WorldWideScience

Sample records for replant soil electronic

  1. The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland

    Directory of Open Access Journals (Sweden)

    Ed-Haun Chang

    2017-10-01

    Full Text Available Wildfire often causes tremendous changes in ecosystems, particularly in subalpine and alpine areas, which are vulnerable due to severe climate conditions such as cold temperature and strong wind. This study aimed to clarify the effect of tree re-planting on ecosystem services such as the soil microbial community after several decades. We compared the re-planted forest and grassland with the mature forest as a reference in terms of soil microbial biomass C and N (Cmic and Nmic, enzyme activities, phospholipid fatty acids (PLFA composition, and denaturing gradient gel electrophoresis (DGGE. The Cmic and Nmic did not differ among the grassland, re-planted forest and mature forest soil; however, ratios of Cmic/Corg and Nmic/Ntot decreased from the grassland to re-planted forest and mature forest soil. The total PLFAs and those attributed to bacteria and Gram-positive and Gram-negative bacteria did not differ between the re-planted forest and grassland soil. Principle component analysis of the PLFA content separated the grassland from re-planted forest and mature forest soil. Similarly, DGGE analysis revealed changes in both bacterial and fungal community structures with changes in vegetation. Our results suggest that the microbial community structure changes with the re-planting of trees after a fire event in this subalpine area. Recovery of the soil microbial community to the original state in a fire-damaged site in a subalpine area may require decades, even under a re-planted forest.

  2. Analysis of bacterial and fungal community structure in replant ...

    African Journals Online (AJOL)

    High quality DNA is the basis of analyzing bacterial and fungal community structure in replant strawberry rhizosphere soil with the method of denaturing gradient gel electrophoresis (DGGE). DNA of soil microorganisms was extracted from the rhizosphere soil of strawberries planted in different replanted years (0, two, ...

  3. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard.

    Directory of Open Access Journals (Sweden)

    Chengmiao Yin

    Full Text Available Apple replant disease (ARD is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC. We found that the type and concentration of phenolic acid were significantly differed among different seasons, different sampling positions and different soil layers. Major types of phenolic acid in three replanted apple orchards were phlorizin, benzoic acid and vanillic aldehyde. The concentration of phenolic acid was highest in the soil of the previous tree holes and it was increased from the spring to autumn. Moreover, phenolic acid was primarily distributed in 30-60 cm soil layer in the autumn, while it was most abundant in 0-30 cm soil layer in the spring. Our results suggest that phlorizin, benzoic acid and vanillic aldehyde may be the key phenolic acid that brought about ARD in the replanted apple orchard.

  4. Allelochemicals and activities in a replanted Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) tree ecosystem.

    Science.gov (United States)

    Kong, C H; Chen, L C; Xu, X H; Wang, P; Wang, S L

    2008-12-24

    Autotoxicity is a major reason for replant problems in managed tree ecosystems. Studies have related phenolics-based allelochemicals to autotoxicity. We selected a 20-year-old replanted Chinese fir [Cunninghamia lancealata (Lamb.) Hook] tree ecosystem to isolate, identify, determine the biological activity of, and quantify soil phytotoxins. Eight common phenolics (coumarin, vanillin, isovanillin, and p-hydroxybenzoic, vanillic, benzoic, cinnamic, and ferulic acids), friedelin, and a novel cyclic dipeptide (6-hydroxy-1,3-dimethyl-8-nonadecyl-[1,4]-diazocane-2,5-diketone) were obtained by using the bioassay-guided isolation technique from toxic soil of the replanted Chinese fir tree ecosystem. Chemical structures were determined by spectroscopic means, including 2D-NMR (COSY, HMQC, HMBC, and NOESY) experiments. High concentrations of soil phenolics and friedelin were observed in the natural evergreen broadleaf forest (CK) rather than in the Chinese fir tree ecosystem. The phenolics and friedelin were not phytotoxic to Chinese fir trees. However, the cyclic dipeptide inhibited Chinese fir growth at soil concentrations determined in the replanted Chinese fir tree ecosystem. There was a significantly higher soil concentration of cyclic dipeptide in the replanted Chinese fir tree ecosystem than in a fresh Chinese fir tree ecosystem. The results suggest that phenolics and friedelin are not key allelochemicals since they are weakly phytotoxic and are detected in low concentrations in the replanted Chinese fir tree ecosystem, while cyclic dipeptide is a highly active allelochemical with a phytotoxic effect that limits offspring growth in the replanted Chinese fir tree ecosystem. The discovery of cyclic dipeptide, as well as a further understanding of its potential action mechanism in the replanted Chinese fir tree ecosystem, may contribute to solving the replant problems in managed tree ecosystems.

  5. Fingertip replantation.

    Science.gov (United States)

    Hattori, Yasunori; Doi, Kazuteru; Sakamoto, Soutetsu; Yamasaki, Hiroshi; Wahegaonkar, Abhijeet; Addosooki, Ahmad

    2007-04-01

    Fingertip replantation is now an established technique. Although successful replantation is an ideal method for treatment of fingertip amputation, various other methods still are widely used and may be functionally acceptable. The indications for replantation to treat fingertip amputation is still controversial. This article presents a global view of the current status of replantation for the treatment of fingertip amputation. The surgical technique, strategies to overcome postoperative congestion, and overall results are discussed.

  6. Distal digital replantation.

    Science.gov (United States)

    Jazayeri, Leila; Klausner, Jill Q; Chang, James

    2013-11-01

    Hand surgeons have been hesitant to perform distal digital replantation because of the technical challenges and the perception of a high cost-to-benefit ratio. Recent studies, however, have shown high survival rates and excellent functional and aesthetic results, providing renewed enthusiasm for distal replantation. The authors reviewed the literature and summarize key points regarding the surgical treatment, perioperative care, and outcomes of distal digital replantation. They describe specific techniques and considerations for surgical repair in each of four distal zones as described by Sebastin and Chung. Zone 1A replantation involves an artery-only anastomosis of a longitudinal pulp artery. Venous anastomosis first becomes possible in zone 1B. Zone 1C involves periarticular amputations where arthrodesis of the distal interphalangeal joint is usually indicated. Repair of the artery, vein, and nerve is technically optimal in zone 1D, where venous anastomosis should be performed. Overall, survival rates for distal digital replantation are similar to those reported for more proximal replantation. The literature reports good outcomes regarding nail salvage, fingertip sensibility, and range of motion, with restoration of length and aesthetic appearance. Distal replantation performed at institutions that specialize in microsurgery and specifically tailored to the level of injury is associated with good survival, function, and patient satisfaction and superior aesthetic outcome. More prospective data are needed to evaluate the cost of treatment, psychological outcomes, and functional outcomes of distal replantation compared with revision amputation.

  7. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    Full Text Available We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant and a new planting site (NewPlant in Beijing. Dwarfing apple nurseries of 'Fuji'/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil and from the new planting site (NewSoil was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant. More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria. The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition.

  8. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard

    OpenAIRE

    Yin, Chengmiao; Xiang, Li; Wang, Gongshuai; Wang, Yanfang; Shen, Xiang; Chen, Xuesen; Mao, Zhiquan

    2016-01-01

    Apple replant disease (ARD) is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC). We found that the type and concentration of phenolic acid were significa...

  9. Apple replant disease: role of microbial ecology in cause and control.

    Science.gov (United States)

    Mazzola, Mark; Manici, Luisa M

    2012-01-01

    Replant disease of apple is common to all major apple growing regions of the world. Difficulties in defining disease etiology, which can be exacerbated by abiotic factors, have limited progress toward developing alternatives to soil fumigation for disease control. However, the preponderance of data derived from studies of orchard soil biology employing multidisciplinary approaches has defined a complex of pathogens/parasites as causal agents of the disease. Approaches to manipulate microbial resources endemic to the orchard soil system have been proposed to induce a state of general soil suppressiveness to replant disease. Such a long-term strategy may benefit the existing orchard through extending the period of economic viability and reduce overall disease pressure to which young trees are exposed during establishment of successive plantings on the site. Alternatively, more near-term methods have been devised to achieve specific quantitative and qualitative changes in soil biology during the period of orchard renovation that may lead to effective disease suppression.

  10. Tetanus following replantation of an amputated finger: a case report.

    Science.gov (United States)

    Hayashida, Kenji; Murakami, Chikako; Fujioka, Masaki

    2012-10-08

    Tetanus is an infectious disease caused by tetanus toxin produced by Clostridium tetani and induces severe neurological manifestations. We treated a patient who developed tetanus during hospitalization for replantation of an amputated finger. To the best of our knowledge, this is the first published case report of such an entity. A 49-year-old Japanese man had an amputation of his right middle finger at the distal interphalangeal joint region in an accident at work. His middle finger was successfully replanted, but his fingertip was partially necrotized because of crushing and so additional reconstruction with a reverse digital arterial flap was performed 15 days after the injury. Tetanus developed 21 days after replantation of the middle finger, but symptoms remitted via rapid diagnosis and treatment. In replantation after finger trauma with exposure of nerve and blood vessel bundles, concern over injuring nerves and blood vessels may prevent irrigation and debridement from being performed sufficiently; these treatments may have been insufficiently performed in this patient. It is likely that the replanted middle finger partially adhered, and Clostridium tetani colonized the partially necrotized region. Even when there is only limited soil contamination, administration of tetanus toxoid and anti-tetanus immunoglobulin is necessary when the fingers are injured outdoors and the finger nerves and blood vessels are exposed. The drugs should be administered just after replantation if the finger has been amputated. However, if clinicians pay attention to the possibility of tetanus development, treatment can be rapidly initiated.

  11. Significance of venous anastomosis in fingertip replantation.

    Science.gov (United States)

    Hattori, Yasunori; Doi, Kazuteru; Ikeda, Keisuke; Abe, Yukio; Dhawan, Vikas

    2003-03-01

    Adequate venous outflow is the most important factor for successful fingertip replantation. The authors have attempted venous anastomosis in all cases of fingertip replantation to overcome postoperative congestion. In this article, the significance of venous repair for fingertip replantation is described from the authors' results of 64 complete fingertip amputations in 55 consecutive patients, which were replanted from January of 1996 to June of 2001. The overall survival rate was 86 percent. Of the 44 replantations in zone I, 37 survived, and the success rate was 84 percent. Of the 20 replantations in zone II, 18 survived, and the success rate was 90 percent. Venous anastomosis was attempted in all cases, but it was possible in 39 zone I and in all zone II replantations. For arterial repair, vein grafts were necessary in 17 of the 44 zone I and in one of the 20 zone II replantations; for venous repair, they were necessary in six zone I replantations and one zone II replantation. Postoperative vascular complications occurred in 15 replantations. There were five cases of arterial thrombosis and 10 cases of venous congestion. Venous congestion occurred in nine zone I and one zone II replantations. In five of these 10 replantations, venous anastomosis was not possible. In another five replantations, venous outflow was established at the time of surgery, but occlusion occurred subsequently. Except for the five failures resulting from arterial thrombosis, successful venous repair was possible in 49 of 59 replantations (83 percent). Despite the demand for skillful microsurgical technique and longer operation time, the authors' results using venous anastomosis in successful fingertip replantations are encouraging. By performing venous anastomosis, external bleeding can be avoided and a higher survival rate can be achieved. Venous anastomosis for fingertip replantation is a reliable and worthwhile procedure.

  12. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    Science.gov (United States)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  13. Tamai zone I fingertip replantation: is external bleeding obligatory for survival of artery anastomosis-only replanted digits?

    Science.gov (United States)

    Chen, Ko-Kang; Hsieh, Tung-Ying; Chang, Kao-Ping

    2014-10-01

    Distal fingertip replantation is associated with good functional and aesthetic results. Venous anastomosis is the most challenging procedure. For replantation with an artery anastomosis-only procedure (no venous anastomosis), some protocols have been designed to relieve venous congestion involve anticoagulation and the creation of wounds for persistent bleeding. This report presents the authors' experience of fingertip survival after artery anastomosis-only replantation with no persistent external bleeding. Twelve Tamai zone I fingertip total amputation patients who underwent artery anastomosis-only replantations were recruited from February 2009 to June 2012. Nerve repair was performed if identified. The patients were not subjected to conventional external bleeding methods. Both the blood color on pinprick and fingertip temperature difference between the replanted and uninjured digits were used as indicators of deteriorated venous congestion. The replanted digits of 11 patients survived. The only failed replant exhibited an average temperature difference of more than 6°C compared with the uninjured digits and consistently exhibited darker blood during the pinprick test. All other replants exhibited average temperature differences of less than 6°C. In these Tamai zone I artery anastomosis-only replantations, fingertips survived without the use of external bleeding method, indicating that external bleeding is probably not obligatory for survival of artery anastomosis-only replanted digits distal to Tamai zone I. An increasing temperature difference between the replanted and uninjured digits and darker blood on pinprick may be used as indicators of deteriorating congestion signs. © 2014 Wiley Periodicals, Inc.

  14. Tetanus following replantation of an amputated finger: a case report

    Directory of Open Access Journals (Sweden)

    Hayashida Kenji

    2012-10-01

    Full Text Available Abstract Introduction Tetanus is an infectious disease caused by tetanus toxin produced by Clostridium tetani and induces severe neurological manifestations. We treated a patient who developed tetanus during hospitalization for replantation of an amputated finger. To the best of our knowledge, this is the first published case report of such an entity. Case presentation A 49-year-old Japanese man had an amputation of his right middle finger at the distal interphalangeal joint region in an accident at work. His middle finger was successfully replanted, but his fingertip was partially necrotized because of crushing and so additional reconstruction with a reverse digital arterial flap was performed 15 days after the injury. Tetanus developed 21 days after replantation of the middle finger, but symptoms remitted via rapid diagnosis and treatment. Conclusions In replantation after finger trauma with exposure of nerve and blood vessel bundles, concern over injuring nerves and blood vessels may prevent irrigation and debridement from being performed sufficiently; these treatments may have been insufficiently performed in this patient. It is likely that the replanted middle finger partially adhered, and Clostridium tetani colonized the partially necrotized region. Even when there is only limited soil contamination, administration of tetanus toxoid and anti-tetanus immunoglobulin is necessary when the fingers are injured outdoors and the finger nerves and blood vessels are exposed. The drugs should be administered just after replantation if the finger has been amputated. However, if clinicians pay attention to the possibility of tetanus development, treatment can be rapidly initiated.

  15. Soil pH in fruit trees in relation to specific replant disorder of apple. I. Introduction and review of literature

    NARCIS (Netherlands)

    Jonkers, H.; Hoestra, H.

    1978-01-01

    A low pH of the soil prevents the specific apple replant disorder (SARD). Not much is known about the effect of a low pH on the growth of fruit trees. Most authors accept a pH of between 5.5 and 6.5 as optimum for apples but this assumption is not based on experimental research. It is feasible that

  16. Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality

    Directory of Open Access Journals (Sweden)

    Linlin Dong

    2018-03-01

    Full Text Available The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem. KEY WORDS: Panax ginseng, Microbial communities, Replanting problem, High-throughput sequencing, Different ages, Bioremediation

  17. Successful microsurgical lip replantation: Monitoring venous congestion by blood glucose measurements in the replanted lip

    Directory of Open Access Journals (Sweden)

    Kazufumi Tachi

    2018-03-01

    Full Text Available Replantation of an amputated lip using microvascular anastomosis is the best option for restoration of the defect. However, the amputated region often lacks veins with appropriate diameters for microvascular anastomoses and typically necessitates both postoperative exsanguination using medicinal leeches and a blood transfusion. We present a case of the successful replantation of an avulsed lip in which postoperative congestion was evaluated objectively by measuring blood glucose levels in the replanted region. The patient presented to our hospital with an upper lip avulsion that was caused by a dog bite. The lip was replanted by the microvascular anastomoses of one artery and two veins using interposed vein grafts. The replanted lip showed signs of congestion on postoperative day one; exsanguination using medicinal leeches was attempted, while blood glucose levels were measured every three hours. Critical congestion, which did not occur in this patient, was defined as a blood glucose level lower than 40 mg/dL. Lip replantation was successful without any complications in this patient.

  18. Vein grafting in fingertip replantations.

    Science.gov (United States)

    Yan, Hede; Jackson, William D; Songcharoen, Somjade; Akdemir, Ovunc; Li, Zhijie; Chen, Xinglong; Jiang, Liangfu; Gao, Weiyang

    2009-01-01

    In this retrospective study, the survival rates of fingertip replantation with and without vein grafting were evaluated along with their postoperative functional and cosmetic results. One hundred twenty-one-fingertip amputations were performed in 103 patients between September 2002 and July 2007. Thirty-four amputated fingertips were replanted without vein grafting, while 87 amputated fingertips were replanted with vein grafting for arterial and/or venous repairs. The overall survival rates of the replantations with and without vein grafting were 90% (78/87) and 85% (29/34), respectively. The survival rates were 88% (36/41) with venous repair, 93% (25/27) with arterial repair, and 89% (17/19) with both. Nineteen patients without vein grafting and 48 patients with vein grafting had a follow-up period of more than one year. Good cosmetic and functional outcomes were observed in both groups of patients. The results show that vein grafting is a reliable technique in fingertip replantations, showing no significant difference (P > 0.05) in survival between those with and without vein grafting. Furthermore, no significant difference (P > 0.05) in survival was found between cases with vein grafts for arterial and/or venous repairs. In fingertip replantations with vein grafting, favorable functional and esthetic results can be achieved without sacrificing replantation survival. (c) 2009 Wiley-Liss, Inc.

  19. Function of the replanted spleen in dogs

    International Nuclear Information System (INIS)

    Velcek, F.T.; Kugaczewski, J.T.; Jongco, B.; Shaftan, G.W.; Rao, P.S.; Schiffman, G.; Kottmeier, P.K.

    1982-01-01

    The function of replanted splenic fragments was studied by comparing three groups of five dogs each, one group with intact spleens; one, post-splenectomy; and one with splenic replantation. Fifteen fragments were implanted into the omentum. Howell-Jolly bodies appeared after splenectomy but cleared in the replanted group after several months. 125 I-tagged attenuated pneumococcal clearance studies showed a significant difference between control and replanted group compared with the splenectomized group. The increase of pneumococcal antibody titers after vaccination differed significantly between the splenectomized and the replanted group. All replanted fragments were viable and showed growth over a 2-year period. These studies demonstrate that omental replantation of the canine spleen leads to the maintenance of certain functional splenic parameters comparable to the normal spleen which are significantly different from the splenectomized animal

  20. Function of the replanted spleen in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Velcek, F.T.; Kugaczewski, J.T.; Jongco, B.; Shaftan, G.W.; Rao, P.S.; Schiffman, G.; Kottmeier, P.K.

    1982-06-01

    The function of replanted splenic fragments was studied by comparing three groups of five dogs each, one group with intact spleens; one, post-splenectomy; and one with splenic replantation. Fifteen fragments were implanted into the omentum. Howell-Jolly bodies appeared after splenectomy but cleared in the replanted group after several months. /sup 125/I-tagged attenuated pneumococcal clearance studies showed a significant difference between control and replanted group compared with the splenectomized group. The increase of pneumococcal antibody titers after vaccination differed significantly between the splenectomized and the replanted group. All replanted fragments were viable and showed growth over a 2-year period. These studies demonstrate that omental replantation of the canine spleen leads to the maintenance of certain functional splenic parameters comparable to the normal spleen which are significantly different from the splenectomized animal.

  1. Fingertip replantation without venous anastomosis.

    Science.gov (United States)

    Chen, Yi-Chieh; Chan, Fuan Chiang; Hsu, Chung-Chen; Lin, Yu-Te; Chen, Chien-Tzung; Lin, Chih-Hung

    2013-03-01

    Replantation of amputated fingertips is a technical challenge, as many salvage procedures fail because no suitable vein in the fingertip is available for anastomosis. In this study, we examined our experience in fingertip replantation in cases without venous anastomosis with our established fingertip replantation treatment protocol. Between August 2002 and August 2010, a retrospective study examined all patients who had undergone fingertip replantation at Chang-Gung Memorial Hospital. All the patients (n = 24) suffered from complete digital amputations at or distal to the interphalangeal joint of the thumb, or distal to distal interphalangeal joint of the fingers. A total of 30 fingertips that were salvaged by microsurgical anastomosis of the digital arteries but not of digital veins were included in this study. On satisfactory arterial anastomosis, a 2-mm incision was made over the fingertip with a number 11 Scalpel blade, and 0.1 to 0.2 mL heparin (5000 IU/mL) was injected subcutaneously around the incision immediately and once per day thereafter to ensure continuous blood drainage from the replanted fingertip. None of the replanted nail plate was removed, and no medical leeches were used. The perfusion of the replanted digits and patient's hemoglobin level were closely monitored. The wound bleeding was maintained until physiologic venous outflow was restored. Of 30 fingertips, 27 (90%) replanted fingertips survived. The average length needed for maintaining external bleeding by chemical leech was 6.8 days (range, 5-10 days). Twelve patients (including a 2-year-old child) received blood transfusions. The average amount of blood transfusion in the 23 adults was 4.0 units (range, 0-16 units) for each patient or 3.29 units (range, 0-14 units) for each digit. A 2-year-old child received 100 mL blood transfusion or 50 mL for each digit. This study showed that a protocol that promotes controlled bleeding from the fingertip is essential to achieve consistent high

  2. Fingertip replantation: Technical considerations and outcome analysis of 24 consecutive fingertip replantations

    Directory of Open Access Journals (Sweden)

    H Venkatramani

    2011-01-01

    Full Text Available Fingertip amputations are one of the most common injuries faced in an emergency department. Finger tip replantation though technically possible, are not regularly done due to the presumed complexity of the procedure and doubts about the outcome. This article deals with our experience of 24 fingertip replantations in 24 patients done over a period of 8 years since the year 2000. Twenty-one fingertips survived. The most common affected digit in the series was thumb followed by index, middle, and ring. The overall success rate was 87%. Both arterial and venous repair were done in all cases. Replantation was not done if no suitable vein was found for anastomosis. Nine patients did not have nerve repair. Seven of them survived and all of them had satisfactory sensation when examined after 1 year. No patient suffered from cold intolerance. All patients were satisfied with the functional outcome and aesthetic appearance. This article highlights the technical considerations and the outcome of these fingertip replants.

  3. Fingertip replantation: Technical considerations and outcome analysis of 24 consecutive fingertip replantations.

    Science.gov (United States)

    Venkatramani, H; Sabapathy, S Raja

    2011-05-01

    Fingertip amputations are one of the most common injuries faced in an emergency department. Finger tip replantation though technically possible, are not regularly done due to the presumed complexity of the procedure and doubts about the outcome. This article deals with our experience of 24 fingertip replantations in 24 patients done over a period of 8 years since the year 2000. Twenty-one fingertips survived. The most common affected digit in the series was thumb followed by index, middle, and ring. The overall success rate was 87%. Both arterial and venous repair were done in all cases. Replantation was not done if no suitable vein was found for anastomosis. Nine patients did not have nerve repair. Seven of them survived and all of them had satisfactory sensation when examined after 1 year. No patient suffered from cold intolerance. All patients were satisfied with the functional outcome and aesthetic appearance. This article highlights the technical considerations and the outcome of these fingertip replants.

  4. Finger replantation: surgical technique and indications.

    Science.gov (United States)

    Barbary, S; Dap, F; Dautel, G

    2013-12-01

    In this article, we discuss the surgical technique of finger replantation in detail, distinguishing particularities of technique in cases of thumb amputation, children fingertip replantation, ring finger avulsion, and very distal replantations. We emphasize the principles of bone shortening, the spare part concept, the special importance of nerve sutures and the use of vein graft in case of avulsion or crushing. However, even if finger replantation is now a routine procedure, a clear distinction should be made between revascularization and functional success. The indications for finger replantation are then detailed in the second part of this paper. The absolute indications for replantation are thumb, multiple fingers, transmetacarpal or hand, and any upper extremity amputation in a child whatever the level. Fingertip amputations distal to the insertion of the Flexor digitorum superficialis (FDS) are also a good indication. Other cases are more controversial because of the poor functional outcome, especially for the index finger, which is often functionally excluded. Copyright © 2013. Published by Elsevier SAS.

  5. Fingertip replantation: determinants of survival.

    Science.gov (United States)

    Li, Jing; Guo, Zheng; Zhu, Qingsheng; Lei, Wei; Han, Yisheng; Li, Mingquan; Wang, Zhen

    2008-09-01

    The purpose of this study was to determine the risk factors for an unsuccessful replanted fingertip. Two hundred eleven complete fingertip amputations in 211 patients who underwent replantation surgery between August of 1990 and March of 2006 were included in this study. The patients' age, gender, smoking history, digit position, dominant hand, amputation level, injury mechanism, platelet count, ischemia time, preservation method of the amputated part, anesthesia, number of arteries repaired, venous drainage, use of vein grafting, neurorrhaphy, bone shortening, and smoking after operation were tested for their impact on fingertip survival. One hundred seventy-two of 211 patients (81.5 percent) had a successful replantation. Univariate analysis showed crush or avulsion injury, high platelet count, and inappropriate preservation of the amputated part in saline solution or ethanol to be associated with a high incidence of replantation failure. Twenty-two of 54 patients (41 percent) who had a crush or avulsion trauma had failed replantation. Logistic regression analysis identified injury mechanism, platelet count, smoking after operation, preservation method of the amputated part, and the use of vein grafting as statistically significant predictive factors for success or failure. Injury mechanism, platelet count, smoking after operation, preservation method of amputated part, and the use of vein grafting were found to be the main predictors for the survival of the replanted fingertip. Applying external bleeding in zone 1 and venous drainage through the medullary cavity in zone 2 or venous anastomosis combined with vein grafting rather than venous anastomosis alone were strongly recommended in the fingertip replantation of crush or avulsion injury.

  6. Successful microsurgical replantation of an amputated penis

    Directory of Open Access Journals (Sweden)

    Sanchit Garg

    2016-01-01

    Full Text Available Penile amputation is an uncommon injury for which immediate surgical replantation is warranted. Microsurgical replantation is the “standard” method for penile replantation. Early replantation yields a high success and low complication rate. We report a case of a 34-year-old male who presented with amputation at the proximal penile shaft which was successfully replanted using microsurgical techniques. Minor skin necrosis was noted post-operatively which was debrided and covered with skin graft. Follow-up at 6 months showed satisfactory cosmetic appearance, normal voiding, return of sensations and erectile function. The level of evidence was V.

  7. Dermal pocketing following distal finger replantation.

    Science.gov (United States)

    Puhaindran, Mark E; Paavilainen, Pasi; Tan, David M K; Peng, Yeong Pin; Lim, Aymeric Y T

    2010-08-01

    Replantation is an ideal technique for reconstruction following fingertip amputation as it provides 'like for like' total reconstruction of the nail complex, bone pulp tissue and skin with no donor-site morbidity. However, fingertips are often not replanted because veins cannot be found or are thought to be too small to repair. Attempts at 'cap-plasty' or pocketing of replanted tips with and without microvascular anastomosis have been done in the past with varying degrees of success. We prospectively followed up a group of patients who underwent digital replantation and dermal pocketing in the palm to evaluate the outcome of this procedure. There were 10 patients with 14 amputated digits (two thumbs, five index, four middle, two ring and one little) who underwent dermal pocketing of the amputated digit following replantation. Among the 14 digits that were treated with dermal pocketing, 11 survived completely, one had partial atrophy and two were completely lost. Complications encountered included finger stiffness (two patients) and infection of the replanted fingertip with osteomyelitis of the distal phalanx (one patient). We believe that this technique can help increase the chance of survival for distal replantation with an acceptable salvage rate of 85% in our series. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Standardized protocol for artery-only fingertip replantation.

    Science.gov (United States)

    Buntic, Rudolf F; Brooks, Darrell

    2010-09-01

    Artery-only fingertip replantation can be reliable if low-resistance flow through the replant is maintained until venous outflow is restored naturally. Injuring the tip of the replant to promote ongoing bleeding augmented with anticoagulation usually accomplishes this; however, such management results in prolonged hospitalization. In this study, we analyzed the outcomes of artery-only fingertip replantation using a standardized postoperative protocol consisting of dextran-40, heparin, and leech therapy. Between 2001 and 2008, we performed 19 artery-only fingertip replants for 17 patients. All patients had the replanted nail plate removed and received intravenous dextran-40, heparin, and aspirin to promote fingertip bleeding and vascular outflow. Anticoagulation was titrated to promote a controlled bleed until physiologic venous outflow was restored by neovascularization. We used medicinal leeches and mechanical heparin scrubbing for acute decongestion. By postoperative day 6, bleeding was no longer promoted. We initiated fluorescent dye perfusion studies to assess circulatory competence and direct further anticoagulant intervention if necessary. The absence of bleeding associated with an initial rise followed by an appropriate fall in fluorescent dye concentration would trigger a weaning of anticoagulation. All of the 19 replants survived. The average length of hospital stay was 9 days (range, 7-17 d). Eleven patients received blood transfusions. The average transfusion was 1.8 units (range, 0-9 units). All patients were happy with the decision to replant, and the cosmetic result. A protocol that promotes temporary, controlled bleeding from the fingertip is protective of artery-only replants distal to the distal interphalangeal joint until physiologic venous outflow is restored. The protocol described is both safe and reliable. The patient should be informed that such replant attempts may result in the need for transfusions and extended hospital stays, factors that

  9. Challenges in fingertip replantation.

    Science.gov (United States)

    Kim, Jin-Soo; Yang, Jae-Won; Lee, Dong-Chul; Ki, Sae-Hwi; Roh, Si-Young

    2013-11-01

    Fingertip amputation is a challenging injury to manage. Among various reconstructive procedures, replantation results in superior outcome, but is seldom considered in many institutions. From the identification of vessel ends to reanastomosis of the submillimeter vessels, fingertip's highly specialized anatomy requires technical excellence. By addressing these anatomic challenges, fingertip replantation can be a routine reconstructive option for microvascular surgeons.

  10. Challenges in Fingertip Replantation

    OpenAIRE

    Kim, Jin-Soo; Yang, Jae-Won; Lee, Dong-Chul; Ki, Sae-Hwi; Roh, Si-Young

    2013-01-01

    Fingertip amputation is a challenging injury to manage. Among various reconstructive procedures, replantation results in superior outcome, but is seldom considered in many institutions. From the identification of vessel ends to reanastomosis of the submillimeter vessels, fingertip's highly specialized anatomy requires technical excellence. By addressing these anatomic challenges, fingertip replantation can be a routine reconstructive option for microvascular surgeons.

  11. Mini replants: fingertip replant distal to the IP or DIP joint.

    Science.gov (United States)

    Dautel, G; Barbary, S

    2007-01-01

    Amputations through the distal interphalangeal joint or distal to this joint are frequent and they represent probably one of the best indications for replantation. Details on the vascular anatomy of the fingertip have to be perfectly known by the surgeon who will have to deal with these replantations. Factors such as age, mechanism of amputation and type of anastomosis will influence the overall success rate of the procedure. Return of a true static two points discrimination can be observed in children even in the absence of any neural repair.

  12. Fingertip replantation: Technical considerations and outcome analysis of 24 consecutive fingertip replantations

    OpenAIRE

    Venkatramani, H.; Sabapathy, S. Raja

    2011-01-01

    Fingertip amputations are one of the most common injuries faced in an emergency department. Finger tip replantation though technically possible, are not regularly done due to the presumed complexity of the procedure and doubts about the outcome. This article deals with our experience of 24 fingertip replantations in 24 patients done over a period of 8 years since the year 2000. Twenty-one fingertips survived. The most common affected digit in the series was thumb followed by index, middle, an...

  13. [Fingertip replantation after amputation: report of 32 fingers].

    Science.gov (United States)

    Ren, Gao-hong; Pei, Guo-xian; Gu, Li-qiang; Guo, Gang

    2004-08-01

    To describe the surgical techniques and our experiences in fingertip replantation after amputation. On the basis of examination of the anatomic features and the degree of fingertip vascular injury, 32 amputated fingertips in 26 cases were replanted, and flexible revascularization procedures of both artery and vein anastomoses, artery-only anastomosis, arterialized vein and arteriovenous anastomosis were adopted. All the replanted fingertips were trained with comprehensive rehabilitation program. Twenty-nine replanted fingertips survived but 3 failed, and the overall survival rate was 90.06%. During the follow-up lasting from 4 months to 5 years, the 29 replanted fingertips survived with excellent blood supply, good sensory functions, satisfactory shape and functions according to the criteria by Society of Hand Surgery of Chinese Medical Association. Fingertip replantation after amputation can achieve not only high survival rate but also satisfactory appearance and functions as long as appropriate operative procedures are adopted with comprehensive rehabilitation therapy.

  14. Intramedullary Venous Drainage System for Distal Fingertip Replantations.

    Science.gov (United States)

    Purisa, Husrev; Ozturk, Muhammed Besir; Kabakas, Fatih; Mersa, Berkan; Ozcelik, Ismail Bulent; Sezer, Ilker

    2017-08-01

    The number of venous anastomoses performed during fingertip replantation is one of the most important factors affecting the success of replantation. However, because vessel diameters decrease in the zone 1 level, vessel anastomoses, especially vein anastomoses, are technically difficult and, thus, cannot be performed in most cases. Alternative venous drainage methods are crucial when any reliable vein repair is not possible. In the literature, so many artery-only replantation techniques have been defined, such as arteriovenous anastomoses, forming an arteriovenous or venocutaneous fistula, manual milking and massage, puncturing, and external bleeding via a fishmouth incision and using a medical leech. It has been shown that, in distal fingertip replantations, the medullary cavity may also be a good way for venous return. In this study, we introduce an alternative intramedullary venous drainage system we developed to facilitate venous drainage in artery-only fingertip replantations. The results of 24 fingertip replantations distal to the nail fold by using this system are presented with a literature review.

  15. Retention and Healing Outcomes after Intentional Replantation.

    Science.gov (United States)

    Cho, Sin-Yeon; Lee, Yoon; Shin, Su-Jung; Kim, Euiseong; Jung, Il-Young; Friedman, Shimon; Lee, Seung-Jong

    2016-06-01

    Intentional replantation is an alternative to tooth extraction and prosthetic replacement when conventional endodontic treatment modalities are unfeasible or contraindicated. This study assessed tooth retention and healing after intentional replantation and explored predictors of these outcomes. Data of intentional replantation procedures performed between March 2000 and December 2010 were collected prospectively, excluding teeth with preoperative periodontal and root defects. A cohort of 159 teeth was followed up for 0.5-12 years. Retention and healed status without complications (periapical radiolucency, external root resorption, ankylosis, signs/symptoms, probing ≥6 mm) was recorded and analyzed with Kaplan-Meier survival analysis and Cox proportional hazard regression model (P regression identified extraoral time ≤15 minutes as predictor of complication-free healing (P < .04; hazard ratio, 2.767; 95% confidence interval, 1.053-7.272). This prospective cohort study of contemporary intentional replantation suggested a cumulative 12-year retention rate of 93% and healed rate of 77% after 3 years. Healing occurred 1.7 times more frequently in teeth replanted within 15 minutes. Although most complications occurred within 1 year after replantation, follow-up should extend for at least 3 years to capture late complications. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Unfavorable results in replantation

    Directory of Open Access Journals (Sweden)

    Abraham G Thomas

    2013-01-01

    Full Text Available Reattachment of amputated parts of the body (Replantation has become a reality since the first arm replant was carried out six decades ago. Failures were not uncommon in the beginning, leading on to the analysis of the problem and refinements in technique. Improvements in sutures, instrumentation and better microscopes further helped the surgeons to do replantation with better finesse and functional results. Evaluation of results and particularly failure and long term results help the younger surgeons to learn from the difficulties faced earlier to do better in the future. An attempt is made to list various aspects of replantation experienced by the author during the past 30 years, particularly in reference to unfavorable results, which had been occasionally total failure, or a partial failure, with poor function and cosmesis due to infection. An insensate limb with poor function is the result of inadequate or improper nerve coaptation or infection destroying the whole repair. It is apt to mention that infection is mostly the result of poor vascularity due to devitalized tissue. Difficulties arise often in identifying the viable tissue, particularly while debriding in the distal amputated part since there is no bleeding. Experience counts in this, specifically to identify the viable muscle. The factors that may lead to complications are listed with remarks to avoid them.

  17. Management of complications relating to finger amputation and replantation.

    Science.gov (United States)

    Woo, Sang-Hyun; Kim, Young-Woo; Cheon, Ho-Jun; Nam, Hyun-Je; Kang, Dong-Ho; Kim, Jong-Min; Ahn, Hee-Chan

    2015-05-01

    There are many options in the management of fingertip or finger amputations. Injudicious revision amputation may cause complications. These complications can be prevented by tension-free closure of the amputation stump or primary coverage with appropriate flap. Replantation is the best way to keep the original length and maintain digital function. Patent vein repair or venous drainage with bleeding until neovascularization to the replanted part is the key to successful replantation. Prevention and management of complications in replantation and revision amputation increase patients' satisfaction and decrease costs. Research is needed to define new indications of replantation for digital amputation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. [Partial replantation following proximal limb injury].

    Science.gov (United States)

    Dubert, T; Malikov, S A; Dinh, A; Kupatadze, D D; Oberlin, C; Alnot, J Y; Nabokov, B B

    2000-11-01

    Proximal replantation is a technically feasible but life-threatening procedure. Indications must be restricted to patients in good condition with a good functional prognosis. The goal of replantation must be focused not only on reimplanting the amputated limb but also on achieving a good functional outcome. For the lower limb, simple terminalization remains the best choice in many cases. When a proximal amputation is not suitable for replantation, the main aim of the surgical procedure must be to reconstruct a stump long enough to permit fitting a prosthesis preserving the function of the adjacent joint. If the proximal stump beyond the last joint is very short, it may be possible to restore some length by partial replantation of spared tissues from the amputated part. We present here the results we obtained following this policy. This series included 16 cases of partial replantations, 14 involving the lower limb and 2 the upper limb. All were osteocutaneous microsurgical transfers. For the lower limb, all transfers recovered protective sensitivity following tibial nerve repair. The functional calcaeoplantar unit was used in 13 cases. The transfer of this specialized weight bearing tissue provided a stable distal surface making higher support unnecessary. In one case, we raised a 13-cm vascularized tibial segment covered with foot skin for additional length. For the upper limb, the osteocutaneous transfer, based on the radial artery, was not reinnervated, but this lack of sensitivity did not impair prosthesis fitting. One vascular failure was finally amputated. This was the only unsuccessful result. For all other patients, the surgical procedure facilitated prosthesis fitting and preserved the proximal joint function despite an initially very proximal amputation. The advantages of partial replantation are obvious compared with simple terminalization or secondary reconstruction. There is no secondary donor site and, because there is no major muscle mass in the

  19. Fingertip Replantation Using Y-Shaped Vein Graft to Pulp Artery.

    Science.gov (United States)

    Kim, Jun Hyuk; Lee, Young Man

    2015-10-01

    Re-establishing adequate venous outflow is the most important factor for success of fingertip replantation. However, in zone I level, replantation is very difficult, especially in repairing venous circulation. The authors have made an attempt to replantation using Y-shaped vein (YSV) graft to identify and repair veins easily in fingertip replantation. From January 2007 to December 2012, a total of 46 fingertip replantations in 44 consecutive patients with amputations in the Tamai zone I level were performed by using YSV graft. In all patients, arterial anastomosis was performed using YSV graft, and interpositional vein grafts were used for venous repair. The overall success rate of the YSV-grafted replantations was 91.3% (42/46). Postoperative vascular complications occurred in 6 YSV-grafted replantations (13%), and pulp atrophy in the YSV-grafted digits was 9.5% (4/42). Fingertip replantation in zone I level is a difficult territory to a microsurgeon, especially anastomosing veins. However, our YSV grafting technique has shown value in this setting, enabling better esthetic and functional results.

  20. Nonsurgical factors of digital replantation and survival rate A metaanalysis

    Directory of Open Access Journals (Sweden)

    Huawei Yu

    2015-01-01

    Full Text Available The aim of this metaanalysis was to evaluate the association between nonsurgical factors and survival rate of digital replantation. A computer search of MEDLINE, OVID, EMBASE and CNKI databases was conducted to identify literatures for digital replantation, with the keywords of "digit," "finger" and "replantation" from their inception to June 10, 2014. Based on the inclusion and exclusion criteria, data were extracted independently by two authors using piloted forms. Review Manager 5.2 software was used for data analysis. The effect of some nonsurgical factors (gender, age, amputated finger, injury mechanisms, ischemia time and the way of preservation on the survival rate of digital replantation was assessed. The metaanalysis result suggested that gender and ischemia time had no significant influence on the survival rate of amputation replantation. However, the survival rate of digital replantation of adults was significantly higher than that of children. The guillotine injury of a finger was easier to replant successfully than the crush and avulsion. The little finger was more difficult for replantation than thumb. Survival rate of fingers stored in low temperature was higher than that in common temperature. The present metaanalysis suggested that age, injury mechanism, amputated finger and the way of preservation were significantly associated with the survival rate of digital replantation.

  1. Survival Rate of Limb Replantation in Different Age Groups.

    Science.gov (United States)

    Tatebe, Masahiro; Urata, Shiro; Tanaka, Kenji; Kurahashi, Toshikazu; Takeda, Shinsuke; Hirata, Hitoshi

    2017-08-01

    Revascularization of damaged limbs/digits is technically feasible, but indications for surgical replantation remain controversial. The authors analyzed the survival rate of upper limb amputations and the associated factors in different age groups. They grouped 371 limb/digit amputees (average age, 44 years; range, 2-85 years) treated in their hospital during the past 10 years into three groups based on age (young, ≤ 15 years, n  = 12; adult, 16-64 years, n  = 302; elderly, ≥ 65 years, n  = 57) and analyzed their injury type (extent of injury and stump status), operation method, presence of medical complications (Charlson comorbidity index), and survival rate. There were 168 replantations, and the overall replantation survival rate was 93%. The Charlson comorbidity index of the replantation patients was 0 in 124 cases; 1 in 32; 2 in 9; and 3 in 3, but it did not show any significant difference in survival rate after replantation. Eight elderly patients (14%) did not opt for replantation. Younger patients tended to undergo replantation, but they had lower success rates due to their severe injury status. The results of this study show that the survival rate of replantation in elderly patients is equal to that in adults. Stump evaluation is important for survival, but the presence of medical complications is not associated with the overall survival rate.

  2. The chicken foot digital replant training model.

    Science.gov (United States)

    Athanassopoulos, Thanassi; Loh, Charles Yuen Yung

    2015-01-01

    A simple, readily available digital replantation model in the chicken foot is described. This high fidelity model will hopefully allow trainees in hand surgery to gain further experience in replant surgery prior to clinical application.

  3. Successful replantation of a finger in an 8-month old child.

    Science.gov (United States)

    Stewart, D A; Coombs, C J

    2013-01-01

    A successful replantation of an index fingertip in an 8-month old girl is reported. A literature review of replants in very young children suggests this is one of the youngest patients ever to undergo digital replantation and possibly the youngest finger replant performed.

  4. Successful microsurgical lip replantation: Monitoring venous congestion by blood glucose measurements in the replanted lip

    OpenAIRE

    Kazufumi Tachi; Masanori Mori; Reiko Tsukuura; Rintaro Hirai

    2018-01-01

    Replantation of an amputated lip using microvascular anastomosis is the best option for restoration of the defect. However, the amputated region often lacks veins with appropriate diameters for microvascular anastomoses and typically necessitates both postoperative exsanguination using medicinal leeches and a blood transfusion. We present a case of the successful replantation of an avulsed lip in which postoperative congestion was evaluated objectively by measuring blood glucose levels in the...

  5. DSA in digital replantations

    International Nuclear Information System (INIS)

    Wang Liuhong; Chao Ming; Jiang Dingyao; Zhang Guangqiang; Wu Jianjun; Chen Xianyi; Li Bin; Sun Jihong

    2008-01-01

    Objective: To assess revascularization and vessel anastomosis in digital replantations with DSA. Methods: Twelve cases of digital replantations underwent digital subtract angiography during 2 to 4 days after fingers reattachment. The vessel anastomosis, hemodynamics, stenosis and discontinuation were investigated. The unobstructed and smooth anastomosis was suggested as early stage survival of the reattached fingers, the spasm and stenosis of the reattached vessels were considered as mild vascular crisis, and the discontinuation of hemodynamics were indicated as severe vascular crisis. Results: The total 27 vessels were clearly displayed on DSA. Of these vessels, 23 vessels were unobstructed and smooth, all digits were survived. Diagnosis coincidence of early stage survival was 100% (23/23). Two vessels were obstructed, which were testified having thrombus by operation research. The other 2 vessels were spasm, the digits were also survived ultimately by expectant treatment. All 4 abnormal vessel anatomosis were found by DSA. Conclusion: DSA is important modality in assessing revascularization and blood circulation for digital replantations, guiding in dealing with the vascular crisis, and in predicting early stage survival of the reattached digits. (authors)

  6. Fingertip replantation at or beyond the nail base in children.

    Science.gov (United States)

    Shi, Dehai; Qi, Jian; Li, Donghui; Zhu, Lei; Jin, Wentao; Cai, Daozhang

    2010-07-01

    Although success of digital replantations in children has been reported by many authors, the very distal fingertip replantation remains technically demanding. The aim of this article is to review our experience with fingertip replantations at or distal to the nail base in pediatric patients and evaluate the clinical outcomes. From October 2000 to May 2007, 12 pediatric fingertips amputated at or distal to the nail base were replanted. Only one artery was anastomosed for revascularization with or without nerve repair; vein drainage was provided by the controlled bleeding technique. Eleven of the 12 replants (91%) survived; one replant of crushed digit failed. An average of 26 month (range, 6 to 36 months) follow-up revealed excellent restoration of finger motion and appearance. The regained static 2-point discrimination (S2PD) sensation was from 3.2 to 5.0 mm (mean, 4.2 mm). Both the parents and the children were satisfied with the final results. In conclusion, fingertip replantation in children allows good functional and esthetical recovery and should be attempted if technically feasible. (c) 2010 Wiley-Liss, Inc.

  7. [Results After Distal Digital Replantation - Is It Worth The Effort?

    Science.gov (United States)

    Braig, David; Thiele, Jan R; Penna, Vincenzo; Stark, G Björn; Eisenhardt, Steffen U

    2017-02-01

    There are only relative indications for distal digital replantation in zones 1 and 2 according to Tamai. In contrast to primary closure for fingertip amputations, replantation is a complex procedure that requires skills in supermicrosurgical techniques, as vessels with diameters between 0.3-0.8 mm are connected. In addition the time spent in hospital and the time off from work are longer. Distal digital replantation is thus only indicated, if the expected functional and aesthetic benefits surmount those of primary closure. We retrospectively analysed all fingertip amputations in zone 1 and 2 according to Tamai between 9/2009 and 7/2014 where we attempted distal digital replantation. The success of replantation, wound healing and functional results were evaluated according to Yamano. We performed 11 distal digital replantations in the study period. There were 6 total amputations, 4 subtotal amputations and 1 avulsion of the digital pulp. Revascularisation with long-term reattachment of the amputated tissues was possible in 8 cases (73%). In 3 cases (27%) secondary amputation closure was necessary. The mean operating time was 3 h 56 min. 6 patients, which had a successful replantation, were available for follow-up examinations after a mean period of 19 months. 5 patients were satisfied with the result and would again prefer replantation over primary amputation closure. 4 patients reported a good function of the replanted digits and did not complain about any limitations in their use. 2 patients complained about restricted function. All patients could return to their previous places of employment and were free of pain. Of the 12 affected digital nerves 11 nerves had a 2-point discrimination (2-PD) of ≤15 mm, 3 of them had a 2-PD between 7 and 10 mm and 4 of them of replanted digits and nail deformities in 2 patients. Distal digital replantation is complex and technically challenging. It leads to high patient satisfaction with only minimal functional

  8. Timing of pulp extirpation for replanted avulsed teeth.

    LENUS (Irish Health Repository)

    Stewart, Chris

    2009-01-01

    A search was performed (April 2004) across four databases, namely Ovid Medline, Cochrane Library, PubMed and Web of Science, relevant to the proposed PICO ( Patient or problem, Intervention, Comparison, Outcome) question: (P) for a replanted avulsed permanent tooth, (I) is early pulp extirpation within 10-14 days of replantation, (C) compared with delayed pulp extirpation, (O) associated an increased likelihood of successful periodontal healing after tooth replantation. Only articles published in the English language were considered.

  9. Intravascular stenting (IVaS) method for fingertip replantation.

    Science.gov (United States)

    Narushima, Mitsunaga; Mihara, Makoto; Koshima, Isao; Gonda, Koichi; Takuya, Iida; Kato, Harunosuke; Nakanishi, Kenji; Yamamoto, Yusuke; Araki, Jun; Abe, Hiroaki; Mundinger, Gerhard S; Kikuchi, Kazuki; Uehara, Eri

    2009-01-01

    Remarkable progress has been made in microsurgery. However, fingertip replantation following amputation has not gained much popularity because of its technical difficulty. We have developed the intravascular stenting (IVaS) method, in which a nylon monofilament is placed inside the vessel lumen to act as a temporary stent, facilitating anastomosis completion. This report describes 7 fingertip replantations using the IVaS method. Intravascular stent size varied from 4-0 to 6-0 (0.199-0.07 mm diameter). There were no cases in which the back wall of a vessel became inadvertently caught in the anastomosis. The overall survival rate for distal digital replants was 85% (6/7 replants). It is very difficult to evenly anastomose vessels of differing diameter, especially on a supermicrosurgical scale. In this respect, the IVaS method plays a role in stably anchoring the 2 vessel ends, allowing for the even spacing of suture knots, even in vessels of different caliber. Because of its ease of use and exactitude, many surgeons may be able to use the IVaS method to reliably complete small anastomoses in fingertip replantations.

  10. Replantation of digits

    Science.gov (United States)

    ... the surgery area. Outlook (Prognosis) Children are better candidates for replantation surgery because of their greater ability ... www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. ...

  11. Complete amputation of the palm and replantation: case report

    Directory of Open Access Journals (Sweden)

    Yousef Shafaee

    2017-03-01

    Full Text Available Background: Even though replantation surgery has now become a routine procedure, it remains delicate and demanding surgery, requiring adequate training and expertise in microsurgical techniques. Functional outcomes following replantation vary with the level of injury. Replants of the fingers distal to the flexor superficial are insertion, the hand at the wrist, and the upper extremity at the distal forearm can achieve good function. With the advent of refined microscopes, sutures, and needles, along with specialized surgical training, replantation has become a routine part of hand-surgery practice in centers all over the world. Clearly, survival does not equate with function. Amputations constitute multisystem injury, with disruption of skeletal support (bone, motor function (muscle, sensibility (nerve, circulation (blood vessel, and soft-tissue coverage (skin. A lot of News work-related accidents published daily. Complete amputation of the palm with sharp objects electric disrupts quality of life and irreversible effects on their life. Replantation or repair the damaged organ can improve their quality of life, functional body. Case presentation: The case is a man with complete amputation of the palm while working with an electrical machine, at the same time as damage and severe crush was also the distal phalanx of the first finger of the right hand. Patient was admitted to the emergency unit at Fatemi Hospital of Ardabil city in January 2014, Iran, and underwent to surgery for replantation. Conclusion: Complete amputation of palm and its successful replantation are among rarely occurred and reportable cases. Complete amputation of palm and successful replantation and the 10-month follow-up indicated that the patient had a successful operation. No abnormalities were found in the blood circulation, and finger grasping was acceptable. Nerve development was acceptable.

  12. Validity of exploration for suitable vessels for replantation in the distal fingertip amputation in early childhood: replantation or composite graft.

    Science.gov (United States)

    Imaizumi, Atsushi; Ishida, Kunihiro; Arashiro, Ken; Nishizeki, Osamu

    2013-09-01

    Composite grafting, grafting without microvascular anastomoses, has been widely performed for distal fingertip amputation in children with variable results, whereas successful replantation of these amputations using microsurgical technique has been reported. However, most of these reports included a wide age-range and a mix of different amputation levels. This study reviewed our cases of paediatric digital amputation, in order to verify the value of distal fingertip replantation over composite grafting, especially in early childhood. Seventeen young children (aged 3 years and 8 months on average), with single-digit fingertip amputations in Tamai zone I were reviewed from 1993-2008. Each amputation was subdivided into three types: distal, middle, and proximal. There were three distal, 13 middle, and one proximal type zone I amputations. All were crush or avulsion injuries. All three distal-type cases were reattached as primary composite grafts with one success. For middle-type cases, the survival rate of primary composite graft without exploration for possible vessels for anastomosis was 57%. On exploration, suitable vessels for anastomosis were found 50% of the time, in which all replantations were succeeded. The remaining cases were reattached as secondary composite grafts, with one success using the pocket method. Consequently, the success rate after exploration was 67%. The only one proximal-type amputation was failed in replantation. For the middle-type zone I amputation in early childhood, replantation has a high success rate if suitable vessels can be found. Therefore, exploration is recommended for amputations at this level with a view to replantation, irrespective of the mechanism of injury.

  13. Reverse Distal Transverse Palmar Arch in Distal Digital Replantation.

    Science.gov (United States)

    Wei, Ching-Yueh; Orozco, Oscar; Vinagre, Gustavo; Shafarenko, Mark

    2017-11-01

    Refinements in microsurgery have made distal finger replantation an established technique with high success rates and good functional and aesthetic outcomes. However, it still represents a technically demanding procedure due to the small vessel caliber and frequent lack of vessel length, requiring the use of interpositional venous grafts in some instances. We describe a new technique for anastomosis in fingertip replantation, whereby the need for venous grafts is eliminated. Applying the reverse distal transverse palmar arch technique, 11 cases of distal digital replantation were performed between January 2011 and July 2016. The described procedure was used for arterial anastomosis in 10 cases and arteriovenous shunting for venous drainage in 1 case. A retrospective case review was conducted. The technical description and clinical outcome evaluations are presented. Ten of the 11 replanted digits survived, corresponding to an overall success rate of 91%. One replant failed due to venous insufficiency. Blood transfusions were not required for any of the patients. Follow-up (range, 1.5-5 months) revealed near-normal range of motion and good aesthetic results. All of the replanted digits developed protective sensation. The average length of hospital admission was 5 days. All patients were satisfied with the results and were able to return to their previous work. The use of the reverse distal transverse palmar arch is a novel and reliable technique in distal digital replantation when an increase in vessel length is required, allowing for a tension-free arterial repair without the need for vein grafts.

  14. [Replantation of fingertip amputation in lack of availability of intravenous anastomosis].

    Science.gov (United States)

    Wei, Jian-Min; Sun, Jun-Suo; Jiao, Xiao-Hu; Jing, Dou-Xing; He, Wei; Jin, Wen-Kuo; Chen, Shi-Gao

    2012-08-01

    To discuss the replantation of fingertip amputation in lack of availability of intravenous anastomosis. From November 2009 to November 2010, 86 patients (104 fingers) with fingertip amputation were treated with replantatioin, including 64 males and 22 females, with an average age of 26 years ranging from 2 to 64 years. The time from injury to therapy was from 30 min to 12 h, time of broken finger ischemia was from 2.5 to 12 h. Preoperative examination showed no obvious abnormalities. Four different replantation methods were selectively applied to these 104 amputated fingertips of 86 cases: (1) replantation with anastomosis of single or bilateral proper digital artery in 37 fingers; (2) replantation with arteriovenous bypass in 27 fingers; (3) replantation with exclusive anastomosis of digital artery in 24 fingers; (4) replantation with removing the palmar pocket method in 16 fingers. One hundred and two of 104 amputated fingertips were survived. Among these survived fingers,75 cases (92 fingers) were followed-up for 6 to 24 months. According to the assessment standard of Chinese Medical Association of Hand Surgery, the results were excellent in 52 cases, good in 19, poor in 4. It benefits to expand the indications and improve the survival rate of replantation of fingertip amputation with the correct choice of different replantation methods according to the injury situation of the broken fingertip artery after debridement under the microscope.

  15. Replantation and revascularization vs. amputation in injured digits

    NARCIS (Netherlands)

    Mulders, Marjolein A. M.; Neuhaus, Valentin; Becker, Stéphanie J. E.; Lee, Sang-Gil; Ring, David C.

    2013-01-01

    The purpose of this study was to analyze factors associated with the decision to replant or revascularize rather than amputate an injured digit as well as factors associated with successful replantation or revascularization. We reviewed 315 complete and subtotal amputations at or proximal to the

  16. Fingertip replantations: importance of venous anastomosis and the clinical results.

    Science.gov (United States)

    Hasuo, Takaaki; Nishi, Genzaburo; Tsuchiya, Daiji; Otsuka, Takanobu

    2009-01-01

    Overall survival rate for 143 digits with complete amputation of the distal phalanx was 78%. Replanted digits that underwent venous anastomosis showed a very high survival rate of 93%. Loss of the distal interphalangeal joint function in subzone IV was significantly inferior to that in subzones II and III. Protective sensation was achieved in 96% of replanted digits. Sensory recovery in the absence of nerve repair was significantly worse for avulsion injury than for crush injury. Nail deformity tended to be increased for replanted digits in subzone III or with crush-type injury. Successful venous anastomosis appears to offer the best way to promote survival of replanted digits. If venous anastomosis is infeasible, a replanted digit can survive with any methods for venous drainage in subzones II and III, but does not survive in subzone IV. To minimise nail deformity, repair of the germinal matrix is necessary.

  17. Fingertip replantation using the subdermal pocket procedure.

    Science.gov (United States)

    Lin, Tsan-Shiun; Jeng, Seng-Feng; Chiang, Yuan-Cheng

    2004-01-01

    Restoration of finger length and function are the goals of replantation after fingertip amputation. Methods include microsurgical replantation and nonmicrosurgical replantation, such as composite graft techniques. To increase the survival rates for composite grafts, the subcutaneous pocket procedure has been used as a salvage procedure. The subdermal pocket procedure, which is a modification of the subcutaneous pocket procedure, was used for replantation of 17 fingertips in 16 consecutive patients. Eight fingertips experienced guillotine injuries and the other nine fingertips experienced crush injuries. Revascularization of one digital artery without available venous outflow was performed for six fingers, and composite graft techniques were used for the other 11 fingers. The success rate was 16 of 17 cases. The difference in success rates for guillotine versus crush injuries was statistically significant. Comparison of patients with arterial anastomoses and patients without arterial anastomoses also indicated a statistically significant difference. Thirteen fingertips survived completely. One finger, demonstrating complete loss and early termination of the pocketing procedure, was amputated on the eighth postoperative day. Two fingers were partially lost because of severe crushing injuries. One finger demonstrated partial loss of more than one quarter of the fingertip, which required secondary revision, because the patient was a heavy smoker. The pocketing period was 8 +/- 1 days (mean +/- SD, n = 6) for the fingers revascularized with one digital arterial anastomosis and 13.3 +/- 1.9 days (n = 10) for the fingers successfully replanted with composite graft techniques. The mean active range of motion of the interphalangeal joint of the three thumbs was 65 +/- 5 degrees, and that of the distal interphalangeal joint of the other 11 fingers was 51 +/- 11 degrees. The static two-point discrimination result was 6.4 +/- 1.0 mm (n = 14) after an average of 11 +/- 5 months

  18. Fingertip Replantation With Palmar Venous Anastomoses in Children.

    Science.gov (United States)

    Wen, Gen; Xu, Jia; Chai, Yi-Min

    2017-06-01

    Fingertip amputation in children is difficult to manage using microsurgical replantation techniques and many salvage procedures have failed owing to the nonavailability of suitable veins for anastomosis in the fingertip. This study reviewed our experience of pediatric fingertip replantation involving palmar venous anastomoses and evaluated the clinical outcomes. From October 2008 to May 2013, 21 pediatric fingertips that had been completely amputated at or distal to the distal interphalangeal joint of the finger, or at or distal to the interphalangeal joint of the thumb were managed using complete replantation. One artery was anastomosed for revascularization with or without nerve repair, and a palmar venous anastomosis was performed to reestablish the outflow system. Twenty (95.2%) of the 21 fingertips survived. One replant involving an avulsion amputation of the left little finger failed, and the patient underwent stump cap-plasty. Excellent restoration of finger motion, pinch strength, and appearance was observed during the mean 39.9-month (range, 18-65 months) follow-up. The mean regained static 2-point discrimination sensation was 3.8 mm (range, 3.2-4.2 mm). All of the children and their families were satisfied with the surgical outcomes. Successful palmar venous anastomosis appears to promote the survival of replanted fingertips in children. Given that the procedure may simplify postoperative care, minimize complications, and achieve a high survival rate, it should be attempted if the technical expertise is available.

  19. A new device expanding operability of fingertip replantation: subzone 1 fingertip replantation assisted by non-enhanced angiography in a 2-year-old boy.

    Science.gov (United States)

    Yoshimatsu, Hidehiko; Yamamoto, Takumi; Seki, Yukio; Narushima, Mitsunaga; Iida, Takuya; Koshima, Isao

    2012-11-01

    Fingertip replantation in young children is difficult, especially in cases with amputation at subzone 1. Replantation is preferred whenever possible, but the identification of vessels of operative size can be very challenging. Non-enhanced angiography (NEA; Genial Viewer; Genial Light, Shizuoka, Japan) emits infrared light with the wavelength of 850 nm, which is exclusively absorbed by haemoglobin. The light penetrates the bones and other soft tissues, effectively visualising vessels containing blood, and the image is shown in real time on the screen of a laptop computer. We present a case in which preoperative NEA visualised vessels in the amputated fingertip, allowing a successful replantation in a 2-year-old boy. By taking the guesswork out of vessel localisation, NEA can be useful in expanding operability of replantation surgery in fingertip amputations. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Crossover replantation after bilateral traumatic lower limb amputations: a case report

    Directory of Open Access Journals (Sweden)

    Fang Jun

    2012-07-01

    Full Text Available Abstract Introduction Replantation of a limb to the contralateral stump after bilateral traumatic amputations is rare. To the best of our knowledge, there are only a few reports of crossover lower limb replantation in the literature. Case presentation We treated a 37-year-old Chinese woman with bilateral lower limb crush injuries sustained in a traffic accident. Her lower limb injuries were at different anatomic levels. We performed emergency bilateral amputations followed by crossover replantation. Five years later, the woman had recovered well, and had perfect movement and stability in her replanted leg. After reviewing the literature, we thought that presentation of our patient’s case might provide useful information for clinicians. Conclusions Crossover replantation should be considered when evaluating a patient with bilateral lower limb injuries, thus allowing the patient to touch the ground and stand using their own foot.

  1. Considerations for double-hand replantation in a resource-constrained healthcare facility

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusan Nayak

    2016-01-01

    Full Text Available Bilateral-hand amputation is extremely rare and double-hand replantation is even rarer. Only one case of successful double replantation at arm level has been reported from India. We present a case of double-hand replantation at proximal palmar level in a young adult executed in a small nursing home. The patient presented 5 h after injury with limbs preserved well in ice. There were difficulties in executing such an unusual case in a small nursing home set-up. The patient is performing his activities of daily living and basic functions independently. We share our experience of this double-hand replantation with special emphasis on problems encountered.

  2. Finger Replantation in Sanglah General Hospital: Report of Five Cases and Literature Review

    Directory of Open Access Journals (Sweden)

    Agus Roy Rusly Hariantana Hamid

    2016-11-01

    Full Text Available Background: Replantation is the prime treatment for amputated hands and fingers due to functional and aesthetic advantages. The absolute indications for replantation are amputations of the thumb, multiple fingers, trans metacarpal or hand, and any upper extremity in a child, regardless of the amputation level. A fingertip amputation distal to the insertion of the flexor digitorum superficialis (FDS is also a good indication. Indications have been expanded to include amputation at nail level, and when there is a request from the patient, replantation is attempted even for a single finger amputation regardless of the amputation level. Based on the mechanism of injury, a clean-cut sharp amputation is more likely replanted compare to a crush and avulsion injuries. With a proper management of the amputated finger, replantation can be attempted even after 24 hours. This report was written to provide examples of finger replantation cases and the measures that can be taken in a resource-limited hospital in order to conduct a replantation. Case Series: We reported five out of nine digital replantation cases in Sanglah General Hospital between January and July 2014. Two patients were a six and an eleven years old boys who accidentally cut their finger while playing, the rests were male labors between 20-30 years old whose amputations due to machine injuries. Result: A 100% replant survival was achieved. After a period of follow up with occupational therapy, all patients regain good functional and cosmetic results. 

  3. Transcriptomic analysis of molecular responses in Malus domestica 'M26' roots affected by apple replant disease.

    Science.gov (United States)

    Weiß, Stefan; Bartsch, Melanie; Winkelmann, Traud

    2017-06-01

    Gene expression studies in roots of apple replant disease affected plants suggested defense reactions towards biotic stress to occur which did not lead to adequate responses to the biotic stressors. Apple replant disease (ARD) leads to growth inhibition and fruit yield reduction in replanted populations and results in economic losses for tree nurseries and fruit producers. The etiology is not well understood on a molecular level and causal agents show a great diversity indicating that no definitive cause, which applies to the majority of cases, has been found out yet. Hence, it is pivotal to gain a better understanding of the molecular and physiological reactions of the plant when affected by ARD and later to overcome the disease, for example by developing tolerant rootstocks. For the first time, gene expression was investigated in roots of ARD affected plants employing massive analysis of cDNA ends (MACE) and RT-qPCR. In reaction to ARD, genes in secondary metabolite production as well as plant defense, regulatory and signaling genes were upregulated whereas for several genes involved in primary metabolism lower expression was detected. For internal verification of MACE data, candidate genes were tested via RT-qPCR and a strong positive correlation between both datasets was observed. Comparison of apple 'M26' roots cultivated in ARD soil or γ-irradiated ARD soil suggests that typical defense reactions towards biotic stress take place in ARD affected plants but they did not allow responding to the biotic stressors attack adequately, leading to the observed growth depressions in ARD variants.

  4. Ultrastructural study of tissues surrounding replanted teeth and dental implants.

    Science.gov (United States)

    Shioya, Kazuhiro; Sawada, Takashi; Miake, Yasuo; Inoue, Sadayuki; Yanagisawa, Takaaki

    2009-03-01

    The aim of this study was to describe the ultrastructure of the dentogingival border at replanted teeth and implants. Wistar rats (8 weeks old) were divided into groups for replantation and implantation experiments. In the former, the upper right first molars were extracted and then immediately replanted. In the latter, pure titanium implants were used. All tissues were fixed, demineralized and embedded in epoxy resin for ultrastructural observations. One week after replantation, the junctional epithelium was lost, and the oral sulcular epithelium covered the enamel surface. The amount of the epithelium increased in 2 weeks, and resembled the junctional epithelium, and the internal basal lamina and hemidesmosomes were formed in 4 weeks. One week after implantation, peri-implant epithelium was formed, and in 2 and 4 weeks, this epithelium with aggregated connective tissue cells were observed. In 8 weeks, the peri-implant epithelium receded, and aligned special cells with surrounding elongated fibroblasts and bundles of collagen fibers appeared to seal the implant interface. In replantation of the tooth, the internal basal lamina remained at the surface of the enamel of the replanted tooth, which is likely to be related to regeneration of the junctional epithelium and the attachment apparatus at the epithelium-tooth interface. Following implantation, a layer of cells with characteristics of connective tissue cells, but no junctional epithelium and attachment apparatus, was formed to seal the site of the implant.

  5. Reconstruction of circulation in the fingertip without vein repair in zone I replantation.

    Science.gov (United States)

    Zhang, Xu; Wen, Sumin; Wang, Baoshi; Wang, Qi; Li, Chenglin; Zhu, Hongwei

    2008-11-01

    In fingertip replantation, adequate venous drainage is important for success. As the level of amputation becomes more distal, anastomosis of veins becomes more technically difficult. External bleeding is a common solution to venous congestion, but the process is burdensome because of duration of bleeding for 3 or more days after surgery. We present a new technique for reconstructing circulation without vein anastomosis in zone I replantation and analyze the outcomes of this technique in terms of eliminating external bleeding and of a high survival rate of the replanted digits. Between 1997 and 2007, we performed 120 replantations in 112 patients (83 male and 29 female; mean age, 33 years; range, 3-54 years). All were zone I amputations, based on the Tamai classification. We surgically repaired both proper digital arteries, excluded the vein, and then ligated 1 of the arteries. Using this technique, circulation was restored. Included in the outcome evaluation were 91 digits in the 87 patients (mean age, 35 years; range, 14-54) who returned for outcome assessments 12 months after surgery. Of 120 digits replanted, 115 digits survived, corresponding to an overall success rate of 96%. No patients received alternative means to alleviate venous congestion, such as leeches or other means of external bleeding. Nearly all of the 87 patients (91 digits) were satisfied with the results of the replantations. Our technique reconstructs circulation without vein anastomosis in zone I replantation. This alternative to venous congestion involves a simple surgical procedure and straightforward postoperative care. Follow-up assessments of a series of 120 replantations show that the majority of zone I replantations led to satisfactory function. We therefore propose this technique as an effective method for zone I replantation. Therapeutic IV.

  6. Apple replant disease and the –omics: interaction of apple rootstock metabolome and the soil microbiome

    Science.gov (United States)

    Apple replant disease (ARD) negatively impacts tree health and reduces crop yield in new orchard plantings. Use of tolerant rootstock cultivars can diminish the growth limiting effects of ARD; however specific rootstock attributes enabling ARD tolerance are not understood. Systems biology tools were...

  7. A novel technique for distal fingertip replantation: Polypropylene suture guided interpositional vein graft.

    Science.gov (United States)

    Dadaci, Mehmet; Ince, Bilsev; Altuntas, Zeynep; Bitik, Ozan; Uzun, Hakan; Bilgen, Fatma

    2015-05-04

    Despite current advances in microsurgery, fingertip replantation is still controversial, mainly due to its difficulty and cost. The purpose of this study is to describe a new technique of interposition vein graft guided by polypropylene suture in distal fingertip replantation. A total of eight consecutive Tamai zone 1 fingertip replantations performed by the same author were included. All replantations were performed using interposition vein graft guided by polypropylene suture. This technique involved a vein graft of ∼ 2 cm, with appropriate calibration, obtained from the volar part of the forearm and a 2-0 polyprolene suture passed through the interposition vein graft. Then, a polypropylene suture guide carrying the vein graft was inserted into the artery. The anastomosis was easily performed with the aid of 10-0 or 11-0 nylon in a bloodless medium and without encountering the posterior wall problem. Average surgery time was 2.5 hours (range = 2-3 hours). Among eight Tamai zone 1 replantations, six were successful (75%). There were two replantations lost because of arterial failure. This technique may ease fingertip replantations and increase the success rate for Tamai zone 1 injuries.

  8. Fingertip replantation in children.

    Science.gov (United States)

    Dautel, G

    2000-11-01

    Despite common unfavorable mechanisms, fingertip replantation is a rewarding procedure in children. Cosmetic final results are usually better than those obtained by local or pedicled flaps. The success rate and the sensory reinnervation are also better than what can be expected in adult patients.

  9. High-Grade Leiomyosarcoma Arising in a Previously Replanted Limb

    Directory of Open Access Journals (Sweden)

    Tiffany J. Pan

    2015-01-01

    Full Text Available Sarcoma development has been associated with genetics, irradiation, viral infections, and immunodeficiency. Reports of sarcomas arising in the setting of prior trauma, as in burn scars or fracture sites, are rare. We report a case of a leiomyosarcoma arising in an arm that had previously been replanted at the level of the elbow joint following traumatic amputation when the patient was eight years old. He presented twenty-four years later with a 10.8 cm mass in the replanted arm located on the volar forearm. The tumor was completely resected and pathology examination showed a high-grade, subfascial spindle cell sarcoma diagnosed as a grade 3 leiomyosarcoma with stage pT2bNxMx. The patient underwent treatment with brachytherapy, reconstruction with a free flap, and subsequently chemotherapy. To the best of our knowledge, this is the first case report of leiomyosarcoma developing in a replanted extremity. Development of leiomyosarcoma in this case could be related to revascularization, scar formation, or chronic injury after replantation. The patient remains healthy without signs of recurrence at three-year follow-up.

  10. Distal finger replantation.

    Science.gov (United States)

    Scheker, Luis R; Becker, Giles W

    2011-03-01

    Reconstruction of the fingertip distal to the flexor tendon insertion by replantation remains controversial and technically challenging, but the anatomy of the fingertip has been well described and provides help in surgical planning. The open-book surgical technique is described with potential complications and is illustrated with clinical cases. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Sensory outcome of fingertip replantations without nerve repair.

    Science.gov (United States)

    Ozcelik, Ismail Bulent; Tuncer, Serdar; Purisa, Husrev; Sezer, Ilker; Mersa, Berkan; Kabakas, Fatih; Celikdelen, Pinar

    2008-01-01

    The sensory recovery outcomes of fingertip replantations without nerve repair were retrospectively studied. Between 2000 and 2006, 112 fingertip replantations with only arterial repair were carried out in 98 patients. About 76 of the replants survived totally, with a success rate of 67.8%. Evaluation of sensory recovery was possible in 31 patients (38 replantations). Sensory evaluation was made with Semmes-Weinstein, static and dynamic two-point discrimination, and vibration sense tests. Fingertip atrophy, nail deformities, and return to work were also evaluated. According to the Semmes-Weinstein test, 29.0% (11/38) of the fingers had normal sense, 60.5% (23/38) had diminished light touch, 7.9% (3/38) had diminished protective sensation, and 2.6% (1/38) had loss of protective sensation. Mean static and dynamic two-point discriminations were 7.2 mm (3-11 mm), and 4.60 mm (3-6 mm), respectively. Vibratory testing revealed increased vibration in 42.1% of the fingers, decreased vibration in 36.8%, and equal vibration when compared with the non-injured fingers in 21.1%. Atrophy was present in 14 (36.8%) fingers and negatively affected the results. Nail deformities, cold intolerance, return to work, and the effect of sensory education were investigated. Comparison of crush and clean cut injuries did not yield any significant difference in any of the parameters. Patients who received sensory education had significantly better results in sensory testing. The results were classified as excellent, good, and poor based on results of two-point discrimination tests. The outcome was excellent in 18 fingers and good in 20 fingers. Overall, satisfactory sensory recovery was achieved in fingertip replantations without nerve repair. (c) 2008 Wiley-Liss, Inc.

  12. Effects of non-surgical factors on digital replantation survival rate: a meta-analysis.

    Science.gov (United States)

    Ma, Z; Guo, F; Qi, J; Xiang, W; Zhang, J

    2016-02-01

    This study aimed to evaluate the risk factors affecting survival rate of digital replantation by a meta-analysis. A computer retrieval of MEDLINE, OVID, EMBASE, and CNKI databases was conducted to identify citations for digital replantation with digit or finger or thumb or digital or fingertip and replantation as keywords. RevMan 5.2 software was used to calculate the pooled odds ratios. In total, there were 4678 amputated digits in 2641 patients. Gender and ischemia time had no significant influence on the survival rate of amputation replantation (P > 0.05). Age, injured hand, injury type, zone, and the method of preservation the amputated digit significantly influence the survival rate of digital replantation (P < 0.05). Children, right hand, crush, or avulsion and little finger are the risk factors that adversely affect the outcome. Level 5*. © The Author(s) 2015.

  13. Evaluation of sensory function and recovery after replantation of fingertips at Zone I in children.

    Science.gov (United States)

    Zhu, Zhao-Wei; Zou, Xiao-Yan; Huang, Yong-Jun; Liu, Jiang-Hui; Huang, Xi-Jun; He, Bo; Wang, Zeng-Tao

    2017-11-01

    Sensory function is the most significant criterion when evaluating the prognosis of replanted fingers. Current clinical research has focused on surgical techniques and indications for finger replantation; however, few studies have focused on recovery of finger sensory function after replantation. This study retrospectively assessed data of eight patients who had undergone nine Zone I replantations of the fingertips in the First Affiliated Hospital of Sun Yat-sen University of China from July 2014 to January 2016. Variations in the extent of damage, with the residual vessels or nerves in some fingers being too short or even missing, prevented tension-free suture repair in some patients. Thus, repair of four of the nine fingertips included arteriovenous anastomosis, the remaining five undergoing arterial anastomosis during replantation of the amputated fingers. Three patients underwent nerve repair, whereas the remaining six cases did not. Fingertip replantations were successful in all eight patients. Compared with the patients without vascular anastomosis, no obvious atrophy was visible in the fingertips of patients who did undergo vascular anastomosis during replantation and their sensory function did recover. Fingertip replantation provides good sensory function and cosmetic outcomes when good artery and vein anastomoses have been created, even when digital nerves have not been repaired.

  14. Evaluation of sensory function and recovery after replantation of fingertips at Zone I in children

    Directory of Open Access Journals (Sweden)

    Zhao-wei Zhu

    2017-01-01

    Full Text Available Sensory function is the most significant criterion when evaluating the prognosis of replanted fingers. Current clinical research has focused on surgical techniques and indications for finger replantation; however, few studies have focused on recovery of finger sensory function after replantation. This study retrospectively assessed data of eight patients who had undergone nine Zone I replantations of the fingertips in the First Affiliated Hospital of Sun Yat-sen University of China from July 2014 to January 2016. Variations in the extent of damage, with the residual vessels or nerves in some fingers being too short or even missing, prevented tension-free suture repair in some patients. Thus, repair of four of the nine fingertips included arteriovenous anastomosis, the remaining five undergoing arterial anastomosis during replantation of the amputated fingers. Three patients underwent nerve repair, whereas the remaining six cases did not. Fingertip replantations were successful in all eight patients. Compared with the patients without vascular anastomosis, no obvious atrophy was visible in the fingertips of patients who did undergo vascular anastomosis during replantation and their sensory function did recover. Fingertip replantation provides good sensory function and cosmetic outcomes when good artery and vein anastomoses have been created, even when digital nerves have not been repaired.

  15. Microsurgical replantation of a small segment of thumb volar skin.

    Science.gov (United States)

    Akyürek, Mustafa; Safak, Tunç

    2004-06-01

    This report presents a case of microsurgical replantation of a volar skin segment of the thumb. In a 24-year-old patient, a heavy object falling over the dominant thumb resulted in a crush-avulsion injury of a pure skin segment measuring 4 x 2 cm. Examination revealed that the distal fingertip as well as the bone-tendon structures remained intact. Exploration demonstrated that both neurovascular bundles were included in the avulsed skin segment. Microsurgical replantation was achieved successfully, repairing the radial digital artery at both ends with vein grafts as well as anastomosing a palmar vein. Both digital nerves were coapted proximally and distally. An excellent functional and cosmetic result was accomplished with a good sensory recovery. The authors conclude that microsurgical replantation should be attempted in cases of more proximal pure skin avulsions, even if the injury spares distal fingertip tissue or bone-tendon units. In such cases, replantation is superior to any other method of reconstruction. Liberal use of vein grafts is crucial to achieve success.

  16. Evaluation of sensory function and recovery after replantation of fingertips at Zone I in children

    OpenAIRE

    Zhu, Zhao-wei; Zou, Xiao-yan; Huang, Yong-jun; Liu, Jiang-hui; Huang, Xi-jun; He, Bo; Wang, Zeng-tao

    2017-01-01

    Sensory function is the most significant criterion when evaluating the prognosis of replanted fingers. Current clinical research has focused on surgical techniques and indications for finger replantation; however, few studies have focused on recovery of finger sensory function after replantation. This study retrospectively assessed data of eight patients who had undergone nine Zone I replantations of the fingertips in the First Affiliated Hospital of Sun Yat-sen University of China from July ...

  17. The use of arteriovenous anastomosis for venous drainage during Tamai zone I fingertip replantation.

    Science.gov (United States)

    Wu, Fei; Shen, Xiaofang; Eberlin, Kyle R; Sun, Zhibo; Zhou, Xiao; Xue, Mingyu

    2018-03-27

    The purpose of this study was to evaluate outcomes for patients sustaining a distal fingertip amputation who underwent replantation witharteriovenous anastomosis for venous drainage over a one year period at our institution. This technique has been utilized when insufficient veins are identified in the amputated part for standard veno-venous anastomosis. A retrospective study was performed on patients presenting from 2013 to 2014. Guillotine, crush, and avulsion/degloving injuries were included if they underwent fingertip (Tamai Zone I) replantation with arterial anastomosis for vascular inflow and arteriovenous anastomosis for venous drainage. The cases were further classified as Ishikawa subzone I and subzone II. Arteriovenous anastomosis for venous drainage during replantation was used in 45 digits in 35 patients. 41 of the 45 digits underwent successful replantation using this technique (91%). The mean active ROM in the DIP joint of the fingers and in the IP joint of thumbs was 65° and 57°, respectively. Sensory evaluation demonstrated a mean of 6.9 mm s2PD in digits where the digital nerves could be repaired. 11 replanted digits without nerve repair regained some sensory recovery with a mean of 9.6 mm s2PD. 91% of patients were highly satisfied with the appearance of the replanted digits based on Tamai criteria. Arteriovenous anastomosis for venous outflow should be considered during zone I fingertip replantation if sufficient veins are not identified in the amputated part. This technique may allow for more routine and successful distal replantation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Functional and cosmetic results of fingertip replantation: anastomosing only the digital artery.

    Science.gov (United States)

    Matsuzaki, Hironori; Yoshizu, Takae; Maki, Yutaka; Tsubokawa, Naoto

    2004-10-01

    In fingertip amputations, conventional stump plasty provides an almost acceptable functional result. However, replanting fingertips can preserve the nail and minimize loss of function. We investigated the functional and cosmetic results of fingertip replantation at the terminal branch of the digital artery. Outcomes were nailbed width and distal-segment length; sensory recovery; and range of motion (ROM) of thumb-interphalangeal (IP) or finger-distal interphalangeal (DIP) joints, and total active motion (TAM) of the replanted finger. Of 15 fingertips replanted after only arterial anastomosis, 13 were successful, and 12 were studied. After a median of 1.3 years, mean nailbed widths and distal-segment lengths were 95.4% and 93.0%, respectively, of the contralateral finger. Average TAM and ROM of the thumb-IP or finger-DIP joints were 92.0% and 83.0% of normal, respectively. Semmes-Weinstein results were blue (3.22 to 3.61) in 4 fingers and purple (3.84 to 4.31) in 8; the mean result from the 2-point discrimination test was 5.9 mm (range, 3 to 11 mm). Thus, amputated fingertips should be aggressively replanted.

  19. [Replantation of amputated penis in Chinese men: a meta-analysis].

    Science.gov (United States)

    Li, Gui-Zhong; Man, Li-Bo; He, Feng; Huang, Guang-Lin

    2013-08-01

    To evaluate the methods for the replantation of the amputated penis in Chinese men. We performed a meta-analysis on the domestic literature relating replantation of the amputated penis, particularly its successful methods published from 1964 to January 2012. We identified 109 reports on 111 cases of replantation of the amputated penis that met the inclusion criteria, including 103 adults and 8 children. The mean age, warm ischemia time and total ischemia time were 29 +/- 11 years (range 2 - 56 years), 5.2 +/- 5.7 hours (range 0 - 38 hours) and 6.3 +/- 5.7 hours (range 1 - 38 hours). Fifty-three of the cases were treated by microsurgery and 44 by non-microsurgery. Complications occurred in 81 (73%) of the cases, including ED in 14 cases, urethral stricture in 16, urinary fistula in 8, skin necrosis in 58 and skin sensory abnormality in 31. The incidences of ED, urethral stricture and urinary fistula exhibited significant differences between the microsurgery and non-microsurgery groups of the partial amputation patients (P penis and reduction of complications, and therefore can be regarded as a "standard" method for penile replantation in China.

  20. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Science.gov (United States)

    Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...

  1. Nonarterialized Venous Replantation of Part of Amputated Thumb—A Case Report and Review of the Literature

    Science.gov (United States)

    Kalimuthu, Ramasamy

    2006-01-01

    Since the first successful replantation of a human thumb reported by Komatsu and Tamai in 1968, thousands of severed digits and body parts have been successfully salvaged. Restoration of anatomic form and function are the goals of replantation after traumatic tissue amputation. Regardless of anatomic location, methods include microsurgical replantation and nonmicrosurgical replantation, such as composite graft techniques. Numerous techniques to maximize tissue survival after revascularization have been described, including “pocket procedures” to salvage composite grafts, interposition vein grafts, and medicinal leeches to name a few. Artery-to-venous anastomoses have been performed with successful “arterialization” of the distal venous system in fingertip replantation. Although there is documented survival of free venous cutaneous flaps, to our knowledge this is the first report of a replanted composite body part (bone, tendon, soft tissues, and skin) utilizing exclusively multiple, microvascular, nonarterialized venous–venous anastomoses. We present a patient with an isolated band saw fillet amputation to the back of the thumb at the metacarpal–phalangeal joint region, resulting in a composite graft composed of bone, tendon, soft tissue, and skin. The hand wound provided no viable regional arterial inflow source, but there were multiple good caliber superficial veins present. The amputated tissues were replanted and revascularized by using only venous blood flow. The replanted part survival was 100% with excellent function of the digit. We conclude that a hand composite body part involving bone, tendon, soft tissues, and skin can survive replantation with a strict venous blood supply if sufficient good caliber, microvascular, venous–venous anastomoses are performed, granted that arterial inflow options are not available. This is an isolated case, yet introduces a new way of thinking regarding tissue replantation. PMID:18780032

  2. Assessment of survival rates compared according to the Tamai and Yamano classifications in fingertip replantations.

    Science.gov (United States)

    Dadaci, Mehmet; Ince, Bilsev; Altuntas, Zeynep; Bitik, Ozan; Kamburoglu, Haldun Onuralp; Uzun, Hakan

    2016-01-01

    The fingertip is the most frequently injured and amputated segment of the hand. There are controversies about defining clear indications for microsurgical replantation. Many classification systems have been proposed to solve this problem. No previous study has simultaneously correlated different classification systems with replant survival rate. The aim of the study is to compare the outcomes of fingertip replantations according to Tamai and Yamano classifications. 34 consecutive patients who underwent fingertip replantation between 2007 and 2014 were retrospectively reviewed with respect to the Tamai and Yamano classifications. The medical charts from record room were reviewed. The mean age of the patients was 36.2 years. There were 30 men and 4 women. All the injuries were complete amputations. Of the 34 fingertip amputations, 19 were in Tamai zone 2 and 15 were in Tamai zone 1. When all the amputations were grouped in reference to the Yamano classification, 6 were type 1 guillotine, 8 were type 2 crush and 20 were type 3 crush avulsions. Of the 34 fingertips, 26 (76.4%) survived. Ten (66.6%) of 15 digits replanted in Tamai zone 1 and 16 (84.2%) of 19 digits replanted in Tamai zone 2 survived. There were no replantation failures in Yamano type 1 injuries (100%) and only two failed in Yamano type 2 (75%). Replantation was successful in 14 of 20 Yamano type 3 injuries, but six failed (70%). The percentage of success rates was the least in the hybridized groups of Tamai zone 1-Yamano type 2 and Tamai zone 1-Yamano type 3. Although clinically distinct, the survival rates between the groups were not statistically significantly different. The level and mechanism of injury play a decisive role in the success of fingertip replantation. Success rate increases in proximal fingertip amputations without crush injury.

  3. Assessment of survival rates compared according to the Tamai and Yamano classifications in fingertip replantations

    Directory of Open Access Journals (Sweden)

    Mehmet Dadaci

    2016-01-01

    Full Text Available Background: The fingertip is the most frequently injured and amputated segment of the hand. There are controversies about defining clear indications for microsurgical replantation. Many classification systems have been proposed to solve this problem. No previous study has simultaneously correlated different classification systems with replant survival rate. The aim of the study is to compare the outcomes of fingertip replantations according to Tamai and Yamano classifications. Materials and Methods: 34 consecutive patients who underwent fingertip replantation between 2007 and 2014 were retrospectively reviewed with respect to the Tamai and Yamano classifications. The medical charts from record room were reviewed. The mean age of the patients was 36.2 years. There were 30 men and 4 women. All the injuries were complete amputations. Of the 34 fingertip amputations, 19 were in Tamai zone 2 and 15 were in Tamai zone 1. When all the amputations were grouped in reference to the Yamano classification, 6 were type 1 guillotine, 8 were type 2 crush and 20 were type 3 crush avulsions. Results: Of the 34 fingertips, 26 (76.4% survived. Ten (66.6% of 15 digits replanted in Tamai zone 1 and 16 (84.2% of 19 digits replanted in Tamai zone 2 survived. There were no replantation failures in Yamano type 1 injuries (100% and only two failed in Yamano type 2 (75%. Replantation was successful in 14 of 20 Yamano type 3 injuries, but six failed (70%. The percentage of success rates was the least in the hybridized groups of Tamai zone 1-Yamano type 2 and Tamai zone 1-Yamano type 3. Although clinically distinct, the survival rates between the groups were not statistically significantly different. Conclusions: The level and mechanism of injury play a decisive role in the success of fingertip replantation. Success rate increases in proximal fingertip amputations without crush injury.

  4. Fingertip replantation (zone I) without venous anastomosis: clinical experience and outcome analysis.

    Science.gov (United States)

    Huan, An-Shi; Regmi, Subhash; Gu, Jia-Xiang; Liu, Hong-Jun; Zhang, Wen-Zhong

    2016-01-01

    The purpose of this study was to report our experience of fingertip replantation without venous anastomosis using alternate method to counter post-operative venous congestion. 30 Patients (18 men and 12 women) with 30 fingertip amputations (Tamai zone I) were treated with artery-only anastomosis fingertip replantation between March 2010 and July 2014. Postoperative venous outflow was maintained by allowing bleeding through wound gaps combined with topical (12500 u :250mlNS) and systemic (4000 IU SC once daily) heparin. The outcomes of replantation were evaluated using standard evaluating systems. The average duration of hospital stay was 10 days (range 7-14 days). Twenty-eight (93 %) replanted fingertips survived. Five replanted fingertip experienced postoperative vascular crisis. The estimated post-operative blood loss was about 200-450 ml (mean, 292 ml). Follow-up period ranged from 12 to 24 months (average, 18 months). At final follow-up examinations, the average value of static two point discrimination test was 5.6 mm (range 3-9 mm) and Semmes-Weinstein monofilament test was 3.35 g (range 2.83-4.56 g). The mean range of motion of distal interphalangeal joint was 65.2° (range 0-90°) and all patients returned to their work within 7-18 weeks (average, 11 weeks). Artery-only fingertip replantation can provide satisfactory cosmetic and functional results. Adequate venous outflow can be obtained by allowing minimal external bleeding through wound gaps combined with topical and systemic heparin.

  5. Treatment of Necrotic Calcified Tooth Using Intentional Replantation Procedure

    Directory of Open Access Journals (Sweden)

    Nima Moradi Majd

    2014-01-01

    Full Text Available Introduction. If the teeth are impacted by a chronic irritant, the pulp space possibly will undergo calcific changes that may impede access opening during root canal treatment. In such cases that conventional endodontic treatment is impossible or impractical, intentional replantation may be considered as a last solution to preserve the tooth. Methods. After failing to perform conventional root canal therapy for a necrotic calcified right mandibular second premolar, the tooth was gently extracted. The root apex was resected and the root end cavity was prepared and filled with calcium enriched mixture (CEM cement. Then, the extracted tooth was replanted in its original position. Results. After a year the tooth was asymptomatic, and the size of periapical radiolucency was remarkably reduced and no clinical sign of ankylosis was observed. Conclusion. Intentional replantation of the necrotic calcified teeth could be considered as an alternative to teeth extraction, especially for the single-rooted teeth and when nonsurgical and surgical endodontic procedures seem impossible.

  6. Intentional replantation: A viable alternative for management of palatogingival groove

    OpenAIRE

    Vijay Kumar; Ajay Logani; Naseem Shah

    2013-01-01

    Radicular groove is an anatomical malformation that often leads to combined endodontic-periodontic lesions. Treatment of complex groove presents a clinical challenge to the operator. A case of type III palatogingival groove is successfully treated with intentional replantation. With the understanding of the procedure and strict adherence to guidelines improves, practitioners can use intentional replantation as an easy and cost-effective alternative for the management of radicular groove. The ...

  7. A retrospective study of the intentionally replanted mandibular second molars with C-shaped root canal configurations

    Directory of Open Access Journals (Sweden)

    Objectives

    2011-01-01

    Full Text Available Objectives The purpose of this retrospective study was to evaluate the success rate of intentionally replanted mandibular second molar with C-shaped canal configurations and to access the impact of preoperative periapical lesion on the success of intentional replantation procedure. Materials and Methods This retrospective chart review study evaluated 52 intentionally replanted mandibular second molar teeth treated at Seoul National University Dental Hospital Department of Conservative Dentistry from January 2005 to December 2007. Seventeen teeth were lost for the follow-up, and another 6 teeth did not meet inclusion criteria of C-shaped root canal configurations. Healing outcome such as success, uncertain healing, and failure after follow-up was evaluated by clinical criteria and radiographs. Results The overall success rate was 72.4% for the 29 intentionally replanted C-shaped mandibular second molars. The success rate of replanted teeth with preoperative periapical lesions was similar to that of replanted teeth which have no periapical lesions. Conclusions Therefore, root canal treatment failure on C-shaped mandibular second molar can be predictably treated by intentional replantation regardless of the presence of periapical lesion.

  8. Vacuum assisted closure therapy for treatment of complex wounds in replanted extremities.

    Science.gov (United States)

    Zhou, Min; Qi, Baiwen; Yu, Aixi; Pan, Zhenyu; Zhu, Shaobo; Deng, Kai; Tao, Shengxiang

    2013-11-01

    The object of this study was to compare the outcomes of the vacuum assisted closure (VAC) therapy and conventional wound care with dressing change for treatment of complex wounds in patients with replantation of amputated upper and lower extremities. Data of 43 patients with replantation of amputated extremities from May 2004 to December 2011 were reviewed. There were 18 wounds of 18 patients with replantation, which were treated by dressing change and 26 wounds of 25 patients by VAC therapy. The outcomes were evaluated by the survival rate of replanted extremities, growth of granulation tissue, interval between wound treatment and secondary procedure and eventual secondary wound coverage methods. Vascular thromboses were found in 3 patients with wound treatment by dressing change and 5 by VAC. All replants of two groups of patients survived after salvage procedures. The wound score was 3.6 ± 0.7 in the conventional dressing change group and 5.8 ± 0.7 in the VAC group at the sixth day after treatment, respectively. The intervals between wound treatment and secondary wound coverage procedure were 12.0 ± 1.7 days in the dressing change group and 6.1 ± 0.7 days in the VAC group. Flaps were applied for wound coverage in 9 out of 18 (50.0%) wounds in the dressing change group and 5 out of 26 (19.2%) in the VAC group (P VAC could promote the growth of granulation tissue of wound, decrease the need of flap for wound coverage, and did not change the survival of replantation. Copyright © 2013 Wiley Periodicals, Inc.

  9. Penile Replantation After Five Hours of Warm Ischemia

    Directory of Open Access Journals (Sweden)

    Fernando N. Facio Jr.

    2015-05-01

    Full Text Available Although a rare occurrence, this event may occur as a result of self-mutilation among individuals with psychiatric disturbances or due to work-related accidents, iatrogenic injuries or the actions of individuals motivated by jealously, rage and feelings of betrayal. In western societies, most penile amputations are the result of self-aggression during a psychotic episode, the treatment of victims involves resuscitation, stabilization and immediate psychiatric support. The amputated tissue must be preserved under hypothermic conditions. Micro-surgery is currently the most widely employed method for penile replantation. This paper describes a successful case of penile replantation following 5 hours of warm ischemia.

  10. Nonmicrosurgical replantation using a subcutaneous pocket for salvage of the amputated fingertip.

    Science.gov (United States)

    Muneuchi, Gan; Kurokawa, Masato; Igawa, Kazuhiko; Hamamoto, Yusuke; Igawa, Hiroharu H

    2005-05-01

    The pocket principle suggested by Brent in 1979 is an alternative method for use when microsurgical replantation is not feasible. The application and the amputation level for which the method is available, however, have not been well examined. Between 1999 and 2003 we treated 6 patients (7 fingers) by nonmicrosurgical replantation using a subcutaneous pocket (the Brent technique). All patients had sustained complete fingertip amputations across or proximal to the lunula in digits other than the thumb. In every case the amputation was a crush or avulsion-type injury and microsurgical replantation was not feasible; however, cosmetic symmetry was desired strongly by the patient. Of the 7 fingers only one survived completely but became atrophic after 4 months. One finger developed necrosis involving less than half of the replant but a hooked nail deformity developed. Two fingers developed partial necrosis involving more than half of the replant but both fingers were missing the fingernail and the cosmetic results were not acceptable. Three fingers developed total necrosis. In addition a slight flexion contracture not improved with therapy in the digits was noted in 4 patients. The Brent technique should be performed scrupulously for fingertip amputation across or proximal to the lunula because of the poor survival rate and the possibility of contracture in the digits or other proximal joints.

  11. Saving Natural Teeth: Intentional Replantation-Protocol and Case Series.

    Science.gov (United States)

    Grzanich, Derek; Rizzo, Gabriella; Silva, Renato Menezes

    2017-12-01

    Intentional replantation is a reliable and predictable treatment for cases in which nonsurgical endodontic retreatment failed or is impractical and endodontic surgery is hampered because of anatomic limitations. This article presents a protocol for intentional replantation illustrated with some interesting cases. The cases presented here are from patients (average age, 61 years) with no contributing medical history. The cases are molars with previous failed endodontic treatment/retreatment and diagnosed with apical periodontitis. Treatment procedures included atraumatic extractions with minimal manipulations of the periodontal ligament, followed by root-end resection, root-end preparation with ultrasonic tips, root-end fill with bioceramic cement, and rapid tooth replacement into the socket. Granulomatous tissue was gently curetted when applicable. All procedures were performed under the microscope. Intentional replantation with careful case selection may be considered as a last option for preserving hopeless teeth. Atraumatic extraction by using state-of-the-art equipment, instruments, and materials, minimal extra-alveolar time, and maintaining an aseptic technique are key factors for success. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Microvascular transplantation and replantation of the dog submandibular gland.

    Science.gov (United States)

    Su, Wan Fu; Jen, Yee Min; Chen, Shyi Gen; Nieh, Shin; Wang, Chih-Hung

    2006-05-01

    Transplantation and replantation of the submandibular gland with microvascular techniques were demonstrated in a previous study, with good gland survival. The application of radiation on the neck bed was attempted to address an actual clinical scenario in this study. Five canine submandibular glands were transplanted using microvascular techniques to the ipsilateral femoral system. Radiotherapy at a dosage level of 3,600 cGy using 600 cGy q.d was delivered to the nasopharyngeal and neck regions 2 weeks after transplantation. The transferred glands were then reintroduced into the original but radiated neck bed. The glands were harvested for histological examination 8 weeks later. Four of five canine submandibular glands can withstand microvascular transplantation and then replantation into a radiated neck bed for at least 8 weeks. However, the salivary function was depleted. The canine submandibular gland can survive the transplantation and replantation for at least 8 weeks in spite of precipitating radiation insult on the neck bed for 3 weeks. Neurorraphy is, however, essential to maintaining the glandular function.

  13. Assessment of survival rates compared according to the Tamai and Yamano classifications in fingertip replantations

    OpenAIRE

    Mehmet Dadaci; Bilsev Ince; Zeynep Altuntas; Ozan Bitik; Haldun Onuralp Kamburoglu; Hakan Uzun

    2016-01-01

    Background: The fingertip is the most frequently injured and amputated segment of the hand. There are controversies about defining clear indications for microsurgical replantation. Many classification systems have been proposed to solve this problem. No previous study has simultaneously correlated different classification systems with replant survival rate. The aim of the study is to compare the outcomes of fingertip replantations according to Tamai and Yamano classifications. Materials a...

  14. Treatment of fingertip amputation: comparison of results between microsurgical replantation and pocket principle.

    Science.gov (United States)

    Yabe, Tetsuji; Tsuda, Tomoyuki; Hirose, Shunsuke; Ozawa, Toshiyuki

    2012-05-01

    In this article, a comparison of replantation using microsurgical replantation (replantation) and the Brent method and its modification (pocket principle) in the treatment of fingertip amputation is reported. As a classification of amputation level, we used Ishikawa's subzone classification of fingertip amputation, and the cases of amputations only in subzone 2 were included in this study. Between these two groups, there was no statistical difference in survival rate, postoperative atrophy, or postoperative range of motion. In terms of sensory recovery, some records were lost and exact study was difficult. But there was no obvious difference between these cases. In our comparison of microsurgical replantation versus the pocket principle in treatment of subzone 2 fingertip amputation, there was no difference in postoperative results. Each method has pros and cons, and the surgeon should choose which technique to use based on his or her understanding of the characteristics of both methods. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Fingertip Replantation Without and With Palmar Venous Anastomosis: Analysis of the Survival Rates and Vein Distribution.

    Science.gov (United States)

    Aksoy, Alper; Gungor, Melike; Sir, Emin

    2017-01-01

    The purpose of this study was to compare the results of fingertip replantations without (artery anastomosis only replantations) and with venous anastomosis (replantations in which both arterial and palmar venous anastomoses were performed). Also, distribution of the veins used for anastomosis was analyzed retrospectively. First 53 digits (47 patients) received only arterial anastomosis (group 1). For relieving venous congestion, external bleeding method was used. Last 41 digits (38 patients) received both arterial and palmar venous anastomoses without external bleeding (group 2). There was statistical significance of the survival rate between group 1 [77.3% (41/53)] and group 2 [92.6% (38/41)] (P = 0.039). Venous congestion was encountered at 10 digits in group 1 (all underwent necrosis totally) and at 3 digits in group 2 (both were moderate and could be salvaged partially) (P = 0.094, no statistical significance). There was statistical significance of the mean operation time for single-fingertip replantation between group 1 (80 ± 7.8 minutes) and group 2 (105 ± 14.5 minutes) (P replantations with palmar venous anastomosis have simpler postoperative care and lower drawbacks as compared with artery anastomosis-only replantations.

  16. [Fingertip replantation with anastomosis of palm vein and retaining the nail].

    Science.gov (United States)

    Wang, Xiang; Zhang, Wei-Kai; Yin, Shao-Meng; Wang, Hai-Bing; He, Tao; Gong, Yong-Qing; Zhu, Guo-Ming; Mao, Gen-Lian; Hu, Ming-Xing; Li, Jian

    2013-08-01

    To study the replantation methods and clinical results of amputated fingertip. From October 2007 to June 2011, 18 fingers of 13 cases were replanted with anastomosis of palm vein and retaining the nail, including 9 males and 4 females,with an average age of 26 years old ranging from 17 to 45 years old. The time from injury to therapy was from 30 min to 5 h, time of broken finger ischemia was from 1.5 to 7 h. All broken fingers were preservation under normal temperature. All fingers were survived, no vascular crisis happened. All cases were followed up from 3 to 24 months with an average of 14 months. The length and shape of replanted fingers were similar to that of the healthy side. The new nails were smooth, the function was perfect,the sense of pain and touched sensation had been recovered. Their two-piont discriminations ranged from 3 to 6 mm with an average of 5 mm. According to the assessment standard of Chinese Medical Association of Hand Surgery, the results were excellent in 14 cases, good in 3 cases, poor in 1 case. Fingertip replantation with anastomosis of palm vein and retaining the nail is regained satisfactory appearance and function of the digits with a high survival rate.

  17. ANALYSIS OF OIL PALM SUSTAINABLE REPLANTING MODELS, A CASE AT PT. AGROWIYANA , TUNGGUL ULU, TANJUNG JABUNG BARAT, JAMBI

    Directory of Open Access Journals (Sweden)

    Solikhin Solikhin

    2012-09-01

    Full Text Available The oil palm replanting program is becoming of importance for the next decade as some of oil palm plantations are reaching the productivity peak. This research was aimed to select the priority of oil palm replanting strategy with respect to the related factors and impacts to the share holders of PIR Trans and KPPA plantation of PT. AGROWIYANA , and to identify key success indicators of replanting model. A discriptive research methodoligy was carried out using Analytical Hierarchy Process (AHP and Focus Group Discussion (FGD involving multi stakeholders of PT. AGROWIYANA . Results of this research indicated that financial is considered as the most important factor for replanting implemention with the total cutting using standard technology as chosen replanting strategy. The funding scheme through intensive fund rising IDAPERTABUN needs to be well prepared to involve more farmer groups.Keywords: PT. AGROWIYANA , Replanting Strategy

  18. Successful replantation in ten-digit amputation.

    Science.gov (United States)

    Kantarci, Umit; Cepel, Selim; Buldu, Halil

    2010-01-01

    Amputations involving ten digits are very rare because of different lengths of the digits. A 34-year-old man working in a printing house presented one hour after guillotine amputation involving all ten digits. Surgery was initiated 80 minutes after admission and took seven hours. Under axillary anesthesia, the operation was performed by two teams each consisting of two microsurgeons and two assistants. Replantation was completed without the use of any skin graft or flap. Fingertip examination showed poor arterial circulation in the second, third, and fourth digits of the left hand after 24 hours of replantation and surgical exploration was performed, during which anastomosis of the ulnar digital artery of the second digit was re-established and a Y-shaped vein graft was placed at the level of the third web to restore revascularization of the third and fourth digits. However, these interventions did not prevent the development of necrosis in the distal segment of the fourth digit which resulted in dry gangrene that required amputation. After 38 months of replantation, radiographic examination showed complete union in all fingers without malunion or damage to the joint surface and about 8 degrees of medial angulation in the proximal phalanx of the fourth digit of the right hand. The patient did not have difficulty in performing daily activities and had a considerably good pinching. Losses of active range of motion of the metacarpophalangeal and interphalangeal joints were within the rage of 10 to 30 degrees in both hands. In the assessment of sensation, static and dynamic two-point discrimination test results were 6.1 mm and 4.0 mm, respectively.

  19. A retrospective study of functional outcomes after successful replantation versus amputation closure for single fingertip amputations.

    Science.gov (United States)

    Hattori, Yasunori; Doi, Kazuteru; Ikeda, Keisuke; Estrella, Emmanuel P

    2006-01-01

    To compare the functional outcome of successful microsurgical replantation versus amputation closure for single fingertip amputations. Forty-six fingertip amputations in 46 patients (23 were replanted successfully, 23 had amputation closure) were included in this study. Thumb amputations were excluded. Grip strength and active range of motion of the proximal interphalangeal joint were evaluated. The patients were questioned about their symptoms of pain, paresthesia, and cold intolerance. The Disabilities of the Arm, Shoulder, and Hand questionnaire was given and the disability/symptom score was evaluated. Patients' satisfaction with the surgical result was assessed. Time spent in the hospital and time off from work were reviewed. Active range of motion of the proximal interphalangeal joint was greater in the successful replantation group. Although the existence of paresthesia and cold intolerance were not statistically different between the 2 groups, pain in the affected fingers was more frequent in the amputation closure group. The average Disabilities of the Arm, Shoulder, and Hand score of the successful replantation group was statistically better. All patients in the successful replantation group were highly or fairly satisfied with the surgical results, whereas 14 patients in the amputation closure group were highly or fairly satisfied. The time spent in the hospital and the time off from work for the successful replantation group were longer. Successful replantation of single fingertip amputations can result in minimal pain, better functional outcome, better appearance, and higher patient satisfaction. We recommend attempting fingertip replantation not only to obtain the best appearance but also to gain better functional outcome. If the patient requests the simple surgery and earlier return to work amputation closure is an accepted method despite the disadvantage of digital shortening and the risk for a painful stump. Therapeutic, Level III.

  20. Intentional replantation: A viable alternative for management of palatogingival groove

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2013-01-01

    Full Text Available Radicular groove is an anatomical malformation that often leads to combined endodontic-periodontic lesions. Treatment of complex groove presents a clinical challenge to the operator. A case of type III palatogingival groove is successfully treated with intentional replantation. With the understanding of the procedure and strict adherence to guidelines improves, practitioners can use intentional replantation as an easy and cost-effective alternative for the management of radicular groove. The paper presents a brief review of palatogingival groove and highlights an easy and predictable alternative for its management.

  1. Tooth replantation after use of Euro-Collins solution or bovine milk as storage medium: a histomorphometric analysis in dogs.

    Science.gov (United States)

    Sottovia, André Dotto; Sottovia Filho, Dagoberto; Poi, Wilson Roberto; Panzarini, Sônia Regina; Luize, Danielle Shima; Sonoda, Celso Koogi

    2010-01-01

    Euro-Collins solution was developed for the preservation of organs for transplantation, whose characteristics have raised interest for its use as a storage medium for avulsed teeth before replantation. This study evaluated histologically and morphometrically the healing process of dog teeth replanted after storage in Euro-Collins solution or bovine milk. Eighty roots of 4 young adult mongrel dogs were randomly assigned to 4 groups (n = 20) and the root canals were instrumented and obturated with gutta-percha and a calcium hydroxide-based sealer. After 2 weeks, the teeth were extracted and subjected to the following protocols: GI (negative control), replantation immediately after extraction; GII (positive control), bench-drying for 2 hours before replantation; GIII and GIV, immersion in 10 mL of whole bovine milk and Euro-Collins solution at 4 degrees C, respectively, for 8 hours before replantation. The animals were sacrificed 90 days postoperatively. The pieces containing the replanted teeth were subjected to routine processing for histologic and histometric analyses under light microscopy and polarized light microscopy. Root resorption was observed in all groups. GII exhibited the greatest loss of dental structure (P < .01), and inflammatory resorption was predominant in this group. Storage in milk showed poorer results than immediate replantation and storage in Euro-Collins solution (P < .01). The teeth stored in Euro-Collins solution presented similar extension of root resorption and periodontal ligament reorganization to those of immediately replanted teeth. The findings of this study suggest that the Euro-Collins solution is an adequate storage medium for keeping avulsed teeth for up to 8 hours before replantation.

  2. Artery-only fingertip replantations using a controlled nailbed bleeding protocol.

    Science.gov (United States)

    Erken, H Yener; Takka, Semih; Akmaz, Ibrahim

    2013-11-01

    We report our experience, treatment protocol, and 2-year follow-up results of 24 fingertip replantations treated using the artery-only technique without vein or nerve repair. We performed a retrospective review of 24 patients who had undergone fingertip replantation at the same center between 2005 and 2011. All patients in this study had complete fingertip amputation at or distal to the distal interphalangeal joint of the fingers or interphalangeal joint of the thumb. Patients with incomplete and complete amputations who had undergone vein and/or nerve repair along with artery repair were excluded. All patients received the same protocol including removal of the nail at the surgery and intravenous heparin 70 U/kg administered at the time of arterial anastomosis. After surgery, the nailbed was mechanically made to bleed with a sterile needle and mechanically scrubbed with a heparin-saline gauze. All patients received the same postoperative medical treatment protocol until physiological outflow was restored. Successful replantation was confirmed with clinical observation. Twenty-one of the 24 fingertip replantations (88%) were successful. The mean length of hospital stay was 7 days (range, 4-9 d). Fifteen of 22 patients required blood transfusion. The average amount of blood transfusion was 1.2 U (range, 0-3 U). This study shows that the described technique and protocol reconstructed circulation without vein anastomosis and with a high success rate. Furthermore, adequate sensory recovery without any nerve repair had occurred by the 2-year follow-up. Therapeutic IV. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Classification of distal fingertip amputation based on the arterial system for replantation.

    Science.gov (United States)

    Park, Hyun Chul; Bahar-Moni, Ahmed Suparno; Cho, Sang Hyun; Kim, Sang Soo; Park, Hyun Sik; Ahn, Sang Cheon

    2013-06-01

    During replantation of distal fingertip amputation, identification of the artery is the most important but time consuming procedure. Depending on the damaged arterial structure, we classified distal fingertip amputations into 4 zones, on the basis of three dimensional concept. Zone 1 injury was defined as damage to the proximal central pulp artery; zone 2 injury, damage to the branch of the central pulp artery; zone 3 injury, damage to the distal central pulp artery; and zone 4 injury, no injury to the central pulp artery, injury only to the lateral pulp artery. From April 2010 to June 2011, 27 patients were evaluated. Successful replantation was observed in 21 patients. Skin necrosis occurred in six patients. For distal fingertip amputation classification based on the damaged arterial system is an easy method to find out the appropriate artery which should be anastomosed during replantation.

  4. Fingertip replantation (zone I) without venous anastomosis: clinical experience and outcome analysis

    OpenAIRE

    Huan, An-shi; Regmi, Subhash; Gu, Jia-xiang; Liu, Hong-jun; Zhang, Wen-zhong

    2016-01-01

    Purpose The purpose of this study was to report our experience of fingertip replantation without venous anastomosis using alternate method to counter post-operative venous congestion. Methods 30 Patients (18 men and 12 women) with 30 fingertip amputations (Tamai zone I) were treated with artery-only anastomosis fingertip replantation between March 2010 and July 2014. Postoperative venous outflow was maintained by allowing bleeding through wound gaps combined with topical (12500u:250mlNS) and ...

  5. [Face replantation using labial artery for revascularization. Case report].

    Science.gov (United States)

    de la Parra-Márquez, Miguel; Mondragón-González, Sergio; López-Palazuelos, Jaime; Naal-Mendoza, Norberto; Rangel-Flores, Jesús María

    2013-01-01

    Restoration of the face function and cosmetic appearance after a traumatic complex wound is a challenge for the plastic surgeon. Worldwide, few cases have been reported about face replantation. To present the case of the first partial face replantation reported in the national bibliography, using the labial artery for revascularization. On June 19th 2011, a 7 years old male presented to the emergency room of the Mexican Institute of Social Security at Monterrey, Mexico, 4 hours after a partial face amputation secondary to a dog bite. The amputated segment was composed of 75% of the upper lip, 33% of the lower lip, oral commissure and 75% of the left cheek. The labial coronary artery and vein were anastomosed with 11-0 nylon sutures and the miorraphy of the orbicularis oris, the depressor anguli oris and the depressor labii inferioris with 4-0 vycril sutures. Six months after the surgery, the functional and aesthetic outcomes were excellent with reestablishment of total labial continence and total recovery of articulation of words. amputations of any facial component should be initially managed with replantation. The function and cosmetics are better than any other technique of reconstruction. The labial coronary artery is an excellent choice for revascularization up to 25% of the face (lips and cheek).

  6. Multiple venous anastomoses decrease the need for intensive postoperative management in tamai zone I replantations

    Directory of Open Access Journals (Sweden)

    Deok Hyeon Ryu

    2018-01-01

    Full Text Available Background Venous anastomosis is an important component of digital replantation, but is not always feasible, as some cases require external bleeding to treat venous congestion in the replanted tissue. In the present study, we evaluated the relationship between the number of vein anastomoses and the survival rate of Tamai zone I replantations. Methods A retrospective review was performed of all patients who underwent replantation of a fingertip amputation between 2014 and 2016. Patient charts were reviewed for demographic information, the mechanism of injury, the number of venous anastomoses, and the use of anticoagulation, external bleeding, and/or leeches. The cohort was divided into 3 groups depending on the number of venous anastomoses: no veins (group 1, a single vein (group 2, and 2 or more veins (group 3. Survival rates and external bleeding rates were analyzed across the groups. Results The review identified 143 fingertip replantations among 134 patients. The overall survival rate was 94% (135 of 143. Failures were due equally to venous complications (n=4, 50% and to arterial complications (n=4, 50%. Our analysis did not identify any correlation between the number of veins anastomosed and the replant survival rate (P=0.689. However, a greater number of anastomoses was associated with a significantly lower frequency of external bleeding (P=0.017. Conclusions The number of venous anastomoses was not correlated with the survival rate. However, a greater number of venous anastomoses was associated with a decreased need for external bleeding, corresponding to a significant decrease in the need for postoperative monitoring and leech therapy.

  7. Multiple venous anastomoses decrease the need for intensive postoperative management in tamai zone I replantations

    Science.gov (United States)

    Ryu, Deok Hyeon; Roh, Si Young; Kim, Jin Soo; Lee, Dong Chul; Lee, Kyung Jin

    2018-01-01

    Background Venous anastomosis is an important component of digital replantation, but is not always feasible, as some cases require external bleeding to treat venous congestion in the replanted tissue. In the present study, we evaluated the relationship between the number of vein anastomoses and the survival rate of Tamai zone I replantations. Methods A retrospective review was performed of all patients who underwent replantation of a fingertip amputation between 2014 and 2016. Patient charts were reviewed for demographic information, the mechanism of injury, the number of venous anastomoses, and the use of anticoagulation, external bleeding, and/or leeches. The cohort was divided into 3 groups depending on the number of venous anastomoses: no veins (group 1), a single vein (group 2), and 2 or more veins (group 3). Survival rates and external bleeding rates were analyzed across the groups. Results The review identified 143 fingertip replantations among 134 patients. The overall survival rate was 94% (135 of 143). Failures were due equally to venous complications (n=4, 50%) and to arterial complications (n=4, 50%). Our analysis did not identify any correlation between the number of veins anastomosed and the replant survival rate (P=0.689). However, a greater number of anastomoses was associated with a significantly lower frequency of external bleeding (P=0.017). Conclusions The number of venous anastomoses was not correlated with the survival rate. However, a greater number of venous anastomoses was associated with a decreased need for external bleeding, corresponding to a significant decrease in the need for postoperative monitoring and leech therapy. PMID:29076329

  8. Fingertip replantation using a single volar arteriovenous anastomosis and drainage with a transverse tip incision.

    Science.gov (United States)

    Yabe, T; Muraoka, M; Motomura, H; Ozawa, T

    2001-11-01

    Four cases of fingertip replantation using a single volar arteriovenous anastomosis and drainage with a transverse tip incision are reported. Because of lack of suitable arteries for anastomosis in the amputated finger, in each case a volar radial vein was anastomosed to the proximal digital artery and external drainage was performed through a transverse tip incision. In 3 cases the replanted fingertip survived completely; partial necrosis occurred in 1 case. Because veins are more superficial and larger than arteries, they are more available for anastomosis. The results indicate that this method is a useful alternative in fingertip replantation.

  9. Healing process of incisor teeth of diabetic rats replanted after storage in milk.

    Science.gov (United States)

    Ricieri, Camila Benez; Sonoda, Celso Koogi; Aranega, Alessandra Marcondes; Panzarini, Sônia Regina; Poi, Wilson Roberto; Sundefeld, Maria Lúcia Marçal Mazza; Okamoto, Tetuo

    2009-06-01

    Several local factors that influence the healing process of replanted teeth have been investigated. However, it remains unclear how systemic alterations, such as diabetes mellitus, affect the prognosis of these cases. The purpose of this study was to evaluate the healing process of incisors of non-controlled diabetic rats replanted after storage in bovine long shelf-life (UHT) whole milk. Thirty-two rats were randomly assigned to receive an endovenous injection of either citrate buffer solution (group I - control; n = 16) or streptozotocin dissolved in citrate buffer solution to induce diabetes (group II; n = 16). After confirmation of the diabetic status by analysis of the glycemic levels, the maxillary right incisor of each animal was extracted and immersed in milk for 60 min. The root canals of teeth were then instrumented, and were filled with a calcium hydroxide-based dressing and replanted into their sockets. All animals received systemic antibiotic and were killed by anesthetic overdose 10 and 60 days after replantation. The specimens containing the replanted teeth were removed, fixed, decalcified, and embedded in paraffin. Semi-serial 6-microm-thick sections were obtained and stained with hematoxylin and eosin for histologic and histometric analyses. The results showed that the connective tissue adjacent to the root surface was less organized in the diabetic animals than in the control animals in both periods; the root dentin was less severely affected by root resorption in the diabetic rats; there were no significant differences between the control and diabetic groups regarding the occurrence of replacement resorption and inflammatory resorption.

  10. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    Directory of Open Access Journals (Sweden)

    Bunlong eYim

    2015-11-01

    Full Text Available Replant disease (RD severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after eight weeks was improved in the two RD soils either treated at 50 °C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE and 454-pyrosequencing revealed significant differences in the bacterial community composition even after eight weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e. potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.

  11. Delayed replantation of rat teeth after use of reconstituted powdered milk as a storage medium.

    Science.gov (United States)

    dos Santos, Cláudia Letícia Vendrame; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Sundefeld, Maria Lúcia Marçal Mazza; Negri, Márcia Regina

    2009-02-01

    Minimal extraoral dry storage period and moist storage for the avulsed tooth are identified as key steps for the treatment protocol of tooth replantation. Among the possible moist storage media, bovine milk has stood out because of its capacity of preserving the integrity of the periodontal ligament (PDL) fibers. This condition has attracted the attention to investigate the use of powdered milk, which is one of the presentation forms of bovine milk, as a feasible storage medium in cases of delayed tooth replantation. The aim of this study was to evaluate the healing process after delayed replantation of rat teeth stored in reconstituted powdered milk and long shelf-life (ultra high temperature) whole milk. Forty maxillary right rat incisors were assigned to four groups (n = 10): group I--the teeth were extracted and immediately replanted into theirs sockets; group II--the teeth were stored for 60 min in 200 ml of freshly reconstituted powdered milk; group III--the teeth were stored for 60 min in 200 ml of long shelf-life whole milk; group IV--the teeth were kept dry for the same time. All procedures were performed at room temperature. Next, the root canals of teeth in groups II, III, and IV were instrumented, filled with a calcium hydroxide-based paste, and replanted into their sockets. All animals received systemic antibiotic therapy and were killed by anesthetic overdose 60 days after replantation. The pieces containing the replanted teeth were removed, fixed, decalcified, and paraffin-embedded. Semi-serial 6-microm-thick sections were obtained and stained with hematoxylin and eosin for histomorphological analysis. There was statistically significant difference (P < 0.05) between groups I and IV regarding the presence of replacement resorption and PDL remnants on root surface. The powdered milk and long shelf-life whole milk presented similar results to each other and may be indicated as storage media for avulsed teeth.

  12. Delayed replantation of avulsed teeth

    Directory of Open Access Journals (Sweden)

    Adil N

    2007-05-01

    Full Text Available Dental injuries are very common and their extent has been classified by Ellis. Avulsion of tooth is a grievous injury and ranges from 1-16% among the traumatic injuries, of which maxillary anterior are commonest. Reimplantation of avulsed teeth is a standard procedure. However, it has certain limitations. Most often their management is very challenging. In this case report we are presenting the management of maxillary incisors by replantation after 36 hrs in a 12 year old girl.

  13. Finger Replantation in Sanglah General Hospital: Report of Five Cases and Literature Review

    OpenAIRE

    Agus Roy Rusly Hariantana Hamid; Gatot Triwono

    2016-01-01

    Background: Replantation is the prime treatment for amputated hands and fingers due to functional and aesthetic advantages. The absolute indications for replantation are amputations of the thumb, multiple fingers, trans metacarpal or hand, and any upper extremity in a child, regardless of the amputation level. A fingertip amputation distal to the insertion of the flexor digitorum superficialis (FDS) is also a good indication. Indications have been expanded to include amputation at nail level,...

  14. Contralateral Abdominal Pocketing in Salvation of Replanted Fingertips with Compromised Circulation

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Shim

    2014-01-01

    Full Text Available Abdominal pocketing is one of the most useful methods in salvation of compromised replanted fingertips. Abdominal pocketing has generally been performed in the ipsilateral lower abdominal quadrant, but we have also performed contralateral pocketing at our institute. To determine which approach is more beneficial, a total of 40 patients underwent an abdominal pocketing procedure in either the ipsilateral or contralateral lower abdominal quadrant after fingertip replantation. Dates of abdominal pocketing after initial replantation, detachment after abdominal pocketing, range of motion (ROM before abdominal pocketing, and sequential ROM after the detachment operation and date of full ROM recovery and Disabilities of Arm, Shoulder, and Hand questionnaire (DASH score were recorded through medical chart review. Mean detachment date, mean abduction of shoulder after the detachment operation, and mean days to return to full ROM were not significantly different between the ipsilateral and contralateral pocketing groups. However, the mean DASH score was significantly lower in the contralateral group than the ipsilateral group. There were also fewer postoperative wound complications in the contralateral group than in the ipsilateral group. We, therefore, recommend contralateral abdominal pocketing rather than ipsilateral abdominal pocketing to increase patient comfort and reduce pain and complications.

  15. Contralateral Abdominal Pocketing in Salvation of Replanted Fingertips with Compromised Circulation

    Science.gov (United States)

    Shim, Hyung-Sup; Kim, Dong-Hwi; Kwon, Ho; Jung, Sung-No

    2014-01-01

    Abdominal pocketing is one of the most useful methods in salvation of compromised replanted fingertips. Abdominal pocketing has generally been performed in the ipsilateral lower abdominal quadrant, but we have also performed contralateral pocketing at our institute. To determine which approach is more beneficial, a total of 40 patients underwent an abdominal pocketing procedure in either the ipsilateral or contralateral lower abdominal quadrant after fingertip replantation. Dates of abdominal pocketing after initial replantation, detachment after abdominal pocketing, range of motion (ROM) before abdominal pocketing, and sequential ROM after the detachment operation and date of full ROM recovery and Disabilities of Arm, Shoulder, and Hand questionnaire (DASH) score were recorded through medical chart review. Mean detachment date, mean abduction of shoulder after the detachment operation, and mean days to return to full ROM were not significantly different between the ipsilateral and contralateral pocketing groups. However, the mean DASH score was significantly lower in the contralateral group than the ipsilateral group. There were also fewer postoperative wound complications in the contralateral group than in the ipsilateral group. We, therefore, recommend contralateral abdominal pocketing rather than ipsilateral abdominal pocketing to increase patient comfort and reduce pain and complications. PMID:25379539

  16. Simple replantation protocol to avoid ankylosis in teeth intended for orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Yuli Nugraeni

    2009-03-01

    Full Text Available Background: Dento-alveolar trauma resulted from accidents involving the oral regions mostly affect the upper central incisors. Overjet that is beyond 5 mm and incompetent lip also contribute to increase the risk. Several literatures had already discussed different methods of replantation of avulsed teeth. However, it was not meant for further orthodontic treatment. Purpose: The objective of this review is to propose a simple replantation protocol of avulsed teeth which also prevent from ankylosis. Reviews: Protruded teeth usually need orthodontic treatment; therefore, an appropriate management should be done to avoid the development of ankylosis. Ankylosis of the periodontal ligament (PDL becomes a problem in orthodontic tooth movement in repositioned or replanted teeth. In addition, ankylosed teeth also more susceptible to root resorption. Actually, it was caused by the endodontic treatment. In particular, severely protruded or unoccluded teeth are hypofunctional, therefore have narrow PDL, thus it may facilitate to ankylosis development. Ideal management protocol such as the use of root canal sealer i.e. mineral trioxide aggregate (MTA; the using of Emdogain, and resilient wiring or semi-rigid fixation with brackets has become a solution in avulsed teeth arranged for orthodontic treatment. Nevertheless, the presence of oral surgeon, endodontist and orthodontist in the same time, and also ideal preparations after an accident was difficult to achieve. Conclusion: Considering that reducing the ongoing PDL inflammation with intracanal medicaments and maintaining the functional force during mastication is possible; it is concluded that this simple replantation protocol is likely.

  17. The use of medicinal leeches in fingertip replantation without venous anastomosis - case report of a 4-year-old patient.

    Science.gov (United States)

    Streit, L; Dvořák, Z; Novák, O; Stiborová, S; Veselý, J

    2014-01-01

    Replantation of amputated fingertip is a technical challenge to the microsurgeons. The success rate depends directly on the availability and the size of preserved vessels and on the degree of their damage. In distal digital amputations, veins are usually not easily recovered or even absent, and thus high number of replantation procedures fails because of the venous congestion. The use of medicinal leeches is a treatment option for venous congestion of replanted fingers. A case report of a 4-year-old patient after fingertip replantation without venous anastomosis when temporary venous drainage was provided by an application of medicinal leeches is reported together with literature review. We observed an unusually short duration of venous congestion (48 hours) and there was no need of blood transfusion.

  18. The effect of Emdogain and 24% EDTA root conditioning on periodontal healing of replanted dog's teeth.

    Science.gov (United States)

    Guzmán-Martínez, Nayelli; Silva-Herzog, Flores Daniel; Méndez, González Verónica; Martín-Pérez, Silvia; Cerda-Cristerna, Bernardino Isaac; Cohenca, Nestor

    2009-02-01

    Controversies still exist as for the regenerative role of enamel matrix derivatives and the need for removal of the periodontal ligament in replanted teeth. The purpose of this study was to evaluate the effect of Emdogain and 24% ethylenediamine tetraacetic acid (EDTA) root conditioning on periodontal healing of replanted dog's teeth. Teeth were extracted, endodontically treated and preconditioned as follows: group 1, Emdogain; group 2, Emdogain + EDTA and group 3, EDTA. Teeth were replanted after 30 min extraoral time, splinted for 15 days and animals sacrificed after 8 weeks of observation. Histological evaluation was performed using hematoxylin/eosin and Masson trichrome and results scored based on previously reported criteria for histological evaluation. Replacement root resorption was histologically diagnosed in all groups except in the negative control. A parametric analysis showed no statistically significant differences between experimental groups. Root preconditioning with Emdogain alone or in combination with 24% EDTA showed no evidence of regeneration of collagen fibers and consequently did not prevent the development of replacement root resorption on replanted dog's teeth.

  19. Microbial communities in blueberry soils

    Science.gov (United States)

    Microbial communities thrive in the soil of the plant root zone and it is clear that these communities play a role in plant health. Although blueberry fields can be productive for decades, yields are sometimes below expectations and fields that are replanted sometimes underperform and/or take too lo...

  20. Long-term functional, subjective and psychological results after single digit replantation

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-03-01

    Full Text Available Objective: The aim of this study was to analyse the long-term functional, subjective, and psychological results after single-digit replantation. Methods: Thirty cases of digital replantation (14 thumbs, 12 index fingers, 2 middle fingers, 1 ring finger, and 1 little finger in 30 patients (7 females and 23 males with a mean age of 44.2 years (20–65 years were evaluated at the end of a mean follow-up time of 36 months (19–50 months. The active range of motion of joints, grip and pinch strength, cutaneous sensibility, upper-extremity functioning, and subjective satisfaction were determined using the Disability of Arm, Shoulder, and Hand (DASH questionnaire and the Michigan Hand Outcomes questionnaire (MHQ. Psychological sequelae, including depression, anxiety, and posttraumatic stress disorder (PTSD, were assessed. A correlation analysis among variables was also performed. Results: The mean score for the DASH questionnaire was 6.6 (range: 0–39.2. The symptom of cold intolerance occurred in 53% of the patients. Two patients were diagnosed with depression, and only one patient exhibited PTSD. The DASH score had a good statistical correlation with total grip strength, pinch grip strength, and static two-point discrimination (S-2PD (P < 0.05. Several aspects of the MHQ were also statistically relevant to some or all of the three objective results. Furthermore, the grip strength showed significant correlation with DASH and most aspects of the MHQ in multivariate logistic regression analysis (P < 0.05. Conclusion: Total grip strength is the most important factor positively related to subjective outcomes. The incidence rates of psychological symptoms after digit replantation are very low at long-term follow-up. Level of evidence: Level IV, therapeutic study. Keywords: Digit Replantation, DASH score, Posttraumatic stress disorder

  1. Lateral Nail Fold Incision Technique for Venous Anastomosis in Fingertip Replantation.

    Science.gov (United States)

    Jeon, Byung-Joon; Yang, Jae-Won; Roh, Si Young; Ki, Sae Hwi; Lee, Dong Chul; Kim, Jin Soo

    2016-01-01

    Successful venous anastomosis is one of the most important factors in fingertip replantation. Volar veins in the fingertip course proximally in a random pattern, which makes it difficult to find out the exact locations. Although dorsal veins in the lateral nail fold have constant location and adequate diameter for anastomosis, they have been known as hard to dissect from the immobile subcutaneous tissue. The authors present a new lateral nail fold incision technique for venous anastomosis in the fingertip amputations. From February 2010 to October 2010, 9 replantations using the new incision and venous anastomosis technique were performed in 9 patients. The levels of amputations were from the nail base to half of the nail bed. After repairing the proper digital arteries, a skin incision was made along the junction between the lateral nail fold and nail bed. Careful dissection was performed to isolate the veins in the lateral nail fold. After evaluation of the suitability of the vessel, venous anastomosis was performed. Seven male and 2 female patients were enrolled in this study. Appropriate dorsal veins for anastomosis could be found in 8 of 9 patients. All the replanted stumps survived without venous congestion and following additional procedures. A sizable volar or dorsal vein could not be found in 1 patient. The salvage technique was required in this patient. Dorsal veins in the lateral nail fold can be found easily because of the constant anatomical location. The new incision on the lateral nail fold provides not only sufficient operative field for anastomosis but also additional opportunity of successful venous anastomosis in the selected cases. The authors, therefore, propose this technique as an effective method for an alternative venous anastomosis in the zone I replantation.

  2. ESTABLISHMENT AND EVALUATION OF SWITCHGRASS ON RECLAIMED MINE SOIL [English

    Energy Technology Data Exchange (ETDEWEB)

    Lang, David; Shankle, Brandon; Oswalt, Ernest; Duckworth, Jeremy; Sanborn, Judd; Buell, Rebecca; Roberson, Bill

    2010-06-30

    Switchgrass (Panicum virgatum L.) is a native warm season perennial grass that has productive potential of up to 20 Mg ha-1 of biomass and it persists for decades when harvested once per year. Switchgrass provides excellent ground cover and soil stabilization once established and contributes to soil sequestration of new carbon. Slow establishment on newly reclaimed soil, however, provides for significant erosive opportunities thereby requiring initial soil stabilization with a cover crop. Several planting options were evaluated on two topsoil substitute soils. The planting options included: 1) an existing stand of bermudagrass (Cynodon dactylon L.) that was killed with glyphosate followed by disking in red oxidized topsoil substitute and prime farmland topsoil respread in 2007, 2) red oxidized topsoil substitute was seeded directly with switchgrass, 3) browntop millet (Panicum ramosum) was established with switchgrass, 4) or switchgrass was established in senescing browntop millet or wheat without tillage. Switchgrass was successfully established into a bermudagrass sod that had been killed with herbicides and disked as well as into a senescing stand of browntop millet or wheat. Significant soil erosion occurred on the disked area in 2008 leading to considerable repair work followed by planting wheat. Disked areas that did not erode had an excellent stand of switchgrass with 23.3 plants m-2 in November, 2008. Eroded areas replanted in April, 2009 into senescing wheat had 46 plants m-2 by July, 2009. The area planted directly into newly respread soil in May, 2009 was eroded severely by a 75 mm thunderstorm and was repaired, disked and replanted to switchgrass and browntop millet. Switchgrass seeded with browntop millet had a sparse switchgrass stand and was replanted to switchgrass in August, 2009. Rainfall volumes from August, 2009 to October, 2009 totaled 750 mm, but new erosion damage in areas successfully planted to switchgrass has been minimal.

  3. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    Science.gov (United States)

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  4. Arterial and venous revascularization with bifurcation of a single central artery: a reliable strategy for Tamai Zone I replantation.

    Science.gov (United States)

    Hsu, Chung-Chen; Lin, Yu-Te; Moran, Steven L; Lin, Cheng-Hung; Wei, Fu-Chan; Lin, Chih-Hung

    2010-12-01

    Replantation of the distal phalanx and pulp can be performed to improve finger function and finger aesthetics; however, establishing adequate venous drainage is a challenge. Slattery et al. reported microsurgical reattachment of a partial distal phalanx with the use of a bifurcated terminal digital artery. The bifurcation was divided into two pedicles, one of which was used for venous drainage. In this article, the authors report their experience with a similar technique and propose a new algorithm for distal finger replantation. From January of 2008 to February of 2009, five replantations were performed using a single central artery. The replanted levels were pulp, avulsed fingertip of the thumb, and distal phalanges. There was no volar vein, dorsal vein, or second artery available in the amputated part for standard venous drainage. Venous drainage in all cases was established by creating an anastomosis from a branch of the solitary terminal artery to a recipient vein. All digits were replanted successfully without evidence of arterial insufficiency or venous congestion. Partial necrosis was not identified postoperatively in any of the five fingers. There were no cases of wound infection. A branch of the central solitary artery may be used successfully to reestablish venous outflow in cases of distal finger tip replantation. This technique allowed for the salvage of all fingers in this study without the use of leeches or other techniques used in cases of venous insufficiency.

  5. Long Term Follow-Up of a Successful Lower Limb Replantation in a 3-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Akbar Jaleel Zubairi

    2015-01-01

    Full Text Available Replantation of the lower extremity has controversial indications but nevertheless it may be considered in carefully selected patients who present early and are expected to show good functional recoveries. Here we present a successful replantation in a 3-year-old boy who has made excellent recovery with no functional deficit evident at 12 years of follow-up. He sustained a traumatic amputation at the level of distal tibia when he fell of a “Qing Qi” (motorcycle rickshaw. Replantation was attempted at 8 hours cold ischemia time with the tibia shortened 4 cm and all tendons, vessels, and nerves repaired. Patient required a second procedure during the same hospital stay for skin coverage. Patient made good recovery with ambulation without support at 6 months, less than 3 cm limb length discrepancy, plantar and dorsiflexion power 4/5, and recovery of sensation over the foot. Now at 12 years of follow-up patient has a normal gait and has integrated into society with no functional deficit. Considering the functional outcome of our case, replantation should be attempted whenever possible and feasible especially in children.

  6. Short-term vs long-term calcium hydroxide therapy after immediate tooth replantation: a histomorphometric study in monkey's teeth.

    Science.gov (United States)

    Panzarini, Sônia Regina; Gulinelli, Jéssica Lemos; Saito, Célia T M H; Poi, Wilson Roberto; Sonoda, Celso Koogi; Américo de Oliveira, José; Melo, Moriel Evangelista; de Souza Gomes, Weglis Dyanne

    2012-06-01

    Endodontic treatment is an important step of tooth replantation protocols, but the ideal moment for definitive obturation of replanted teeth has not yet been established. In this study, a histomorphometric analysis was undertaken to evaluate the repair process on immediate replantation of monkey's teeth after calcium hydroxide (CH) therapy for 1 and 6 months followed by root canal filling with a CH-based sealer (Sealapex(®) ). The maxillary and mandibular lateral incisors of five female Cebus apella monkeys were extracted, kept in sterile saline for 15 min, replanted and splinted with stainless steel orthodontic wire and composite resin for 10 days. In Group I (control), definitive root canal filling was performed before tooth extraction. In Groups II and III, CH therapy started after removal of splint, and definitive root canal filling was performed 1 and 6 months later, respectively. The animals were euthanized 9 months after replantation, and specimens were processed for histomorphometric analysis. In all groups, epithelial attachment occurred at the cementoenamel junction or very close to this region; the areas of resorption on root surface had small extension and depth and were repaired by newly formed cementum; and the periodontal ligament was organized. Statistical analysis of the scores obtained for the histomorphometric parameters did not show any statistically significant difference (P = 0.1221) among the groups. The results suggests that when endodontic treatment is initiated 10 days after immediate replantation and an antibiotic regimen is associated, definitive root canal filling can be performed after a short-term CH therapy. © 2011 John Wiley & Sons A/S.

  7. Correlation of volumetric flow rate and skin blood flow with cold intolerance in digital replantation.

    Science.gov (United States)

    Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang

    2017-12-01

    Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers.A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed.A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF.Cold intolerance of digital replantation is associated

  8. Long-term functional, subjective and psychological results after single digit replantation.

    Science.gov (United States)

    Chen, Jing; Zhang, Ai Xian; Chen, Qing Zhong; Mu, Shuai; Tan, Jun

    2018-03-01

    The aim of this study was to analyse the long-term functional, subjective, and psychological results after single-digit replantation. Thirty cases of digital replantation (14 thumbs, 12 index fingers, 2 middle fingers, 1 ring finger, and 1 little finger) in 30 patients (7 females and 23 males) with a mean age of 44.2 years (20-65 years) were evaluated at the end of a mean follow-up time of 36 months (19-50 months). The active range of motion of joints, grip and pinch strength, cutaneous sensibility, upper-extremity functioning, and subjective satisfaction were determined using the Disability of Arm, Shoulder, and Hand (DASH) questionnaire and the Michigan Hand Outcomes questionnaire (MHQ). Psychological sequelae, including depression, anxiety, and posttraumatic stress disorder (PTSD), were assessed. A correlation analysis among variables was also performed. The mean score for the DASH questionnaire was 6.6 (range: 0-39.2). The symptom of cold intolerance occurred in 53% of the patients. Two patients were diagnosed with depression, and only one patient exhibited PTSD. The DASH score had a good statistical correlation with total grip strength, pinch grip strength, and static two-point discrimination (S-2PD) (P digit replantation are very low at long-term follow-up. Level IV, therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  9. Les difficultés de la replantation. Quel avenir pour le cacao en Côte d’Ivoire ?

    Directory of Open Access Journals (Sweden)

    Ruf François

    2001-11-01

    Full Text Available La conférence internationale sur le thème « Quel avenir pour les cultures pérennes ? » est née de deux préoccupations. La première recouvre le champ des difficultés de la replantation, difficultés techniques, économiques mais aussi environnementales, sociales et politiques : comment replanter 1 ? La seconde est la baisse des cours, probablement structurelle, de la plupart des matières premières agricoles, notamment de celles produites par des cultures pérennes. Si les prix restent aussi bas de façon aussi durable, pourquoi replanter ? De même qu’il est toujours de bon aloi d’acheter des actions quand la bourse s’écroule, les économistes recommandent de planter quand les cours des matières premières sont à leur plancher. Toutefois, si des centaines de milliers d’hectares sont plantés par des producteurs qui anticipent une remontée des cours, celle-ci peut alors être fort retardée. Cette capacité à anticiper un retour à des prix élevés est ainsi une des causes du prolongement de la phase des très bas prix du cacao jusqu’en 2001, ce qui semble bien relever d’un échec du marché 2. Le pourquoi et le comment de la replantation sont bien indissociables. Face aux enjeux, de nombreux pays détenteurs du patrimoine « cultures pérennes tropicales » ne manquent-ils pas d’une véritable politique de replantation prenant acte des changements nécessaires dans les conditions de production, se remettant en cause, tout en faisant face aux difficultés à interpréter les marchés ? Les problèmes de replantation ne peuvent se surmonter qu’à partir d’une compréhension des processus en œuvre, sur le terrain, en commençant par les décisions des producteurs. Les exemples, les études de cas, par village, par région, restent donc des fondamentaux pour une réflexion globale, pour une anticipation des problèmes, une action nationale, voire internationale, sur la replantation. En même temps, la question de

  10. Soil pH in fruit trees in relation to specific apple replant disorder (SARD). II. The first five years at Wageningen research plot

    NARCIS (Netherlands)

    Jonkers, H.; Hoestra, H.; Borsboom, O.; Pouwer, A.

    1980-01-01

    Field plots were established with 4 target pH values, viz. 4, 5, 6 and 7, to study the effect of pH on specific apple replant disorder (SARD). The target pH levels were not stable and frequently showed fluctuations. Although no significant differences have been found on tree performance, the

  11. Replantation of fingertip amputation by using the pocket principle in adults.

    Science.gov (United States)

    Lee, P K; Ahn, S T; Lim, P

    1999-04-01

    There are several treatment modalities for zone 1 or zone 2 fingertip amputations that cannot be replanted by using microsurgical techniques, such as delayed secondary healing, stump revision, skin graft, local flaps, distant flaps, and composite graft. Among these, composite graft of the amputated digit tip is the only possible means of achieving a full-length digit with a normal nail complex. The pocket principle can provide an extra blood supply for survival of the composite graft of the amputated finger by enlarging the area of vascular contact. The surgery was performed in two stages. The amputated digit was debrided, deepithelialized, and reattached to the proximal stump. The reattached finger was inserted into the abdominal pocket. About 3 weeks later, the finger was removed from the pocket and covered with a skin graft. We have consecutively replanted 29 fingers in 25 adult patients with fingertip amputations by using the pocket principle. All were complete amputations with crushing or avulsion injuries. Average age was 33.64 years, and men were predominant. The right hand, the dominant one, was more frequently injured, with the middle finger being the most commonly injured. Of the 29 fingers, 16 (55.2 percent) survived completely and 10 (34.5 percent) had partial necrosis less than one-quarter of the length of the amputated part. The results of the above 26 fingers were satisfactory from both functional and cosmetic aspects. Twenty of the 29 fingers, which had been followed up for more than 6 months (an average of 16 months), were included in a sensory evaluation. Fifteen of these 20 fingers (75 percent) were classified as "good" (static two-point discrimination of less than 8 mm and normal use). From the overall results and our experience, we suggest that the pocket principle is a safe and valuable method in replantation of zone 1 or zone 2 fingertip amputation, an alternative to microvascular replantation, even in adults.

  12. Management of complicated crown-root fracture in central incisors using intentional replantation with 180° rotation: A case report

    Directory of Open Access Journals (Sweden)

    Reyhaneh Faghihian

    2017-01-01

    Full Text Available Introduction: Complicated crown-root fractures are rare and their treatment is complex. Numerous methods such as crown lengthening and orthodontic or surgical extrusion have been described for the treatment of crown-root fracture. The aim of this study was to report managing complicated crown-root fracture using intentional replantation with 180° rotation. Case report: This case report demonstrates successful management of complicated crown-root fracture in central incisor of a 10-year-old boy using intentional replantation with 180° rotation. Discussion: At 18-month follow-up, the replanted tooth revealed normal function with no obvious resorption.

  13. Apical Revascularization after Delayed Tooth Replantation: An Unusual Case

    Directory of Open Access Journals (Sweden)

    Marília Pacífico Lucisano

    2016-01-01

    Full Text Available The aim of this paper is to present the clinical and radiological outcome of the treatment involving a delayed tooth replantation after an avulsed immature permanent incisor, with a follow-up of 1 year and 6 months. An 8-year-old boy was referred after dental trauma that occurred on the previous day. The permanent maxillary right central incisor (tooth 11 had been avulsed. The tooth was hand-held during endodontic therapy and an intracanal medication application with calcium hydroxide-based paste was performed. An apical plug with mineral trioxide aggregate (MTA was introduced into the apical portion of the canal. When the avulsed tooth was replanted with digital pressure, a blood clot had formed within the socket, which moved the MTA apical plug about 2 mm inside of the root canal. These procedures developed apical revascularization, which promoted a successful endodontic outcome, evidenced by apical closure, slight increase in root length, and absence of signs of external root resorption, during a follow-up of 1 year and 6 months.

  14. Cross-finger dermal pocketing to augment venous outflow for distal fingertip replantation.

    Science.gov (United States)

    Tan, Valerie H; Murugan, Arul; Foo, Tun-Lin; Puhaindran, Mark E

    2014-09-01

    Venous anastomosis in distal fingertip replantations is not always possible, and venous congestion is recognized as a potential cause of failure. Methods previously described to address this problem include amputate deepithelization and dermal pocketing postarterial anastomosis to augment venous outflow. However, attachment of the digit to the palm or abdomen resulted in finger stiffness. We describe a modification of the previous methods by utilizing dermal flaps raised from the adjacent digit in the form of a cross-finger flap. The key differences are the partial deepithelization of the replanted fingertip and subsequent replacement of the dermal flap to the donor digit to minimize donor site morbidity. During the period where the 2 digits are attached, interphalangeal joint mobilization is permitted to maintain joint mobility.

  15. Use of the mechanical leech for successful zone I replantation.

    Science.gov (United States)

    Kim, Sang Wha; Han, Hyun Ho; Jung, Sung-No

    2014-01-01

    Replantation of zone I finger injuries remains a challenge, particularly if the fingertip was previously scarred or atrophied, which makes it difficult to secure a suitable vein at the amputation site. In cases of artery-only anastomosis, we propose using a mechanical leech technique to maintain sufficient venous outflow until the internal circulation regenerates. We applied this procedure to eight patients who had zone 1 amputations without veins that were suitable for anastomosis. Emergent surgery was performed and an artery-only anastomosis was created. As there were no veins available, we cut a branch of the central artery and anastomosed it with a 24-gauge angioneedle, which served as a conduit for venous drainage. The overall survival rate for zone I replantation using mechanical leech was 87.5% and the average time to maintain the mechanical leech was 5 days. The mechanical leech technique may serve as an alternative option for the management of venous congestion when no viable veins are available.

  16. Use of the Mechanical Leech for Successful Zone I Replantation

    Directory of Open Access Journals (Sweden)

    Sang Wha Kim

    2014-01-01

    Full Text Available Replantation of zone I finger injuries remains a challenge, particularly if the fingertip was previously scarred or atrophied, which makes it difficult to secure a suitable vein at the amputation site. In cases of artery-only anastomosis, we propose using a mechanical leech technique to maintain sufficient venous outflow until the internal circulation regenerates. We applied this procedure to eight patients who had zone 1 amputations without veins that were suitable for anastomosis. Emergent surgery was performed and an artery-only anastomosis was created. As there were no veins available, we cut a branch of the central artery and anastomosed it with a 24-gauge angioneedle, which served as a conduit for venous drainage. The overall survival rate for zone I replantation using mechanical leech was 87.5% and the average time to maintain the mechanical leech was 5 days. The mechanical leech technique may serve as an alternative option for the management of venous congestion when no viable veins are available.

  17. Successful Replantation of Amputated Penile Shaft following Industrial Injury

    Directory of Open Access Journals (Sweden)

    M Salehipour

    2010-09-01

    Full Text Available Penile amputation is an uncommon urological emergency. Although rare, traumatic amputation of penis is a challenging injury to treat. However, modern microsurgical reconstruction techniques have improved success rate of penile replantation and become the procedure of choice for managing these patients. Herein, we report on a case of penile amputation following an industrial accident.

  18. The timing of neovascularization in fingertip replantation by external bleeding.

    Science.gov (United States)

    Han, Seung-Kyu; Chung, Heung-Soo; Kim, Woo-Kyung

    2002-09-15

    To overcome venous congestion in fingertip replantation with no venous anastomosis, the authors have used a salvage procedure that consists of continuous external bleeding through a stab incision on the paraungual area and dripping a heparinized saline solution at the incision site to maintain external bleeding. Because this method requires continuous bleeding for a certain period of time, it may be a great burden on the patient; therefore, it is most important to minimize the duration of bleeding. Many authors have studied the timing of the new venous channel formation of the flap. However, to our knowledge, a study on fingertip replantations has not yet been performed. From June of 1985 to November of 1999, the authors performed fingertip replantations on 144 fingers of 137 patients using our salvage procedure at Korea University Guro Hospital. Among the 144 fingers, 101 fingers of 96 patients were successfully transplanted, including those with partial necrosis. The authors reviewed the medical records of these 101 fingers retrospectively; they compared and analyzed the necessary duration of external bleeding according to sex, age, level of injury, cause of amputation, and the type of injury. The average period of the salvage procedure was 7.6 days. Regarding age, the shortest period (5.5 days) was required for patients younger than 10 years. On the basis of the types of injuries, the duration of bleeding was shortest for the guillotine injury group (5.9 days) compared with crush (8.2 days) or avulsion (8.0 days) injuries. Sex and level of injury did not make much difference in the duration of the procedure.

  19. Distal fingertip replantation without skeletal fixation.

    Science.gov (United States)

    Sabapathy, S Raja; Venkatramani, Hari; Bharathi, R Ravindra; Sebastin, Sandeep J

    2005-01-01

    The replantation of fingertip amputation (through the nail bed) requires repair of the artery and vein on the palmar side. These structures are present in different planes, with the artery being deeper and the veins superficial. The authors believe that vascular repair in such cases is facilitated by stabilization of the amputated part by nail-bed repair alone. This provides a certain degree of flexibility, which allows for easier placement of clamps in the limited space available. Although Kirschner wires were not used for bony fixation, bony union was achieved in all five cases in which this technique was used.

  20. Effect of topical alendronate on root resorption of dried replanted dog teeth.

    Science.gov (United States)

    Levin, L; Bryson, E C; Caplan, D; Trope, M

    2001-06-01

    Alendronate (ALN) is a third generation bisphosphonate with demonstrated osteoclast inhibitory activity that may slow down the resorptive process after severe traumatic injuries. Eighty-two premolar roots of five mongrel dogs were endodontically treated and restored, extracted and treated as follows: 70 roots were bench dried for either 40 or 60 min. Thirty-eight of these roots were then soaked for 5 min in a 1 mM solution of ALN in Hanks' Balanced Salt Solution (HBSS) and replanted. Thirty-two roots were soaked for 5 min in HBSS and replanted. In the remaining 12 roots which were not exposed to the bench drying procedure, a 0.5 mM deep lingual mid-root cemental defect was made. Six of these roots were soaked in a 1 mM solution of ALN in HBSS for 5 min and replanted. The other six roots were soaked for 5 min in HBSS and replanted. Historical negative and positive controls were used from similarly treated teeth in our previous studies. After 4 months the dogs were killed and the roots prepared for histological evaluation. Five-microm-thick cross-sections of the root and surrounding tissue taken every 70 microm were evaluated for healing according to the criteria of Andreasen. In the 12 roots with cemental defects, healing with cementum of the damaged root surface was evaluated. In addition, residual root mass was also measured to determine the extent of root structure loss for each soaking method. Cemental healing took place in all 12 artificially damaged roots, indicating that these soaking media did not inhibit cementogenesis. The alendronate-soaked roots had statistically significantly more healing than the roots soaked in HBSS without alendronate. This improvement in healing was seen in all dogs except one and in all teeth except the first premolar. Soaking in alendronate also resulted in significantly less loss in root mass due to resorption compared to those teeth soaked in HBSS without alendronate.

  1. Replanting/underplanting strategy for old coconut plantations in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Ollivier Jean

    2001-11-01

    Full Text Available In most producing countries, the population of coconut palms is growing old, and ways of replacing them are rarely implemented to ensure that production is maintained and the future of the industry and its profitability are safeguarded. Rehabilitating/replanting coconut plantations and adopting appropriate intercropping systems is one of the main challenges to be taken up for the future of coconut in the Asia-Pacific region. The example of Papua New Guinea (PNG reveals one of the lowest yields per hectare among the countries in the Asia-Pacific zone. Almost 106,000 ha were planted between 1910 and 1940, amounting to around 40% of the current coconut plantings, hence 80 to 100,000 ha can be expected to disappear in the next twenty years. Faced with this forecast, the PNG Cocoa and Coconut Research Institute (PNG CCRI launched several operations, beginning with the creation of a coconut research centre on the PNG mainland: examination of a replanting strategy for old coconut plantings, based on hybrid planting material, distribution of improved planting material through the creation of a seed garden, and development of a system for controlling pest populations in high-risk zones. The experiments set up at the station are designed to optimize the felling date for old coconut palms, by measuring the effects of competition with the underplanted hybrids, and to determine from an economic point of view the best strategy to be applied for implementing rehabilitation and/or replanting programmes in old coconut plantings. This paper describes the results of these operations.

  2. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong

    2018-04-15

    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-02-01

    Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO 2 ). No uranium was detected in association with phyllosilicates in the soil

  4. An evidence-based assessment of the clinical guidelines for replanted avulsed teeth. Part II: prescription of systemic antibiotics.

    Science.gov (United States)

    Hinckfuss, Susan Elisabeth; Messer, Louise Brearley

    2009-04-01

    Current clinical guidelines recommend prescribing systemic antibiotic therapy (SAT) for patients having an avulsed permanent tooth replanted. The principles of evidence-based dentistry can be used to assess whether this is the best approach based on currently-available evidence. The objective of this study was to use the principles of evidence-based dentistry to answer the PICO question: (P) for a replanted avulsed permanent tooth, (I) is prescribing SAT, (C) compared with not prescribing SAT, (O) associated with an increased likelihood of successful periodontal healing after tooth replantation? A literature search was performed across four internet databases (Ovid Medline, Cochrane Library, PubMed, ISI Web of Science), for relevant citations (n = 35 702). Limiting citations to those in English and removing duplicates produced a set of titles (n = 14 742) that were sieved according to evidence-based dentistry principles. Relevant titles were selected for abstract assessment (n = 782), identifying papers for examination (n = 74). Inclusion criteria were applied and three papers (326 total teeth) met the final criteria for meta-analysis. Meta-analyses found no statistically significant difference between prescribing or not prescribing antibiotics for acceptable periodontal healing without progressive root resorption (common odds ratio = 0.90, SE = 0.29, 95% confidence intervals = 0.51-1.58). The evidence for an association between prescribing SAT and an increased likelihood of acceptable periodontal healing outcome is inconclusive. This investigation of antibiotic use as defined in the clinical guidelines indicates there is inconclusive clinical evidence from studies of replanted avulsed human teeth to either contradict or support the guideline. Pending future research to the contrary, dentists are recommended to follow current guidelines in prescribing SAT when replanting avulsed teeth.

  5. Apple Replant Disease: Role of microbial ecology in cause and control

    Science.gov (United States)

    1. Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by a consortium of biological agents. Development of non-fumigant alternatives for the control of this disease has been hindered by the absence of consensus concerning the etiology...

  6. Microvascular replantation of avulsed tissue after a dog bite of the face

    African Journals Online (AJOL)

    Various authors have described successful microsurgical replantation of totally avulsed facial tissue. In a significant nwnber of cases difficulties were experienced with the venous anastomoses and/or venous drainage of the tissue. Many different methods were used to overcome the problem. Despite these difficulties, good ...

  7. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Directory of Open Access Journals (Sweden)

    V. Udompetaikul

    2013-10-01

    Full Text Available Our research goal was to use recent advances in global positioning system (GPS and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site to control Prunus replant disease (PRD. We developed and confirmed the function of (1 GPS-based software that can be used on cleared orchard land to flexibly plan and map all of an orchard's future tree sites and associated spot fumigation treatment zones and 2 a tractor-based GPS-controlled spot fumigation system to quickly and safely treat the targeted tree site treatment zones. In trials in two almond orchards and one peach orchard, our evaluations of the composite mapping and application system, which examined spatial accuracy of the spot treatments, delivery rate accuracy of the spot treatments, and tree growth responses to the spot treatments, all indicated that GPS spot fumigation has excellent potential to greatly reduce fumigant usage while adequately managing the PRD complex.

  8. Deciphering potential mechanisms of anaerobic soil disinfestation (ASD)-mediated control of Pratylenchus penetrans

    Science.gov (United States)

    Pratylenchus penetrans is a component of the apple replant disease (ARD) causal pathogen complex. The potential role for biological mechanisms contributing to ASD-mediated suppression of P. penetrans was examined in greenhouse study using orchard soil with a history of ARD. Populations of P. penetra...

  9. Effect of periodontal ligament removal with gauze prior to delayed replantation in rabbit incisors on rate of replacement resorption.

    Science.gov (United States)

    Maslamani, Manal; Joseph, Bobby; Gabato, Severino; Andersson, Lars

    2018-03-23

    Delayed (dry storage > 60 minutes) replantation results in ankylosis and replacement resorption. It has been suggested to remove the non-viable periodontal ligament before replantation to possibly reduce the rate of replacement resorption. However there has been no study on the rate of replacement resorption after such measures. The aim of this study was to investigate if there was any difference in the rate of replacement resorption by either removing the periodontal ligament (PDL) with gauze or not removing PDL in teeth subjected to delayed replantation followed by healing for 2 or 6 weeks. Maxillary central incisors were extracted in 8 rabbits. In the right central incisors, the necrotic PDL was removed by dry gauze over the root surface. In the left eight extracted teeth PDL was left on the root surface. All extracted teeth were left to dry for 60 minutes. Extra-oral root canal treatment was performed before replantation. The rabbits were sacrificed after 2 weeks and 6 weeks respectively. Histologic processing and evaluation was done. In the 2 weeks group, all teeth showed ankylosis. The cementum was intact, and fusion of the bone and root was generally seen without resorption of the root, whereas in the 6 weeks group regardless of whether PDL had been kept or not, ankylosis and osseous replacement of the dentin was seen. There was no evidence of inflammatory infiltrate in the sections examined. Removal of PDL prior to delayed replantation may result in some initial protection of the cementum during the first few weeks. However, over longer times there seems to be neither protection of the dentin from ankylosis and osseous replacement, nor any influence on the rate of replacement resorption. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Atypical arteriole anastomoses for fingertip replantations under digital block.

    Science.gov (United States)

    Koshima, Isao

    2008-01-01

    Reconstructive microsurgery is now in a new stage of supermicrosurgery. With this technique, very tiny (0.3mm) vascular anastomoses are possible. In this paper, we describe two cases of successful fingertip replantations employing arteriole (terminal branch of digital artery) anastomoses, the arteriole graft being obtained from the same fingertip defect, reverse arteriole flow to subdermal venule, and delayed venular drainage for venous congestion. These atypical tiny vascular anastomoses were successfully carried out under digital block.

  11. Multidisciplinary approach in the immediate replantation of a maxillary central incisor - A six and a half year follow-up

    OpenAIRE

    Cristina Braga Xavier; Beatriz Farias Vogt; Giselle Daer Faria; Leandro Calcagno Reinhardt; Elaini Sickert Hosni; Josué Martos

    2015-01-01

    This report proposes a discussion of the various peculiarities of a tooth 21 replantation in a 9-year-old patient and describes different treatment facets and a 6-year follow-up of the case. The splint was maintained for a 3-month period. After a 1΍ year therapy with calcium hydroxide to control inflammatory resorption, the final canal obturation was performed 18 months after trauma with mineral trioxide aggregate. Two years after replantation, the orthodontic treatment had been initiated and...

  12. Delayed tooth replantation after root surface treatment with sodium hypochlorite and sodium fluoride: histomorphometric analysis in rats.

    Science.gov (United States)

    Sottovia, André Dotto; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Lauris, José Roberto Pereira

    2006-04-01

    In cases of delayed tooth replantation, non-vital periodontal ligament remnants have been removed with sodium hypochlorite in an attempt to control root resorption. Nevertheless, reports of its irritating potential in contact with the alveolar connective tissue have been described. Therefore, this study evaluated the healing process on delayed replantation of rat teeth, after periodontal ligament removal by different treatment modalities. Twenty-four rats, assigned to 3 groups (n=8), had their upper right incisor extracted and left on the workbench for desiccation during 60 min. Afterwards, the teeth in group I were immersed in saline for 2 min. In group II, root surfaces were scrubbed with gauze soaked in saline for 2 min; and in group III, scrubbing was done with gauze soaked in 1% sodium hypochlorite solution. Thereafter, root surfaces were etched with 37% phosphoric acid and immersed in 2% acidulate-phosphate sodium fluoride solution, at pH 5.5. Root canals were filled with a calcium hydroxide-based paste and the teeth were replanted. The animals were sacrificed 60 days postoperatively and the pieces containing the replanted teeth were processed and paraffin- embedded. Semi-serial transversally sections were obtained from the middle third of the root and stained with hematoxylin and eosin for histomorphometric analysis. Data were analyzed statistically using Kruskal-Wallis and Dunn's tests. The results showed that root structure and cementum extension were more affected by resorption in group III (p<0.05). All groups were affected by root resorption but the treatment performed in group III was the least effective for its control. The treatment accomplished in groups I and II yielded similar results to each other.

  13. Six years follow-up of a penis replantation in a child.

    Science.gov (United States)

    de Lagausie, Pascal; Jehanno, Pascal

    2008-03-01

    Total amputation of the penis is very rare in a child. This article presents a case of a traumatic penile amputation at the base of the perineum, with scissors, in a 4-year-old child. Six hours after the aggression, the penis was replanted. Three weeks after the intervention, except for skin necrosis, the results were excellent. Six years afterward, this child has done very well from pediatric, psychological, urological, and plastic surgery points of view. Sensibility and erections are present and normal. Longer follow-ups particularly during puberty are necessary. Total amputation of the penis is a very rare accident in a child. Partial lesions are more common, particularly during circumcision. As in adult cases, replantation of the penis in a child needs a clean section by scissors or a knife, a correct conservation of the penis (in ice but without direct contact), and a short period between the lesion and the surgical procedure. All these conditions explain that very few cases are reported in the literature. We present a case of amputation of the penis in a 4-year-old child, with good results 6 years afterward.

  14. [Clinico-electromyographic evaluation of the state of motor units of the hand muscles replanted after traumatic amputation].

    Science.gov (United States)

    Rezkov, G I

    1991-01-01

    Needle electromyography was used to study motor units of the muscles leading away the thumb and little finger, replanted after traumatic amputation of the large segment of the upper limb in 34 patients. A direct relationship was discovered between the time of the appearance of action potentials of motor units (PMU), recovery of the movements, and trauma level. The appearance of clear PMU associated with movement recovery was recorded not earlier than 6-7 months after trauma. Analysis of PMU is a reliable criterion for the recovery of the own movements of the muscles and function of the neuromotor apparatus in patients with the replanted upper limb segment.

  15. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  16. Replantation of multi-level fingertip amputation using the pocket principle (palmar pocket method).

    Science.gov (United States)

    Arata, J; Ishikawa, K; Soeda, H; Kitayama, T

    2003-07-01

    Two cases of multi-level fingertip amputation are presented. In each case, replantation was achieved in a two-stage procedure, involving reattachment, de-epithelialisation and insertion into a palmar pocket in stage 1, followed by removal from the palmar pocket 16 days later. The cases are described and the technique is discussed.

  17. Fingertip replantation at the eponychial level with venous anastomosis: an anatomic study and clinical application.

    Science.gov (United States)

    Cheng, L; Chen, K; Chai, Y-M; Wen, G; Wang, C-Y

    2013-11-01

    We present an anatomic study of the vein distribution at the eponychial level, in order to standardize outpatient fingertip replantation. The cross sectional anatomy of 100 fingers was studied by dissection following dye injection. The distribution of the veins >0.3 mm was recorded on a pie-chart. Thirty fingers in 27 patients with fingertip amputations at the eponychial level were replanted by anastomosis of the palmar subcutaneous veins, to reconstruct the venous reflux of the amputated digits. The operations were aided by the anatomical study and confirmed that the palmar area is the preferred site for venous anastomosis Following a distal finger amputation at the level of the eponychial fold we propose starting the search for veins between the 3 to 5 o'clock or 7 to 9 o'clock positions, as these are the areas where there are most likely to be suitable veins.

  18. The replanting campaign has begun

    CERN Multimedia

    GS-SEM Group - General Infrastructure and Services Department

    2010-01-01

    The poplars on the border of CERN's Prévessin site were felled, according to plan, on Friday, 26 February. The work was essential as the trees were showing signs of serious ageing problems (broken and dead branches, weakened trunks and root systems, etc.) and needed to be felled to ensure the safety of drivers on the D35 The trees that have been cut will be transformed into renewable energy wood chips and used to heat local schools and crèches. They will be replaced by a hedge of hornbeams, a native fast-growing tree, which will be planted in the spring.     The felling operation was entrusted to the French national forestry authorities, with the support of the Bellegarde-Pays de Gex Agence Routière et Technique. It marks the start of a vast poplar-felling and replanting campaign, which will be extended to CERN's Meyrin site.  The work is part of CERN's general renovation and site planning scheme for the future.    

  19. Fingertip replantation at or distal to the nail base: use of the technique of artery-only anastomosis.

    Science.gov (United States)

    Akyürek, M; Safak, T; Keçik, A

    2001-06-01

    The authors describe the functional and aesthetic results of microsurgical replantation of 21 fingertip amputations at or distal to the nail base-namely, zone I amputations. There were 15 male and 6 female patients, with an average age of 26 years (age range, 1-41 years). Replantations were performed using the anastomosis of the artery-only technique, with neither vein nor nerve repair. Venous drainage was provided by an external bleeding method with a fish-mouth incision in "distal" zone I amputations for approximately 7 days, and by the use of leeches in more "proximal" zone I amputations for 10 to 12 days. Results indicated that the overall survival rate was 76%, with 16 of 21 digits surviving. Sensory evaluation at an average follow-up of 12 months (range, 6-18 months) revealed an average static two-point discrimination of 6.1 mm (range, 2.0-8.0 mm). Considering the unfavorable results and the donor site morbidity of various fingertip reconstructions, a microsurgical fingertip replantation should always be considered except in extremely distal, clean-cut, pediatric cases, in which case a composite graft is a possibility. The results of this series indicate that an amputated fingertip in zone I can be salvaged successfully by microvascular anastomosis of the artery only, with a nonmicrosurgical method of venous drainage. Furthermore, acceptable sensory recovery can be expected without any nerve coaptation.

  20. [Experiment study on ultrashort wave for treating vascular crisis after rat tail replantation].

    Science.gov (United States)

    Tan, Long; Gao, Wenshan; Xi, Ali; Wang, Cong; Chen, Shouying; Zhao, Yanyan; Di, Keqian; Yang, Xincai; Weng, Shengbin

    2012-10-01

    To explore the effect and mechanism of ultrashort wave (USW) for prevention and treatment of vascular crisis after rat tail replantation. Eighty 3-month old female Sprague Dawley rats (weighing 232.8-289.6 g) were randomly divided into 5 groups. In each group, based on the caudal vein and the coccyx was retained, the tail was cut off. The tail artery was ligated in group A; the tail artery was anastomosed in groups B, C, D, and E to establish the tail replantation model. After surgery, the rats of group B were given normal management; the rats of group C were immediately given intraperitoneal injection (3.125 mL/kg) of diluted papaverine hydrochloride injection (1 mg/mL); the rats of groups D and E were immediately given the local USW treatment (once a day) at anastomotic site for 5 days at the dosage of 3 files and 50 mA for 20 minutes (group D) and 2 files and 28 mA for 20 minutes (group E). The survival rate of the rat tails was observed for 10 days after the tail replantation. The tail skin temperature difference between proximal and distal anastomosis was measured at pre- and post-operation; the change between postoperative and preoperative temperature difference was calculated. The blood plasma specimens were collected from the inner canthus before operation and from the tip of the tail at 8 hours after operation to measure the content of nitric oxide (NO). The survival rates of the rat tails were 0 (0/14), 36.4% (8/22), 57.1% (8/14), 22.2% (4/18), and 75.0% (9/12) in groups A, B, C, D, and E, respectively, showing significant overall differences among 5 groups (chi2 = 19.935, P = 0.001); the survival rate of group E was significantly higher than that of group B at 7 days (P 0.05). At preoperation, there was no significant difference in tail skin temperature difference among 5 groups (P > 0.05); at 8 hours, 5 days, 6 days, and 7 days after operation, significant overall difference was found in the change of the skin temperature difference among groups (P

  1. The use of CT for evaluate to healing of segmental replantation in rabbits' tibia

    International Nuclear Information System (INIS)

    Liu Yifan; Hong Tianlu

    2000-01-01

    Objective: To study the value of CT in the bone healing. Methods: The rabbit's tibia segments were resected and replanted X-ray and CT photograph were taken after operation at 2,4,8,12 week. Results: CT is more clear than X-ray. Conclusion: CT is superior to X-ray photography in observed bone healing

  2. Impacto do manejo de resíduos orgânicos durante a reforma de plantios de eucalipto sobre indicadores de qualidade do solo Impact of organic residue management on soil quality indicators during replanting of eucalypt stands

    Directory of Open Access Journals (Sweden)

    Guilherme Montandon Chaer

    2007-12-01

    priorizaram a conservação dos resíduos orgânicos por ocasião da reforma do povoamento. Contrariamente, as áreas onde ocorreu a remoção ou a queima do material orgânico da superfície do solo foram as que mais se distanciaram da área de referência. Esses resultados demonstram que o sistema de manejo adotado na reforma dos povoamentos de eucalipto analisados influencia, em médio prazo, o potencial dos solos de estocar e ciclar nutrientes por meio da biomassa microbiana e das atividades bioquímicas ligadas a ela. A maior aproximação entre a área com vegetação nativa e a de eucalipto com 11 anos leva a supor que ciclos mais longos nas florestas de eucalipto, contrastando com o padrão atualmente em uso no Brasil (cerca de sete anos, pode ser relevante para se manter a sustentabilidade da atividade florestal em longo prazo, a despeito de uma menor produtividade média anual. Nesse caso, a opção pela produtividade de curto ou médio prazo, ou pela sustentabilidade do uso do solo, com a conseqüente manutenção da sua qualidade para as gerações futuras, poderá ser repensada a partir dos dados aqui apresentados.Agricultural soil use induces changes in soil physical, chemical, and microbiological characteristics. These changes can eventually lead to a loss of soil quality and a consequent reduction in plant growth and productivity. The analysis of biochemical and microbiological soil quality indicators is relevant to monitor changes in soil quality and in the performance of key soil functions, such as the capacity of nutrient cycling and storage. This study reports on physical, chemical, and biochemical/microbiological quality indicators of soil under eucalyptus plantation, evaluated 5.5 years after the site had undergone different management practices during stand replanting. Evaluations were based on the determination of 18 physical or chemical besides 12 biochemical or microbiological attributes that are considered soil quality indicators. The

  3. Foster replantation of fingertip using neighbouring digital artery in a young child.

    Science.gov (United States)

    Xu, Jing-Hong; Gao, Zheng-Jun; Yao, Jing-Ming; Tan, Wei-Qiang; Dawreeawo, Javed

    2010-06-01

    Reconstruction of an amputated fingertip in a young child demands special techniques for success. We report a 2.5-year-old female patient with an amputated left index fingertip with the vascular defect being too severe to perform the usual replantation. Comparing several methods, we used the neighbouring digital artery as the feeding artery to perform foster replantation. Finally, the patient was satisfied with the appearance and function of her fingers. The clinical case, techniques, results are described and discussed. We consider it a useful technique, especially for those with a rather severe vascular defect. A 2.5-year-old girl suffered a crush amputation of the left index fingertip. Only the flexor tendon of the amputated fingertip was connected to the proximal finger tissue and the blood supply was completely lost (Figure 1). The distal amputated fingertip was fixed using Kirschner wire under general anaesthesia. Then, microsurgery operation was carried out immediately to replant this amputated fingertip. Both ulnar and radial digital arteries were avulsed, while the dorsal vein was intact and the digital nerve was also surviving. The integrity of blood vessels was too traumatised to connect to the proximal part. In the case of the distal part of the ulnar artery of the injured index finger, the blood supply was established by anastomosing the distal end of the amputated tip and the radial artery of the middle finger, which was the feeding artery (Figure 2). A 11/0 nylon suture was used. The dorsal vein and digital nerve were repaired by means of microsurgical anastomosis. The wound was covered with the dorsal skin of the middle finger and the palmar skin of the index finger to form a skin pedicle, and then, immobility of the two fingers was maintained to prevent avulsion. The index tip obtained good blood supply and survived completely (Figure 3). Detachment of the index and middle finger was performed after 3 weeks, and both of the fingers showed good

  4. Leech Therapy For The Treatment Of Venous Congestion In Flaps, Digital Re-Plants And Revascularizations - A Two-Year Review From A Regional Centre.

    Science.gov (United States)

    Butt, Ahsan Masood; Ismail, Amir; Lawson-Smith, Matthew; Shahid, Muhammad; Webb, Jill; Chester, Darren L

    2016-01-01

    Leeches are a well-recognized treatment for congested tissue. This study reviewed the efficacy of leech therapy for salvage of venous congested flaps and congested replanted or revascularized hand digits over a 2-year period. All patients treated with leeches between 1 Oct 2010 and 30 Sep 2012 (two years) at Queen Elizabeth Hospital, Birmingham, UK were included in the study. Details regarding mode of injury requiring reconstruction, surgical procedure, leech therapy duration, subsequent surgery requirement and tissue salvage rates were recorded. Twenty tissues in 18 patients required leeches for tissue congestion over 2 years: 13 men and 5 women. The mean patient age was 41 years (range 17-79). The defect requiring reconstruction was trauma in 16 cases, following tumour resection in two, and two miscellaneous causes. Thirteen cases had flap reconstruction and seven digits in six patients had hand digit replantations or revascularisation. Thirteen of 20 cases (65%) had successful tissue salvage following leech therapy for congestion (77% in 10 out of 13 flaps, and 43% in 3 of 7 digits). The rate of tissue salvage in pedicled flaps was good 6/6 (100%) and so was in digital revascularizations 2/3 (67%), but poor in digital re-plants 1/4 (25%) and free flaps 0/2 (0%). Leeches are a helpful tool for congested tissue salvage and in this study, showed a greater survival benefit for pedicled flaps than for free flaps or digital replantations.

  5. Classification of Distal Fingertip Amputation Based on the Arterial System for Replantation

    OpenAIRE

    Park, Hyun Chul; Bahar-Moni, Ahmed Suparno; Cho, Sang Hyun; Kim, Sang Soo; Park, Hyun Sik; Ahn, Sang Cheon

    2012-01-01

    During replantation of distal fingertip amputation, identification of the artery is the most important but time consuming procedure. Depending on the damaged arterial structure, we classified distal fingertip amputations into 4 zones, on the basis of three dimensional concept. Zone 1 injury was defined as damage to the proximal central pulp artery; zone 2 injury, damage to the branch of the central pulp artery; zone 3 injury, damage to the distal central pulp artery; and zone 4 injury, no inj...

  6. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  7. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    Science.gov (United States)

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.

  8. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-23

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  9. Use of a halo frame for optimum intra- and post-operative management after scalp replantation/revascularization.

    Science.gov (United States)

    Koul, Ashok R; Nahar, Sushil; Valandi, Beena; Praveen, Kumar H P

    2012-09-01

    We present a new technique for stabilizing an avulsed scalp during and after replantation/revascularization. We used an aluminium "halo" frame with 4 screws. This technique can rigidly stabilize an avulsed scalp and eliminate the possibility of shearing/pressure necrosis. This device can make perioperative management easier and more comfortable for the patient and caregivers.

  10. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    Science.gov (United States)

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Microsurgical replantation and postoperative leech treatment of a large severed nasal segment

    DEFF Research Database (Denmark)

    Stemann Andersen, Peter; Elberg, Jens Jørgen

    2012-01-01

    The survival of a microsurgically replanted segment of nose in a 41-year-old woman was facilitated by the assistance of the medicinal leech Hirudo medicinalis. An arterial microanastomosis was made to a severed partial segment of nose with no possibility of recreating a venous anastomosis. The re....... The resulting venous congestion was treated with nine days of treatment with a medical leech until venous neovascularisation had been achieved. At follow-up six months after discharge there was a well-heeled nasal segment and a satisfying functional - as well as cosmetic - result....

  12. Déterminants sociaux et économiques de la replantation

    Directory of Open Access Journals (Sweden)

    Ruf François

    2000-03-01

    Full Text Available Sur les bourses européennes, la notion de durabilité des investissements dans les valeurs est explicite « Développement durable rime avec investissement rentable » (La Tribune, 11 mars 2000. La maxime émerge avec le développement des fonds éthiques. Selon leurs promoteurs, plus une société commerciale aura le souci de son environnement, plus elle sera boursièrement performante. D’une certaine façon, ce raisonnement reprend des courants de l’écologie humaine et de l’économie rurale, s’appliquant fort bien aux cultures pérennes. En l’absence de pensions et de retraites, les planteurs voient dans les cultures pérennes un moyen efficace pour accumuler des richesses, épargner, et éventuellement pour les transmettre à la génération suivante [1, 2]. Les cultures pérennes représentent bien un patrimoine, et leur propriétaire est à la fois un entrepreneur qui investit et un épargnant soucieux de la valeur de son patrimoine, donc de l’environnement garantissant sa durabilité. Cette notion de durabilité peut signifier une stratégie de prolongement de vie économique de l’actif épargné, la plantation, mais peut aussi passer par des stratégies de vente, de rachat, de reconversion, replantation, diversification. Pour un planteur, tout à la fois chef de famille, entrepreneur, épargnant et consommateur, la notion de durabilité s’applique d’abord à celle des revenus disponibles pour la famille. Par rapport à un objectif de durabilité des revenus, comment, pourquoi et quand un planteur prend-il la décision de replanter ? Nous essayerons ici de répondre à cette question sous forme de réflexion et d’exemples pris dans différents pays pour diverses cultures pérennes.

  13. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-01-01

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level

  14. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  15. Age and timing of pulp extirpation as major factors associated with inflammatory root resorption in replanted permanent teeth.

    Science.gov (United States)

    Bastos, Juliana Vilela; Ilma de Souza Côrtes, Maria; Andrade Goulart, Eugenio Marcos; Colosimo, Enrico Antonio; Gomez, Ricardo Santiago; Dutra, Walderez Ornelas

    2014-03-01

    External root resorption (ERR) is a serious complication after replantation, and its progressive inflammatory and replacement forms are significant causes of tooth loss. This retrospective study aimed to evaluate the factors related to the occurrence of inflammatory ERR (IERR) and replacement ERR (RERR) shortly after permanent tooth replantation in patients treated at the Dental Trauma Clinic at the School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil. Case records and radiographs of 165 patients were evaluated for the presence, type, and extension of ERR and its association with age and factors related to the management and acute treatment of the avulsed tooth by using the logistic regression model. The patient's age at the moment of trauma had a marked effect on the ERR prevalence and extension. The patients older than 16 years at the moment of trauma had less chance of developing IERR and RERR (77% and 87%, respectively) before the pulp extirpation, regardless of the extension of the resorption. The patients older than 11 years of age at the moment of trauma showed the lowest indices of IERR (P = .02). Each day that elapsed between the replantation and the pulp extirpation increased the risk of developing IERR and RERR by 1.2% and 1.1%, respectively, and also raised the risk of severe IERR by 0.5% per day. The risk of mature teeth developing severe IERR before the onset of endodontic therapy was directly affected by the timing of the pulpectomy and was inversely proportional to age. Systemic antibiotic therapy use had no effect on the occurrence and severity of IERR in mature teeth. The occurrence of RERR before the onset of endodontic treatment stimulates further investigations of the early human host response to trauma and subsequent infection. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Use of an Intra-Arterial Catheter as a Provisional Conduit for Regulated Outflow Management in the Setting of Artery-Only Digital Replantation.

    Science.gov (United States)

    DeFazio, Michael V; Han, Kevin D; Paryavi, Ebrahim

    2017-12-01

    Successful replantation of distal digital segments necessitates the establishment of sufficient outflow to minimize congestion and progressive tissue necrosis. In cases where only arterial anastomosis is feasible, an artificial outlet must be provided to maintain physiological requirements until microvenous circulation regenerates. This can be accomplished using any number of "exsanguination techniques" designed to facilitate egress through ongoing passive blood loss. Although reportedly effective, these measures are imprecise and carry a substantial risk of infection, scarring, and/or uncontrolled hemorrhage. Herein, we describe a preemptive alternative for provisional venous drainage, whereby direct catheterization of a distal arterial branch is used to enhance the precision of outflow management following artery-only digital replantation. The establishment of intravascular access, using the technique described, permits remote manipulation of the microcirculatory environment through timed administration of heparinized saline and regulated removal of controlled volumes of blood.

  17. Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing.

    Science.gov (United States)

    Chen, Fu; Yang, Baodan; Ma, Jing; Qu, Junfeng; Liu, Gangjun

    2016-10-01

    Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  18. Surgical management with intentional replantation on a tooth with palato-radicular groove

    Directory of Open Access Journals (Sweden)

    Jorge Forero-López

    2015-05-01

    Full Text Available A palato-radicular groove (PRG is a developmental anomaly primarily found in the maxillary lateral incisors. It is a potential communication path between the root canal and the periodontium that decreases the survival prognosis of the affected tooth, therefore compromising the stability of the dental structure in the oral cavity. The aim of this case report is to present an original technique where a PRG was treated by means of intracanal disinfection, PRG sealing with glass ionomer, replantation with intentional horizontal 180 degree rotation of the tooth, and an aesthetic veneer placed to provide adequate tooth morphology. The clinical and biological benefits of this novel technique are presented and discussed.

  19. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Science.gov (United States)

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  20. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  1. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  2. Sistemas de tutoramento e épocas de transplante de physalis Periods replanting and training systems of cape-gooseberry

    Directory of Open Access Journals (Sweden)

    Cláudia Simone Madruga Lima

    2010-12-01

    Full Text Available A physalis (Physalis peruviana é uma pequena fruta com grandes potencialidades, que, associadas ao seu ciclo curto e às propriedades nutracêuticas, apresenta possibilidade de alto retorno econômico. O objetivo deste trabalho foi avaliar o sistema de tutoramento e a época de transplante mais adequados para o crescimento e a produção de frutos de P. peruviana nas condições edafoclimáticas do sul do Rio Grande do Sul. O trabalho foi desenvolvido em Pelotas, RS, na safra de 2007/2008. O transplante de mudas de physalis foi realizado em duas épocas (época 1, 21/11/2007 e época 2 15/01/2008, sendo as plantas tutoradas em quatro sistemas de condução (sistema "V" invertido, sistema triangular, sistema vertical com bambu e sistema vertical com fitilho, semelhantes aos utilizados na cultura do tomateiro. O delineamento experimental adotado foi de blocos casualizados, com três repetições, sendo cada um representado por dez plantas. Os tratamentos formaram um fatorial 2x4 (épocas de transplante x sistemas de tutoramento. As variáveis analisadas foram: incremento do comprimento e da área da seção do ramo principal, área da seção do ramo principal, produtividade e eficiência produtiva. Foi evidenciado que a primeira época de transplante associada aos sistemas de tutoramento "V" invertido e triangular proporciona melhor desempenho agronômico das plantas de physalis.The cape-gooseberry (Physalis peruviana is a small fruit with great potentialities that whether associated to its short cycle and nutraceutical properties it shows high economical return. The work aimed to evaluate the best training system and replant period to plant growth, production and fruit quality of P. peruviana under edaphoclimatic at conditions of southern Rio Grande do Sul. The trial was carried out in Pelotas, RS, in 2007/2008 crop. Transplanting seedlings cape-gooseberry was conducted in two seasons Plant replanting was done in two periods (period 1, 21

  3. Analytical electron microscopy characterization of Fernald soils. Annual report, October 1993--September 1994

    International Nuclear Information System (INIS)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1995-03-01

    A combination of backscattered electron imaging and analytical electron microscopy (AEM) with electron diffraction have been used to determine the physical and chemical properties of uranium contamination in soils from the Fernald Environmental Management Project in Ohio. The information gained from these studies has been used in the development and testing of remediation technologies. Most chemical washing techniques have been reasonably effective with uranyl [U(VI)] phases, but U(IV) phases have proven difficult to remove from the soils. Carbonate leaching in an oxygen environment (heap leaching) has removed some of the U(IV) phases, and it appears to be the most effective technique developed in the program. The uranium metaphosphate, which was found exclusively at an incinerator site, has not been removed by any of the chemical methods. We suggest that a physical extraction procedure (either a magnetic separation or aqueous biphasic process) be used to remove this phase. Analytical electron microscopy has also been used to determine the effect of the chemical agents on the uranium phases. It has also been used to examine soils from the Portsmouth site in Ohio. The contamination there took the form of uranium oxide and uranium calcium oxide phases. Technology transfer efforts over FY 1994 have led to industry-sponsored projects involving soil characterization

  4. Composite grafting with pulp adipofascial advancement flaps for treating non-replantable fingertip amputations.

    Science.gov (United States)

    Lai, Hsin-Ti; Wu, Sheng-Hua; Lai, Ya-Wei; Hsieh, Tung-Ying; Lee, Su-Shin; David Wang, Hui-Min; Chang, Kao-Ping; Lin, Sin-Daw; Lai, Chung-Sheng; Huang, Shu-Hung

    2016-11-01

    Non-replantable fingertip amputation is still a clinical challenge. We performed modified composite grafting with pulp adipofascial advancement flap for Hirase IIA fingertip amputations. Results from a series of patients are presented and achieved better outcome than traditional composite grafting. From September 2012 to April 2014, fourteen patients with sixteen digits were included in our study. Mean age of patients was 43.9 years (20-71 years). All of our patients underwent this procedure under digital block anesthesia. We performed pulp adipofascial advancement flap for better soft tissue coverage of bone exposure stump first. The amputated parts were defatted, trimming, and reattached as composite graft. Age and gender of patients, injured finger, Hirase classification, mechanism of trauma, overall graft survival area, two-point discrimination (2PD) (mm) at six-month, length of shortening of digit, The average disabilities of the arm, shoulder, and hand (DASH) score and subjective self-evaluation questionnaire at 6 month were recorded. Average graft survival area was 89% (75-100%). Average length of shortening was 2.2 mm (1.8-3.5 mm). 2PD at six-month after surgery was 6.3 mm in average (5-8 mm). Average DASH score at 6 month was 1.45 (0.83-2.5). The self-evaluated aesthetic results showed twelve patients (85.7%) were very satisfied, and no patient was completely unsatisfied. In Hirase zone IIA traumatic fingertip amputation where replantation is difficult, our modified technique of composite grafting with pulp adipofascial advancement flap provided an alternative choice with high successful rate, acceptable functional and aesthetic outcomes. © 2016 Wiley Periodicals, Inc. Microsurgery, 2016. © 2015 Wiley Periodicals, Inc. Microsurgery 36:651-657, 2016. © 2016 Wiley Periodicals, Inc.

  5. Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities.

    Science.gov (United States)

    Zhao, Qingyun; Xiong, Wu; Xing, Yizhang; Sun, Yan; Lin, Xingjun; Dong, Yunping

    2018-04-17

    Long-term monoculture severely inhibits coffee plant growth, decreases its yield and results in serious economic losses in China. Here, we selected four replanted coffee fields with 4, 18, 26 and 57 years of monoculture history in Hainan China to investigate the influence of continuous cropping on soil chemical properties and microbial communities. Results showed long-term monoculture decreased soil pH and organic matter content and increased soil EC. Soil bacterial and fungal richness decreased with continuous coffee cropping. Principal coordinate analysis suggested monoculture time was a major determinant of bacterial and fungal community structures. Relative abundances of bacterial Proteobacteria, Bacteroidetes and Nitrospira and fungal Ascomycota phyla decreased over time. At genus level, potentially beneficial microbes such as Nitrospira and Trichoderma, significantly declined over time and showed positive relationships with coffee plant growth in pots. In conclusion, continuous coffee cropping decreased soil pH, organic matter content, potentially beneficial microbes and increased soil EC, which might lead to the poor growth of coffee plants in pots and decline of coffee yields in fields. Thus, developing sustainable agriculture to improve soil pH, organic matter content, microbial activity and reduce the salt stress under continuous cropping system is important for coffee production in China.

  6. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    Full Text Available Introduction: Iron cycle is one of the most important biogeochemical processes which affect the availability of iron in soils. Ferric iron oxides are the most abundant forms of iron in soils and sediments. Ferric iron is highly insoluble at circumneutral pH. Present investigations have shown that the structural ferric iron bound in clay minerals is reduced by some microorganisms. Anaerobic bacteria reduce ferric iron which bound to soil clay minerals under anaerobic conditions. They have the ability to use ferric iron as a terminal electron acceptor. Many studies presented that dissimilatory iron reducing bacteria (DIRB mediate the transfer of electrons from small organic molecules like acetate and glucose to various humic materials (electron shuttles which then pass electrons abiotically to ferric iron oxyhydroxide and phyllosilicate minerals. Electron shuttles like AQDS, a tricyclic quinone, increase the rate of iron reduction by iron reducing bacteria on sites of iron oxides and oxyhydroxides. By increasing the rate of bioreduction of ferric iron, the solubility and availability of iron enhanced meaningfully. Royer et al. (2002 showed that bioreduction of hematite (common iron mineral in soils increased more than three times in the presence of AQDS and Shewanella putrefaciens comparedto control treatments. Previous works have mostly used synthetic minerals as electron acceptor in bioreduction process. Furthermore, the effect of quinones as electron acceptor for microorganisms were studied with poorly crystalline ferric iron oxides . The main objective of this study was to study the effect of AQS, humic acid and fulvic acid (as electron shuttle and Shewanella sp. and Pseudomonas aeruginosa, on bioreduction of native ferric iron in two acidic and calcareous soils. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in vitro condition. The soil samples collected

  7. A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study.

    Science.gov (United States)

    Furfaro, Francesco; Ang, Estabelle S M; Lareu, Ricky R; Murray, Kevin; Goonewardene, Mithran

    2014-01-06

    This study aims to investigate, utilising micro-computed tomography (micro-CT) and histology, whether the topical application of nerve growth factor (NGF) and/or epidermal growth factor (EGF) can enhance periodontal, alveolar bone, root and pulpal tissue regeneration while minimising the risk of pulpal necrosis, root resorption and ankylosis of replanted molars in a rat model. Twelve four-week-old male Sprague-Dawley rats were divided into four groups: sham, collagen, EGF and NGF. The maxillary right first molar was elevated and replanted with or without a collagen membrane impregnated with either the growth factors EGF or NGF, or a saline solution. Four weeks after replantation, the animals were sacrificed and the posterior maxilla was assessed using histological and micro-CT analysis. The maxillary left first molar served as the control for the corresponding right first molar. Micro-CT analysis revealed a tendency for all replanted molars to have reduced root length, root volume, alveolar bone height and inter-radicular alveolar bone volume. It appears that the use of the collagen membrane had a negative effect while no positive effect was noted with the incorporation of EGF or NGF. Histologically, the incorporation of the collagen membrane was found to negatively affect pulpal, root, periodontal and alveolar bone healing with pulpal inflammation and hard tissue formation, extensive root resorption and alveolar bone fragmentation. The incorporation of EGF and NGF did not improve root, periodontal or alveolar bone healing. However, EGF was found to improve pulp vascularisation while NGF-improved pulpal architecture and cell organisation, although not to the level of the control group. Results indicate a possible benefit on pulpal vascularisation and pulpal cell organisation following the incorporation of EGF and NGF, respectively, into the alveolar socket of replanted molars in the rat model. No potential benefit of EGF and NGF was detected in periodontal or root

  8. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting.

    Science.gov (United States)

    Kosugi, Akihiko; Tanaka, Ryohei; Magara, Kengo; Murata, Yoshinori; Arai, Takamitsu; Sulaiman, Othman; Hashim, Rokiah; Hamid, Zubaidah Aimi Abdul; Yahya, Mohd Khairul Azri; Yusof, Mohd Nor Mohd; Ibrahim, Wan Asma; Mori, Yutaka

    2010-09-01

    Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. An Opto-Electronic Sensor for Detecting Soil Microarthropods and Estimating Their Size in Field Conditions

    Directory of Open Access Journals (Sweden)

    Csongor I. Gedeon

    2017-08-01

    Full Text Available Methods to estimate density of soil-dwelling arthropods efficiently, accurately and continuously are critical for investigating soil biological activity and evaluating soil management practices. Soil-dwelling arthropods are currently monitored manually. This method is invasive, and time- and labor-consuming. Here we describe an infrared opto-electronic sensor for detection of soil microarthropods in the size range of 0.4–10 mm. The sensor is built in a novel microarthropod trap designed for field conditions. It allows automated, on-line, in situ detection and body length estimation of soil microarthropods. In the opto-electronic sensor the light source is an infrared LED. Two plano-convex optical lenses are placed along the virtual optical axis. One lens on the receiver side is placed between the observation space at 0.5–1 times its focal length from the sensor, and another emitter side lens is placed between the observation space and the light source in the same way. This paper describes the setup and operating mechanism of the sensor and the control unit, and through basic tests it demonstrates its potential in automated detection of soil microarthropods. The sensor may be used for monitoring activities, especially for remote observation activities in soil and insect ecology or pest control.

  10. Codonopilate A, a Triterpenyl Ester as Main Autotoxin in Cultivated Soil of Codonopsis pilosula (Franch.) Nannf.

    Science.gov (United States)

    Xie, Min; Yan, Zhiqiang; Ren, Xia; Li, Xiuzhuang; Qin, Bo

    2017-03-15

    Codonopilate A (1), a triterpenyl ester, was isolated from monocultivated soil of annual Codonopsis pilosula and identified as the main autotoxin. The yield ratio of codonopilate A in dried soil was calculated as 2.04 μg/g. Other two triterpenoids, taraxeryl acetate (2) and 24-methylenecycloartanol (3), were isolated and identified as well showing weaker autotoxity. This was the first time that the potential allelochemicals and autotoxins in the cultivated soil of Codonopsis pilosula were reported. Accumulation of reactive oxygen species (ROS) induced by the autotoxins in the root tips of Codonopsis pilosula was considered as an important factor for the phytotoxic effect. This work systematically investigates the allelopathic and autotoxic effect of Codonopsis pilosula, and the preliminary autotoxic action mode of the three autotoxins. These findings are helpful to understand the molecular mechanism of autotoxicity and conducive to explore proper ways to degrade the autotoxins and eliminate the replanting problems of Codonopsis pilosula.

  11. [Decoronation management of the replacement resorption after delayed replantation of avulsed teeth-case report with 4-year follow-up].

    Science.gov (United States)

    Ruizhen, Fang; Siyi, Li; Lei, Gao; Li'an, Wu

    2017-12-01

    Replacement resorption is the most frequent complication after delayed replantation of avulsed teeth. The resorption can interfere with the development of the alveolar ridge and lead to tilt of the adjacent teeth in growing patients. However, there is no means of arresting or reversing the process. Recently decoronation is recommended by International Assocaition of Dental Traumatology as the optimal choice to manage it. This paper demonstrates the procedure and effectiveness of the decoronation by literature review and a case report with 4-year follow-up.

  12. Characterization of uranium- and plutonium-contaminated soils by electron microscopy

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.; Brown, N.R.

    1995-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils from the Fernald Site in Ohio, and also plutonium-bearing 'hot particles, from Johnston Island in the Pacific Ocean. By examining Fernald samples that had undergone chemical leaching it was possible to observe the effect the treatment had on specific uranium-bearing phases. The technique of Heap leaching, using carbonate solution, was found to be the most successful in removing uranium from Fernald soils, the Heap process allows aeration, which facilitates the oxidation of uraninite. However, another refractory uranium(IV) phase, uranium metaphosphate, was not removed or affected by any soil-washing process. Examination of ''hot particles'' from Johnston Island revealed that plutonium and uranium were present in 50--200 nm particles, both amorphous and crystalline, within a partially amorphous aluminum oxide matrix. The aluminum oxide is believed to have undergone a crystalline-to-amorphous transition caused by alpha-particle bombardment during the decay of the plutonium

  13. Classification and evaluation of the functional results of replanted parts of the hand at the Prince of Wales Hospital and the Prince of Wales Children's Hospital: 1984 to 1988.

    Science.gov (United States)

    Milroy, B C; Sackelariou, R P; Lendvay, P G; Baldwin, M R; McGlynn, M

    1991-01-01

    This paper describes a simple method of classification and evaluation of the functional results of replanted and revascularized parts in the hand. The results are presented in graphic form and have been analyzed to correlate various factors: injured part, cause, and zone (level) of injury. The type of injury, ischemic time and age have been studied in more detail to determine their influence of the final functional result. The series contains 187 amputated and devascularized parts of the hand in 119 patients who have undergone surgery at the Prince of Wales Hospital from 1984 through 1988. The length of cold or warm ischemic times, up to 16 hours in this series, while not affecting survival of the amputated part, does adversely affect the functional result. The survival rate of replanted parts in children was significantly less favorable than in adults, but the functional results were uniformly superior.

  14. Scanning electronic microscopy on clays in soils used as road foundations

    International Nuclear Information System (INIS)

    Barelli, N.

    1982-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the morphology, texture and fabric of clays in soils used as road foundation. It is also seen that certain samples are easier to examine by SEM because of their larger crystallite sizes, better crystallinities and open textures. (C.L.B.) [pt

  15. Ronald Malt or Chen Zhongwei: Who performed the first surgical replantation?

    Science.gov (United States)

    Fan, Ka-Wai

    2018-01-01

    This article discusses the contributions of the two pioneers of the surgical procedure of replantation-Ronald Malt in the US and Chen Zhongwei in China. Ronald Malt performed the reattachment surgery on a boy who had an accident in 1962, but he published his case report two years later in 1964. Chen Zhongwei performed a similar surgery on a worker who cut off his forearm in 1963, but he published his case report the same year. There is some debate about which one of these reputed surgeons should be given credit for being the first one to perform this breakthrough surgery, because although Malt was the first to perform the procedure, Zhongwei was the first to report it. To shed light on this controversy, criteria for scientific priority suggested by Ronald Vale and Anthony Hyman were applied. Although the criteria mainly favored Zhongwei as the pioneer of this procedure, he did not entirely fulfill one of the criteria. Therefore, the article could not present a definitive answer to the question, and it concludes by pointing out the highly commendable achievements and contributions of both Ronald Malt and Chen Zhongwei.

  16. 7 CFR 457.147 - Central and Southern potato crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... from within the soil to the soil surface. Hundredweight. One hundred (100) pounds avoirdupois. Lot. A... one of the Basic Provisions, practical to replant is defined as our determination, after loss or... care for or harvest them. Potatoes that are lifted to the soil surface and not removed from the field...

  17. Mwebaze et al ACSJ 121-127 vol 14 (2).pmd

    African Journals Online (AJOL)

    Administrator

    Viable pathogen cells survived for slightly a longer period in soil in the field than non-sterile soil under ... plants. Bananas are the most important food crop in Uganda according to annual production, ... guide farmers on when it is safe to replant.

  18. Involvement of an autotoxic compound in asparagus decline.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Nakamura, Keisuke; Okuda, Nobuyuki

    2018-03-19

    Asparagus (Asparagus officinalis L.) is a widely cultivated perennial veritable and can be harvested more than ten years. However, the crop quality and yield decline after a few year's cultivation, which is called "asparagus decline". Even though those asparagus plants were replaced with new young asparagus plants, the productivity and quality of the crop remain relatively low, which is known as a "asparagus replant problem". One of the possible reasons for "asparagus decline" and "asparagus replant problem" is thought to be autotoxicity of asparagus. However, the compounds involved in the autotoxicity is not clear. The objective of this study was therefore to determine the potential role of autotoxicity in the "asparagus decline" and "asparagus replant problem". An aqueous methanol extract of 10-year-asparagus-cultivated soils inhibited the growth of asparagus seedlings and other two test plants with concentration dependent manner. The result confirmed that the asparagus soils have autotoxic activity. The extract was then purified by several chromatographies with monitoring the inhibitory activity and a potent growth inhibitory substance causing the autotoxic effect was isolated. The chemical structures of the compound was determined by spectral data to be trans-cinnamic acid. trans-Cinnamic acid inhibited the growth of asparagus seedlings at concentrations greater than 10 μM. The concentrations required for 50% growth inhibition of asparagus (IC 50 ) were 24.1-41.6 μM. trans-Cinnamic acid accumulated 174 μM in the 10-year-asparagus-cultivated soils, which may be enough levels to cause the growth inhibition on asparagus considering its IC 50 value. Therefore, trans-cinnamic acid may contribute to the autotoxic effect of asparagus soils, and may be in part responsible for "asparagus decline" and "asparagus replant problem". Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Electron microscopic examination of uncultured soil-dwelling bacteria.

    Science.gov (United States)

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  20. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system.

    Science.gov (United States)

    Wei, Wei; Yang, Min; Liu, Yixiang; Huang, Huichuan; Ye, Chen; Zheng, Jianfen; Guo, Cunwu; Hao, Minwen; He, Xiahong; Zhu, Shusheng

    2018-08-15

    Replant failure caused by negative plant-soil feedback (NPFS) in agricultural ecosystems is a critical factor restricting the development of sustainable agriculture. Soil nutrient availability has the capacity to affect plant-soil feedback. Here, we used sanqi (Panax notoginseng), which is severely threatened by NPSF, as a model plant to decipher the overall effects of nitrogen (N) rates on NPSF and the underlying mechanism. We found that a high rate of N at 450kgNha -1 (450N) aggravated the NPSF through the accumulation of pathogens in the soil compared with the optimal 250N. The increased N rates resulted in a significant increase in the soil electrical conductivity and available nitrogen but a decrease in the soil pH and C/N ratio. GeoChip 5.0 data demonstrated that these changed soil properties caused the soil to undergo stress (acidification, salinization and carbon starvation), as indicated by the enriched soil microbial gene abundances related to stress response and nutrition cycling (N, C and S). Accordingly, increased N rates reduced the richness and diversity of soil fungi and bacteria and eventually caused a shift in soil microbes from a bacterial-dominant community to a fungal-dominant community. In particular, the high 450N treatment significantly suppressed the abundance of copiotrophic bacteria, including beneficial genera Bacillus and Pseudomonas, thus weakening the antagonistic activity of these bacteria against fungal pathogens. Moreover, 450N application significantly enriched the abundance of pathogen pathogenicity-related genes. Once sanqi plants were grown in this N-stressed soil, their host-specific fungal pathogen Fusarium oxysporum significantly accumulated, which aggravated the process of NPSF. This study suggested that over-application of nitrogen is not beneficial for disease management or the reduction of fungicide application in agricultural production. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    Science.gov (United States)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  2. Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil

    Science.gov (United States)

    Wu, Hongmiao; Wu, Linkun; Wang, Juanying; Zhu, Quan; Lin, Sheng; Xu, Jiahui; Zheng, Cailiang; Chen, Jun; Qin, Xianjin; Fang, Changxun; Zhang, Zhixing; Azeem, Saadia; Lin, Wenxiong

    2016-01-01

    Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence. PMID:27014250

  3. Effects of arbuscular mycorrhizae on microbial population and ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal (AM) fungi are ubiquitous fungi distributed widely in soil ecosystems. It has been showed that AM fungi play an important role in improving soil nutrition and enhancing crop disease resistance, which have great application potentials in overcoming crop replant problems. In order to evaluate the effects ...

  4. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Hu, Jia [Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu (China); Wang, Jinqi; Chen, Xuerong; Yao, Na [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Tao, Jing, E-mail: jingtao1982@126.com [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Yi-Kai, E-mail: zhouyk@mails.tjmu.edu.cn [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n = 6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n = 142). Total PAEs varied from 2.21 to 157.62 mg kg{sup −1} in non-industrialized areas and from 8.63 to 171.64 mg kg{sup −1} in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P < 0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r{sup 2} = 0.944, P < 0.01) and the industrialized area (r{sup 2} = 0.860, P < 0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. - Highlights: • A new method for determining phthalate esters in soil samples was developed. • Investigate six phthalates near an industry and a

  5. Inference of soil hydrologic parameters from electronic soil moisture records

    Science.gov (United States)

    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...

  6. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    International Nuclear Information System (INIS)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 μm in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level

  7. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fangbai [Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650 (China); Jiang, Longfei [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Yan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). - Highlights: • The biodegradation PCBs and PBDEs in e-waste contaminated soils was studied. • DIRB and arylhalorespiring bacteria were responsive to dehalogenation respiration. • Soil bacteria and Fe ion cycling play synergistic roles in dehalogenation.

  8. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.

    Science.gov (United States)

    SooHoo, William M; Wang, Cuizhen; Li, Huixuan

    2017-04-01

    Agricultural land use change, especially corn expansion since 2000s, has been accelerating to meet the growing bioenergy demand of the United States. This study identifies the environmentally sensitive lands (ESLs) in the U.S. Midwest using the distance-weighted Revised Universal Soil Loss Equation (RUSLE) associated with bioenergy land uses extracted from USDA Cropland Data Layers. The impacts of soil erosion to downstream wetlands and waterbodies in the river basin are counted in the RUSLE with an inverse distance weighting approach. In a GIS-ranking model, the ESLs in 2008 and 2011 (two representative years of corn expansion) are ranked based on their soil erosion severity in crop fields. Under scenarios of bioenergy land use change (corn to grass and grass to corn) on two land types (ESLs and non-ESLs) at three magnitudes (5%, 10% and 15% change), this study assesses the potential environmental impacts of bioenergy land use at a basin level. The ESL distributions and projected trends vary geographically responding to different agricultural conversions. Results support the idea of re-planting native prairie grasses in the identified High and Severe rank ESLs for sustainable bioenergy management in this important agricultural region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Heavy metals in soil at a waste electrical and electronic equipment processing area in China.

    Science.gov (United States)

    Gu, Weihua; Bai, Jianfeng; Yao, Haiyan; Zhao, Jing; Zhuang, Xuning; Huang, Qing; Zhang, Chenglong; Wang, JingWei

    2017-11-01

    For the objective of evaluating the contamination degree of heavy metals and analysing its variation trend in soil at a waste electrical and electronic equipment processing area in Shanghai, China, evaluation methods, which include single factor index method, geo-accumulation index method, comprehensive pollution index method, and potential ecological risk index method, were adopted in this study. The results revealed that the soil at a waste electrical and electronic equipment processing area was polluted by arsenic, cadmium, copper, lead, zinc, and chromium. It also demonstrated that the concentrations of heavy metals were increased over time. Exceptionally, the average value of the metalloid (arsenic) was 73.31 mg kg -1 in 2014, while it was 58.31 mg kg -1 in the first half of 2015, and it was 2.93 times and 2.33 times higher than that of the Chinese Environmental Quality Standard for Soil in 2014 and the first half of 2015, respectively. The sequences of the contamination degree of heavy metals in 2014 and the first half of 2015 were cadmium > lead > copper > chromium > zinc and cadmium > lead > chromium > zinc > copper. From the analysis of the potential ecological risk index method, arsenic and cadmium had higher ecological risk than other heavy metals. The integrated ecological risk index of heavy metals (cadmium, copper, lead, zinc, and chromium) and metalloid (arsenic) was 394.10 in 2014, while it was 656.16 in the first half of 2015, thus documenting a strong ecological risk.

  10. The Effect of Restoration on Soil Respiration in an Urban Tidal Wetland in the Meadowlands, New Jersey

    Science.gov (United States)

    Schafer, K. V.; Kurepa, S.; Duman, T.; Scott, M.; Pechmann, I.; Vanderklein, D. W.

    2017-12-01

    The effect of wetland restoration on soil respiration in tidal brackish marshes has not been comprehensively studied. In New Jersey, common mitigation efforts come in the form of the removal of an invasive haplotype of Phragmites australis and replanting of native species, resulting in significant habitat disturbance. This study investigated the differences in soil respiration within and between areas covered with P. australis, Spartina alterniflora, and Spartina patens. We performed static chamber measurements of soil respiration using an infrared gas analyzer to measure CO2 fluxes in a natural site and a mitigated site in the Meadowlands of New Jersey. Daytime measurements were performed in 10 random locations in areas populated with each of the vegetation types, to represent the spatial heterogeneity of the wetland area, during summer 2017. Due to the nature of the wetland, vegetation had to be removed to uncover the soil. Prior to measuring exposed soil respiration, we therefore measured CO2 flux including the vegetation within the chamber, which allowed us to additionally calculate the respiration including the vegetation. Furthermore, we assessed direct respiration of green leaves with leaf gas exchange measurements. Combining these different methodologies and scales allow us to estimate the function of different components that contribute to total respiration from the wetland, and how they change spatially and temporally. Initial results showed that soil respiration in P. australis patches was much higher than in both Spartina species, however average vegetation respiration per unit mass was similar across all three. Vegetation respiration and soil respiration are of the same order of magnitude in all three species as well. Also, when respiration with and without vegetation was combined, P. australis showed a considerably higher flux.

  11. A low-cost electronic tensiometer system for continuous monitoring of soil water potential

    Directory of Open Access Journals (Sweden)

    Martin Thalheimer

    2013-12-01

    Full Text Available A low cost system for measuring soil water potential and data logging was developed on the basis of an Arduino microcontroller board, electronic pressure transducers and water-filled tensiometers. The assembly of this system requires only minimal soldering, limited to the wiring of the power supply and the pressure sensors to the microcontroller board. The system presented here is, therefore, not only inexpensive, but also suited for easy reproduction by users with only basic technical skills. The utility and reliability of the system was tested in a commercial apple orchard.

  12. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    Science.gov (United States)

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  13. Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing.

    Science.gov (United States)

    Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing

    2017-12-15

    Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  15. A two-layer application of the MAGIC model to predict the effects of land use scenarios and reductions in deposition on acid sensitive soils in the UK

    Directory of Open Access Journals (Sweden)

    R. C. Helliwell

    1998-01-01

    Full Text Available A two-layer application of the catchment-based soil and surface water acidification model, MAGIC, was applied to 21 sites in the UK Acid Waters Monitoring Network (AWAMN, and the results were compared with those from a one-layer application of the model. The two-layer model represented typical soil properties more accurately by segregating the organic and mineral horizons into two separate soil compartments. Reductions in sulphur (S emissions associated with the Second S Protocol and different forestry (land use scenarios were modelled, and their effects on soil acidification evaluated. Soil acidification was assessed in terms of base saturation and critical loads for the molar ratio of base cations (CA2+ + MG 2+ + K+ to aluminium (Al in soil solution. The results of the two-layer application indicate that base saturation of the organic compartment was very responsive to changes in land use and deposition compared with the mineral soil. With the two- layer model, the organic soil compartment was particularly sensitive to acid deposition, which resulted in the critical load being predicted to be exceeded at eight sites in 1997 and two sites in 2010. These results indicate that further reductions in S deposition are necessary to raise the base cation (BC:Al ratio above the threshold which is harmful to tree roots. At forested sites BC:Al ratios were generally well below the threshold designated for soil critical loads in Europe and forecasts indicate that forest replanting can adversely affect the acid status of sensitive term objectives of protecting and sustaining soil and water quality. Policy formulation must seek to protect the most sensitive environmental receptor, in this case organic soils. It is clear, therefore, that simply securing protection of surface waters, via the critical loads approach, may not ensure adequate protection of low base status organic soils from the effects of acidification.

  16. A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

    Science.gov (United States)

    Ghestem, Murielle; Cao, Kunfang; Ma, Wenzhang; Rowe, Nick; Leclerc, Raphaëlle; Gadenne, Clément; Stokes, Alexia

    2014-01-01

    Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

  17. A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

    Directory of Open Access Journals (Sweden)

    Murielle Ghestem

    Full Text Available Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

  18. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    Science.gov (United States)

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  19. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.

    1999-01-01

    used: a business as usual scenario (BAU) and a restrictive critical load scenario (CL). The BAU scenario leads to a strong decrease in both Al concentrations and pH in the topsoil of the Dutch and the Danish sites due to a decrease in the amount of amorphous Al compounds. The decline in pH leads...... is predicted for northern Sweden as deposition levels are below critical loads. Soil chemistry at the recently replanted Swedish sites is dominated by changes in N cycling instead of by deposition. The CL scenario leads, especially after 2010, to a stronger decline in Al concentration compared with the BAU...... are still declining on the Danish and Dutch sites in 2090. It is concluded that deposition levels above critical loads lead to exhaustion of the pool of amorphous Al compounds and a decline in pH. Base saturation does not decline due to an increase in mineralization with stand age and an increase...

  20. Results after replantation of avulsed permanent teeth. II. Periodontal healing and the role of physiologic storage and antiresorptive-regenerative therapy.

    Science.gov (United States)

    Pohl, Yango; Filippi, Andreas; Kirschner, Horst

    2005-04-01

    The status of the periodontal ligament (PDL) and of the pulp are decisive for the healing of avulsed and replanted teeth. A tooth rescue box was developed and distributed to offer optimal storage conditions for avulsed teeth. The therapy comprised extraoral endodontic treatment and applications of medicaments to enhance periodontal healing. In this long-term clinical study the healing results following avulsion and replantation were investigated. Twenty-eight permanent teeth in 24 patients were evaluated. The extraoral storage media and periods varied considerably. Soon after avulsion six teeth were stored in a cell culture medium (tooth rescue box Dentosafe) for 1-53 h; the PDL was defined as not compromised. Sixteen teeth were stored in a non-physiologic situation temporarily, the PDL was considered as compromised. Six teeth were stored in non-physiologic conditions for longer periods; the condition of the PDL was defined as hopeless. On 14 teeth antiresorptive-regenerative therapy (ART) with the local application of glucocorticoids and enamel matrix derivative and the systemic administration of doxycyclin was used. In all teeth extraoral endodontic treatment by retrograde insertion of posts was performed. The mean observation period was 31.2 months (+/-24.1; 5.1-100.2; median: 23.8). All six teeth rescued physiologically healed with a functional PDL (functional healing, FH) irrespective of the storage period. Of eight teeth with a compromised PDL on which ART was used, three teeth healed with a functional PDL. All other teeth showed replacement resorption, in three teeth additionally infection-related resorption was recorded. The predominant influence on the healing results was the immediate physiologic rescue of avulsed teeth (chi-square, P = 0.0001). The use of ART seemed to support FH (chi-square, P = 0.0547) in teeth with a compromised PDL. No other factors (maturity of roots, crown fractures, gender, age, antibiotics) were related to healing. In a linear

  1. TECHNIQUE OF EXTRACORPOREAL PARTIAL NEPHRECTOMY IN TERMS OF PHARMACO-COLD ISCHEMIA WITHOUT CROSSING THE URETER WITH RENAL VESSELS ORTHOTOPIC REPLANTATION IN PATIENTS WITH RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Alexander Gritskevitch

    2015-01-01

    Full Text Available Background. The most difficult is to determine medical tactics in patients with renal cell carcinoma (RCC with intraparenchimal and central localization in the single, the only functioning kidney, as well as with a combination of tumor and other illnesses in contralateral kidney. Partial nephrectomy leading to renal replacement therapy results in life-threatening complications and poor prognosis. The priority is to develop organ-preserving treatment: from minimally invasive endoscopic surgery to ex vivo kidney resection. Aim: to develop a technique of extracorporeal partial nephrectomy in terms of pharmaco-cold ischemia without crossing the ureter with renal vessels orthotopic replantation in patients with RCC. Materials and methods. The study included 37 patients with pT1a-T3vN0M0-1G1-3 RCC with intraparenchymal and central tumor location. The average age of the patients was 55.32 ± 13.1 years. The ratio of men and women - 2.7:1. Bilateral renal tumors were observed in 3 (8.1% patients, and the RCC of the single functioning kidney in 6 (16.2% patients. One patient (2.7% was diagnosed RCC of a single kidney with intraluminal invasion (cava-renal form. Results. The mean operation time was 413.97 ± 89.14 minutes. The mean warm ischemia time – 8.39 ± 4.75 minutes. Cold ischemia lasted from 70 to 240 minutes, on the average 151.41 ± 41.29 min. The amount of blood loss made up 729.03 ± 481.4 ml. Perioperative complications were detected in 3 (8.1% patients. In two cases after starting the renal blood flow the kidney was found to be nonviable and had to be removed. And in one case the recurrent prosthetic thrombosis of the renal artery resulted in a renal scarring. Postoperative complications were observed in 18 (48.6% patients. According to Clavien-Dindo classification there were 8 low grade (I-II degree complications (44.4%, 8 other of III degree, and one IV degree complication, and there was one lethal case (V degree. Conclusion

  2. Problèmes entomologiques en replantation des palmeraies et des cocoteraies

    Directory of Open Access Journals (Sweden)

    Mariau Dominique

    2000-03-01

    Full Text Available C’est aux alentours de la vingt-cinquième année que l’on envisage de replanter une palmeraie. C’est en effet vers cet âge que commencent à se poser des problèmes de récolte en raison de la taille des palmiers. En un quart de siècle, l’amélioration génétique aura suffisamment fait de progrès pour escompter un gain de production de l’ordre de 20%. Enfin, dans certaines situations, plusieurs maladies ont pu affecter les vieilles palmeraies. Avec de 15 à 25% d’arbres manquants, principalement lorsque ceux-ci se présentent sous la forme de taches, une diminution de la production se fait nettement sentir. Cela peut, par exemple, être le cas avec les maladies de la fusariose en Afrique de l’Ouest, lorsque la palmeraie n’a pas été plantée avec du matériel végétal tolérant, ou du ganoderma en Malaisie. Le renouvellement des cocoteraies se fait avec un espace de temps beaucoup plus long. En effet, la récolte des noix peut se faire au sol et la hauteur des cocotiers n’est donc pas un facteur limitant. Par ailleurs, la majorité des cocoteraies étant sous la forme de petites plantations villageoises, les agriculteurs rechignent toujours à abattre leurs cocotiers, même si des semences potentiellement plus productives leurs sont proposées. Ce sont les raisons pour lesquelles les cocoteraies de 50 ans et plus représentent la règle. L’abattage d’une plantation de palmiers à huile ou de cocotiers constitue naturellement un changement brutal de l’environnement, ce qui a des conséquences importantes notamment sur l’entomofaune, parmi laquelle des ravageurs majeurs ainsi que leurs ennemis naturels.

  3. Survey of interculture practices and research in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Newman, S M

    1985-01-01

    Details are given of species composition, spatial arrangement and justification for growing the crops as mixtures (soil conservation, generation of fuels and fodder, incentives for replanting, export diversification, microclimate modification and reduction of pest incidence). The systems include intercropping in tea, rubber and coconut plantations, spice gardens and alley cropping between leguminous tree crops. 19 references.

  4. Impact of Soil Texture on Soil Ciliate Communities

    Science.gov (United States)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  5. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system.

    Science.gov (United States)

    Zhao, Yongpo; Wu, Linkun; Chu, Leixia; Yang, Yanqiu; Li, Zhenfang; Azeem, Saadia; Zhang, Zhixing; Fang, Changxun; Lin, Wenxiong

    2015-02-03

    In this study, quantitative real-time PCR (qPCR) was used to determine the amount of Fusarium oxysporum, an important replant disease pathogen in Pseudostellaria heterophylla rhizospheric soil. Moreover, HPLC was used to identify phenolic acids in root exudates then it was further to explore the effects of the phenolic acid allelochemicals on the growth of F. oxysporum f.sp. heterophylla. The amount of F. oxysporum increased significantly in P. heterophylla rhizosphere soil under a consecutive replant system as monitored through qPCR analysis. Furthermore, the growth of F. oxysporum f.sp. heterophylla mycelium was enhanced by root exudates with a maximum increase of 23.8%. In addition, the number of spores increased to a maximum of 12.5-fold. Some phenolic acids promoted the growth of F. oxysporum f.sp. heterophylla mycelium and spore production. Our study revealed that phenolic acids in the root secretion of P. heterophylla increased long with its development, which was closely related to changes in rhizospheric microorganisms. The population of pathogenic microorganisms such as F. oxysporum in the rhizosphere soil of P. heterophylla also sharply increased. Our results on plant-microbe communication will help to better clarify the cause of problems associated with P. heterophylla under consecutive monoculture treatment.

  6. Electrochemically induced reactions in soils - a new approach to the in-situ remediation of contaminated soils?

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Roehrs, J. [Dresden Univ. of Technology, Inst. of Physical Chemistry and Electrochemistry (Germany); Neumann, V.; Nitsche, C.; Guderitz, I. [Soil and Groundwater Lab. GmbH, Dresden (Germany)

    2001-07-01

    Electrochemical reactions can be induced in soils if the soil matrix contains particles or films with electronic conducting properties ('microconductors'). In these cases the wet soil may act as a 'diluted' electrochemical solid bed reactor. A discussion of this reaction principle within the soil matrix will be presented here. It will be shown, that under certain conditions immobile organic contaminants may be converted. (orig.)

  7. Practical improvements in soil redox potential (Eh) measurement for characterisation of soil properties. Application for comparison of conventional and conservation agriculture cropping systems

    Energy Technology Data Exchange (ETDEWEB)

    Husson, Olivier, E-mail: Olivier.husson@cirad.fr [CIRAD/PERSYST/UPR 115 AIDA and AfricaRice Centre, 01 BP 2031 Cotonou (Benin); Husson, Benoit, E-mail: bhusson@ideeaquaculture.com [IDEEAQUACULTURE, Parc Euromédecine 2, 39 Rue Jean Giroux, 34080 Montpellier (France); Brunet, Alexandre, E-mail: brunet.alexandre@outlook.com [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Babre, Daniel, E-mail: Daniel.babre@cirad.fr [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Alary, Karine, E-mail: Karine.alary@cirad.fr [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Sarthou, Jean-Pierre, E-mail: sarthou@ensat.fr [ENSAT/INRA/INP UMR AGIR. BP 52627, Chemin de Borde Rouge, 31326 Castanet-Tolosan Cedex (France); Charpentier, Hubert, E-mail: Charpentier.hub@wanadoo.fr [La Boisfarderie, Brives 36100 (France); Durand, Michel, E-mail: earldeslacs@orange.fr [Le Cazals, Castanet 81 150 (France); Benada, Jaroslav, E-mail: benada@vukrom.cz [Agrotest fyto, Kromeriz Institute, Havlíckova 2787, 76701 Kromeriz (Czech Republic); Henry, Marc, E-mail: henry@unistra.fr [UMR CNRS/UdS 7140, Université de Strasbourg, Institut Le Bel, 4, rue Blaise Pascal, CS 90032, Strasbourg 67081 (France)

    2016-02-04

    The soil redox potential (Eh) can provide essential information to characterise soil conditions. In practice, however, numerous problems may arise regarding: (i) Eh determination in soils, especially aerobic soils, e.g. variations in the instrumentation and methodology for Eh measurement, high spatial and temporal Eh variability in soils, irreversibility of the redox reaction at the surface electrode, chemical disequilibrium; and (ii) measurement interpretation. This study aimed at developing a standardised method for redox potential measurement in soils, in order to use Eh as a soil quality indicator. This paper presents practical improvements in soil Eh measurement, especially regarding the control of electromagnetic perturbations, electrode choice and preparation, soil sample preparation (drying procedure) and soil:water extraction rate. The repeatability and reproducibility of the measurement method developed are highlighted. The use of Eh corrected at pH7, pe+pH or rH{sub 2}, which are equivalent notions, is proposed to facilitate interpretation of the results. The application of this Eh measurement method allows characterisation of soil conditions with sufficient repeatability, reproducibility and accuracy to demonstrate that conservation agriculture systems positively alter the protonic and electronic balance of soil as compared to conventional systems. - Highlights: • Electromagnetic fields can dramatically perturb soil Eh measurement. • Our method overcomes the main difficulties in soil Eh measurement. • Accurate and reproducible measurement of mean soil Eh are achieved. • Eh{sub pH7}, pe+pH and rH{sub 2} are equivalent notions characterising electron activity. • Agricultural practices alter soil protonic and electronic characteristics.

  8. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    Science.gov (United States)

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  9. The use of 32P radioisotope techniques for evaluating the relative agronomic effectiveness of phosphate rock materials in a soybean-maize crop rotation in acid soils of Thailand

    International Nuclear Information System (INIS)

    Mahisarakul, J.; Pakkong, P.

    2002-01-01

    A series of greenhouse experiments was conducted over three years to evaluate the relative agronomic effectiveness (RAE) of phosphate rock materials in a soybean - maize crop sequence, using 32 P isotope dilution techniques. For the first two years, the crops were grown in a pot experiment in four acid soils of Thailand. In the first year, four increasing rates of TSP and one rate of four phosphate rocks (PRs) were used. The PRs used were Algerian PR, North Carolina PR, Petchaburi PR, and Ratchaburi PR. Soybean did not respond to P application from TSP, while there was good response in maize which was planted after soybean (1st residual effect). The percent P derived from TSP or PR fertilizer (%Pdff) had the following order: Warin soil > Mae Tang soil > Rangsit soil > Pakchong soil for soybean and Warin soil > Pakchong soil > Rangsit soil > Mae Tang soil for maize. In the second year, the soybean - maize rotation was replanted to study the residual effect of TSP and PRs, both applied at 180 mg P kg -1 . No significant response of soybean and maize to TSP was found in terms of dry matter yield. In terms of %Pdff and %RAE the soils ranked as follows: Rangsit soil > Pakchong soil Mae Tang soil > Warin soil for soybean and Warin soil > Rangsit soil > Mae Tang > Pakchong soil for maize. Both crops absorbed more P from TSP than from PRs. The %RAE in the 2nd year experiment was higher than %RAE in the 1st year In the third year, TSP and two PRs were applied at one P rate to Pakchong and Warin soils. The applied PRs were North Carolina PR (NCPR) and Lamphun phosphate rock (LPPR). PRs were applied either alone or in combination with TSP (50:50). Soybean was planted first, followed by maize. The P-response in terms of dry matter yield and %Pdff was highly significant in both soils. The RAE ranked as follows: TSP > NCPR + TSP > LPPR + TSP > NCPR > LPPR. Maize showed the same trend in RAE as soybean in both soils. The RAE for both crops was highest in Warin soil. (author)

  10. Distribution of uranium-bearing phases in soils from Fernald

    International Nuclear Information System (INIS)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO 3 ) 4 ]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil

  11. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana.

    Science.gov (United States)

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M

    2016-01-01

    This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.

  12. Environmental behavior of soils and mixtures of soil-whitewash mud

    OpenAIRE

    Machado,Carlos Cardoso; Pires,José Maurício Machado; Fontes,Maurício Paulo F.; Pereira,Reginaldo Sérgio; Portugal,Carla Ribeiro Machado e

    2004-01-01

    The present study sought to observe the behavior of soils in natural state and in mixtures, in different ratios, with the industrial solid residue called whitewash mud. The work was conducted with samples of typical soils from the region of Alagoinhas, Bahia-Brazil. Wet chemical analysis and atomic absorption spectrophotometry were used in order to obtain the classification of the industrial solid residue. Solubilization and leaching tests were performed and X-ray diffraction and electron mic...

  13. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  14. Development of soil-cement blocks with three interventions: natural soil, soil corrected with sand and soil more phase change materials (PCMs)

    International Nuclear Information System (INIS)

    Dantas, Valter Bezerra; Gomes, Uilame Umbelino; Reis, Edmilson Pedreira; Valcacer, Samara Melo; Silva, A.S.

    2014-01-01

    In this work, the results of characterization tests of soil samples collected in Mossoro-RN, UFERSA-RN Campus, located approximately 20 meters high, and "5 ° 12'34.68 south latitude and 37 ° 19'5.74 "west longitude, with the purpose of producing soil-cement for the manufacture of pressed blocks with good resistance to compression and thermal stability. The following tests were performed: granulometry, plasticity limit, liquidity limit, particle size correction, scanning electron microscopy (SEM), X-ray fluorescence. In this soil, based on the results of the granulometric analysis, 10% of medium sand with 3% and 5% of eicosane paraffin and 10% of medium sand with 3% and 5% of paraffin 120 / 125F were added, forming analysis compositions, standard soil-cement block and natural soil-cement block with addition of 10% medium sand and 0% paraffin. Paraffins are referred to as PCMs (Phase Change Material). The contrasting effect between the different dosages on the compressive strength values of the soil-cement blocks was observed. The objective is to create new materials that give the block quality equal to or higher than the recommendations of ABNT norms, and that offer greater thermal comfort in the constructions. Soil particles of different sizes were added to 8% (by weight) of cement, and about 9.20% of water added to the mixture

  15. Promoting Interspecies Electron Transfer with Biochar

    Science.gov (United States)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Malvankar, Nikhil S.; Liu, Fanghua; Fan, Wei; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions. PMID:24846283

  16. Dispersive liquid-liquid microextraction combined with gas chromatography-electron capture detection for the determination of polychlorinated biphenyls in soils

    International Nuclear Information System (INIS)

    Hu Jia; Fu Lingyan; Zhao Xinna; Liu Xiujuan; Wang Huili; Wang Xuedong; Dai Liyan

    2009-01-01

    In this article, dispersive liquid-liquid microextraction (DLLME) and gas chromatography-electron capture detection (GC-ECD) were presented for the extraction and determination of five polychlorinated biphenyls (PCBs) in soil samples. Acetone was used as extraction solvent for the extraction of PCBs from soil samples. In DLLME, the target analytes in the extraction solvent were rapidly transferred from the acetone extract to chlorobenzene when the extraction process began. The main advantages of this method are quick speed, high enrichment factor, high recovery and good repeatability. Under the optimum conditions, the method yields a linear calibration curve in the concentration range from 2 to 2000 μg kg -1 for PCB 52, and 0.4 to 400 μg kg -1 for other target analytes. Coefficients of correlation (r 2 ) ranged from 0.9993 to 0.9999. The repeatability was tested by spiking soil samples at a concentration level of 10 μg kg -1 for PCBs. The relative standard deviations (RSDs, n = 11) varied between 2.2% and 6.4%. The limits of detection (LODs), based on signal-to-noise (S/N) of 3, were between 0.20 and 0.50 μg kg -1 . The relative recoveries of the five PCBs from soil S1, S2 and S3 at spiking levels of 10, 20 and 50 μg kg -1 were in the range of 88.70-103.8%, 82.50-106.3% and 82.30-113.6%, respectively. Therefore, DLLME combined with GC-ECD can be successfully applied for the determination of trace PCB residues in real soil samples.

  17. Remediation of Nitrobenzene Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Effluent Oxidation with Persulfate

    Science.gov (United States)

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532

  18. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    Science.gov (United States)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet

  19. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region.

    Science.gov (United States)

    Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao

    2017-12-01

    Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Choppala, Girish [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Seshadri, Balaji [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia)

    2013-10-15

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils.

  1. Ear replanatation: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Krešimir Božikov

    2013-10-01

    Full Text Available Background: Total ear amputation is a rare accident. The most common causes are traffic accidents (33 %, followed by fights (28 %. In 1980, Pennington et al. reported the first successful microsurgical ear replantation in a 29-year old man.Methods: An English literature review of trauma cases of total ear amputation showed only 13 successful replantations with arterial and venous microanastomoses. We present a case report of successful total ear replantation with arterial and vein microanastomoses in a 17-year old boy.Results: Our ear replantation with both arterial and venous anastomoses performed was successful and we achieved an excellent aesthetic outcome.Conclusion: The reason for such a low number of successful ear replantations is technical challenge due to small vessel diameter, difficult vessel identification, vessel approach and concomitant avulsion injury. The best aesthetic result in ear reconstruction is achieved by microsurgical replantation. The surgical technique depends on the intraoperative findings. Since ear replantation is a very challenging procedure, a microsurgeon needs to discuss with the patient the risk of partial/total necrosis of the replanted ear and the possibilities of other reconstructive options.

  2. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  3. EFFECTS OF EDTA ON LEA indica) SEEDLINGS REPLANTE ECTS ...

    African Journals Online (AJOL)

    userpc

    Lead (Pb) is one of the widely distributed an most abundant toxic elements in the soil. exerts adverse effects on ... on morphology, growth esses of plants. 1975 ... l plants. The harvesting or EDTA. The pH ntration of Pb2+ before er harvest. The weights .... reported that toxicity symptoms in Indian mustard exposed to Pb and.

  4. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  5. Potentialities of line planting technique in rehabilitation of logged over area referred to species diversity, growth and soil quality

    Directory of Open Access Journals (Sweden)

    PRIJANTO PAMOENGKAS

    2010-01-01

    Full Text Available Pamoengkas P (2010 Potentialities of line planting technique in rehabilitation of logged over area referred to species diversity, growth and soil quality. Biodiversitas 11: 34-39. Human interventions in the utilization of tropical forest resources are experiencing unanticipated consequences. The selective logging practices generally cause considerable damage to vegetation and the soil surface. It is supposed that soil condition and vegetation growth rate are deteriorated and reduced. Therefore, scientist strongly argue that the only way to achieve sustainability of Indonesian natural forest will require that the production natural forest is managed through methods that are acceptable from the perspective of environment as well as timber production. This means that there will be a strong need and incentive for methods and innovative technology. For more than two decades, tropical rainforest in Indonesia have been managed intensively under the Indonesian selective cutting (TPI and later on by the Indonesian selective cutting and replanting (TPTI and then, selective cutting and line planting (TPTJ system. TPTJ, as one example of selective cutting, recently become a proper alternative should be taken into consideration in the management of production natural forest in Indonesia by planting dipterocarp species in line. In this system, planting line (width 3 m and intermediate line (width 17 m are made alternately. The initial width of line is 3 m and to be expanded until 10 m within 5 years to introduce more light. The objective of this research was to assess growth and soil quality of TPTJ system. The object of research was TPTJ plot of various ages from 1 year to 7 years. For achieving the objective, 14 sample plots measuring 200 m x 200 m each, were laid out at research plots. The result showed that growth respond of Shorea leprosula toward the width of planting line was better comparing to Shorea parvifolia, but generally from this growth

  6. 人工ゼオライトによる農地の改善とエアレーションによる池水の貧酸素改善に関する研究

    OpenAIRE

    竹山, 光一; 樋口, 昭; 山本, 太平

    2008-01-01

    With the high facilities of soil amelioration, as water-holding and cation exchange capacity, the Artificial Zeolite(AZ)with the zeolitic material synthesized, byproducts material mainly gained from coal fly ash of electric-power plants, has improved the increased yields of marsh grass, watermelon and soybean, and reducing their replant failures in some high technology-farmers, upland fields in the Tohaku National Irrigation Project in Tottori Prefecture, where many advanced technologies as m...

  7. Promoting interspecies electron transfer with biochar

    DEFF Research Database (Denmark)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar...... biochar may enhance methane production from organic wastes under anaerobic conditions....

  8. From gray to green: Replanting hope in Africa's highlands | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-15

    Dec 15, 2010 ... In Uganda's Kabale district, too many people had been trying to make a living from too little land. Because of overpopulation and exhaustion of the soil by intense cultivation, the area had gone into decline. Then, researchers and farmers — supported by the International Development Research Centre ...

  9. Soil Burial of Polylactic Acid/Paddy Straw Powder Biocomposite

    Directory of Open Access Journals (Sweden)

    Noorulnajwa Diyana Yaacob

    2015-12-01

    Full Text Available The objective of this work was to study the biodegradability of polylactic acid (PLA/paddy straw powder (PSP biocomposites. Environmental degradation was evaluated by composting the biocomposite samples into the soil. Different techniques, including mechanical tests and scanning electron microscopy (SEM, were used to obtain a view of the degradation that occurred during the soil burial of the biocomposites. Results of the mechanical tests showed that an increasing content of PSP in the biocomposites decreased the tensile strength and elongation at break (EB, while it increased the modulus of elasticity after six months of exposure. Scanning electron microscopy on the surface after soil burial showed that the filler was poorly wetted by the matrix. This explains the reduction in tensile strength and the elongation at break after soil burial. Differential scanning calorimetry results indicated that the crystallinity of the biocomposites increased with longer composting periods.

  10. development and testing of a capacitive digital soil moisture metre

    African Journals Online (AJOL)

    user

    soil moisture meter using the NE555 timer and micro controller as a major electronic component ... relationship between the moisture content process and the digital soil moisture meter. ..... the moisture contents showing that the infiltration of.

  11. Potential Use of Tracer Methods, Especially Autoradiography, in the Study of the Relation of Herbicides to Soil Biology

    Energy Technology Data Exchange (ETDEWEB)

    Grossbard, E. [Grassland Research Institute, Hurley, Maidenhead, Berks (United Kingdom)

    1966-05-15

    Several tracer methods, designed originally for the study of general soil processes, are described. Their possible adaptation to investigations of the interaction of herbicides with soil biology (especially the soil microflora) is discussed. Rapid disposal of the herbicide-treated vegetation before replanting (minimal tillage) is essential. In comparing the efficiency of herbicidal destruction of vegetation with conventional ploughing, and also when evaluating the effect of various herbicides on the rate of decay of the treated crops, a method is required to measure the rate of the microbial decomposition of the plant residues. A technique based on autoradiography is described which makes possible the study of the progressive decay of herbage grasses and rye uniformly labelled with carbon-14, placed on the surface of soil and incubated for various periods of time. Photoelectric measurements of the density of images of autoradiographs prepared before the start of the experiment and at intervals during incubation show a statistically significant decrease in density with time of incubation. This progressive loss of carbon is an estimate of the rate of decomposition of the residues. The utilization of breakdown products of herbicides by micro-organisms has been demonstrated in pure culture using labelled herbicides but not directly in the soil. A method based on the stripping film technique demonstrates the incorporation of carbon-14 atoms into the cell material of fungi which decomposed {sup 14}C-labelled plant residues mixed with soil. This technique could be adapted to study the uptake of labelled atoms after the microbial decomposition of radioactive herbicides in the soil. Herbicides inhibit and under,certain conditions may also stimulate the growth of micro-organisms in the soil. The evolution of CO{sub 2} is frequently used as an index of microbial activity. It is, however, also a function of the carbon content of the soil. Soils not treated with herbicides will

  12. Biological Chlorine Cycling in Arctic Peat Soils

    Science.gov (United States)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  13. Initial experience with hand replantation after traumatic amputation in a nonspecialized center Experiência inicial com reimplante de mão após amputação traumática em um centro não-especializado

    Directory of Open Access Journals (Sweden)

    Cleinaldo de Almeida Costa

    2006-12-01

    Full Text Available Traumatic amputation of the hand is an incapacitating injury, requiring skilled surgical care. Achieving functional recovery in addition to salvage of the amputated extremity should be the goal of the patient care team, after the life of the patient is secured. This is a report of the first five cases of hand replantation after complete traumatic amputation in Manaus (Amazonas, Brazil, carried out at Hospital Pronto-Socorro Dr. João Lúcio Pereira Machado. The patients were all young males, mean age of 22.8 years, presenting at the emergency room with complete sharp amputation of the hand. After initial procedures according to the ATLS® protocol, the following surgical actions were taken: heparinization of the blood vessels of the amputated extremity, fixation of the bones, wide opening of the carpal tunnel, primary vascular anastomoses and repair of nerves and tendons. In four cases, viability and partial functional recovery of the replanted hands were achieved. The unsuccessful case was due to extensive venous thrombosis.Through this preliminary experience, we can state that hand replantation can be performed successfully in a nonspecialized hospital and that optimal results depend on adequate prehospital care, multidisciplinary surgical treatment and careful postoperative assistance.A amputação traumática de mão é uma lesão incapacitante, requerendo tratamento cirúrgico hábil. Alcançar recuperação funcional além de salvar a extremidade amputada deve ser o objetivo da equipe médica, depois de resguardada a vida do paciente. Este é o relato dos cinco primeiros casos de reimplante de mão após amputações traumáticas completas na cidade de Manaus (AM, realizados no Hospital Pronto-Socorro Dr. João Lúcio Pereira Machado. Todos os pacientes eram homens jovens, média das idades de 22,8 anos, sendo admitidos na sala de emergência com amputação completa da mão por trauma inciso. Após medidas iniciais de acordo com o

  14. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    Science.gov (United States)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  15. Identification and paleoclimatic significance of magnetite nanoparticles in soils

    Science.gov (United States)

    Ahmed, Imad A. M.; Maher, Barbara A.

    2018-02-01

    In the world-famous sediments of the Chinese Loess Plateau, fossil soils alternate with windblown dust layers to record monsoonal variations over the last ˜3 My. The less-weathered, weakly magnetic dust layers reflect drier, colder glaciations. The fossil soils (paleosols) contain variable concentrations of nanoscale, strongly magnetic iron oxides, formed in situ during the wetter, warmer interglaciations. Mineralogical identification of the magnetic soil oxides is essential for deciphering these key paleoclimatic records. Formation of magnetite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox oscillations, and thence to paleorainfall. An opposite hypothesis states that magnetite can only form if the soil is water saturated for significant periods in order for Fe3+ to be reduced to Fe2+, and suggests instead the temperature-dependent formation of maghemite, an Fe3+-oxide, much of which ages subsequently into hematite, typically aluminum substituted. This latter, oxidizing pathway would have been temperature, but not rainfall dependent. Here, through structural fingerprinting and scanning transmission electron microscopy and electron energy loss spectroscopy analysis, we prove that magnetite is the dominant soil-formed ferrite. Maghemite is present in lower concentrations, and shows no evidence of aluminum substitution, negating its proposed precursor role for the aluminum-substituted hematite prevalent in the paleosols. Magnetite dominance demonstrates that magnetite formation occurs in well-drained, generally oxidizing soils, and that soil wetting/drying oscillations drive the degree of soil magnetic enhancement. The magnetic variations of the Chinese Loess Plateau paleosols thus record changes in monsoonal rainfall, over timescales of millions of years.

  16. Totally impermeable film (TIF reduces emissions in perennial crop fumigation

    Directory of Open Access Journals (Sweden)

    Suduan Gao

    2013-10-01

    Full Text Available Many perennial nursery fields and replanted orchards and vineyards in California are treated with preplant soil fumigants to control soilborne pests. In annual crops, such as strawberry, covering fumigated fields with totally impermeable film (TIF has shown promise in controlling emissions and improving fumigant distribution in soil. The objective of this research was to optimize the use of TIF for perennial crops via three field trials. TIF reduced peak emission flux and cumulative emissions by > 90% relative to polyethylene tarp during a 2-week covering period. After the TIF was cut, emissions were greatly reduced compared to when tarps were cut after 6 days. TIF maintained higher fumigant concentrations under tarp and in the soil than polyethylene film. The results indicate that TIF can increase fumigation efficiency for perennial crop growers.

  17. Identification and characterization of a Bacillus subtilis strain TS06 ...

    African Journals Online (AJOL)

    Replant disease is a major limitation for strawberry production in greenhouse. Bio-control may be a good way to cope with the replant diseases. Here, we report identification and characterization of a bacterial strain TS06 that may be used as a bio-control agent against the replant diseases in strawberry. TS06 was identified ...

  18. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry.

    Science.gov (United States)

    Chen, Laiguo; Huang, Yumei; Han, Shuang; Feng, Yongbin; Jiang, Guo; Tang, Caiming; Ye, Zhixiang; Zhan, Wei; Liu, Ming; Zhang, Sukun

    2013-01-25

    Accurately quantifying short chain chlorinated paraffins (SCCPs) in soil samples with gas chromatograph coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS) is difficult because many other polychlorinated pollutants are present in the sample matrices. These pollutants (e.g., polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and toxaphene) can cause serious interferences during SCCPs analysis with GC-MS. Four main columns packed with different adsorbents, including silica gel, Florisil and alumina, were investigated in this study to determine their performance for separating interfering pollutants from SCCPs. These experimental results suggest that the optimum cleanup procedure uses a silica gel column and a multilayer silica gel-Florisil composite column. This procedure completely separated 22 PCB congeners, 23 OCPs and three toxaphene congeners from SCCPs. However, p,p'-DDD, cis-nonachlor and o,p'-DDD were not completely removed and only 53% of the total toxaphene was removed. This optimized method was successfully and effectively applied for removing interfering pollutants from real soil samples. SCCPs in 17 soil samples from different land use areas within a suburban region were analyzed with the established method. The concentrations of SCCPs in these samples were between 7 and 541 ng g(-1) (mean: 84 ng g(-1)). Similar homologue SCCPs patterns were observed between the soil samples collected from different land use areas. In addition, lower chlorinated (Cl(6/7)) C(10)- and C(11)- SCCPs were the dominant congeners. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Hazardous E-waste and its impact on soil structure

    Science.gov (United States)

    Dharini, K.; Cynthia, J. Bernadette; Kamalambikai, B.; Sudar Celestina, J. P. Arul; Muthu, D.

    2017-07-01

    E-waste disposal has been a significant issue over the past few decades with the development of technology and the plethora of electronic products produced. The inclusive term E-Waste encapsulates various forms of electrical and electronical equipment which provides no value to the current owners and it is one among the fastest growing waste streams. E-Waste is a complex, non-biodegradable waste which is generally dumped in mountain like heaps. These wastes are said to have a large quantities of lead, cadmium, arsenic etc.it is mandatory to dispose such scrupulously since they have the ability to affect the soil and water parameters. Solid waste management is a blooming field which strives to reduce the accumulation of used electronic gadgets. Rainwater gets infiltrated through the e-waste landfill and it leaches through the soil which in turn reaches the groundwater directly thereby affecting the water intended for drinking and domestic purposes. This study focuses on the consequences of toxic waste by comparing the difference in properties of the soil structure prior to and after the e-waste landfill at various concentrations.

  20. LandscapeDNDC used to model nitrous oxide emissions from soils under an oak forest in southern England

    Science.gov (United States)

    Cade, Shirley; Clemitshaw, Kevin; Lowry, David; Yamulki, Sirwan; Casella, Eric; Molina, Saul; Haas, Edwin; Kiese, Ralf

    2013-04-01

    Nitrous oxide (N2O) is an important greenhouse gas, having a global warming potential of approximately 300 times that of carbon dioxide (CO2), and plays a significant role in depleting stratospheric ozone. Its principal source is microbial activity in soils and waters. Measured values of N2O emissions from soils show high temporal dynamics and a large range as a result of inter-related physico-chemical factors affecting the microbial processes, thus making predictions difficult. Emissions often occur in pulses following re-wetting, frost-thaw or management events such as N-fertilization, which further complicates predictions. Process-based models have been developed to help understand this emission variability and as potential tools for IPCC Tier 3 reporting on national emission inventories. Forests are promoted as sinks for CO2 and can be used as renewable sources of energy or longer term CO2 storage if timber is used in products such as in construction and furniture, provided appropriate replanting takes place. It is important that the effect of any changes in forest management and land use as a result of a desire to reduce CO2 emissions does not increase N2O emissions from forest soils, which are still poorly understood, compared to agricultural soils. LandscapeDNDC (Haas et al 2012) has been developed as a process-oriented model, based on the biogeochemical model, DNDC (Li et al, 1992), in order to simulate biosphere-atmosphere-hydrosphere exchanges at site and regional scales. It can model the carbon and nitrogen turnover and associated greenhouse gas (GHG) emissions of forest, agricultural and grassland ecosystems, and allows modelling of impacts of regional land use change over time. This study uses data (including forest growth, GHG emissions and soil moisture) from an oak forest, known as the Straits Enclosure, at Alice Holt in Hampshire, where extensive measurements have been made by Forest Research since 1995. It involves validation of the site scale

  1. Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust

    Directory of Open Access Journals (Sweden)

    Abdullah A. Al-Homidy

    2017-08-01

    Full Text Available Improvement of properties of weak soils in terms of strength, durability and cost is the key from engineering point of view. The weak soils could be stabilized using mechanical and/or chemical methods. Agents added during chemical stabilization could improve the engineering properties of treated soils. Stabilizers utilized have to satisfy noticeable performance, durability, low price, and can be easily implemented. Since cement kiln dust (CKD is industrial by-product, it would be a noble task if this waste material could be utilized for stabilization of sabkha soil. This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil. Soil samples are prepared with 2% cement and 10%, 20% or 30% CKD and are tested to determine their unconfined compressive strength (UCS, soaked California bearing ratio (CBR and durability. Mechanism of stabilization is studied utilizing advanced techniques, such as the scanning electron microscope (SEM, energy dispersive X-ray analysis (EDX, backscattered electron image (BEI and X-ray diffraction analysis (XRD. It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements. The incorporation of CKD leads to technical and economic benefits.

  2. Diffusion and adsorption of the nematicide 1,3-dichloropropene in soil

    NARCIS (Netherlands)

    Leistra, M.

    1972-01-01

    After soil fumigation the concentration of the nematicidal compounds cis and trans 1,3-dichloropropene at various depths in the soil was estimated by electron-capture gas-chromatography. The coefficients for the distribution of the compounds over

  3. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint

    Science.gov (United States)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.

    2016-07-01

    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  4. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    Science.gov (United States)

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  5. Experimental studies on the treatment of traumatic dental avulsion in dogs

    International Nuclear Information System (INIS)

    Borissov, I.; Lazarova, L.

    2001-01-01

    The experiments were performed on 7 dogs aged between 2 and 4 years weighing 12-16 kg in the period October 1998- January 2000. After anaesthesia, the following dental procedures were accomplished; performance of a dental avulsion, endodontic treatment, apical dentotomy, tooth replantation and fixation with an orthodontic splint, figure-of-eight wire ligature and photopolymer. The treatment was effective in 71.4% of experimental replantations of incisors and the replanted teeth persisted for more than 8-9 months. The radiological survey showed that the regeneration began as early as the first post replantation days. In the period between days 30-45, a bone bridging was observed and the regeneration was complete by the end of the second month

  6. Tillage-induced changes to soil structure and organic carbon fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Shepherd, T. G.; Saggar, S.; Ross, C. W.; Dando, J. L.; Newman, R. H.

    2001-01-01

    levels in the humic soil, but recovered only to 60-70% of original levels in the coarse- and fine-textured soils. Aggregate stability was strongly correlated to TOC, WSC, and AHC (P < 0.001), while aggregate-size distribution was moderately correlated to aggregate stability (P < 0.01) and weakly correlated to AHC (P < 0.05). Scanning electron microscopy indicated a loss of the binding agents around aggregates under cropping. The effect of the loss of these binding agents on soil structure was more pronounced in mica-rich soils than in oxide-rich and allophanic soils. The very high aggregate stabilities of the humic soil under pasture was attributed to the presence of a protective water-repellent lattice of long-chain polymethylene compounds around the soil aggregates. Copyright (2001) CSIRO Publishing

  7. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  8. COMPARATIVE ANALYSIS OF GROUNDING RESISTANCE VALUE IN SOIL AND SEPTICTANK

    Directory of Open Access Journals (Sweden)

    Abdul Syakur

    2012-02-01

    Full Text Available The aim of grounding system to protect of electrical equipment and instrumentation system and peopletogether. The lightning stroke near the strucutre of building can damage of equipment and instrumentationsystem. Therefore, it is very important to protect theese electrical and electronic equipment from lightningstrike uses lightning protection system and grounding system.This paper presents kind of grounding system at type of soil and place. The measurement of groundingresistance in soil and septictank have done. Types of soil for grounding resistance measuring aremarshland, clay and rockland.The measurement results of grounding resistance show that value of grounding resistance depend ondeepness of electrode and kind of soil and septictank. Grounding resistance value in septictank is morelower than soil.

  9. Characterization of mercury forms in contaminated floodplain soils

    International Nuclear Information System (INIS)

    Barnett, M.O.; Turner, R.R.; Henson, T.J.; Harris, L.A.; Melton, R.E.; Stevenson, R.J.

    1994-01-01

    The chemical form or speciation of Hg in the floodplain soils of the East Fork Poplar Creek in Oak Ridge TN, a site contaminated from past industrial activity, was investigated. Hg speciation in the soils is an important factor in controlling the fate and effect of mercury at the site and in assessing human health and ecological risk. Application of 3 different sequential extraction speciation schemes indicated the Hg at the site was predominantly relatively insoluble mercuric sulfide or metallic Hg, though the relative proportions of each did not agree well between procedures. Application of x-ray and electron beam studies to site soils confirmed the presence of metacinnabar, a form of mercuric sulfide, the first known evidence of authigenic mercuric sulfide formation in soils

  10. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    turn equivalent to decreasing bio-availability. Although water has frequently been used to extract labile SOM, its use has mostly been limited to 100°C. 3° Third we developed sub critical water extraction (SCWE) at 100°C, 150°C and 200°C to isolate SOM fractions from the set of 25 paddy soil samples. In all cases, SCWE organic carbon (SCWE-OC) and N (SCWE-N) increased exponentially with the increase of temperature. SCWE preferentially extracted N over OC with increasing temperature. The efficiency of SCWE and the selectivity towards N were both lower in soils with increasingly reactive clay mineralogy. No correlations were found between the SCWE fractions and anaerobic N mineralization rate. In conclusion, SOM quantity and SOM quality, here represented by C and N distribution over physicochemical fractions, don't seem to dominantly determine anaerobic N mineralization in primarily young floodplain paddy soils. Other factors with exceeding control (pH and pyrophosphate extractable Fe) appear to exist. Possibly, the specific young genesis stage of most of the soils included (termed 'floodplain' soils) results in a limited availability of readily reducible Fe. Being an important alternative electron acceptor under submerged conditions, the availability of Fe, which is also controlled by pH, may be a bottleneck in the anaerobic N mineralization process. This needs to be further investigated by controlled incubation experiments with detailed follow-up of pH, redox potential, Fe in solution and mineral N.

  11. development and testing of a capacitive digital soil moisture metre

    African Journals Online (AJOL)

    This paper presents a low cost, simple digital soil moisture meter, working on the principle of dielectric. A digital soil moisture meter using the NE555 timer and micro controller as a major electronic component was developed and tested, which display its output in a range of 0.0 to 99% on the 7-segment displayed unit.

  12. Re-plant problems in long-term no-tillage cropping systems : causal analysis and mitigation strategies

    OpenAIRE

    Afzal

    2016-01-01

    No-tillage is considered as a promising alternative for tillage-based conventional farming, by saving energy-input and time, reducing groundwater pollution and counteracting soil erosion and losses of the soil-organic matter. However, in the recent past, no-tillage farmers in Southwest Germany repeatedly reported problems particularly in winter wheat production, characterized by stunted plant growth in early spring, chlorosis, impaired fine root development and increased disease susceptibilit...

  13. Geophysical methods for monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  14. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    International Nuclear Information System (INIS)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-01-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA) , which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential, Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and sub oxid conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs

  15. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-07-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA), which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential. Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and suboxic conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs.

  16. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences

  17. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  18. Experimental study on microstructure characters of foamed lightweight soil

    Science.gov (United States)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  19. Method for assay of radioactivity in waste soil

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Willhoite, S.B.

    1991-01-01

    Contaminated soil is a result of many nuclear operations. During facility decommissioning or site cleanup, it may be packaged for disposal. The waste soil must be assayed for contaminants to follow transport regulations and waste handling facility requirements. Methods used for assay include the following: (1) sampling the ground before excavation and assuming ground data apply to soil when packaged; (2) analyzing samples taken from the soil added to a package; (3) counting radiation at the exterior of the package; and (4) measuring neutron absorption by packaged waste soil. The Defense Nuclear Agency (DNA) worked with Eberline Instruments Corporation (EIC) to develop an automated assay method for the waste stream in a plutonium-contaminated soil cleanup at Johnston Atoll in the North Pacific Ocean. The perfected method uses a personal computer, an electronic weighing scale, and a programmable radiation counter. Computer programs get weight and radiation counts at frequent intervals as packages fill, calculate activity in the waste, and produce reports. The automated assay method is an efficient one-person routine that steadfastly collects data and produces a comprehensive record on packaged waste

  20. CLOPYRALID DISSIPATION IN THE SOIL CONTAMINATED WITH HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Mariusz Kucharski

    2014-12-01

    Full Text Available The aim of the studies was to determine the influence of copper and zinc contamination on clopyralid dissipation in soil. The experiment was carried out in laboratory conditions (plant growth chamber. Clopyralid was applied to three different soils [similar textures, pH, organic carbon content and contrasting copper and zinc content: soil natural contaminated with Cu and Zn (S1, soil with natural low Cu and Zn concentration (S2 and soil S21 prepared in the laboratory (S2 soil additionally contaminated with Cu and Zn salts in the amounts equivalent to contamination level of S1 soil]. Soil samples were taken for analyses for 1 hour (initial concentration and 2, 4, 8, 16, 32, 64 and 96 days after treatment. Clopyralid residue was analysed using GC/ECD (gas chromatography with electron capture detector. Good linearity was found between logarithmic concentration of clopyralid residues and time. The differences in Cu and Zn content influenced the clopyralid decay in soil. The values of DT50 obtained in the experiment ranged from 21 to 27 days. A high concentration of Cu and Zn in soil slowed down clopyralid degradation (the DT50 value was higher – 25–27 days.

  1. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  2. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  3. Retrospective Review of Air Transportation Use for Upper Extremity Amputations at a Level-1 Trauma Center.

    Science.gov (United States)

    Grantham, W Jeffrey; To, Philip; Watson, Jeffry T; Brywczynski, Jeremy; Lee, Donald H

    2016-08-01

    Air transportation to tertiary care centers of patients with upper extremity amputations has been utilized in hopes of reducing the time to potential replantation; however, this mode of transportation is expensive and not all patients will undergo replantation. The purpose of this study is to review the appropriateness and cost of air transportation in upper extremity amputations. Consecutive patients transported by aircraft with upper extremity amputations in a 7-year period at a level-1 trauma center were retrospectively reviewed. The distance traveled was recorded, along with the times of the injury, referral, transportation duration, arrival, and start of the operation. The results of the transfer were defined as replantation or revision amputation. Overall, 47 patients were identified with 43 patients going to the operating room, but only 14 patients (30%) undergoing replantation. Patients arrived at the tertiary hand surgery center with a mean time of 182.3 minutes following the injury, which includes 105.2 minutes of transportation time. The average distance traveled was 105.4 miles (range, 22-353 miles). The time before surgery of those who underwent replantation was 154.6 minutes. The average cost of transportation was $20,482. Air transportation for isolated upper extremity amputations is costly and is not usually the determining factor for replantation. The type of injury and patients' expectations often dictate the outcome, and these may be better determined at the time of referral with use of telecommunication photos, discussion with a hand surgeon, and patient counseling. III.

  4. A Baseline Measure of Tree and Gastropod Biodiversity in Replanted and Natural Mangrove Stands in Malaysia: Langkawi Island and Sungai Merbok

    Science.gov (United States)

    Hookham, Brenda; Shau-Hwai, Aileen Tan; Dayrat, Benoit; Hintz, William

    2014-01-01

    The diversities of mangrove trees and of their associated gastropods were assessed for two mangrove regions on the west coast of Peninsular Malaysia: Langkawi Island and Sungai Merbok. The mangrove area sampled on Langkawi Island was recently logged and replanted, whereas the area sampled in Sungai Merbok was part of a protected nature reserve. Mangrove and gastropod diversity were assessed in four 50 m2 (10 × 5 m) sites per region. The species richness (S), Shannon Index (H’) and Evenness Index (J’) were calculated for each site, and the mean S, H’ and J’ values were calculated for each region. We report low tree and gastropod S, H’ and J’ values in all sites from both regions. For Langkawi Island, the mean S, H’ and J’ values for mangrove trees were S = 2.00±0, H’ = 0.44±0.17 and J’ = 0.44±0.17; the mean S, H’ and J’ values for gastropods were S = 4.00±1.63, H’ = 0.96±0.41 and J’ = 0.49±0.06. In Sungai Merbok, the mean S, H’ and J’ values for mangrove trees were S = 1.33±0.58, H’ = 0.22±0.39 and J’ = 0.22 ±0.39; the mean S, H’ and J’ values for gastropods were S = 4.75±2.22, H’ = 1.23±0.63 and J’ = 0.55±0.12. This study emphasises the need for baseline biodiversity measures to be established in mangrove ecosystems to track the impacts of anthropogenic disturbances and to inform management and restoration efforts. PMID:25210584

  5. Neutron moisture gaging of agricultural soil

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Kovacik, M.

    1987-01-01

    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  6. Geotechnical characteristics of some Iraqi gypseous soils

    Directory of Open Access Journals (Sweden)

    Schanz Tom

    2018-01-01

    Full Text Available In Iraq, especially in the last three decades, extensive developments have been evidenced in the regions of gypseous soils due to the need of construction of many numbers of strategic projects. Failure of different structures constructed on gypseous soil in various regions in Iraq have been noticed. For this purpose, three areas in northern Iraq were selected (Samarra, Tikrit and Baiji to study their geotechnical characteristics due to their high gypsum contents as well as many engineering problems are faced due to dissolution of gypsum. The experimental work involves testing of many properties such as: scanning electron microscopy (SEM, XRD, chemical, physical, compressibility, collapsibility, shear strength and suction. At low stress level, the test results revealed that, higher collapse potential (CP is recorded for Tikrit soil. While at low stress level, higher CP is obtained for Baiji soil indicating the increase in CP with decreasing gypsum content. Furthermore, the CP significantly increases with increasing stress level and soaking period at a particular stress level. According to severity classification of the collapse potential, Baiji soil is considered as moderate trouble to slight, while Tikrit soil is considered as trouble to moderate. After soaking, both soils become trouble. As well as, the results showed a reduction in Tikrit soil shear parameters ( φ and c after soaking period of 6 and 24 hrs as 12.2 to 9.2% in the internal friction angle and 91.5 to 94.2% in cohesion, respectively with respect to dry condition. Maximum total suction is measured for low consistency soils (liquid limit < 30% represented by Tikrit soil.

  7. Study of chemical-mineralogical properties of modified soils with polymers addition

    Directory of Open Access Journals (Sweden)

    Patricio Jonny

    2016-01-01

    Full Text Available On highways, the soil is considered a supported material and compound pavements layers. For this, they must have such characteristics that confer stability and mechanical resistance to traffic internal forces during the pavement life. When soils do not have required characteristics by the project can be used stabilization techniques that make the natural soil adequately to roads requirement. Based on this assumption, this study aimed to evaluate the efficacy of polymer association in soil stabilization for use in roads pavements. Were evaluated chemical and mineralogical properties on two (2 different soils with sample of pure soil and with the addition of the polymer association. Based on the obtained results, polymer association changes was observed on X-ray fluorescent spectrometry (XRF; X-ray diffraction (XRD; scanning electron microscopy (SEM and Methylene blue. In general, the polymeric association studied in this research was effective in chemical and mineralogical analyzes for use on stabilized soils, making this technique efficient for use in layers of road pavements.

  8. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  9. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  10. Antioxidant Activities and Caffeic Acid Content in New Zealand Asparagus (Asparagus officinalis Roots Extracts

    Directory of Open Access Journals (Sweden)

    Abbey Symes

    2018-04-01

    Full Text Available Asparagus officinalis are perennial plants that require re-planting every 10–20 years. The roots are traditionally mulched in the soil or treated as waste. The A. officinalis roots (AR contain valuable bioactive compounds that may have some health benefiting properties. The aim of this study was to investigate the total polyphenol and flavonoid contents (TPC and TFC, respectively and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH, Oxygen Radical Absorbance Capacity (ORAC and Ferric Reducing/Antioxidant Power (FRAP assays activities of New Zealand AR extract. The antioxidant activity decreased with a longer extraction time.

  11. ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

    Science.gov (United States)

    An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

  12. Development of soil-cement blocks with three interventions: natural soil, soil corrected with sand and soil more phase change materials (PCMs); Desenvolvimento de blocos solo-cimento com tres intervencoes: solo natural, solo corrigido com areia e solo mais materiais de mudanca de fase (MMFs)

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Valter Bezerra; Gomes, Uilame Umbelino; Reis, Edmilson Pedreira; Valcacer, Samara Melo; Silva, A.S., E-mail: valter.fisic@hotmail.com, E-mail: umbelino@dfte.ufrn.br, E-mail: pedreira.reis@ig.com.br, E-mail: gmarinho@ct.ufrn.br, E-mail: samaravalcacer@hotamil.com, E-mail: ariadness2@yahoo.com.br [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal, RN (Brazil). Departamento de Fisica Teorica e Experimental. Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    In this work, the results of characterization tests of soil samples collected in Mossoro-RN, UFERSA-RN Campus, located approximately 20 meters high, and {sup 5} ° 12'34.68 south latitude and 37 ° 19'5.74 {sup w}est longitude, with the purpose of producing soil-cement for the manufacture of pressed blocks with good resistance to compression and thermal stability. The following tests were performed: granulometry, plasticity limit, liquidity limit, particle size correction, scanning electron microscopy (SEM), X-ray fluorescence. In this soil, based on the results of the granulometric analysis, 10% of medium sand with 3% and 5% of eicosane paraffin and 10% of medium sand with 3% and 5% of paraffin 120 / 125F were added, forming analysis compositions, standard soil-cement block and natural soil-cement block with addition of 10% medium sand and 0% paraffin. Paraffins are referred to as PCMs (Phase Change Material). The contrasting effect between the different dosages on the compressive strength values of the soil-cement blocks was observed. The objective is to create new materials that give the block quality equal to or higher than the recommendations of ABNT norms, and that offer greater thermal comfort in the constructions. Soil particles of different sizes were added to 8% (by weight) of cement, and about 9.20% of water added to the mixture.

  13. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  14. urban soils of vasileostrovsky and elagin ostrov of saint petersburg

    African Journals Online (AJOL)

    Heavy metals (HM) arc among the most dangerous subsrances causing ... urban soils have become a secondary source of environmental pollution. The main ... and industries (an electronic. metallurgical complex and a dockyard for.

  15. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  16. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  17. Microstructural characterization of copper corrosion in aqueous and soil environments

    International Nuclear Information System (INIS)

    Srivastava, A.; Balasubramaniam, R.

    2005-01-01

    Scanning electron microscopy has been used to investigate the surface films on pure copper after exposure to different aqueous and soil environments, containing chloride, sulfide and ammonium salts. The morphology of the films formed on copper surface in aqueous and soil environments was different for the same amount of pollutants. The surface films formed in soil environments were not homogenous in contrast to the films formed in aqueous environments. The damaging effect of chloride ions and the benign role of sulfide ions were revealed in both the environments. Local compositional analysis confirmed that the surface films formed on copper consisted predominantly of copper and oxygen

  18. Technical support for the Soiltech soil washing project. Interim report

    International Nuclear Information System (INIS)

    Tomascik, T.S.

    1994-08-01

    The organic removal ability of a surfactant solution was studied for an ''as-received'' soil sample. A 15% surfactant solution was added to an equal portion of the soil sample, by volume, and blended. The mixture was then stirred with a magnetic stirrer. A black precipitate resulted, which was then periodically skimmed off the top of the solution. This was done at both room temperature and at 150 degrees F. The soil sample was examined before and after processing with optical microscopy, environmental scanning electron microscopy (ESEM) , energy dispersive x-ray microanalysis (EDS), and analytical chemical analysis (total oil and grease and petroleum hydrocarbons)

  19. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  20. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  1. [Optimising care structures for severe hand trauma and replantation and chances of launching a national network].

    Science.gov (United States)

    Haas, E M; Volkmer, E; Holzbach, T; Wallmichrath, J; Engelhardt, T O; Giunta, R E

    2013-12-01

    Severe hand traumata have a significant impact on our health system and on insurance companies, respectively. It is estimated that 33% of all occupational injuries and 9% of all invalidity pensions are due to severe hand trauma. Unfortunately, these high numbers are not only due to the severity of the trauma but to organisational deficiencies. Usually, the patient is treated at the general surgical emergency in the first place and only then forwarded to a microsurgeon. This redirection increases the time that is required for the patient to finally arrive at an expert for hand surgery. On the one hand, this problem can be explained by the population's lack of awareness for distinguished experts for hand and microsurgery, on the other hand, the emergency network, or emergency doctors in particular are not well informed about where to take a patient with a severe hand trauma - clearly a problem of communication between the hospitals and the ambulance. It is possible to tackle this problem, but put participating hand trauma centres have to work hand in hand as a network and thus exploit synergy effects. The French system "FESUM" is a good example for such a network and even comprises centres in Belgium and Switzerland. To improve the treatment of severe hand trauma, a similar alliance was initiated in Germany just recently. The pilot project "Hand Trauma Alliance" (www.handverletzung.com) was started in April 2013 and currently comprises two hospitals within the region of upper Bavaria. The network provides hand trauma replantation service on a 24/7 basis and aims at shortening the way from the accident site to the fully qualified hand surgeon, to improve the therapy of severe hand injuries and to optimise acute patient care in general. In order to further increase the alliance's impact it is intended to extend the project's scope from regional to national coverage - nevertheless, such an endeavour can only be done in collaboration with the German Society for Hand

  2. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.

    Science.gov (United States)

    Chen, Manjia; Cao, Fang; Li, Fangbai; Liu, Chengshuai; Tong, Hui; Wu, Weijian; Hu, Min

    2013-03-06

    We studied the mechanisms of microbial transformation in functional bacteria on 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in two different field soils, Haiyan (HY) and Chenghai (CH). The results showed that microbial activities had a steady dechlorination effect on DDT and its metabolites (DDx). Adding lactate or glucose as carbon sources increased the amount of Desulfuromonas, Sedimentibacter, and Clostridium bacteria, which led to an increase in adsorbed Fe(II) and resulted in increased DDT transformation rates. The electron shuttle of anthraquinone-2,6-disulfonic disodium salt resulted in an increase in the negative potential of soil by mediating the electron transfer from the bacteria to the DDT. Moreover, the DDT-degrading bacteria in the CH soil were more abundant than those in the HY soil, which led to higher DDT transformation rates in the CH soil. The most stable compound of DDx was 1,1-dichloro-2,2-bis(p-chloro-phenyl)ethane, which also was the major dechlorination metabolite of DDT, and 1-chloro-2,2-bis-(p-chlorophenyl)ethane and 4,4'-dichlorobenzo-phenone were found to be the terminal metabolites in the anaerobic soils.

  3. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2009-01-01

    Full Text Available A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin @ 10.0, 10.0 and 7.7 kg a.i. ha-1, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0-6, 6-12, 12-18, and 18-24 and 24-30 cm for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0-6 cm. Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids.

  4. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Science.gov (United States)

    Aktar, Md. Wasim; Sengupta, Dwaipayan; Purkait, Swarnali; Chowdhury, Ashim

    2008-01-01

    A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability) through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin at doses of 10.0, 10.0 and 7.7 kg/ha, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0–6, 6–12, 12–18, 18–24 and 24–30 cm) for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD) and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0–6 cm). Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids. PMID:21218121

  5. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2008-12-01

    Full Text Available A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin @ 10.0, 10.0 and 7.7 kg a.i. ha-1, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0-6, 6-12, 12-18, and 18-24 and 24-30 cm for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0-6 cm. Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids.

  6. Distal phalanx amputation with delayed presentation and successful reconstruction with reposition and flap after 2 weeks

    Directory of Open Access Journals (Sweden)

    Jefferson Braga-Silva

    2016-01-01

    Full Text Available Traumatic finger amputations are common, causing significant functional and cosmetic deficits. Microsurgical replantation techniques are the mainstay of treatment for most such injuries although they require adequate conservation of the amputated segment for a successful result. In distal finger amputations, replantation is the procedure of choice, as long as the amputated fragment is viable. If replantation is not an option, reposition + flap using a neurovascular flap can be an efficient option, as this offers improved skin coverage. To the best of our knowledge, this case illustrates the longest cold ischaemic time with a successful outcome.

  7. Continuous Infraclavicular Block for Forearm Amputation After Being Bitten by a Saltwater Crocodile (Crocodylus Porosus: A Case Report

    Directory of Open Access Journals (Sweden)

    Chin-Hsi Chiu

    2009-08-01

    Full Text Available Two important issues after a complete right forearm amputation are replantation and ongoing pain management. There are no reports of successful forearm replantation as a consequence of a crocodile bite. Here, we discuss our pain management in a case of complete forearm amputation after a bite from a saltwater crocodile (Crocodylus porosus, which necessitated six further operations to achieve successful replantation. Continuous infraclavicular brachial plexus block was effective for acute pain control in this case. We strongly recommend performing the block with an indwelling catheter under ultrasound guidance for higher accuracy and safety.

  8. Study of the speciation of lead and zinc in industrial dusts and slags and in a contaminated soil: a spectroscopic approach

    International Nuclear Information System (INIS)

    Sobanska, Sophie

    1999-01-01

    As the study of physicochemical forms of metals in polluted soils is necessary to understand their mobilisation, and therefore to assess the risk they represent for the environment, the objective of this research thesis is to determine the speciation of lead and zinc in a soil contaminated by particles (dust and slag) released by a lead production plant. This determination is performed by using a spectroscopic approach, optic microscopy, X ray diffraction, scanning electronic microscopy, transmission electronic microscopy, electronic microprobe, and Raman micro-spectrometry. In order to understand the evolution of speciation of metals and of their propagation in soils, dust and slag produced by the industrial process have been sampled, and morphologically characterized. Associations of metals with other compounds like iron oxides and carbonates have been highlighted. The author shows that the contact with the ground results in a higher alteration of particles and in metal mobilisation. She reports the study of lead and zinc localisation in various particles, and of the influence of a change of soil physicochemical conditions (pH decrease, reduction by soil clogging during humid periods) [fr

  9. Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, and electron temperature. Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra. The LTE and optically thin plasma conditions were verified for the produced plasma. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of the spectral lines of the heavy elements in the soil sediments. The electron temperature does not change with concentration. For environmental applications, the obtained results showed the capability of the proposed LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for real-time measurements of the variation of the matrix elemental composition of soil sediments by following up only a single element as a marker for the composition of the soil sediment without need of analysis of the other elements.

  10. Long Term Monitoring of Microbial Induced Soil Strengthening Processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.; Colwell, F. S.; Ohan, J.

    2016-12-01

    Soil strengthening/stabilization processes are used to address some of soil quality issues. Microbial induced calcite precipitation (MICP) is a promising soil stabilization process that could offer long term solution by overcoming problems of commonly used methods (e.g. injecting cement slurry). MICP can be applied in larger spatial scales, allowing the enhanced soils to be maintained in an economic sustainable and environmental friendly way. Methods are sought for the long term monitoring of MICP enhanced soils. The spectral induced polarization (SIP) method is one promising method due to sensitivity on such processes and the ability for long term, even autonomous, operation as well as cost effectiveness. Previous laboratory tests showed the sensitivity of the SIP method on soil strengthening as a result of abiotic calcite precipitation. We extended this work to biotic calcite precipitation through MICP. Early results suggest that the MICP formed calcite is denser and could provide improved strengthening capabilities. Our results are supported by geophysical (SIP and shear-wave velocity), geo-chemical and microbiological monitoring. Destructive analysis and visualization (scanning electron imaging - SEM) is expected to provide conclusive evidence on the MICP long term effectiveness.

  11. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  12. Factors affecting the selection of a soil water sensing technology

    International Nuclear Information System (INIS)

    Hignett, C.T.

    2000-01-01

    Reviews of soil moisture measurement technologies are counterproductive in attempting to identify the single approach that has the best overall performance for a range of soil, crop and landscape conditions. Not only does such an approach preclude the addition of new technologies, but it also obscures the fact that we have available today sensors and technologies that cover most field conditions, are well understood in terms of technical capability and are mechanically and electronically reliable. This review defines decision-making processes for assessing the characteristics, good and bad, of technology in relation to project objectives. Two processes are needed. The first links soil texture and scale of variability with the nature of the project, single-plant to catchment scale, to the needs for soil water measurement. The second lists the capabilities of some devices and shows how they can be selected to accommodate necessary criteria. It is concluded that the 'best technology' is a function of the project and soil conditions. (author)

  13. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    Energy Technology Data Exchange (ETDEWEB)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  14. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  15. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  16. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil.

    Science.gov (United States)

    Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric

    2012-01-01

    The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite-smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate-Fe oxidizing and reducing organisms. The abundance of phyllosilicate-Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O(2) as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O(2), each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with [Formula: see text] as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate-Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil.

  17. Isolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil

    Science.gov (United States)

    Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric

    2012-01-01

    The biogeochemistry of phyllosilicate–Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite–smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate–Fe oxidizing and reducing organisms. The abundance of phyllosilicate–Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O2 as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O2, each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with NO3- as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate–Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil. PMID:22493596

  18. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2017-11-01

    Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg -1 ) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R 2  = 0.84, p soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0-80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  20. Delayed tooth replantation after root surface treatment with sodium hypochlorite and sodium fluoride: histomorphometric analysis in rats Reimplante dentário tardio após o tratamento da superfície radicular com hipoclorito de sódio e fluoreto de sódio: análise histomorfométrica em ratos

    Directory of Open Access Journals (Sweden)

    André Dotto Sottovia

    2006-04-01

    Full Text Available In cases of delayed tooth replantation, non-vital periodontal ligament remnants have been removed with sodium hypochlorite in an attempt to control root resorption. Nevertheless, reports of its irritating potential in contact with the alveolar connective tissue have been described. Therefore, this study evaluated the healing process on delayed replantation of rat teeth, after periodontal ligament removal by different treatment modalities. Twenty-four rats, assigned to 3 groups (n=8, had their upper right incisor extracted and left on the workbench for desiccation during 60 min. Afterwards, the teeth in group I were immersed in saline for 2 min. In group II, root surfaces were scrubbed with gauze soaked in saline for 2 min; and in group III, scrubbing was done with gauze soaked in 1% sodium hypochlorite solution. Thereafter, root surfaces were etched with 37% phosphoric acid and immersed in 2% acidulate-phosphate sodium fluoride solution, at pH 5.5. Root canals were filled with a calcium hydroxide-based paste and the teeth were replanted. The animals were sacrificed 60 days postoperatively and the pieces containing the replanted teeth were processed and paraffin- embedded. Semi-serial transversally sections were obtained from the middle third of the root and stained with hematoxylin and eosin for histomorphometric analysis. Data were analyzed statistically using Kruskal-Wallis and Dunn's tests. The results showed that root structure and cementum extension were more affected by resorption in group III (pEm reimplante dentário tardio, o ligamento periodontal desvitalizado tem sido removido empregando-se o hipoclorito de sódio, buscando o controle da reabsorção radicular. Relatos de efeito irritante no tecido conjuntivo alveolar após o seu uso, têm sido descritos. Isso justificou a realização deste trabalho buscando minimizar esse inconveniente. Para isso 24 ratos, divididos em 3 grupos de 8 animais, tiveram o incisivo superior direito extra

  1. More evidence that anaerobic oxidation of methane is prevalent in soils: Is it time to upgrade our biogeochemical models?

    Czech Academy of Sciences Publication Activity Database

    Gauthier, M.; Bradley, R.L.; Šimek, Miloslav

    2015-01-01

    Roč. 80, January (2015), s. 167-174 ISSN 0038-0717 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : anaerobic oxidation of methane * isotope dilution * peatland soil * shoreline soil * acid sulfate soil * alternative electron acceptors Subject RIV: EH - Ecology, Behaviour Impact factor: 4.152, year: 2015

  2. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of fines content on hydraulic conductivity and morphology of laterite soil as hydraulic barrier

    Science.gov (United States)

    Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan

    2018-03-01

    Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.

  4. A case of dorsal oblique fingertip amputation.

    Science.gov (United States)

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai's classification is appropriate for guiding treatment.

  5. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    International Nuclear Information System (INIS)

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-01

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO_2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L_9(3)"4, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO_2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg"−"1 were found to be a 1:10 soil: water ratio, 40 mW cm"−"2 light intensity, 5% TiO_2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO_2 in soil slurry. This study suggests that TiO_2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO_2 (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO_2 (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by TiO_2.

  6. Sorption and mechanism of aqueous U(Ⅵ) onto red soil-colloid

    International Nuclear Information System (INIS)

    Xia Liangshu; Huang Xin; Cao Cuncun; Chen Wei; Lu Junwen

    2013-01-01

    By static adsorption experiments, the effects of pH, ionic strength, adsorption time, uranium initial concentration, adsorbent dosage, red soil-colloid size, and organic matters on the biosorption capacity of red soil-colloid extracted from the soil around uranium tailing for uranium were studied. The adsorption process was analyzed by thermodynamics and kinetics, and the adsorption mechanism was characterized by the element analysis, infrared spectroscopy and scanning electron microscopy. The results show that the adsorption capacity for U (Ⅵ) on red soil-colloid increases with the decrease of ionic strength or particle size, increases with the initial concentration of uranium, decreases with the increase of the amount of red soil-colloid; the saturated adsorption capacity q max can be up to 76.76 μg/mg by red soil-colloid which diameter is less than 1 μm at 25 ℃ and pH=3.5, when the ionic strength is 0.001 mol/L. FT-IR micrograph before and after red soil-colloid adsorbed uranyl ions indicates that the red soil-colloid are mainly composed of hydroxyl, carbonyl, Si-O, Si-O-Fe, etc. The adsorption of U (Ⅵ) on red soil-colloid follows Langmuir adsorption isotherm, and the pseudo-second-order equation provides the best correlation for the adsorption process. (authors)

  7. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  8. Plasma treatment of INEL soil contaminated with heavy metals

    International Nuclear Information System (INIS)

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites

  9. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved utilization of an industrial waste, Phosphogypsum (PG, as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL, optimum lime content (OLC, and less than ICL (LICL, were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic limit, shrinkage limit, and free swell test, on pulverized remains of failed unconfined compression test specimens. The samples were also subjected to a microstructural study by means of scanning electron microscope. Addition of PG to lime resulted in improvement in the plasticity and swell-shrink characteristics. The microstructural study revealed the formation of a dense compact mass of stabilized soil.

  10. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  11. Impact of Ag and Al2O3 nanoparticles on soil organisms: In vitro and soil experiments

    International Nuclear Information System (INIS)

    Fajardo, C.; Saccà, M.L.; Costa, G.; Nande, M.; Martin, M.

    2014-01-01

    In vitro analyses were conducted to assess the impact of Al 2 O 3 and Ag nanoparticles on two common soil bacteria, Bacillus cereus and Pseudomonas stutzeri. Al 2 O 3 nanoparticles did not show significant toxicity at any dose or time assayed, whereas exposure to 5 mg L −1 Ag nanoparticles for 48 h caused bactericidal effects. Moreover, alterations at the morphological level were observed by transmission electron microscopy (TEM); Ag but not Al 2 O 3 nanoparticles evoked the entrance of B. cereus cells in an early sporulation stage and both nanoparticles penetrated P. stutzeri cells. At the molecular level, a dramatic increase (8.2-fold) in katB gene expression was found in P. stutzeri following Al 2 O 3 nanoparticles exposure, indicative of an oxidative stress-defence system enhancement in this bacterium. In the microcosm experiment, using two different natural soils, Al 2 O 3 or Ag nanoparticles did not affect the Caenorhabditis elegans toxicity endpoints growth, survival, or reproduction. However, differences in microbial phylogenetic compositions were detected by fluorescence in situ hybridization (FISH). The use of katB- and pykA-based sequences showed that the microbial transcriptional response to nanoparticle exposure decreased, suggesting a decrease in cellular activity. These changes were attributable to both the nanoparticles treatment and soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. - Highlights: • Al 2 O 3 or Ag NPs impact on bacteria was assessed at phenotypic and molecular level. • katB gene involved in oxidative-stress response was overexpressed in P. stutzeri following Al 2 O 3 NPs exposure. • A decrease in bacterial transcriptional response was detected in NPs-treated soils. • A soil-dependent response to specific NP treatment was observed. • In NPs-treated soils no acute toxic effects on C. elegans were found

  12. A case of dorsal oblique fingertip amputation

    OpenAIRE

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    Abstract This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai?s classification is appropriate for guiding treatment.

  13. External exposure to radionuclides in air, water, and soil

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Ryman, J.C.

    1996-01-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body

  14. Soil-ecological risks for soil degradation estimation

    Science.gov (United States)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  15. Feasibility study of photodiodes utilization in the soil-moisture determination by gamma transmission

    International Nuclear Information System (INIS)

    Santos, L.A.P. dos.

    1992-08-01

    This study was done to verify the viability of photodiodes, as gamma radiation detector ( 241 Am - Energy=60 KeV), to measure soil water content. The photodiodes used had different mechanical and electrical characteristics, and were tested on soils of different textures. A good linear correlation between the logarithm of the attenuation factor and soil-moisture demonstrated such viability, and that the low photopeak efficiency of these devices is not a limitation to the measurement of soil water content. Furthermore, the stability, the portability, and low cost of such semiconductor devices, including its electronic system, represent relevant characteristics that may justify the development of a reliable gamma meter system for field studies. (author). 37 refs, 21 figs, 20 tabs

  16. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI).

    Science.gov (United States)

    Lara, Paloma; Morett, Enrique; Juárez, Katy

    2017-11-01

    Stimulation of microbial reduction of Cr(VI) to the less toxic and less soluble Cr(III) through electron donor addition has been regarded as a promising approach for the remediation of chromium-contaminated soil and groundwater sites. However, each site presents different challenges; local physicochemical characteristics and indigenous microbial communities influence the effectiveness of the biostimulation processes. Here, we show microcosm assays stimulation of microbial reduction of Cr(VI) in highly alkaline and saline soil samples from a long-term contaminated site in Guanajuato, Mexico. Acetate was effective promoting anaerobic microbial reduction of 15 mM of Cr(VI) in 25 days accompanied by an increase in pH from 9 to 10. Our analyses showed the presence of Halomonas, Herbaspirillum, Nesterenkonia/Arthrobacter, and Bacillus species in the soil sample collected. Moreover, from biostimulated soil samples, it was possible to isolate Halomonas spp. strains able to grow at 32 mM of Cr(VI). Additionally, we found that polluted groundwater has bacterial species different to those found in soil samples with the ability to resist and reduce chromate using acetate and yeast extract as electron donors.

  17. Application of porous ceramic as soil moisture sensor in controlled environment

    International Nuclear Information System (INIS)

    Oliveira, R.M.; Nono, M.C.A.; Mineiro, S.L.

    2009-01-01

    In this work, the behavior of ZrO 2 -TiO 2 porous ceramic as soil water content sensor element at different climatic conditions is presented. The analysis of the sensor element was carried out correlating the results of electrical properties, through the measurement of capacitance and impedance variation in function of the soil water content, with the microstructure of the ZrO 2 -TiO 2 ceramic. The ceramic sensor was studied in a sandy clay soil type at different climatic conditions characterized by temperature and relative humidity. The microstructural characterization of the ceramic sensor included scanning electron microscopy observations, X-ray diffraction patterns and pore size distribution using mercury porosimetry. (author)

  18. Physical soil quality indicators for monitoring British soils

    Science.gov (United States)

    Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.

    2017-09-01

    Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  19. Physical soil quality indicators for monitoring British soils

    Directory of Open Access Journals (Sweden)

    R. Corstanje

    2017-09-01

    Full Text Available Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  20. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  1. Bioelectroventing: an electrochemical‐assisted bioremediation strategy for cleaning‐up atrazine‐polluted soils

    OpenAIRE

    Domínguez‐Garay, Ainara; Quejigo, Jose Rodrigo; Dörfler, Ulrike; Schroll, Reiner; Esteve‐Núñez, Abraham

    2017-01-01

    Summary The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Bioelectroventing is a bioelectrochemical strategy that aims to enhance the biodegradation of a pollutant in the environment by overcoming the electron acceptor limitation and maximizing metabolic oxidation. Microbial electroremediating cells (MERCs) are devices that can perform such a bioelectroventing. We also report an overall profile of the...

  2. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  3. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    International Nuclear Information System (INIS)

    Yoshida, Naoko; Yoshida, Yukina; Handa, Yuko; Kim, Hyo-Keun; Ichihara, Shigeyuki; Katayama, Arata

    2007-01-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP → 2,3,4,5-tetrachlorophenol → 3,4,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol → phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore-forming bacteria dechlorinating PCP were not detected by PCR using a

  4. Dissinfection of municipal sludge and wastewater by energized electrons

    International Nuclear Information System (INIS)

    Trump, J.G.; Wright, K.A.; Sinskey, A.J.; Shah, D.N.; Fernald, R.

    1979-01-01

    Laboratory studies at M.I.T. and high flow rate studies at the M.D.C. Deer Island Wastewater Treatment Plant in Boston have shown the practicality and cost effectiveness of disinfecting liquid municipal sludges by injecting energized electrons. A dosage of 400 Kilorads (4 Kilograys) reduces gram-negative bacteria, including coliforms, fecal coliforms, salmonellae and shigellae, in primary raw or anaerobically digested sludges to undetectable levels. Enteric viruses are reduced by one to two orders of magnitude. This treatment also destroys parasite eggs or renders them non-infectious. Model system studies indicate that trace toxic compounds such as PCBs in water are degraded. The estimated cost of sludge disinfection by electron treatment is about $0.80 per liquid tonne for modular systems of 650 liquid tonnes per day capacity. About 6 Kilowatt-hours of input electric power per tonne is required. The temperature rise of the disinfected watery sludge is about 2 0 C. Electron disinfection combined with subsurface soil injection offers an environmentally attractive, energy-efficient, and economic two -step process for land disposal of municipal sludges with water conservation and soil improvement benefits. Combined with widely-distributed ocean feeding, electron disinfection of the municipal sludge of coastal communities offers a safe marine nutrient for increasing fish population in treated ocean areas. The electron disinfection of effluent wastewater, in lieu of chlorination, is a future application which avoids the production of potentially toxic chlorinated hydrocarbons. (Author) [pt

  5. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... of the Basic Provisions that limit the amount of a replant payment to the actual cost of replanting... present that are identified by the Food and Drug Administration or other public health organizations of... feasible. We may obtain prices from any buyer of our choice. If we obtain prices from one or more buyers...

  6. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  7. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  8. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  9. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  10. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A-nan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Teng, Ying [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Xue-feng [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wu, Long-hua; Huang, Yu-juan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yong-ming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO{sub 2}) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L{sub 9}(3){sup 4}, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO{sub 2} dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg{sup −1} were found to be a 1:10 soil: water ratio, 40 mW cm{sup −2} light intensity, 5% TiO{sub 2} in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO{sub 2} in soil slurry. This study suggests that TiO{sub 2} photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO{sub 2} (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO{sub 2} (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by Ti

  11. Treatment of fingertip amputation in adults by palmar pocketing of the amputated part.

    Science.gov (United States)

    Jung, Mi Sun; Lim, Young Kook; Hong, Yong Taek; Kim, Hoon Nam

    2012-07-01

    First suggested by Brent in 1979, the pocket principle is an alternative method for patients for whom a microsurgical replantation is not feasible. We report the successful results of a modified palmar pocket method in adults. Between 2004 and 2008, we treated 10 patients by nonmicrosurgical replantation using palmar pocketing. All patients were adults who sustained a complete fingertip amputation from the tip to lunula in a digits. In all of these patients, the amputation occurred due to a crush or avulsion-type injury, and a microsurgical replantation was not feasible. We used the palmar pocketing method following a composite graft in these patients and prepared the pocket in the subcutaneous layer of the ipsilateral palm. Of a total of 10 cases, nine had complete survival of the replantation and one had 20% partial necrosis. All of the cases were managed to conserve the fingernails, which led to acceptable cosmetic results. A composite graft and palmar pocketing in adult cases of fingertip injury constitute a simple, reliable operation for digital amputation extending from the tip to the lunula. These methods had satisfactory results.

  12. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    Santorufo, Lucia; Van Gestel, Cornelis A.M.; Rocco, Annamaria; Maisto, Giulia

    2012-01-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  13. Management of avulsed permanent maxillary central incisors during endotracheal intubation

    Directory of Open Access Journals (Sweden)

    Ritesh R Kalaskar

    2016-01-01

    Full Text Available Avulsion is serious injury that may encounter during endotracheal intubation and its management often presents a challenge. Replantation of the avulsed tooth can restore esthetic appearance and occlusal function shortly after the injury. The present article describes the management of air-dried maxillary permanent incisors that have been avulsed due to direct laryngoscopy during the induction of general anesthesia for tonsillectomy procedure. The replanted maxillary central incisors had maintained its function and esthetic for 1 year after replantation. Children in a mixed dentition phase are high-risk group children for traumatic dental injury during laryngoscopy; therefore, Anesthetic Departments should have local protocols to refer patients for dental treatment postoperatively in the event of trauma.

  14. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  15. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  16. A review on slurry bioreactors for bioremediation of soils and sediments.

    Science.gov (United States)

    Robles-González, Ireri V; Fava, Fabio; Poggi-Varaldo, Héctor M

    2008-02-29

    The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii) trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv) recent findings on the utilization of electron acceptors other than oxygen; (v) bioaugmentation and advances made on characterization of microbial communities of SB; (vi) developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process.From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation), inocula (bioaugmentation), increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with hydrocarbons and some

  17. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, M.; Laverman, A.M.; Keuskamp, J.A.; Laanbroek, H.J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  18. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  19. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  20. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  1. Determination of soil parameters during the water horizontal infiltration and redistribution by gamma ray attenuation method and tensiometry

    International Nuclear Information System (INIS)

    Oliveira, J.C.M. de.

    1991-04-01

    The present work studies the water diffusivity and hydraulic conductivity in a Latossolo Roxo distrofico soil, during the water infiltration and redistribution processes. Variation water flow equations were utilized for the calculations. The data of wetting front positions and of soil water content profiles were obtained through the gamma ray attenuation from a 241-Am source, with 100 mCi activity detected by a standard electronic equipment of gamma spectrometry, with NaI CTD scintillation detector. From the soil water content data in function of space and time and from analytic models, the properties of soil water diffusivity and soil hydraulic conductivity were determined in the laboratory for the 0-10 cm and 10-25 soil layers. (author)

  2. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  3. Hydraulic conductivity of indeformed soil columns determination by gamma ray transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo; Moraes Cavalcante, Fabio Henrique de; Rocha, Marcos Correa da; Filho, Otavio Portezan; Quinones, Fernando Rodolfo Espinosa; Appoloni, Carlos Roberto

    2000-01-01

    The spatial variation of the soil structure influences the water movement through its porous geometry, which could cause problems in the development of agricultural cultures and also accelerate processes of soil erosion. The gamma ray transmission method has established efficiency for the non-destructive measurement of moisture temporal and space evolution, and consequently in the determination of the hydraulic conductivity of the soil, K(θ). Columns of undisturbed soil (approximately 0.11 x 0.06 x 0.60 m) were removed from a trench in the Campus of Londrina State University. The used soil was classified like distrophic dark red soil (LRd). The indeformed soil columns were wrapped up with paraffin and gauze and were fixed on the table of measurement. The water vertical infiltration in the soil was accomplished by maintaining a water layer of approximately 0.01 m over an area of soil of 75 x 10 -4 m 2 . Layers of filter papers and foam controlled the flow of water in the soil surface. After the conclusion of the infiltration, began the process of redistribution of the water in the soil column, with the objective to determine the function K(θ) in relation to the depth in the column. The moisture profiles θ(z,t) are obtained using a radioactive source of 241 Am (3.7 x 10 9 Bq; 0.0596 MeV), spectrometric electronic chain, a 2x2'' NaI(Tl) detector and a measurements table , which allows the sample to move vertically. The hydraulic conductivity function was determined, applying the Sisson model , at 10 levels in the soil column and the results exhibit an increase of K(θ) with depth. (author)

  4. [Determination of lambda-cyhalothrin residue tea and soil using gas chromatography].

    Science.gov (United States)

    Chen, Linglong; Chen, Jiuxing; Ma, Ming; Chen, Lihua; Yang, Hui; Zhang, Guiqun

    2010-08-01

    A gas chromatographic (GC) method was established for the determination of lambda-cyhalothrin residue in tea and soil. Tea and soil samples were extracted with hexane, separated by capillary column and determined by gas chromatography-electron capture detector (GC-ECD). The average recoveries of lambda-cyhalothrin in tea and soil were 89.0% - 94.1% and 89.8% - 94.7%, respectively at the spiking levels of 0.02 to 2.00 mg/kg. The corresponding relative standard deviations (RSDs, n = 5) were 3.0% -4.9% and 2.5% -4.2%, respectively. The limit of detection (S/N = 3) was 0.002 mg/kg for lambda-cyhalothrin. The degradations of 2.5% lambda-cyhalothrin microemulsion in tea and soil in Changsha, Hunan were investigated and the degradation equations were Y = 3.199 6e(-0.339 4x) and Y = 0.122 4e(-0.103 6x) with the correlation coefficients of 0.995 6 and 0.924 7, respectively. The half-lives of lambda-cyhalothrin in tea and soil were 2.04 days and 6.69 days, respectively.

  5. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  6. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Pua, Fei-ling; El-Shekeil, Y.A.; AL-Oqla, Faris M.

    2013-01-01

    Highlights: • We developed composites from kenaf and thermoplastic polyurethane. • Soil burial of composites after 80 days shows increase in flexural strength. • Soil burial of composites after 80 days shows increase in flexural modulus. • Tensile properties of composites degrade after soil burial tests. • We investigate the morphological fracture through scanning electron microscopy. - Abstract: A study on mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane (TPU) composites is presented in this paper. Kenaf bast fibre reinforced TPU composites were prepared via melt-mixing method using Haake Polydrive R600 internal mixer. The composites with 30% fibre loading were prepared based on some important parameters; i.e. 190 °C for reaction temperature, 11 min for reaction time and 400 rpm for rotating speed. The composites were subjected to soil burial tests where the purpose of these tests was to study the effect of moisture absorption on the mechanical properties of the composites. Tensile and flexural properties of the composites were determined before and after the soil burial tests for 20, 40, 60 and 80 days. The percentages of both moisture uptake and weight gain after soil burial tests were recorded. Tensile strength of kenaf fibre reinforced TPU composite dropped to ∼16.14 MPa after 80 days of soil burial test. It was also observed that there was no significant change in flexural properties of soil buried kenaf fibre reinforced TPU composite specimens

  7. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Science.gov (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  9. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  10. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.

    Science.gov (United States)

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-04-15

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  11. Determination of the hydraulic conductivity in column of undeformed soil by gamma rays transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Cavalcante, Fabio H.M.; Portezan Filho, Otavio; Coimbra, Melayne M.; Appoloni, Carlos Roberto

    2000-01-01

    The water infiltration process in undeformed soil column and the measurement of redistribution process by gamma rays transmission in different depth allow the determination of Hydraulic Conductivity K(Θ) function, using the Sisson et al. (1980) method. A LRd (dystrophic dark red soil) soil column with 60 cm of height, 10 cm of width and 5 cm of thickness, was analyzed in laboratory, reproducing the field conditions concerning to the water infiltration and redistribution in the soil. The soil moisture content data was obtained with a radioactivity source 241 Am (100 mCi; 59,6 keV), NaI (Tl) 2x2 detector, coupled to an gamma rays spectrometric electronic chain and a measurement table that allowed the vertical displacement of the soil column. The results indicate a growing behavior for K(Θ) in relation to the depth. The collimators had 2 mm and 5 mm diameter for radioactivity source and detector respectively. (author)

  12. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Bernardo Caicedo

    2018-04-01

    Full Text Available This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia, the equatorial Pacific, and the lacustrine deposit of Bogotá (Colombia, among other locations. Features of this kind of soil include high friction angle, high initial void ratio, high compressibility index, high liquid limit, and low density. Some of these features are counterintuitive from a classical soil mechanics viewpoint. To understand the geotechnical properties of the diatomaceous soil, a comprehensive experimental plan consisting of more than 2400 tests was performed, including physical tests such as grain size distribution, Atterberg limits, density of solid particles, and organic matter content; and mechanical tests such as oedometric compression tests, unconfined compression tests, and triaxial tests. Laboratory tests were complemented with scanning electron microscope (SEM observations to evaluate the microstructure of the soil. The test results show that there is an increase in liquid limit with increasing diatomaceous content, and the friction angle also increases with increasing diatomaceous content. In addition, several practical correlations were proposed for this soil type for shear strength mobilization and intrinsic compression line. Finally, useful correlations were presented, such as the relationship between the state consistency and the undrained shear strength, the friction angle and the liquid limit, the void ratio at 100 kPa and the liquid limit, the plasticity index and the diatomaceous content, among others. Keywords: Diatomaceous soil, Soft soils, Compressibility, Friction angle, Natural soil

  13. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  14. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  15. The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil.

    Science.gov (United States)

    Jesmer, Alexander H; Velicogna, Jessica R; Schwertfeger, Dina M; Scroggins, Richard P; Princz, Juliska I

    2017-10-01

    The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO 3 ; as ionic Ag + ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag + in soil samples was estimated using an ion-exchange technique applied to KNO 3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO 3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag + than those from AgNO 3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.

  16. Soil hydraulic properties of Cuban soils

    International Nuclear Information System (INIS)

    Ruiz, M.E.; Medina, H.

    2004-01-01

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  17. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review.

    Science.gov (United States)

    Zhu, Xiaomin; Chen, Baoliang; Zhu, Lizhong; Xing, Baoshan

    2017-08-01

    Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae From Soil

    Institute of Scientific and Technical Information of China (English)

    Noraini M. Jaafar; Peta L. Clode; Lynette K. Abbott

    2014-01-01

    Biochar is a potential micro-environment for soil microorganisms but evidence to support this suggestion is limited. We explored imaging techniques to visualize and quantify fungal colonization of habitable spaces in a biochar made from a woody feedstock. In addition to characterization of the biochar, it was necessary to optimize preparation and observation methodologies for examining fungal colonization of the biochar. Biochar surfaces and pores were investigated using several microscopy techniques. Biochar particles were compared in soilless media and after deposition in soil. Scanning electron microscopy (SEM) observations and characterization of the biochar demonstrated structural heterogeneity within and among biochar particles. Fungal colonization in and on biochar particles was observed using light, fluorescence and electron microscopy. Fluorescent brightener RR 2200 was more effective than Calcolfuor White as a hyphal stain. Biochar retrieved from soil and observed using lfuorescence microscopy exhibited distinct hyphal networks on external biochar surfaces. The extent of hyphal colonization of biochar incubated in soil was much less than for biochar artiifcially inoculated with fungi in a soilless medium. The location of fungal hyphae was more clearly visible using SEM than with lfuorescence microscopy. Observations of biochar particles colonized by hyphae from soil posed a range of dififculties including obstruction by the presence of soil particles on biochar surfaces and inside pores. Extensive hyphal colonization of the surface of the biochar in the soilless medium contrasted with limited hyphal colonization of pores within the biochar. Both visualization and quantiifcation of hyphal colonization of surfaces and pores of biochar were restricted by two-dimensional imaging associated with uneven biochar surfaces and variable biochar pore structure. There was very little colonization of biochar from hyphae in the agricultural soil used in this study.

  19. Soft-tissue injuries of the fingertip: methods of evaluation and treatment. An algorithmic approach.

    Science.gov (United States)

    Lemmon, Joshua A; Janis, Jeffrey E; Rohrich, Rod J

    2008-09-01

    After studying this article, the participant should be able to: 1. Understand the anatomy of the fingertip. 2. Describe the methods of evaluating fingertip injuries. 3. Discuss reconstructive options for various tip injuries. The fingertip is the most commonly injured part of the hand, and therefore fingertip injuries are among the most frequent injuries that plastic surgeons are asked to treat. Although microsurgical techniques have enabled replantation of even very distal tip amputations, it is relatively uncommon that a distal tip injury will be appropriate for replantation. In the event that replantation is not pursued, options for distal tip soft-tissue reconstruction must be considered. This review presents a straightforward method for evaluating fingertip injuries and provides an algorithm for fingertip reconstruction.

  20. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  1. Optical Properties of Airborne Soil Organic Particles

    Energy Technology Data Exchange (ETDEWEB)

    Veghte, Daniel P. [William; China, Swarup [William; Weis, Johannes [Chemical; Department; Kovarik, Libor [William; Gilles, Mary K. [Chemical; Laskin, Alexander [Department

    2017-09-27

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. The particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.

  2. Bricks as indicators for an urban soil genesis

    Science.gov (United States)

    Nehls, Thomas; Rokia, Sarah; Schwartz, Christophe; Wessolek, Gerd

    2013-04-01

    Bricks can be considered as anthropogenic markers since they are regularly found in urban soils worldwide. They are among the most resistent residues of building materials, therefore are called technogenic substrates. They have been dumped to urban soils since more than 4000 years and can be dated back to their burning using thermoluminescence. In Berlin, bricks have been piled up to more than 37 rubble mountains in the city after WW II. The devils mountain, the most prominent of them is higher than 60m. However, bricks are known not to be isolated in the soil but to fulfill soil functions due to their porosity. Therefore, they are nice research objects for soil scientists. The purpose of this study is to investigate abundance and functions of bricks in urban soils, focusing on plant nutrition and contamination aspects. Three different Berlin urban soils have been studied for their brick contents in the coarse and fine earth fractions by endless hand sorting. Light and scanning electron microscopy was then employed to investigate the bricks for proofs of plant roots. Third, CEC, pH, EC, Corg, nutrient storage (XRF) and availability (2:1 extract, ion chromatography, AAS) of bricks and fine earth fractions of the corresponding soil horizons have been investigated. The fine earth fractions of the investigated soils contain 3 to 5% of bricks, while the coarse fractions contain up to 50%. We found roots entering brick pores or at least attached to brick surfaces. Therefore, plants can use the water and nutrients stored in bricks. The CEC of bricks is grain size dependent and reaches a maximum of 6 cmolc kg-1 for particles smaller than 0.063 mm. This dependency is not explained by a low pore connectivity. Rather, it is the result of the restricted diffusion into the brick pore system due to the short shaking time in the CEC analysis protocol. From the nutrient storage and availabilities we conclude that bricks can better supply plants with K, Mg, Ca and S than the bulk

  3. Clay-illuvial soils in the Polish and international soil classifications

    Directory of Open Access Journals (Sweden)

    Kabała Cezary

    2015-12-01

    Full Text Available Soil with a clay-illuvial subsurface horizon are the most widespread soil type in Poland and significantly differ in morphology and properties developed under variable environmental conditions. Despite the long history of investigations, the rules of classification and cartography of clay-illuvial soils have been permanently discussed and modified. The distinction of clay-illuvial soils into three soil types, introduced to the Polish soil classification in 2011, has been criticized as excessively extended, non-coherent with the other parts and rules of the classification, hard to introduce in soil cartography and poorly correlated with the international soil classifications. One type of clay-illuvial soils (“gleby płowe” was justified and recommended to reintroduce in soil classification in Poland, as well as 10 soil subtypes listed in a hierarchical order. The subtypes may be combined if the soil has diagnostic features of more than one soil subtypes. Clear rules of soil name generalization (reduction of subtype number for one soil were suggested for soil cartography on various scales. One of the most important among the distinguished soil sub-types are the “eroded” or “truncated” clay-illuvial soils.

  4. Soil structural quality assessment for soil protection regulation

    Science.gov (United States)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  5. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  6. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  7. Measurement of microbial activity in soil by colorimetric observation of in situ dye reduction: an approach to detection of extraterrestrial life

    Directory of Open Access Journals (Sweden)

    Barnes Bruce

    2002-07-01

    Full Text Available Abstract Background Detecting microbial life in extraterrestrial locations is a goal of space exploration because of ecological and health concerns about possible contamination of other planets with earthly organisms, and vice versa. Previously we suggested a method for life detection based on the fact that living entities require a continual input of energy accessed through coupled oxidations and reductions (an electron transport chain. We demonstrated using earthly soils that the identification of extracted components of electron transport chains is useful for remote detection of a chemical signature of life. The instrument package developed used supercritical carbon dioxide for soil extraction, followed by chromatography or electrophoresis to separate extracted compounds, with final detection by voltammetry and tandem mass-spectrometry. Results Here we used Earth-derived soils to develop a related life detection system based on direct observation of a biological redox signature. We measured the ability of soil microbial communities to reduce artificial electron acceptors. Living organisms in pure culture and those naturally found in soil were shown to reduce 2,3-dichlorophenol indophenol (DCIP and the tetrazolium dye 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt (XTT. Uninoculated or sterilized controls did not reduce the dyes. A soil from Antarctica that was determined by chemical signature and DNA analysis to be sterile also did not reduce the dyes. Conclusion Observation of dye reduction, supplemented with extraction and identification of only a few specific signature redox-active biochemicals such as porphyrins or quinones, provides a simplified means to detect a signature of life in the soils of other planets or their moons.

  8. Stimulating soil microorganisms for mineralizing the herbicide isoproturon by means of microbial electroremediating cells.

    Science.gov (United States)

    Rodrigo Quejigo, Jose; Dörfler, Ulrike; Schroll, Reiner; Esteve-Núñez, Abraham

    2016-05-01

    The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Microbial electroremediating cells (MERCs) consist in a variety of bioelectrochemical devices that aim to overcome electron acceptor limitation and maximize metabolic oxidation with the purpose of enhancing the biodegradation of a pollutant in the environment. The objective of this work was to use MERCs principles for stimulating soil bacteria to achieve the complete biodegradation of the herbicide (14) C-isoproturon (IPU) to (14) CO(2) in soils. Our study concludes that using electrodes at a positive potential [+600 mV (versus Ag/AgCl)] enhanced the mineralization by 20-fold respect the electrode-free control. We also report an overall profile of the (14) C-IPU metabolites and a (14) C mass balance in response to the different treatments. The remarkable impact of electrodes on the microbial activity of natural communities suggests a promising future for this emerging environmental technology that we propose to name bioelectroventing. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-05-31

    Western Research Institute (WRI) is commercializing Diesel Dog Portable Soil Test Kits for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated ASTM Method D-5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In FY 99, twenty-five preproduction kits were successfully constructed in cooperation with CF Electronics, Inc., of Laramie, Wyoming. The kit components work well and the kits are fully operational. In the calendar year 2000, kits were provided to the following entities who agreed to participate as FY 99 and FY 00 JSR (Jointly Sponsored Research) cosponsors and use the kits as opportunities arose for field site work: Wyoming Department of Environmental Quality (DEQ) (3 units), F.E. Warren Air Force Base, Gradient Corporation, The Johnson Company (2 units), IT Corporation (2 units), TRC Environmental Corporation, Stone Environmental, ENSR, Action Environmental, Laco Associates, Barenco, Brown and Caldwell, Dames and Moore Lebron LLP, Phillips Petroleum, GeoSyntek, and the State of New Mexico. By early 2001, ten kits had been returned to WRI following the six-month evaluation period. On return, the components of all ten kits were fully functional. The kits were upgraded with circuit modifications, new polyethylene foam inserts, and updated instruction manuals.

  10. SoilInfo App: global soil information on your palm

    Science.gov (United States)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  11. Shaping an Optimal Soil by Root-Soil Interaction.

    Science.gov (United States)

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantification of the proliferation of arbuscular mycorrhizal fungi in soil

    Science.gov (United States)

    Zhang, Ning; Lilje, Osu; McGee, Peter

    2013-04-01

    Good soil structure is important for sustaining agricultural production and preserving functions of the soil ecosystem. Soil aggregation is a critically important component of soil structure. Stable aggregates enable water infiltration, gas exchange for biological activities of plant roots and microorganisms, living space and surfaces for soil microbes, and contribute to stabilization of organic matter and storage of organic carbon (OC) in soil. Soil aggregation involves fine roots, organic matter and hyphae of arbuscular mycorrhizal (AM) fungi. Hyphal proliferation is essential for soil aggregation and sequestration of OC in soil. We do not yet have a mechanism to directly quantify the density of hyphae in soil. Organic materials and available phosphorus are two of the major factors that influence fungi in soil. Organic materials are a source of energy for saprotrophic microbes. Fungal hyphae increase in the presence of organic matter. Phosphorus is an important element usually found in ecosystems. The low availability of phosphorus limits the biological activity of microbes. AM fungi benefit plants by delivering phosphorus to the root system. However, the density and the length of hyphae of AM fungi do not appear to be influenced by available phosphorus. A number of indirect methods have been used to visualize distribution of fungi in soil. Reliable analyses of soil are limited because of soil characteristics. Soils are fragile, and fragility limits opportunity for non-destructive analysis. The soil ecosystem is complex. Soil particles are dense and the density obscures the visualization of fungal hyphae. Fungal hyphae are relatively fine and information at the small scale (hyphae of AM fungi. Hyphae were quantified in an artificial soil matrix using micro-computer aided tomography. Micro-computer aided tomography provides three dimensional images of hyphal ramification through electron lucent materials and enables the visualization and quantification of hyphae

  13. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  14. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  15. Treatment of Fingertip Amputation in Adults by Palmar Pocketing of the Amputated Part

    Directory of Open Access Journals (Sweden)

    Mi Sun Jung

    2012-07-01

    Full Text Available BackgroundFirst suggested by Brent in 1979, the pocket principle is an alternative method for patients for whom a microsurgical replantation is not feasible. We report the successful results of a modified palmar pocket method in adults.MethodsBetween 2004 and 2008, we treated 10 patients by nonmicrosurgical replantation using palmar pocketing. All patients were adults who sustained a complete fingertip amputation from the tip to lunula in a digits. In all of these patients, the amputation occurred due to a crush or avulsion-type injury, and a microsurgical replantation was not feasible. We used the palmar pocketing method following a composite graft in these patients and prepared the pocket in the subcutaneous layer of the ipsilateral palm.ResultsOf a total of 10 cases, nine had complete survival of the replantation and one had 20% partial necrosis. All of the cases were managed to conserve the fingernails, which led to acceptable cosmetic results.ConclusionsA composite graft and palmar pocketing in adult cases of fingertip injury constitute a simple, reliable operation for digital amputation extending from the tip to the lunula. These methods had satisfactory results.

  16. Energetic Constraints on H-2-Dependent Terminal Electron Accepting Processes in Anoxic Environments

    DEFF Research Database (Denmark)

    Heimann, Axel Colin; Jakobsen, Rasmus; Blodau, C.

    2010-01-01

    and sulfate reduction are under direct thermodynamic control in soils and sediments and generally approach theoretical minimum energy thresholds. If H-2 concentrations are lowered by thermodynamically more potent TEAPs, these processes are inhibited. This principle is also valid for TEAPS providing more free......Microbially mediated terminal electron accepting processes (TEAPs) to a large extent control the fate of redox reactive elements and associated reactions in anoxic soils, sediments, and aquifers. This review focuses on thermodynamic controls and regulation of H-2-dependent TEAPs, case studies...... illustrating this concept and the quantitative description of thermodynamic controls in modeling. Other electron transfer processes are considered where appropriate. The work reviewed shows that thermodynamics and microbial kinetics are connected near thermodynamic equilibrium. Free energy thresholds...

  17. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    OpenAIRE

    Bottinelli, N.; Jouquet, Pascal; Capowiez, Y.; Podwojewski, Pascal; Grimaldi, Michel; Peng, X.

    2015-01-01

    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  18. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  19. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  20. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  1. Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake.

    Science.gov (United States)

    Abbasi, Sedigheh; Lamb, Dane T; Palanisami, Thavamani; Kader, Mohammed; Matanitobua, Vitukawalu; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  3. Detection of novel brominated flame retardants (NBFRs in the urban soils of Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    Thomas J. McGrath

    2017-03-01

    Full Text Available A range of brominated flame retardants (BFRs have been incorporated into polymeric materials like plastics, electronic equipment, foams and textiles to prevent fires. The most common of these, polybrominated diphenyl ethers (PBDEs, have been subject to legislated bans and voluntary withdrawal by manufacturers in North America, Europe and Australia over the past decade due to long-range atmospheric transport, persistence in the environment, and toxicity. Evidence has shown that replacement novel brominated flame retardants (NBFRs are released to the environment by the same mechanisms as PBDEs and share similar hazardous properties. The objective of the current research was to characterize soil contamination by NBFRs in the urban soils of Melbourne, Australia. A variety of industrial and non-industrial land-uses were investigated with the secondary objective of determining likely point sources of pollution. Six NBFRs; pentabromotoluene (PBT, pentabromoethylbenzene (PBEB, hexabromobenzene (HBB, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, 1,2-bis(2,4,6-tribromophenoxyethane (BTBPE and decabromodiphenyl ethane (DBDPE were measured in 30 soil samples using selective pressurized liquid extraction (S-PLE and gas chromatography coupled to triple quadrupole mass spectrometry (GC-MS/MS. NBFRs were detected in 24/30 soil samples with Σ5NBFR concentrations ranging from nd-385 ng/g dw. HBB was the most frequently detected compound (14/30, while the highest concentrations were observed for DBDPE, followed by BTBPE. Electronic waste recycling and polymer manufacturing appear to be key contributors to NBFR soil contamination in the city of Melbourne. A significant positive correlation between Σ8PBDEs and Σ5NBFR soil concentrations was observed at waste disposal sites to suggest that both BFR classes are present in Melbourne's waste streams, while no association was determined among manufacturing sites. This research provides the first account of NBFRs

  4. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Lu, Lu; Huggins, Tyler; Jin, Song; Zuo, Yi; Ren, Zhiyong Jason

    2014-04-01

    This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons

  5. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIEXiao-mei; LIAOMin; LIUWei-ping; SusanneKLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolyrJc bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport svstem activit), was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growrh stages

  6. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIAO Min; LIU Wei-ping; Susanne KLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages.

  7. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    Directory of Open Access Journals (Sweden)

    Shahidul Islam

    2016-04-01

    Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  8. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  9. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  10. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yu Bon [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Kang, Yuan [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Higher Education Mega Center, Guangzhou 510006 (China); Wang, Hong Sheng [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Lau, Winifred; Li, Hui; Sun, Xiao Lin [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Giesy, John P. [Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China); Chow, Ka Lai [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Wong, Ming Hung, E-mail: mhwong@hkbu.edu.hk [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10{sup −6} and 209 × 10{sup −6}, respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10{sup −6}) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil.

  11. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Man, Yu Bon; Kang, Yuan; Wang, Hong Sheng; Lau, Winifred; Li, Hui; Sun, Xiao Lin; Giesy, John P.; Chow, Ka Lai; Wong, Ming Hung

    2013-01-01

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10 −6 and 209 × 10 −6 , respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10 −6 ) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil

  12. Analysis and exploitation of bacterial population from natural uranium-rich soils: selection of a model specie

    International Nuclear Information System (INIS)

    Mondani, L.

    2010-01-01

    It is well known that soils play a key role in controlling the mobility of toxic metals and this property is greatly influenced by indigenous bacterial communities. This study has been conducted on radioactive and controls soils, collected in natural uraniferous areas (Limousin). A physico-chemical and mineralogical analysis of soils samples was carried out.The structure of bacterial communities was estimated by Denaturing Gradient Gel Electrophoresis (DGGE). The community structure is remarkably more stable in the uranium-rich soils than in the control ones, indicating that uranium exerts a high selection from the soils was constructed and screened for uranium resistance in order to study bacteria-uranium interactions. Scanning electron microscopy revealed that a phylo-genetically diverse set of uranium-resistant species ware able to chelate uranium at the cell surface. (author) [fr

  13. Characterization of a Carbon Nanotube Field Emission Electron Gun for the VAPoR Miniaturized Pyrolysis-Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Getty, Stephanie; Li, Mary; Costen, Nicholas; Hess, Larry; Feng, Steve; King, Todd; Brinckerhoff, William; Mahaffy, Paul; Glavin, Daniel

    2009-01-01

    We are developing the VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument towards studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon. VAPOR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Here, we describe miniaturization efforts within this development, including a carbon nanotube (CNT) field emission electron gun that is under consideration for use as the electron impact ionization source for the ToF-MS.

  14. Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation

    International Nuclear Information System (INIS)

    Baumeister, Julie L.; Hausrath, Elisabeth M.; Olsen, Amanda A.; Tschauner, Oliver; Adcock, Christopher T.; Metcalf, Rodney V.

    2015-01-01

    Highlights: • Dissolution of primary minerals is important to porosity generation in serpentinites. • Mineral weathering extent in serpentinites follows the order Fe > Mg > Al rich minerals. • Fe-oxidizing bacteria may mediate Fe-rich primary and serpentine mineral alteration. • Serpentinite weathering is strongly impacted by degree of serpentinization. - Abstract: Serpentinite rocks, high in Mg and trace elements including Ni, Cr, Cd, Co, Cu, and Mn and low in nutrients such as Ca, K, and P, form serpentine soils with similar chemical properties resulting in chemically extreme environments for the biota that grow upon them. The impact of parent material on soil characteristics is most important in young soils, and therefore the incipient weathering of serpentinite rock likely has a strong effect on the development of serpentine soils and ecosystems. Additionally, porosity generation is a crucial process in converting rock into a soil that can support vegetation. Here, the important factors affecting the incipient weathering of serpentinite rock are examined at two sites in the Klamath Mountains, California. Serpentinite-derived soils and serpentinite rock cores were collected in depth profiles from each sampling location. Mineral dissolution in weathered serpentinite samples, determined by scanning electron microscopy, energy dispersive spectrometry, electron microprobe analyses, and synchrotron microXRD, is consistent with the order, from most weathered to least weathered: Fe-rich pyroxene > antigorite > Mg-rich lizardite > Al-rich lizardite. These results suggest that the initial porosity formation within serpentinite rock, impacting the formation of serpentine soil on which vegetation can exist, is strongly affected both by the presence of non-serpentine primary minerals as well as the composition of the serpentine minerals. In particular, the presence of ferrous Fe appears to contribute to greater dissolution, whereas the presence of Al within the

  15. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  16. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Cervantes, Francisco J.; Mancilla, Ana Rosa; Toro, E. Emilia Rios-del; Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia

    2011-01-01

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L -1 , linked to the reduction of 619 ± 81 μEq L -1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  17. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  18. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    Delgado, F.

    2004-01-01

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  19. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  20. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.

    1996-01-01

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  1. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  3. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  4. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  5. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  6. Ectopic banking of amputated great toe for delayed thumb reconstruction: case report.

    Science.gov (United States)

    Valerio, Ian L; Hui-Chou, Helen G; Zelken, Jonathan; Basile, Patrick L; Ipsen, Derek; Higgins, James P

    2014-07-01

    Ectopic banking of amputated parts is a recognized technique for delayed replantation of an amputated part when the amputation stump will not permit immediate replantation. This is conventionally performed with the intent of transferring the injured part back to its anatomic position when the amputation stump is more appropriate for replantation. Current warfare conditions have led to a commonly encountered military trauma injury pattern of multiple extremity amputations with protected trunk and core structures. This pattern poses many challenges, including the limit or absence of donor sites for immediate or delayed flap reconstructive procedures. We describe a case in which we ectopically banked the great toe of an amputated lower extremity for delayed thumb reconstruction. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  8. Modelling the Impact of Soil Management on Soil Functions

    Science.gov (United States)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  9. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  10. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  11. Impact of Ag and Al{sub 2}O{sub 3} nanoparticles on soil organisms: In vitro and soil experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, C., E-mail: carmen.fajardo@vet.ucm.es [Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Saccà, M.L., E-mail: marialudovicasacca@pdi.ucm.es [Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Campus de Excelencia Internacional de Moncloa, 28040 Madrid (Spain); Costa, G., E-mail: costag@vet.ucm.es [Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Nande, M., E-mail: mnande@vet.ucm.es [Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Martin, M., E-mail: margamar@vet.ucm.es [Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain)

    2014-03-01

    In vitro analyses were conducted to assess the impact of Al{sub 2}O{sub 3} and Ag nanoparticles on two common soil bacteria, Bacillus cereus and Pseudomonas stutzeri. Al{sub 2}O{sub 3} nanoparticles did not show significant toxicity at any dose or time assayed, whereas exposure to 5 mg L{sup −1} Ag nanoparticles for 48 h caused bactericidal effects. Moreover, alterations at the morphological level were observed by transmission electron microscopy (TEM); Ag but not Al{sub 2}O{sub 3} nanoparticles evoked the entrance of B. cereus cells in an early sporulation stage and both nanoparticles penetrated P. stutzeri cells. At the molecular level, a dramatic increase (8.2-fold) in katB gene expression was found in P. stutzeri following Al{sub 2}O{sub 3} nanoparticles exposure, indicative of an oxidative stress-defence system enhancement in this bacterium. In the microcosm experiment, using two different natural soils, Al{sub 2}O{sub 3} or Ag nanoparticles did not affect the Caenorhabditis elegans toxicity endpoints growth, survival, or reproduction. However, differences in microbial phylogenetic compositions were detected by fluorescence in situ hybridization (FISH). The use of katB- and pykA-based sequences showed that the microbial transcriptional response to nanoparticle exposure decreased, suggesting a decrease in cellular activity. These changes were attributable to both the nanoparticles treatment and soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. - Highlights: • Al{sub 2}O{sub 3} or Ag NPs impact on bacteria was assessed at phenotypic and molecular level. • katB gene involved in oxidative-stress response was overexpressed in P. stutzeri following Al{sub 2}O{sub 3} NPs exposure. • A decrease in bacterial transcriptional response was detected in NPs-treated soils. • A soil-dependent response to specific NP treatment was observed. • In NPs-treated soils no acute toxic effects on C. elegans were found.

  12. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  13. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  14. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  15. Pesticide-soil microflora interactions in flooded rice soils

    International Nuclear Information System (INIS)

    Sethunathan, N.; Siddaramappa, R.; Siddarame Gowda, T.K.; Rajaram, K.P.; Barik, S.; Rao, V.R.

    1976-01-01

    Isotope studies revealed that gamma and beta isomers of HCH (hexachlorocyclohexane) decomposed rapidly in nonsterile soils capable of attaining redox potentials of -40 to -100mV within 20 days after flooding. Degradation was slow, however, in soils low in organic matter and in soils with extremely low pH and positive potentials, even after several weeks of flooding. Under flooded conditions, endrin decomposed to six metabolites in most soils. There is evidence that biological hydrolysis of parathion is more widespread than hitherto believed, particularly under flooded soil conditions. Applications of benomyl (fungicide) to a simulated-oxidized zone of flooded soils favoured heterotrophic nitrification. (author)

  16. [Influence of organochlorine pesticides in wastewater on the soil along the channel].

    Science.gov (United States)

    Xu, Liang; Zhang, Cai-Xiang; Liu, Min; Liao, Xiao-Ping; Yao, Lin-Lin; Li, Jia-Le; Xiang, Qing-Qing

    2013-08-01

    Nine profile soil samples and two sewage water samples were collected from Xiaodian sewage irrigation area in Taiyuan city, concentrations of organochlorine pesticides (OCPs) were determined by the gas chromatography coupled with electron capture detector (GC-ECD) to analyze the influence of the leakage of sewage water. The result shows that OCPs in sewage water were mainly composed of HCHs. Concentrations of DDTs and other organochlorine pesticides were very low or out of the detection limit. Concentrations of sigmaOCPs and HCHs in eight profiles near irrigation channels to some extend decreased with the increasing of the linear distance off the channel, which shows influences of the leakage of sewage water on the soil nearby. Concentrations of HCHs clearly decreased with the increasing of soil depth in most profile soils. For the horizontal direction, concentrations of HCHs also decreased with the increasing of the linear distance off the channel. The correlation between HCHs and TOC was positive, but no correlation between pH and HCHs was found.

  17. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  18. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  19. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  20. Dechlorination of PCBs, CAHs, herbicides and pesticides neat and in soils at 25 degrees C using Na/NH3.

    Science.gov (United States)

    Pittman, Charles U; He, Jinbao

    2002-05-03

    Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was added. The rate ratio of dechlorination (aliphatic and aromatic compounds) versus reaction of the solvated electron with water is very large, allowing wet soils or sludges to be remediated without an unreasonable consumption of sodium. Several soils, purposely contaminated with 1,1,1-trichloroethane, 1-chlorooctane and tetrachloroethylene, were remediated by slurring the soils in NH3 followed by addition of sodium. The consumption of sodium per mole of chlorine removed was examined as a function of both the hazardous substrate's concentration in the soil and the amount of water present. The Na consumption per Cl removed increases as the amount of water increases and as the substrate concentration in soil decreases. However, remediation was still readily accomplished from 5000 to 3000ppm to sub ppm levels of RCl in the presence of substantial amounts of water. PCB- and dioxin-contaminated oils were remediated with Na/NH3 as were PCB-contaminated soils and sludges from contaminated sites. Ca/NH3 treatments also successfully remediated PCB-contaminated clay, sandy and organic soils but laboratory studies demonstrated that Ca was less efficient than Na when substantial amounts of water were present. The advantages of solvated electron reductions using Na/NH3 include: (1) very rapid dehalogenation rates at ambient temperature, (2) soils (even clay soils) break down into particles and slurry nicely in NH3, (3) liquid ammonia handling technology is well known and (4) removal from soils, recovery and recycle of ammonia is easy due to its low boiling point. Finally, dechlorination is extremely fast even for the 'corner' chlorines in the substrate Mirex (structure in Eq. (5)).

  1. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils.

    Science.gov (United States)

    Halim, Cheryl E; Scott, Jason A; Amal, Rose; Short, Stephen A; Beydoun, Donia; Low, Gary; Cattle, Julie

    2005-04-11

    Soil contamination is a major environmental problem due to the ecological threat it poses. In this work, electron probe microanalysis (EPMA), X-ray diffraction (XRD), and leaching studies were employed to explain the different leaching behaviors of non-stabilized and stabilized soils. The applicability of the leaching fluids used in the toxicity characteristic leaching procedure (TCLP) and Australian Standards, AS 4439.1-1997 for assessing the hazards of contaminated soils was investigated as was the leaching of lead from soil stabilized by cement and buffered phosphate techniques. The results showed Pb speciation in the soil highly influenced metal leaching. The synthetic leaching fluids were unable to provide a reliable estimation of Pb concentration in the municipal landfill leachate (ML) due to the absence of organic ligands capable of forming stable complexes with the lead. Water provided the closest representation of lead leaching from the non-stabilized and phosphate stabilized soils while sodium tetraborate buffer was found to be suitable for cement-stabilized soil in a non-putrescible landfill leachate system. A comparison of stabilization methods revealed that the buffered phosphate technique was more suitable for stabilizing the lead in the soil relative to cement stabilization.

  2. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils

    International Nuclear Information System (INIS)

    Halim, Cheryl E.; Scott, Jason A.; Amal, Rose; Short, Stephen A.; Beydoun, Donia; Low, Gary; Cattle, Julie

    2005-01-01

    Soil contamination is a major environmental problem due to the ecological threat it poses. In this work, electron probe microanalysis (EPMA), X-ray diffraction (XRD), and leaching studies were employed to explain the different leaching behaviors of non-stabilized and stabilized soils. The applicability of the leaching fluids used in the toxicity characteristic leaching procedure (TCLP) and Australian Standards, AS 4439.1-1997 for assessing the hazards of contaminated soils was investigated as was the leaching of lead from soil stabilized by cement and buffered phosphate techniques. The results showed Pb speciation in the soil highly influenced metal leaching. The synthetic leaching fluids were unable to provide a reliable estimation of Pb concentration in the municipal landfill leachate (ML) due to the absence of organic ligands capable of forming stable complexes with the lead. Water provided the closest representation of lead leaching from the non-stabilized and phosphate stabilized soils while sodium tetraborate buffer was found to be suitable for cement-stabilized soil in a non-putrescible landfill leachate system. A comparison of stabilization methods revealed that the buffered phosphate technique was more suitable for stabilizing the lead in the soil relative to cement stabilization

  3. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  4. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  5. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  6. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  7. Percolation theory and its application for interpretation of soil water retention curves

    International Nuclear Information System (INIS)

    Kodesova, R.

    2004-01-01

    The soil porous system has traditionally been deduced from the soil-water retention curve with the assumption of homogeneity and free accessibility of pores, defined as capillary tubes, from the sink/source of water. But real soil fabric is mostly characterized by aggregates. In this case, the soil porous system cannot be modeled as a homogeneous one. To examine the differences between homogeneous and heterogeneous soil porous systems, we studied two types of soils: sandy soil and coarse sandy soil. We applied image processing filters and the ARC/INFO Grid module to analyze pore sizes in both soils from their electron microscope images taken at two different magnifications. We used the resulting pore-size distribution data to generate 3-D porous media consisting of pores and throats. The homogeneous pore structure was created as a mono-modal pore-throat network with one pore-size distribution. The heterogeneous pore structure was designed as a bi-modal pore-throat network with two pore-size distributions, where the pore sizes were hierarchically arranged in the nodes of the network. We applied the percolation model to simulate water and air displacement in these networks. The distribution of water in the nodes of the networks was studied increasing/decreasing steps of pressure head and the drainage and wetting branches of the retention curves were evaluated. The soil-water retention curves modeled for the mono-modal and bi-modal porous systems had different characters. The simulated shape of the retention curve in the mono-modal case was close to the step-like form of a retention curve characteristic of unstructured soil. The shape of the simulated retention curve in the bi-modal case was smoother, more gradual, and closer to the shape of the retention curve of a real, structured soil. (author)

  8. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-01-01

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO 3 - reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  9. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    Science.gov (United States)

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-01-01

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  10. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  11. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  12. Migration of 137Cs, 90Sr, 239,240Pu and 241Am in the chain soil-soil solution-plant. The soil-soil solution link

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kil'chitskaya, S.L.; Ehjsmont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.; Duksina, V.V.; Rubinchik, S.Ya.

    1999-01-01

    The mobility of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the link soil-soil solution is analysed for different soil types on the basis of radionuclide distribution coefficients between solid and liquid soil phases. The distribution coefficients allow to differentiate soils in correlation with radionuclide migration rate from the solid phase to the soil solution. The reasons of different radionuclide mobility are considered

  13. Soil Properties Database of Spanish Soils Volume I.-Galicia

    International Nuclear Information System (INIS)

    Trueba, C.; Millan, R.; Schmid, T.; Roquero, C.; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Department de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim. a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary)' source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Galicia

  14. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Directory of Open Access Journals (Sweden)

    Andrea Koch

    2015-04-01

    Full Text Available The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condition/quality and a practical measure of soil degradation. We describe three key phases of soil degradation since European settlement, and show a clear link between inappropriate agricultural practices and the resultant soil degradation. We demonstrate that modern agricultural practices have had a marked effect on reducing erosion. Current advances in agricultural soil management could lead to further stabilization and slowing of soil degradation in addition to improving productivity. However, policy complacency towards soil degradation, combined with future climate projections of increased rainfall intensity but decreased volumes, warmer temperatures and increased time in drought may once again accelerate soil degradation and susceptibility to erosion and thus limit the ability of agriculture to advance without further improving soil management practices. Monitoring soil degradation may indicate land degradation, but we contend that monitoring will not lead to soil security. We propose the adoption of a triaging approach to soil degradation using the soil security framework, to prioritise treatment plans that engage science and agriculture to develop practices that simultaneously increase productivity and improve soil condition. This will provide a public policy platform for efficient allocation of public and private resources to secure Australia’s soil resource.

  15. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities.

    Science.gov (United States)

    Ewel, John J

    2006-04-01

    Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting

  16. Management of penile defects: a review.

    Science.gov (United States)

    Guizhong, Li; Feng, He; Guangling, Huang; Libo, Man; Kun, Liu; Yuming, Shen

    2012-06-01

    Penile amputation is a rare injury. Although, in principle, penile replantation can be performed using a variety of methods, few, if any, standardized procedures exist to deal with this medical emergency. The value of the various microsurgical techniques for replantation of the penis remains uncertain. This article provides a review of the management of penile defects and complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Impacts of soil moisture content on visual soil evaluation

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  18. Measurement of structured purple soil porosity by using gamma ray transmission technique

    International Nuclear Information System (INIS)

    Costa, Elizabeth Cristina S. da; Rocha, Wilson Roberto Dejato da; Oliveira, Ricardo M. de; Silva, Luzeli Moreira da; Moreira, Anderson Camargo; Portezan, Otaio Portezan; Appoloni, Carlos Roberto; Coimbra, Melayne Martins

    2002-01-01

    The soil structure defines the particle arrangement which in turn largely determines the pore size distribution. In this work, we present the measurements of total, macro and microporosity for TRe soil with clayey texture. Soil samples were collected from a trench located at University of Londrina. The deformed and undeformed soil samples were collected from soil surface down to the depth of 0,50 m in 0,10 m intervals and separated into six aggregate size classes: 0.053; 0.125; 0.30; 0.71; 2 e 4 mm. We also prepared samples mixing different size classes, like as: (4+0.125), (2+0.125), (4+2+0.71), (4+2+0.30) e (4+0.30+0.125)mm. Measurements of particle density and aggregate bulk density using conventional method were performed to all depths. The linear soil attenuation coefficients and aggregate soil attenuation coefficients were measured with gamma-ray transmission system using an 241 Am (59,53 keV and 100 mCi) radiation source, a (2 x 2) in NaI scintillation detector, cylindric collimators (2 mm diameter to the source and 5 mm diameter to the detector) and gamma spectrometry standard electronics, connected to a multichannel. The obtained results for total, macro and microporosity are in a good agreement with the ones using the convention method, showing the applicability of the gamma-ray transmission method. (author)

  19. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  20. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  1. Enhanced simulations of CH4 and CO2 production in permafrost-affected soils address soil moisture controls on anaerobic decomposition

    Science.gov (United States)

    Graham, D. E.; Zheng, J.; Moon, J. W.; Painter, S. L.; Thornton, P. E.; Gu, B.; Wullschleger, S. D.

    2017-12-01

    Rapid warming of Arctic ecosystems exposes soil organic carbon (SOC) to accelerated microbial decomposition, leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. The magnitude, timing, and form of carbon release will depend not only on changes in temperature, but also on biogeochemical and hydrological properties of soils. In this synthesis study, we assessed the decomposability of thawed organic carbon from active layer soils and permafrost from the Barrow Environmental Observatory across different microtopographic positions under anoxic conditions. The main objectives of this study were to (i) examine environmental conditions and soil properties that control anaerobic carbon decomposition and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters to simulate anaerobic CO2 and CH4 production; and (iii) evaluate uncertainties generated from representations of pH and temperature effects in the current model framework. A newly developed anaerobic carbon decomposition framework simulated incubation experiment results across a range of soil water contents. Anaerobic CO2 and CH4 production have different temperature and pH sensitivities, which are not well represented in current biogeochemical models. Distinct dynamics of CH4 production at -2° C suggest methanogen biomass and growth rate limit activity in these near-frozen soils, compared to warmer temperatures. Anaerobic CO2 production is well constrained by the model using data-informed labile carbon pool and fermentation rate initialization to accurately simulate its temperature sensitivity. On the other hand, CH4 production is controlled by water content, methanogenesis biomass, and the presence of alternative electron acceptors, producing a high temperature sensitivity with large uncertainties for methanogenesis. This set of environmental constraints to methanogenesis is likely to undergo drastic changes due to permafrost

  2. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  3. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  4. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    Science.gov (United States)

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  5. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water .... moisture and the soil water evaporation process. The Songnen Plain ...... soils on soil infiltration and evaporation: Water Sci. Technol.

  6. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  7. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  8. Soil inoculation method determines the strength of plant-soil interactions

    NARCIS (Netherlands)

    Voorde, van de T.F.J.; Ruijten, M.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    There is increasing evidence that interactions between plants and biotic components of the soil influence plant productivity and plant community composition. Many plant–soil feedback experiments start from inoculating relatively small amounts of natural soil to sterilized bulk soil. These soil

  9. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of carbaryl sorption in alluvial soil

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2013-12-01

    Full Text Available This study investigated the adsorption potential of carbaryl onto alluvial soil. Parameters that influence the adsorption process such as pH, adsorbent dose, initial carbaryl concentration, stirring rate, particle size, contact time and temperature were studied in a batch process. The carbaryl adsorption capacity was at maximum at pH 6 for an initial concentration of 20 ppm. Adsorption equilibirium time was observed in 180 min. Equilibrium adsorption data was best fitted with Freundlich isotherm and pseudo-first order kinetic model, respectively. The adsorbent was characterized by X-ray diffraction spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The experiment performed indicated that the adsorption capacity of carbaryl was significantly correlated with particle size, organic matter and pH of the soil. Therefore, the possibility for carbaryl to contaminate underground water may be greater in the presence of low organic matter content.

  11. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  12. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments

    International Nuclear Information System (INIS)

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B.

    2013-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. -- Highlights: ► Soil Pb and As in an old orchard were concentrated in discrete particles. ► Compost amendment of contaminated soil reduced Pb bioavailability. ► Compost amendment of contaminated soil did not reduce As bioavailability. ► Ammonium acetate extraction test reflected bioavailability of soil Pb and As. -- Remediating metal-contaminated orchard soils with compost reduced lead bioavailability but had little effect on arsenic

  13. Radioactive Cs in the Severely Contaminated Soils Near the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Makoto; Iwata, Hajime; Shiotsu, Hiroyuki; Masaki, Shota; Kawamoto, Yuji; Yamasaki, Shinya; Nakamatsu, Yuki; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi [Department of Chemistry, Kyushu University, Fukuoka (Japan); Nanba, Kenji [Department of Environmental Management, Faculty of Symbiotic System Science, Fukushima University, Fukushima (Japan); Ohnuki, Toshihiko [Advanced Science Research Center Japan Atomic Energy Agency, Tokai (Japan); Ewing, Rodney C. [Department of Geological Sciences, Center for International Security and Cooperation, Stanford University, Stanford, CA (United States); Utsunomiya, Satoshi, E-mail: utsunomiya.satoshi.998@m.kyushu-u.ac.jp [Department of Chemistry, Kyushu University, Fukuoka (Japan)

    2015-09-01

    Radioactive Cs isotopes ({sup 137}Cs, t{sub 1/2} = 30.07 years and {sup 134}Cs, t{sub 1/2} = 2.062 years) occur in severely contaminated soils within a few kilometer of the Fukushima Daiichi nuclear power plant at concentrations that range from 4 × 10{sup 5} to 5 × 10{sup 7} Bq/kg. In order to understand the mobility of Cs in these soils, both bulk and submicron-sized particles elutriated from four surface soils have been investigated using a variety of analytical techniques, including powder X-ray diffraction analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and analysis of the amount of radioactivity in sequential chemical extractions. Major minerals in bulk soil samples were quartz, feldspar, and minor clays. The submicron-sized particles elutriated from the same soil consist mainly of mica, vermiculite, and smectite and occasional gibbsite. Autoradiography in conjunction with SEM analysis confirmed the association of radioactive Cs mainly with the submicron-sized particles. Up to ~3 MBq/kg of {sup 137}Cs are associated with the colloidal size fraction (<1 μm), which accounts for ~78% of the total radioactivity. Sequential extraction of the bulk sample revealed that most Cs was retained in the residual fraction, confirming the high binding affinity of Cs to clays, aluminosilicate sheet structures. The chemistry of the fraction containing submicron-sized particles from the same bulk sample showed a similar distribution to that of the bulk sample, again confirming that the Cs is predominantly adsorbed onto submicron-sized sheet aluminosilicates, even in the bulk soil samples. Despite the very small particle size, aggregation of the particles prevents migration in the vertical direction, resulting in the retention of >98% of Cs within top ~5 cm of the soil. These results suggest that the mobility of the aggregates of submicron-sized sheet aluminosilicate in the surface environment is a key factor controlling the current Cs

  14. Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel.

    Science.gov (United States)

    Zhang, Xiaoqing; Li, Jumei; Wei, Dongpu; Li, Bo; Ma, Yibing

    2015-01-01

    Soil soluble nickel (Ni) concentration is very important for determining soil Ni toxicity. In the present study, the relationships between soil properties, total and soluble Ni concentrations in soils were developed in a wide range of soils with different properties and climate characteristics. The multiple regressions showed that soil pH and total soil Ni concentrations were the most significant parameters in predicting soluble Ni concentrations with the adjusted determination coefficients (Radj2) values of 0.75 and 0.68 for soils spiked with soluble Ni salt and the spiked soils leached with artificial rainwater to mimic field conditions, respectively. However, when the soils were divided into three categories (pH 8), they obtained better predictions with Radj2 values of 0.78-0.90 and 0.79-0.94 for leached and unleached soils, respectively. Meanwhile, the other soil properties, such as amorphous Fe and Al oxides and clay, were also found to be important for determining soluble Ni concentrations, indicating that they were also presented as active adsorbent surfaces. Additionally, the whole soil speciation including bulk soil properties and total soils Ni concentrations were analyzed by mechanistic speciation models WHAM VI and Visual MINTEQ3.0. It was found that WHAM VI provided the best predictions for the soils with pH 8. The Visual MINTEQ3.0 could provide better estimation for pH 8. These results indicated the possibility and applicability of these models to predict soil soluble Ni concentration by soil properties.

  15. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  16. Soil Properties Database of Spanish Soils Volume III.- Extremadura

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Roquero, C; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalized and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Extremadura. (Author) 50 refs

  17. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  18. Soil Properties Database of Spanish Soils. Volume V.- Madrid

    International Nuclear Information System (INIS)

    Trueba, C.; Millan, R.; Schmid, T.; Roquero, C.; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Madrid. (Author) 39 refs

  19. Soil Properties Database of Spanish Soils. Volume XV.- Aragon

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Lago, C.; Roquero, C; Magister, M.

    1999-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Aragon. (Author) 47 refs

  20. Soil Properties Database of Spanish Soils. Volume XIV.- Cataluna

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Lago, C.; Roquero, C; Magister, M.

    1999-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Cataluna. (Author) 57 refs

  1. Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation

    Science.gov (United States)

    Johnston, Scott G.; Bennett, William W.; Burton, Edward D.; Hockmann, Kerstin; Dawson, Nigel; Karimian, Niloofar

    2018-04-01

    Arsenic in acid sulfate soil (ASS) landscapes commonly associates with schwertmannite, a poorly crystalline Fe(III) mineral. Fires in ASS landscapes can thermally transform Fe(III) minerals to more crystalline phases, such as maghemite (γFe2O3). Although thermal genesis of maghemite requires electron transfer via organic matter pyrolysis, the possibility of fire causing concurrent transfer of electrons to schwertmannite-bound As(V) remains unexplored. Here, we subject an organic-rich soil with variable carbon content (∼9-44% organic C) mixed (4:1) with As(V)-bearing schwertmannite (total As of 4.7-5.4 μmol g-1), to various temperatures (200-800 °C) and heating durations (5-120 min). We explore the consequences for As and Fe via X-ray absorption spectroscopy, X-ray diffraction, 57Fe Mössbauer spectroscopy and selective extracts. Heating transforms schwertmannite to mainly maghemite and hematite at temperatures above 300-400 °C, with some transitory formation of magnetite, and electrons are readily transferred to both Fe(III) and As(V). As(V) reduction to As(III) is influenced by a combination of temperature, heating duration and carbon content and is significantly (P moderate fires in ASS landscapes, even of short duration, may generate considerable labile As(III) species and cause a pulse of As(III)aq mobilisation following initial re-wetting. Further research is warranted to examine if analogous As(III) formation occurs during combustion of organic-rich soil containing common As-bearing Fe(III) minerals such as ferrihydrite and goethite.

  2. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  3. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  4. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  5. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    Science.gov (United States)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm

  6. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    International Nuclear Information System (INIS)

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO 2 , compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements. - Highlights: • Biomass gasification can combine efficient bioenergy production with valuable biochar residuals for soil improvements. • The two investigated gasification biochars are recalcitrant indicating soil carbon sequestration potential. • Gasification biochars are potential soil improvers due to high specific surface area, liming effect

  7. Human exposure to soil contaminants in subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Ellen Stephanie Reyes

    2015-05-01

    Full Text Available Background: Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective: Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design: A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT, other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods: Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling from 3 plots (A, B, and C in Fort Albany (on the mainland, subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results: The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusions: Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  8. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  9. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  10. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  11. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  12. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  13. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  14. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  15. Disinfection of municipal sewage sludges in installation equipped with electron accelerator

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Zimek, Z.; Bryl-Sandelewska, T.; Kosmal, W.; Kalisz, L.; Kazmierczuk, M.

    1995-01-01

    Growing awareness of environment pollution hazards causes more and more stringent waste disposal regulations in many countries which stimulate searching for new methods of waste disposal, the best of which is recycling them after suitable treatment. Sludges from municipal sewage treatment plants contain organic and inorganic components valuable as soil fertilizer, so if disinfected they can be beneficially recycled in agriculture instead of being burdensome waste. Investigations performed in many countries showed that irradiation with a suitable dose of gamma or electron beam radiation makes sewage sludges sanitary safe and usable as soil fertilizer immediately after treatment. This paper describes some results of investigations performed in the Institute of Nuclear Chemistry and Technology and the Institute of Environmental Protection in Warsaw on the influence of 10 MeV electron beam on bacteria, parasites and parasite eggs present in sewage sludges from different municipal sewage treatment plants in Poland. Basic design parameters of the industrial installation elaborated on the basis of those experiments are presented. (Author)

  16. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.

    2006-01-01

    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  17. Analysis of iron state in some Argentinian soils by dissolution methods and Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Venegas, R.; Labenski de Kanter, F.; Acebal, S.; Grassi, R.; Rueda, E.H.; Aguirre, M.E.; Saragovi, C.

    1994-01-01

    Bahia Blanca (Argentina) soils, in particular entisols, are studied by Moessbauer spectroscopy. X-ray diffraction and scanning electron microscopy are used to characterize the samples. Samples were treated with different chemical iron extraction methods, in order to determine relative Fe o and Fe d fractions. The Fe o /Fe d ratios are obtained and the relative effect of iron extraction treatment on spectra components are determined. In addition, the effect of extraction procedures, dithionite-citrate-bicarbonate and oxalate, in the residual soil fraction are analyzed. (orig.)

  18. Preliminary assessment of laboratory techniques for measurement of volatiles through soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Case, J.T.

    1985-01-01

    This study was conducted to determine if an inexpensive laboratory screening technique could be developed to detect the presence of hazardous volatile compounds without disturbing the soil over buried waste. A laboratory investigation was designed to evaluate the movement of two volatile organics through packed soil columns. Six soil columns were filled with three different soils. Two volatile organics, trichloroethylene (TCE) and dichloroethylene (1, 2 DCE), were placed at the base of the columns as a saturated water solution. Column headspace analysis was performed by purging the top of the columns with nitrogen gas and bubbling this gas through a pentane trap. Samples in the air space were also collected using 25 and 100 microliter gas tight syringes. All samples were analyzed using Electron Capture Detector (ECD) by gas chromatography. Results indicate that the volatile organic compounds can be detected through a five foot column of soil in concentrations down to parts-per-billion (ppb) for both TCE and DCE. Distribution coefficients (Kd) experiments were also conducted to assess breakthrough time and related concentration with soil type

  19. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  20. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils