_{12} \\simeq \\frac{144m_c}{m_t} \\tan^2 2\\theta_{23} \\cos^2 \\theta_{23}, \\quad \\sin^2 \\theta_{13} \\simeq \\frac{4m_c}{m_t}\\s...
The Exponent Set of Central Symmetric Primitive Matrices
Institute of Scientific and Technical Information of China (English)
陈佘喜; 胡亚辉
2004-01-01
This paper first establishes a distance inequality of the associated diagraph of a central symmetric primitive matrix, then characters the exponent set of central symmetric primitive matrices, and proves that the exponent set of central symmetric primitive matrices of order n is {1, 2,… ,n-1}. There is no gap in it.
Kashiwara-Vergne-Rouviere methods for symmetric spaces
Torossian, Charles
2002-01-01
This article follows our previous work on Campbell-Hausdorff formula. We study the case of symmetric spaces. We recover, by using a Kontsevich's deformation of the Baker-Campbell-Hausdorff formula, Rouviere's results on the convolution of invariant distributions, for solvable symmetric spaces and "very symmetric spaces".
Kashiwara-Vergne-Rouviere methods for symmetric spaces
Torossian, Charles
2002-01-01
This article follows our previous work on Campbell-Hausdorff formula. We study the case of symmetric spaces. We recover, by using a Kontsevich's deformation of the Baker-Campbell-Hausdorff formula, Rouviere's results on the convolution of invariant distributions, for solvable symmetric spaces and "very symmetric spaces".
Analysis of fault using microcomputer protection by symmetrical component method
Directory of Open Access Journals (Sweden)
Mr. Ashish Choubey
2012-09-01
Full Text Available To enhance power supply reliability for the userterminals in the case of the distribution system toavoid interference by the fault again, rapidlycomplete the automatic identification, positioning,automatic fault isolation, network reconfigurationuntil the resumption of supply of non-fault section,a microprocessor-based relay protection device hasdeveloped. As the fault component theory is widelyused in microcomputer protection, and faultcomponent exists in the network of faultcomponent, it is necessary to build up the faultcomponent network when short circuit faultemerging and to draw the current and voltagecomponent phasor diagram at fault point. In orderto understand microcomputer protection based onthe symmetrical component principle, we obtainedthe sequence current and sequence voltageaccording to the concept of symmetrical component.Distribution line directly to user-oriented powersupply, the reliability of its operation determines thequality and level of electricity supply. In recentdecades, because of the general power of the tirelessefforts of scientists and technicians, relay protectiontechnology and equipment application level hasbeen greatly improved, but the current domesticproduction of computer hardware, protectiondevices are still outdated systems. Softwaredevelopment has maintenance difficulties and shortsurvival time. With the factory automation systeminterface functions weak points, the networkcommunication cannot meet the actualrequirements. Protection principle configurationand device manufacturing process to be improvedand so on.
Analysis of fault using microcomputer protection by symmetrical component method
Directory of Open Access Journals (Sweden)
Ashish Choubey
2012-09-01
Full Text Available To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. In order to understand microcomputer protection based on the symmetrical component principle, we obtained the sequence current and sequence voltage according to the concept of symmetrical component. Distribution line directly to user-oriented power supply, the reliability of its operation determines the quality and level of electricity supply. In recent decades, because of the general power of the tireless efforts of scientists and technicians, relay protection technology and equipment application level has been greatly improved, but the current domestic production of computer hardware, protection devices are still outdated systems. Software development has maintenance difficulties and short survival time. With the factory automation system interface functions weak points, the network communication cannot meet the actual requirements. Protection principle configuration and device manufacturing process to be improved and so on.
Yang, Mingjun; Huang, Jing; MacKerell, Alexander D
2015-06-09
Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems.
Fedorenko, A. A.
2003-02-01
A field-theory approach is used to investigate the 'spin-glass effects' on the critical behaviour of systems with weak temperature-like quenched disorder. The renormalization group (RG) analysis of the effective Hamiltonian of a model with replica symmetry breaking (RSB) potentials of a general type is carried out in the two-loop approximation. The fixed point (FP) stability, recently found within the one-step RSB RG treatment, is further explored in terms of replicon eigenvalues. We find that the traditional FPs, which are usually considered to describe the disorder-induced universal critical behaviour, remain stable when the continuous RSB modes are taken into account.
Lizal, Frantisek; Elcner, Jakub; Belka, Miloslav; Jedelsky, Jan; Jicha, Miroslav
2016-11-01
The presence of aerosol deposition hot-spots in human airways presumably contributes to development of various diseases. The overall aerosol deposition in human lungs can be predicted with sufficient accuracy nowadays. However, the prediction of localized aerosol deposition poses arduous challenge, namely in diseased lungs. Numerical simulation is considered to be a promising tool for the successful prediction. Yet, the validation of such simulations is difficult to perform, as not enough experimental data acquired using realistic airway replicas is available. This paper presents a first comparison of localized deposition measurement and simulation performed on the identical realistic geometry. The analysis indicates that both approaches yield similar results for low Reynolds number flows.
Evidence of a one-step replica symmetry breaking in a three-dimensional Potts glass model.
Takahashi, Takashi; Hukushima, Koji
2015-02-01
We study a seven-state Potts glass model in three dimensions with first-, second-, and third-nearest-neighbor interactions with a bimodal distribution of couplings by Monte Carlo simulations. Our results show the existence of a spin-glass transition at a finite temperature T(c), a discontinuous jump of an order parameter at T(c) without latent heat, and a nontrivial structure in the order parameter distribution below T(c). They are compatible with one-step replica symmetry breaking.
Cukier, Robert I
2011-01-28
Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] hamiltonian temperature replica exchange method (HTREM), which scales the hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer
Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking
Read, N.
2014-09-01
Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the
Seismic wavefield imaging based on the replica exchange Monte Carlo method
Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi
2016-11-01
Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analyzing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a one-dimensional (1-D) local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally-layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network (MeSO-net), which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method
Cukier, Robert I.
2011-01-01
Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] Hamiltonian temperature replica exchange method (HTREM), which scales the Hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the Hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer
Laghaei, Rozita; Mousseau, Normand; Wei, Guanghong
2011-03-31
The loss of the insulin-producing β-cells in the pancreatic islets of Langerhans, responsible for type-II diabetes, is associated with islet amyloid deposits. The main component of these deposits is the amyloid fibrils formed by the 37-residue human islet amyloid polypeptide (hIAPP also known as amylin). Although the fibrils are well characterized by cross β structure, the structure of the transient oligomers formed in the early stage of aggregation remains elusive. In this study, we apply the Hamiltonian-temperature replica exchange molecular dynamics to characterize the structure and thermodynamics of a full-length hIAPP dimer in both the presence and the absence of the Cys2-Cys7 disulfide bond. We compare these results with those obtained on the monomeric and dimeric forms of rat IAPP (rIAPP) with a disulfide bridge which differ from the hIAPP by 6 amino acids in the C-terminal region, but it is unable to form fibrils. Using a coarse-grained protein force field (OPEP-the Optimized Potential for Efficient peptide structure Prediction) running for a total of 10-28 μs per system studied, we show that sequences sample α-helical structure in the N-terminal region but that the length of this secondary element is shorter and less stable for the chains without the disulfide bridge (residues 5-16 for hIAPP with the bridge vs 10-16 for hIAPP without the bridge). This α-helix is known to be an important transient stage in the formation of oligomers. In the C-terminal, the amyloidogenic region of hIAPP, β-strands are seen for residues 17-26 and 30-35. On the contrary, no significant β-sheet content in the C-terminal is observed for either the monomeric or the dimeric rIAPP. These numerical results are fully consistent with recent experimental findings that the N-terminal residues are not part of the fibril by forming α-helical structure but rather play a significant role in stabilizing the amyloidogenic region available for the fibrillation.
Seismic wavefield imaging based on the replica exchange Monte Carlo method
Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi
2017-01-01
Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analysing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a 1-D local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network, which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method, which provides not only
Experimental demonstration of PT-symmetric stripe lasers
Gu, Zhiyuan; Lyu, Quan; Li, Meng; Xiao, Shumin; Song, Qinghai
2015-01-01
Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained tremendous research attention. While the PT symmetric absorber has been observed in microwave metamaterials, the experimental demonstration of PT symmetric laser is still absent. Here we experimentally study PT-symmetric laser absorber in stripe waveguide. Using the concept of PT symmetry to exploit the light amplification and absorption, PT-symmetric laser absorbers have been successfully obtained. Different from the single-mode PT symmetric lasers, the PT-symmetric stripe lasers have been experimentally confirmed by comparing the relative wavelength positions and mode spacing under different pumping conditions. When the waveguide is half pumped, the mode spacing is doubled and the lasing wavelengths shift to the center of every two initial lasing modes. All these observations are consistent with the theoretical predictions and confirm the PT-symmetry breaking well.
A symmetric terahertz graphene-based hybrid plasmonic waveguide
Chen, Ming; Sheng, Pengchi; Sun, Wei; Cai, Jianjin
2016-10-01
A graphene-based hybrid plasmonic waveguide (GHPW) structure, which works on the terahertz frequency and includes two identical cylinder robs symmetrically put on each side of graphene sheet with gaps g, has been proposed and investigated. The present waveguide not only significantly improves the propagation length but also maintains a compact mode area, which is due to the coupling between the dielectric waveguide mode and plasmonic mode. The graphene plasmons particularly differ from plasmons in noble metals of which propagation loss can be tuned by adjusting the Fermi energy level or carrier mobility. With a very good Fermi energy level and carrier mobility, a typical propagation length of 26.7 mm, and mode area of optical field of approximately 4 μm2 at 10 THz are achieved. This waveguide structure shows great promise for designing kinds of functional elements in actively tunable integrated optical devices.
Symmetric Euler orientation representations for orientational averaging.
Mayerhöfer, Thomas G
2005-09-01
A new kind of orientation representation called symmetric Euler orientation representation (SEOR) is presented. It is based on a combination of the conventional Euler orientation representations (Euler angles) and Hamilton's quaternions. The properties of the SEORs concerning orientational averaging are explored and compared to those of averaging schemes that are based on conventional Euler orientation representations. To that aim, the reflectance of a hypothetical polycrystalline material with orthorhombic crystal symmetry was calculated. The calculation was carried out according to the average refractive index theory (ARIT [T.G. Mayerhöfer, Appl. Spectrosc. 56 (2002) 1194]). It is shown that the use of averaging schemes based on conventional Euler orientation representations leads to a dependence of the result from the specific Euler orientation representation that was utilized and from the initial position of the crystal. The latter problem can be overcome partly by the introduction of a weighing factor, but only for two-axes-type Euler orientation representations. In case of a numerical evaluation of the average, a residual difference remains also if a two-axes type Euler orientation representation is used despite of the utilization of a weighing factor. In contrast, this problem does not occur if a symmetric Euler orientation representation is used as a matter of principle, while the result of the averaging for both types of orientation representations converges with increasing number of orientations considered in the numerical evaluation. Additionally, the use of a weighing factor and/or non-equally spaced steps in the numerical evaluation of the average is not necessary. The symmetrical Euler orientation representations are therefore ideally suited for the use in orientational averaging procedures.
Mixed Dark Matter in Left-Right Symmetric Models
Berlin, Asher; Hooper, Dan; Mohlabeng, Gopolang
2016-01-01
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W' boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, gR = gL. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
Mixed dark matter in left-right symmetric models
Energy Technology Data Exchange (ETDEWEB)
Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)
2016-06-08
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
Error Correcting Coding for a Non-symmetric Ternary Channel
Bitouze, Nicolas; Rosnes, Eirik
2009-01-01
Ternary channels can be used to model the behavior of some memory devices, where information is stored in three different levels. In this paper, error correcting coding for a ternary channel where some of the error transitions are not allowed, is considered. The resulting channel is non-symmetric, therefore classical linear codes are not optimal for this channel. We define the maximum-likelihood (ML) decoding rule for ternary codes over this channel and show that it is complex to compute, since it depends on the channel error probability. A simpler alternative decoding rule which depends only on code properties, called $\\da$-decoding, is then proposed. It is shown that $\\da$-decoding and ML decoding are equivalent, i.e., $\\da$-decoding is optimal, under certain conditions. Assuming $\\da$-decoding, we characterize the error correcting capabilities of ternary codes over the non-symmetric ternary channel. We also derive an upper bound and a constructive lower bound on the size of codes, given the code length and...
Communities and classes in symmetric fractals
Krawczyk, M J
2014-01-01
Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analysed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.
Quantum asymmetric cryptography with symmetric keys
Gao, Fei; Wen, Qiaoyan; Qin, Sujuan; Zhu, Fuchen
2009-12-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.
Quantum asymmetric cryptography with symmetric keys
Gao, Fei; Wen, Qiao-Yan; Qin, Su-Juan; Zhu, Fu-Chen
2008-01-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstr...
Quantum asymmetric cryptography with symmetric keys
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on quantum encryption,we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme,which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore,the state-estimation attack to a prior QPKC scheme is demonstrated.
Congruence Permutable Symmetric Extended de Morgan Algebras
Institute of Scientific and Technical Information of China (English)
Jie FANG
2006-01-01
An algebra A is said to be congruence permutable if any two congruences on it are per-mutable. This property has been investigated in several varieties of algebras, for example, de Morgan algebras, p-algebras, Kn,o-algebras. In this paper, we study the class of symmetric extended de Morgan algebras that are congruence permutable. In particular we consider the case where A is finite, and show that A is congruence permutable if and only if it is isomorphic to a direct product of finitely many simple algebras.
Quantum asymmetric cryptography with symmetric keys
Institute of Scientific and Technical Information of China (English)
GAO Fei; WEN QiaoYan; QIN SuJuan; ZHU FuChen
2009-01-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.
Stability of Reflection Symmetric Collapsing Structures
Sharif, M
2015-01-01
In this paper, we explore instability regions of non-static axial reflection symmetric spacetime with anisotropic source in the interior. We impose linear perturbation on the Einstein field equations and dynamical equations to establish the collapse equation. The effects of different physical factors like energy density and anisotropic stresses on the instability regions are studied under Newtonian and post-Newtonian limits. We conclude that stiffness parameter has a significant role in this analysis while the reflection terms increase instability ranges of non-static axial collapse.
Design of spherical symmetric gradient index lenses
Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción
2012-10-01
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.
Degenerate Neutrinos in Left Right Symmetric Theory
Joshipura, Anjan S.
1994-01-01
Various hints on the neutrino masses namely, ({\\em i}) the solar neutrino deficit ({\\em ii}) the atmospheric neutrino deficit ({\\em iii}) the need for the dark matter and/or ({\\em iv}) the non-zero neutrinoless double beta decay collectively imply that all the three neutrinos must be nearlty degenerate. This feature can be understood in the left right symmetric theory. We present a model based on the group $SU(2)_{L}\\times SU(2)_R\\times U(1)_{B-L}\\times SU(2)_H$ which can explain the required...
Symmetric Structure of Induction Motor Systems
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
In this paper, symmetric structure of induction motor system in stationary αβ0 coordinates is studied bythe geometric approach. The results show that the system possesses symmetry (G, θ, Ф) and infinitesimal symme-try. Under certain conditions, the system can be transformed into a form possessing state-space symmetry (G, Ф)and infinitesimal state-space symmetry by means of state feedback and input coordinate base transform. The resultscan be extended to the fifth order induction motor system fed by hysteresis-band current-controlled PWM inverter.
Specialization of Quadratic and Symmetric Bilinear Forms
Knebusch, Manfred
2010-01-01
The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed for fields of characteristic different from 2, are explored here without this restriction. In addition to chapters on specialization theory, generic splitting t
Jackson's Theorem on Bounded Symmetric Domains
Institute of Scientific and Technical Information of China (English)
Ming Zhi WANG; Guang Bin REN
2007-01-01
Polynomial approximation is studied on bounded symmetric domain Ω in C n for holo-morphic function spaces X ,such as Bloch-type spaces,Bergman-type spaces,Hardy spaces,Ω algebra and Lipschitz space.We extend the classical Jackson ’s theorem to several complex variables:E k f,X ) ω (1 /k,f,X ),where E k f,X )is the deviation of the best approximation of f ∈X by polynomials of degree at mostk with respect to the X -metric and ω (1/k,f,X )is the corresponding modulus of continuity.
SU(2) Invariants of Symmetric Qubit States
Sirsi, Swarnamala
2011-01-01
Density matrix for N-qubit symmetric state or spin-j state (j = N/2) is expressed in terms of the well known Fano statistical tensor parameters. Employing the multiaxial representation [1], wherein a spin-j density matrix is shown to be characterized by j(2j+1) axes and 2j real scalars, we enumerate the number of invariants constructed out of these axes and scalars. These invariants are explicitly calculated in the particular case of pure as well as mixed spin-1 state.
Synthesis of controllers for symmetric systems
Ameur Abid, Chiheb; Zouari, Belhassen
2010-11-01
This article deals with supervisory control problem for coloured Petri (CP) nets. Considering a CP-net, we build a condensed version of the ordinary state-space, namely the symbolic reachability graph (SRG). This latter graph allows to cope with state-space explosion problem for symmetric systems. The control specification can be expressed in terms of either forbidden states or forbidden sequences of transitions. According to these specifications, we derive the controller by applying the theory of regions on the basis of the SRG. Thanks to expressiveness power of CP-nets, the obtained controller to be connected to the plant model is reduced to one single place.
Scalar Resonances in Axially Symmetric Spacetimes
Ranea-Sandoval, Ignacio F
2015-01-01
We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that non-axial resonant modes do not exist neither in the Lanczos dust cylinder, the $(2+1)$ extreme BTZ spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the $r^2 <0$ region of the extreme $(2+1)$ BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.
Nanotribology of Symmetric and Asymmetric Liquid Lubricants
Directory of Open Access Journals (Sweden)
Shinji Yamada
2010-03-01
Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.
Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M
2016-05-10
Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.
Directory of Open Access Journals (Sweden)
S. Y. Gómez
2012-01-01
Full Text Available Using rheological parameters of ceramic suspensions, it is possible to taylor the structure of the ceramic foams produced by replica. This method consists in the impregnation of a polymeric flexible template (polyurethane foam with a ceramic suspension (slurry containing the appropriate additives, followed by burning out organic compounds and additives and sintering the ceramic structure. In this work, ceramic foams were produced by the replica method from Al2O3 and 3% Y2O3-ZrO2. Rheological parameters of the ceramic suspensions were investigated to improve the mechanical performance of final structures. Different types and quantities of raw materials were combined in order to select the formulations for ceramic foams. The parameters that have a significant influence on the process are the binder type and the amount of solids. Significant changes on the hysteresis area of the suspensions resulted in a lower density of macrodefects in the material. Likewise, when the shear rate viscosity is enhanced, the thickness of the struts increased proportionally. Lastly, when the hysteresis area magnitude and the ceramic thickness increased, the material with higher uniformity was internally densified, and the stress concentration of the internal defects was smoothed
A 10-bit 250 MSPS charge-domain pipelined ADC with replica controlled PVT insensitive BCT circuit
Songren, Huang; Hong, Zhang; Zhenhai, Chen; Shuang, Zhu; Zongguang, Yu; Hongwen, Qian; Yue, Hao
2015-05-01
A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica controlled boosted charge transfer (BCT) circuit is introduced to reject the influence of PVT variations on the charge transfer process. Based on replica controlled BCT, the CD pipelined ADC is designed and realized in a 1P6M 0.18 μm CMOS process. The ADC achieves an SFDR of 64.4 dB, an SNDR of 56.9 dB and an ENOB of 9.2 for a 9.9 MHz input; and an SFDR of 63.1 dB, an SNR of 55.2 dB, an SNDR of 54.5 dB and an ENOB of 8.7 for a 220.5 MHz input at full sampling rate. The DNL is +0.5/ -0.55 LSB and INL is +0.8/ -0.85 LSB. The power consumption of the prototype ADC is only 45 mW at 1.8 V supply and it occupies an active die area of 1.56 mm2. Project supported by the National Natural Science Foundation of China (No. 61106027).
PT-symmetric deformations of integrable models.
Fring, Andreas
2013-04-28
We review recent results on new physical models constructed as PT-symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-Sutherland type and nonlinear integrable field equations of Korteweg-de Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero-Moser-Sutherland models, we provide three alternative deformations: a complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real-valued field equations of nonlinear integrable systems; and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of Korteweg-de Vries type are studied with regard to different kinds of PT-symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.
Symmetric-key cryptosystem with DNA technology
Institute of Scientific and Technical Information of China (English)
LU MingXin; LAI XueJia; XIAO GuoZhen; QIN Lei
2007-01-01
DNA cryptography is a new field which has emerged with progress in the research of DNA computing. In our study, a symmetric-key cryptosystem was designed by applying a modern DNA biotechnology, microarray, into cryptographic technologies. This is referred to as DNA symmetric-key cryptosystem (DNASC). In DNASC,both encryption and decryption keys are formed by DNA probes, while its ciphertext is embedded in a specially designed DNA chip (microarray). The security of this system is mainly rooted in difficult biology processes and problems, rather than conventional computing technology, thus it is unaffected by changes from the attack of the coming quantum computer. The encryption process is a fabrication of a specially designed DNA chip and the decryption process is the DNA hybridization.In DNASC, billions of DNA probes are hybridized and identified at the same time,thus the decryption process is conducted in a massive, parallel way. The great potential in vast parallelism computation and the extraordinary information density of DNA are displayed in DNASC to some degree.
Analysis of non-symmetrical flapping airfoils
Tay, W. B.; Lim, K. B.
2009-08-01
Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non-symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil’s shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter’s wing.
Chirally symmetric strong and electroweak interactions
Energy Technology Data Exchange (ETDEWEB)
Rajpoot, S.
1988-07-21
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3)/sub L/xSU(3)/sub R/xSU(2)/sub L/xSU(2)/sub R/xU(1)/sub B-L/ where quantum chromodynamics originates in the chiral colour group SU(3)/sub L/xSU(3)/sub R/ and the electroweak interaction originates in the ambidextrous electroweak interaction group SU(2)/sub L/xSU(2)/sub R/xU(1)/sub B-L/. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2)/sub L/xSU(2)/sub R/. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3)/sup C/xU(1)/sub em/ and give masses to all the quarks and leptons of the theory. All fermion masses are 'see-saw' masses.
Composite Weak Vector Bosons in a Left-Right Symmetric Preon Model
Sekiguchi, M.; Ishida, S.; Wada, H.
1996-09-01
We take the viewpoint that the standard model is a low energy effective theory among composite quarks, leptons and weak bosons in a left-right (LR) symmetric preon model with a hypercolor SU(N)HC gauge interaction. Starting from NJL-type interactions with global SU(2)L × SU(2)R symmetry, we construct the composite weak vector bosons from a pair of spinor preons and derive their effective interactions with quarks and leptons, which are essentially identical, at the tree-diagram level, to those in the LR symmetric gauge model. Through the process of this approach, some physical aspects of the LR gauge model are clarified.
The importance of symmetric development of physical qualities in rhythmic gymnastics.
Directory of Open Access Journals (Sweden)
Chivil A.A.
2012-03-01
Full Text Available A research purpose is a study of role of symmetric development of physical qualities for sportswomen in a calisthenics. 84 gymnasts were inspected in age 17 years. The study of asymmetry of development of flexibility, forces and co-ordinations, is conducted for sportswomen. It is set that execution of elements of enhanceable complication requires maximal and symmetric development of flexibility in сагиттальной and in a frontal plane. At most professionally successful gymnasts the decline of asymmetry of lower extremities is marked on the level of flexibility and co-ordination.
Directory of Open Access Journals (Sweden)
Daniela Saes Sartorelli
2014-12-01
Full Text Available Objetivos: determinar o número de replicações de inquéritos dietéticos necessários para estimar a ingestão usual de nutrientes e em categorias de consumo de gestantes no Brasil. Métodos: estudo prospectivo conduzido entre 82 gestantes, no qual as informações sobre energia e 18 nutrientes foram obtidas em três inquéritos recordatórios de 24 horas, sendo um em cada trimestre gestacional. Empregaram-se diferentes fórmulas para o cálculo do número de replicações do método necessárias para classificar as gestantes em categorias de ingestão, que considera a razão das variâncias intrapessoal/interpessoal, e para a estimativa da ingestão usual, baseado na variância intrapessoal. Resultados: para classificar as gestantes em categorias são necessárias entre 11 e 51 replicações do método, considerando-se coeficiente de correlação de 0,9. Admitindo coeficiente de correlação de 0,7, o número de replicações do método variou entre quatro e 19. Para a estimativa da ingestão usual são necessárias entre duas e 33 replicações, admitindo-se um erro de 10%. Considerando-se um erro de 20%, são necessárias entre uma e sete replicações de inquéritos dietéticos. Conclusões: é necessário um elevado número de replicações de inquéritos dietéticos na estimativa da ingestão de nutrientes na gestação e o emprego de um número reduzido de replicações poderá atenuar as associações entre a dieta e desfechos de saúde maternos e fetais.
A replica exchange Monte Carlo algorithm for protein folding in the HP model
Directory of Open Access Journals (Sweden)
Shmygelska Alena
2007-09-01
Full Text Available Abstract Background The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@-hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP lattice models. Results We demonstrate that REMC is highly effective for solving instances of the square (2D and cubic (3D HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily. Conclusion We demonstrate that REMC utilizing the pull move
Symmetric instability in the Gulf Stream
Thomas, Leif N.; Taylor, John R.; Ferrari, Raffaele; Joyce, Terrence M.
2013-07-01
Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may contribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably stratified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the observations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts. SI is a shear instability that draws its energy from geostrophic flows. A parameterization for the rate of kinetic energy (KE) extraction by SI applied to the observations suggests that SI could result in a net dissipation of 33 mW m-2 and 1 mW m-2 for surveys with strong and weak fronts, respectively. The surveys also showed signs of baroclinic instability (BCI) in the SBL, namely thermally direct vertical circulations that advect biomass and PV. The vertical circulation was inferred using the omega equation and used to estimate the rate of release of available potential energy (APE) by BCI. The rate of APE release was found to be comparable in magnitude to the net dissipation associated with SI. This result points to an
RECONSTRUCTION OF SYMMETRIC B-SPLINE CURVES AND SURFACES
Institute of Scientific and Technical Information of China (English)
ZHU Weidong; KE Yinglin
2007-01-01
A method to reconstruct Symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using Symmetric knot vector and Symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a Symmetric knot vector is selected in order to get Symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be Symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.
Asymmetric and symmetric meta-correlations in financial markets
Li, Xiaohui; Shen, Xiangying; Huang, Jiping
2016-10-01
In financial markets, the relation between fluctuations of stock prices and trading behaviors is complex. It is intriguing to quantify this kind of meta-correlation between market fluctuations and the synchronous behaviors. We refine the theoretical index leverage model proposed by Reigneron et al., to exactly quantify the meta-correlation under various levels of price fluctuations [Reigneron P A, Allez R and Bouchaud J P 2011 Physica A 390 3026]. The characteristics of meta-correlations in times of market losses, are found to be significantly different in Chinese and American financial markets. In addition, unlike the asymmetric results at the daily scale, the correlation behaviors are found to be symmetric at the high-frequency scale. Project supported by the National Natural Science Foundation of China (Grant No. 11222544), the Fok Ying Tung Education Foundation (Grant No. 131008), and the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0121).
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Phenomenology of left-right symmetric dark matter
Garcia-Cely, Camilo
2015-01-01
We present a detailed study of dark matter phenomenology in low-scale left-right symmetric models. Stability of new fermion or scalar multiplets is ensured by an accidental matter parity that survives the spontaneous symmetry breaking of the gauge group by scalar triplets. The relic abundance of these particles is set by gauge interactions and gives rise to dark matter candidates with masses above the electroweak scale. Dark matter annihilations are thus modified by the Sommerfeld effect, not only in the early Universe, but also today, for instance, in the Center of the Galaxy. Majorana candidates - triplet, quintuplet, bi-doublet, and bi-triplet - bring only one new parameter to the model, their mass, and are hence highly testable at colliders and through astrophysical observations. Scalar candidates - doublet and 7-plet, the latter being only stable at the renormalizable level - have additional scalar-scalar interactions that give rise to rich phenomenology. The particles under discussion share many feature...
Rotation Symmetric Bent Boolean Functions for n = 2p
Cusick, T. W.; Sanger, E. M.
2017-01-01
It has been conjectured that there are no homogeneous rotation symmetric bent Boolean functions of degree greater than two. In this paper we begin by proving that sums of short-cycle rotation symmetric bent Boolean functions must contain a specific degree two monomial rotation symmetric Boolean function. We then prove most cases of the conjecture in n=2p, p>2 prime, variables and extend this work to the nonhomogeneous case.
Entangled Markov Chains generated by Symmetric Channels
Miyadera, T
2006-01-01
A notion of entangled Markov chain was introduced by Accardi and Fidaleo in the context of quantum random walk. They proved that, in the finite dimensional case, the corresponding states have vanishing entropy density, but they did not prove that they are entangled. In the present note this entropy result is extended to the infinite dimensional case under the assumption of finite speed of hopping. Then the entanglement problem is discussed for spin 1/2, entangled Markov chains generated by a binary symmetric channel with hopping probability $1-q$. The von Neumann entropy of these states, restricted on a sublattice is explicitly calculated and shown to be independent of the size of the sublattice. This is a new, purely quantum, phenomenon. Finally the entanglement property between the sublattices ${\\cal A}(\\{0,1,...,N\\})$ and ${\\cal A}(\\{N+1\\})$ is investigated using the PPT criterium. It turns out that, for $q\
Symmetric Satellite Swarms and Choreographic Crystals.
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick
2016-01-08
In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems.
Invisibility in PT-symmetric complex crystals
Energy Technology Data Exchange (ETDEWEB)
Longhi, Stefano, E-mail: longhi@fisi.polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy)
2011-12-02
Bragg scattering in sinusoidal PT-symmetric complex crystals of finite thickness is theoretically investigated by the derivation of exact analytical expressions for reflection and transmission coefficients in terms of modified Bessel functions of first kind. The analytical results indicate that unidirectional invisibility, recently predicted for such crystals by coupled-mode theory (Z Lin et al 2011 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.106.213901), breaks down for crystals containing a large number of unit cells. In particular, for a given modulation depth in a shallow sinusoidal potential, three regimes are encountered as the crystal thickness is increased. At short lengths the crystal is reflectionless and invisible when probed from one side (unidirectional invisibility), whereas at intermediate lengths the crystal remains reflectionless but not invisible; for longer crystals both unidirectional reflectionless and invisibility properties are broken. (paper)
Degenerate Neutrinos in Left Right Symmetric Theory
Joshipura, A S
1995-01-01
Various hints on the neutrino masses namely, ({\\em i}) the solar neutrino deficit ({\\em ii}) the atmospheric neutrino deficit ({\\em iii}) the need for the dark matter and/or ({\\em iv}) the non-zero neutrinoless double beta decay collectively imply that all the three neutrinos must be nearlty degenerate. This feature can be understood in the left right symmetric theory. We present a model based on the group $SU(2)_{L}\\times SU(2)_R\\times U(1)_{B-L}\\times SU(2)_H$ which can explain the required departures from degeneracy in neutrino masses and large mixing among them without assuming any of the mixing in the quark or charged lepton sector to be large as would be expected in a typical $SO(10)$ model.
Tensor eigenvalues and entanglement of symmetric states
Bohnet-Waldraff, F.; Braun, D.; Giraud, O.
2016-10-01
Tensor eigenvalues and eigenvectors have been introduced in the recent mathematical literature as a generalization of the usual matrix eigenvalues and eigenvectors. We apply this formalism to a tensor that describes a multipartite symmetric state or a spin state, and we investigate to what extent the corresponding tensor eigenvalues contain information about the multipartite entanglement (or, equivalently, the quantumness) of the state. This extends previous results connecting entanglement to spectral properties related to the state. We show that if the smallest tensor eigenvalue is negative, the state is detected as entangled. While for spin-1 states the positivity of the smallest tensor eigenvalue is equivalent to separability, we show that for higher values of the angular momentum there is a correlation between entanglement and the value of the smallest tensor eigenvalue.
SEARCHABLE SYMMETRIC ENCRYPTION: REVIEW AND EVALUATION
Directory of Open Access Journals (Sweden)
YAP JOE EARN
2011-08-01
Full Text Available Searchable Symmetric Encryption (SSE allows a user to search over their encrypted data on a third party storage provider privately. There are several existing SSE schemes have been proposed to achieve this goal. This paper concerns with three currentSSE schemes, which are the Practical Techniques for Searches in Encrypted Data (PTSED, the Secure Index(SI, and the Fuzzy Keyword Search over Encrypted Data in the Cloud Computing (FKS-EDCC.The objective of this paper is to introduce a review of the three schemes with a discussion in the advantages and disadvantages of each.This paper also implements aprototype over an SI-based secure file searching system using java language. The performance of the system has been evaluated and discussed according to the false-positive rate.
Symmetric Functional Model for Extensions of Hermitian
Ryzhov, V
2006-01-01
This paper offers the functional model of a class of non-selfadjoint extensions of a Hermitian operator with equal deficiency indices. The explicit form of dilation of a dissipative extension is offered and the symmetric form of Sz.Nagy-Foia\\c{s} model as developed by B.~Pavlov is constructed. A variant of functional model for a general non-selfadjoint non-dissipative extension is formulated. We illustrate the theory by two examples: singular perturbations of the Laplace operator in~$L_2(\\Real^3)$ by a finite number of point interactions, and the Schr\\"odinger operator on the half axis~$(0, \\infty)$ in the Weyl limit circle case at infinity.
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors.
Ciphertext verification security of symmetric encryption schemes
Institute of Scientific and Technical Information of China (English)
HU ZhenYu; SUN FuChun; JIANG JianChun
2009-01-01
This paper formally discusses the security problem caused by the ciphertext verification,presenting a new security notion named IND-CVA (indistinguishability under ciphertext verification attacks) to chap acterize the privacy of encryption schemes in this situation.Allowing the adversary to access to both encryption oracle and ciphertext verification oracle,the new notion IND-CVA is slightly stronger than IND-CPA (indistinguishability under chosen-plaintext attacks) but much weaker than IND-CCA (indistinguishability under chosen-ciphertext attacks),and can be satisfied by most of the popular symmetric encryption schemes such as OTP (one-time-pad),CBC (cipher block chaining) and CTR (counter).An MAC (message authentication scheme) is usually combined with an encryption to guarantee secure communication (e.g.SSH,SSL and IPSec).However,with the notion of IND-CVA,this paper shows that a secure MAC can spoil the privacy in some cases.
Minimal Left-Right Symmetric Dark Matter.
Heeck, Julian; Patra, Sudhanwa
2015-09-18
We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.
Scaling model for symmetric star polymers
Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory
2010-03-01
Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).
Gowdy-Symmetric Vacuum and Electrovacuum Solutions
Hennig, Jörg
2015-01-01
"Smooth Gowdy-symmetric generalized Taub-NUT solutions" are a class of inhomogeneous cosmological vacuum models with a past and a future Cauchy horizon. In this proceedings contribution, we present families of exact solutions within that class, which contain the Taub solution as a special case, and discuss their properties. In particular, we show that, for a special choice of the parameters, the solutions have a curvature singularity with directional behaviour. For other parameter choices, the maximal globally hyperbolic region is singularity-free. We also construct extensions through the Cauchy horizons and analyse the causal structure of the solutions. Finally, we discuss the generalization from vacuum to electrovacuum and present an exact family of solutions for that case.
Pseudo-Z symmetric space-times
Energy Technology Data Exchange (ETDEWEB)
Mantica, Carlo Alberto, E-mail: carloalberto.mantica@libero.it [Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Suh, Young Jin, E-mail: yjsuh@knu.ac.kr [Department of Mathematics, Kyungpook National University, Taegu 702-701 (Korea, Republic of)
2014-04-15
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
Symmetrizers and antisymmetrizers for the BMW algebra
Dipper, Richard; Stoll, Friederike
2011-01-01
Let $n\\in\\mathds{N}$ and $B_n(r,q)$ be the generic Birman-Murakami-Wenzl algebra with respect to indeterminants $r$ and $q$. It is known that $B_n(r,q)$ has two distinct linear representations generated by two central elements of $B_n(r,q)$ called the symmetrizer and antisymmetrizer of $B_n(r,q)$. These generate for $n\\geq 3$ the only one dimensional one sided ideals of $B_n(r,q)$ and generalize the corresponding notion for Hecke algebras of type $A$. In this paper the coefficients of these elements with respect to the graphical basis of $B_n(r,q)$ are determined explicitly.
Symmetric Morse potential is exactly solvable
Sasaki, Ryu
2016-01-01
Morse potential $V_M(x)= g^2\\exp (2x)-g(2h+1)\\exp(x)$ is defined on the full line, $-\\infty
Generalized Collective Inference with Symmetric Clique Potentials
Gupta, Rahul; Dewan, Ajit A
2009-01-01
Collective graphical models exploit inter-instance associative dependence to output more accurate labelings. However existing models support very limited kind of associativity which restricts accuracy gains. This paper makes two major contributions. First, we propose a general collective inference framework that biases data instances to agree on a set of {\\em properties} of their labelings. Agreement is encouraged through symmetric clique potentials. We show that rich properties leads to bigger gains, and present a systematic inference procedure for a large class of such properties. The procedure performs message passing on the cluster graph, where property-aware messages are computed with cluster specific algorithms. This provides an inference-only solution for domain adaptation. Our experiments on bibliographic information extraction illustrate significant test error reduction over unseen domains. Our second major contribution consists of algorithms for computing outgoing messages from clique clusters with ...
Exact Spherically Symmetric Solutions in Massive Gravity
Berezhiani, Z; Nesti, F; Pilo, L
2008-01-01
A phase of massive gravity free from pathologies can be obtained by coupling the metric to an additional spin-two field. We study the gravitational field produced by a static spherically symmetric body, by finding the exact solution that generalizes the Schwarzschild metric to the case of massive gravity. Besides the usual 1/r term, the main effects of the new spin-two field are a shift of the total mass of the body and the presence of a new power-like term, with sizes determined by the mass and the shape (the radius) of the source. These modifications, being source dependent, give rise to a dynamical violation of the Strong Equivalence Principle. Depending on the details of the coupling of the new field, the power-like term may dominate at large distances or even in the ultraviolet. The effect persists also when the dynamics of the extra field is decoupled.
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
FFLP problem with symmetric trapezoidal fuzzy numbers
Directory of Open Access Journals (Sweden)
Reza Daneshrad
2015-04-01
Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.
Dynamical systems and spherically symmetric cosmological models
He, Yanjing
2006-06-01
In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented
Topological Analyses of Symmetric Eruptive Prominences
Panasenco, O.; Martin, S. F.
Erupting prominences (filaments) that we have analyzed from Hα Doppler data at Helio Research and from SOHO/EIT 304 Å, show strong coherency between their chirality, the direction of the vertical and lateral motions of the top of the prominences, and the directions of twisting of their legs. These coherent properties in erupting prominences occur in two patterns of opposite helicity; they constitute a form of dynamic chirality called the ``roll effect." Viewed from the positive network side as they erupt, many symmetrically-erupting dextral prominences develop rolling motion toward the observer along with right-hand helicity in the left leg and left-hand helicity in the right leg. Many symmetricaly-erupting sinistral prominences, also viewed from the positive network field side, have the opposite pattern: rolling motion at the top away from the observer, left-hand helical twist in the left leg, and right-hand twist in the right leg. We have analysed the motions seen in the famous movie of the ``Grand Daddy" erupting prominence and found that it has all the motions that define the roll effect. From our analyses of this and other symmetric erupting prominences, we show that the roll effect is an alternative to the popular hypothetical configuration of an eruptive prominence as a twisted flux rope or flux tube. Instead we find that a simple flat ribbon can be bent such that it reproduces nearly all of the observed forms. The flat ribbon is the most logical beginning topology because observed prominence spines already have this topology prior to eruption and an initial long magnetic ribbon with parallel, non-twisted threads, as a basic form, can be bent into many more and different geometrical forms than a flux rope.
Duality symmetric string and M-theory
Berman, David S.; Thompson, Daniel C.
2015-03-01
We review recent developments in duality symmetric string theory. We begin with the world-sheet doubled formalism which describes strings in an extended spacetime with extra coordinates conjugate to winding modes. This formalism is T-duality symmetric and can accommodate non-geometric T-fold backgrounds which are beyond the scope of Riemannian geometry. Vanishing of the conformal anomaly of this theory can be interpreted as a set of spacetime equations for the background fields. These equations follow from an action principle that has been dubbed Double Field Theory (DFT). We review the aspects of generalised geometry relevant for DFT. We outline recent extensions of DFT and explain how, by relaxing the so-called strong constraint with a Scherk-Schwarz ansatz, one can obtain backgrounds that simultaneously depend on both the regular and T-dual coordinates. This provides a purely geometric higher dimensional origin to gauged supergravities that arise from non-geometric compactification. We then turn to M-theory and describe recent progress in formulating an En(n) U-duality covariant description of the dynamics. We describe how spacetime may be extended to accommodate coordinates conjugate to brane wrapping modes and the construction of generalised metrics in this extended space that unite the bosonic fields of supergravity into a single object. We review the action principles for these theories and their novel gauge symmetries. We also describe how a Scherk-Schwarz reduction can be applied in the M-theory context and the resulting relationship to the embedding tensor formulation of maximal gauged supergravities.
Entanglement Equivalence of $N$-qubit Symmetric States
Mathonet, P; Godefroid, M; Lamata, L; Solano, E; Bastin, T
2009-01-01
We study the interconversion of multipartite symmetric $N$-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or GHZ entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric $N$-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Integrable nonlinear parity-time symmetric optical oscillator
Hassan, Absar U; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N
2016-01-01
The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time symmetric systems. Unlike other saturable parity time symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
Research of transport and deposition of aerosol in human airway replica
Directory of Open Access Journals (Sweden)
Mravec Filip
2012-04-01
Full Text Available Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA. The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.
On Skew-symmetric Preconditioning for Strongly Non-symmetric Linear Systems
Krukier, L.A.; Botchev, M.A.
1996-01-01
To solve iteratively linear system $Au=b$ with large sparse strongly non-symmetric matrix $A$ we propose preconditioning $\\hat A \\hat u = \\hat b$, $\\hat A=(I+\\tau L_1)^{-1} A (I+\\tau U_1)^{-1},\\; \\tau>0$ where respectively lower and upper triangular matrices $L_1$ and $U_1$ are so that $L_1+U_1=1/2(
DEFF Research Database (Denmark)
Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza
2016-01-01
The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to pr...
Guardiani, Carlo; Procacci, Piero
2013-06-21
The inhibitors of the Tumor Necrosis Factor-α Converting Enzyme represent promising tools for the treatment of Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. In this work, using Hamiltonian Replica Exchange Molecular Dynamics simulations and atomistic force field we perform an accurate structural characterization of a group of tartrate-based inhibitors. The simulations highlight a correlation between the conformational landscape in bulk solvent and inhibition potency. Since the structures in bulk solvent are much more compact than the crystallographic bound state, we formulate the hypothesis of a two-step docking mechanism: (i) formation of an intermediate between the compact, hydroxyl exposing conformations in solution and the catalytic zinc ion; (ii) structural rearrangement in the active site of TACE of the zinc-tethered drug in the final binding conformation.
Pincheira, Pablo I R; Carreño, Sandra J M; Fewo, Serge I; Moura, André L; Raposo, Ernesto P; Gomes, Anderson S L; de Araújo, Cid B
2015-01-01
Replica symmetry breaking (RSB) is a concept inherent to the theory of spin glasses and complex systems, which describes how identical systems prepared under identical initial conditions can reach different states. RSB was predicted and demonstrated, for the first time in any physical system, using random lasers (RLs) operating in the coherent feedback regime. However, attempts to show RSB in RLs operating in the incoherent feedback regime based on colloidal solution of dye and scatterer particles failed. In the present letter, by using specially designed nanoparticles scatterers which prevents photodegradation of the dye, we present clear evidence of RSB in a RL operating in the incoherent feedback regime based on ethanol solution of Rhodamine 6G and amorphous TiO$_{2}$ nanoparticles.
Fujisaki, Hiroshi; Shiga, Motoyuki; Kidera, Akinori
2010-04-07
For sampling multiple pathways in a rugged energy landscape, we propose a novel action-based path sampling method using the Onsager-Machlup action functional. Inspired by the Fourier-path integral simulation of a quantum mechanical system, a path in Cartesian space is transformed into that in Fourier space, and an overdamped Langevin equation is derived for the Fourier components to achieve a canonical ensemble of the path at a finite temperature. To avoid "path trapping" around an initially guessed path, the path sampling method is further combined with a powerful sampling technique, the replica exchange method. The principle and algorithm of our method is numerically demonstrated for a model two-dimensional system with a bifurcated potential landscape. The results are compared with those of conventional transition path sampling and the equilibrium theory, and the error due to path discretization is also discussed.
Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin
2010-07-01
We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection.
Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.
2016-02-01
In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.
Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study.
Perera, Dilina; Vogel, Thomas; Landau, David P
2016-10-01
Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.
Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study
Perera, Dilina; Vogel, Thomas; Landau, David P.
2016-10-01
Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.
Swenson, David W. H.; Bolhuis, Peter G.
2014-07-01
The multiple state transition interface sampling (TIS) framework in principle allows the simulation of a large network of complex rare event transitions, but in practice suffers from convergence problems. To improve convergence, we combine multiple state TIS [J. Rogal and P. G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)] with replica exchange TIS [T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)]. In addition, we introduce multiple interface sets, which allow more than one order parameter to be defined for each state. We illustrate the methodology on a model system of multiple independent dimers, each with two states. For reaction networks with up to 64 microstates, we determine the kinetics in the microcanonical ensemble, and discuss the convergence properties of the sampling scheme. For this model, we find that the kinetics depend on the instantaneous composition of the system. We explain this dependence in terms of the system's potential and kinetic energy.
Minh, David D L
2015-01-01
A binding potential of mean force (BPMF) is a free energy of noncovalent association in which one binding partner is flexible and the other is rigid. I have developed a method to calculate BPMFs for protein-ligand systems. The method is based on replica exchange sampling from multiple thermodynamic states at different temperatures and protein-ligand interaction strengths. Protein-ligand interactions are represented by interpolating precomputed electrostatic and van der Waals grids. Using a simple estimator for thermodynamic length, thermodynamic states are initialized at approximately equal intervals. The method is demonstrated on the Astex diverse set, a database of 85 protein-ligand complexes relevant to pharmacy or agriculture. Fifteen independent simulations of each complex were started using poses from crystallography, docking, or the lowest-energy pose observed in the other simulations. Benchmark simulations completed within three days on a single processor. Overall, protocols initialized using the ther...
Stroh formalism in analysis of skew-symmetric and symmetric weight functions for interfacial cracks
Morini, Lorenzo; Movchan, Alexander; Movchan, Natalia
2012-01-01
The focus of the article is on analysis of skew-symmetric weight matrix functions for interfacial cracks in two dimensional anisotropic solids. It is shown that the Stroh formalism proves to be an efficient approach to this challenging task. Conventionally, the weight functions, both symmetric and skew-symmetric, can be identified as a non-trivial singular solutions of the homogeneous boundary value problem for a solid with a crack. For a semi-infinite crack, the problem can be reduced to solving a matrix Wiener-Hopf functional equation. Instead, the Stroh matrix representation of displacements and tractions, combined with a Riemann-Hilbert formulation, is used to obtain an algebraic eigenvalue problem, that is solved in a closed form. The proposed general method is applied to the case of a quasi-static semi-infinite crack propagation between two dissimilar orthotropic media: explicit expressions for the weight matrix functions are evaluated and then used in the computation of complex stress intensity factor ...
Itoh, Satoru G; Okumura, Hisashi
2014-10-02
The amyloid-β peptides form amyloid fibrils which are associated with Alzheimer's disease. Amyloid-β(29-42) is its C-terminal fragment and a critical determinant of the amyloid formation rate. This fragment forms the amyloid fibril by itself. However, the fragment conformation in the fibril has yet to be determined. The oligomerization process including the dimerization process is also still unknown. The dimerization process corresponds to an early process of the amyloidogenesis. In order to investigate the dimerization process and conformations, we applied the Hamiltonian replica-permutation method, which is a better alternative to the Hamiltonian replica-exchange method, to two amyloid-β(29-42) molecules in explicit water solvent. At the first step of the dimerization process, two amyloid-β(29-42) molecules came close to each other and had intermolecular side chain contacts. When two molecules had the intermolecular side chain contacts, the amyloid-β(29-42) tended to have intramolecular secondary structures, especially β-hairpin structures. The two molecules had intermolecular β-bridge structures by coming much closer at the second step of the dimerization process. Formation of these intermolecular β-bridge structures was induced by the β-hairpin structures. The intermolecular β-sheet structures elongated at the final step. Structures of the amyloid-β(29-42) in the monomer and dimer states are also shown with the free-energy landscapes, which were obtained by performing efficient sampling in the conformational space in our simulations.
Hudson, Phillip S; White, Justin K; Kearns, Fiona L; Hodoscek, Milan; Boresch, Stefan; Lee Woodcock, H
2015-05-01
Accurately modeling condensed phase processes is one of computation's most difficult challenges. Include the possibility that conformational dynamics may be coupled to chemical reactions, where multiscale (i.e., QM/MM) methods are needed, and this task becomes even more daunting. Free energy simulations (i.e., molecular dynamics), multiscale modeling, and reweighting schemes. Herein, we present two new approaches for mitigating the aforementioned challenges. The first is a new chain-of-replica method (off-path simulations, OPS) for computing potentials of mean force (PMFs) along an easily defined reaction coordinate. This development is coupled with a new distributed, highly-parallel replica framework (REPDstr) within the CHARMM package. Validation of these new schemes is carried out on two processes that undergo conformational changes. First is the simple torsional rotation of butane, while a much more challenging glycosidic rotation (in vacuo and solvated) is the second. Additionally, a new approach that greatly improves (i.e., possibly an order of magnitude) the efficiency of computing QM/MM PMFs is introduced and compared to standard schemes. Our efforts are grounded in the recently developed method for efficiently computing QM-based free energies (i.e., QM-Non-Boltzmann Bennett, QM-NBB). Again, we validate this new technique by computing the QM/MM PMF of butane's torsional rotation. The OPS-REPDstr method is a promising new approach that overcomes many limitations of standard pathway simulations in CHARMM. The combination of QM-NBB with pathway techniques is very promising as it offers significant advantages over current procedures. Efficiently computing potentials of mean force is a major, unresolved, area of interest. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang-Hee; Lee, Byong-Taek, E-mail: lbt@sch.ac.kr [Department of Biomedical Engineering and Materials, School of Medicine, Soonchunhyang University 366-1, Ssangyong-dong, Cheonan, Chungnam 330-090 (Korea, Republic of)
2011-06-15
In this study, a novel artificial small bone consisting of ZrO{sub 2}-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO{sub 2}-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO{sub 2}/BCP scaffold was composed of three layers, ZrO{sub 2}, ZrO{sub 2}/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO{sub 2}/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO{sub 2}/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO{sub 2}/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material.
Geometric multiaxial representation of N -qubit mixed symmetric separable states
SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik
2017-08-01
The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.
Diastereoselective Desymmetrization of Symmetric Dienes and its Synthetic Application
Directory of Open Access Journals (Sweden)
Kenji Nakahara
2010-03-01
Full Text Available The desymmetrization of symmetric compounds is a useful approach to obtain chiral building blocks. Readily available precursors with a prochiral unit could be converted into complex molecules with multiple stereogenic centers in a single step. In this review, recent advances in the desymmetrization of symmetric dienes in the diastereotopic group differentiating reaction and its synthetic application are presented.
Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics
2007-01-01
The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.
THE FEYNMAN-KAC FORMULA FOR SYMMETRIC MARKOV PROCESSES
Institute of Scientific and Technical Information of China (English)
YINGJIANGANG
1997-01-01
Let X be an m-symmetric Markov process and M a multiplicative functional of X such that the M-subprocess of X is also m-symmetric. The author characterizes the Dirichlet form associated with the subprocess in terms of that associated with X and the bivariate Revuz measure of M.
An axially symmetric solution of metric-affine gravity
Vlachynsky, E J; Obukhov, Yu N; Hehl, F W
1996-01-01
We present an exact stationary {\\it axially symmetric} vacuum solution of metric-affine gravity (MAG) which generalises the recently reported spherically symmetric solution. Besides the metric, it carries nonmetricity and torsion as post-Riemannian geometrical structures. The parameters of the solution are interpreted as mass and angular momentum and as dilation, shear and spin charges.
Schur convexity for a class of symmetric functions
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The Schur convexity and concavity of a class of symmetric functions are discussed, and an open problem proposed by Guan in "Some properties of a class of symmetric functions" is answered. As consequences, some inequalities are established by use of the theory of majorization.
FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE
SIERKSMA, G; TIJSSEN, GA
1992-01-01
This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M. Gr
Axially symmetric solutions in f(R)-gravity
Capozziello, Salvatore; Stabile, Arturo
2009-01-01
Axially symmetric solutions for f(R)-gravity can be derived starting from exact spherically symmetric solutions. The method takes advantage of a complex coordinate transformation previously developed by Newman and Janis in General Relativity. An example is worked out to show the general validity of the approach.
Axially symmetric solutions in f(R)-gravity
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore; De Laurentis, Mariafelicia [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' (Italy); Stabile, Arturo, E-mail: capozziello@na.infn.i [Dipartimento di Ingegneria, Universita del Sannio, Benevento, C.so Garibaldi 107, I-80125 Benevento (Italy)
2010-08-21
Axially symmetric solutions for f(R)-gravity can be derived starting from exact spherically symmetric solutions achieved by Noether symmetries. The method takes advantage of a complex coordinate transformation previously developed by Newman and Janis in general relativity. An example is worked out to show the general validity of the approach. The physical properties of the solution are also considered.
Hawking Radiation from Plane Symmetric Black Hole Covariant Anomaly
Institute of Scientific and Technical Information of China (English)
ZENG Xiao-Xiong; HAN Yi-Wen; YANG Shu-Zheng
2009-01-01
Based on the covariant anomaly cancellation method, which is believed to be more refined than the initial approach of Robinson and Wilczek, we discuss Hawking radiation from the plane symmetric black hole. The result shows that Hawking radiation from the non-spherical symmetric black holes also can be derived from the viewpoint of anomaly.
Wrapping Brownian motion and heat kernels II: symmetric spaces
Maher, David G
2010-01-01
In this paper we extend our previous results on wrapping Brownian motion and heat kernels onto compact Lie groups to various symmetric spaces, where a global generalisation of Rouvi\\`ere's formula and the $e$-function are considered. Additionally, we extend some of our results to complex Lie groups, and certain non-compact symmetric spaces.
The strong symmetric genus of the finite Coxeter groups
2004-01-01
The strong symmetric genus of a finite group G is the smallest genus of a closed orientable topological surface on which G acts faithfully as a group of orientation preserving automorphisms. In this paper we complete the calculation of the strong symmetric genus for each finite Coxeter group excluding the group E8.
Transport coefficients for rigid spherically symmetric polymers or aggregates
Strating, P.; Wiegel, F.W.
1994-01-01
In this paper we investigate the transport properties for rigid spherically symmetric macromolecules, having a segment density distribution falling off as r- lambda . We calculate the rotational and translational diffusion coefficient for a spherically symmetric polymer and the shear viscosity for a
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
P Senthilkumar; G Rajendran
2011-12-01
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Homoclinic orbits for a class of symmetric Hamiltonian systems
Directory of Open Access Journals (Sweden)
Philip Korman
1994-02-01
Full Text Available of Hamiltonian systems that are symmetric with respect to independent variable (time. For the scalar case we prove existence and uniqueness of a positive homoclinic solution. For the system case we prove existence of symmetric homoclinic orbits. We use variational approach.