WorldWideScience

Sample records for replacement materials implants

  1. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  2. Material Science in Cervical Total Disc Replacement

    Science.gov (United States)

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  3. Material Science in Cervical Total Disc Replacement

    Directory of Open Access Journals (Sweden)

    Martin H. Pham

    2015-01-01

    Full Text Available Current cervical total disc replacement (TDR designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti, and cobalt-chrome (CoCr. These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  4. Material Science in Cervical Total Disc Replacement.

    Science.gov (United States)

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  5. Testing of Replacement Bag Material

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1998-01-01

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties

  6. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  7. Carbon offers advantages as implant material in human body

    Science.gov (United States)

    Benson, J.

    1969-01-01

    Because of such characteristics as high strength and long-term biocompatability, aerospace carbonaceous materials may be used as surgical implants to correct pathological conditions in the body resulting from disease or injury. Examples of possible medical uses include bone replacement, implantation splints and circulatory bypass implants.

  8. IOL Implants: Lens Replacement and Cataract Surgery (Intraocular Lenses)

    Science.gov (United States)

    ... Oncology Oculoplastics/Orbit Refractive Management/Intervention Retina/Vitreous Uveitis Focus On Pediatric Ophthalmology ... Are Cataracts? Pediatric Cataracts Cataract Diagnosis and Treatment Cataract Surgery IOL Implants: Lens Replacement After Cataracts ...

  9. Transcatheter aortic valve prosthesis surgically replaced 4 months after implantation

    DEFF Research Database (Denmark)

    Thyregod, Hans Gustav; Lund, Jens Teglgaard; Engstrøm, Thomas

    2010-01-01

    Transcatheter aortic valve implantation is a new and rapidly evolving treatment option for high-risk surgical patients with degenerative aortic valve stenosis. Long-term results with these new valve prostheses are lacking, and potential valve dysfunction and failure would require valve replacemen....... We report the first case of surgical valve replacement in a patient with a dysfunctional transcatheter-implanted aortic valve prosthesis 4 months after implantation....

  10. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  11. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    Science.gov (United States)

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  13. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  14. A 5-year prospective study of single-tooth replacements supported by the Astra Tech implant: a pilot study

    DEFF Research Database (Denmark)

    Gotfredsen, Klaus

    2004-01-01

    BACKGROUND: Implant-supported single-tooth replacements are an increasingly used method to replace teeth, especially in young patients. Therefore, long-term validation of different treatment modalities with different implant systems is of great importance. PURPOSE: The aim of the present study...... was to make a biologic, technical, and aesthetic evaluation of single-tooth replacement supported by the Astra Tech implant (Astra Tech AB, Mölndal, Sweden) during a 5-year period. MATERIALS AND METHODS: Twenty patients were divided into two consecutively treated groups. In group A the implants were placed...... "early" in the extraction sockets, and standard single-tooth abutments were used. In group B the implants were placed "delayed," and preparable abutments were used. Clinical examinations including registration of plaque, bleeding, crown lengths, soft tissue marginal level, papilla height, complications...

  15. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  16. Choice of implant combinations in total hip replacement: systematic review and network meta-analysis.

    Science.gov (United States)

    López-López, José A; Humphriss, Rachel L; Beswick, Andrew D; Thom, Howard H Z; Hunt, Linda P; Burston, Amanda; Fawsitt, Christopher G; Hollingworth, William; Higgins, Julian P T; Welton, Nicky J; Blom, Ashley W; Marques, Elsa M R

    2017-11-02

    Objective  To compare the survival of different implant combinations for primary total hip replacement (THR). Design  Systematic review and network meta-analysis. Data sources  Medline, Embase, The Cochrane Library, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, and the EU Clinical Trials Register. Review methods  Published randomised controlled trials comparing different implant combinations. Implant combinations were defined by bearing surface materials (metal-on-polyethylene, ceramic-on-polyethylene, ceramic-on-ceramic, or metal-on-metal), head size (large ≥36 mm or small meta-analysis for revision. There was no evidence that the risk of revision surgery was reduced by other implant combinations compared with the reference implant combination. Although estimates are imprecise, metal-on-metal, small head, cemented implants (hazard ratio 4.4, 95% credible interval 1.6 to 16.6) and resurfacing (12.1, 2.1 to 120.3) increase the risk of revision at 0-2 years after primary THR compared with the reference implant combination. Similar results were observed for the 2-10 years period. 31 studies (2888 patients) were included in the analysis of Harris hip score. No implant combination had a better score than the reference implant combination. Conclusions  Newer implant combinations were not found to be better than the reference implant combination (metal-on-polyethylene (not highly cross linked), small head, cemented) in terms of risk of revision surgery or Harris hip score. Metal-on-metal, small head, cemented implants and resurfacing increased the risk of revision surgery compared with the reference implant combination. The results were consistent with observational evidence and were replicated in sensitivity analysis but were limited by poor reporting across studies. Systematic review registration  PROSPERO CRD42015019435. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  17. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  18. Implant Materials Generate Different Peri-implant Inflammatory Factors

    OpenAIRE

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connectiv...

  19. 3D finite element analysis of immediate loading of single wide versus double implants for replacing mandibular molar

    Directory of Open Access Journals (Sweden)

    Shrikar R Desai

    2013-01-01

    Full Text Available Purpose: The purpose of this finite element study was to compare the stresses, strains, and displacements of double versus single implant in immediate loading for replacing mandibular molar. Materials and Methods: Two 3D FEM (finite element method models were made to simulate implant designs. The first model used 5-mm-wide diameter implant to support a single molar crown. The second model used 3.75-3.75 double implant design. Anisotropic properties were assigned to bone model. Each model was analyzed with single force magnitude (100 N in vertical axis. Results: This FEM study suggested that micromotion can be controlled better for double implants compared to single wide-diameter implants. The Von Mises stress for double implant showed 74.44% stress reduction compared to that of 5-mm implant. The Von Mises elastic strain was reduced by 61% for double implant compared to 5-mm implant. Conclusion: Within the limitations of the study, when the mesiodistal space for artificial tooth is more than 12.5 mm, under immediate loading, the double implant support should be considered.

  20. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  1. Artificial implantation materials; Sztuczne materialy implantacyjne

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Szumiel, M [Akademia Medyczna, Warsaw (Poland)

    1997-10-01

    The radiation techniques for sterilization of orthopedic materials and high performance biomaterials have been reviewed. The radiation formulation of synthetic biomaterials for implantation and other medical use have been also performed. 18 refs, 3 tabs.

  2. Implant Optimisation for Primary Hip Replacement in Patients over 60 Years with Osteoarthritis: A Cohort Study of Clinical Outcomes and Implant Costs Using Data from England and Wales.

    Directory of Open Access Journals (Sweden)

    Simon S Jameson

    Full Text Available Hip replacement is one of the most commonly performed surgical procedures worldwide; hundreds of implant configurations provide options for femoral head size, joint surface material and fixation method with dramatically varying costs. Robust comparative evidence to inform the choice of implant is needed. This retrospective cohort study uses linked national databases from England and Wales to determine the optimal type of replacement for patients over 60 years undergoing hip replacement for osteoarthritis.Implants included were the commonest brand from each of the four types of replacement (cemented, cementless, hybrid and resurfacing; the reference prosthesis was the cemented hip procedure. Patient reported outcome scores (PROMs, costs and risk of repeat (revision surgery were examined. Multivariable analyses included analysis of covariance to assess improvement in PROMs (Oxford hip score, OHS, and EQ5D index (9159 linked episodes and competing risks modelling of implant survival (79,775 procedures. Cost of implants and ancillary equipment were obtained from National Health Service procurement data.EQ5D score improvements (at 6 months were similar for all hip replacement types. In females, revision risk was significantly higher in cementless hip prostheses (hazard ratio, HR = 2.22, p<0.001, when compared to the reference hip. Although improvement in OHS was statistically higher (22.1 versus 20.5, p<0.001 for cementless implants, this small difference is unlikely to be clinically important. In males, revision risk was significantly higher in cementless (HR = 1.95, p = 0.003 and resurfacing implants, HR = 3.46, p<0.001, with no differences in OHS. Material costs were lowest with the reference implant (cemented, range £1103 to £1524 and highest with cementless implants (£1928 to £4285. Limitations include the design of the study, which is intrinsically vulnerable to omitted variables, a paucity of long-term implant survival data (reflecting the

  3. Replacing a failed mini-implant with a miniplate to prevent interruption during orthodontic treatment.

    Science.gov (United States)

    Lee, Jin-Hwa; Choo, Hyeran; Kim, Seong-Hun; Chung, Kyu-Rhim; Giannuzzi, Lucille A; Ngan, Peter

    2011-06-01

    When mini-implants fail during orthodontic treatment, there is a need to have a backup plan to either replace the failed implant in the adjacent interradicular area or wait for the bone to heal before replacing the mini-implant. We propose a novel way to overcome this problem by replacement with a miniplate so as not to interrupt treatment or prolong treatment time. The indications, advantages, efficacy, and procedures for switching from a mini-implant to a miniplate are discussed. Two patients who required replacement of failed mini-implants are presented. In the first patient, because of the proximity of the buccal vestibule to the mini-implant, it was decided to replace the failed mini-implant by an I-shaped C-tube miniplate. In the second patient, radiolucencies were found around the failed mini-implants, making the adjacent alveolar bone unavailable for immediate placement of another mini-implant. In addition, the maxillary sinus pneumatization was expanded deeply into the interradicular spaces; this further mandated an alternative placement site. One failed mini-implant was examined under a scanning electron microscope for bone attachment. Treatment was completed in both patients after replacement with miniplates without interrupting the treatment mechanics or prolonging the treatments. Examination under the scanning electron microscope showed partial bone growth into the coating pores and titanium substrate interface even after thorough cleaning and sterilization. Replacement with a miniplate is a viable solution for failed mini-implants during orthodontic treatment. The results from microscopic evaluation of the failed mini-implant suggest that stringent guidelines are needed for recycling used mini-implants. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. [Total cervical disk replacement--implant-specific approaches: keel implant (Prodisc-C intervertebral disk prosthesis)].

    Science.gov (United States)

    Korge, Andreas; Siepe, Christoph J; Heider, Franziska; Mayer, H Michael

    2010-11-01

    Dynamic intervertebral support of the cervical spine via an anterolateral approach using a modular artificial disk prosthesis with end-plate fixation by central keel fixation. Cervical median or mediolateral disk herniations, symptomatic cervical disk disease (SCDD) with anterior osseous, ligamentous and/or discogenic narrowing of the spinal canal. Cervical fractures, tumors, osteoporosis, arthrogenic neck pain, severe facet degeneration, increased segmental instability, ossification of posterior longitudinal ligament (OPLL), severe osteopenia, acute and chronic systemic, spinal or local infections, systemic and metabolic diseases, known implant allergy, pregnancy, severe adiposity (body mass index > 36 kg/m2), reduced patient compliance, alcohol abuse, drug abuse and dependency. Exposure of the anterior cervical spine using the minimally invasive anterolateral approach. Intervertebral fixation of retainer screws. Intervertebral diskectomy. Segmental distraction with vertebral body retainer and vertebral distractor. Removal of end-plate cartilage. Microscopically assisted decompression of spinal canal. Insertion of trial implant to determine appropriate implant size, height and position. After biplanar image intensifier control, drilling for keel preparation using drill guide and drill bit, keel-cut cleaner to remove bone material from the keel cut, radiologic control of depth of the keel cut using the corresponding position gauge. Implantation of original implant under lateral image intensifier control. Removal of implant inserter. Functional postoperative care and mobilization without external support, brace not used routinely, soft brace possible for 14 days due to postoperative pain syndromes. Implantation of 100 cervical Prodisc-C disk prostheses in 78 patients (average age 48 years) at a single center. Clinical and radiologic follow-up 24 months postoperatively. Significant improvement based on visual analog scale and Neck Disability Index. Radiologic

  5. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  6. EXPERIMENTAL RESEARCH OF REGENERATIVE FEATURES IN BONE TISSUES AROUND IMPLANTS AFTER ONE-STAGE BILATERAL TOTAL HIP REPLACEMENT

    Directory of Open Access Journals (Sweden)

    V. M. Mashkov

    2012-01-01

    Full Text Available Objective: to research the specific features of regenerative processes of bone tissue around implants after one-stage bilateral total hip replacement in experiment. Material and methods: 27 total hip replacement operations have been performed in 18 rabbits of breed "chinchilla" to which bipolar femoral endoprosthesis made of titanic alloy PT-38, one type-size, with friction pair metal-on-metal and neck-shaft angle 165 degrees have been implanted: total unilateral hip replacement operations have been performed in 9 animals (control group, one-stage bilateral total hip replacement operations have been performed in 9 animals (experimental group. During research they have been on radiological and clinical checking-up. After the experiment the animals had histological tests of the tissues around endoprosthesis components. Results and conclusions: After one-stage bilateral total hip replacement in early terms of research more expressed changes of bone tissue in the form of its thinning and decompaction were found around implants. One-stage bilateral total hip replacement did not essentially influence on the speed of osteogenesis around endoprothesis components in comparison with unilateral total hip replacement, so in late terms of observation in both groups the fixing of endoprothesis components did not differ.

  7. 21 CFR 870.3710 - Pacemaker repair or replacement material.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is an...

  8. Nanoscale Topographical Characterization of Orbital Implant Materials

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2018-04-01

    Full Text Available The search for an ideal orbital implant is still ongoing in the field of ocular biomaterials. Major limitations of currently-available porous implants include the high cost along with a non-negligible risk of exposure and postoperative infection due to conjunctival abrasion. In the effort to develop better alternatives to the existing devices, two types of new glass-ceramic porous implants were fabricated by sponge replication, which is a relatively inexpensive method. Then, they were characterized by direct three-dimensional (3D contact probe mapping in real space by means of atomic force microscopy in order to assess their surface micro- and nano-features, which were quantitatively compared to those of the most commonly-used orbital implants. These silicate glass-ceramic materials exhibit a surface roughness in the range of a few hundred nanometers (Sq within 500–700 nm and topographical features comparable to those of clinically-used “gold-standard” alumina and polyethylene porous orbital implants. However, it was noted that both experimental and commercial non-porous implants were significantly smoother than all the porous ones. The results achieved in this work reveal that these porous glass-ceramic materials show promise for the intended application and encourage further investigation of their clinical suitability.

  9. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Science.gov (United States)

    2010-10-01

    ... equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT... Special Items 908.7112 Materials handling equipment replacement standards. Materials handling equipment shall be purchased for replacement purposes in accordance with the standards in FPMR 41 CFR 101-25.405...

  10. Saturation and isotopic replacement of deuterium in low-Z material

    International Nuclear Information System (INIS)

    Doyle, B.L.; Wampler, W.R.; Brice, D.K.; Picraux, S.T.

    1980-01-01

    The saturation and replacement of hydrogen isotopes implanted into TiC, TiB 2 , VB 2 , B 4 C, B, Si, and C has been examined experimentally and modeled theoretically. The deuterium saturation concentrations for these materials varied from .16 to .57. A new isotopic replacement model is presented which predicts isotopic trapping and exchange on the basis of the depth dependence of the implanted ions and the experimentally determined hydrogen saturation concentration. Our results indicate that, for these materials used as coatings on components in a D-T fueled tokamak, T recovery by ion induced replacement with H or D should be feasible and that T buildup will be at tolerable levels

  11. Low permanent pacemaker rates following Lotus device implantation for transcatheter aortic valve replacement due to modified implantation protocol.

    Science.gov (United States)

    Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten

    2017-01-01

    Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.

  12. Replacement of missing tooth in esthetic zone with implant-supported fixed prosthesis

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available In the anterior region, the common reason for tooth loss is due to traumatic injury or congenital anomaly. Loss of a single tooth may cause functional and esthetic deficits to the patient. There are different treatment options available for replacing a missing incisor. Implant dentistry should be considered as first treatment alternative for replace a missing tooth. This case report presents the replacement of a missing maxillary left central incisor in a compromised site with dental implants along with bone graft followed by frenectomy to obtain a good clinical result and for better function and esthetics of the patient.

  13. Long-Term Mortality Effect of Early Pacemaker Implantation After Surgical Aortic Valve Replacement.

    Science.gov (United States)

    Greason, Kevin L; Lahr, Brian D; Stulak, John M; Cha, Yong-Mei; Rea, Robert F; Schaff, Hartzell V; Dearani, Joseph A

    2017-10-01

    The need for pacemaker implantation is a well-described complication of aortic valve replacement. Not so well described is the effect such an event has on long-term outcome. This study reviewed a 21-year experience at the Mayo Clinic (Rochester, Minnesota) with aortic valve replacement to understand the influence of early postoperative pacemaker implantation on long-term mortality rates more clearly. This study retrospectively reviewed the records of 5,842 patients without previous pacemaker implantation who underwent surgical aortic valve replacement from January 1993 through June 2014. The median age of these patients was 73 years (range, 65 to 79 years), the median ejection fraction was 62% (range, 53% to 68%), 3,853 patients were male (66%), and coronary artery bypass graft operation was performed in 2,553 (44%) of the patients studied. Early pacemaker implantation occurred in 146 patients (2.5%) within 30 days of surgical aortic valve replacement. The median follow-up of patients was 11.1 years (range, 5.8 to 16.5 years), and all-cause mortality rates were 2.4% at 30 days, 6.4% at 1 year, 23.1% at 5 years, 48.3% at 10 years, and 67.9% at 15 years postoperatively. Early pacemaker implantation was associated with an increased risk of death after multivariable adjustment for baseline patients' characteristics (hazard ratio, 1.49; 95% confidence interval, 1.20, 1.84; p pacemaker implantation as a complication of surgical aortic valve replacement is associated with an increased risk of long-term death. Valve replacement-related pacemaker implantation rates should be important considerations with respect to new valve replacement paradigms, especially in younger and lower-risk patients. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.

    Science.gov (United States)

    Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg

    2007-06-01

    Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.

  15. Interventions for replacing missing teeth: treatment of peri-implantitis.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Worthington, Helen V

    2012-01-18

    One of the key factors for the long-term success of oral implants is the maintenance of healthy tissues around them. Bacterial plaque accumulation induces inflammatory changes in the soft tissues surrounding oral implants and it may lead to their progressive destruction (peri-implantitis) and ultimately to implant failure. Different treatment strategies for peri-implantitis have been suggested, however it is unclear which are the most effective. To identify the most effective interventions for treating peri-implantitis around osseointegrated dental implants. We searched the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE and EMBASE. Handsearching included several dental journals. We checked the bibliographies of the identified randomised controlled trials (RCTs) and relevant review articles for studies outside the handsearched journals. We wrote to authors of all identified RCTs, to more than 55 dental implant manufacturers and an Internet discussion group to find unpublished or ongoing RCTs. No language restrictions were applied. The last electronic search was conducted on 9 June 2011. All RCTs comparing agents or interventions for treating peri-implantitis around dental implants. Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in duplicate and independently by two review authors. We contacted the authors for missing information. Results were expressed as random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals (CI). Heterogeneity was to be investigated including both clinical and methodological factors. Fifteen eligible trials were identified, but six were excluded. The following interventions were compared in the nine included studies: different non-surgical interventions (five trials); adjunctive treatments to non-surgical interventions (one trial); different surgical interventions (two trials

  16. Transcatheter aortic valve prosthesis surgically replaced 4 months after implantation

    DEFF Research Database (Denmark)

    Thyregod, Hans Gustav; Lund, Jens Teglgaard; Engstrøm, Thomas

    2010-01-01

    Transcatheter aortic valve implantation is a new and rapidly evolving treatment option for high-risk surgical patients with degenerative aortic valve stenosis. Long-term results with these new valve prostheses are lacking, and potential valve dysfunction and failure would require valve replacemen...

  17. 21 CFR 872.3645 - Subperiosteal implant material.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3645 Subperiosteal implant material. (a) Identification. Subperiosteal implant material is a device composed of titanium or cobalt chrome molybdenum... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Subperiosteal implant material. 872.3645 Section...

  18. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  19. Influence of different implant materials on the primary stability of orthodontic mini-implants

    OpenAIRE

    Chin-Yun Pan; Szu-Ting Chou; Yu-Chuan Tseng; Yi-Hsin Yang; Chao-Yi Wu; Ting-Hsun Lan; Pao-Hsin Liu; Hong-Po Chang

    2012-01-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants w...

  20. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  1. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  2. Partially Biodegradable Distraction Implant to Replace Conventional Implants in Alveolar Bone of Insufficient Height: A Preliminary Study in Dogs.

    Science.gov (United States)

    Li, Tao; Zhang, Yongqiang; Shao, Bo; Gao, Yuan; Zhang, Chen; Cao, Qiang; Kong, Liang

    2015-12-01

    Dental implants have been widely used in the last few decades. However, patients with insufficient bone height need reconstructive surgeries before implant insertion. The distraction implant (DI) has been invented to simplify the treatment procedure, but the shortcomings of DIs have limited their clinical use. We incorporated biodegradable polyester into a novel DI called the partially biodegradable distraction implant (PBDI). The purpose of this study was to assess the radiological, histological, and biomechanical properties of the PBDI in animal models. PBDIs were manufactured and inserted into the atrophied mandibles of nine dogs. Box-shaped alveolar bones were segmented and distracted. The dogs were randomly divided into three groups that were sacrificed 1, 2, and 3 months after the implant insertion. Actual augmentation height (AAH) of the bone segments was measured to evaluate the effect of distraction. X-ray examination and micro-CT reconstruction and analysis were used to evaluate the regenerated bone in the distraction gap and bone around the functional element. Histological sections were used to evaluate the osseointegration and absorption of the PBDI. Fatigue tests were used to evaluate the biomechanical properties of the PBDI. Little change was found in AAH among the three groups. X-ray examination and micro-CT reconstruction showed good growth of regenerated bone in the distraction gap. Alveolar bone volume around the functional element increased steadily. No obvious bone absorption occurred in the alveolar crest around PBDI. Three months after distraction, the functional element achieved osseointegration, and the support element began to be absorbed. All PBDIs survived the fatigue test. The PBDI is a novel and reliable dental implant. It becomes a conventional implant after the absorption of the support element and the removal of the distraction screw. It is a promising replacement for conventional implants in patients with insufficient alveolar bone

  3. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  4. Left Ventricular Assist Device Implantation with Concomitant Aortic Valve and Ascending Aortic Replacement.

    Science.gov (United States)

    Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad

    2018-01-01

    Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed.

  5. Cardiac implantable electronic device and associated risk of infective endocarditis in patients undergoing aortic valve replacement

    DEFF Research Database (Denmark)

    Østergaard, Lauge; Valeur, Nana; Bundgaard, Henning

    2017-01-01

    Aims: Patients undergoing aortic valve replacement (AVR) are at increased risk of infective endocarditis (IE) as are patients with a cardiac implantable electronic device (CIED). However, few data exist on the IE risk after AVR surgery in patients with a CIED. Methods and results: Using the Danish...

  6. Evaluation of an expence of materials during ion implantation

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Zlobin, N.; Zotov, A.V.; Vasilev, V.I.; Vasilev, I.P.

    2003-01-01

    Ion implantation is used for a surface modification. The implantation dose must be sufficient to obtain the required properties of a processed surface, but should not be exceeded to prevent over-expenditure of implanted materials. The latter is especially important when noble metals are used as an implanted material. The ion implanter includes a vacuum chamber, source of metal ions (target) and a vacuum pumping-out system. Ions of a plasma-forming gas sputter the target and ions of metal are then accelerated and implanted into surface treated. Ion implantation dose can be calculated from operation parameters such as ion beam current density and duration of implanting. The presence of the plasma-forming gas in the ion flow makes it difficult to determine the expenditure of an implanted metal itself. The objective of this paper is the more accurate definition of an expense of an implanted metal. Mass- spectrometric analysis of an ion beam together with the weighing of the target was used to determine the expense of an implanted metal. It was found that, depending on the implantation parameters, on average around 50% of a total ion flow are metal ions. Results obtained allow more precise definition of an implantation dose. Thus, over- expenditure of implanted metals can be eliminated. (author)

  7. Influence of different implant materials on the primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Pan, Chin-Yun; Chou, Szu-Ting; Tseng, Yu-Chuan; Yang, Yi-Hsin; Wu, Chao-Yi; Lan, Ting-Hsun; Liu, Pao-Hsin; Chang, Hong-Po

    2012-12-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft(3) trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates(®) device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05). Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success. Copyright © 2012. Published by Elsevier B.V.

  8. Influence of different implant materials on the primary stability of orthodontic mini-implants

    Directory of Open Access Journals (Sweden)

    Chin-Yun Pan

    2012-12-01

    Full Text Available This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm. The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft3 trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates® device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05. Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success.

  9. The fabrication of bioresorbable implants for bone defects replacement using computer tomogram and 3D printing

    Science.gov (United States)

    Kuznetsov, P. G.; Tverdokhlebov, S. I.; Goreninskii, S. I.; Bolbasov, E. N.; Popkov, A. V.; Kulbakin, D. E.; Grigoryev, E. G.; Cherdyntseva, N. V.; Choinzonov, E. L.

    2017-09-01

    The present work demonstrates the possibility of production of personalized implants from bioresorbable polymers designed for replacement of bone defects. The stages of creating a personalized implant are described, which include the obtaining of 3D model from a computer tomogram, development of the model with respect to shape of bone fitment bore using Autodesk Meshmixer software, and 3D printing process from bioresorbable polymers. The results of bioresorbable polymer scaffolds implantation in pre-clinical tests on laboratory animals are shown. The biological properties of new bioresorbable polymers based on poly(lactic acid) were studied during their subcutaneous, intramuscular, bone and intraosseous implantation in laboratory animals. In all cases, there was a lack of a fibrous capsule formation around the bioresorbable polymer over time. Also, during the performed study, conclusions were made on osteogenesis intensity depending on the initial state of bone tissue.

  10. Economic evaluation of single-tooth replacement: dental implant versus fixed partial denture.

    Science.gov (United States)

    Kim, Younhee; Park, Joo-Yeon; Park, Sun-Young; Oh, Sung-Hee; Jung, YeaJi; Kim, Ji-Min; Yoo, Soo-Yeon; Kim, Seong-Kyun

    2014-01-01

    This study assessed the cost-effectiveness from a societal perspective of a dental implant compared with a three-unit tooth-supported fixed partial denture (FPD) for the replacement of a single tooth in 2010. A decision tree was developed to estimate cost-effectiveness over a 10-year period. The survival rates of single-tooth implants and FPDs were extracted from a meta-analysis of single-arm studies. Medical costs included initial treatment costs, maintenance costs, and costs to treat complications. Patient surveys were used to obtain the costs of the initial single-tooth implant or FPD. Maintenance costs and costs to treat complications were based on surveys of seven clinical experts at dental clinics or hospitals. Transportation costs were calculated based on the number of visits for implant or FPD treatment. Patient time costs were estimated using the number of visits and time required, hourly wage, and employment rate. Future costs were discounted by 5% to convert to present values. The results of a 10-year period model showed that a single dental implant cost US $261 (clinic) to $342 (hospital) more than an FPD and had an average survival rate that was 10.4% higher. The incremental cost-effectiveness ratio was $2,514 in a clinic and $3,290 in a hospital for a prosthesis in situ for 10 years. The sensitivity analysis showed that initial treatment costs and survival rate influenced the cost-effectiveness. If the cost of an implant were reduced to 80% of the current cost, the implant would become the dominant intervention. Although the level of evidence for effectiveness is low, and some aspects of single-tooth implants or FPDs, such as satisfaction, were not considered, this study will help patients requiring single-tooth replacement to choose the best treatment option.

  11. The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.

    Science.gov (United States)

    Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G

    2015-10-01

    Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit. © 2015 John Wiley & Sons Ltd.

  12. A comparative study on the stress distribution around dental implants in three arch form models for replacing six implants using finite element analysis.

    Science.gov (United States)

    Zarei, Maryam; Jahangirnezhad, Mahmoud; Yousefimanesh, Hojatollah; Robati, Maryam; Robati, Hossein

    2018-01-01

    Dental implant is a method to replacement of missing teeth. It is important for replacing the missed anterior teeth. In vitro method is a safe method for evaluation of stress distribution. Finite element analysis as an in vitro method evaluated stress distribution around replacement of six maxillary anterior teeth implants in three models of maxillary arch. In this in vitro study, using ABAQUS software (Simulia Corporation, Vélizy-Villacoublay, France), implant simulation was performed for reconstruction of six maxillary anterior teeth in three models. Two implants were placed on both sides of the canine tooth region (A model); two implants on both sides of the canine tooth region and another on one side of the central incisor region (B model); and two implants on both sides of the canine tooth region and two implants in the central incisor area (C model). All implants evaluated in three arch forms (tapered, ovoid, and square). Data were analyzed by finite analysis software. Von Mises stress by increasing of implant number was reduced. In a comparison of A model in each maxillary arch, the stress created in the cortical and cancellous bones in the square arch was less than ovoid and tapered arches. The stress created in implants and cortical and cancellous bones in C model was less than A and B models. The C model (four-implant) reduced the stress distribution in cortical and cancellous bones, but this pattern must be evaluated according to arch form and cost benefit of patients.

  13. Patient retention and replacement trends after saline breast implants: are deflations inflationary?

    Science.gov (United States)

    Stevens, W Grant; Pacella, Salvatore J; Hirsch, Elliot; Stoker, David A

    2009-01-01

    This study aimed to examine serial operative trends with patients who have experienced surgical implant deflation. In addition, the economic impact of deflation on practice caseload was analyzed. A retrospective review was conducted to examine patients who experienced deflation from 2000 to 2007. Patient demographics, implant data, and the presence of secondary (performed at explantation) or tertiary (performed later) procedures were examined. Financial information was tabulated to determine the economic multiplier effect (i.e. the expected value of revenue from secondary and tertiary procedures divided by explantation cost) of taking on deflation cases in a practice. For this study, 285 patients with an average age of 38.4 years were identified. The average time to explantation was 50 months. Slightly more than half of the patients (55%) had both implants replaced at the time of explantation, whereas 59% switched to silicone implants and 41% continued with saline implants. A larger implant was chosen by 54% of the patients (average increase, 82 ml), whereas 18% underwent secondary procedures at the time of explantation including mastopexy (n = 22), facial rejuvenation (n = 8), liposuction (n = 7), or a combination of the two (n = 8). Tertiary procedures were performed for 31% of the patients after their explantation/reimplantation (average time frame, 13 months). The tertiary procedures included replacement with silicone (33.7%), liposuction (24.7%), abdominoplasty (11.2%), facial rejuvenation (13.5%), or nonsurgical rejuvenation using Botox, Restylane, or laser procedure (33.7%). Economic multiplier analysis showed that the financial impact of revenue derived from implant deflation on downstream practice revenue is 1.02. At the time of explantation, replacement with silicone after saline deflation is common (59% of patients). In this study, patients who chose replacement with saline had a significant tendency to replace with silicone (33%) as a tertiary procedure

  14. Three-dimensional printing and nanotechnology for enhanced implantable materials

    Science.gov (United States)

    Tappa, Karthik Kumar

    Orthopedic and oro-maxillofacial implants have revolutionized treatment of bone diseases and fractures. Currently available metallic implants have been in clinical use for more than 40 years and have proved medically efficacious. However, several drawbacks remain, such as excessive stiffness, accumulation of metal ions in surrounding tissue, growth restriction, required removal/revision surgery, inability to carry drugs, and susceptibility to infection. The need for additional revision surgery increases financial costs and prolongs recovery time for patients. These metallic implants are bulk manufactured and often do not meet patient's requirements. A surgeon must machine (cut, weld, trim or drill holes) them in order to best suit the patient specifications. Over the past few decades, attempts have been made to replace these metallic implants with suitable biodegradable materials to prevent secondary/revision surgery. Recent advances in biomaterials have shown multiple uses for lactic acid polymers in bone implant technology. However, a targeted/localized drug delivery system needs to be incorporated in these polymers, and they need to be customized to treat orthopedic implant-related infections and other bone diseases such as osteomyelitis, osteosarcoma and osteoporosis. Rapid Prototyping (RP) using additive manufacturing (AM) or 3D printing could allow customization of constructs for personalized medicine. The goal of this study was to engineer customizable and biodegradable implant materials that can elute bioactive compounds for personalized medicine and targeted drug delivery. Post-operative infections are the most common complications following dental, orthopedic and bone implant surgeries. Preventing post-surgical infections is therefore a critical need that current polymethylmethacrylate (PMMA) bone cements fail to address. Calcium Phosphate Cements (CPCs) are unique in their ability to crystallize calcium and phosphate salts into hydroxyapatite (HA) and

  15. Intervention for replacing missing teeth: Different types of implants - evidence summary of updated Cochrane review

    Directory of Open Access Journals (Sweden)

    Balendra Pratap Singh

    2015-01-01

    Full Text Available Around 1300 different types of dental implants are available worldwide and the implant manufacturers are resorting to aggressive marketing strategies; claiming their implants to provide a superior outcome. The clinician is left with a constant dilemma on which implant to choose for better clinical outcome and welfare of the patient. Moreover, in India, economical consideration is a concern too. The dentist has to select an implant that provides a good result and is economical. Cochrane systematic reviews provide the gold standard evidence for intervention, diagnosis, etc., and follow a strict quality control. A Cochrane systematic review was done to shed light on whether the different implant surface modifications, shapes or materials significantly influence clinical outcomes. All randomized controlled trials (RCTs till January 17, 2014 were searched and out of the 81 trials, only 27 met the inclusion criteria. This evidence summary from the review concludes that based on the available literature; there is no evidence of any one type of implant being superior to another. There is weak evidence showing roughened dental implants are more prone to bone loss due to periimplantitis. This review indicated that there is a need for well-designed RCTs, with long-term follow-up and low bias. Moreover, none of the included studies was from India, which also points out the need for improving the quality of RCTs conducted in India.

  16. Zirconia implants and peek restorations for the replacement of upper molars

    Directory of Open Access Journals (Sweden)

    José María Parmigiani-Izquierdo

    2017-02-01

    Full Text Available Abstract Background One of the disadvantages of the zirconia implants is the lack of elasticity, which is increased with the use of ceramic or zirconia crowns. The consequences that could result from this lack of elasticity have led to the search for new materials with improved mechanical properties. Case presentation A patient who is a 45-year-old woman, non-smoker and has no medical record of interest with a longitudinal fracture in the palatal root of molar tooth 1.7 and absence of tooth 1.6 was selected in order to receive a zirconia implant with a PEEK-based restoration and a composite coating. The following case report describes and analyses treatment with zirconia implants in molars following a flapless surgical technique. Zirconia implants are an alternative to titanium implants in patients with allergies or who are sensitive to metal alloys. However, one of the disadvantages that they have is their lack of elasticity, which increases with the use of ceramic or zirconia crowns. The consequences that can arise from this lack of elasticity have led to the search for new materials with better mechanical properties to cushion occlusal loads. PEEK-based restoration in implant prosthetics can compensate these occlusal forces, facilitating cushioning while chewing. Conclusion This procedure provides excellent elasticity and resembles natural tooth structure. This clinical case suggests that PEEK restorations can be used in zirconia implants in dentistry.

  17. Research Regarding the Manufacturing through AM Technologies of an Implant for Cervical Disc Replacement

    Directory of Open Access Journals (Sweden)

    Miron-Borzan Cristina Stefana

    2017-01-01

    Full Text Available Worldwide, accidents are one of the main causes of illness in developed and undeveloped socio-economic countries. Additive Manufacturing (AM technologies bring extremely useful and advantageous applications for the new neurosurgical procedures. Because the surgical insertion of devices for cervical disc replacement is very difficult, the development of new devices that can minimize these disadvantages, are needed. The aim of this paper was to improve the characteristics of an implant for cervical intervertebral disc replacement, a model based on an existing implant. A cervical cage designed for stabilization and arthrodesis between the cervical vertebrae was analyzed. A new design of a cage that have some improvements, useful for patient safety, as well as for facilitating the surgery was developed. The new proposed design was verified through Fine Element Analysis.

  18. Artificial implant materials - role of biomaterials in the tissue engineering

    International Nuclear Information System (INIS)

    Lewandowska-Szumiel, M.

    2007-01-01

    Lecture presents different materials applicable in production of implants. All these materials should be sterilized, however some of them can be modified using by irradiation (e.g. polymers). Numerous examples of tissue engineering are presented

  19. Quantification of in vivo implant wear in total knee replacement from dynamic single plane radiography

    Science.gov (United States)

    Teeter, Matthew G.; Seslija, Petar; Milner, Jaques S.; Nikolov, Hristo N.; Yuan, Xunhua; Naudie, Douglas D. R.; Holdsworth, David W.

    2013-05-01

    An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements.

  20. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  1. Accuracy of impressions with different impression materials in angulated implants.

    Science.gov (United States)

    Reddy, S; Prasad, K; Vakil, H; Jain, A; Chowdhary, R

    2013-01-01

    To evaluate the dimensional accuracy of the resultant (duplicative) casts made from two different impression materials (polyvinyl siloxane and polyether) in parallel and angulated implants. Three definitive master casts (control groups) were fabricated in dental stone with three implants, placed at equi-distance. In first group (control), all three implants were placed parallel to each other and perpendicular to the plane of the cast. In the second and third group (control), all three implants were placed at 10° and 15 o angulation respectively to the long axis of the cast, tilting towards the centre. Impressions were made with polyvinyl siloxane and polyether impression materials in a special tray, using a open tray impression technique from the master casts. These impressions were poured to obtain test casts. Three reference distances were evaluated on each test cast by using a profile projector and compared with control groups to determine the effect of combined interaction of implant angulation and impression materials on the accuracy of implant resultant cast. Statistical analysis revealed no significant difference in dimensional accuracy of the resultant casts made from two different impression materials (polyvinyl siloxane and polyether) by closed tray impression technique in parallel and angulated implants. On the basis of the results of this study, the use of both the impression materials i.e., polyether and polyvinyl siloxane impression is recommended for impression making in parallel as well as angulated implants.

  2. Ion implantation in semiconductors and other materials

    International Nuclear Information System (INIS)

    Guernet, G.; Bruel, M.; Gailliard, J.P.; Garcia, M.; Robic, J.Y.

    1977-01-01

    The evolution of ion implantation techniques in the field of semiconductors and its extension to various fields such as metallurgy, mechanics, superconductivity and opto-electronics are considered. As for semiconductors ion implantation is evoked as: a means of predeposition of impurities at low doping level (10 11 to 10 14 cm -2 ); a means for obtaining profiles of controlled concentration; a means of reaching high doping levels with using 'strong current' implantation machines of the second generation. Some results obtained are presented [fr

  3. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    Science.gov (United States)

    Tohfafarosh, Mariya Shabbir

    Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the

  4. Studies on thoron progeny implantation in different materials

    International Nuclear Information System (INIS)

    Cosma, C.; Flore, A.; Pop, I.

    2003-01-01

    The purpose of this work is to obtain the alpha spectra for thoron daughters implanted at the surface of different materials and to show the possibility of this method to simulate the radon progeny implantation and thus to find some parameters used in the Jacobi model

  5. New-Onset Atrial Fibrillation After Surgical Aortic Valve Replacement and Transcatheter Aortic Valve Implantation

    DEFF Research Database (Denmark)

    Jørgensen, Troels Højsgaard; Thygesen, Julie Bjerre; Thyregod, Hans Gustav

    2015-01-01

    Surgical aortic valve replacement (SAVR) and, more recently, transcatheter aortic valve implantation (TAVI) have been shown to be the only treatments that can improve the natural cause of severe aortic valve stenosis. However, after SAVR and TAVI, the incidence of new-onset atrial fibrillation...... (NOAF) is 31%-64% and 4%-32%, respectively. NOAF is independently associated with adverse events such as stroke, death, and increased length of hospital stay. Increasing the knowledge of predisposing factors, optimal postprocedural monitoring, and prophylactic antiarrhythmic and antithrombotic therapy...

  6. New-onset atrial fibrillation after surgical aortic valve replacement and transcatheter aortic valve implantation

    DEFF Research Database (Denmark)

    Jørgensen, Troels Højsgaard; Thygesen, Julie Bjerre; Thyregod, Hans Gustav

    2015-01-01

    Surgical aortic valve replacement (SAVR) and, more recently, transcatheter aortic valve implantation (TAVI) have been shown to be the only treatments that can improve the natural cause of severe aortic valve stenosis. However, after SAVR and TAVI, the incidence of new-onset atrial fibrillation...... (NOAF) is 31%-64% and 4%-32%, respectively. NOAF is independently associated with adverse events such as stroke, death, and increased length of hospital stay. Increasing the knowledge of predisposing factors, optimal postprocedural monitoring, and prophylactic antiarrhythmic and antithrombotic therapy...

  7. In-situ photopolymerized and monitored implants: successful application to an intervertebral disc replacement

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2016-02-01

    Photopolymerization is a common method to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler by using ultra-violet light. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. We designed a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 500 μm in diameter. Using a combination of Raman and fluorescence spectroscopy, the current state of the photopolymerization was inferred and monitored in real time within an in-vitro tissue model. It was also possible to determine roughly the position of the probe within the tissue cavity by analysing the fluorescence signal. Using the technique hydrogels were successfully implanted into a bovine intervertebral disc model. Mechanical tests could not obstruct the functionality of the implant. Finally, the device was also used for other application such as the implantation of a hydrogel into an aneurysm tissue cavity which will be presented at the conference.

  8. Influence of the Diameter of Dental Implants Replacing Single Molars: 3- to 6-Year Follow-Up.

    Science.gov (United States)

    Mendonça, Jose Alfredo; Senna, Plinio Mendes; Francischone, Carlos Eduardo; Francischone Junior, Carlos Eduardo; Sotto-Maior, Bruno Salles

    The aim of this study was to evaluate the influence of the implant diameter on marginal bone remodeling around dental implants replacing single molars after a follow-up period of 3 to 6 years. Patients who received dental implants with an external hexagon platform in healed sites to support a single metal-ceramic crown in the molar region were recalled to the office. The implantation sites and implant length information were recorded, and the implants were divided according to the implant diameter: regular (RP) or wide (WP). Each implant was assessed by digital periapical radiography, using a sensor holder for the paralleling technique. The marginal bone remodeling was determined as the distance from the implant platform to the first bone-to-implant contact, and the known implant length was used to calibrate the images in the computer software. The follow-up measurements were compared with those obtained from the radiograph taken at the time of prosthetic loading to determine the late bone remodeling. The independent t test was used to compare data. A total of 67 implants from 46 patients were evaluated with a mean follow-up period of 4.5 ± 1.0 years. The RP group comprised 36 implants from 29 patients (mean age: 58.3 ± 10.6 years), while 31 implants from 17 patients (mean age: 56.9 ± 11.5 years) were included in the WP group. The RP group presented lower survival rates (86.1%) than the WP group (100.0%). Similar marginal bone loss (P implants exhibited lower incidence failures, the bone levels were similar after the prosthetic loading around regular- and wide-diameter implants supporting single molar crowns.

  9. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  10. Radiation sterilization of polymeric implant materials

    International Nuclear Information System (INIS)

    Bruck, S.D.; Mueller, E.P.

    1988-01-01

    High-energy irradiation sterilization of medical devices and implants composed of polymeric biomaterials that are in contact with tissue and/or blood, may adversely affect their long-term mechanical and/or biological performance (tissue and/or blood compatibility). Since many polymeric implants may contain trace quantities of catalysts and/or other additives, the effect of high-energy radiation on these additives, and possible synergistic effects with the polymer chains under the influence of high-energy radiation, must be considered. It is essential to indicate whether polymeric implants are used in short-term (acute) or long-term (chronic) applications. Relatively small changes in their physicochemical, mechanical, and biological properties may be tolerable in the short term, whereas similar changes may lead to catastrophic failures in long-term applications. Therefore, polymeric implants which are to be sterilized by high-energy irradiation should be carefully evaluated for long-term property changes which may be induced by the radiation

  11. The use of tungsten as a chronically implanted material

    Science.gov (United States)

    Shah Idil, A.; Donaldson, N.

    2018-04-01

    This review paper shows that tungsten should not generally be used as a chronically implanted material. The metal has a long implant history, from neuroscience, vascular medicine, radiography, orthopaedics, prosthodontics, and various other fields, primarily as a result of its high density, radiopacity, tensile strength, and yield point. However, a crucial material criterion for chronically implanted metals is their long-term resistance to corrosion in body fluids, either by inherently noble metallic surfaces, or by protective passivation layers of metal oxide. The latter is often assumed for elemental tungsten, with references to its ‘inertness’ and ‘stability’ common in the literature. This review argues that in the body, metallic tungsten fails this criterion, and will eventually dissolve into the soluble hexavalent form W6+, typically represented by the orthotungstate WO42- (monomeric tungstate) anion. This paper outlines the metal’s unfavourable corrosion thermodynamics in the human physiological environment, the chemical pathways to either metallic or metal oxide dissolution, the rate-limiting steps, and the corrosion-accelerating effects of reactive oxidising species that the immune system produces post-implantation. Multiple examples of implant corrosion have been reported, with failure by dissolution to varying extents up to total loss, with associated emission of tungstate ions and elevated blood serum levels measured. The possible toxicity of these corrosion products has also been explored. As the field of medical implants grows and designers explore novel solutions to medical implant problems, the authors recommend the use of alternative materials.

  12. Multisite Infection with Mycobacterium abscessus after Replacement of Breast Implants and Gluteal Lipofilling.

    Science.gov (United States)

    Rüegg, Eva; Cheretakis, Alexandre; Modarressi, Ali; Harbarth, Stephan; Pittet-Cuénod, Brigitte

    2015-01-01

    Introduction. Medical tourism for aesthetic surgery is popular. Nontuberculous mycobacteria (NTM) occasionally cause surgical-site infections. As NTM grow in biofilms, implantations of foreign bodies are at risk. Due to late manifestation, infections occur when patients are back home, where they must be managed properly. Case Report. A 39-year-old healthy female was referred for acute infection of the right gluteal area. Five months before, she had breast implants replacement, abdominal liposuction, and gluteal lipofilling in Mexico. Three months postoperatively, implants were removed for NTM-infection in Switzerland. Adequate antibiotic treatment was stopped after seven days for drug-related hepatitis. At entrance, gluteal puncture for bacterial analysis was performed. MRI showed large subcutaneous collection. Debridement under general anaesthesia was followed by open wound management. Total antibiotic treatment was 20 weeks. Methods. Bacterial analysis of periprosthetic and gluteal liquids included Gram-stain plus acid-fast stain, and aerobic, anaerobic and mycobacterial cultures.  Results. In periprosthetic fluid, Mycobacterium abscessus, Propionibacterium, and Staphylococcus epidermidis were identified. The same M. abscessus strain was found gluteally. The gluteal wound healed within six weeks. At ten months' follow-up, gluteal asymmetry persists for deep scarring. Conclusion. This case presents major complications of multisite aesthetic surgery. Surgical-site infections in context of medical tourism need appropriate bacteriological investigations, considering potential NTM-infections.

  13. Advances in Materials for Recent Low-Profile Implantable Bioelectronics

    Directory of Open Access Journals (Sweden)

    Yanfei Chen

    2018-03-01

    Full Text Available The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities.

  14. Advances in Materials for Recent Low-Profile Implantable Bioelectronics

    Science.gov (United States)

    Kim, Yun-Soung; Tillman, Bryan W.; Chun, Youngjae

    2018-01-01

    The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities. PMID:29596359

  15. A Comparison of implant impression precision: Different materials and techniques

    Science.gov (United States)

    Tabesh, Mahtab; Alikhasi, Marzieh

    2018-01-01

    Background Precision of implant impressions is a prerequisite for long-term success of implant supported prostheses. Impression materials and impression techniques are two important factors that impression precision relies on. Material and Methods A model of edentulous maxilla containing four implants inserted by All-on-4 guide was constructed. Seventy two impressions using polyether (PE), polyvinyl siloxane (PVS), and vinyl siloxanether (VSE) materials with direct and indirect techniques were made (n=12). Coordinates of implants in casts were measured using coordinate measuring machine (CMM). Data were analyzed with ANOVA; t-test and Tukey test were used for post hoc. Results With two-way ANOVA, mean values of linear displacements of implants were significantly different among materials and techniques. One-way ANOVA and Tukey showed significant difference between PE and VSE (P=0.019), PE and PVS (P=0.002) in direct technique, and between PVS and PE (Pimpression of implants, PE is recommended for direct technique while PE and VSE are recommended for indirect technique. Recommended technique for VSE is either direct or indirect; and for PE and PVS is direct. Key words:Polyvinyl siloxane, polyether, vinyl siloxanether, direct technique, indirect technique, All-on-4, coordinate measuring machine. PMID:29670733

  16. Replacing the nucleus pulposus of the intervertebral disk: prediction of suitable properties of a replacement material using finite element analysis.

    Science.gov (United States)

    Meakin, J R

    2001-03-01

    An axisymmetric finite element model of a human lumbar disk was developed to investigate the properties required of an implant to replace the nucleus pulposus. In the intact disk, the nucleus was modeled as a fluid, and the annulus as an elastic solid. The Young's modulus of the annulus was determined empirically by matching model predictions to experimental results. The model was checked for sensitivity to the input parameter values and found to give reasonable behavior. The model predicted that removal of the nucleus would change the response of the annulus to compression. This prediction was consistent with experimental results, thus validating the model. Implants to fill the cavity produced by nucleus removal were modeled as elastic solids. The Poisson's ratio was fixed at 0.49, and the Young's modulus was varied from 0.5 to 100 MPa. Two sizes of implant were considered: full size (filling the cavity) and small size (smaller than the cavity). The model predicted that a full size implant would reverse the changes to annulus behavior, but a smaller implant would not. By comparing the stress distribution in the annulus, the ideal Young's modulus was predicted to be approximately 3 MPa. These predictions have implications for current nucleus implant designs. Copyright 2001 Kluwer Academic Publishers

  17. Adsorption on insulator materials enhanced by D implantation

    International Nuclear Information System (INIS)

    Ibarra, A.; Climent-Font, A.; Munoz-Martin, A.

    2005-01-01

    Many insulator materials used in ITER are exposed to a gas phase composed of D, T and a plasma with hydrocarbons, Fe and other particles combined with the presence of an intense neutron and gamma radiation field. Some of these materials (Al 2 O 3 and SiO 2 ) are implanted at room temperature with low energy D and H ions in order to simulate some of the DT gas effects. The implantation is characterized using optical absorption and elastic recoil detection analysis (ERDA) techniques. It is observed that ion implantation as well as electron or gamma irradiation increases the surface scattering and the concentration of C and H adsorbed at the surface, suggesting that a radiation-induced surface degradation process is taking place and an increase of the surface adsorption capability. The effect is higher for higher dose implantation and for lower energy

  18. Utilization of Palm Oil Clinker as Cement Replacement Material.

    Science.gov (United States)

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  19. Utilization of Palm Oil Clinker as Cement Replacement Material

    Directory of Open Access Journals (Sweden)

    Jegathish Kanadasan

    2015-12-01

    Full Text Available The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  20. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation.

    Science.gov (United States)

    Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George

    2017-05-01

    Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage

  1. Quantification of in vivo implant wear in total knee replacement from dynamic single plane radiography

    International Nuclear Information System (INIS)

    Teeter, Matthew G; Naudie, Douglas D R; Holdsworth, David W; Seslija, Petar; Milner, Jaques S; Nikolov, Hristo N; Yuan Xunhua

    2013-01-01

    An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm 3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements. (paper)

  2. An in vitro study to compare the accuracy of the master cast fabricated by four different transfer impression techniques for single-tooth implant replacement.

    Science.gov (United States)

    Lahori, Manesh; Nagrath, Rahul; Agrawal, Prateek

    2014-03-01

    Single tooth implant retained crowns have become a recognized technique for the replacement of the missing teeth. With the predictable integration of implants, the emphasis is shifted towards precise prosthesis. Minor movement of the impression coping retained inside the impression material can occur during all the procedures, leading to the three-dimensional spatial inaccuracies in the master casts. Therefore, the present study was undertaken with the purpose to evaluate the accuracy of single-tooth implant impression techniques using four different impression copings, so as to obtain a precise definitive cast for a single-unit implant restoration. A maxillary acrylic resin model with a standard single implant in the first molar region was used to simulate a clinical situation. A total of 60 impressions were made with polyvinylsiloxane impression material, which were divided into four groups of 15 impressions each. Group I used non-modified square impression coping, while in group II, III and IV square impression coping were modified differently. Master casts fabricated for all the groups were analyzed to detect rotational position change of the hexagon on the implant replicas in the master casts in reference to the resin model. The master casts obtained with the roughened and adhesive-coated impression copings showed a lower amount of rotational movement than the masters casts achieved with the non-modified impression copings. Hence, the clinician should use sandblasted and adhesive coated impression copings to achieve a more accurate and precise orientation of the implant replicas in the laboratory master casts in single-tooth implant restorations.

  3. Magnesium as a biodegradable and bioabsorbable material for medical implants

    Science.gov (United States)

    Brar, Harpreet S.; Platt, Manu O.; Sarntinoranont, Malisa; Martin, Peter I.; Manuel, Michele V.

    2009-09-01

    For many years, stainless steel, cobalt-chromium, and titanium alloys have been the primary biomaterials used for load-bearing applications. However, as the need for structural materials in temporary implant applications has grown, materials that provide short-term structural support and can be reabsorbed into the body after healing are being sought. Since traditional metallic biomaterials are typically biocompatible but not biodegradable, the potential for magnesium-based alloys in biomedical applications has gained more interest. This paper summarizes the history and current status of magnesium as a bioabsorbable implant material. Also discussed is the development of a magnesium-zinc-calcium alloy that demonstrates promising degradation behavior.

  4. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  5. Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs.

    Science.gov (United States)

    Attanasio, Chiara; Latancia, Marcela T; Otterbein, Leo E; Netti, Paolo A

    2016-08-01

    Recent advances in the fields of artificial organs and regenerative medicine are now joining forces in the areas of organ transplantation and bioengineering to solve continued challenges for patients with end-stage renal disease. The waiting lists for those needing a transplant continue to exceed demand. Dialysis, while effective, brings different challenges, including quality of life and susceptibility to infection. Unfortunately, the majority of research outputs are far from delivering satisfactory solutions. Current efforts are focused on providing a self-standing device able to recapitulate kidney function. In this review, we focus on two remarkable innovations that may offer significant clinical impact in the field of renal replacement therapy: the implantable artificial renal assist device (RAD) and the transplantable bioengineered kidney. The artificial RAD strategy utilizes micromachining techniques to fabricate a biohybrid system able to mimic renal morphology and function. The current trend in kidney bioengineering exploits the structure of the native organ to produce a kidney that is ready to be transplanted. Although these two systems stem from different technological approaches, they are both designed to be implantable, long lasting, and free standing to allow patients with kidney failure to be autonomous. However, for both of them, there are relevant issues that must be addressed before translation into clinical use and these are discussed in this review.

  6. Interventions for replacing missing teeth: antibiotics at dental implant placement to prevent complications.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Worthington, Helen V

    2013-07-31

    Some dental implant failures may be due to bacterial contamination at implant insertion. Infections around biomaterials are difficult to treat, and almost all infected implants have to be removed. In general, antibiotic prophylaxis in surgery is only indicated for patients at risk of infectious endocarditis; with reduced host-response; when surgery is performed in infected sites; in cases of extensive and prolonged surgical interventions; and when large foreign materials are implanted. A variety of prophylactic systemic antibiotic regimens have been suggested to minimise infections after dental implant placement. More recent protocols recommended short-term prophylaxis, if antibiotics have to be used. Adverse events may occur with the administration of antibiotics, and can range from diarrhoea to life-threatening allergic reactions. Another major concern associated with the widespread use of antibiotics is the selection of antibiotic-resistant bacteria. The use of prophylactic antibiotics in implant dentistry is controversial. To assess the beneficial or harmful effects of systemic prophylactic antibiotics at dental implant placement versus no antibiotic or placebo administration and, if antibiotics are beneficial, to determine which type, dosage and duration is the most effective. We searched the Cochrane Oral Health Group's Trials Register (to 17 June 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 5), MEDLINE via OVID (1946 to 17 June 2013) and EMBASE via OVID (1980 to 17 June 2013). There were no language or date restrictions placed on the searches of the electronic databases. Randomised controlled clinical trials (RCTs) with a follow-up of at least three months, that compared the administration of various prophylactic antibiotic regimens versus no antibiotics to people undergoing dental implant placement. Outcome measures included prosthesis failures, implant failures, postoperative infections and adverse

  7. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  8. Replacing critical rare earth materials in high energy density magnets

    Science.gov (United States)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  9. Predictors of clinical outcome in total hip and knee replacement : a methodological appraisal of implants and patient factors

    NARCIS (Netherlands)

    Keurentjes, Johan Christiaan

    2014-01-01

    In this thesis, we studied both implants and patient and surgeon factors as predictors of clinical outcome after total hip and knee replacement. Additionally, we studied a number of methodological aspects of orthopaedic research, such as competing risks in estimating the probability of revision

  10. Accuracy of different impression materials in parallel and nonparallel implants

    Directory of Open Access Journals (Sweden)

    Mahroo Vojdani

    2015-01-01

    Conclusion: Within the limitations of this study, in parallel conditions, the type of impression material cannot affect the accuracy of the implant impressions; however, in nonparallel conditions, polyvinyl siloxane is shown to be a better choice, followed by vinyl siloxanether and polyether respectively.

  11. Applicability of existing magnesium alloys as biomedical implant materials

    NARCIS (Netherlands)

    Erinc, M.; Sillekens, W.H.; Mannens, R.G.T.M.; Werkhoven, R.J.

    2009-01-01

    Being biocompatible and biodegradable, magnesium alloys are considered as the new generation biomedical implant materials, such as for stents, bone fixtures, plates and screws. A major drawback is the poor chemical stability of metallic magnesium; it corrodes at a pace that is too high for most

  12. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking...

  13. Aortic valve replacement: is there an implant size variation across Europe?

    Science.gov (United States)

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A; Nashef, Samer A M; Aagaard, Jan; Moritz, Anton; Van Ingen, Gerrit; Chronidou, Fany; Palatianos, George; Alivizatos, Peter A; Stavridis, George T

    2008-03-01

    Prompted by anecdotal evidence and observations by surgeons, an investigation was undertaken into the potential differences in implanted aortic valve prosthesis sizes, during aortic valve replacement (AVR) procedures, between northern and southern European countries. A multi-institutional, non-randomized, retrospective analysis was conducted among 2,932 patients who underwent AVR surgery at seven tertiary cardiac surgery centers throughout Europe. Demographic and perioperative variables including valve size and type, body surface area (BSA) and early mortality were collected. Group analysis by patient geographic distribution and by annular diameter of the prosthesis utilized was conducted. Patients with a manufacturer's labeled prosthesis size > or = 21 mm were assigned to the 'large' aortic size subset, while those with a prosthesis size < 21 mm were assigned to the 'small' aortic size subset. Effective orifice area indices were calculated for all patients to assess the geographic distribution of patient-prosthesis mismatch. Univariable and multivariable logistic regression analyses adjusting for possible confounding variables were performed. Prostheses with diameter < 21 mm were implanted at almost twice the rate in southern Europe compared to the north (56.4% versus 26.7%, p < 0.01). The mean valve size was also smaller in southern compared to northern European patients (21.6 +/- 2.1 mm versus 23.4 +/- 2.2 mm, p < 0.01). There were no regional differences in the distribution of either gender or BSA. In the multivariable model, south European patients were seven times more likely to receive a smaller-sized aortic valve (OR = 6.5, 95% CI = 4.82-8.83, p < 0.01), and thus the odds of developing patient-prosthesis mismatch were increased two-fold in southern European patients (OR = 1.9, 95% CI = 1.25-2.80, p = 0.02). However, neither geographic distribution nor valve size were significantly associated with operative mortality. The study results demonstrated

  14. Recent results on implantation and permeation into fusion reactor materials

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.; Struttman, D. A.

    This paper reports on implantation-driven permeation experiments that have been made for primary candidate alloy (PCA) and the ferritic steel HT-9 using deuterium ion beams from an accelerator. The results include measurements of the implantation flux and fluence dependence of the deuterium reemission and permeation for specimens heated to approximately 430(0)C. Simultaneous measurements of the ions sputtered from the specimen front surface with a secondary ion mass spectrometer provided some characterization of the surface condition throughout an experiment. For both materials, the permeation rate was lowered by the implantation process. However, the steady state permeation rate for HT-9 was found to be at least a factor of 5 greater than that for PCA.

  15. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  16. Biomechanical analysis on stent materials used as cardiovascular implants

    Science.gov (United States)

    Kumar, Vasantha; Ramesha, C. M.; Sajjan, Sudheer S.

    2018-04-01

    Atherosclerosis is the most common cause of death in the world, accounting for 48% of all deaths in the world. Atherosclerosis, also known as coronary artery disease occurs when excess cholesterol attaches itself to the walls of blood vessels. Coronary stent implantation is one of the most important procedures to treating coronary artery disease such atherosclerosis. Due to its efficiency, flexibility and simplicity, the use of coronary stents procedures has increased rapidly. In order to have better output of stent implantation, it is needed to study and analyze the biomechanical behavior of this device before manufacturing and put into use. Biomaterials are commonly used for medical application in cardiovascular stent implantation. A biomaterial is a non-viable material used as medical implant, so it is intended to interact with biological system. In this paper, an explicit dynamic analysis is used for analyzing the biomechanical behavior of cardiovascular stent by using finite element analysis tool, ABAQUS 6.10. Results showed that a best suitable biomaterial for cardiovascular stent implants, which exhibits an outstanding biocompatibility and biomechanical characteristics will be aimed at which will be quite useful to the human beings worldwide.

  17. Sheath physics and materials science results from recent plasma source ion implantation experiments

    International Nuclear Information System (INIS)

    Conrad, J.R.; Radtke, J.L.; Dodd, R.A.; Worzala, F.J.

    1987-01-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique which has been optimized for ion-beam processing of materials. PSII departs radically from conventional implantation by circumventing the line of sight restriction inherent in conventional ion implantation. The authors used PSII to implant cutting tools and dies and have demonstrated substantial improvements in lifetime. Recent results on plasma physics scaling laws, microstructural, mechanical, and tribological properties of PSII-implanted materials are presented

  18. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

    OpenAIRE

    Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo

    2014-01-01

    PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess ...

  19. Single-tooth replacement by osseointegrated Astra Tech dental implants: a 2-year report

    DEFF Research Database (Denmark)

    Karlsson, U; Gotfredsen, K; Olsson, C

    1998-01-01

    This study presents the outcome of single-tooth restorations supported by Astra Tech single-tooth implants followed for 2 years. Forty-seven implants were placed in the same number of patients. Forty-three patients attended the second recall visit, and none of the evaluated implants have been...

  20. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Science.gov (United States)

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  1. Biodegradable Materials and Metallic Implants-A Review.

    Science.gov (United States)

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2017-09-26

    Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome.

  2. Bicruciate-retaining Total Knee Replacement Provides Satisfactory Function and Implant Survivorship at 23 Years.

    Science.gov (United States)

    Pritchett, James W

    2015-07-01

    One of the goals of a TKA is to approximate the function of a normal knee. Preserving the natural ligaments might provide a method of restoring close to normal function. Sacrifice of the ACL is common and practical during a TKA. However, this ligament is functional in more than 60% of patients undergoing a TKA and kinematic studies support the concept of bicruciate-retaining (that is, ACL-preserving) TKA; however, relatively few studies have evaluated patients treated with bicruciate-retaining TKA implants. I asked: (1) what is the long-term (minimum 20-year) survivorship, (2) what are the functional results, and (3) what are the reasons for revision of bicruciate-retaining knee arthroplasty prostheses? From January 1989 to September 1992, I performed 639 total knee replacements in 537 patients. Of these, 489 were performed in 390 patients using a bicruciate-retaining, minimally constrained device. During the period in question, this knee prosthesis was used for all patients observed intraoperatively to have an intact, functional ACL with between 15° varus and 15° valgus joint deformity. There were 234 women and 156 men with a mean age at surgery of 65 years (range, 42-84 years) and a primary diagnosis of osteoarthritis in 89%. The patella was resurfaced in all knees. The mean followup was 23 years (range, 20-24 years). At the time of this review, 199 (51%) patients had died and 31 (8%) patients were lost to followup, leaving 160 (41%) patients (214 knees) available for review. Component survivorship was determined by competing-risks analysis and Kaplan Meier survivorship analysis with revision for any reason as the primary endpoint. Patients were evaluated every 2 years to assess ROM, joint laxity, knee stability, and to determine American Knee Society scores. The Kaplan-Meier survivorship was 89% (95% CI, 82%-93%) at 23 years with revision for any reason as the endpoint. Competing-risks survivorship was 94% (95% CI, 91%%-96 %) at 23 years. At followup, the mean

  3. Clinical application of single-tooth replacement with ankylos implant system

    International Nuclear Information System (INIS)

    Yang Xu; Liu Xue; Zhang Heng; Deng Yan; Guo Zhaozhong; Zhang Yufeng

    2011-01-01

    Objective: To evaluate the clinical effects of Ankylos implant system to restore the loss of single-tooth. Methods: 90 cases with loss of single-tooth were selected and treated with routinely two-stage surgery. When the patients presented with deficient alveolar ridge, guided bone regeneration (GBR), osteotome sinus floor elevation, lateral antrostomy surgery with simultaneous placement of implant were applied. They were restored with platinum ceramic crown. All the implants were followed up, and the records were kept about stability of the implant and abutment, the status of surrounding soft tissue, sealability of implant abutment junction and the marginal bone lossing through X-ray checking,and satisfaction of the patients to mastication and aspect of the restorations. The follow-up time was 1-2.5 years. Results: Among the cases,one case had peri-implant inflammation, and one case had porcelain dropped. No loosening occurred in the other implants and abuments. Implant abutment junction was sealed well. The marginal bone loss 1 year after final restoration was less than 1 mm. Soft tissue surrounding implants was healthy. The satisfaction rate was 98.9% (89/90). According to standard of implant success, 88 cases were successful, the 2.5-year cumulative success rate was 97.8%, 2 cases failed, and the failure rate was 2.2 %. Conclusion: A satisfactory treatment effects could be gotten by using Ankylos implant system to restore the loss of single-tooth. (authors)

  4. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  5. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K W; Prawer, S; Weiser, P S; Dooley, S P [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  6. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  7. Automated Implanter Endstation for Combinatorial Materials Science with Ion Beams

    International Nuclear Information System (INIS)

    Grosshans, I.; Karl, H.; Stritzker, B.

    2003-01-01

    The discovery, understanding and optimization of new complex functional materials requires combinatorial synthesis techniques and fast screening instrumentation for the measurement of the samples. In this contribution the synthesis of buried II-VI compound semiconductor nanocrystals by ion-implantation in SiO2 on silicon will be presented. For that we constructed a computer controlled implanter target end station, in which a 4-inch wafer can be implanted with a lateral pattern of distinct dose, composition or energy combinations. The chemical reaction of the constituents is initiated either during the implantation process or ex-situ by a rapid thermal process, where a reactive atmosphere can be applied. The resulting optical photoluminescence properties of the individual fields of the pattern can then be screened in rapid succession in an optical cryostat into which the whole wafer is mounted and cooled down. In this way, complex interdependences of the physical parameters can be studied on a single wafer and the technically relevant properties optimized

  8. Clinical and Echocardiographic Outcomes Following Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement: Meta-Analysis and Meta-Regression.

    Science.gov (United States)

    Mohananey, Divyanshu; Jobanputra, Yash; Kumar, Arnav; Krishnaswamy, Amar; Mick, Stephanie; White, Jonathon M; Kapadia, Samir R

    2017-07-01

    Transcatheter aortic valve replacement has become the procedure of choice for inoperable, high-risk, and many intermediate-risk patients with aortic stenosis. Conduction abnormalities are a common finding after transcatheter aortic valve replacement and often result in permanent pacemaker (PPM) implantation. Data pertaining to the clinical impact of PPM implantation are controversial. We used meta-analysis techniques to summarize the effect of PPM implantation on clinical and echocardiographic outcomes after transcatheter aortic valve replacement. Data were summarized as Mantel-Haenszel relative risk (RR) and 95% confidence intervals (CIs) for dichotomous variables and as standardized mean difference and 95% CI for continuous variables We used the Higgins I 2 statistic to evaluate heterogeneity. We found that patients with and without PPM have similar all-cause mortality (RR, 0.85; 95% CI, 0.70-1.03), cardiovascular mortality (RR, 0.84; 95% CI, 0.59-1.18), myocardial infarction (RR, 0.47; 95% CI, 0.20-1.11), and stroke (RR, 1.26; 95% CI, 0.70-2.26) at 30 days. The groups were also comparable in all-cause mortality (RR, 1.03; 95% CI, 0.92-1.16), cardiovascular mortality (RR, 0.69; 95% CI, 0.39-1.24), myocardial infarction (RR, 0.58; 95% CI, 0.30-1.13), and stroke (RR, 0.70; 95% CI, 0.47-1.04) at 1 year. We observed that the improvement in left ventricular ejection fraction was significantly greater in the patients without PPM (standardized mean difference, 0.22; 95% CI, 0.12-0.32). PPM implantation is not associated with increased risk of all-cause mortality, cardiovascular mortality, stroke, or myocardial infarction both at short- and long-term follow-up. However, PPM is associated with impaired left ventricular ejection fraction recovery post-transcatheter aortic valve replacement. © 2017 American Heart Association, Inc.

  9. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    Science.gov (United States)

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design

  10. Alternative materials to improve total hip replacement tribology.

    Science.gov (United States)

    Santavirta, Seppo; Böhler, Max; Harris, William H; Konttinen, Yrjö T; Lappalainen, Reijo; Muratoglu, Orhun; Rieker, Claude; Salzer, Martin

    2003-08-01

    An improvement in tribology of bearing surfaces is an effective means of increasing the longevity of total hip replacement (THR). Currently, 3 approaches are available to achieve this aim: first, use of highly cross-linked UHMWPE; second, aluminum oxide ceramic bearings, and third, metal-on-metal bearings. Cross-linking reduces the wear resistance of UHMWPE markedly without impairment of other significant properties of the material. Simulator studies and some clinical long-term (10-22 years) follow-up surveys suggest an almost immeasurable wear of the highly cross-linked UHMWPE-based acetabular components during an expected clinical life span. Bioinert alumina ceramic (aluminum oxide) was introduced 3 decades ago for THR-bearing surfaces to improve performance and longevity. Alumina ceramic is entirely biostable and bioinert and has good mechanical properties. For correctly positioned alumina-on-alumina bearings, the annual linear wear rate has been reported to be 3.9 microm. Alumina heads have been successfully used in combination with polyethylene sockets, but as regards wear, the best results have been obtained with alumina-on-alumina bearings. In ceramic THR bearings, precise manufacture and contact surface geometry, including optimal clearance, are most important. For the currently available products, the component fracture risk is almost nonexistent (less than 1 per 1000). Metal-on-metal bearings were used in the early stage of THR surgery, although not all old designs were successful. More recent analyses of the early series have shown the advantages of metal-on-metal to be better and have led to a renaissance of this articulation. Initially, stainless steel was used because it was easy to manufacture and polish. Current metal-on-metal bearings are based on cobalt-chromium-molybdenum alloys with varying carbon contents. Such bearings are self-polishing. Linear wear rates remain at the level of a few microm a year. An improvement in technology has increased

  11. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    Science.gov (United States)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  12. In Vitro Implant Impression Accuracy Using a New Photopolymerizing SDR Splinting Material.

    Science.gov (United States)

    Di Fiore, Adolfo; Meneghello, Roberto; Savio, Gianpaolo; Sivolella, Stefano; Katsoulis, Joannis; Stellini, Edoardo

    2015-10-01

    The study aims to evaluate three-dimensionally (3D) the accuracy of implant impressions using a new resin splinting material, "Smart Dentin Replacement" (SDR). A titanium model of an edentulous mandible with six implant analogues was used as a master model and its dimensions measured with a coordinate measuring machine. Before the total 60 impressions were taken (open tray, screw-retained abutments, vinyl polysiloxane), they were divided in four groups: A (test): copings pick-up splinted with dental floss and fotopolymerizing SDR; B (test): see A, additionally sectioned and splinted again with SDR; C (control): copings pick-up splinted with dental floss and autopolymerizing Duralay® (Reliance Dental Mfg. Co., Alsip, IL, USA) acrylic resin; and D (control): see C, additionally sectioned and splinted again with Duralay. The impressions were measured directly with an optomechanical coordinate measuring machine and analyzed with a computer-aided design (CAD) geometric modeling software. The Wilcoxon matched-pair signed-rank test was used to compare groups. While there was no difference (p = .430) between the mean 3D deviations of the test groups A (17.5 μm) and B (17.4 μm), they both showed statistically significant differences (p impression techniques for edentulous jaws with multiple implants are highly accurate using the new fotopolymerizing splinting material SDR. Sectioning and rejoining of the SDR splinting had no impact on the impression accuracy. © 2015 Wiley Periodicals, Inc.

  13. Materials science issues of plasma source ion implantation

    International Nuclear Information System (INIS)

    Nastasi, M.; Faehl, R.J.; Elmoursi, A.A.

    1996-01-01

    Ion beam processing, including ion implantation and ion beam assisted deposition (IBAD), are established surface modification techniques which have been used successfully to synthesize materials for a wide variety of tribological applications. In spite of the flexibility and promise of the technique, ion beam processing has been considered too expensive for mass production applications. However, an emerging technology, Plasma Source Ion Implantation (PSII), has the potential of overcoming these limitations to become an economically viable tool for mass industrial applications. In PSII, targets are placed directly in a plasma and then pulsed-biased to produce a non-line-of-sight process for intricate target geometries without complicated fixturing. If the bias is a relatively high negative potential (20--100 kV) ion implantation will result. At lower voltages (50--1,200 V), deposition occurs. Potential applications for PSII are in low-value-added products such as tools used in manufacturing, orthopedic devices, and the production of wear coatings for hard disk media. This paper will focus on the technology and materials science associated with PSII

  14. The flaws in the detail of an observational study on transcatheter aortic valve implantation versus surgical aortic valve replacement in intermediate-risks patients

    NARCIS (Netherlands)

    Barili, Fabio; Freemantle, Nick; Folliguet, Thierry; Muneretto, Claudio; de Bonis, Michele; Czerny, Martin; Obadia, Jean Francois; Al-Attar, Nawwar; Bonaros, Nikolaos; Kluin, Jolanda; Lorusso, Roberto; Punjabi, Prakash; Sadaba, Rafael; Suwalski, Piotr; Benedetto, Umberto; Böning, Andreas; Falk, Volkmar; Sousa-Uva, Miguel; Kappetein, Pieter A.; Menicanti, Lorenzo

    2017-01-01

    The PARTNER group recently published a comparison between the latest generation SAPIEN 3 transcatheter aortic valve implantation (TAVI) system (Edwards Lifesciences, Irvine, CA, USA) and surgical aortic valve replacement (SAVR) in intermediate-risk patients, apparently demonstrating superiority of

  15. Bioreactor activated graft material for early implant fixation in bone

    DEFF Research Database (Denmark)

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish....... The superficial part was used for mechanical testing and micro-CT scanning, and the profound part for histomorphometry. Push-out tests were performed on an 858 Bionix MTS hydraulic materials testing machine (MTS Systems Corporation, USA). Shear mechanical properties between implant and newly generated bone were...

  16. Influence of implant position on clinical crown length and peri-implant soft tissue dimensions at implant-supported single crowns replacing maxillary central incisors

    DEFF Research Database (Denmark)

    Peng, Min; Fei, Wei; Hosseini, Mandana

    2013-01-01

    The aims of the present study were to evaluate the influence of implant position on clinical crown length and marginal soft tissue dimensions at implant-supported single crowns of maxillary central incisors, and to validate the papilla index score (PIS). Twenty-five patients, who had lost one of ...... abutments and did not necessarily result in an increased crown length. The distal implant papilla heightwas obviously shorter, althoughthe mesial papilla height was similar to thatof the healthy dentition.The papilla index score was tested to be a valid index for papilla fill....

  17. Materials characterization studies on LANA75/85 materials for replacement beds

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Kirk L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    During FY15 and FY16, a purchase order (PO) was placed with Japan Metals and Chemicals, USA after an open bidding procurement process for 282 kg of LaNi4.25Al0.75 and 226 kg. of LaNi4.15Al0.85. These materials were to be used in Tritium Facility replacement beds for existing beds that have reached the end of their useful life. As part of the PO, a 100 g. sample of each material was delivered to the SRNL Hydrogen Processing Group for characterization studies as is typically done for all newly acquired hydride materials. The PO actually employed a “trust but verify” approach where JMCUSA was allowed to ship materials it felt met specifications without SRS confirmation, as long as the data used to do so was delivered to SRS as part of the PO documentation package. Subsequent SRNL analysis revealed that the material met all specifications and was of very high quality. This report documents those findings.

  18. [Bentall operation combined with total arch replacement and stented elephant trunk implantation for serious Debakey I aortic dissecting aneurysm].

    Science.gov (United States)

    Gu, Tian-Xiang; Wang, Chun; Zhang, Yu-Hai

    2008-12-01

    To summarize the clinical experience of Bentall operation combined with total arch replacement and stented elephant trunk implantation for serious Debakey I aortic dissecting aneurysm. Twelve patients with serious Debakey I aortic dissecting aneurysm underwent surgical treatment from January 2005 to December 2007. There were 10 male and 2 female with the mean age of (40.1 +/- 9.5) years old. There were acute aortic dissection in 9 cases, chronic aortic dissection in 3 cases. The inner diameter of aorta was (5.3 +/- 1.8) cm. There were Marfan syndrome in 4 cases, aortic regurgitation in all cases, severely persistent chest pain in 9 cases, acute left heart failure in 8 cases, and cardiac tamponade in 4 cases. Bentall operations combined with total arch replacement and stented elephant trunk implantation were performed by using deep hypothermic circulatory arrest and antegrade selective cerebral perfusion in all cases. Urgent surgery underwent in 9 cases. The mean interval between the onset of aortic dissection and the accomplishment of surgery was (41.0 +/- 15.9) hours. Cardiopulmonary bypass time was (191 +/- 26) min, average cross clamp time was (134 +/- 31) min, and average deep hypothermic circulatory arrest time was (50.0 +/- 14.5) min. One patient died in hospital. The time stayed in ICU was 3 to 27 d. Mental disorder in 6 cases, hemi-paralysis in 1 case, amputation in 1 case, hemorrhage of anastomosis in 1 case, hemorrhage of alimentary tract in 1 case, and pleural effusion in 4 cases were recorded. Eleven cases were followed-up for 8 weeks to 36 months. There were no bending of the stents and no obstruction in the vascular prosthesis.No re-operation was needed. One case died 6 months postoperatively. Bentall operation combined with total arch replacement and stented elephant trunk implantation is safe and effective for serious Debakey I aortic dissecting aneurysm, while good organs protection and consummate cardiopulmonary bypass were taken.

  19. Modern materials in fabrication of scaffolds for bone defect replacement

    Science.gov (United States)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  20. Patient and implant survival following joint replacement because of metastatic bone disease

    DEFF Research Database (Denmark)

    Sørensen, Michala S; Gregersen, Kristine G; Grum-Schwensen, Tomas

    2013-01-01

    Patients suffering from a pathological fracture or painful bony lesion because of metastatic bone disease often benefit from a total joint replacement. However, these are large operations in patients who are often weak. We examined the patient survival and complication rates after total joint...... replacement as the treatment for bone metastasis or hematological diseases of the extremities....

  1. Development of implants composed of bioactive materials for bone repair

    Science.gov (United States)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  2. Bone replacement following dental trauma prior to implant surgery - present status

    NARCIS (Netherlands)

    Hallman, Mats; Mordenfeld, Arne; Strandkvist, Tomas

    Dento-alveolar trauma often leads to a need for reconstruction of the alveolar crest before an implant can be placed. Although autogenous bone grafts is considered the 'gold standard', this may be associated with patient morbidity and graft resorption. Consequently, the use of bone substitutes has

  3. Toxicity of methods of implant material sterilization on corneal endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G.; Boehnke, Mv.; von Domarus, D.; Draeger, J.

    1985-11-01

    The toxicity of different procedures utilized for the sterilization of intraocular implant material was assessed on the endothelium of organ-cultured porcine corneas. Polymethylmethacrylate lenses sterilized by treatment with sodium hydroxide (NaOH), ethylene oxide, formaldehyde, and gamma radiation were added to a culture medium containing normal porcine corneas. Considering the viability of endothelial cells, appearance of intracellular degenerative vacuoles, and denudation of corneal Descemet's membrane as criterion for the evaluation of toxicity of different methods of sterilization, the NaOH-treated lenses were found to be the least toxic to porcine corneal endothelium. Phase-contrast microscopy and vital staining of the endothelium permitted direct viewing of the endothelium aiding in the assessment of toxicity.

  4. Effects of implant system, impression technique, and impression material on accuracy of the working cast.

    Science.gov (United States)

    Wegner, Kerstin; Weskott, Katharina; Zenginel, Martha; Rehmann, Peter; Wöstmann, Bernd

    2013-01-01

    This in vitro study aimed to identify the effects of the implant system, impression technique, and impression material on the transfer accuracy of implant impressions. The null hypothesis tested was that, in vitro and within the parameters of the experiment, the spatial relationship of a working cast to the placement of implants is not related to (1) the implant system, (2) the impression technique, or (3) the impression material. A steel maxilla was used as a reference model. Six implants of two different implant systems (Standard Plus, Straumann; Semados, Bego) were fixed in the reference model. The target variables were: three-dimensional (3D) shift in all directions, implant axis direction, and rotation. The target variables were assessed using a 3D coordinate measuring machine, and the respective deviations of the plaster models from the nominal values of the reference model were calculated. Two different impression techniques (reposition/pickup) and four impression materials (Aquasil Ultra, Flexitime, Impregum Penta, P2 Magnum 360) were investigated. In all, 80 implant impressions for each implant system were taken. Statistical analysis was performed using multivariate analysis of variance. The implant system significantly influenced the transfer accuracy for most spatial dimensions, including the overall 3D shift and implant axis direction. There was no significant difference between the two implant systems with regard to rotation. Multivariate analysis of variance showed a significant effect on transfer accuracy only for the implant system. Within the limits of the present study, it can be concluded that the transfer accuracy of the intraoral implant position on the working cast is far more dependent on the implant system than on the selection of a specific impression technique or material.

  5. Tackling the Issue of High Postoperative Pacemaker Implantation Rates in Sutureless Aortic Valve Replacement: Should Balloon Inflation be Removed from the Implantation Method of the Perceval Prosthesis?

    Science.gov (United States)

    Charles Blouin, Mathieu; Bouhout, Ismail; Demers, Philippe; Carrier, Michel; Perrault, Louis; Lamarche, Yoan; El-Hamamsy, Ismail; Bouchard, Denis

    2017-05-01

    Sutureless aortic valve replacement (AVR) is an emerging alternative to standard AVR in elderly and high-risk patients. This procedure is associated with a high rate of postoperative permanent pacemaker implantation (PPI). The study aim was to assess the impact on the rate of PPI of implanting the Perceval prosthesis without using balloon inflation. A total of 159 patients who underwent sutureless AVR using the Perceval prosthesis was included. Balloon inflation was used in 132 patients (Balloon group) and not used in the remaining 27 (No-Balloon group). Clinical, echocardiographic and electrocardiographic outcomes were assessed. There was no significant difference in PPI rate between the two groups (26% for Balloon group versus 22% in No-Balloon group; p = 0.700). Balloon inflation had no significant impact on the incidence of paravalvular leaks (p = 0.839), or on the need to return to cardiopulmonary bypass (CPB) intraoperatively due to paravalvular leak or unsatisfactory deployment (p >0.999). Mean and peak transaortic pressure gradients were similar between the two groups (p = 0.417 and p = 0.522, respectively). Cross-clamp and CPB times were shorter in the No-Balloon group (49.6 ± 15.9 min versus 61.1 ± 25.6 min and 64.1 ± 26.3 min versus 79.6 ± 35.4 min, respectively; p = 0.027 and p = 0.012, respectively). The two groups had similar postoperative PPI rates. Implanting the Perceval prosthesis without balloon inflation is safe and had no impact on paravalvular leaks, intraoperative complications or hemodynamic results. Reductions in aortic cross-clamp time and CPB time were observed when the balloon was not used.

  6. [Partial replacement of the knee joint with patient-specific instruments and implants (ConforMIS iUni, iDuo)].

    Science.gov (United States)

    Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M

    2016-04-01

    Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.

  7. Maxillary Sinus Membrane Elevation With Simultaneous Installation of Implants Without the Use of a Graft Material

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Schou, Søren

    2017-01-01

    OBJECTIVE: To compare implant treatment outcome after maxillary sinus membrane elevation with simultaneous installation of implants with or without the use of graft material applying the lateral window technique. MATERIALS AND METHODS: MEDLINE/PubMed, Cochrane Library, and Embase search in combin...

  8. Rationale for one stage exchange of infected hip replacement using uncemented implants and antibiotic impregnated bone graft.

    Science.gov (United States)

    Winkler, Heinz

    2009-09-04

    Infection of a total hip replacement (THR) is considered a devastating complication, necessitating its complete removal and thorough debridement of the site. It is undoubted that one stage exchange, if successful, would provide the best benefit both for the patient and the society. Still the fear of re-infection dominates the surgeons decisions and in the majority of cases directs them to multiple stage protocols. However, there is no scientifically based argument for that practice. Successful eradication of infection with two stage procedures is reported to average 80% to 98%. On the other hand a literature review of Jackson and Schmalzried (CORR 2000) summarizing the results of 1,299 infected hip replacements treated with direct exchange (almost exclusively using antibiotic loaded cement), reports of 1,077 (83%) having been successful. The comparable results suggest, that the major factor for a successful outcome with traditional approaches may be found in the quality of surgical debridement and dead space management. Failures in all protocols seem to be caused by small fragments of bacterial colonies remaining after debridement, whereas neither systemic antibiotics nor antibiotic loaded bone cement (PMMA) have been able to improve the situation significantly. Reasons for failure may be found in the limited sensitivity of traditional bacterial culturing and reduced antibiotic susceptibility of involved pathogens, especially considering biofilm formation. Whenever a new prosthesis is implanted into a previously infected site the surgeon must be aware of increased risk of failure, both in single or two stage revisions. Eventual removal therefore should be easy with low risk of additional damage to the bony substance. On the other hand it should also have potential of a good long term result in case of success. Cemented revisions generally show inferior long term results compared to uncemented techniques; the addition of antibiotics to cement reduces its

  9. Replacement of Fine Aggregate by using Recyclable Materials in Paving Blocks

    Science.gov (United States)

    Koganti, Shyam Prakash; Hemanthraja, Kommineni; Sajja, Satish

    2017-08-01

    Cement concrete paving blocks are precast hard products complete out of cement concrete. The product is made in various sizes and shapes like square, round and rectangular blocks of different dimensions with designs for interlocking of adjacent tiles blocks. Several Research Works have been carried out in the past to study the possibility of utilizing waste materials and industrial byproducts in the manufacturing of paver blocks. Various industrial waste materials like quarry dust, glass powder, ceramic dust and coal dust are used as partial replacement of fine aggregate and assessed the strength parameters and compared the profit percentages after replacement with waste materials. Quarry dust can be replaced by 20% and beyond that the difference in strength is not much higher but considering cost we can replace upto 40% so that we can get a profit of almost 10%. Similarly we can replace glass powder and ceramic dust by 20% only beyond that there is decrement in strength and even with 20% replacement we can get 1.34 % and 2.42% of profit. Coal dust is not suitable for alternative material as fine aggregate as it reduces the strength.

  10. Accuracy of various impression materials and methods for two implant systems: An effect size study.

    Science.gov (United States)

    Schmidt, Alexander; Häussling, Teresa; Rehmann, Peter; Schaaf, Heidrun; Wöstmann, Bernd

    2018-04-01

    An accurate impression is required for implant treatment. The aim of this in-vitro study was to determine the effect size of the impression material/method, implant system and implant angulation on impression transfer precision. An upper jaw model with three BEGO and three Straumann implants (angulations 0°, 15°, 20°) in the left and right maxilla was used as a reference model. One polyether (Impregum Penta) and two polyvinyl siloxanes (Flexitime Monophase/Aquasil Ultra Monophase) were examined with two impression techniques (open and closed tray). A total of 60 impressions were made. A coordinate measurement machine was used to measure the target variables for 3D-shift, implant axis inclination and implant axis rotation. All the data were subjected to a four-way ANOVA. The effect size (partial eta-squared [η 2 P ]) was reported. The impression material had a significant influence on the 3D shift and the implant axis inclination deviation (p-values=.000), and both factors had very large effect sizes (3D-shift [η 2 P ]=.599; implant axis inclination [η 2 P ]=.298). Impressions made with polyvinyl siloxane exhibited the highest transfer precision. When the angulation of the implants was larger, more deviations occurred for the implant axis rotational deviation. The implant systems and impression methods showed partially significant variations (p-values=.001-.639) but only very small effect sizes (η 2 P =.001-.031). The impression material had the greatest effect size on accuracy in terms of the 3D shift and the implant axis inclination. For multiunit restorations with disparallel implants, polyvinyl siloxane materials should be considered. In addition, the effect size of a multivariate investigation should be reported. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    Science.gov (United States)

    Murr, L E; Amato, K N; Li, S J; Tian, Y X; Cheng, X Y; Gaytan, S M; Martinez, E; Shindo, P W; Medina, F; Wicker, R B

    2011-10-01

    Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platelets while the mesh and foam structures were characterized by α(')-martensite with some residual α. The Co-29Cr-6Mo containing 0.22% C formed columnar (directional) Cr(23)C(6) carbides spaced ~2 μm in the build direction, while HIP-annealed Co-Cr alloy exhibited an intrinsic stacking fault microstructure. A log-log plot of relative stiffness versus relative density for Ti-6Al-4V and Co-29Cr-6Mo open-cellular mesh and foams resulted in a fitted line with a nearly ideal slope, n = 2.1. A stress shielding design graph constructed from these data permitted mesh and foam implant prototypes to be fabricated for compatible bone stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Investigation on Suitability of Natural Fibre as Replacement Material for Table Tennis Blade

    Science.gov (United States)

    Arifin, A. M. T.; Fahrul Hassan, M.; Ismail, A. E.; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Haq, R. H. Abdul; Rahman, M. N. A.; Yunos, M. Z.; Amin, M. H. M.

    2017-08-01

    This paper presents an investigation of suitability natural fibre as replacement material for table tennis blade, due to low cost, lightweight and apparently environmentally. Nowadays, natural fibre are one of the materials often used in replaced the main material on manufacturing sector, such as automotive, and construction. The objective of this study is to investigate and evaluate the suitability natural fiber materials to replace wood as a structure on table tennis blade. The mechanical properties of the different natural fibre material were examined, and correlated with characteristic of table tennis blade. The natural fibre selected for the study are kenaf (Hibiscus Cannabinus), jute, hemp, sisal (Agave Sisalana) and ramie. A further comparison was made with the corresponding properties of each type of natural fiber using Quality Function Deployment (QFD) and Theory of Inventive Problem Solving (TRIZ). TRIZ has been used to determine the most appropriate solution in producing table tennis blade. The results showed the most appropriate solution in producing table tennis blade using natural fibre is kenaf natural fibre. The selected on suitability natural fibre used as main structure on table tennis blade are based on the characteristics need for good performance of table tennis blade, such as energy absorption, lightweight, strength and hardness. Therefore, it shows an opportunity for replacing existing materials with a higher strength, lower cost alternative that is environmentally friendly.

  13. Development of implant/interconnected porous hydroxyapatite complex as new concept graft material.

    Directory of Open Access Journals (Sweden)

    Kazuya Doi

    Full Text Available BACKGROUND: Dental implant has been successfully used to replace missing teeth. However, in some clinical situations, implant placement may be difficult because of a large bone defect. We designed novel complex biomaterial to simultaneously restore bone and place implant. This complex was incorporated implant into interconnected porous calcium hydroxyapatite (IP-CHA. We then tested this Implant/IP-CHA complex and evaluated its effect on subsequent bone regeneration and implant stability in vivo. METHODOLOGY/PRINCIPAL FINDINGS: A cylinder-type IP-CHA was used in this study. After forming inside of the cylinder, an implant was placed inside to fabricate the Implant/IP-CHA complex. This complex was then placed into the prepared bone socket in the femur of four beagle-Labrador hybrid dogs. As a control, implants were placed directly into the femur without any bone substrate. Bone sockets were allowed to heal for 2, 3 and 6 months and implant stability quotients (ISQ were measured. Finally, tissue blocks containing the Implant/IP-CHA complexes were harvested. Specimens were processed for histology and stained with toluidine blue and bone implant contact (BIC was measured. The ISQs of complex groups was 77.8±2.9 in the 6-month, 72.0±5.7 in the 3-month and 47.4±11.0 in the 2-month. There was no significant difference between the 3- or 6-month complex groups and implant control groups. In the 2-month group, connective tissue, including capillary angiogenesis, was predominant around the implants, although newly formed bone could also be observed. While, in the 3 and 6-month groups, newly formed bone could be seen in contact to most of the implant surface. The BICs of complex groups was 2.18±3.77 in the 2-month, 44.03±29.58 in the 3-month, and 51.23±8.25 in the 6-month. Significant difference was detected between the 2 and 6-month. CONCLUSIONS/SIGNIFICANCE: Within the results of this study, the IP-CHA/implant complex might be able to achieve both

  14. A study on the performance of concrete containing recycled aggregates and ceramic as materials replacement

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Anting, N.; Mazenan, P. N.

    2017-11-01

    Natural fine aggregate materials are commonly used in development and commercial construction in Malaysia. In fact, concrete production was increased as linear with the growing Malaysia economy. However, an issue was production of concrete was to locate adequate sources of natural fine aggregates. There lot of studies have been conducted in order to replace the fine aggregate in which natural fine aggregate replace with the waste material in concrete preparation. Therefore, this study aims to utilize the Recycled Concrete Aggregate (RCA) and ceramic waste which has great potential to replace the natural aggregate in concrete mix with different type of method, admixture, and parameters. This research were focused on compressive strength and water absorption test to determine the optimum mix ratio of concrete mix. The concrete aggregate was chosen due to improvement capillary bonding mechanisms and ceramic presented similar strength compared to the conventional concrete using natural aggregate. Percent of replacement have been used in this study was at 25%, 35% and 45% of the RCA and 5%, 10% and 15% for ceramic, respectively. Furthermore, this research was conduct to find the optimum percentage of aggregate replacement, using water-cement ratio of 0.55 with concrete grade 25/30. The best percentage of replacement was the RCA35% C15% with the compressive strength of 34.72 MPa and the water absorption was satisfied.

  15. Evaluation of accuracy of multiple dental implant impressions using various splinting materials.

    Science.gov (United States)

    Hariharan, Rasasubramanian; Shankar, Chitra; Rajan, Manoj; Baig, Mirza Rustum; Azhagarasan, N S

    2010-01-01

    The aim of the present study was to compare the accuracy of casts obtained from nonsplinted and splinted direct impression techniques employing various splinting materials for multiple dental implants. A reference model with four Nobel Replace Select implant replicas in the anterior mandible was fabricated with denture base heat-curing acrylic resin. Impressions of the reference model were made using polyether impression material by direct nonsplinted and splinted techniques. Impressions were divided into four groups: group A: nonsplinted technique; group B: acrylic resin-splinted technique; group C: bite registration addition silicone-splinted technique; and group D: bite registration polyether-splinted technique. Four impressions were made for each group and casts were poured in type IV dental stone. Linear differences in interimplant distances in the x-, y-, and z-axes and differences in interimplant angulations in the z-axis were measured on the casts using a coordinate measuring machine. The interimplant distance D1y showed significant variations in all four test groups (P = .043), while D3x values varied significantly between the acrylic resin-splinted and silicone-splinted groups. Casts obtained from the polyether-splinted group were the closest to the reference model in the x- and y-axes. In the z-axis, D2z values varied significantly among the three test groups (P = .009). Casts from the acrylic resin-splinted group were the closest to the reference model in the z-axis. Also, one of the three angles measured (angle 2) showed significant differences within three test groups (P = .009). Casts from the nonsplinted group exhibited the smallest angular differences. Casts obtained from all four impression techniques exhibited differences from the reference model. Casts obtained using the bite registration polyether-splinted technique were the most accurate versus the reference model, followed by those obtained via the acrylic resin-splinted, nonsplinted, and

  16. Number of implants for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  17. Evaluation of aesthetics of implant-supported single-tooth replacements using different bone augmentation procedures : A prospective randomized clinical study

    NARCIS (Netherlands)

    Meijndert, Leo; Meijer, Henny J. A.; Stellingsma, Kees; Stegenga, Boudewijn; Raghoebar, Gerry M.

    2007-01-01

    Objectives: The aim of this study was to evaluate the aesthetics of implant-supported single-tooth replacements using different augmentation procedures in a prospective study with the use of an objective rating index and with a subjective patient questionnaire, and to compare the results with each

  18. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems.

    Science.gov (United States)

    Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo

    2014-12-01

    This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (Pabutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

  19. Bone Adaptation Around Orthopaedic Implants of Varying Materials

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading......The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading...

  20. Behavior of bone cells in contact with magnesium implant material.

    Science.gov (United States)

    Burmester, Anna; Willumeit-Römer, Regine; Feyerabend, Frank

    2017-01-01

    Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017. © 2015 Wiley Periodicals, Inc.

  1. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  2. A comparison of fatigue resistance of three materials for cusp-replacing adhesive restorations.

    NARCIS (Netherlands)

    Kuijs, R.H.; Fennis, W.M.M.; Kreulen, C.M.; Roeters, F.J.M.; Verdonschot, N.J.J.; Creugers, N.H.J.

    2006-01-01

    OBJECTIVES: To investigate the fatigue resistance and failure behaviour of cusp-replacing restorations in premolars using different types of adhesive restorative materials. METHODS: A class 2 cavity was prepared and the buccal cusp was removed in an extracted sound human upper premolar. By using a

  3. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  4. Peri-implant bone strains and micro-motion following in vivo service: a postmortem retrieval study of 22 tibial components from total knee replacements.

    Science.gov (United States)

    Mann, Kenneth A; Miller, Mark A; Goodheart, Jacklyn R; Izant, Timothy H; Cleary, Richard J

    2014-03-01

    Biological adaptation following placement of a total knee replacements (TKRs) affects peri-implant bone mineral density (BMD) and implant fixation. We quantified the proximal tibial bone strain and implant-bone micro-motion for functioning postmortem retrieved TKRs and assessed the strain/micro-motion relationships with chronological (donor age and time in service) and patient (body weight and BMD) factors. Twenty-two tibial constructs were functionally loaded to one body weight (60% medial/40% lateral), and the bone strains and tray/bone micro-motions were measured using a digital image correlation system. Donors with more time in service had higher bone strains (p = 0.044), but there was not a significant (p = 0.333) contribution from donor age. Donors with lower peri-implant BMD (p = 0.0039) and higher body weight (p = 0.0286) had higher bone strains. Long term implants (>11 years) had proximal bone strains 900 µϵ that were almost twice as high as short term (implants 570 µϵ. Micro-motion was greater for younger donors (p = 0.0161) and longer time in service (p = 0.0008). Increased bone strain with long term in vivo service could contribute to loosening of TKRs by failure of the tibial peri-implant bone. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. MRI image characteristics of materials implanted at sellar region after transsphenoidal resection of pituitary tumours

    International Nuclear Information System (INIS)

    Bladowska, J.; Sasiadek, M.; Bednarek-Tupikowska, G.; Sokolska, V.; Badowski, R.; Moron, K.; Bonicki, W.

    2010-01-01

    Background: Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change in anatomical conditions. It depends also on numerous other factors, including: size and expansion of the tumour before surgery, type of surgical access, quality and volume of implanted materials and time of its resorption. The purpose was to demonstrate the characteristics of the implanted materials on MRI performed after transsphenoidal resection of pituitary tumours and to identify imaging criteria helpful in differential diagnosis of masses within the sellar region. Material/Methods: One hundred and fifty-four patients after transsphenoidal resection of pituitary tumours were included in the study. In general, 469 MRI examinations were performed with a 1.5 T scanner. We obtained T1-weighted sagittal and coronal, enhanced and unenhanced images. In 102 cases, additional T2-weighted coronal, unenhanced images with 1.5 T unit were obtained as well. Results: The implanted materials appeared in 95 patient: fat in 86 and muscle with fascia in 3 patients. We could recognise implanted muscle and fascia in T2-weighted images, because of high signal intensity of the degenerating muscle and the line of low signal representing fascia. The implanted titanium mesh was found in 4 patients. Haemostatic materials were visible only in 2 patients in examinations performed at an early postoperative stage (1 month after the procedure). Conclusions: The knowledge of MRI characteristics of the materials implanted at the sellar region is very important in postoperative diagnosis of pituitary tumours and may help discriminate between tumorous and non-tumorous involvement of the sellar region. Some implanted materials, like fat, could be seen on MRI for as long as 10 years after the operation, others, like haemostatic materials, for only 1 month after surgery. T2-weighted imaging is a useful assessment method of the implanted muscle and fascia for a long time after surgery. (authors)

  6. Aortic valve replacement and prosthesis-patient mismatch in the era of trans-catheter aortic valve implantation.

    Science.gov (United States)

    Morita, Shigeki

    2016-08-01

    The treatment strategy for aortic stenosis (AS) has been changing due to newly developed valvular prostheses and trans-catheter aortic valve implantation (TAVI). To determine the role of new modalities for AS with a small aortic root, papers using the concept of prosthesis-patient mismatch (PPM) were reviewed. First, to determine the cut-off value of the indexed effective orifice area (IEOA) for defining PPM, the studies of surgical aortic valve replacement (SAVR) with a follow-up longer than 5 years and a patient number larger than 500 were reviewed. Second, the papers comparing TAVI and SAVR were reviewed. Furthermore, the prevalence of PPM was reviewed, with the addition of papers on aortic root enlargement, sutureless AVR, and aortic valve reconstruction with autologous pericardium. The results of the long-term survival after aortic valve replacement (AVR) have indicated that an IEOA less than 0.65 cm(2)/m(2) should be avoided in all cases, whereas the indications for patients with an IEOA between 065 and 0.85 cm(2)/m(2) should be determined by considering multiple factors. A large body size and younger age have a significantly negative influence on the long-term survival. In Asian population, the prevalence of PPM was low, despite the fact that the size of the aortic annulus was small. The IEOA after TAVI was larger than after surgical AVR in population-matched studies. To evaluate the role of TAVI and other modalities for a small aortic root, studies with a longer follow-up and larger volume are thus warranted.

  7. Selection of replacement material for the failed surface level gauge wire in Hanford waste tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Pitman, S.G.; Lund, A.L.

    1995-10-01

    Surface level gauges fabricated from AISI Type 316 stainless steel (316) wire failed after only a few weeks of operation in underground storage tanks at the Hanford Site. The wire failure was determined to be due to chloride ion assisted corrosion of the 316 wire. Radiation-induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the primary source of the chloride ions. An extensive literature search followed by expert concurrence was undertaken to select a replacement material for the wire. Platinum (Pt)-20 % Iridium (Ir) alloy was selected as the replacement material from tile candidate materials, P-20% Ir, Pt-1O% Rhodium (Rh), Pt-20%Rh and Hastelloy C-22. The selection was made on the basis of the alloy's immunity towards acidic and basic environments as well as its adequate tensile properties in the fully annealed state

  8. Waste glass as eco-friendly replacement material in construction products

    Science.gov (United States)

    Sharma, Gayatri; Sharma, Anu

    2018-05-01

    Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.

  9. Evaluation of electronic states of implanted materials by molecular orbital calculation

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Kano, Shigeki

    1997-07-01

    In order to understand the effect of implanted atom in ceramics and metals on the sodium corrosion, the electronic structures of un-implanted and implanted materials were calculated using DV-Xα cluster method which was one of molecular orbital calculations. The calculated materials were β-Si 3 N 4 , α-SiC and β-SiC as ceramics, and f.c.c. Fe, b.c.c. Fe and b.c.c. Nb as metals. An Fe, Mo and Hf atom for ceramics, and N atom for metals were selected as implanted atoms. Consequently, it is expected that the corrosion resistance of β-Si 3 N 4 is improved, because the ionic bonding reduced by the implantation. When the implanted atom is occupied at interstitial site in α-SiC and β-SiC, the ionic bonding reduced. Hence, there is a possibility to improve the corrosion resistance of α-SiC and β-SiC. It is clear that Hf is most effective element among implanted atoms in this study. As the covalent bond between N atom and surrounding Fe atoms increased largely in f.c.c. Fe by N implantation, it was expected that the corrosion resistance of f.c.c. Fe improved in liquid sodium. (J.P.N.)

  10. Experimental and thermodynamic studies of beryllium replacement materials for CANDU brazed joints

    Energy Technology Data Exchange (ETDEWEB)

    Potter, K.N.; Ferrier, G.A.; Corcoran, E.C., E-mail: Kieran.Potter@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Currently, appendages are joined to CANDU fuel elements via a brazing process, which uses beryllium as the filler material. A potential reduction in the occupational limit on airborne beryllium particulates has motivated research into alternative brazing materials. To this end, the Canadian nuclear industry has funded an initiative to identify and evaluate the suitability of several candidate materials. This work describes contributions toward the assessment of alternative brazing materials from the Royal Military College of Canada. Thermodynamic modelling was performed to predict the aqueous behaviour of each candidate material in CANDU coolant conditions characteristic of reactor shutdown, and experiments are underway to support modelling predictions. These results will assist in selecting a suitable replacement material for beryllium. (author)

  11. Experimental and thermodynamic assessment of beryllium-replacement materials for CANDU brazed joints

    Energy Technology Data Exchange (ETDEWEB)

    Potter, K.N.; Ferrier, G.A.; Corcoran, E.C., E-mail: Kieran.Potter@rmc.ca [Royal Military College of Canada, Kingston ON, (Canada); Dimayuga, F.C. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Currently, appendages are joined to CANDU fuel elements via a brazing process, with beryllium as the filler material. A potential reduction in the occupational limit on airborne beryllium particulates has motivated research into alternative brazing materials. To this end, the Canadian nuclear industry has funded an initiative to identify and evaluate the suitability of several candidate brazing materials. This work describes contributions toward the assessment of alternative brazing materials from the Royal Military College of Canada (RMCC). An impact testing method was developed to evaluate the mechanical strength of candidate braze joints.Thermodynamic modelling was performed to predict the aqueous behaviour of each candidate material in CANDU coolant conditions characteristic of reactor shutdown, and corrosion experiments are underway to support modelling predictions.The results of these activities will assist in selecting a suitable replacement material for beryllium. (author)

  12. Accuracy of a new elastomeric impression material for complete-arch dental implant impressions.

    Science.gov (United States)

    Baig, Mirza R; Buzayan, Muaiyed M; Yunus, Norsiah

    2018-05-01

    The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts. Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05. The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05). The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions. © 2018 John Wiley & Sons Australia, Ltd.

  13. Implant replacement of the maxillary central incisor utilizing a modified ceramic abutment (Thommen SPI ART) and ceramic restoration.

    Science.gov (United States)

    Schneider, Robert

    2008-01-01

    The prosthetic restoration of a missing anterior tooth with a dental implant is a challenge. Treatment coordination with a multidisciplinary team is critical in the successful outcome of this type of patient treatment. Newer surgical treatment modalities in the management of hard and soft tissues are becoming common, with very good predictability and long-term stability. Additionally, the use of advanced dental technology and materials such as sintered zirconium allows the restorative practitioner the opportunity to fabricate an esthetic, precise-fitting, biocompatible, and strong definitive prosthesis for the patient, with good longevity. The use of an all-ceramic abutment and restoration is described, along with the "soft tissue sculpting" procedure through the use of a custom provisional restoration. The relative ease and convenience of the procedure is also illustrated.

  14. Road construction replaceable materials. An alternative to oil-based materials

    International Nuclear Information System (INIS)

    Deneuvillers, C.; Chappat, M.

    2008-01-01

    For some time the world has been subjected enormous upheavals with regard to energy resources: on one hand there is the steep rise in the price of oil and the other energy sources whose price depends on it; on the other hand, the prospects are that during the next 25 to 30 years oil resources will become increasingly scarce, which raises the problem of its replacement. This situation obviously raises the vital question of the present and future energy needs of each country, and, consequently, what type of energy. These are not only political issues but also issues for society. How could the roads sector help to find at least partial solutions? This paper will describe a policy adopted by a private sector construction company which is determined to apply the criteria of sustainable development and green chemistry in its products. Bitumen is a derivative of oil, can it be replaced? Most of the chemical products used in roads are petrochemical in nature, can they be replaced? Turning towards vegetable resources provides one way of reducing energy dependency. The paper demonstrates how this could be done, and at what price and with what precautions. This topic inevitably involves a discussion of the criteria of life-cycle analysis and an examination of how they can be applied in a clear manner. This response from industry has already provided some excellent results, which are described in this paper. It also attempts to show how vegetable resources may provide an opportunity for both developing and developed countries. The first could produce a new energy resource and increase their standard of living. The second could be a partial solution to their energy resources problems. Roads, which provide a universal link between different peoples, may still provide a future and hope. (authors)

  15. Tooth replacements in young adults with severe hypodontia: Orthodontic space closure, dental implants, and tooth-supported fixed dental prostheses. A follow-up study.

    Science.gov (United States)

    Hvaring, Christina L; Øgaard, Bjørn; Birkeland, Kari

    2016-10-01

    Children with severe hypodontia have a substantial impairment of their dental health starting early in life. The purpose of this study was to describe types and locations of substitutes for missing teeth in patients with severe hypodontia and to compare the crown and soft tissue morphologies of orthodontic space closure, dental implants, and tooth-supported fixed dental prostheses for replacing teeth in the anterior region. Fifty patients missing 6 or more teeth and aged 18 years or older (mean age, 25.6 years) took part in a follow-up study. The patients were examined clinically with panoramic radiographs and clinical photographs. Crown and soft tissue variables (mucosal discoloration, crown morphology, color, and papilla index) were compared for orthodontic space closure, dental implant fixtures, and fixed dental prostheses. Dental implants, orthodontic space closure, and retaining deciduous teeth were the most commonly prescribed treatments. Persisting deciduous teeth showed a good survival rate at the follow-up examination. Mucosal discoloration was seen only for implant fixtures and was evident for almost all fixtures in the anterior mandible and two thirds of those in the anterior maxilla. The papilla index scored poorer for both implant fixtures and fixed dental prostheses compared with orthodontic space closure. Dental implants in the anterior region proved to be an inadequate treatment modality in patients with severe hypodontia because of pronounced mucosal discoloration. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Four-unit fixed dental prostheses replacing the maxillary incisors supported by two narrow-diameter implants - a five-year case series.

    Science.gov (United States)

    Moráguez, Osvaldo; Vailati, Francesca; Grütter, Linda; Sailer, Irena; Belser, Urs C

    2017-07-01

    (1) To determine the survival rate of 10 four-unit fixed dental prostheses (FDPs) replacing the four maxillary incisors, supported by 20 narrow-diameter implants (NDIs), (2) to assess the incidence of mechanical and biological complications, and (3) to evaluate bone level changes longitudinally after final FDP insertion. Ten patients (six women, four men), mean age 49.4 ± 12.6 years, were treated with a four-unit anterior maxillary FDP (six screw-retained; four cemented). Biological parameters, eventual technical complications, radiographic measurements, and study casts were assessed at 1 (baseline), 3, and 5 years after implant placement. A multilevel logistic regression test was performed on clinical parameters and bone level changes (significance level P four-unit FDP to replace the four missing maxillary incisors may be considered a predictable treatment modality. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Microstructure and tribology of carbon, nitrogen, and oxygen implanted ferrous materials

    International Nuclear Information System (INIS)

    Williamson, D.L.

    1993-01-01

    Nitrogen, carbon, and oxygen ions have been implanted into ferrous materials under unusual conditions of elevated temperatures and very high dose rates. The tribological durabilities of the resulting surfaces are examined with a special type of pin-on-disc wear test apparatus and found in most cases to be dramatically improved compared to surfaces prepared with conventional implantation conditions. Near-surface microstructures and compositions are characterized after implantation and after wear testing by backscatter Moessbauer spectroscopy, X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy. These data provide evidence for the predominant mechanisms responsible for the observed sliding wear behavior induced by each of the three species. (orig.)

  18. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.

    Science.gov (United States)

    Schildhauer, Thomas A; Robie, Bruce; Muhr, Gert; Köller, Manfred

    2006-07-01

    Evaluation of bacterial adhesion to pure tantalum and tantalum-coated stainless steel versus commercially pure titanium, titanium alloy (Ti-6Al-4V), and grit-blasted and polished stainless steel. Experimental in vitro cell culture study using Staphylococcus aureus and Staphylococcus epidermidis to evaluate qualitatively and quantitatively bacterial adherence to metallic implants. A bacterial adhesion assay was performed by culturing S. aureus (ATCC 6538) and S. epidermidis (clinical isolate) for one hour with tantalum, tantalum-coated stainless steel, titanium, titanium alloy, grit-blasted and polished stainless steel metallic implant discs. Adhered living and dead bacteria were stained using a 2-color fluorescence assay. Adherence was then quantitatively evaluated by fluorescence microscopy and digital image processing. Qualitative adherence of the bacteria was analyzed with a scanning electron microscope. The quantitative data were related to the implant surface roughness (Pa-value) as measured by confocal laser scanning microscopy. Bacterial adherence of S. aureus varied significantly (p = 0.0035) with the type of metallic implant. Pure tantalum presented with significantly (p titanium alloy, polished stainless steel, and tantalum-coated stainless steel. Furthermore, pure tantalum had a lower, though not significantly, adhesion than commercially pure titanium and grit-blasted stainless steel. Additionally, there was a significantly higher S. aureus adherence to titanium alloy than to commercially pure titanium (p = 0.014). S. epidermidis adherence was not significantly different among the tested materials. There was no statistically significant correlation between bacterial adherence and surface roughness of the tested implants. Pure tantalum presents with a lower or similar S. aureus and S. epidermidis adhesion when compared with commonly used materials in orthopedic implants. Because bacterial adhesion is an important predisposing factor in the development of

  19. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials

    Czech Academy of Sciences Publication Activity Database

    Kubies, Dana; Himmlová, L.; Riedel, T.; Chánová, Eliška; Balík, Karel; Douděrová, M.; Bartová, J.; Pešáková, V.

    2011-01-01

    Roč. 60, č. 1 (2011), s. 95-111 ISSN 0862-8408 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z30460519 Keywords : implant * surface properties * proliferation Subject RIV: FH - Neurology Impact factor: 1.555, year: 2011 http://www.biomed.cas.cz/physiolres/pdf/60/60_95.pdf

  20. Simultaneous sinus lift and implantation using platelet-rich fibrin as sole grafting material.

    Science.gov (United States)

    Jeong, Seung-Mi; Lee, Chun-Ui; Son, Jeong-Seog; Oh, Ji-Hyeon; Fang, Yiqin; Choi, Byung-Ho

    2014-09-01

    Recently, several authors have shown that simultaneous sinus lift and implantation using autologous platelet-rich fibrin as the sole filling material is a reliable procedure promoting bone augmentation in the maxillary sinus. The aim of this study was to examine the effect of simultaneous sinus lift and implantation using platelet-rich fibrin as the sole grafting material on bone formation in a canine sinus model. An implant was placed after sinus membrane elevation in the maxillary sinus of six adult female mongrel dogs. The resulting space between the membrane and sinus floor was filled with autologous platelet-rich fibrin retrieved from each dog. The implants were left in place for six months. Bone tissue was seen at the lower part of the implants introduced into the sinus cavity. The height of the newly formed bone around the implants ranged from 0 mm to 4.9 mm (mean; 2.6 ± 2.0 mm) on the buccal side and from 0 mm to 4.2 mm (mean; 1.3 ± 1.8 mm) on the palatal side. The findings from this study suggest that simultaneous sinus lift and implantation using platelet-rich fibrin as sole grafting material is not a predictable and reproducible procedure, especially with respect to the bone formation around the implants in the sinus cavity. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. All rights reserved.

  1. A simple ion implanter for material modifications in agriculture and gemmology

    Science.gov (United States)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  2. A simple ion implanter for material modifications in agriculture and gemmology

    Energy Technology Data Exchange (ETDEWEB)

    Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Intarasiri, S. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Phanchaisri, B.; Techarung, J. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Rhodes, M.W.; Suwankosum, R.; Rattanarin, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X–Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  3. A simple ion implanter for material modifications in agriculture and gemmology

    International Nuclear Information System (INIS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M.W.; Suwankosum, R.; Rattanarin, S.; Yu, L.D.

    2015-01-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X–Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  4. Is Graphene a Promising Nano-Material for Promoting Surface Modification of Implants or Scaffold Materials in Bone Tissue Engineering?

    Science.gov (United States)

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang

    2014-01-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041

  5. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?

    Science.gov (United States)

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng

    2014-10-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.

  6. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.

    2017-01-01

    to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared...... for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial...... properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live...

  7. Patients' preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants.

    Science.gov (United States)

    Wismeijer, Daniel; Mans, Ronny; van Genuchten, Michiel; Reijers, Hajo A

    2014-10-01

    The primary objective of this clinical study was to assess the patients' perception of the difference between an analogue impression approach on the one hand and an intra-oral scan (IO scan) on the other when restoring implants in the non-aesthetic zone. A second objective was to analyse the difference in time needed to perform these two procedures. Thirty consecutive patients who had received 41 implants (Straumann tissue level) in the non-aesthetic zone in an implant-based referral practice setting in the Netherlands. As they were to receive crown and or bridge work on the implants, in one session, the final impressions were taken with both an analogue technique and with an intraoral scan. Patients were also asked if, directly after the treatment was carried out, they would be prepared to fill out a questionnaire on their perception of both techniques. The time involved following these two procedures was also recorded. The preparatory activities of the treatment, the taste of the impression material and the overall preference of the patients were significantly in favour of the IO scan. The bite registration, the scan head and gag reflex positively tended to the IO scan, but none of these effects were significant. The overall time involved with the IO scan was more negatively perceived than the analogue impression. Overall less time was involved when following the analogue impression technique than with the IO scan. The overall preference of the patients in our sample is significantly in favour of the approach using the IO scan. This preference relates mainly to the differences between the compared approaches with respect to taste effects and their preparatory activities. The patients did perceive the duration of IO scan more negatively than the analogue impression approach. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Immediate loading versus immediate provisionalization of maxillary single-tooth replacements: a prospective randomized study with BioComp implants

    NARCIS (Netherlands)

    Lindeboom, Jerome A.; Frenken, Joost W.; Dubois, Leander; Frank, Michael; Abbink, Ingmar; Kroon, Frans H.

    2006-01-01

    PURPOSE: The aim of this prospective randomized study was to evaluate the clinical outcome of immediately loaded solid plasma sprayed (TPS) BioComp (BioComp Industries BV, Vught, The Netherlands) implants versus immediate provisionalized but non-loaded BioComp implants in the anterior and premolar

  9. Replacement of a hopeless maxillary central incisor: a technique for the fabrication of an immediate implant-supported interim restoration.

    Science.gov (United States)

    Graiff, Lorenzo; Vigolo, Paolo

    2012-04-01

    Placement of a dental implant and an interim restoration in the esthetic zone immediately following tooth extraction is now a common procedure. However, in such clinical situations, the fabrication of an appropriate interim restoration may be challenging. The aim of this article is to present a technique for modifying the extracted tooth so it can be used as an implant-supported interim restoration.

  10. Effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts.

    Science.gov (United States)

    Ebadian, Behnaz; Rismanchian, Mansor; Dastgheib, Badrosadat; Bajoghli, Farshad

    2015-01-01

    Different factors such as impression techniques and materials can affect the passive fit between the superstructure and implant. The aim of this study was to determine the effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts. Four internal hex implants (Biohorizons Ø4 mm) were placed on a metal maxillary model perpendicular to the horizontal plane in maxillary lateral incisors, right canine and left first premolar areas. Three impression techniques including open tray, closed tray using ball top screw abutments and closed tray using short impression copings and two impression materials (polyether and polyvinyl siloxane) were evaluated (n = 60). The changes in distances between implant analogues in mediolateral (x) and anteroposterior (y) directions and analogue angles in x/z and y/z directions in the horizontal plane on the definitive casts were measured by coordinate measuring machine. The data were analyzed by multivariate two-way analysis of variance and one sample t-test (α = 0.05). No statistical significant differences were observed between different impression techniques and materials. However, deviation and distortion of definitive casts had a significant difference with the master model when short impression copings and polyvinyl siloxane impression material were used (P impression materials (P impression techniques; however, less distortion and deviation were observed in the open tray technique. In the closed tray impression technique, ball top screw was more accurate than short impression copings.

  11. BRICKS WITH TOTAL REPLACEMENT OF CLAY BY FLY ASH MIXED WITH DIFFERENT MATERIALS

    OpenAIRE

    J.N Akhtar; J.Alam; M.N Akhtar

    2011-01-01

    Fly ash is a powdery substance obtained from the dust collectors in the Thermal power plants that use coal as fuel. From the cement point of view the mineralogy of Fly ash is important as it contains 80% - 90% of glass. The impurities in coal-mostly clays, shale’s, limestone & dolomite; they cannot be burned so they turn up as ash. The Fly ash of class C category was used as a raw material to total replacement of clay for making Fly ash bricks. In present study the effect of Fly ash with high...

  12. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    Science.gov (United States)

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  13. Readability of Patient Education Materials From the Web Sites of Orthopedic Implant Manufacturers.

    Science.gov (United States)

    Yi, Meghan M; Yi, Paul H; Hussein, Khalil I; Cross, Michael B; Della Valle, Craig J

    2017-12-01

    Prior studies indicate that orthopedic patient education materials are written at a level that is too high for the average patient. The purpose of this study was to assess the readability of online patient education materials provided by orthopedic implant manufacturers. All patient education articles available in 2013 from the web sites of the 5 largest orthopedic implant manufacturers were identified. Each article was evaluated with the Flesch-Kincaid (FK) readability test. The number of articles with readability ≤ the eighth-grade level (average reading ability of US adults) and the sixth-grade level (recommended level for patient education materials) was determined. Mean readability levels of each company's articles were compared using analysis of variance (significance set at P articles were reviewed from the 5 largest implant manufacturers. The mean overall FK grade level was 10.9 (range, 3.8-16.1). Only 58 articles (10%) were written ≤ the eighth-grade level, and only 13 (2.2%) were ≤ the sixth-grade level. The mean FK grade level was significantly different among groups (Smith & Nephew = 12.0, Stryker = 11.6, Biomet = 11.3, DePuy = 10.6, Zimmer = 10.1; P education materials from implant manufacturers are written at a level too high to be comprehended by the average patient. Future efforts should be made to improve the readability of orthopedic patient education materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evaluation of the toxicity of radiosterilized implantable materials

    International Nuclear Information System (INIS)

    Lewandowska-Szumiel, M.; Kudelska, D.; Mazur, M.; Zimek, Z.

    1997-01-01

    Autoclave and radiation sterilization modes of selected biomaterials and polymers were studied to evaluate the toxicity, if any, induced in the cells grown in vitro. The materials examined induced: crystalline and amorphous biocarbon, alumina, hydroxyapatite, powdered primary PP (radiation-sensitive), and PP modified with a polypropylene/ethylene or an ethylene/vinyl acetate copolymer to enhance its radiation resistance. Results showed no material to be toxic toward the cell examined. The viability of the cells cultivated in the presence of materials examined was found to remain unaffected regardless of the sterilization mode. (author). 12 refs, 3 figs

  15. Quantification of ion or atom transfer phenomena in materials implanted by nuclear methods

    International Nuclear Information System (INIS)

    Oudadesse, Hassane

    1998-01-01

    Knowledge of transfer of the constituents of a system from regions of higher to lower concentration is of interest for implanted bio-materials. It allows determining the rate at which this material is integrated in a living material. To evaluate the ossification kinetics and to study the bio-functionality in corals of Ca and Sr, irradiations with a 10 13 n.cm -2 .s -1 was performed, followed by the examination of changes in the localization of these elements. By using PIXE analysis method the distribution of Ca, P, Sr, Zn and Fe in the implant, bone and bone-implant interfaces were determined. Thus, it was shown that resorption of coral in sheep is achieved in 5 months after implantation and is identical to the cortical tissues 4 months after implantation in animals as for instance in hares. We have analyzed the tissues from around the prostheses extracted from patients. The samples were calcined and reduced to powder weighting some milligrams. We have adopted for this study the PIXE analysis method. The samples were irradiated by a proton beam of 3 MeV and about 400 μm diameter. The results show the presence of the elements Ti, Fe, Cr, Ni or Zn according to the type of the implanted prosthesis. This dispersal of the metallic ions and atoms contaminate the tissues. The transfer factors translate the exchanges between bone and the implanted material. The solvatation phenomenon and the electric charge equilibrium explain the transfer order of cations Mg 2+ , Ca 2+ and Sr 2+ and of the anion PO 4 3- . We have also determined these factors for the elements Ti, Cr and Ni. An original technique to study the bone bio-functionality was used. Use of phosphate derivatives labelled by 99m Tc allows obtaining information about the fixation of radioactive tracer. It was found that only after the eighth month at the implantation the neo-formed bone fixes the MDP (methyl diphosphate) labelled by 99m Tc in a similar way as in the control sample. Starting from this moment the

  16. Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties

    Directory of Open Access Journals (Sweden)

    Omar M. Omar

    2012-12-01

    Full Text Available Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. Limestone waste is obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. Using quarry waste as a substitute of sand in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of river and mining sands. This paper reports the experimental study undertaken to investigate the influence of partial replacement of sand with limestone waste (LSW, with marble powder (M.P as an additive on the concrete properties. The replacement proportion of sand with limestone waste, 25%, 50%, and 75% were practiced in the concrete mixes except in the concrete mix. Besides, proportions of 5%, 10% and 15% marble powder were practiced in the concrete mixes. The effects of limestone waste as fine aggregate on several fresh and hardened properties of the concretes were investigated. The investigation included testing of compressive strength, indirect tensile strength, flexural strength, modulus of elasticity, and permeability. It was found that limestone waste as fine aggregate enhanced the slump test of the fresh concretes. But the unit weight concretes were not affected. However, the good performance was observed when limestone waste as fine aggregate was used in presence of marble powder.

  17. Interventions for replacing missing teeth: Antibiotics in dental implant placement to prevent complications: Evidence summary of Cochrane review

    OpenAIRE

    Jayaraman, Srinivasan

    2015-01-01

    The failure of dental implant can occurs at the preoperative planning stage, at the surgical stage, and at the postoperative stage. The success of this treatment can be increased if the clinical implant practice guidelines are prepared based on the recommendations from the highest level of research evidence (i.e.,) from systematic review of randomized controlled trials (RCTs) with meta-analysis. The Cochrane reviews of interventions are basically systematic reviews of RCTs with meta-analysis ...

  18. Plasma immersion ion implantation for the efficient surface modification of medical materials

    International Nuclear Information System (INIS)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2015-01-01

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment

  19. Long-term amnioinfusion through a subcutaneously implanted amniotic fluid replacement port system for treatment of PPROM in humans.

    Science.gov (United States)

    Tchirikov, Michael; Steetskamp, Joscha; Hohmann, Manfred; Koelbl, Heinz

    2010-09-01

    To introduce a novel method for the treatment of PPROM (preterm premature rupture of membranes) using continuous amnioinfusion via a subcutaneously implanted port system. After development and testing since 2001 in a fetal sheep model, the port system has been successfully implanted in two humans with PPROM. In the first case, the subcutaneous port system was implanted during the 23rd week of gestation in a 39-year-old 5th-gravida with PPROM since the 18th week of gestation; in the second case, the port system was implanted during the 24th week of gestation in a 27-year-old 3rd gravida with PPROM since the 21st week of gestation. After port implantation, 100ml/h saline solution was infused intermittently into the amniotic cavity. The whole course of treatment was supported by tocolysis. In the cases presented, gestation was terminated by cesarean section, in one case in the 29th week of gestation, and in the other case in the 30th week. The newborns showed no signs of lung hypoplasia and were successfully extubated on the 1st or 2nd day after delivery. Six months later the children did not exhibit any deviation from the normal development. Long-term amnioinfusion via a subcutaneously implanted port system could be used in humans with PPROM for prolongation of pregnancy and to avoid lung hypoplasia. Prospective randomized studies are ongoing. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant.

    Science.gov (United States)

    Cilla, Myriam; Borgiani, Edoardo; Martínez, Javier; Duda, Georg N; Checa, Sara

    2017-01-01

    Today, different implant designs exist in the market; however, there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. Therefore, the aim of this project was to investigate if the geometry of a commercial short stem hip prosthesis can be further optimized to reduce stress shielding effects and achieve better short-stemmed implant performance. To reach this aim, the potential of machine learning techniques combined with parametric Finite Element analysis was used. The selected implant geometrical parameters were: total stem length (L), thickness in the lateral (R1) and medial (R2) and the distance between the implant neck and the central stem surface (D). The results show that the total stem length was not the only parameter playing a role in stress shielding. An optimized implant should aim for a decreased stem length and a reduced length of the surface in contact with the bone. The two radiuses that characterize the stem width at the distal cross-section in contact with the bone were less influential in the reduction of stress shielding compared with the other two parameters; but they also play a role where thinner stems present better results.

  1. Ion implantation to improve mechanical and electrical properties of resistive materials based on ruthenium dioxide

    International Nuclear Information System (INIS)

    Byeli, A.V.; Shykh, S.K.; Beresina, V.P.

    1996-01-01

    This paper reports the influence of ion implantation, using different chemical species, on the surface micromorphology, wear resistance, coefficient of friction and electrical resistivity, and its variation during friction for resistive materials based on ruthenium dioxide. It is demonstrated that nitrogen and hydrogen ions are the most effective for modifying surface properties. (Author)

  2. Titanium implant insertion into dog alveolar ridges augmented by allogenic material

    DEFF Research Database (Denmark)

    Pinholt, E M; Haanaes, H R; Donath, K

    1994-01-01

    The purpose of this investigation was to evaluate whether titanium endosseous implants would osseointegrate in dog alveolar ridges augmented by allogenic material. In 8 dogs en bloc resection, including 2 pre-molars, was performed bilaterally in the maxilla and the mandible. After a healing period...

  3. The diffusion properties of ion implanted species in selected target materials

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.; Carter, H.K.; Kormicki, J.; Bartolo, G. di; Batchelder, J.C.; Breitenbach, J.; Chediak, J.A.; Jentoff-Nilsen, K.; Ichikawa, S.

    1995-01-01

    Experiments important to the future success of the Holifield Radioactive Ion Beam Facility (HRIBF) are in progress at the Oak Ridge National Laboratory which are designed to select the most appropriate target material for generating a particular radioactive ion beam (RIB). The 25-MV HHIRF tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is open-quotes on-lineclose quotes at the UNISOR facility. The intensity versus time of implanted species, which diffuse from the high-temperature target material (∼1700 degrees C) and are ionized in the FEBIAD ion source, is used to determine release times for a particular projectile/target material combination. From such release data, diffusion coefficients can be derived by fitting the theoretical results obtained by computational solution of Fick's second equation to experimental data. The diffusion coefficient can be used subsequently to predict the release properties of the particular element from the same material in other target geometries and at other temperatures, provided that the activation energy is also known. Diffusion coefficients for Cl implanted into and diffused from CeS and Zr 5 Si 3 and As, Br, and Se implanted into and diffused from Zr 5 Ge 3 have been derived from the resulting intensity versus time profiles. Brief descriptions of the experimental apparatus and procedures utilized in the present experiments and plans for future related experiments are presented

  4. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor

    Directory of Open Access Journals (Sweden)

    Su-Jin Kim

    2012-03-01

    Full Text Available As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG, polydimethylsiloxane (PDMS and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously.

  5. Evaluation of Inulin Replacing Chitosan in a Polyurethane/Polysaccharide Material for Pb2+ Removal.

    Science.gov (United States)

    Hernández-Martínez, Angel Ramon; Molina, Gustavo A; Jiménez-Hernández, Luis Fernando; Oskam, Adrian Hendrik; Fonseca, Gerardo; Estevez, Miriam

    2017-11-29

    Downstream waste from industry and other industrial processes could increase concentration of heavy metals in water. These pollutants are commonly removed by adsorption because it is an effective and economical method. Previously, we reported adsorption capacity of a chitosan/polyurethane/titanium dioxide (TiO₂) composite for three ions in a dynamic wastewater system. There, increasing the chitosan concentration in composite increased the cation removal as well; however, for ratios higher than 50% of chitosan/TiO₂, the manufacturing cost increased significantly. In this work, we address the manufacturing cost problem by proposing a new formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite formulation, either wholly or in part. In this exploratory research, three blends were prepared with a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR) spectra, scanning electron microscopy (SEM) micrographs, differential scanning calorimetry and thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends are suitable for toxic materials removal (specifically lead II, Pb 2+ ). Material characterization indicates that polysaccharides were distributed in polyurethane's external part, thus improving adsorption. Thermal degradation of materials was found above 200 °C. Comparing the blends data, inulin could replace chitosan in part and thereby improve the cost efficiency and scalability of the production process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios in the adsorbent and experiments with a dynamic system are justified.

  6. Evaluation of Inulin Replacing Chitosan in a Polyurethane/Polysaccharide Material for Pb2+ Removal

    Directory of Open Access Journals (Sweden)

    Angel Ramon Hernández-Martínez

    2017-11-01

    Full Text Available Downstream waste from industry and other industrial processes could increase concentration of heavy metals in water. These pollutants are commonly removed by adsorption because it is an effective and economical method. Previously, we reported adsorption capacity of a chitosan/polyurethane/titanium dioxide (TiO2 composite for three ions in a dynamic wastewater system. There, increasing the chitosan concentration in composite increased the cation removal as well; however, for ratios higher than 50% of chitosan/TiO2, the manufacturing cost increased significantly. In this work, we address the manufacturing cost problem by proposing a new formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite formulation, either wholly or in part. In this exploratory research, three blends were prepared with a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR spectra, scanning electron microscopy (SEM micrographs, differential scanning calorimetry and thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends are suitable for toxic materials removal (specifically lead II, Pb2+. Material characterization indicates that polysaccharides were distributed in polyurethane’s external part, thus improving adsorption. Thermal degradation of materials was found above 200 °C. Comparing the blends data, inulin could replace chitosan in part and thereby improve the cost efficiency and scalability of the production process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios in the adsorbent and experiments with a dynamic system are justified.

  7. Influence of different restorative materials on the stress distribution in dental implants.

    Science.gov (United States)

    Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto

    2018-05-01

    To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.

  8. Influence of implant abutment material on the color of different ceramic crown systems.

    Science.gov (United States)

    Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak

    2016-11-01

    Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Characterization of materials for prosthetic implants using the BEAMnrc Monte Carlo code

    International Nuclear Information System (INIS)

    Spezi, E; Palleri, F; Angelini, A L; Ferri, A; Baruffaldi, F

    2007-01-01

    Metallic implants degrade image quality and perturb severely the patient dose distribution in external beam radiotherapy. Furthermore, conventional treatment planning systems (TPS) do not accurately account for tissue heterogeneities, especially at the interfaces where high Z gradients are present. This work deals with the accurate and systematic characterization of materials used for prosthetic implants. The dose calculation engine used in this investigation is the BEAMnrc Monte Carlo code. A detailed comparison versus experimental data was carried out for two clinical photon beam energies (6MV and 18MV). Our results show that in both cases a very good agreement (within ± 2%) between calculations and experiments was achieved

  10. Structure carbon materials: clusters, nanotubes, ion-implant polymers and diamonds

    International Nuclear Information System (INIS)

    Lapchuk, N.M.; Odzhaev, V.B.; Poklonskij, N.A.; Sviridov, D.V.

    2009-01-01

    The paper summarizes the series of research works dealing with the physics of nanostructured carbon materials, which were awarded a Sevchenko Prize in 2008. The paper considers the mechanism of synthesis of 3D carbon nanospecies and their nanomechanics, magnetic properties of ion-implanted diamonds, as well as the regularities of formation of novel forms of amorphous hydrogenated carbon and metal-carbon nanocomposites via ion bombardment of polymers, as well as electronic, magnetic, and structural properties of ion-implanted polymers an their possible applications in micro- and nanoelectronics. (authors)

  11. Patient-related predictors of implant failure after primary total hip replacement in the initial, short- and long-terms

    DEFF Research Database (Denmark)

    Johnsen, S.P.; Sørensen, H.T.; Lucht, Ulf

    2006-01-01

    replacement, an age of 80 years or more and hip replacement undertaken as a sequela of trauma, for avascular necrosis or paediatric conditions, were associated with an increased risk of failure. However, during six months to 8.6 years after surgery, being less than 60 years old was associated...

  12. Conduction Abnormalities and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement Using the Repositionable LOTUS Device: The United Kingdom Experience.

    Science.gov (United States)

    Rampat, Rajiv; Khawaja, M Zeeshan; Hilling-Smith, Roland; Byrne, Jonathan; MacCarthy, Philip; Blackman, Daniel J; Krishnamurthy, Arvindra; Gunarathne, Ashan; Kovac, Jan; Banning, Adrian; Kharbanda, Raj; Firoozi, Sami; Brecker, Stephen; Redwood, Simon; Bapat, Vinayak; Mullen, Michael; Aggarwal, Suneil; Manoharan, Ganesh; Spence, Mark S; Khogali, Saib; Dooley, Maureen; Cockburn, James; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David

    2017-06-26

    The authors report the incidence of pacemaker implantation up to hospital discharge and the factors influencing pacing rate following implantation of the LOTUS bioprosthesis (Boston Scientific, Natick, Massachusetts) in the United Kingdom. Transcatheter aortic valve replacement (TAVR) is associated with a significant need for permanent pacemaker implantation. Pacing rates vary according to the device used. The REPRISE II (Repositionable Percutaneous Replacement of Stenotic Aortic Valve Through Implantation of Lotus Valve System) trial reported a pacing rate of 29% at 30 days after implantation of the LOTUS device. Data were collected retrospectively on 228 patients who had the LOTUS device implanted between March 2013 and February 2015 across 10 centers in the United Kingdom. Twenty-seven patients (12%) had pacemakers implanted pre-procedure and were excluded from the analysis. Patients were aged 81.2 ± 7.7 years; 50.7% were male. The mean pre-procedural QRS duration was 101.7 ± 20.4 ms. More than one-half of the cohort (n = 111, 55%) developed new left bundle branch block (LBBB) following the procedure. Permanent pacemakers were implanted in 64 patients (32%) with a median time to insertion of 3.0 ± 3.4 days. Chief indications for pacing were atrioventricular (AV) block (n = 46, 72%), or LBBB with 1st degree AV block (n = 11, 17%). Amongst those who received a pacemaker following TAVR the pre-procedural electrocardiogram findings included: No conduction disturbance (n = 41, 64%); 1st degree AV block (n = 10, 16%); right bundle branch block (n = 6, 9%) and LBBB (n = 5, 8%). LBBB (but not permanent pacemaker) occurred more frequently in patients who had balloon aortic valvuloplasty before TAVR (odds ratio [OR]: 1.25; p = 0.03). Pre-procedural conduction abnormality (composite of 1st degree AV block, hemiblock, right bundle branch block, LBBB) was independently associated with the need for permanent pacemaker (OR: 2.54; p = 0.048). The absence of

  13. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    Science.gov (United States)

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  14. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars

    International Nuclear Information System (INIS)

    Manfroi, E.P.; Cheriaf, M.; Rocha, J.C.

    2010-01-01

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  15. Comparison of the impact of scaler material composition on polished titanium implant abutment surfaces.

    Science.gov (United States)

    Hasturk, Hatice; Nguyen, Daniel Huy; Sherzai, Homa; Song, Xiaoping; Soukos, Nikos; Bidlack, Felicitas B; Van Dyke, Thomas E

    2013-08-01

    The purpose of this study was to compare the impact of the removal of biofilm with hand scalers of different material composition on the surface of implant abutments by assessing the surface topography and residual plaque after scaling using scanning electron microscopy (SEM). Titanium implant analogs from 3 manufacturers (Straumann USA LLC, Andover, Maine, Nobel BioCare USA LLC, Yorba Linda, Cali, Astra Tech Implant Systems, Dentsply, Mölndal, Sweden) were mounted in stone in plastic vials individually with authentic prosthetic abutments. Plaque samples were collected from a healthy volunteer, inoculated into growth medium and incubated with the abutments anaerobically for 1 week. A blinded, calibrated hygienist performed scaling to remove the biofilm using 6 implant scalers (in triplicate), 1 scaler for 1 abutment. The abutments were mounted on an imaging stand and processed for SEM. Images were captured in 3 randomly designated areas of interest on each abutment. Analysis of the implant polished abutment surface and plaque area measurements were performed using ImageJ image analysis software. Surface alterations were characterized by the number, length, depth and the width of the scratches observed. Glass filled resin scalers resulted in significantly more and longer scratches on all 3 abutment types compared to other scalers, while unfilled resin scalers resulted in the least surface change (p abutments with regard to plaque removal. The impact of scalers on implant abutment surfaces varies between abutment types presumably due to different surface characteristics with no apparent advantage of one abutment type over the other with regard to resistance to surface damage. Unfilled resin was found consistently to be the least damaging to abutment surfaces, although all scalers of all compositions caused detectable surface changes to polished surfaces of implant abutments.

  16. Abutment Material Effect on Peri-implant Soft Tissue Color and Perceived Esthetics.

    Science.gov (United States)

    Kim, Aram; Campbell, Stephen D; Viana, Marlos A G; Knoernschild, Kent L

    2016-12-01

    The purpose of this study was to evaluate the effect of implant abutment material on peri-implant soft tissue color using intraoral spectrophotometric analysis and to compare the clinical outcomes with patient and clinician perception and satisfaction. Thirty patients and four prosthodontic faculty members participated. Abutments were zirconia, gold-hued titanium, and titanium. Peri-implant mucosa color of a single anterior implant restoration was compared to the patient's control tooth. Spectrophotometric analysis using SpectroShade TM Micro data determined the color difference (ΔE, ΔL*, Δa*, Δb*) between the midfacial peri-implant soft tissue for each abutment material and the marginal gingiva of the control tooth. Color difference values of the abutment groups were compared using ANOVA (α = 0.05). Patient and clinician satisfaction surveys were also conducted using a color-correcting light source. The results of each patient and clinician survey question were compared using chi-square analysis (α = 0.05). Pearson correlation analyses identified the relationship between the total color difference (ΔE) and the patient/clinician perception and satisfaction, as well as between ΔE and tissue thickness. Zirconia abutments displayed significantly smaller spectrophotometric gingival color difference (ΔE) compared to titanium and gold-hued titanium abutments (respectively, 3.98 ± 0.99; 7.22 ± 3.31; 5.65 ± 2.11; p abutment materials, and no correlation between ΔE and the patient and clinician satisfaction. Patient satisfaction was significantly higher than clinician, and patient-perceived differences were lower than clinicians' (p abutments demonstrated significantly lower mean color difference compared to titanium or gold-hued titanium abutments as measured spectrophotometrically; however, no statistical difference in patient or clinician perception/satisfaction among abutment materials was demonstrated. Patients were significantly more satisfied than

  17. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  18. Estudo experimental da biocompatibilidade de novo material para implante orbitário

    Directory of Open Access Journals (Sweden)

    Rodrigo Beraldi Kormann

    2013-06-01

    Full Text Available OBJETIVO:Avaliar a biocompatibilidade de material FullCure 720®, que é uma resina, na confecção de implante orbitário. Avaliou-se a resposta clínica dos animais, toxicidade sistêmica e a resposta inflamatória crônica. Os animais foram pesados, exames bioquímicos e resposta inflamatória foram avaliados. Foi efetuada evisceração e colocado implante esférico orbitário. Os animais foram acompanhados durante o período de 60 dias, onde se avaliou o comportamento clínico e sinais locais. Após este período, procedeu-se a eutanásia seguida da enucleação. Foi realizada análise macroscópica e histomorfométrica. Os resultados revelaram comportamento normal dos animais, com ausência de exposição ou extrusão dos implantes, morte de algum animal e ausência de toxicidade sistêmica. Houve formação de uma cápsula fibrosa entre a capa escleral e o implante orbitário, resposta inflamatória considerada normal quando em contato com o tecido do coelho. A resina FullCure 720® utilizada como implante orbitário, mostrou-se biocompatível neste estudo.

  19. Interventions for replacing missing teeth: Antibiotics in dental implant placement to prevent complications: Evidence summary of Cochrane review.

    Science.gov (United States)

    Jayaraman, Srinivasan

    2015-01-01

    The failure of dental implant can occurs at the preoperative planning stage, at the surgical stage, and at the postoperative stage. The success of this treatment can be increased if the clinical implant practice guidelines are prepared based on the recommendations from the highest level of research evidence (i.e.,) from systematic review of randomized controlled trials (RCTs) with meta-analysis. The Cochrane reviews of interventions are basically systematic reviews of RCTs with meta-analysis but follow a systematic methodological approach following the guidelines from Cochrane handbook for Systematic Reviews of Intervention. They give the current best evidence as they are updated every 2 years which is being the minimum period for an update. This evidence summary recommends the use of antibiotics, single dose of 2 g of amoxicillin 1 h prior to implant surgery to prevent implant failure, based on the body of evidence from the Cochrane review that was first published in 2003, 2008, and then updated twice in 2010 and 2013. The included studies are not from our population for the research question asked in this updated Cochrane review; hence, the need to do primary research in our population to support the available evidence is mandatory.

  20. When operable patients become inoperable: conversion of a surgical aortic valve replacement into transcatheter aortic valve implantation

    DEFF Research Database (Denmark)

    Olsen, Lene Kjaer; Arendrup, Henrik; Engstrøm, Thomas

    2009-01-01

    . On extracorporal circulation it was reconized that the aortic annulus, the coronary ostiae and the proximal part of the ascending aorta were severely calcified making valve implantation impossible. Surgical closure without valve substitution was estimated to be associated with a high risk of mortality due...

  1. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    Science.gov (United States)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan

    2017-05-01

    Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.

  2. Materials directed to implants for repairing Central Nervous System

    Directory of Open Access Journals (Sweden)

    Canillas, M.

    2014-12-01

    Full Text Available Central Nervous System (CNS can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as “secondary injury”. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon.Existen diferentes tipos de lesiones o desordenes del Sistema Nervioso Central (SNC que pueden provocar graves secuelas e incluso en algunos casos una discapacidad permanente. Además, el proceso de reparación del SNC tiene algunas complicaciones. El mecanismo natural de reacción a una lesión, el cual consiste en la formación de una cicatriz glial, es desencadenado por un proceso inflamatorio. Las moléculas liberadas durante estos procesos, la inflamación y formación de la cicatriz glial, así como la deficiencia en oxígeno y glucosa debidos a la lesión, crean un ambiente que inhibe la regeneración axonal creando la llamada “lesión secundaria”. Los biomateriales están adquiriendo un papel cada vez más importante en la reparación de SNC. Las

  3. Experimental and computational analysis of micromotions of an uncemented femoral knee implant using elastic and plastic bone material models

    NARCIS (Netherlands)

    Berahmani, Sanaz; Janssen, Dennis; Verdonschot, Nico

    2017-01-01

    It is essential to calculate micromotions at the bone-implant interface of an uncemented femoral total knee replacement (TKR) using a reliable computational model. In the current study, experimental measurements of micromotions were compared with predicted micromotions by Finite Element Analysis

  4. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Gökçe Meriç

    2011-03-01

    Conclusions: Prosthesis design and materials affect the load-transmission mechanism. Although additional experimental and clinical studies are needed, FRC FPDs can be considered a suitable alternative treatment choice for implant-supported prostheses. Within the limitations of the study, the 3-unit FPD supported by 2 implants with a cantilevered extension revealed acceptable stress distributions.

  5. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.

    Science.gov (United States)

    Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer

    2018-01-13

    The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  6. Design and evaluation of carbon nanofiber and silicon materials for neural implant applications

    Science.gov (United States)

    McKenzie, Janice L.

    Reduction of glial scar tissue around central nervous system implants is necessary for improved efficacy in chronic applications. Design of materials that possess tunable properties inspired by native biological tissue and elucidation of pertinent cellular interactions with these materials was the motivation for this study. Since nanoscale carbon fibers possess the fundamental dimensional similarities to biological tissue and have attractive material properties needed for neural biomaterial implants, this present study explored cytocompatibility of these materials as well as modifications to traditionally used silicon. On silicon materials, results indicated that nanoscale surface features reduced astrocyte functions, and could be used to guide neurite extension from PC12 cells. Similarly, it was determined that astrocyte functions (key cells in glial scar tissue formation) were reduced on smaller diameter carbon fibers (125 nm or less) while PC12 neurite extension was enhanced on smaller diameter carbon fibers (100 nm or less). Further studies implicated laminin adsorption as a key mechanism in enhancing astrocyte adhesion to larger diameter fibers and at the same time encouraging neurite extension on smaller diameter fibers. Polycarbonate urethane (PCU) was then used as a matrix material for the smaller diameter carbon fibers (100 and 60 nm). These composites proved very versatile since electrical and mechanical properties as well as cell functions and directionality could be influenced by changing bulk and surface composition and features of these matrices. When these composites were modified to be smooth at the micronscale and only rough at the nanoscale, P19 cells actually submerged philopodia, extensions, or whole cells bodies beneath the PCU in order to interact with the carbon nanofibers. These carbon nanofiber composites that have been formulated are a promising material to coat neural probes and thereby enhance functionality at the tissue interface. This

  7. MRT in differentiation between tumour and implant material in the postoperative sella

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Steckelbroeck, V.; Siewert, B.; Layer, G.; Hochstetter, A.; Reiser, M.

    1993-01-01

    MRT criteria have been developed to distinguish between tumour and implant material following examination of 50 patients who had transsphenoidal hypophysectomies for tumours. Judgements were based on the postoperative hormonal status and the operation notes. Following contrast injection of Gd-DTPA and using T 1 weighted spin-echo sequences, implant material appeared as sandwich-like, linear or circular structures. Residual recurrent tumour produced homogenous or non-homogenous aspects without marginal enhancement in 84% of cases. Postoperative displacement of the infundibulum to the opposite side was observed in 73% of patients with tumour remnants. Sensitivity of MRT was 70%, specificity 95%. There was a positive predictive value of 94% and a negative predictive value of 72% with an accuracy of 81%. This provides assistance in differentiating between tumour remnants and implant material. MRT is recommended as a method of examination for hypophyseal tumours to evaluate the success of surgery and where there is clinical doubt concerning residual or recurrent tumour. (orig.) [de

  8. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  9. X-ray photoelectron spectroscopic depth profilometry of nitrogen implanted in materials for modification of their surface properties

    International Nuclear Information System (INIS)

    Sarkissian, A.H.; Paynter, R.; Stansfield, B.L.

    1996-01-01

    The modification of the surface properties of materials has a wide range of industrial applications. For example, the authors change the electrical characteristics of semiconductors, improve surface hardness, decrease friction, increase resistance to corrosion, improve adhesion, etc. Nitriding is one of the most common processes used in industry for surface treatment. Nitrogen ion implantation is one technique often used to achieve this goal. Ion implantation offers the power to control the deposition profile, and can be achieved by either conventional ion beam implantation or plasma assisted ion implantation. They have used the technique of plasma assisted ion implantation to implant nitrogen in several materials, including titanium, silicon and stainless steel. The plasma source is a surface ECR source developed at INRS-Energie et Materiaux. The depth profile of the implanted ions has been measured by X-ray photoelectron spectroscopy. They have also conducted simulations using the TRIM-95 code to predict the depth profile of the implanted ions. Comparisons of the measured results with those from simulations are used to deduce information regarding the plasma composition and the collisional effects in the plasma. A fast responding, current and voltage measuring circuit with fiber optic links is being developed, which allows more accurate quantitative measurements. Further experiments to study the characteristics of the plasma, and their effects on the characteristics of the implanted surfaces are in progress, and the results are presented at this meeting

  10. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    Science.gov (United States)

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  11. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  12. Biomechanical Analysis of Implanted Clavicle Hook Plates With Different Implant Depths and Materials in the Acromioclavicular Joint: A Finite Element Analysis Study.

    Science.gov (United States)

    Lee, Cheng-Hung; Shih, Cheng-Min; Huang, Kui-Chou; Chen, Kun-Hui; Hung, Li-Kun; Su, Kuo-Chih

    2016-11-01

    Clinical implantation of clavicle hook plates is often used as a treatment for acromioclavicular joint dislocation. However, it is not uncommon to find patients that have developed acromion osteolysis or had peri-implant fracture after hook plate fixation. With the aim of preventing complications or fixation failure caused by implantation of inappropriate clavicle hook plates, the present study investigated the biomechanics of clavicle hook plates made of different materials and with different hook depths in treating acromioclavicular joint dislocation, using finite element analysis (FEA). This study established four parts using computer models: the clavicle, acromion, clavicle hook plate, and screws, and these established models were used for FEA. Moreover, implantations of clavicle hook plates made of different materials (stainless steel and titanium alloy) and with different depths (12, 15, and 18 mm) in patients with acromioclavicular joint dislocation were simulated in the biomechanical analysis. The results indicate that deeper implantation of the clavicle hook plate reduces stress on the clavicle, and also reduces the force applied to the acromion by the clavicle hook plate. Even though a clavicle hook plate made of titanium alloy (a material with a lower Young's modulus) reduces the force applied to the acromion by the clavicle hook plate, slightly higher stress on the clavicle may occur. The results obtained in this study provide a better reference for orthopedic surgeons in choosing different clavicle hook plates for surgery. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Evaluation of surgical implantation of electronic tags in European eel and effects of different suture materials

    DEFF Research Database (Denmark)

    Thorstad, Eva B.; Økland, Finn; Westerberg, Håkan

    2013-01-01

    Effects of implanting data-storage tags in European eel, Anguilla anguilla, and the suitability of different suture materials (braided permanent silk, permanent monofilament, absorbable and absorbable antibacterial) were examined. The tags consisted of an electronic unit and three floats on a wire....... Antibacterial treatment had no effect on inflammation or healing rates. After 6 months, the tag started to become expelled through the incision in five fish (12%). The internal reaction appeared stronger around the floats, suggesting that the coating material of the floats created a tissue reaction, which...

  14. The effect of distal ulnar implant stem material and length on bone strains.

    Science.gov (United States)

    Austman, Rebecca L; Beaton, Brendon J B; Quenneville, Cheryl E; King, Graham J W; Gordon, Karen D; Dunning, Cynthia E

    2007-01-01

    Implant design parameters can greatly affect load transfer from the implant stem to the bone. We have investigated the effect of length or material of distal ulnar implant stems on the surrounding bone strains. Eight cadaveric ulnas were instrumented with 12 strain gauges and secured in a customized jig. Strain data were collected while loads (5-30 N) were applied to the medial surface of the native ulnar head. The native ulnar head was removed, and a stainless steel implant with an 8-cm-long finely threaded stem was cemented into the canal. After the cement had cured, the 8-cm stem was removed, leaving a threaded cement mantle in the canal that could accept shorter threaded stems of interest. The loading protocol was then repeated for stainless steel stems that were 7, 5, and 3 cm in length, as well as for a 5-cm-long titanium alloy (TiAl(6)V(4)) stem. Other stainless steel stem lengths between 3 and 7 cm were tested at intervals of 0.5 cm, with only a 20 N load applied. No stem length tested matched the native strains at all gauge locations. No significant differences were found between any stem length and the native bone at the 5th and 6th strain gauge positions. Strains were consistently closer to the native bone strains with the titanium stem than the stainless steel stem for each gauge pair that was positioned on the bone overlying the stem. The 3-cm stem results were closer to the native strains than the 7-cm stem for all loads at gauges locations that were on top of the stem. The results from this study suggest that the optimal stem characteristics for distal ulnar implants from a load transfer point of view are possessed by shorter (approximately 3 to 4 cm) titanium stems.

  15. Uso de osteocoral como material de implante en bolsas infraóseas de dientes Monorradiculares

    Directory of Open Access Journals (Sweden)

    . Yamilé Hernández Alemán,

    1999-12-01

    Full Text Available Se evaluó la eficacia del osteocoral como material de implante en el tratamiento de bolsas infraóseas de dientes monorradiculares. Se realizaron 18 injertos en 17 dientes con defectos angulares, en 6 pacientes de ambos sexos; 9 implantes correspondieron al grupo control con hidroxiapatita y 9 al grupo de estudio que fue implantado con osteocoral. Se realizó preparación inicial que incluyó: remoción de cálculos y pulido de las superficies dentarias, educación y motivación sobre el tratamiento recibido, corrección del cepillado igual o mayor al 80 % en la remoción de placa dentobacteriana. Se realizó el implante mediante operación a colgajo, con sutura y colocación de apósito periodontal. Se realizaron radiografías de control a los 14 días, a los 3 y 6 meses. Se controló sistemáticamente la higiene bucal. A los 6 meses se registraron nuevamente los indicadores clínicos. El análisis final de los resultados mostró una disminución estadísticamente significativa en el índice gingival, profundidad de la bolsa al sondeo y movilidad dentaria para ambos materiales implantológicos. No se reportaron grandes diferencias entre éstos para este tamaño de muestra, no hubo reacciones adversas y se logró la permanencia del implante de osteocoral, por lo que se consideró efectivo el tratamiento.Effectivenes of osteocoral as implant material was assessed to treat infraosseous pockets of multirooted teeth. 18 grafts were inserted in 17 teeth with angular defects in 6 patients of both sexes; 9 implants corresponded to control group (hydroxiapatite and 9 corresponded to study group (osteocoral. Initial preparation included: removal of calculus and polishing of dental surface, education and motivation about treatment applied, correction of tooth-brushing equal or greater 80 % in removal of dentobacterial plaque. Implant was inserted by flap surgery using suture and placement of periodontal dresssing. Control X-rays were made within 14 days

  16. Principles of human joint replacement design and clinical application

    CERN Document Server

    Buechel, Frederick F

    2015-01-01

    This book is written for the users and designers of joint replacements. In its second extended edition it conveys to the reader the knowledge accumulated by the authors during their forty year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter describes the design methodology now required for joint replacement in the USA and EU countries. The remaining chapters provide a history of joint replacement, an evaluation of earlier and current devices and sample case hist...

  17. Principles of Human Joint Replacement Design and Clinical Application

    CERN Document Server

    Buechel, Frederick F

    2012-01-01

    Drs. Buechel, an orthopaedic surgeon, and Pappas, a professor of Mechanical Engineering, are the designers of several successful joint replacement systems. The most well-known of these is the pioneering LCS knee replacement. They have written this book for the users and designers of joint replacements. It is an attempt to convey to the reader the knowledge accumulated by the authors during their thirty five year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter de...

  18. Monte Carlo characterization of materials for prosthetic implants and dosimetric validation of Pinnacle3 TPS

    International Nuclear Information System (INIS)

    Palleri, Francesca; Baruffaldi, Fabio; Angelini, Anna Lisa; Ferri, Andrea; Spezi, Emiliano

    2008-01-01

    In external beam radiotherapy the calculation of dose distribution for patients with hip prostheses is critical. Metallic implants not only degrade the image quality but also perturb the dose distribution. Conventional treatment planning systems do not accurately account for high-Z prosthetic implants heterogeneities, especially at interfaces. The materials studied in this work have been chosen on the basis of a statistical investigation on the hip prostheses implanted in 70 medical centres. The first aim of this study is a systematic characterization of materials used for hip prostheses, and it has been provided by BEAMnrc Monte Carlo code. The second aim is to evaluate the capabilities of a specific treatment planning system, Pinnacle 3 , when dealing with dose calculations in presence of metals, also close to the regions of high-Z gradients. In both cases it has been carried out an accurate comparison versus experimental measurements for two clinical photon beam energies (6 MV and 18 MV) and for two experimental sets-up: metallic cylinders inserted in a water phantom and in a specifically built PMMA slab. Our results show an agreement within 2% between experiments and MC simulations. TPS calculations agree with experiments within 3%.

  19. Monte Carlo characterization of materials for prosthetic implants and dosimetric validation of Pinnacle 3 TPS

    Science.gov (United States)

    Palleri, Francesca; Baruffaldi, Fabio; Angelini, Anna Lisa; Ferri, Andrea; Spezi, Emiliano

    2008-12-01

    In external beam radiotherapy the calculation of dose distribution for patients with hip prostheses is critical. Metallic implants not only degrade the image quality but also perturb the dose distribution. Conventional treatment planning systems do not accurately account for high-Z prosthetic implants heterogeneities, especially at interfaces. The materials studied in this work have been chosen on the basis of a statistical investigation on the hip prostheses implanted in 70 medical centres. The first aim of this study is a systematic characterization of materials used for hip prostheses, and it has been provided by BEAMnrc Monte Carlo code. The second aim is to evaluate the capabilities of a specific treatment planning system, Pinnacle 3, when dealing with dose calculations in presence of metals, also close to the regions of high-Z gradients. In both cases it has been carried out an accurate comparison versus experimental measurements for two clinical photon beam energies (6 MV and 18 MV) and for two experimental sets-up: metallic cylinders inserted in a water phantom and in a specifically built PMMA slab. Our results show an agreement within 2% between experiments and MC simulations. TPS calculations agree with experiments within 3%.

  20. A novel approach to secondary defect reduction in separation by implantation of oxygen (SIMOX) material

    Energy Technology Data Exchange (ETDEWEB)

    Ellingboe, S L; Ridgway, M C [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    The formation of a buried SiO{sub 2} layer in Si for increased radiation hardness, dielectric isolation, and/or higher operating speeds in Si devices has been studied extensively. In the present report, a novel method for improving the final defect structure of SIMOX material is demonstrated for the first time. The concept of ion-beam defect-engineering (IBDE) introduced by Wang et al has been utilised. If defects are introduced at a depth R{sub 1} by irradiation with energetic ions into samples which were previously damaged at a depth R{sub 2}, it is possible to alter the properties of the defects at R{sub 2}, reduce or eliminate damage at R{sub 2}, and/or create gettering sites for defects at R{sub 1} . To elucidate the mechanisms responsible for the secondary defect reduction in annealed SIMOX material, unannealed samples were implanted with Si ions at various energies, while keeping the nuclear energy deposition constant at two depths. It was observed that after annealing, even greater changes in the defect structure are evident. It has been demonstrated that pre-anneal Si irradiation in O-implanted Si can reduce secondary defect formation. Both the depth and amount of damage created are crucial to the success of the Si implantation. 5 refs., 1 tab., 2 figs.

  1. A novel approach to secondary defect reduction in separation by implantation of oxygen (SIMOX) material

    Energy Technology Data Exchange (ETDEWEB)

    Ellingboe, S.L.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    The formation of a buried SiO{sub 2} layer in Si for increased radiation hardness, dielectric isolation, and/or higher operating speeds in Si devices has been studied extensively. In the present report, a novel method for improving the final defect structure of SIMOX material is demonstrated for the first time. The concept of ion-beam defect-engineering (IBDE) introduced by Wang et al has been utilised. If defects are introduced at a depth R{sub 1} by irradiation with energetic ions into samples which were previously damaged at a depth R{sub 2}, it is possible to alter the properties of the defects at R{sub 2}, reduce or eliminate damage at R{sub 2}, and/or create gettering sites for defects at R{sub 1} . To elucidate the mechanisms responsible for the secondary defect reduction in annealed SIMOX material, unannealed samples were implanted with Si ions at various energies, while keeping the nuclear energy deposition constant at two depths. It was observed that after annealing, even greater changes in the defect structure are evident. It has been demonstrated that pre-anneal Si irradiation in O-implanted Si can reduce secondary defect formation. Both the depth and amount of damage created are crucial to the success of the Si implantation. 5 refs., 1 tab., 2 figs.

  2. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  3. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  4. Accuracy of five implant impression technique: effect of splinting materials and methods

    Science.gov (United States)

    Cho, Sung-Bum

    2011-01-01

    PURPOSE The aim of this study was to evaluate the effect of dimensional stability of splinting material on the accuracy of master casts. MATERIALS AND METHODS A stainless steel metal model with 6 implants embedded was used as a master model. Implant level impressions were made after square impression copings were splinted using 5 different techniques as follows. (1) Splinted with autopolymerizing resin and sectioned, reconnected to compensate polymerization shrinkage before the impression procedure. (2) Splinted with autopolymerizing resin just before impression procedure. (3) Primary impression made with impression plaster and secondary impression were made over with polyether impression material. (4) Splinted with impression plaster. (5) Splinted with VPS bite registration material. From master model, 5 impressions and 5 experimental casts, total 25 casts were made for each of 5 splinting methods. The distortion values of each splinting methods were measured using coordinate measuring machine, capable of recordings in the x-, y-, z-axes. A one-way analysis of variance (ANOVA) at a confidence level of 95% was used to evaluate the data and Tukey's studentized range test was used to determine significant differences between the groups. RESULTS Group 1 showed best accuracy followed by Group 3 & 4. Group 2 and 5 showed relatively larger distortion value than other groups. No significant difference was found between group 3, 4, 5 in x-axis, group 2, 3, 4 in y-axis and group 1, 3, 4, 5 in z-axis (Pimpression copings with autopolymerizing resin following compensation of polymerization shrinkage and splinting method with impression plaster can enhance the accuracy of master cast and impression plaster can be used simple and effective splinting material for implant impression procedure. PMID:22259700

  5. Optimization of cell adhesion on mg based implant materials by pre-incubation under cell culture conditions.

    Science.gov (United States)

    Willumeit, Regine; Möhring, Anneke; Feyerabend, Frank

    2014-05-05

    Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  6. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    Directory of Open Access Journals (Sweden)

    Regine Willumeit

    2014-05-01

    Full Text Available Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  7. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    Science.gov (United States)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  8. Histological evaluations and inflammatory responses of different dental implant abutment materials: A human histology pilot study.

    Science.gov (United States)

    Sampatanukul, Teeratida; Serichetaphongse, Pravej; Pimkhaokham, Atiphan

    2018-04-01

    Improvements of soft tissue to the abutment surface results in more stable peri-implant conditions, however, few human histological studies have compared soft tissue responses around different abutment materials. To describe the peri-implant tissue around 3 abutment materials; titanium, zirconia, and gold alloy, over an 8-week healing period. Fifteen edentulous sites were treated with implants. Eight weeks later, peri-implant tissue was harvested and processed using a nonseparation resin embedded technique. The tissue attachment characteristics were assessed at clinical stages using the gingival index (GI) score, surgical stage (surgical score), and histological stage (histological attachment percentage). Additionally, the inflammatory responses were evaluated using inflammatory extent and inflammatory cellularity grades. Nonparametrical statistics were used to describe the GI and surgical scores, and analytical statistics were used to analyze the histological attachment percentages as well as the inflammatory extent and cellularity grades amongst the 3 groups. There were no statistically significant differences among the groups for GI score (P = .071) and surgical score (P = .262). Titanium and zirconia exhibited nearly similar mean histological attachment percentages while gold alloy had a significantly lower percentage (P = .004). For the inflammatory extent and cellularity grades, the odds of being one grade higher for gold alloy abutment was 5.18 and 17.8 times that of titanium abutment, respectively. However, for the zirconia abutment, the odds were 0.87 and 7.5 times higher than the titanium group. The tissue around the gold alloy abutments resulted in worse attachment conditions compared with the titanium and zirconia abutments. Inflammation tended to be higher in the tissue around the gold alloy abutments than the titanium and zirconia abutments. © 2017 Wiley Periodicals, Inc.

  9. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb

    Directory of Open Access Journals (Sweden)

    Christian Schulze

    2018-01-01

    Full Text Available The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  10. Mitral valve replacement in infants and children 5 years of age or younger: Evolution in practice and outcome over three decades with a focus on supra-annular prosthesis implantation

    Science.gov (United States)

    Tierney, Elif Seda Selamet; Pigula, Frank A.; Berul, Charles I.; Lock, James E.; del Nido, Pedro J.; McElhinney, Doff B.

    2014-01-01

    Objective Successful mitral valve replacement in young children is limited by the lack of small prosthetic valves. Supra-annular prosthesis implantation can facilitate mitral valve replacement with a larger prosthesis in children with a small annulus, but little is known about its effect on the outcomes of mitral valve replacement in young children. Methods One hundred eighteen children underwent mitral valve replacement at 5 years of age or younger from 1976–2006. Mitral valve replacement was supra-annular in 37 (32%) patients. Results Survival was 74% ± 4% at 1 year and 56% ± 5% at 10 years but improved over time (10-year survival of 83% ± 7% from 1994–2006). Factors associated with worse survival included earlier mitral valve replacement date, age less than 1 year, complete atrioventricular canal, and additional procedures at mitral valve replacement, but not supra-annular mitral valve replacement. As survival improved during our more recent experience, the risks of supra-annular mitral valve replacement became apparent; survival was worse among patients with a supra-annular prosthesis after 1991. A pacemaker was placed in 18 (15%) patients within 1 month of mitral valve replacement and was less likely in patients who had undergone supra-annular mitral valve replacement. Among early survivors, freedom from redo mitral valve replacement was 72% ± 5% at 5 years and 45% ± 7% at 10 years. Twenty-one patients with a supra-annular prosthesis underwent redo mitral valve replacement. The second prosthesis was annular in 15 of these patients and upsized in all but 1, but 5 required pacemaker placement for heart block. Conclusions Supra-annular mitral valve replacement was associated with worse survival than annular mitral valve replacement in our recent experience. Patients with supra-annular mitral valve replacement were less likely to have operative complete heart block but remained at risk when the prosthesis was subsequently replaced. PMID:18954636

  11. Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand

    OpenAIRE

    Ahmad, Shamsad; Hakeem, Ibrahim; Maslehuddin, Mohammed

    2014-01-01

    In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the de...

  12. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    Science.gov (United States)

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  13. Histopathological Evaluation of a Hydrophobic Terpolymer (PTFE-PVD-PP) as an Implant Material for Nonpenetrating Very Deep Sclerectomy.

    Science.gov (United States)

    Leszczynski, Rafal; Gumula, Teresa; Stodolak-Zych, Ewa; Pawlicki, Krzysztof; Wieczorek, Jaroslaw; Kajor, Maciej; Blazewicz, Stanislaw

    2015-08-01

    The purpose of the study was to assess the biocompatibility of porous terpolymer (polytetrafluoroethylene-co-polyvinylidene fluoride-co-polypropylene, PTFE-PVDF-PP) membranes as an implant material to be placed during nonpenetrating very deep sclerectomy (NPVDS). Another study objective was to determine whether the polymer membrane under investigation could be used to manufacture a new-generation implant, which would actively delay the process of fistula closure and facilitate aqueous humor drainage. Histological response and tissue tolerance of the implant material were assessed. The study was performed on 38 eyeballs of 19 New Zealand white rabbits (19 implanted, 19 control). Histological assessment was carried out between 2 and 52 weeks after surgery. We routinely assessed inflammatory infiltrate, neovascularization, hemorrhage, and stromal edema as well as connective tissue attachment to the implant and adjacent tissues. At 52 weeks of observation, a statistically significant difference was revealed between the study and control groups in terms of resorptive granulation, tissue, and the inflammatory infiltrate. No features of acute inflammatory response to the implant were observed, and there was an absence of histological features of acute inflammatory infiltrates and subsidence of chronic inflammatory infiltrates and resorptive granulation over time. Slight fibrotic response and insignificant changes in neighboring eye tissues all indicate good tolerance to bioimplant materials. This allows for some optimism regarding the use of hydrophobic terpolymer in the construction of new intrascleral implants. However, the ultimate decision regarding its usefulness and safety in the treatment of glaucoma requires further investigation.

  14. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Luk, Camille M.Y.; Liu Xuanyong; Chung, Jonathan C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII and D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII and D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C 2 H 2 -PIII and D and C 2 H 2 -PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance

  15. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R

    2002-01-01

    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  16. A critical review of cell culture strategies for modelling intracortical brain implant material reactions.

    Science.gov (United States)

    Gilmour, A D; Woolley, A J; Poole-Warren, L A; Thomson, C E; Green, R A

    2016-06-01

    The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  18. New materials properties achievable by ion implantation doping and laser processing

    International Nuclear Information System (INIS)

    Appleton, B.R.; Larson, B.C.; White, C.W.; Narayan, J.; Wilson, S.R.; Pronko, P.P.

    1978-12-01

    It is well established that ion implantation techniques can be used to introduce selected impurities into solids in a controlled, accurate and often unique manner. Recent experiments have shown that pulsed laser processing of materials can lead to surface melting, dopant redistribution and crystal regrowth, all on extremely short time scales (approx. < 1 μ sec.). These two processes can be combined to achieve properties not possible with normal materials preparation techniques, or to alter materials properties in a more efficient manner. Investigations are presented utilizing the combined techniques of positive ion scattering-channeling, x-ray scattering and transmission electron microscopy which show that supersaturated alloys can be formed in the surface regions (approx. 1 μm) of ion implanted, laser annealed silicon single crystals, and that these surfaces undergo a unique one dimensional lattice contraction or expansion depending on the dopant species. The resultant surface has a lattice parameter significantly different from the bulk, is free from any damage defects, has essentially all the dopant atoms in substitutional sites and the impurity concentrations can exceed solid solubility limits by more than an order of magnitude

  19. Deuterium implantation in first wall candidate materials by exposure in the Princeton large torus

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center); Manos, D. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    Titanium alloys are of interest as a first wall material in fusion reactors because of their excellent thermophysical and thermomechanical properties. A major concern with their application to the first wall is associated with the known affinity of titanium for hydrogen and the related consequences for fuel recycling, tritium inventory, and hydrogen embrittlement. Little information exists on trapping and release of hydrogen isotopes implanted at energies below 500 eV. This work was undertaken to measure hydrogen isotope trapping and release at the first wall of the Princeton Large Torus Tokamak (PLT).

  20. Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the medtronic corevalve system: The CoreValve prospective, international, post-market ADVANCE-II study

    NARCIS (Netherlands)

    A.S. Petronio (Anna); J.-M. Sinning (Jan-Malte); N.M. van Mieghem (Nicolas); G. Zucchelli (Giulio); G. Nickenig (Georg); R. Bekeredjian (Raffi); J. Bosmans (Johan); F. Bedogni (Francesco); M. Branny (Marian); K. Stangl (Karl); J. Kovac (Jan); M. Schiltgen (Molly); S. Kraus (Stacia); P.P.T. de Jaegere (Peter)

    2015-01-01

    textabstractObjectives The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis,

  1. Study on feasibility of replacing 321 with 316LN stainless steel for main reactor coolant pipe material

    International Nuclear Information System (INIS)

    Luo Yijun

    2013-01-01

    The metallurgical, physical and mechanical performance, and the corrosion and welding properties of 00Cr17Ni12Mo2 (controlled Nitrogen, ANSI316LN) and 0Cr18Ni10Ti (ANSI321SS) for main pipe material were analyzed comparatively in this paper. The feasibility of 316LN pipe material manufacturing was studied too. The analysis results showed that under the operation condition of the nuclear reactor, the general properties of 316LN are better than that of 321SS. Therefore, 316LN could be used for main pipe material, replacing 321SS. (authors)

  2. Comparative effectiveness of ceramic-on-ceramic implants in stemmed hip replacement: a multinational study of six national and regional registries.

    Science.gov (United States)

    Sedrakyan, Art; Graves, Stephen; Bordini, Barbara; Pons, Miquel; Havelin, Leif; Mehle, Susan; Paxton, Elizabeth; Barber, Thomas; Cafri, Guy

    2014-12-17

    The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration). A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE. A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard

  3. In vitro evaluation of resonance frequency analysis values to different implant contact ratio and stiffness of surrounding material.

    Science.gov (United States)

    Kwak, Mu-Seung; Kim, Seok-Gyu

    2013-11-01

    The present study was aimed to evaluate the influence of implant contact ratio and stiffness of implant-surrounding materials on the resonance frequency analysis (RFA) values. Seventy resin blocks that had the different amounts (100, 50, 30, 15%) of resin-implant contact (RIC) were fabricated. Ten silicone putty blocks with 100% silicone-implant contact were also made. The implants with Ø5.0 mm × 13.0 mm were placed on eighty specimen blocks. The RFA value was measured on the transducer that was connected to each implant by Osstell Mentor. Kruskal-Wallis and Scheffe's tests (α=.05) were done for statistical analysis. The control resin group with 100% RIC had the highest RFA value of 83.9, which was significantly different only from the resin group with 15% RIC among the resin groups. The silicone putty group with 100% contact had the lowest RFA value of 36.6 and showed statistically significant differences from the resin groups. Within the limitations of this in vitro study, there was no significant difference in the RFA values among the resin groups with different RIC's except when the RIC difference was more than 85%. A significant increase in the RFA value was observed related to the increase in stiffness of material around implant.

  4. Full Mouth Oral Rehabilitation by Maxillary Implant Supported Hybrid Denture Employing a Fiber Reinforced Material Instead of Conventional PMMA.

    Science.gov (United States)

    Qamheya, Ala Hassan A; Yeniyol, Sinem; Arısan, Volkan

    2015-01-01

    Many people have life-long problems with their dentures, such as difficulties with speaking and eating, loose denture, and sore mouth syndrome. The evolution of dental implant supported prosthesis gives these patients normal healthy life for their functional and esthetic advantages. This case report presents the fabrication of maxillary implant supported hybrid prosthesis by using Nanofilled Composite (NFC) material in teeth construction to rehabilitate a complete denture wearer patient.

  5. Full Mouth Oral Rehabilitation by Maxillary Implant Supported Hybrid Denture Employing a Fiber Reinforced Material Instead of Conventional PMMA

    Directory of Open Access Journals (Sweden)

    Ala Hassan A. Qamheya

    2015-01-01

    Full Text Available Many people have life-long problems with their dentures, such as difficulties with speaking and eating, loose denture, and sore mouth syndrome. The evolution of dental implant supported prosthesis gives these patients normal healthy life for their functional and esthetic advantages. This case report presents the fabrication of maxillary implant supported hybrid prosthesis by using Nanofilled Composite (NFC material in teeth construction to rehabilitate a complete denture wearer patient.

  6. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.

    Science.gov (United States)

    Xiao, Dongming; Yang, Yongqiang; Su, Xubin; Wang, Di; Sun, Jianfeng

    2013-01-01

    The load-bearing bone implants materials should have sufficient stiffness and large porosity, which are interacted since larger porosity causes lower mechanical properties. This paper is to seek the maximum stiffness architecture with the constraint of specific volume fraction by topology optimization approach, that is, maximum porosity can be achieved with predefine stiffness properties. The effective elastic modulus of conventional cubic and topology optimized scaffolds were calculated using finite element analysis (FEA) method; also, some specimens with different porosities of 41.1%, 50.3%, 60.2% and 70.7% respectively were fabricated by Selective Laser Melting (SLM) process and were tested by compression test. Results showed that the computational effective elastic modulus of optimized scaffolds was approximately 13% higher than cubic scaffolds, the experimental stiffness values were reduced by 76% than the computational ones. The combination of topology optimization approach and SLM process would be available for development of titanium implants materials in consideration of both porosity and mechanical stiffness.

  7. Diagnostic Imaging for Dental Implant Therapy

    Directory of Open Access Journals (Sweden)

    Aishwarya Nagarajan

    2014-01-01

    Full Text Available Dental implant is a device made of alloplastic (foreign material implanted into the jaw bone beneath the mucosal layer to support a fixed or removable dental prosthesis. Dental implants are gaining immense popularity and wide acceptance because they not only replace lost teeth but also provide permanent restorations that do not interfere with oral function or speech or compromise the self-esteem of a patient. Appropriate treatment planning for replacement of lost teeth is required and imaging plays a pivotal role to ensure a satisfactory outcome. The development of pre-surgical imaging techniques and surgical templates helps the dentist place the implants with relative ease. This article focuses on various types of imaging modalities that have a pivotal role in implant therapy.

  8. Implante percutâneo de valva aórtica: mito ou realidade? Percutaneous aortic aortic valve replacement: myth or reality?

    Directory of Open Access Journals (Sweden)

    Eduardo Keller Saadi

    2008-03-01

    Full Text Available A substituição valvar por prótese metálica ou biológica com o auxílio de circulação extracorpórea é o procedimento padrão-ouro para o tratamento da estenose aórtica calcificada. Embora os resultados sejam excelentes com a cirurgia convencional, alguns pacientes com idade avançada, doenças associadas, reoperações e disfunção ventricular esquerda grave apresentam alto risco cirúrgico. Nos últimos anos, técnicas de tratamento percutâneo foram desenvolvidas. A presente revisão tem por objetivo analisar a literatura desde o desenvolvimento experimental até a aplicação clínica desta nova modalidade de tratamento para pacientes com estenose aórtica grave e alto risco cirúrgico. O implante percutâneo de valva aórtica hoje vem sendo realizado por alguns centros e o cirurgião cardiovascular envolvido no tratamento das doenças valvares deve fazer parte deste desenvolvimento.Aortic valve replacement with mechanical or biological prosthesis with extracorporeal circulation is the gold-standard for the treatment of calcific aortic stenosis. Although the results are excellent with the conventional approach some elderly patients, with multiple high-risk comorbid conditions, reoperations and severe left ventricular dysfunction have high surgical risk. During the last years percutaneous techniques have been developed. The present study aim to analyse the literature, since the experimental development untill clinical application of this novel treatment in patients with high surgical risk aortic stenosis. Percutaneous implantation of aortic valve prosthesis is beeing done in some centers and the cardiovascular surgeon that treats valve disease should be involved in this development.

  9. [Clinical experience in osteoplastic material Allomatrix-implant and fibrin rich platelets use in surgical treatment of jaw radicular cysts].

    Science.gov (United States)

    Kuz'minykh, I A

    2009-01-01

    Bones forming optimizators applying in surgical dentistry is an important element of jaw destructive processes successful treatment. Today use of osteoplastic materials on the collagen basis is widely spread. One of this challenge solution is FRP and Allomatrix-implant material applying to jaws during surgery operations. We described clinical investigation phase: the estimation of postoperative and remote results of treatment was carried out.

  10. Compatibility improvement method of empty fruit bunch fibre as a replacement material in cement bonded boards: A review

    Science.gov (United States)

    Dullah, Hayana; Abidin Akasah, Zainal; Zaini Nik Soh, Nik Mohd; Mangi, Sajjad Ali

    2017-11-01

    The utilization of oil palm empty fruit bunch (OPEFB) fibre on bio-composite product has been introduced to replace current material mainly wood fibre. OPEFB is widely available as palm oil is one of the major agricultural crops in Malaysia. EFB fibre are lignocellulosic materials that could replace other natural fibre product especially cement bonded board. However, the contains of residual oil and sugar in EFB fibre has been detected to be the reason for incompatibility issue between EFB fibre and cement mixtures. Regarding on the issue, a study has been conducted widely on finding the suitable pre-treatment method for EFB fibre to remove carbohydrate contained in the said fibre that are known to inhibit cement hydration. Aside from that, cement accelerator was introduced to enhance the hydration of cement when it was mixed with natural fibre. Hence, this paper will summaries the previous findings and in-depth study on the use of EFB fibre as a replacement material in cement bonded fibre boards.

  11. Patients' preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants

    NARCIS (Netherlands)

    Wismeijer, D.; Mans, R.S.; Van Genuchten, M.J.I.M; Reijers, H.A.

    2014-01-01

    Objectives: The primary objective of this clinical study was to assess the patients' perception of the difference between an analogue impression approach on the one hand and an intra-oral scan (IO scan) on the other when restoring implants in the non-aesthetic zone. A second objective was to analyse

  12. Patients' preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants

    NARCIS (Netherlands)

    Wismeijer, D.; Mans, R.; van Genugten, M.; Reijers, H.A.

    2014-01-01

    Objectives The primary objective of this clinical study was to assess the patients' perception of the difference between an analogue impression approach on the one hand and an intra-oral scan (IO scan) on the other when restoring implants in the non-aesthetic zone. A second objective was to analyse

  13. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  14. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.

    Directory of Open Access Journals (Sweden)

    Hironobu Koseki

    Full Text Available Biofilms forming on the surface of biomaterials can cause intractable implant-related infections. Bacterial adherence and early biofilm formation are influenced by the type of biomaterial used and the physical characteristics of implant surface. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis, the main pathogen in implant-related infections, to form biofilms on the surface of the solid orthopaedic biomaterials, oxidized zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo, titanium alloy (Ti-6Al-4V, commercially pure titanium (cp-Ti and stainless steel. A bacterial suspension of Staphylococcus epidermidis strain RP62A (ATCC35984 was added to the surface of specimens and incubated. The stained biofilms were imaged with a digital optical microscope and the biofilm coverage rate (BCR was calculated. The total amount of biofilm was determined with the crystal violet assay and the number of viable cells in the biofilm was counted using the plate count method. The BCR of all the biomaterials rose in proportion to culture duration. After culturing for 2-4 hours, the BCR was similar for all materials. However, after culturing for 6 hours, the BCR for Co-Cr-Mo alloy was significantly lower than for Ti-6Al-4V, cp-Ti and stainless steel (P0.05. These results suggest that surface properties, such as hydrophobicity or the low surface free energy of Co-Cr-Mo, may have some influence in inhibiting or delaying the two-dimensional expansion of biofilm on surfaces with a similar degree of smoothness.

  15. Properties of concrete containing different type of waste materials as aggregate replacement exposed to elevated temperature – A review

    Science.gov (United States)

    Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.

    2018-04-01

    Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.

  16. Research on nitrogen implantation energy dependence of the properties of SIMON materials

    International Nuclear Information System (INIS)

    Zhang, E.X.; Sun, J.Y.; Chen, J.; Chen, M.; Zhang, Zh.X.; Li, N.; Zhang, G.Q.; Wang, X.

    2006-01-01

    With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined

  17. Ion-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, U., E-mail: Ursel.Bangert@ul.ie [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Stewart, A.; O’Connell, E.; Courtney, E. [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Ramasse, Q.; Kepaptsoglou, D. [SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD (United Kingdom); Hofsäss, H.; Amani, J. [II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-PLatz 1, 37077 Göttingen (Germany); Tu, J.-S.; Kardynal, B. [Peter Grünberg Institut 9, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2017-05-15

    Functionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS{sub 2} are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS{sub 2} can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds. - Highlights: • Ion implantation of 2-dimensional materials. • Targeted and controlled functionalisation of graphene and 2-D dichalcocenides. • Atomic resolution High Angle Dark Field scanning transmission electron microscopy. • Determination of atomic site and elemental nature of dopants in 2-D materials. • Quantitative information from Z-contrast images.

  18. The flaws in the detail of an observational study on transcatheter aortic valve implantation versus surgical aortic valve replacement in intermediate-risks patients.

    Science.gov (United States)

    Barili, Fabio; Freemantle, Nick; Folliguet, Thierry; Muneretto, Claudio; De Bonis, Michele; Czerny, Martin; Obadia, Jean Francois; Al-Attar, Nawwar; Bonaros, Nikolaos; Kluin, Jolanda; Lorusso, Roberto; Punjabi, Prakash; Sadaba, Rafael; Suwalski, Piotr; Benedetto, Umberto; Böning, Andreas; Falk, Volkmar; Sousa-Uva, Miguel; Kappetein, Pieter A; Menicanti, Lorenzo

    2017-06-01

    The PARTNER group recently published a comparison between the latest generation SAPIEN 3 transcatheter aortic valve implantation (TAVI) system (Edwards Lifesciences, Irvine, CA, USA) and surgical aortic valve replacement (SAVR) in intermediate-risk patients, apparently demonstrating superiority of the TAVI and suggesting that TAVI might be the preferred treatment method in this risk class of patients. Nonetheless, assessment of the non-randomized methodology used in this comparison reveals challenges that should be addressed in order to elucidate the validity of the results. The study by Thourani and colleagues showed several major methodological concerns: suboptimal methods in propensity score analysis with evident misspecification of the propensity scores (PS; no adjustment for the most significantly different covariates: left ventricular ejection fraction, moderate-severe mitral regurgitation and associated procedures); use of PS quintiles rather than matching; inference on not-adjusted Kaplan-Meier curves, although the authors correctly claimed for the need of balancing score adjusting for confounding factors in order to have unbiased estimates of the treatment effect; evidence of poor fit; lack of data on valve-related death.These methodological flaws invalidate direct comparison between treatments and cannot support authors' conclusions that TAVI with SAPIEN 3 in intermediate-risk patients is superior to surgery and might be the preferred treatment alternative to surgery. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    Science.gov (United States)

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand.

    Science.gov (United States)

    Ahmad, Shamsad; Hakeem, Ibrahim; Maslehuddin, Mohammed

    2014-01-01

    In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.

  1. Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand

    Directory of Open Access Journals (Sweden)

    Shamsad Ahmad

    2014-01-01

    Full Text Available In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP, fly ash (FA, limestone powder (LSP, cement kiln dust (CKD, and pulverized steel slag (PSS, all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.

  2. Corrosion and Tribology of Materials Used in a Novel Reverse Hip Replacement.

    Science.gov (United States)

    Braddon, Linda; Termanini, Zafer; MacDonald, Steven; Parvizi, Jay; Lieberman, Jay; Frankel, Victor; Zuckerman, Joseph

    2017-07-05

    Total hip arthroplasty has been utilized for the past 50 years as an effective treatment for degenerative, inflammatory and traumatic disorders of the hip. The design of these implants has generally followed the anatomy of the hip as a ball and socket joint with the femoral head representing the ball and the acetabulum representing the socket. We describe a novel hip arthroplasty design in which the "ball" is located on the acetabular side and the "socket" is located on the femoral side. The results of extensive biomechanical testing are described and document wear and corrosion characteristics that are at least equivalent to standard designs. These results support clinical assessment as the next step of the evaluation.

  3. Placement of replace select Ti-Unite-coated type implants using a combination of immediate and submerge techniques after tooth extraction

    Directory of Open Access Journals (Sweden)

    Coen Pramono D

    2006-06-01

    Full Text Available The high success rate of immediate implant placement both in the anterior and posterior regions were reported by many authors, therefore applying this techniques can be considered as a safe surgical procedure and minimizing the dental office visit for patient satisfaction. This paper reports the outcome of immediate placement of implants following extraction of anterior maxillary teeth. Combination technique of immediate and submerge implant placements including bone grafting procedure were used. Four implants with TiUnite surface type were placed immediately in two patients with the short-term result indicated that this technique may serve as a simple and safe procedure for immediate implant placement. It was concluded that immediate implant placement technique combined with TiUnite implant surface was successful in treating region directly after tooth extraction therefore this technique can be use as an alternative surgical method for dental implant rehabilitation.

  4. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.

    Science.gov (United States)

    Medvedev, Alexander E; Molotnikov, Andrey; Lapovok, Rimma; Zeller, Rolf; Berner, Simon; Habersetzer, Philippe; Dalla Torre, Florian

    2016-09-01

    Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  6. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  7. Study on properties of rice husk ash and its use as cement replacement material

    Directory of Open Access Journals (Sweden)

    Ghassan Abood Habeeb

    2010-06-01

    Full Text Available This paper investigates the properties of rice husk ash (RHA produced by using a ferro-cement furnace. The effect of grinding on the particle size and the surface area was first investigated, then the XRD analysis was conducted to verify the presence of amorphous silica in the ash. Furthermore, the effect of RHA average particle size and percentage on concrete workability, fresh density, superplasticizer (SP content and the compressive strength were also investigated. Although grinding RHA would reduce its average particle size (APS, it was not the main factor controlling the surface area and it is thus resulted from RHA's multilayered, angular and microporous surface. Incorporation of RHA in concrete increased water demand. RHA concrete gave excellent improvement in strength for 10% replacement (30.8% increment compared to the control mix, and up to 20% of cement could be valuably replaced with RHA without adversely affecting the strength. Increasing RHA fineness enhanced the strength of blended concrete compared to coarser RHA and control OPC mixtures.

  8. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates

    Science.gov (United States)

    Veiseh, Omid; Doloff, Joshua C.; Ma, Minglin; Vegas, Arturo J.; Tam, Hok Hei; Bader, Andrew R.; Li, Jie; Langan, Erin; Wyckoff, Jeffrey; Loo, Whitney S.; Jhunjhunwala, Siddharth; Chiu, Alan; Siebert, Sean; Tang, Katherine; Hollister-Lock, Jennifer; Aresta-Dasilva, Stephanie; Bochenek, Matthew; Mendoza-Elias, Joshua; Wang, Yong; Qi, Merigeng; Lavin, Danya M.; Chen, Michael; Dholakia, Nimit; Thakrar, Raj; Lacík, Igor; Weir, Gordon C.; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.

    2015-06-01

    The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.

  9. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  10. Wear and damage of articular cartilage with friction against orthopedic implant materials.

    Science.gov (United States)

    Oungoulian, Sevan R; Durney, Krista M; Jones, Brian K; Ahmad, Christopher S; Hung, Clark T; Ateshian, Gerard A

    2015-07-16

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wear and Damage of Articular Cartilage with Friction Against Orthopaedic Implant Materials

    Science.gov (United States)

    Oungoulian, Sevan R.; Durney, Krista M.; Jones, Brian K.; Ahmad, Christopher S.; Hung, Clark T.; Ateshian, Gerard A.

    2015-01-01

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. PMID:25912663

  12. Life prediction of different commercial dental implants as influence by uncertainties in their fatigue material properties and loading conditions.

    Science.gov (United States)

    Pérez, M A

    2012-12-01

    Probabilistic analyses allow the effect of uncertainty in system parameters to be determined. In the literature, many researchers have investigated static loading effects on dental implants. However, the intrinsic variability and uncertainty of most of the main problem parameters are not accounted for. The objective of this research was to apply a probabilistic computational approach to predict the fatigue life of three different commercial dental implants considering the variability and uncertainty in their fatigue material properties and loading conditions. For one of the commercial dental implants, the influence of its diameter in the fatigue life performance was also studied. This stochastic technique was based on the combination of a probabilistic finite element method (PFEM) and a cumulative damage approach known as B-model. After 6 million of loading cycles, local failure probabilities of 0.3, 0.4 and 0.91 were predicted for the Lifecore, Avinent and GMI implants, respectively (diameter of 3.75mm). The influence of the diameter for the GMI implant was studied and the results predicted a local failure probability of 0.91 and 0.1 for the 3.75mm and 5mm, respectively. In all cases the highest failure probability was located at the upper screw-threads. Therefore, the probabilistic methodology proposed herein may be a useful tool for performing a qualitative comparison between different commercial dental implants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. The effects of microhardnesses and friction coefficients of GCr15 and Cr4Mo4V bearing materials by ion implantation

    International Nuclear Information System (INIS)

    Yang Qifa; Xiang Deguang; Lu Haolin

    1988-01-01

    Some experimental results of microhardnesses and friction coefficients of GCr15 and Cr4Mo4V bearing materials which were implanted with Cr, Mo, N and B ions are reported in this paper. It is found that the microhardnesses are increased and the friction coefficients are reduced by Cr, Mo, N and B ion implantation for two materials. The friction coefficients of Cr + Mo + N , Cr + Mo + B ion implanted samples are reduced to 1/3 of the unimplanted samples

  14. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Composite resin as an implant material in bone. Histologic, radiologic, microradiologic and oxytetracycline fluorescence examination of rats

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, J; Rokkanen, P [Tampere Univ. (Finland). Inst. of Clinical Sciences; Central Hospital, Tampere (Finland))

    1978-01-01

    The potential of a bis-GMA composite resin as implant material in bone is evaluated. The material is claimed to have mechanical and physical properties superior to those of the bone cements used today. A groove made in the cortex of the tibia in 18 rats was filled with bis-GMA, while a similar was left empty in the contralateral tibia. The reaction of the bone to this material was evaluated by histologic, radiologic, microradiograph and OTC-fluorescence methods. The material was well tolerated by the bone; after 1,3 and 6 weeks no reaction to the material was observed.

  16. Remote replacement of materials open-test assembly specimens at the FFTF/IEM cell

    International Nuclear Information System (INIS)

    Gibbons, P.W.; Ramsey, E.B.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell is used for the remote disassembly of irradiated fuel and materials experiments. The materials open-test assembly (MOTA) is brought to the IEM cell for materials test specimen removal. The specimens are shipped to the materials laboratory for sorting and installation in new specimen holders and then returned within 10 days to the IEM cell where they are installed in a new MOTA vehicle for further irradiation. Reconstituting a MOTA is a challenging remote operation involving dozens of steps and two separate facilities. Handling and disassembling sodium-wetted components pose interesting handling, cleaning, and disposal challenges. The success of this system is evidenced by its timely completion in the critical path of FFTF outage schedules

  17. Sustainable fibre materials for replacing plastics in 3D-forming applications

    OpenAIRE

    Jacobsen, Eirik Ulsaker

    2017-01-01

    Plastic is a very broad family of materials that may provide a wide array of mechanical properties depending on the plastic or production method in question. This is why many industries have chosen plastic as their material of choice for the production of anything from plastic bags to underground piping. There is, however, a prominent issue concerning the heavy environmental impact of plastic. This is both due to the processing of crude oil and lack of biodegradability which in turn impact na...

  18. Basic research on maxillofacial implants

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yoshiro [Showa Univ., Tokyo (Japan). School of Dentistry

    2001-11-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  19. Basic research on maxillofacial implants

    International Nuclear Information System (INIS)

    Matsui, Yoshiro

    2001-01-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  20. Flash autoclave settings may influence eradication but not presence of well-established biofilms on orthopaedic implant material.

    Science.gov (United States)

    Williams, Dustin L; Taylor, Nicholas B; Epperson, Richard T; Rothberg, David L

    2017-10-04

    Flash autoclaving is one of the most frequently utilized methods of sterilizing devices, implants or other materials. For a number of decades, it has been common practice for surgeons to remove implantable devices, flash autoclave and then reimplant them in a patient. Data have not yet indicated the potential for biofilms to survive or remain on the surface of orthopaedic-relevant materials following flash autoclave. In this study, monomicrobial and polymicrobial biofilms were grown on the surface of clinically relevant titanium materials and exposed to flash autoclave settings that included varying times and temperatures. Data indicated that when the sterilization and control temperatures of an autoclave were the same, biofilms were able to survive flash autoclaving that was performed for a short duration. Higher temperature and increased duration rendered biofilms non-viable, but none of the autoclave settings had the ability to remove or disperse the presence of biofilms from the titanium surfaces. These findings may be beneficial for facilities, clinics, or hospitals to consider if biofilms are suspected to be present on materials or devices, in particular implants that have had associated infection and are considered for re-implantation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: A rat model

    Directory of Open Access Journals (Sweden)

    Lisa K. Longhofer

    2017-01-01

    Conclusion: Different biomaterials in particulate form exert different forms of adverse effects in terms of the amount of osteolysis and inflammatory reactions on bone tissue at the bone–implant interface. It provides information for engineering more appropriate materials for arthroplasty components.

  2. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials.

    Science.gov (United States)

    Tribst, João Paulo Mendes; de Morais, Dayana Campanelli; Alonso, Alexandre Abhdala; Piva, Amanda Maria de Oliveira Dal; Borges, Alexandre Luis Souto

    2017-01-01

    The increase of requests for implant-supported prosthesis (ISP) with zirconia as infrastructure has attracted a lot of attention due to its esthetics, biocompatibility, and survival rate similar to metallic infrastructure. The aim of this study was to evaluate the influence of two different framework materials on stress distribution over a bone tissue-simulating material. Two ISP were modeled and divided into two infrastructure materials: titanium (Ti) and zirconia. Then, these bars were attached to a modeled jaw with polyurethane properties to simulate bone tissue. An axial load of 200 N was applied on a standardized area for both systems. Maximum principal stress (MPS) on solids and microstrain (MS) generated through the jaw were analyzed by finite element analysis. According to MS, both models showed strains on peri-implant region of the penultimate (same side of the load application) and central implants. For MPS, more stress concentration was slightly higher in the left posterior region for Ti's bar. In prosthetic fixation screws, the MPS prevailed strongly in Ti protocol, while for zirconia's bar, the cervical of the penultimate implant was the one that highlighted larger areas of possible damages. The stress generated in all constituents of the system was not significantly influenced by the framework's material. This allows suggesting that in cases without components, the use of a framework in zirconia has biomechanical behavior similar to that of a Ti bar.

  3. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  4. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  5. Patients' self-reported function, symptoms and health-related quality of life before and 6 months after transcatheter aortic valve implantation and surgical aortic valve replacement.

    Science.gov (United States)

    Olsson, Karin; Nilsson, Johan; Hörnsten, Åsa; Näslund, Ulf

    2017-03-01

    Aortic stenosis is the most common valve disease in western countries and has poor prognosis without treatment. Surgical aortic valve replacement (SAVR) is the gold standard, and transcatheter aortic valve implantation (TAVI) is a new method that is used in high-risk patients who are denied surgery. The purpose of treatment is not only to save life, but also to reduce symptoms and increase health-related quality of life (HRQoL). The aim of this study was to describe patients' self-reported outcomes in terms of physical function, symptoms, dependence, HRQoL, and cognitive function after TAVI and SAVR. All patients treated with TAVI during 1 year ( n = 24) and age-matched patients treated with SAVR ( n = 24) were included. Data were collected on the day before and at 6 months after treatment using structural questionnaires. Self-rated function was low before treatment and increased at follow-up. A quarter of all patients reported syncope at baseline, and none reported this at follow-up. Breathlessness was reported by all patients to be the most limiting cardiac symptom, but the TAVI patients reported more severe symptoms. At 6 months' follow-up, symptoms were reduced, but breathlessness and fatigue were still common, especially in the TAVI group. HRQoL, which was very low in the TAVI group at baseline, increased in all dimensions except social function. We found no change in cognitive function or dependence at follow-up. There was no difference in the size of improvement between groups. The results could be helpful when informing future patients in order to give them realistic expectations.

  6. Is transcatheter aortic valve implantation (TAVI) a cost-effective treatment in patients who are ineligible for surgical aortic valve replacement? A systematic review of economic evaluations.

    Science.gov (United States)

    Eaton, James; Mealing, Stuart; Thompson, Juliette; Moat, Neil; Kappetein, Pieter; Piazza, Nicolo; Busca, Rachele; Osnabrugge, Ruben

    2014-05-01

    Health Technology Assessment (HTA) agencies often undertake a review of economic evaluations of an intervention during an appraisal in order to identify published estimates of cost-effectiveness, to elicit comparisons with the results of their own model, and to support local reimbursement decision-making. The aim of this research is to determine whether Transcatheter Aortic Valve Implantation (TAVI) compared to medical management (MM) is cost-effective in patients ineligible for surgical aortic valve replacement (SAVR), across different jurisdictions and country-specific evaluations. A systematic review of the literature from 2007-2012 was performed in the MEDLINE, MEDLINE in-process, EMBASE, and UK NHS EED databases according to standard methods, supplemented by a search of published HTA models. All identified publications were reviewed independently by two health economists. The British Medical Journal (BMJ) 35-point checklist for economic evaluations was used to assess study reporting. To compare results, incremental cost effectiveness ratios (ICERs) were converted to 2012 dollars using purchasing power parity (PPP) techniques. Six studies were identified representing five reimbursement jurisdictions (England/Wales, Scotland, the US, Canada, and Belgium) and different modeling techniques. The identified economic evaluations represent different willingness-to-pay thresholds, discount rates, medical costs, and healthcare systems. In addition, the model structures, time horizons, and cycle lengths varied. When adjusting for differences in currencies, the ICERs ranged from $27K-$65K per QALY gained. Despite notable differences in modeling approach, under the thresholds defined by using either the local threshold value or that recommended by the World Health Organization (WHO) threshold value, each study showed that TAVI was likely to be a cost-effective intervention for patients ineligible for SAVR.

  7. Advanced scheduling for zygote intrafallopian transfer is possible via the use of a hormone replacement cycle for patients who have experienced repeated implantation failures.

    Science.gov (United States)

    Nakagawa, Koji; Juen, Hiroyasu; Nishi, Yayoi; Sugiyama, Rie; Motoyama, Hiroshi; Kuribayashi, Yasushi; Inoue, Masato; Akira, Shigeo; Sugiyama, Rikikazu

    2014-11-01

    Zygote intrafallopian transfer (ZIFT) is an effective option for patients who have experienced repeated implantation failures (RIF) in assisted reproductive technology (ART) treatment. However, advance planning for the day of the operation can be problematic. Using a hormone replacement cycle (HRC) makes it possible to plan for the day of ZIFT. In the present study, we evaluated whether HRC-ZIFT is useful for RIF patients who have experienced difficulties obtaining morphologically good embryos in vitro. A total of 55 patients with a history of five or more unsuccessful transfers received HRC-ZIFT between June 2008 and June 2013. The oocyte pick-ups were performed and the oocytes showing two pronuclei (2PN) were cryopreserved. After receiving more than five 2PN oocytes, the operation day was scheduled in advance, and as a consequence, a HRC was started and ZIFT was performed. The clinical outcomes were evaluated. The average age of the patients was 39.3 years, and the previous OPU and ET attempts numbered 7.5 and 6.9, respectively. The number of previously transferred embryos was 11.8, and the number of morphologically good embryos (MGEs) was only 1.2. The number of transferred 2PN oocytes was 6.7, and the subsequent pregnancy rate was 23.6 %. No ectopic or multiple pregnancies were observed, but there were 6 cases of miscarriage. Among RIF patients, in particular those who have difficulty obtaining MGEs in vitro, ZIFT might be a useful option. The HRC allows patients and medical staff to plan for the operation day in advance.

  8. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    Science.gov (United States)

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  10. Replacement of reserves zinc based on the recycling of technogenic raw materials

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Bryantseva

    2013-06-01

    Full Text Available In the article, the perspective trends of the expansion of the mineral-ore base of the Russian producers of zinc by recycling of technogenic raw materials are considered. The important role of recycling of resources for sustainable development of society and improve the environmental safety is justified. The main structural and dynamic characteristics of the use of mineral resource base for the production of zinc in Russia are considered. Raw materials opportunities and constraints for the development of zinc production are analyzed. In the paper, the structure and dynamics of the use of recycled materials by the largest producer of zinc in Russia are investigated. The methodical approach to the estimation of effectiveness of the industrial processing of technogenic metallurgical raw materials with the strategic flexibility of the implementation of projects is proposed and approved. The estimation of the effectiveness of a complex industrial processing of metallurgical zinc-containing dusts in a real production is carried out. The value of the strategic flexibility of the project of the industrial processing of the zinc-containing technogenic raw material is determined on the basis of the developed systematic approach. The value of the processes of recycling for sustainable production of zinc in Russia is revealed.

  11. Comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3 + ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation ''spike'' followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Ion-beam sputtering of the surface in the steel experiments resulted in enhanced remission at the front surface, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. This may be due to a phase change in the material. We conclude that for conditions comparable to those of these experiments, tritium retention and loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti

  12. Finite Element Analysis of the Effect of Superstructure Materials and Loading Angle on Stress Distribution around the Implant

    Directory of Open Access Journals (Sweden)

    Jafari K

    2014-12-01

    Full Text Available Statement of Problem: A general process in implant design is to determine the reason of possible problems and to find the relevant solutions. The success of the implant depends on the control technique of implant biomechanical conditions. Objectives: The goal of this study was to evaluate the influence of both abutment and framework materials on the stress of the bone around the implant by using threedimensional finite element analysis. Materials and Methods: A three-dimensional model of a patient’s premaxillary bone was fabricated using Cone Beam Computed Tomography (CBCT. Then, three types of abutment from gold, nickel-chromium and zirconia and also three types of crown frame from silver-palladium, nickel-chromium and zirconia were designed. Finally, a 178 N force at angles of zero, 30 and 45 degrees was exerted on the implant axis and the maximum stress and strain in the trabecular, cortical bones and cement was calculated. Results: With changes of the materials and mechanical properties of abutment and frame, little difference was observed in the level and distribution pattern of stress. The stress level was increased with the rise in the angle of pressure exertion. The highest stress concentration was related to the force at the angle of 45 degrees. The results of the cement analysis proved an inverse relationship between the rate of elastic modulus of the frame material and that of the maximum stress in the cement. Conclusions: The impact of the angle at which the force was applied was more significant in stress distribution than that of abutment and framework core materials.

  13. Effects of repeated manual disassembly and reassembly on the position stability of various implant-abutment complexes

    OpenAIRE

    Semper, Wiebke

    2010-01-01

    In this experiment the precision of manually repositioned abutments in five implant systems with various implant-abutment interfaces was evaluated. Material und Method Of these five implant systems (Straumann, Astra Tech, Replace Select, Camlog, SteriOss) six angled (0°, 5°, 15°) implants each were fixated in a prefabricated metal block. Three persons with differing experience and knowledge of the hypothesis placed and removed a prefabricated abutment with anti-rotational features ...

  14. The role of prosthetic abutment material on the stress distribution in a maxillary single implant-supported fixed prosthesis

    International Nuclear Information System (INIS)

    Peixoto, Hugo Eduardo; Bordin, Dimorvan; Del Bel Cury, Altair A.; Silva, Wander José da; Faot, Fernanda

    2016-01-01

    Purpose: Evaluate the influence of abutment's material and geometry on stress distribution in a single implant-supported prosthesis. Materials and Methods: Three-dimensional models were made based on tomographic slices of the upper middle incisor area, in which a morse taper implant was positioned and a titanium (Ti) or zirconia (ZrN) universal abutments was installed. The commercially available geometry of titanium (T) and zirconia (Z) abutments were used to draw two models, TM1 and ZM1 respectively, which served as control groups. These models were compared with 2 experimental groups were the mechanical properties of Z were applied to the titanium abutment (TM2) and vice versa for the zirconia abutment (ZM2). Subsequently, loading was simulated in two steps, starting with a preload phase, calculated with the respective friction coefficients of each materials, followed by a combined preload and chewing force. The maximum von Mises stress was described. Data were analyzed by two-way ANOVA that considered material composition, geometry and loading (p 0.05). Conclusion: The screw was the piece most intensely affected, mainly through the preload force, independent of the abutment's material. - Highlights: • The abutment's screw was the most impaired piece of the dental implant system. • The highest stress was located at first thread of the abutment's screw. • The preload is the main factor in the abutment's screw stress. • Abutment configuration and material can have a positive contribution for the stress distribution

  15. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    International Nuclear Information System (INIS)

    Vempaire, D; Pelletier, J; Lacoste, A; Bechu, S; Sirou, J; Miraglia, S; Fruchart, D

    2005-01-01

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed

  16. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns.

    Science.gov (United States)

    Çavuşoğlu, Yeliz; Sahin, Erdal; Gürbüz, Riza; Akça, Kivanç

    2011-10-01

    To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area. A metal experimental model with a dental implant was designed to receive in-office CAD/CAM-generated monoceramic crowns. Laterally positioned axial dynamic loading of 300 N at 2 Hz was applied to implant-supported crowns machined from 2 different glass materials for 100,000 cycle. Failures in terms of fracture, crack formation, and chipping were macroscopically recorded and microscopically evaluated. Four of 10 aluminasilicate glass-ceramic crowns fractured at early loading cycles, the rest completed loading with a visible crack formation. Crack formation was recorded for 2 of 10 leucite glass-ceramic crowns. Others completed test without visible damage but fractured upon removal. Lack in chemical adhesion between titanium abutment and dental cement likely reduces the fatigue resistance of machinable glass-ceramic materials. However, relatively better fractural strength of leucite glass-ceramics could be taken into consideration. Accordingly, progress on developmental changes in filler composition of glass-ceramics may be promising. Machinable glass-ceramics do not possess sufficient fatigue resistance for single-tooth implant crowns in functional area.

  17. Dynamic Material Removal Rate and Tool Replacement Optimization with Calculus of Variations

    Science.gov (United States)

    Lan, Tian-Syung; Lo, Chih-Yao; Chiu, Min-Chie; Yeh, Long-Jyi

    This study mathematically presents an optimum material removal control model, where the Material Removal Rate (MRR) is comprehensively introduced, to accomplish the dynamic machining control and tool life determination of a cutting tool under an expected machining quantity. To resolve the incessant cutting-rate control problem, Calculus of Variations is implemented for the optimum solution. Additionally, the decision criteria for selecting the dynamic solution are suggested and the sensitivity analyses for key variables in the optimal solution are fully discussed. The versatility of this study is furthermore exemplified through a numerical illustration from the real-world industry with BORLAND C++ BUILDER. It is shown that the theoretical and simulated results are in good agreement. This study absolutely explores the very promising solution to dynamically organize the MRR in minimizing the machining cost of a cutting tool for the contemporary machining industry.

  18. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  19. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  20. Characterization study on secondary sewage sludge for replacement in building materials

    Science.gov (United States)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.

  1. Cathodoluminescence and ion beam analysis of ion-implanted combinatorial materials libraries on thermally grown SiO2

    International Nuclear Information System (INIS)

    Chen, C.-M.; Pan, H.C.; Zhu, D.Z.; Hu, J.; Li, M.Q.

    1999-01-01

    A method combining ion implantation and physical masking technique has been used to generate material libraries of various ion-implanted samples. Ion species of C, Ga, N, Pb, Sn, Y have been sequentially implanted to an SiO 2 film grown on a silicon wafer through combinatorial masks and consequently a library of 64 (2 6 ) samples is generated by 6 masking combinations. This approach offers rapid synthesis of samples with potential new compounds formed in the matrix, which may have specific luminescent properties. The depth-resolved cathodoluminescence (CL) measurements revealed some specific optical property in the samples correlated with implanted ion distributions. A marker-based technique is developed for the convenient location of sample site in the analysis of Rutherford backscattering spectrometry (RBS) and proton elastic scattering (PES), intended to characterize rapidly the ion implanted film libraries. These measurements demonstrate the power of nondestructively and rapidly characterizing composition and the inhomogeneity of the combinatorial film libraries, which may determine their physical properties

  2. Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques.

    Science.gov (United States)

    Zaparolli, Danilo; Peixoto, Raniel Fernandes; Pupim, Denise; Macedo, Ana Paula; Toniollo, Marcelo Bighetti; Mattos, Maria da Glória Chiarello de

    2017-12-01

    To compare the stress distribution of mandibular full dentures supported with implants according to the bar materials and manufacturing techniques using a qualitative photoelastic analysis. An acrylic master model simulating the mandibular arch was fabricated with four Morse taper implant analogs of 4.5×6mm. Four different bars were manufactured according to different material and techniques: fiber-reinforced resin (G1, Trinia, CAD/CAM), commercially pure titanium (G2, cpTi, CAD/CAM), cobalt‑chromium (G3, Co-Cr, CAD/CAM) and cobalt‑chromium (G4, Co-Cr, conventional cast). Standard clinical and laboratory procedures were used by an experienced dental technician to fabricate 4 mandibular implant-supported dentures. The photoelastic model was created based on the acrylic master model. A load simulation (150N) was performed in total occlusion against the antagonist. Dentures with fiber-reinforced resin bar (G1) exhibited better stress distribution. Dentures with machined Co-Cr bar (G3) exhibited the worst standard of stress distribution, with an overload on the distal part of the posteriors implants, followed by dentures with cast Co-Cr bar (G4) and machined cpTi bar (G2). The fiber-reinforced resin bar exhibited an adequate stress distribution and can serve as a viable alternative for oral rehabilitation with mandibular full dentures supported with implants. Moreover, the use of the G1 group offered advantages including reduced weight and less possible overload to the implants components, leading to the preservation of the support structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of implant cast accuracy of multiple implant impression technique with different splinting materials: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sunantha Selvaraj

    2016-01-01

    Conclusion: The master cast obtained by both the splinting material exhibits no difference from the reference model. So bis-GMA can be used, which is easy to handle, less time consuming, less technique sensitive, rigid, and readily available material in clinics.

  4. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  5. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  6. A comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Struttmann, D. A.

    1986-11-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3+ ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation "spike" followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  7. Comparison on implantation-driven permeation characteristics of fusion reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A. (Idaho National Engineering Lab., Idaho Falls)

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D{sub 3}{sup +} ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation spike followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  8. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material

    International Nuclear Information System (INIS)

    Barua, Shaswat; Dutta, Nipu; Karak, Niranjan; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K

    2014-01-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48–58 MPa) and elongation at break (11.9–16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration. (paper)

  9. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    Science.gov (United States)

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  10. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    Science.gov (United States)

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  11. Fracture Strength of Three-Unit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials

    Directory of Open Access Journals (Sweden)

    Vahideh Nazari

    2017-01-01

    Full Text Available Objectives: Fracture strength is an important factor influencing the clinical long-term success of implant-supported prostheses especially in high stress situations like excessive crown height space (CHS. The purpose of this study was to compare the fracture strength of implant-supported fixed partial dentures (FPDs with excessive crown height, fabricated from three different materials.Materials and Methods: Two implants with corresponding abutments were mounted in a metal model that simulated mandibular second premolar and second molar. Thirty 3-unit frameworks with supportive anatomical design were fabricated using zirconia, nickel-chromium alloy (Ni-Cr, and polyetheretherketone (PEEK (n=10. After veneering, the CHS was equal to 15mm. Then; samples were axially loaded on the center of pontics until fracture in a universal testing machine at a crosshead speed of 0.5 mm/minute. The failure load data were analyzed by one-way ANOVA and Games-Howell tests at significance level of 0.05.Results: The mean failure loads for zirconia, Ni-Cr and PEEK restorations were 2086±362N, 5591±1200N and 1430±262N, respectively. There were significant differences in the mean failure loads of the three groups (P<0.001. The fracture modes in zirconia, metal ceramic and PEEK restorations were cohesive, mixed and adhesive type, respectively.Conclusions: According to the findings of this study, all implant supported three-unit FPDs fabricated of zirconia, metal ceramic and PEEK materials are capable to withstand bite force (even para-functions in the molar region with excessive CHS.Keywords: Dental Implants; Polyetheretherketone; Zirconium oxide; Dental Restoration Failure; Dental Porcelain

  12. Fabrication of SGOI material by oxidation of an epitaxial SiGe layer on an SOI wafer with H ions implantation

    International Nuclear Information System (INIS)

    Cheng Xinli; Chen Zhijun; Wang Yongjin; Jin Bo; Zhang Feng; Zou Shichang

    2005-01-01

    SGOI materials were fabricated by thermal dry oxidation of epitaxial H-ion implanted SiGe layers on SOI wafers. The hydrogen implantation was found to delay the oxidation rate of SiGe layer and to decrease the loss of Ge atoms during oxidation. Further, the H implantation did not degrade the crystallinity of SiGe layer during fabrication of the SGOI

  13. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  14. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  15. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for implant prosthesis

    Directory of Open Access Journals (Sweden)

    M. Menini

    2011-01-01

    Full Text Available The aim of the present research was to measure in vitro the chewing load forces transmitted through crowns made of different prosthetic restorative materials onto the dental implant. A masticatory robot that is able to reproduce the mandibular movements and the forces exerted during mastication was used. The forces transmitted to the simulated periimplant bone during the robot mastication were analysis of variance (ANOVA was used. The zirconia and the ceramic crowns transmitted significantly greater forces (p-value < 0.0001 than the other crowns tested. Dental materials with lower elastic modulus were better able to ansorb shock from acclusal forces than more rigid materials.

  16. Influence of patient position and implant material on the stress distribution in an artificial intervertebral disc of the lumbar vertebrae

    Directory of Open Access Journals (Sweden)

    Karpiński Robert

    2017-01-01

    Full Text Available The aim of this paper was to determine the effect of using cobalt and titanium-based alloys as implant materials for the lumbar vertebrae with an artificial intervertebral disc on the stress distribution. The lumbar vertebrae were chosen for the study because they carry considerably higher loads, especially while standing or sitting. Finite element method (FEM simulations were conducted for three standard loads reflecting three patient's positions: recumbent, standing and sitting. The FEM analysis was performed using the SolidWorks Simulation module. Artificial units containing a pair of vertebrae with a prosthesis between them were designed by the Solid Edge software, based on micro-computed tomography CT scans of the patient's spine. The implant model was designed with its shape based on the geometry of surrounding vertebrae, consisting of an upper pad, a bottom pad and an insert (intervertebral disc. Two implant material configurations were studied. One involved the use of titanium alloy for the upper and bottom pads, while in the other, these pads were made of cobalt alloy. In both cases, a polyethylene insert was used. The FEM results demonstrate that both material configurations meet the requirements for prosthesis design. In both material configurations, the maximum stresses in each prosthesis element are almost twice higher in a sitting posture than in a recumbent position.

  17. Current concepts of regenerative biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Annapurna Ahuja

    2015-01-01

    Full Text Available The primary objective of any implant system is to achieve firm fixation to the bone and this could be influenced by biomechanical as well as biomaterial selection. An array of materials is used in the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants. Thus the clinician needs to have adequate knowledge of the various biomaterials and their properties for their judicious selection and application in his/her clinical practice. The recent materials such as bioceramics and composite biomaterials that are under consideration and investigation have a promising future. For optimal performance, implant biomaterials should have suitable mechanical strength, biocompatibility, and structural biostability in the physiological environment. This article reviews the various implant biomaterials and their ease of use in implant dentistry.

  18. Ion implantation - a useful tool for the preparation of new materials

    International Nuclear Information System (INIS)

    Buckel, W.

    1975-01-01

    The following experimental results on ion implantation in superconductors are discussed: 1) Implantation of paramagnetic manganese ions into the superconductors Sn, Pb, Hg lowers the transition temperature. 2) Sn implanted with Mn exhibits the Kondo effect, a minimum in the resistivity versus temperature immediately above Tsub(c). 3) Pd may become superconducting, when charged with H at ratios H/Pd > 0.8. Tsub(c) first increases with concentration and then drops again. The increase in Tsub(c) is still larger for Pd-noble metal alloys charged with H(D). (WBU) [de

  19. A clinically translatable concept for periodontal ligament engineering around dental implants : The characterization of patient-friendly materials with optimal biomechanical properties

    NARCIS (Netherlands)

    de Jong, T.

    2017-01-01

    The periodontal ligament (PDL) connects the tooth to the alveolar bone. It functions as a shock absorber, forms a barrier against pathogens, and provides sensory information. These capacities are lost when the PDL is damaged, or when teeth are lost. Replacing missing teeth with dental implants is

  20. Two different techniques of manufacturing TMJ replacements - A technical report.

    Science.gov (United States)

    Kozakiewicz, Marcin; Wach, Tomasz; Szymor, Piotr; Zieliński, Rafał

    2017-09-01

    Presently, during the surgical treatment of the patients in maxillofacial surgery, one can use various medical implants. Moreover custom made implants are being used. Replacements may be fitted to the structure and shape of the human skull owing to CAD/CAM (custom aided design/manufacture) called customized implants. This study was aimed to report for the first time clinical material from which custom implants, using two different techniques, were manufactured to reconstruct the temporomandibular joint (TMJ). In this study, eleven patients with an average age of 54 years were included. All of the patients underwent TMJ reconstruction using direct metal laser sintering (DMLS) or computer numerical control milling (CNC) techniques for implant manufacture. Four of the eleven patients had a malignancy diagnosis, and seven had a benign diagnosis. Patients complained of hypomobility of the TMJ, facial asymmetry, pain and swelling of the preauricular region. Treatment included 7 CNC milled implants and 4 implants in DMLS. More metallic implant parts with a rough surface were associated with the DMLS technique. Post operational, uneventful healing was observed in all clinical cases during an average of 26.8 months of follow-up. Three months post-operation, facial nerve palsy, swallowing disturbances and pain were not observed. Infections, allergic reactions to materials and re-ankylosis were also not observed. Replacements received correct forms and functions owing to the CAM techniques. Post-operational maximal interincisal opening improved (p < 0.01) and was not significantly related to preoperational opening, age, sex, diagnosis or adjuvant radiotherapy. Considering both methods, the feature that differentiates the manufacture technique is the more subtractive surface finishing required for the DMLS implant than the CNC implant. Both techniques resulted the same clinical outcomes and can be used successfully in patients with neoplastic lesions and other TMJ disorders

  1. Optimization of hip joint replacement location to decrease maximum von Mi ses Stress

    International Nuclear Information System (INIS)

    Pourjamali, H.; Najarian, S.; Katoozian, H. R.

    2001-01-01

    Hip replacement is used for inoperable femur head injuries and femur fractures where internal fixation can not be used. This operation is one of the most common orthopedic operations that many research have been done about it. Among these we can mention implant and cement materials and composites optimization and also implant shape optimization. This study was designed to optimize artificial hip joint position (placement) to decrease maximal von mi sees stress. First, a model of femur and implant were made and then a computer program was written with the ability to change the position of implant through an acceptable range in the femur. In each of these positions, the program simulated femur and implant according to finite element method and made, applied forces were weight and muscle traction. Our findings show that a small deviation of the implant from femur bone center causes a considerable decrease in von mi sees stress that consequently results in longer maintenance of the implant

  2. Implante de tubo valvulado bioprótese "stentless" em posição aórtica: estudo experimental em ovinos A juvenile sheep model for the stentless bioprostheses implanted as aortic root replacements

    Directory of Open Access Journals (Sweden)

    Paulo César SANTOS

    2002-03-01

    Full Text Available INTRODUÇÃO: O tratamento das lesões valvares representa um grande desafio dentro da cirurgia cardiovascular, pois, até os dias atuais, não temos um substituto ideal para as valvas do coração. As próteses atualmente disponíveis apresentam vantagens e desvantagens; as mecânicas exigem anticoagulação definitiva e as biológicas apresentam baixa durabilidade. Para se chegar a um substituto ideal, são necessárias várias fases, desde a escolha e o preparo do material até o implante em animal de grande porte. Esta última é muito importante, pois a escolha do animal deve ser criteriosa. Ovinos juvenís são animais dóceis de fácil manipulação e suas características anatômicas e biológicas se assemelham muito ao que ocorre com o ser humano e as próteses "stentless" são substitutos mais próximos dos homoenxertos. MATERIAL E MÉTODO: Foram operados 30 ovinos juvenís com idade variando de 4,4 a 6,3 meses, peso de 25 a 37 kg, sendo 28 machos. Todos os animais foram submetidos a circulação extracorpórea para implante de bioprótese "stentless" montada em tubo de aorta porcina, com reimplante de artérias coronárias. A operação foi realizada com hipotermia moderada e cardioplegia gelada. O período de seguimento foi de 30 dias e, ao final, realizado ecocardiograma. RESULTADOS: Houve 8 (26,6% óbitos no intra-operatório e 6 (27,7% óbitos no seguimento. O tempo médio de CEC foi de 98 min. Foi realizado ecocardiograma em 16 animais e em nenhum caso foram vistos sinais de endocardite ou outras alterações; a fração média de ejeção foi de 74%. CONCLUSÃO: Este modelo experimental utilizando ovinos para o estudo de biopróteses "stentless" em posição aórtica mostrou-se bem reprodutível e a performance do enxerto bastante factível de ser avaliada, pois ovinos são animais dóceis e de fácil manipulação no seguimento tardio.INTRODUCTION: Often, studies on aortic prosthetic valves analyze their performance not at the

  3. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    International Nuclear Information System (INIS)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de; Falchete do Prado, Renata; Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto; Rodarte Carvalho, Yasmin

    2015-01-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys

  4. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Falchete do Prado, Renata, E-mail: renatafalchete@hotmail.com [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto [Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP (Brazil); Rodarte Carvalho, Yasmin [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil)

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys.

  5. Influence of implant abutment material and ceramic thickness on optical properties.

    Science.gov (United States)

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔEabutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more

  6. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  7. The breast implant controversy.

    Science.gov (United States)

    Cook, R R; Harrison, M C; LeVier, R R

    1994-02-01

    The breast implant issue is a "bad news/good news" story. For many women with implants, the controversy has caused a fair degree of anxiety which may or may not be resolved as further information becomes available. It has also taken its toll on Dow Corning. Whole lines of medical products have been eliminated or are being phase out. The development of new medical applications has been terminated. As a consequence, employees have lost their jobs. What the effect will be on the biomedical industry as a whole remains to be seen (11). While silicones have been an important component in various medical devices, it is likely that other materials can be used as replacements. However, suppliers of non-silicone materials are also reevaluating their role in this market. For example, Du Pont, the nation's largest chemical company, has determined that the unpredictable and excessive costs of doing business with manufacturers of implantable medical devices no longer justifies the unrestricted sale of standard raw materials into this industry. Other companies are quietly following suit. On the up side, it is possible that the research being driven by this controversy will result in a greater understanding of the immunologic implications of xenobiotics, of the importance of nonbiased observations, of the need for ready access to valid data sets, and of the opportunity for valid scientific information to guide legal decisions. Only time will tell.

  8. Wear of cross-linked polyethylene against itself: a material suitable for surface replacement of the finger joint.

    Science.gov (United States)

    Sibly, T F; Unsworth, A

    1991-05-01

    Cross-linking of polyethylene (XLPE) has dramatically improved its properties in industrial applications, and it may also have some application in the field of human joint replacement. Additionally it has the advantage of permitting a lower molecular weight base material to be used, so that components may be injection moulded rather than machined. This study therefore investigates the wear resistance of medical grade cross-linked polyethylene (XLPE), cross-linked by a silane-grafting process, with a molecular weight between cross links of 5430 g mol(-1). This first report investigates the wear resistance of XLPE against itself, because for certain joints, such as the metacarpo-phalangeal joint, the material may have a high enough wear resistance to allow both bearing surfaces to be made from it. Tests were carried out both on a reciprocating pin and plate machine with pins loaded at 10 and 40 N and also on a new finger joint simulator, which simulates the loads applied to and the movements of, the metacarpo-phalangeal joint. An average wear rate of 1.8 x 10(-6) mm3 N-1 m-1 was found (range 0.9-2.75 x 10(-6) mm3 N-1 m-1). This is about six times greater than the wear rate of non-cross-linked ultra high molecular weight polyethylene (UHMWPE) against stainless steel, but for applications with low loading, such as the metacarpo-phalangeal joint, this material is shown to have adequate wear resistance. The coefficient of friction was 0.1, which is similar to that of UHMWPE on stainless steel.

  9. Magnetic resonance imaging metallic artifact of commonly encountered surgical implants and foreign material.

    Science.gov (United States)

    Sutherland-Smith, James; Tilley, Brenda

    2012-01-01

    Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI. © 2012 Veterinary Radiology & Ultrasound.

  10. Stress analysis of different prosthesis materials in implant-supported fixed dental prosthesis using 3D finite element method

    Directory of Open Access Journals (Sweden)

    Pedram Iranmanesh

    2014-01-01

    Full Text Available Introduction: In the present study, the finite element method (FEM was used to investigate the effects of prosthesis material types on stress distribution of the bone surrounding implants and to evaluate stress distribution in three-unit implant-supported fixed dental prosthesis (FDP. Materials and Methods: A three-dimensional (3D finite element FDP model of the maxillary second premolar to the second molar was designed. Three load conditions were statically applied on the functional cusps in horizontal (57.0 N, vertical (200.0 N, and oblique (400.0 N, θ = 120° directions. Four standard framework materials were evaluated: Polymethyl methacrylate (PMMA, base-metal, porcelain fused to metal, andporcelain. Results: The maximum of von Mises stress in the oblique direction was higher than the vertical and horizontal directions in all conditions. In the bone-crestal section, the maximum von Mises stress (53.78 MPa was observed in PMMA within oblique load. In FDPs, the maximum stress was generated at the connector region in all conditions. Conclusion: A noticeable difference was not observed in the bone stress distribution pattern with different prosthetic materials. Although, higher stress value could be seen in polymethyl methacrylate, all types of prosthesis yielded the same stress distribution pattern in FDP. More clinical studies are needed to evaluate the survival rate of these materials.

  11. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    Science.gov (United States)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  12. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    International Nuclear Information System (INIS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants

  13. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    Science.gov (United States)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  14. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    International Nuclear Information System (INIS)

    Wu Guosong; Xu Ruizhen; Feng Kai; Wu Shuilin; Wu Zhengwei; Sun Guangyong; Zheng Gang; Li Guangyao; Chu, Paul K.

    2012-01-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  15. The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material

    Directory of Open Access Journals (Sweden)

    Alon Kafri

    2018-02-01

    Full Text Available Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg and iron (Fe. Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting was examined in vitro and in vivo. The in vitro examination included immersion tests, potentiodynamic polarization and impedance spectroscopy, all in a simulated physiological environment (phosphate-buffered saline, PBS at 37 °C. For the in vivo study, two cylindrical disks (seven millimeters diameter and two millimeters height were implanted into the back midline of male Wister rats. The rats were examined post implantation in terms of weight gain and hematological characteristics, including red blood cell (RBC, hemoglobin (HGB and white blood cell (WBC levels. Following retrieval, specimens were examined for corrosion rate measurements and histological analysis of subcutaneous tissue in the implant vicinity. In vivo analysis demonstrated that the Zn–1.3%Fe implant avoided harmful systemic effects. The in vivo and in vitro results indicate that the Zn–1.3%Fe alloy corrosion rate is significantly increased compared to pure zinc. The relatively increased degradation of Zn–1.3%Fe was mainly related to microgalvanic effects produced by a secondary Zn11Fe phase.

  16. The effects of H+ implants on YBa2Cu3O7 superconducting materials

    International Nuclear Information System (INIS)

    Luo Chenglin; Pan Guoqiang; Han Ming; Wang Guanghou

    1993-09-01

    The variations of microstructure and electrical properties of Y-Ba-Cu O with and without H + implantation have been studied by scanning electron microscope, X-ray diffraction and IR spectrum techniques. The results have shown that these variations are directly relative to the intrinsic quality of YBa 2 Cu 3 O 7 . Microstructural change is responsible for the variations of electrical properties of YBa 2 Cu 3 O 7 superconductor. The Cu H bond formed by H + implanted into YBa 2 Cu 3 O 7 is not a key factor for these variations

  17. Effect of Flapless Immediate Implantation and Filling the Buccal Gap with Xenograft Material on the Buccal Bone Level: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mojgan Paknejad

    2017-12-01

    Full Text Available Objectives: Following tooth extraction, soft and hard tissue alterations occur; Different factors can affect this process. The objective of this study was to determine the effect of gap filling on buccal alveolar crestal bone level after immediate implant placement after 4- to 6-month observation period.Materials and Methods: This   randomized clinical trial was performed on 20 patients (mean age of 38.8 years requiring tooth extraction in a total of 27 areas in the anterior maxilla. The treatment strategy was as follows: atraumatic flapless tooth extraction, implant placement, insertion of a graft (test group or no material (control group between the implant and the socket wall, connection healing abutment placement and suturing the area. Clinical and cone beam computed tomographic examinations were performed before implant placement (baseline, 24 hours after surgery and 4-6 months (T2 after implant placement, to assess the buccal plate height (BH and implant complications.Results: After 4 months of healing, a reduction in different bone measurements was noticed in the two groups. No statistically significant differences were assessed in bone height measurements between the test and control groups at different time points. The study demonstrated that immediate implantation resulted in 1.30 and 1.66 mm reduction in buccal bone plate in the test and control groups, respectively.Conclusions: The study demonstrated that immediate implantation in the extraction socket together with xenograft failed to prevent bone resorption.

  18. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  19. The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Hamidreza Barikani

    2014-01-01

    Full Text Available Background: The aim of this in vitro study was to evaluate the effect of shape, diameter and length of implants on their primary stability based on resonance frequency analysis. Materials and Methods: Replace select tapered and Branemark MK III implants were selected. Each of these two selected groups was divided into nine subgroups based on the implant length (IL (short, medium and long and the implant diameter (ID (narrow platform [NP], regular platform [RP] and wide platform [WP]. Five implants were assigned to each of the nine subgroups. Implants were placed in artificial bone blocks with bone quality similar to D3 bone. Immediately after the implant placement, its primary stability was measured using Osstell Mentor equipment. T-test and Tukey′s honest significant difference Post hoc were performed for data analysis. Statistical significance was defined at P < 0.05. Results: Replace select system showed significantly higher primary stability compared to the Branemark system, when using the short implants for all three diameters (P ≤ 0.004. However, in medium length implants there were no significant differences between the two implant systems (P ≥ 0.31. In long implants, only when the NP and RP implants were used, the Replace Select system showed significantly higher primary stability compared to the Branemark system (P = 0.000. In the replace select system, long implants had a significantly higher primary stability compared to medium and short length implants (P ≤ 0.003. In the NP and RP Branemark implants, short implants showed significantly lower primary stability compared to medium and long implants (P ≤ 0.002. However, in WP Branemark implants, primary stability increased significantly with increasing the IL from short to medium and from medium to long (P = 0.000. There were also significant differences between NP and the two other wider implants in both systems (P = 0.000. Conclusion: The use of tapered implants is

  20. Effects of implant material and plate design on tendon function and morphology.

    Science.gov (United States)

    Cohen, Mark S; Turner, Thomas M; Urban, Robert M

    2006-04-01

    Titanium implants are an alternative to stainless steel implants for internal fixation after fracture. The advantages of titanium include decreased implant stiffness, increased bio-compatibility, and diminished stress shielding. However, titanium has been implicated in tendon irritation and adhesions when used in the hand and wrist. We evaluated the relationship between extensor tendon morphology and dorsal plating of the distal radius in a canine model using distal radius pi plates made of stainless steel, titanium, and titanium alloy with a modified ramped edge design. We found marked histologic changes in the tendons and surrounding soft tissues including tendon deformation and degeneration (fibrillation, cartilage metaplasia, hypocellularity and hyalinization of blood vessels), peritendonous adhesions and neovascularity in the parenchyma. Only a minimal inflammatory cell infiltrate was identified and was limited to the tenosynovium and/or paratenon. No differences were identified between titanium and stainless steel implants and those with a ramped design. Although all animals lost wrist motion with time, no differences were observed between groups. Our results suggest that pi plate placement on the dorsal surface of the distal radius may lead to extensor tendon irritation and dysfunction. There is no evidence to suggest that this is specifically related to titanium or plate edge design.

  1. Optimal Implantation Depth and Adherence to Guidelines on Permanent Pacing to Improve the Results of Transcatheter Aortic Valve Replacement With the Medtronic CoreValve System: The CoreValve Prospective, International, Post-Market ADVANCE-II Study.

    Science.gov (United States)

    Petronio, Anna S; Sinning, Jan-Malte; Van Mieghem, Nicolas; Zucchelli, Giulio; Nickenig, Georg; Bekeredjian, Raffi; Bosmans, Johan; Bedogni, Francesco; Branny, Marian; Stangl, Karl; Kovac, Jan; Schiltgen, Molly; Kraus, Stacia; de Jaegere, Peter

    2015-05-01

    The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis, Minnesota) using optimized implantation techniques and application of international guidelines on cardiac pacing. Conduction disturbances are a frequent complication of transcatheter aortic valve replacement. The rates of PPI in the published reports vary according to bioprosthesis type and the indications for PPI. The primary endpoint was the 30-day incidence of PPI with Class I/II indications when the Medtronic CoreValve System was implanted at an optimal depth (≤6 mm below the aortic annulus). The timing and resolution of all new-onset conduction disturbances were analyzed. A total of 194 patients were treated. The overall rate of PPI for Class I/II indications was 18.2%. An optimal depth was reached in 43.2% of patients, with a nonsignificantly lower incidence of PPI in patients with depths ≤6 mm, compared with those with deeper implants (13.3% vs. 21.1%; p = 0.14). In a paired analysis, new-onset left bundle branch block and first-degree atrioventricular block occurred in 45.4% and 39.0% of patients, respectively, and resolved spontaneously within 30 days in 43.2% and 73.9%, respectively. In patients with new PPI, the rate of intrinsic sinus rhythm increased from 25.9% at 7 days to 59.3% at 30 days (p = 0.004). Optimal Medtronic CoreValve System deployment and adherence to international guidelines on cardiac pacing are associated with a lower rate of new PPI after transcatheter aortic valve replacement, compared with results reported in previous studies. (CoreValve Advance-II Study: Prospective International Post-Market Study [ADVANCE II]; NCT01624870). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Material synthesis for silicon integrated-circuit applications using ion implantation

    Science.gov (United States)

    Lu, Xiang

    As devices scale down into deep sub-microns, the investment cost and complexity to develop more sophisticated device technologies have increased substantially. There are some alternative potential technologies, such as silicon-on-insulator (SOI) and SiGe alloys, that can help sustain this staggering IC technology growth at a lower cost. Surface SiGe and SiGeC alloys with germanium peak composition up to 16 atomic percent are formed using high-dose ion implantation and subsequent solid phase epitaxial growth. RBS channeling spectra and cross-sectional TEM studies show that high quality SiGe and SiGeC crystals with 8 atomic percent germanium concentration are formed at the silicon surface. Extended defects are formed in SiGe and SiGeC with 16 atomic percent germanium concentration. X-ray diffraction experiments confirm that carbon reduces the lattice strain in SiGe alloys but without significant crystal quality improvement as detected by RBS channeling spectra and XTEM observations. Separation by plasma implantation of oxygen (SPIMOX) is an economical method for SOI wafer fabrication. This process employs plasma immersion ion implantation (PIII) for the implantation of oxygen ions. The implantation rate for Pm is considerably higher than that of conventional implantation. The feasibility of SPIMOX has been demonstrated with successful fabrication of SOI structures implementing this process. Secondary ion mass spectrometry (SIMS) analysis and cross-sectional transmission electron microscopy (XTEM) micrographs of the SPIMOX sample show continuous buried oxide under single crystal overlayer with sharp silicon/oxide interfaces. The operational phase space of implantation condition, oxygen dose and annealing requirement has been identified. Physical mechanisms of hydrogen induced silicon surface layer cleavage have been investigated using a combination of microscopy and hydrogen profiling techniques. The evolution of the silicon cleavage phenomenon is recorded by a series

  3. In Vitro Laser Treatment Platform Construction with Dental Implant Thread Surface on Bacterial Adhesion for Peri-Implantitis

    Directory of Open Access Journals (Sweden)

    Hsien-Nan Kuo

    2017-01-01

    Full Text Available This study constructs a standard in vitro laser treatment platform with dental implant thread surface on bacterial adhesion for peri-implantitis at different tooth positions. The standard clinical adult tooth jaw model was scanned to construct the digital model with 6 mm bone loss depth on behalf of serious peri-implantitis at the incisor, first premolar, and first molar. A cylindrical suite connected to the implant and each tooth root in the jaw model was designed as one experimental unit set to allow the suite to be replaced for individual bacterial adhesion. The digital peri-implantitis and suite models were exported to fulfill the physical model using ABS material in a 3D printer. A 3 mm diameter specimen implant on bacterial adhesion against Escherichia coli was performed for gram-negative bacteria. An Er:YAG laser, working with a chisel type glass tip, was moved from the buccal across the implant thread to the lingual for about 30 seconds per sample to verify the in vitro laser treatment platform. The result showed that the sterilization rate can reach 99.3% and the jaw model was not damaged after laser irradiation testing. This study concluded that using integrated image processing, reverse engineering, CAD system, and a 3D printer to construct a peri-implantitis model replacing the implant on bacterial adhesion and acceptable sterilization rate proved the feasibility of the proposed laser treatment platform.

  4. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  5. The use of an ion-beam source to alter the surface morphology of biological implant materials

    Science.gov (United States)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  6. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP

    Energy Technology Data Exchange (ETDEWEB)

    An, Baili; Li, Zhirui; Diao, Xiaoou [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); Xin, Haitao, E-mail: xhthmj@fmmu.edu.cn [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Qiang; Jia, Xiaorui; Wu, Yulu; Li, Kai [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi' an 710032 (China); Guo, Yazhou [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710032 (China)

    2016-10-01

    The aim of this study was to investigate the surface characterization of ultrafine-grain pure titanium (UFG-Ti) after sandblasting and acid-etching (SLA) and to evaluate its biocompatibility as dental implant material in vitro and in vivo. UFG-Ti was produced by equal channel angular pressing (ECAP) using commercially pure titanium (CP-Ti). Microstructure and yield strength were investigated. The morphology, wettability and roughness of the specimens were analyzed after they were modified by SLA. MC3T3-E1 osteoblasts were seeded onto the specimens to evaluate its biocompatibility in vitro. For the in vivo study, UFG-Ti implants after SLA were embedded into the femurs of New Zealand rabbits. Osseointegration was investigated though micro-CT analysis, histological assessment and pull-out test. The control group was CP-Ti. UFG-Ti with enhanced mechanical properties was produced by four passes of ECAP in B{sub C} route at room temperature. After SLA modification, the hierarchical porous structure on its surface exhibited excellent wettability. The adhesion, proliferation and viability of cells cultured on the UFG-Ti were superior to that of CP-Ti. In the in vivo study, favorable osseointegration occurred between the implant and bone in CP and UFG-Ti groups. The combination intensity of UF- Ti with bone was higher according to the pull-out test. This study supports the claim that UFG-Ti has grain refinement with outstanding mechanical properties and, with its excellent biocompatibility, has potential for use as dental implant material. - Highlights: • Yield strength and Vickers hardness of Ti are improved significantly after it is grain-refined by ECAP process. • The hierarchical micro-porous structure with superior wettability could be formed on the surface of ECAP Ti after SLA. • The results in vitro exhibited excellent cell biocompatibility of UFG-Ti after sandblasting and acid-etching. • The osseointegration between UFG-Ti implant and surrounding bone could

  7. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP

    International Nuclear Information System (INIS)

    An, Baili; Li, Zhirui; Diao, Xiaoou; Xin, Haitao; Zhang, Qiang; Jia, Xiaorui; Wu, Yulu; Li, Kai; Guo, Yazhou

    2016-01-01

    The aim of this study was to investigate the surface characterization of ultrafine-grain pure titanium (UFG-Ti) after sandblasting and acid-etching (SLA) and to evaluate its biocompatibility as dental implant material in vitro and in vivo. UFG-Ti was produced by equal channel angular pressing (ECAP) using commercially pure titanium (CP-Ti). Microstructure and yield strength were investigated. The morphology, wettability and roughness of the specimens were analyzed after they were modified by SLA. MC3T3-E1 osteoblasts were seeded onto the specimens to evaluate its biocompatibility in vitro. For the in vivo study, UFG-Ti implants after SLA were embedded into the femurs of New Zealand rabbits. Osseointegration was investigated though micro-CT analysis, histological assessment and pull-out test. The control group was CP-Ti. UFG-Ti with enhanced mechanical properties was produced by four passes of ECAP in B_C route at room temperature. After SLA modification, the hierarchical porous structure on its surface exhibited excellent wettability. The adhesion, proliferation and viability of cells cultured on the UFG-Ti were superior to that of CP-Ti. In the in vivo study, favorable osseointegration occurred between the implant and bone in CP and UFG-Ti groups. The combination intensity of UF- Ti with bone was higher according to the pull-out test. This study supports the claim that UFG-Ti has grain refinement with outstanding mechanical properties and, with its excellent biocompatibility, has potential for use as dental implant material. - Highlights: • Yield strength and Vickers hardness of Ti are improved significantly after it is grain-refined by ECAP process. • The hierarchical micro-porous structure with superior wettability could be formed on the surface of ECAP Ti after SLA. • The results in vitro exhibited excellent cell biocompatibility of UFG-Ti after sandblasting and acid-etching. • The osseointegration between UFG-Ti implant and surrounding bone could be

  8. The role of prosthetic abutment material on the stress distribution in a maxillary single implant-supported fixed prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Hugo Eduardo, E-mail: hugo.e.peixoto@hotmail.com [Implantology Team, Latin American Institute of Research and Education in Dentistry, Curitiba, Paraná (Brazil); Bordin, Dimorvan, E-mail: dimorvan_bordin@hotmail.com [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Del Bel Cury, Altair A., E-mail: altcury@fop.unicamp.br [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Silva, Wander José da, E-mail: wanderjose@fop.unicamp.br [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Faot, Fernanda, E-mail: fernanda.faot@gmail.com [Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Gonçalves Chaves, 457, 2nd floor, Pelotas, Rio Grande do Sul 96015-560 (Brazil)

    2016-08-01

    Purpose: Evaluate the influence of abutment's material and geometry on stress distribution in a single implant-supported prosthesis. Materials and Methods: Three-dimensional models were made based on tomographic slices of the upper middle incisor area, in which a morse taper implant was positioned and a titanium (Ti) or zirconia (ZrN) universal abutments was installed. The commercially available geometry of titanium (T) and zirconia (Z) abutments were used to draw two models, TM1 and ZM1 respectively, which served as control groups. These models were compared with 2 experimental groups were the mechanical properties of Z were applied to the titanium abutment (TM2) and vice versa for the zirconia abutment (ZM2). Subsequently, loading was simulated in two steps, starting with a preload phase, calculated with the respective friction coefficients of each materials, followed by a combined preload and chewing force. The maximum von Mises stress was described. Data were analyzed by two-way ANOVA that considered material composition, geometry and loading (p < 0.05). Results: Titanium and zirconia abutments showed similar von Mises stresses in the mechanical part of the four models. The area with the highest concentration of stress was the screw thread, following by the screw body. The highest stress levels occurred in screw thread was observed during the preloading phase in the ZM1 model (931 MPa); and during the combined loading in the TM1 model (965 MPa). Statistically significant differences were observed for loading, the material × loading interaction, and the loading × geometry interaction (p < 0.05). Preloading contributed for 77.89% of the stress (p < 0.05). There were no statistically significant differences to the other factors (p > 0.05). Conclusion: The screw was the piece most intensely affected, mainly through the preload force, independent of the abutment's material. - Highlights: • The abutment's screw was the most impaired piece of the

  9. Implantes mamarios en el plano subfascial en reemplazo del bolsillo subglandular: un cambio lógico Breast implants in the subfascial plane in replacement of the subglandular pocket: a logical change

    Directory of Open Access Journals (Sweden)

    O.D. Ventura

    2006-03-01

    Full Text Available Desde 1999 hemos cambiado el plano subglandular del bolsillo de los implantes mamarios por el plano subfascial (subaponeurótico. Este plano se halla por debajo de la fascia aponeurótica del músculo pectoral mayor, serrato, oblicuo lateral y recto anterior. Este artículo considera 150 casos implantados en este plano (subfascial. Se utilizaron prótesis de superficie texturada. El abordaje fue por una incisión periareolar inferior. En todos los pacientes se consiguió una excelente cobertura del implante, al igual que una forma y movilidad natural. En ningún caso se observó el desagradable ondulado de cuadrantes superiores, conocido como rippling. Cuatro de ellos presentaron procesos capsulares contráctiles grado II de Baker (2,6%. En el postoperatorio inmediato se registró menor edema y una recuperación más rápida de lo habitual, de acuerdo a nuestra experiencia con los otros procedimientos (submuscular y subglandular. Cuando la elección del bolsillo es subglandular, el plano subfascial parecería ser el lugar lógico de la colocación de los implantes mamarios.Since 1999, the subglandular plane of the pocket has been substituted in our practise for the subfascial (subaponeurotic plane in breast implants. This plane lies underneath the aponeurotic fascia of the pectoralis major , the serratus, the lateral oblique and the rectus anterior muscles. This article describes 150 patients with implants in the subaponeurotic plane and textured surface. Patients were approached through an inferior periareolar incision. Excellent coverage of the implant, as well as natural shape and mobility were achieved in all patients. No ondulation (rippling in the upper half of the breast has been observed. Four patients (2,6% had Baker grade II capsular contracture. In the immediate post-op, less edema and faster-than-usual recovery could be seen versus our experience with other (submuscular and subglandular procedures. When a subglandular pocket is the

  10. Wear mechanisms in ceramic hip implants.

    Science.gov (United States)

    Slonaker, Matthew; Goswami, Tarun

    2004-01-01

    The wear in hip implants is one of the main causes for premature hip replacements. The wear affects the potential life of the prosthesis and subsequent removals of in vivo implants. Therefore, the objective of this article is to review various joints that show lower wear rates and consequently higher life. Ceramics are used in hip implants and have been found to produce lower wear rates. This article discusses the advantages and disadvantages of ceramics compared to other implant materials. Different types of ceramics that are being used are reviewed in terms of the wear characteristics, debris released, and their size together with other biological factors. In general, the wear rates in ceramics were lower than that of metal-on-metal and metal-on-polyethylene combinations.

  11. A Comparative Analysis of Master Casts Obtained using Different Surface Treatments on Impression Copings for Single Tooth Implant Replacement -An In vitro Study.

    Science.gov (United States)

    Abrol, Surbhi; Nagpal, Archana; Kaur, Rupandeep; Verma, Ramit; Katna, Vishal; Gupt, Parikshit

    2017-08-01

    Minor rotation of impression coping secured in the impression is an avoidable error that needs to be minimized to ensure precise positioning of implant analog in master cast. The aim of the study was to compare the precision in obtaining master casts by improving the stability of impression copings in the impression with the use of tray adhesive along various surface treatments to increase surface area and by mechanical locking. A total of 60 samples were made (15 samples for each group). A total of 15 samples for Group I were prepared with untreated impression copings, 15 samples for Group II with impression copings treated and modified by application of tray adhesive only. Group III includes 15 samples which were fabricated with impression copings modified by making four vertical grooves on surface of impression coping and coated with adhesive. Group IV had 15 samples which were fabricated with impression copings sandblasted with 50 μm aluminum oxide powder and coated with adhesive. Profile projector was used to evaluate the rotational accuracy of the implant analogs by comparing Molar Implant Angle (MIA) and Premolar Implant Angle (PIA) of test samples with reference model. One-way ANOVA and Student t-test were used to analyze the data. One-way ANOVA didn't show any significant differences for both MIA and PIA between the Groups I, II, III and IV. Student's unpaired t-test revealed no significant difference in the mean MIA and mean PIA. Conclusion: Though results were statistically non-significant, all types of surface treatments of the impression copings showed more accurate transfer than those with no treatment. Sandblasted and adhesive coated impression copings showed minimum amount of rotation followed by those with vertical slots and adhesive coated impression copings.

  12. Influence of the residual oxygen in the plasma immersion ion implantation (PI3) processing of materials

    International Nuclear Information System (INIS)

    Ueda, M.; Silva, A.R.; Mello, Carina B.; Silva, G.; Reuther, H.; Oliveira, V.S.

    2011-01-01

    In this work, we investigated the effects of the contaminants present in the vacuum chamber of the PI3 system, in particular, the residual oxygen, which results in the formation of the oxide compounds on the surface and hence is responsible for the high implantation energies required to achieve reasonably thick treated layers. We used a mass spectrometer (RGA) with a quadruple filter to verify the composition of the residual vacuum and pressure of the elements present in the chamber. Initially we found a high proportion of residual oxygen in a vacuum with a pressure of 1 × 10 −3 Pa. Minimizing the residual oxygen percentage in about 80%, by efficient cleaning of the chamber walls and by improving the gas feeding process, we mitigated the formation of oxides during the PI3 process. Therefore we achieved a highly efficient PI3 processing obtaining implanted layers reaching about 50 nm, even in cases such as an aluminum alloy, where is very difficult to nitrogen implant at low energies. We performed nitrogen PI3 treatment of SS304 and Al7075 using pulses of only 3 kV and 15 × 10 −6 s at 1 kHz with an operating pressure of 1 Pa.

  13. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... Ankle replacement surgery is most often done while you are under general anesthesia. This means you will ...

  14. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.

    Science.gov (United States)

    Schildhauer, T A; Peter, E; Muhr, G; Köller, M

    2009-02-01

    We analyzed leukocyte functions and cytokine response of human leukocytes toward porous tantalum foam biomaterial (Trabecular Metaltrade mark, TM) in comparison to equally sized solid orthopedic metal implant materials (pure titanium, titanium alloy, stainless steel, pure tantalum, and tantalum coated stainless steel). Isolated peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) were cocultured with equally sized metallic test discs for 24 h. Supernatants were analyzed for cytokine content by enzyme-linked immunosorbent assay. Compared to the other used test materials there was a significant increase in the release of IL (interleukin)-1ra and IL-8 from PMN, and of IL-1ra, IL-6, and TNF-alpha from PBMC in response to the TM material. The cytokine release correlated with surface roughness of the materials. In contrast, the release of IL-2 was not induced showing that mainly myeloid leukocytes were activated. In addition, supernatants of these leukocyte/material interaction (conditioned media, CM) were subjected to whole blood cell function assays (phagocytosis, chemotaxis, bacterial killing). There was a significant increase in the phagocytotic capacity of leukocytes in the presence of TM-conditioned media. The chemotactic response of leukocytes toward TM-conditioned media was significantly higher compared to CM obtained from other test materials. Furthermore, the bactericidal capacity of whole blood was enhanced in the presence of TM-conditioned media. These results indicate that leukocyte activation at the surface of TM material induces a microenvironment, which may enhance local host defense mechanisms.

  15. Evaluación del osteocoral como material de implante en bolsas infraóseas de dientes multirradiculares

    Directory of Open Access Journals (Sweden)

    Tania Sotomayor Marín

    1999-12-01

    Full Text Available Se evalúa la eficacia del osteocoral como material de implante en el tratamiento de bolsas infraóseas en dientes multirradiculares. Se analizaron 14 pacientes que se dividieron en 2 grupos: el primero incluyó a 6 pacientes con un total de 12 defectos, los cuales se evaluaron hasta los 6 meses. El segundo, con 8 pacientes y 16 defectos, que se reevaluaron a los 12 y 24 meses. En los 2 grupos se incluyeron pacientes de ambos sexos, que fueron implantados con osteocoral (grupo estudio y con hidroxiapatita (grupo control. Se realizó reparación inicial que incluyó remoción de cálculo y pulido de la superficie dentaria, educación y motivación y evaluación del cepillado, que debía mostrar valores iguales o mayores del 80 % en la remoción de placa dentobacteriana. Posteriormente se realizó el implante mediante operación a colgajo. Se realizaron radiografías de control a los 14 días, 6 meses (para el primer grupo y 12 y 24 meses (para el segundo grupo. Se controló sistemáticamente la higiene bucal en ambos grupos. Se controlaron nuevamente los indicadores clínicos a los 6 meses para el primer grupo, y a los 12 y 24 meses para el segundo. Se observó una disminución estadísticamente significativa en el índice gingival, profundidad de la bolsa y movilidad dentaria para ambos materiales implantológicos, sin que se reportaran grandes diferencias entre éstos. Radiográficamente se observó la presencia de relleno en el defecto original, y no hubo reacciones locales adversas, por lo que se consideró efectivo el tratamiento.Effectiveness of osteocoral was assessed as material for implants at infraosseous pockets of multirooted teeth. 14 analised patients were divided into 2 groups: first, included 6 cases and 16 defects, which were evaluated ultil 6 months. Second, included 8 cases and 16 defects, evaluated at 12 and 24 months. In both groups, males and women, were included underwent to implants with osteocoral (study group and

  16. USE OF PLASTIC MATERIAL AND TRIPLE SCAN IN THE PREPARATION OF SURGICAL GUIDES FOR THE DENTAL IMPLANT TREATMENT-CASE REPORT

    Directory of Open Access Journals (Sweden)

    Rosen Borisov

    2016-09-01

    Full Text Available The use of surgical guides in implant treatment increases the accuracy of the dental implant positioning compared with manual methods. Regardless of how they are made, deviations of implants from their intended position are established in all kinds of surgical guides. This article considers the use of plastic material and new scanning technique for the production of CAD/CAM surgical guides that aim to overcome the deficiencies of the currently applied technologies in the production of surgical guides. Materials and methods: The study shows the techniques used to overcome degraded by metal artifacts CBCT images in implant treatment of patients with partial edentulism, and located medially to the defect metal-ceramic crowns. When planning implant treatment, a triple scan method has been implied. At the beginning, CBCT scan of the patient with a silicone impression material is made in the zone of interest. Secondly, CBCT scan only of the silicon impression is made, and thirdly - intraoral scanning of the patient with an intraoral scanner. Virtual analogues have been created of images from the three scans and have been repositioned one over another; as thereby an intraoral image have been accurately positioned over the CBCT image of the patient. Virtual planning of the implant positioning has been performed, and a model of surgical guide has been made for their placement. The guide has been printed with an SLA 3D printer technology of photopolymer with dualistic characteristics-rigid in the working part and plastic in the fixing part. Through it, implants have been placed to the treatment planning. Postoperative CBCT has been done on the patient to measure the implant deviation to their position in the treatment planning. Results: Axes angular deviation of the planned and placed implants has not been established. Average linear displacement of 240 μ (+/- 40 μ has been found. Conclusions: Using the triple scan method is possible to overcome the

  17. Surface modification of materials by ion implantations for industrial and medical applications. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2000-07-01

    The objectives of the Co-ordinated Research Project on Modification of Materials by Ion Treatment for Industrial Applications were to develop economically acceptable surface modification techniques leading to thick treated layers, to predict ion beam mixing and impurity atom migration during and after implantation, and to evaluate the tribological post-implantation properties and performance of treated components. This TECDOC summarises the current status and prospects in surface modification by ion implantation methodology and technology, providing new information in basic and applied research

  18. Surface modification of materials by ion implantations for industrial and medical applications. Final report of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objectives of the Co-ordinated Research Project on Modification of Materials by Ion Treatment for Industrial Applications were to develop economically acceptable surface modification techniques leading to thick treated layers, to predict ion beam mixing and impurity atom migration during and after implantation, and to evaluate the tribological post-implantation properties and performance of treated components. This TECDOC summarises the current status and prospects in surface modification by ion implantation methodology and technology, providing new information in basic and applied research.

  19. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications

    International Nuclear Information System (INIS)

    Sevilla, P.; Aparicio, C.; Planell, J.A.; Gil, F.J.

    2007-01-01

    Metallic porous materials are designed to allow the ingrowth of living tissue inside the pores and to improve the mechanical anchorage of the implant. In the present work, tantalum and nickel-titanium porous materials have been characterized. The tantalum foams were produced by vapour chemical deposition (CVD/CVI) and the NiTi foams by self-propagating high temperature synthesis (SHS). The former exhibited an open porosity ranging between 65 and 73% and for the latter it ranged between 63 and 68%. The pore sizes were between 370 and 440 μm for tantalum and between 350 and 370 μm for nickel-titanium. The Young's modulus in compression of the foams studied, especially for tantalum, were very similar to those of cancellous bone. This similitude may be relevant in order to minimize the stress shielding effect in the load transfer from the implant to bone. The strength values for NiTi foam are higher than for tantalum, especially of the strain to fracture which is about 23% for NiTi and only 8% for tantalum. The fatigue endurance limit set at 10 8 cycles is about 7.5 MPa for NiTi and 13.2 MPa for tantalum. The failure mechanisms have been studied by scanning electron microscopy

  20. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Quantification of ion or atom transfer phenomena in materials implanted by nuclear methods; Quantification de phenomenes de transferts ioniques ou atomiques dans des materiaux implantes par la mise en oeuvre de methodes nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, Hassane [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1998-05-18

    Knowledge of transfer of the constituents of a system from regions of higher to lower concentration is of interest for implanted bio-materials. It allows determining the rate at which this material is integrated in a living material. To evaluate the ossification kinetics and to study the bio-functionality in corals of Ca and Sr, irradiations with a 10{sup 13} n.cm{sup -2}.s{sup -1} was performed, followed by the examination of changes in the localization of these elements. By using PIXE analysis method the distribution of Ca, P, Sr, Zn and Fe in the implant, bone and bone-implant interfaces were determined. Thus, it was shown that resorption of coral in sheep is achieved in 5 months after implantation and is identical to the cortical tissues 4 months after implantation in animals as for instance in hares. We have analyzed the tissues from around the prostheses extracted from patients. The samples were calcined and reduced to powder weighting some milligrams. We have adopted for this study the PIXE analysis method. The samples were irradiated by a proton beam of 3 MeV and about 400 {mu}m diameter. The results show the presence of the elements Ti, Fe, Cr, Ni or Zn according to the type of the implanted prosthesis. This dispersal of the metallic ions and atoms contaminate the tissues. The transfer factors translate the exchanges between bone and the implanted material. The solvatation phenomenon and the electric charge equilibrium explain the transfer order of cations Mg{sup 2+}, Ca{sup 2+} and Sr{sup 2+} and of the anion PO{sub 4}{sup 3-}. We have also determined these factors for the elements Ti, Cr and Ni. An original technique to study the bone bio-functionality was used. Use of phosphate derivatives labelled by {sup 99m}Tc allows obtaining information about the fixation of radioactive tracer. It was found that only after the eighth month at the implantation the neo-formed bone fixes the MDP (methyl diphosphate) labelled by {sup 99m}Tc in a similar way as in the

  2. Analytical threshold voltage modeling of ion-implanted strained-Si double-material double-gate (DMDG) MOSFETs

    Science.gov (United States)

    Goel, Ekta; Singh, Balraj; Kumar, Sanjay; Singh, Kunal; Jit, Satyabrata

    2017-04-01

    Two dimensional threshold voltage model of ion-implanted strained-Si double-material double-gate MOSFETs has been done based on the solution of two dimensional Poisson's equation in the channel region using the parabolic approximation method. Novelty of the proposed device structure lies in the amalgamation of the advantages of both the strained-Si channel and double-material double-gate structure with a vertical Gaussian-like doping profile. The effects of different device parameters (such as device channel length, gate length ratios, germanium mole fraction) and doping parameters (such as projected range, straggle parameter) on threshold voltage of the proposed structure have been investigated. It is observed that the subthreshold performance of the device can be improved by simply controlling the doping parameters while maintaining other device parameters constant. The modeling results show a good agreement with the numerical simulation data obtained by using ATLAS™, a 2D device simulator from SILVACO.

  3. Blistering in a porous surface layer of materials. [He ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Afrikanov, I.N.; Vladimirov, B.G.; Guseva, M.I.; Ivanov, S.M.; Martynenko, Yu.V.; Nikol' skij, Yu.V.; Ryazanov, A.I.

    1981-03-01

    The effect of porous structure on the nature and rate of radiation erosion during implantation of helium ions into nickel and the OKh15N15M3B stainless steel is studied. The investigation results showed sharp dependence of the erosion rate due to blistering on the dimension and density of pores in the by-surface layer. The rate of the surface erosion increased in one order as compared with the control specimens without pores at 1% swelling for stainless steel and 4% for nickel.

  4. Probabilistic Analysis of Wear of Polymer Material used in Medical Implants

    Directory of Open Access Journals (Sweden)

    T. Goswami

    2016-05-01

    Full Text Available Probabilistic methods are applied to the study of fatigue wear of sliding surfaces. A variance of time to failure (to occurrence of maximum allowable wear depth is evaluated as a function of a mean wear rate of normal wear and a size of wear particles. A method of estimating probability of failure-free work during a certain time interval (reliability is presented. An effect of the bedding-in phase of wear on the reliability is taken into account. Experimental data for Ultra High Molecular Weight Polyethylene (UHMWPE cups of artificial hip implants is used to make numerical calculations.

  5. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis.

    Science.gov (United States)

    Kandemir, Utku; Augat, Peter; Konowalczyk, Stefanie; Wipf, Felix; von Oldenburg, Geert; Schmidt, Ulf

    2017-08-01

    To investigate whether (1) the type of fixation at the shaft (hybrid vs. locking), (2) the position of the plate (offset vs. contact) and (3) the implant material has a significant effect on (a) construct stiffness and (b) fatigue life in a distal femur extraarticular comminuted fracture model using the same design of distal femur periarticular locking plate. An extraarticular severely comminuted distal femoral fracture pattern (OTA/AO 33-A3) was simulated using artificial bone substitutes. Ten-hole distal lateral femur locking plates were used for fixation per the recommended surgical technique. At the distal metaphyseal fragment, all possible locking screws were placed. For the proximal diaphyseal fragment, different types of screws were used to create 4 different fixation constructs: (1) stainless steel hybrid (SSH), (2) stainless steel locked (SSL), (3) titanium locked (TiL), and (4) stainless steel locked with 5-mm offset at the diaphysis (SSLO). Six specimens of each construct configuration were tested. First, each specimen was nondestructively loaded axially to determine the stiffness. Then, each specimen was cyclically loaded with increasing load levels until failure. Construct Stiffness: The fixation construct with a stainless steel plate and hybrid fixation (SSH) had the highest stiffness followed by the construct with a stainless steel plate and locking screws (SSL) and were not statistically different from each other. Offset placement (SSLO) and using a titanium implant (TiL) significantly reduced construct stiffness. Fatigue Failure: The stainless steel with hybrid fixation group (SSH) withstood the most number of cycles to failure and higher loads, followed by the stainless steel plate and locking screw group (SSL), stainless steel plate with locking screws and offset group (SSLO), and the titanium plate and locking screws group (TiL) consecutively. Offset placement (SSLO) as well as using a titanium implant (TiL) reduced cycles to failure. Using the

  6. Lateral approach for maxillary sinus membrane elevation without bone materials in maxillary mucous retention cyst with immediate or delayed implant rehabilitation: case reports.

    Science.gov (United States)

    Han, Ji-Deuk; Cho, Seong-Ho; Jang, Kuk-Won; Kim, Seong-Gwang; Kim, Jung-Han; Kim, Bok-Joo; Kim, Chul-Hun

    2017-08-01

    This case series study demonstrates the possibility of successful implant rehabilitation without bone augmentation in the atrophic posterior maxilla with cystic lesion in the sinus. Sinus lift without bone graft using the lateral approach was performed. In one patient, the cyst was aspirated and simultaneous implantation under local anesthesia was performed, whereas the other cyst was removed under general anesthesia, and the sinus membrane was elevated in a second process, followed by implantation. In both cases, tapered 11.5-mm-long implants were utilized. With all of the implants, good stability and appropriate bone height were achieved. The mean bone level gain was 5.73 mm; adequate bone augmentation around the implants was shown, the sinus floor was moved apically, and the cyst was no longer radiologically detected. Completion of all of the treatments required an average of 12.5 months. The present study showed that sufficient bone formation and stable implantation in a maxilla of insufficient bone volume are possible through sinus lift without bone materials. The results serve to demonstrate, moreover, that surgical treatment of mucous retention cyst can facilitate rehabilitation. These techniques can reduce the risk of complications related to bone grafts, save money, and successfully treat antral cyst.

  7. A process for doping an amorphous semiconductor material by ion implantation

    International Nuclear Information System (INIS)

    Kalbitzer, S.; Muller, G.; Spear, W.E.; Le Comber, P.G.

    1979-01-01

    In a process for doping a body of amorphous semiconductor material, the body is held at a predetermined temperature above 20 deg. C which is below the recrystallization temperature of the amorphous semiconductor material during bombardment by accelerated ions of a predetermined doping material. (U.K.)

  8. In Vitro Evaluation of PCL and P(3HB as Coating Materials for Selective Laser Melted Porous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-11-01

    Full Text Available Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL and the biopolymer poly(3-hydroxybutyrate (P(3HB were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM and coated with PCL or P(3HB via dip coating. To test the biocompatibility, Live Cell Imaging (LCI as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM and energy-dispersive X-ray (EDX analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB. Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL

  9. Using Cementitious Materials Such as Fly Ash to Replace a Part of Cement in Producing High Strength Concrete in Hot Weather

    Science.gov (United States)

    Turuallo, Gidion; Mallisa, Harun

    2018-03-01

    The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.

  10. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  11. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, S., E-mail: stephanie.pellegrino@cea.fr [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, E.; Martin, H. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Chaabane, N.; Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Gallien, J.P.; Beck, L. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2012-02-15

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  12. Development and fabrication of patient-specific knee implant using additive manufacturing techniques

    Science.gov (United States)

    Zammit, Robert; Rochman, Arif

    2017-10-01

    Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.

  13. Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue.

    Science.gov (United States)

    Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander

    2017-10-01

    Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.

  14. Soft tissue grafting to improve implant esthetics

    Directory of Open Access Journals (Sweden)

    Moawia M Kassab

    2010-09-01

    Full Text Available Moawia M KassabDivision of Periodontics, Marquette University, School of Dentistry, Milwaukee, WI, USAAbstract: Dental implants are becoming the treatment of choice to replace missing teeth, especially if the adjacent teeth are free of restorations. When minimal bone width is present, implant placement becomes a challenge and often resulting in recession and dehiscence around the implant that leads to subsequent gingival recession. To correct such defect, the author turned to soft tissue autografting and allografting to correct a buccal dehiscence around tooth #24 after a malpositioned implant placed by a different surgeon. A 25-year-old woman presented with the chief complaint of gingival recession and exposure of implant threads around tooth #24. The patient received three soft tissue grafting procedures to augment the gingival tissue. The first surgery included a connective tissue graft to increase the width of the keratinized gingival tissue. The second surgery included the use of autografting (connective tissue graft to coronally position the soft tissue and achieve implant coverage. The third and final surgery included the use of allografting material Alloderm to increase and mask the implant from showing through the gingiva. Healing period was uneventful for the patient. After three surgical procedures, it appears that soft tissue grafting has increased the width and height of the gingiva surrounding the implant. The accomplished thickness of gingival tissue appeared to mask the showing of implant threads through the gingival tissue and allowed for achieving the desired esthetic that the patient desired. The aim of the study is to present a clinical case with soft tissue grafting procedures.Keywords: case report, connective tissue, dental implants, allograft, coronally positioned flap

  15. In Vitro Comparative Evaluation of Different Types of Impression Trays and Impression Materials on the Accuracy of Open Tray Implant Impressions: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Sonam Gupta

    2017-01-01

    Full Text Available Purpose. For a precise fit of multiple implant framework, having an accurate definitive cast is imperative. The present study evaluated dimensional accuracy of master casts obtained using different impression trays and materials with open tray impression technique. Materials and Methods. A machined aluminum reference model with four parallel implant analogues was fabricated. Forty implant level impressions were made. Eight groups (n=5 were tested using impression materials (polyether and vinylsiloxanether and four types of impression trays, two being custom (self-cure acrylic and light cure acrylic and two being stock (plastic and metal. The interimplant distances were measured on master casts using a coordinate measuring machine. The collected data was compared with a standard reference model and was statistically analyzed using two-way ANOVA. Results. Statistically significant difference (p0.05 was observed between varied stock and custom trays. Conclusions. The polyether impression material proved to be more accurate than vinylsiloxanether impression material. The rigid nonperforated stock trays, both plastic and metal, could be an alternative for custom trays for multi-implant impressions when used with medium viscosity impression materials.

  16. Glaucoma after corneal replacement.

    Science.gov (United States)

    Baltaziak, Monika; Chew, Hall F; Podbielski, Dominik W; Ahmed, Iqbal Ike K

    Glaucoma is a well-known complication after corneal transplantation surgery. Traditional corneal transplantation surgery, specifically penetrating keratoplasty, has been slowly replaced by the advent of new corneal transplantation procedures: primarily lamellar keratoplasties. There has also been an emergence of keratoprosthesis implants for eyes that are high risk of failure with penetrating keratoplasty. Consequently, there are different rates of glaucoma, pathogenesis, and potential treatment in the form of medical, laser, or surgical therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Antibacterial Envelope Is Associated With Low Infection Rates After Implantable Cardioverter-Defibrillator and Cardiac Resynchronization Therapy Device Replacement: Results of the Citadel and Centurion Studies.

    Science.gov (United States)

    Henrikson, Charles A; Sohail, M Rizwan; Acosta, Helbert; Johnson, Eric E; Rosenthal, Lawrence; Pachulski, Roman; Dan, Dan; Paladino, Walter; Khairallah, Farhat S; Gleed, Kent; Hanna, Ibrahim; Cheng, Alan; Lexcen, Daniel R; Simons, Grant R

    2017-10-01

    This study sought to determine whether the nonabsorbable TYRX Antibacterial Envelope (TYRX) reduces major cardiovascular implantable electronic device (CIED) infections 12 months after implant. TYRX is a monofilament polypropylene mesh impregnated with minocycline and rifampin specifically designed to hold a CIED in place and elute antimicrobials over time. There are limited data on its ability to reduce CIED infections. We prospectively enrolled patients who underwent generator replacement with an implantable cardioverter-defibrillator (ICD) or cardiac resynchronization therapy device (CRT), treated with TYRX. The primary endpoints were major CIED infection and CIED mechanical complications. Given the differences in infection rates among ICD and CRT patients, 3 different control populations were used: a published benchmark rate for ICD patients, and both site-matched and comorbidity-matched controls groups for CRT patients. Overall, a major CIED infection occurred in 5 of 1,129 patients treated with TYRX (0.4%; 95% confidence interval: 0.0% to 0.9%), significantly lower than the 12-month benchmark rate of 2.2% (p = 0.0023). Among the TYRX-treated CRT cohort, the major CIED infection rate was 0.7% compared with an infection rate of 1.0% and 1.3% (p = 0.38 and p = 0.02) in site-matched and comorbidity-matched control groups, respectively. Among the ICD group, the 12-month infection rate was 0.2% compared with the published benchmark of 2.2% (p = 0.0052). The most common CIED mechanical complication in study patients was pocket hematoma, which occurred in 18 of the 1,129 patients (1.6%; 95% confidence interval: 0.8 to 2.5), which is comparable with a published rate of 1.6%. Use of TYRX was associated with a lower major CIED infection rate. (TYRX™ Envelope for Prevention of Infection Following Replacement With a CRT or ICD; [Centurion]; NCT01043861/NCT01043705). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights

  18. The effect of different surface treatments on the bond strength of a gingiva-colored indirect composite veneering material to three implant framework materials.

    Science.gov (United States)

    Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo

    2013-09-01

    To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.

  19. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  20. The role of superstructure material on the stress distribution in mandibular full-arch implant-supported fixed dentures. A CT-based 3D-FEA.

    Science.gov (United States)

    Ferreira, Mayara Barbosa; Barão, Valentim Adelino; Faverani, Leonardo Perez; Hipólito, Ana Carolina; Assunção, Wirley Gonçalves

    2014-02-01

    This study evaluated the stress distribution in mandibular full-arch implant-supported fixed dentures with different veneering and metallic infrastructure materials, using three-dimensional finite element analysis. Ten models were obtained from an edentulous human mandible with a complete denture fixed by four implants. Acrylic resin (RES) and porcelain (POR) teeth were associated with infrastructures of titanium (Ti), gold (Au), silver-palladium (AgPd), chrome-cobalt (CoCr) and nickel-chrome (NiCr). A 100-N oblique was applied. The von Mises (σvM) and maximum (σmax) and minimum (σmin) principal stresses were obtained. The RES-AgPd group showed the lowest σvM values, while the RES-Ni-Cr group showed the highest. In the bone tissue, the RES-Au group was the only one that showed different σmax values with a 12% increase in comparison to the other groups which had similar stress values. In the implants, the groups with Ti, Au and AgPd infrastructures, either with porcelain or resin teeth, showed σvM values similar and lower in comparison to the groups with CoCr and NiCr infrastructures. The tooth veneering material influenced the stress values in metallic infrastructures, in which the acrylic resin had the highest values. The veneering and infrastructure materials have influence on stress values of implant-supported dentures, except for the peri-implant bone tissue. © 2013.

  1. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application

    Directory of Open Access Journals (Sweden)

    Philipp Honigmann

    2018-01-01

    Full Text Available Additive manufacturing (AM is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI are well-established processes in the surgical fields. Polyetheretherketone (PEEK has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design.

  2. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application.

    Science.gov (United States)

    Honigmann, Philipp; Sharma, Neha; Okolo, Brando; Popp, Uwe; Msallem, Bilal; Thieringer, Florian M

    2018-01-01

    Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.

  3. [Custom-designed 3D tibial augmentation for knee replacement].

    Science.gov (United States)

    Jirman, R; Vavrík, P; Horák, Z

    2009-02-01

    Reconstruction with the use of custom-made implants aims at optimal replacement of lost or damaged bone structures and restoration of their funkction. In this study the development and construction of a custom-made implant and the operative technique used for the treatment of an extensive tibial defect are described. The patient was a 65-year-old man treated for over 20 years for psoriatic arthritis and severe instability of the right knee, particularly in the frontal plane, with a worsening varus deformity. The radiogram showed an extensive destruction of the medial tibial condyle that also deeply involved the lateral condyle. The extent of defect made it impossible to use any commercial tibial augmentation. The geometry of the custom-designed implant for the medial tibial condyle was constructed on the basis of a 3D defect model and the shape of the medial tibial condyle of the collateral knee seen on CT scans. After its correct shape was verified on a plastic model, its coordinates were set in the software of a machine tool, and a titanium augmentation otherwise compatible with a standard knee replacement was produced.The use of such a custom implant to complete standard total knee arthroplasty has so far been demanding in terms of organisation and manufacture. Its production in the future could be facilitated by substituting titanium for plastic material such as poly-ether-ether-ketone (PEEK). Key words: custom-made implant, tibial augmentation, knee prosthesis.

  4. Material-Dependent Implant Artifact Reduction Using SEMAC-VAT and MAVRIC: A Prospective MRI Phantom Study.

    Science.gov (United States)

    Filli, Lukas; Jud, Lukas; Luechinger, Roger; Nanz, Daniel; Andreisek, Gustav; Runge, Val M; Kozerke, Sebastian; Farshad-Amacker, Nadja A

    2017-06-01

    The aim of this study was to compare the degree of artifact reduction in magnetic resonance imaging achieved with slice encoding for metal artifact correction (SEMAC) in combination with view angle tilting (VAT) and multiacquisition variable resonance image combination (MAVRIC) for standard contrast weightings and different metallic materials. Four identically shaped rods made of the most commonly used prosthetic materials (stainless steel, SS; titanium, Ti; cobalt-chromium-molybdenum, CoCr; and oxidized zirconium, oxZi) were scanned at 3 T. In addition to conventional fast spin-echo sequences, metal artifact reduction sequences (SEMAC-VAT and MAVRIC) with varying degrees of artifact suppression were applied at different contrast weightings (T1w, T2w, PDw). Two independent readers measured in-plane and through-plane artifacts in a standardized manner. In addition, theoretical frequency-offset and frequency-offset-gradient maps were calculated. Interobserver agreement was assessed using intraclass correlation coefficient. Interobserver agreement was almost perfect (intraclass correlation coefficient, 0.86-0.99). Stainless steel caused the greatest artifacts, followed by CoCr, Ti, and oxZi regardless of the imaging sequence. While for Ti and oxZi rods scanning with weak SEMAC-VAT showed some advantage, for SS and CoCr, higher modes of SEMAC-VAT or MAVRIC were necessary to achieve artifact reduction. MAVRIC achieved better artifact reduction than SEMAC-VAT at the cost of longer acquisition times. Simulations matched well with the apparent geometry of the frequency-offset maps. For Ti and oxZi implants, weak SEMAC-VAT may be preferred as it is faster and produces less artifact than conventional fast spin-echo. Medium or strong SEMAC-VAT or MAVRIC modes are necessary for significant artifact reduction for SS and CoCr implants.

  5. The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material

    International Nuclear Information System (INIS)

    Farack, J.; Wolf-Brandstetter, C.; Glorius, S.; Nies, B.; Standke, G.; Quadbeck, P.; Worch, H.; Scharnweber, D.

    2011-01-01

    Biocorrodible iron foams were coated with different calcium phosphate phases (CPP) to obtain a bioactive surface and controlled degradation. Further adhesion, proliferation and differentiation of SaOs-2 and human mesenchymal stem cells were investigated under both static and dynamic culture conditions. Hydroxyapatite (HA; [Ca 10 (PO 4 ) 6 OH 2 ]) coated foams released 500 μg/g iron per day for Dulbecco's modified eagle medium (DMEM) and 250 μg/g iron per day for McCoys, the unmodified reference 1000 μg/g iron per day for DMEM and 500 μg/g iron per day for McCoys, while no corrosion could be detected on brushite (CaHPO 4 ) coated foams. Using a perfusion culture system with conditions closer to the in vivo situation, cells proliferated and differentiated on iron foams coated with either brushite or HA while in static cell culture cells could proliferate only on Fe-brushite. We conclude that the degradation behaviour of biocorrodible iron foams can be varied by different calcium phosphate coatings, offering opportunities for design of novel bone implants. Further studies will focus on the influence of different modifications of iron foams on the expression of oxidative stress enzymes. Additional information about in vivo reactions and remodelling behaviour are expected from testing in implantation studies.

  6. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  7. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  8. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    Science.gov (United States)

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  9. An introduction to single implant abutments.

    LENUS (Irish Health Repository)

    Warreth, Abdulhadi

    2013-01-01

    This article is an introduction to single implant abutments and aims to provide basic information about abutments which are essential for all dental personnel who are involved in dental implantology. Clinical Relevance: This article provides a basic knowledge of implants and implant abutments which are of paramount importance, as replacement of missing teeth with oral implants has become a well-established clinical procedure.

  10. [Custom-made implant for complex facial reconstruction: A case of total replacement of temporo-mandibular joint, zygomatic arch and malar bone].

    Science.gov (United States)

    Guillier, D; Moris, V; See, L-A; Girodon, M; Wajszczak, B-L; Zwetyenga, N

    2017-02-01

    Total prosthetic replacement of the temporo-mandibular joint (TMJ) has become a common procedure, but it is usually limited to the TMJ itself. We report about one case of complex prosthetic joint reconstruction extending to the neighbouring bony structures. A 57-year-old patient, operated several times for a cranio-facial fibrous dysplasia, presented with a recurring TMJ ankylosis and a complexe latero-facial bone loss on the right side. We performed a reconstruction procedure including the TMJ, the zygomatic arch and the malar bone by mean of custom made composite prosthesis (chrome-cobalt-molybdenum-titanium and polyethylene). Five years postoperatively, mouth opening, nutrition, pain and oral hygiene were significantly improved. Nowadays technical possibilities allow for complex facial alloplastic reconstructions with good medium term results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Biofilm-Associated Gene Expression in Staphylococcus pseudintermedius on a Variety of Implant Materials.

    Science.gov (United States)

    Crawford, Evan C; Singh, Ameet; Gibson, Thomas W G; Scott Weese, J

    2016-05-01

    To evaluate the expression of biofilm-associated genes in Staphylococcus pseudintermedius on multiple clinically relevant surfaces. In vitro experimental study. Two strains of methicillin-resistant S. pseudintermedius isolated from clinical infections representing the most common international isolates. A quantitative polymerase chain reaction (qPCR) assay for expression of genes related to biofilm initial adhesion, formation/maturation, antimicrobial resistance, and intracellular communication was developed and validated. S. pseudintermedius biofilms were grown on 8 clinically relevant surfaces (polymethylmethacrylate, stainless steel, titanium, latex, silicone, polydioxanone, polystyrene, and glass) and samples of logarithmic and stationary growth phases were collected. Gene expression in samples was measured by qPCR. Significant differences in gene expression were identified between surfaces and between bacterial strains for most gene/strain/surface combinations studied. Expression of genes responsible for production of extracellular matrix were increased in biofilms. Expression of genes responsible for initial adhesion and intracellular communication was markedly variable. Antimicrobial resistance gene expression was increased on multiple surfaces, including stainless steel and titanium. A method for evaluation of expression of multiple biofilm-associated genes in S. pseudintermedius was successfully developed and applied to the study of biofilms on multiple surfaces. Variations in expression of these genes have a bearing on understanding the development and treatment of implant-associated biofilm infections and will inform future clinical research. © Copyright 2016 by The American College of Veterinary Surgeons.

  12. Patients with intolerance reactions to total knee replacement: combined assessment of allergy diagnostics, periprosthetic histology, and peri-implant cytokine expression pattern.

    Science.gov (United States)

    Thomas, Peter; von der Helm, Christine; Schopf, Christoph; Mazoochian, Farhad; Frommelt, Lars; Gollwitzer, Hans; Schneider, Josef; Flaig, Michael; Krenn, Veit; Thomas, Benjamin; Summer, Burkhard

    2015-01-01

    We performed a combined approach to identify suspected allergy to knee arthroplasty (TKR): patch test (PT), lymphocyte transformation test (LTT), histopathology (overall grading; T- and B-lymphocytes, macrophages, and neutrophils), and semiquantitative Real-time-PCR-based periprosthetic inflammatory mediator analysis (IFNγ, TNFα, IL1-β, IL-2, IL-6, IL-8, IL-10, IL17, and TGFβ). We analyzed 25 TKR patients with yet unexplained complications like pain, effusion, and reduced range of motion. They consisted of 20 patients with proven metal sensitization (11 with PT reactions; 9 with only LTT reactivity). Control specimens were from 5 complicated TKR patients without metal sensitization, 12 OA patients before arthroplasty, and 8 PT patients without arthroplasty. Lymphocytic infiltrates were seen and fibrotic (Type IV membrane) tissue response was most frequent in the metal sensitive patients, for example, in 81% of the PT positive patients. The latter also had marked periprosthetic IFNγ expression. 8/9 patients with revision surgery using Ti-coated/oxinium based implants reported symptom relief. Our findings demonstrate that combining allergy diagnostics with histopathology and periprosthetic cytokine assessment could allow us to design better diagnostic strategies.

  13. Patients with Intolerance Reactions to Total Knee Replacement: Combined Assessment of Allergy Diagnostics, Periprosthetic Histology, and Peri-implant Cytokine Expression Pattern

    Directory of Open Access Journals (Sweden)

    Peter Thomas

    2015-01-01

    Full Text Available We performed a combined approach to identify suspected allergy to knee arthroplasty (TKR: patch test (PT, lymphocyte transformation test (LTT, histopathology (overall grading; T- and B-lymphocytes, macrophages, and neutrophils, and semiquantitative Real-time-PCR-based periprosthetic inflammatory mediator analysis (IFNγ, TNFα, IL1-β, IL-2, IL-6, IL-8, IL-10, IL17, and TGFβ. We analyzed 25 TKR patients with yet unexplained complications like pain, effusion, and reduced range of motion. They consisted of 20 patients with proven metal sensitization (11 with PT reactions; 9 with only LTT reactivity. Control specimens were from 5 complicated TKR patients without metal sensitization, 12 OA patients before arthroplasty, and 8 PT patients without arthroplasty. Lymphocytic infiltrates were seen and fibrotic (Type IV membrane tissue response was most frequent in the metal sensitive patients, for example, in 81% of the PT positive patients. The latter also had marked periprosthetic IFNγ expression. 8/9 patients with revision surgery using Ti-coated/oxinium based implants reported symptom relief. Our findings demonstrate that combining allergy diagnostics with histopathology and periprosthetic cytokine assessment could allow us to design better diagnostic strategies.

  14. Cluster analysis as a method for determining size ranges for spinal implants: disc lumbar replacement prosthesis dimensions from magnetic resonance images.

    Science.gov (United States)

    Lei, Dang; Holder, Roger L; Smith, Francis W; Wardlaw, Douglas; Hukins, David W L

    2006-12-01

    Statistical analysis of clinical radiologic data. To develop an objective method for finding the number of sizes for a lumbar disc replacement. Cluster analysis is a well-established technique for sorting observations into clusters so that the "similarity level" is maximal if they belong to the same cluster and minimal otherwise. Magnetic resonance scans from 69 patients, with no abnormal discs, yielded 206 sagittal and transverse images of 206 discs (levels L3-L4-L5-S1). Anteroposterior and lateral dimensions were measured from vertebral margins on transverse images; disc heights were measured from sagittal images. Hierarchical cluster analysis was performed to determine the number of clusters followed by nonhierarchical (K-means) cluster analysis. Discriminant analysis was used to determine how well the clusters could be used to classify an observation. The most successful method of clustering the data involved the following parameters: anteroposterior dimension; lateral dimension (both were the mean of results from the superior and inferior margins of a vertebral body, measured on transverse images); and maximum disc height (from a midsagittal image). These were grouped into 7 clusters so that a discriminant analysis was capable of correctly classifying 97.1% of the observations. The mean and standard deviations for the parameter values in each cluster were determined. Cluster analysis has been successfully used to find the dimensions of the minimum number of prosthesis sizes required to replace L3-L4 to L5-S1 discs; the range of sizes would enable them to be used at higher lumbar levels in some patients.

  15. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    I. I. Kuzhelivsky

    2015-01-01

    Full Text Available The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  16. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    OpenAIRE

    I. I. Kuzhelivsky; M. A. Akselrov; L. A. Sitko

    2015-01-01

    The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  17. Piezoelectric ceramic implants: in vivo results.

    Science.gov (United States)

    Park, J B; Kelly, B J; Kenner, G H; von Recum, A F; Grether, M F; Coffeen, W W

    1981-01-01

    The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and bio-compatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.

  18. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    Science.gov (United States)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  19. A Histologic Evaluation on Tissue Reaction to Three Implanted Materials (MTA, Root MTA and Portland Cement Type I in the Mandible of Cats

    Directory of Open Access Journals (Sweden)

    F. Sasani

    2004-09-01

    Full Text Available Statement of Problem: Nowadays Mineral Trioxide aggregate (MTA is widely used for root end fillings, pulp capping, perforation repair and other endodontic treatments.Investigations have shown similar physical and chemical properties for Portland cement and Root MTA with those described for MTA.Purpose: The aim of this in vitro study was to evaluate the tissue reaction to implanted MTA, Portland cement and Root MTA in the mandible of cats.Materials and Methods: Under asepsis condition and general anesthesia, a mucoperiosteal flap, following the application of local anesthesia, was elevated to expose mandibular symphysis. Two small holes in both sides of mandible were drilled. MTA, Portland cement and Root MTA were mixed according to the manufacturers, recommendation and placed in bony cavities. In positive control group, the test material was Zinc oxide powder plus tricresoformalin. In negative control group, the bony cavities were left untreated. After 3,6 and 12 weeks, the animals were sacrificed and the mandibular sections were prepared for histologic examination under light microscope. The presence and thickness of inflammation, presence of fibrosis capsule, the severity of fibrosis and bone formation were investigated. The data were submitted to Exact Fisher test, chi square test and Kruskal-Wallis test for statistical analysis.Results: No statistically significant differences were found in the degree of inflammation,presence of fibrotic capsule, severity of fibrosis and inflammation thickness between Root MTA, Portland cement and MTA (P>0.05. There was no statistical difference in boneformation between MTA and Portland cement (P>0.05. However, bone formation was not found in any of the Root MTA specimens and the observed tissue was exclusively of fibrosis type.Conclusion: The physical and histological results observed with MTA are similar to those of Root MTA and Portland cement. Additionally, all of these three materials are biocompatible

  20. Embedded piezoelectrics for sensing and energy harvesting in total knee replacement units

    Science.gov (United States)

    Wilson, Brooke E.; Meneghini, Michael; Anton, Steven R.

    2015-04-01

    The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is imperative to make the process of knee replacement surgery more objective by developing a data driven approach to ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric sensors can monitor the structural health of the implant in order to perceive potential problems before they become bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power sensors needed for this application.

  1. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    Yeo, In-Sung; Min, Seung-Ki; An, Young-Bai

    2010-01-01

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  2. Evaluation of accuracy of complete-arch multiple-unit abutment-level dental implant impressions using different impression and splinting materials.

    Science.gov (United States)

    Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah

    2013-01-01

    This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.

  3. [Three-dimensional finite element analysis on mechanical behavior of the bone remodeling and bone integration between the bone-implant interface after hip replacement].

    Science.gov (United States)

    Li, Yong-Jiang; Zhang, Li-Cheng; Zhang, Mei-Chao; Yang, Guo-Jing; Lin, Rui-Xin; Cai, Chun-Yuan; Zhong, Shi-Zhen

    2014-04-01

    To discuss the primary stability of the fixed interface between the cementless prosthesis and femur, and its influence on bone ingrowth and secondary stability under the roughened surface and press fit of different prostheses by finite element analysis. :A three-dimensional finite element module of total hip arthroplasty (THA) was developed with Mimics software. There was a collection of data when simulating hip arthroplasty. The frictional coefficient between the fixed interface was 0,0.15,0.40 and 1.00 representing the roughness of prosthesis surface. The press fit was 0, 0.01,0.05 and 0.10 mm according to the operation. The Vion Mises stress distribution and the contact pressure,friction stress and relative sliding displacement between the interface were analysed and compared when simulating the maneuver of climbing stairs. At a fixed press fit of 0.05 mm,the contact pressure between the interface was 230 , 231, 222 and 275 MN under four different frictional coefficient (0,0. 15,0.40 and 1.00) with little change; the relative sliding displacement was 0.529, 0.129, 0.107 and 0.087 mm with a consistent and obvious decline. As the fixed frictional coefficient was 0.40,the contact pressure between the interface were 56.0,67.7 ,60.4 and 49.6 MN under four different press fit (0, 0.01, 0.05 and 0.10 mm) with a reduction; the relative sliding displacement was 0.064,0.062,0.043 and 0.042 mm with an obvious decline, and there was a maximal friction stress when press fit of 0.01 mm. There is a dynamic process of the bone remodeling and bone integration between the interface after hip replacement, determining the long-term outcome. The interface clearance and the frictional coefficient are the key factors of the bone integration.

  4. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  5. Down-selection of candidate alloys for further testing of advanced replacement materials for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States). Applied Physics Program; Leonard, Keith J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024.

  6. Influence of abutment material on peri-implant soft tissues in anterior areas with thin gingival biotype: a multicentric prospective study.

    Science.gov (United States)

    Lops, Diego; Stellini, Edoardo; Sbricoli, Luca; Cea, Niccolò; Romeo, Eugenio; Bressan, Eriberto

    2017-10-01

    The aim of the present clinical trial was to analyze, through spectrophotometric digital technology, the influence of the abutment material on the color of the peri-implant soft tissue in patients with thin gingival biotype. Thirty-seven patients received an endosseous dental implant in the anterior maxilla. At time of each definitive prosthesis delivery, an all-ceramic crown has been tried on gold, titanium and zirconia abutment. Peri-implant soft-tissue color has been measured through a spectrophotometer after the insertion of each single abutment. Also facial peri-implant soft-tissue thickness was measured at the level of the implant neck through a caliper. A specific software has been utilized to identify a standardized tissue area and to collect the data before the statistical analysis in Lab* color space. ΔE parameters of the selected abutments were tested for correlation with mucosal thickness. Pearson correlation test was used. Only 15 patients met the study inclusion criteria on peri-implant soft-tissue thickness. Peri-implant soft-tissue color was different from that around natural teeth, no matter which type of restorative material was selected. Measurements regarding all the abutments were above the critical threshold of ΔE 8.74 for intraoral color distinction by the naked eye. The ΔE mean values of gold and zirconium abutments were similar (11.43 and 11.37, respectively) and significantly lower (P = 0.03 and P = 0.04, respectively) than the titanium abutment (13.55). In patients with a facial soft-tissue thickness ≤2 mm, the ΔE mean value of gold and zirconia abutments was significantly lower than that of titanium abutments (P = 0.03 and P = 0.04, respectively) and much more close to the reference threshold of 8.74. For peri-implant soft tissue of ≤2 mm, gold or zirconia abutments could be selected in anterior areas treatment. Moreover, the thickness of the peri-implant soft tissue seemed to be a crucial factor in the abutment impact

  7. Sistema de fabrico rápido de implantes ortopédicos Rapid manufacturing system of orthopedics implants

    Directory of Open Access Journals (Sweden)

    Carlos Relvas

    2009-06-01

    Full Text Available Este estudo teve como objectivo o desenvolvimento uma metodologia de fabrico rápido de implantes ortopédicos, em simultaneidade com a intervenção cirúrgica, considerando duas potenciais aplicações na área ortopédica: o fabrico de implantes anatomicamente adaptados e o fabrico de implantes para substituição de perdas ósseas. A inovação do trabalho desenvolvido consiste na obtenção in situ da geometria do implante, através da impressão directa de um material elastomérico (polivinilsiloxano que permite obter com grande exactidão a geometria pretendida. Após digitalização do modelo obtido em material elastomérico, o implante final é fabricado por maquinagem recorrendo a um sistema de CAD/CAM dedicado. O implante após esterilização, pode ser colocado no paciente. O conceito foi desenvolvido com recurso a tecnologias disponíveis comercialmente e de baixo custo. O mesmo foi testado sob a forma de uma artroplastia da anca realizada in vivo numa ovelha. O acréscimo de tempo de cirurgia foi de 80 minutos sendo 40 directamente resultantes do processo de fabrico do implante. O sistema desenvolvido revelou-se eficiente no alcance dos objectivos propostos, possibilitando o fabrico de um implante durante um período de tempo perfeitamente compatível com o tempo de cirurgia.This study, aimed the development of a methodology for rapid manufacture of orthopedic implants simultaneously with the surgical intervention, considering two potential applications in the fields of orthopedics: the manufacture of anatomically adapted implants and implants for bone loss replacement. This work innovation consists on the capitation of the in situ geometry of the implant by direct capture of the shape using an elastomeric material (polyvinylsiloxane which allows fine detail and great accuracy of the geometry. After scanning the elastomeric specimen, the implant is obtained by machining using a CNC milling machine programmed with a dedicated CAD

  8. Immediate implants in extraction sockets with periapical lesions: an illustrated review

    Directory of Open Access Journals (Sweden)

    Arthur B. Novaes Jr.

    2013-10-01

    Full Text Available Aim Immediate implantation has gained great attention since first proposed. Immediate implants in replacement of teeth with periapical lesion is, to date, an issue of discussion. The aim of this study is to perform an illustrated literature review of immediate implants in sockets exhibiting previous periapical lesions.Materials and methods A search on medline/EMBASE database was done for the literature review which is presented together with two case reports illustrating the state of the art of immediate implants on sockets with periapical lesions. Both cases are presented in areas with great aesthetic demands and a periapical lesion of considerable size. The two cases were conducted following strict granulation tissue removal and careful rinsing and pre-operative antibiotics, followed by good primary stability of the dental implant.Results and conclusion Both cases represented successes in aesthetics and function, describing a successful protocol for immediate implant installation in areas exhibiting periapical lesions.

  9. Study of deuterium retention in/release from ITER-relevant Be-containing mixed material layers implanted at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, K., E-mail: kazuyoshi.sugiyama@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Porosnicu, C. [National Institute for Laser, Plasma and Radiation Physics, EURATOM-MEdC Association, 077125 Bucharest (Romania); Jacob, W.; Roth, J.; Dürbeck, Th. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Jepu, I.; Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, EURATOM-MEdC Association, 077125 Bucharest (Romania)

    2013-07-15

    D implantation into Be-containing mixed material layers: Be, Be–W (W: ∼6 at.%) and Be–C (C: ∼50 at.%), was performed at elevated temperatures. The temperature dependence of D retention varied depending on the admixed element. D retention in Be and Be–W layers decreases with increasing implantation temperature, while the Be–C layers maintained rather high D retention in the present investigated temperature range (up to 623 K). D desorption behaviour from Be–C suggests the contribution of C–D bonds to D retention. W admixture into Be can significantly suppress D retention in Be. Long-term isothermal annealing at 513 and 623 K for D removal was also performed to simulate the ITER-wall-baking scenario. Even extended annealing at temperatures comparable to or lower than the implantation temperature does not lead to a significant release of retained D.

  10. Nanobiotechnology approach to fabricate polycaprolactone nanofibers containing solid titanium nanoparticles as future implant materials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Cha, Jaegwan

    2011-01-01

    In this study, a good combination of electrospun poly(caprolactone) nanofibers incorporated with high purity titanium nanoparticles is introduced for hard tissue engineering applications. A simple approach to utilize the colloidal properties of poly(caprolactone) and titanium nanoparticles...... nanofiber mats, they were incubated in simulated body fluid at 37 °C for 10 days. Field emission scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy indicated that incorporation of titanium strongly activates precipitation of the apatite-like materials from the utilized...... simulated body fluid. Moreover, in-vivo experiments using experimental dogs revealed that nanofibers can yield good tissue regeneration on the surfaces of nanofibers....

  11. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    International Nuclear Information System (INIS)

    Ginefri, J.C.; Poirier-Quinot, M.; Darrasse, L.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemai, B.; Lethimonnier, F.

    2012-01-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micro-molding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by Polydimethylsiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm) 2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures. (authors)

  12. Preliminary evaluation of physical and chemical characterization of waste palm oil shell as cool material replaced in asphaltic concrete as fine aggregate

    Science.gov (United States)

    Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.

    2017-11-01

    Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.

  13. Resultados de artroplastia total de joelho com e sem implante de recapeamento (resurfacing patelar Results of total knee replacement with/without resurfacing of the patella

    Directory of Open Access Journals (Sweden)

    Abdul Khan

    2012-01-01

    Full Text Available OBJETIVO: Estudar a diferença de dor, estalido e crepitação patelofemoral no pós-operatório em pacientes com ou sem recapeamento patelar após 5 anos, os quais tinham dor patelofemoral antes da cirurgia. Estudar a incidência de dor, estalido e crepitação patelofemoral depois de pateloplastia em ambos os grupos. MÉTODOS: Revisão retrospectiva de 765 pacientes submetidos a artroplastia total do joelho (ATJ com ou sem recapeamento patelar. Os pacientes foram perguntados sobre dor pré e pós-operatória, 5 anos depois da cirurgia. Foram examinados por enfermeiro especializado 5 anos, após a cirurgia para verificar estalidos ou crepitação patelofemoral (PF. RESULTADOS: 688 pacientes (89,9% tinham dor PF pré-operatória. De 688 pacientes, 449 tinham recapeamento patelar (R e 239 não tinham (NR. Trinta e seis pacientes do grupo NR tinham pateloplastia. A incidência de dor PF pós-operatória foi 13,3% no grupo R e 13,6% no grupo NR. A incidência de estalido PF pós-operatório no grupo R foi 10,4% e apenas 1,3% no grupo NR (estatisticamente significante, p OBJECTIVE: To study the difference of post-op patellofemoral pain, clunk and crepitus in patients with/without resurfacing at 5 years who had pre-op patellofemoral pain. To study the incidence of post-operative patellofemoral pain, clunk and crepitus following patelloplasty in both the groups. METHODS: Retrospective review of 765 patients who had total knee replacement with/without resurfacing.Patients were asked about both pre-operative pain and also post-operative pain 5 years after the operation. Patients were examined by a specialist nurse at 5 years post-operatively to check for any patellofemoral clunk/crepitus. RESULTS: 688 patients (89.9% had preoperative PF pain. Of 688 patients, 449 had patellar resurfacing and 239 had not (NR. Thirty-six patients from the NR group had patelloplasty. The incidence of postoperative PF pain was 13.3% in the R group and 13.6% in the NR group

  14. Influence of restorative materials on color of implant-supported single crowns in esthetic zone: A spectrophotometric evaluation

    DEFF Research Database (Denmark)

    M., Peng; W.-J., Zhao; M., Hosseini

    2017-01-01

    of the esthetic outcome of soft tissue around implant-supported single crowns in the anterior zone, and the crown color match score was used for subjective evaluation of the esthetic outcome of implant-supported restoration. ANOVA analysis was used to compare the differences among groups and Spearman correlation...

  15. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview

    Directory of Open Access Journals (Sweden)

    Swaptik Chowdhury

    2015-06-01

    Full Text Available With increasing industrialization, the industrial byproducts (wastes are being accumulated to a large extent, leading to environmental and economic concerns related to their disposal (land filling. Wood ash is the residue produced from the incineration of wood and its products (chips, saw dust, bark for power generation or other uses. Cement is an energy extensive industrial commodity and leads to the emission of a vast amount of greenhouse gases, forcing researchers to look for an alternative, such as a sustainable building practice. This paper presents an overview of the work and studies done on the incorporation of wood ash as partial replacement of cement in concrete from the year 1991 to 2012. The aspects of wood ash such as its physical, chemical, mineralogical and elemental characteristics as well as the influence of wood ash on properties such as workability, water absorption, compressive strength, flexural rigidity test, split tensile test, bulk density, chloride permeability, freeze thaw and acid resistance of concrete have been discussed in detail.

  16. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material.

    Science.gov (United States)

    Li, Junlei; Tan, Lili; Wan, Peng; Yu, Xiaoming; Yang, Ke

    2015-04-01

    Mg-2Nd-0.2Zn (NZ20) alloy was prepared for the application as biodegradable implant material in this study. The effects of the extrusion process on microstructure, mechanical and corrosion properties of the alloy were investigated. The as-cast alloy was composed of α-Mg matrix and Mg12Nd eutectic compound. The solution treatment could lead to the Mg12Nd phase dissolution and the grain coarsening. The alloy (E1) preheated at 380°C for 1h and extruded at 390°C presents fine grains with amounts of tiny Mg12Nd particles uniformly dispersed throughout the boundaries and the interior of the grains. The alloy (E2) preheated at 480°C for 1h and extruded at 500°C exhibits relatively larger grains with few nano-scale Mg12Nd phase particles dispersed. The alloy of E1, compared with E2, showed relatively lower corrosion rate, higher yield strength and slightly lower elongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    Science.gov (United States)

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  18. TREK1-a program package of modeling of the ion implantation of materials used in electronic techniques

    International Nuclear Information System (INIS)

    Leont'ev, A.V.; Nechaev, S.V.

    1999-01-01

    A package of computer programs is described which treats the slowing down of ions in solids by the means of Monte-Carlo method in the binary collision approximation for an amorphous substance using a screened Coulomb potential for nuclear collisions and the Brandt-Kitagawa theory for the electronic energy loss. For each nuclear collision, the impact parameter and the azimuthal deflection angle are determined from random numbers. The package contains a program of calculation of ion implantation whose features are described above, a database 'MME' (Materials of Micro Electronics) which stores all necessary data for the calculation, and a database control application providing an easy access to the data in MME. The programs of the package are made to run under Windows 95/98 and Windows NT operating systems. They were created using the following means: Borland Delphi 3.0, Paradox 7.0, Borland Database Engine 4.5. The running time of the calculation process depends on the problem chosen and is mainly influenced by the number of pseudo ions, their energy and atomic properties of the target. For the test example of 100 keV boron atoms incident PMMA, a calculation with 1*10 4 pseudo ions on a computer with the Pentium-166 processor requires about 2 min compared to 7 min by well known Trim95

  19. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  20. Choice of materials for the immobilization of 85-krypton in a metallic matrix by combined ion implantation and sputtering

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1985-01-01

    Immobilization in a metal matrix by combined ion implantation and sputtering promises to offer an ideal method for the containment of krypton-85 arising from the reprocessing of nuclear fuel. A 50 kW inactive pilot plant has been built and operated to prepare a copper deposit 22 mm thick weighing 23 kg and containing over 30 liters of inactive gas. The gas incorporation rate exceeded the design figure of 0.3 liters/hour and the vessel was operated at powers up to 30 kW, which corresponds to that envisaged for the industrial vessel. The power consumption was less than 100 kWh/liter. A full-scale vessel (1 m long, 0.26 m diameter) has also been tested at low power. Samples of alternative candidate materials: stainless steel, incoloy, nickel and nickel-lanthanum have been prepared and tested. Nickel appears to be the most promising since it incorporates gas with an efficiency 70% greater than copper and also retains the gas to a temperature at least 100 0 C higher than copper. Tests are being carried out with 100 Curies of radioactive krypton in order to demonstrate that the process will operate satisfactorily at the high internal β irradiation levels that will exist in an active plant and to prepare samples containing krypton-85 for long term leakage measurements and for assessment of any effects caused by the build-up of the decay product rubidium

  1. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  2. Immunohistochemical evaluation: The effects of propolis on osseointegration of dental implants in rabbit′s tibia

    Directory of Open Access Journals (Sweden)

    Bushra Habeeb Al-Molla

    2014-01-01

    Full Text Available Background: Dental implant is an artificial tooth root-fixed into the jaws to hold a replacement tooth or bridge. Functional surface modifications by organic material such as propolis coating seem to enhance early peri-implant bone formation, enhancing the initial cell attachment. The aim of the study was to study the expression of osteocalcin (OC and type I collagen (COLL1 as bone formation markers in propolis-coated and -uncoated implant in interval periods (1, 2, 4, and 6 weeks. Materials and Methods: Commercially pure titanium (cpTi implants, coated with propolis protein, were placed in the tibias of 40 New Zealand white rabbits, histological and immunohistochemical tests for detection of expression of OC and COLL1were performed on all the implants of both control and experimental groups for (1, 2, 4, and 6 weeks healing intervals. Results: Histological finding for coated titanium implant with propolis illustrated an early bone formation, mineralization, and maturation in comparison to control. Immunohistochemical finding showed that positive reaction for OC and COLL1 was expressed by osteoblast cells at implants coated with propolis, indicating that bone formation and maturation was accelerated by adding biological materials as a modification modality of implant surface. Conclusion: The present study concludes that coating of implants with propolis showed increment in osseointegration in short interval period.

  3. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  4. Ion Implantation in Ge: Structural and electrical investigation of the induced lattice damage & Study of the lattice location of implanted impurities

    CERN Document Server

    Decoster, Stefan; Wahl, Ulrich

    The past two decades, germanium has drawn international attention as one of the most promising materials to replace silicon in semiconductor applications. Due to important advantages with respect to Si, such as the increased electron and hole mobility, Ge is well on its way to become an important material in future high-speed integrated circuits. Although the interest in this elemental group IV semiconductor is increasing rapidly nowadays, the number of publications about this material is still relatively scarce, especially when compared to Si. The most widely used technique to dope semiconductors is ion implantation, due to its good control of the dopant concentration and profile, and the isotopic purity of the implanted species. However, there is a major lack of knowledge of the fundamental properties of ion implantation in Ge, which has triggered the research presented in this thesis. One of the most important and generally unwanted properties of ion implantation is the creation of damage to the crystal la...

  5. Concrete Waste as a Cement Replacement Material in Concrete Blocks for Optimization of Thermal and Mechanical Properties

    OpenAIRE

    Rosman M.S.; Abas N.F.; Othuman Mydin M.A.

    2014-01-01

    The sustainability of the natural environment and eco-systems is of great importance. Waste generated from construction forces mankind to find new dumping grounds and at the same time, more natural resources are required for use as construction materials. In order to overcome this problem, this study was conducted to investigate the use of concrete waste in concrete blocks with a special focus on the thermal and mechanical properties of the resulting products. Three varieties of concrete mixt...

  6. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios

    2017-04-24

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  7. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios; Griffiths, Jack; Fraser, James; Kirkus, Mindaugas; Chen, Hu; Nielsen, Christian; McCulloch, Iain

    2017-01-01

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  8. The Use of Light/Chemically Hardened Polymethylmethacrylate, Polyhydroxylethylmethacrylate, and Calcium Hydroxide Graft Material in Combination With Polyanhydride Around Implants and Extraction Sockets in Minipigs: Part II: Histologic and Micro-CT Evaluations

    Science.gov (United States)

    Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J.; Abdallah, Rima; Morgan, Elise F.; Diekwisch, Thomas G.H.; Ashman, Arthur; Van Dyke, Thomas

    2015-01-01

    Background This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. Methods A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Results Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Conclusion Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a

  9. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  10. Techniques for the research on mass deposition effects in the bio-materials induced by heavy ion implantation

    International Nuclear Information System (INIS)

    Yuan Shibin; Wei Zengquan; Li Qiang

    2002-01-01

    Researchers have used heavy ion beams to implant small biomolecules, followed by advanced instrumental analysis to make preliminary studies on mass deposition induced by ion implantation. But research reports on the biological effects, i.e. mass deposition effects induced by mass deposition in living tissues, cells and macro-biomolecules have not been delivered hitherto. In the near future radioactive heavy ion beams will be possible to implant living cells and biomolecules, and auto-radiography, radioactive measurements and molecular biological techniques will be employed to further studies on the effects

  11. Dental Implants and General Dental Practitioners of Nepal: A study of existing knowledge and need for further education

    Directory of Open Access Journals (Sweden)

    Bhageshwar Dhami

    2017-03-01

    Full Text Available Background & Objectives: The use of dental implants in partially or completely edentulous patients has proved effective and an accepted treatment modality with predictable long-term success. Dental implants are becoming a popular choice for replacing the missing teeth because of increased awareness about implants both in dentists and patients. The objective of the study was to assess the basic knowledge and education about dental implants among general dental practitioners (GDPs of Nepal.Materials & Methods:  A cross sectional questionnaire was carried out among 110 GDPs which consist of twenty questions that were divided into three categories; first with some basic knowledge in implant dentistry, second with clinical knowledge of dental implants and third with dental implant education and training.Results: Out of 110 GDPs, 72.7% had basic knowledge about implant dentistry and 65.5% were not aware about advance surgical procedures like sinus lift and guided bone regeneration. All the GDPs were positive regarding more training and education in dental implants and 95.5% of them would like to incorporate dental implant treatment in their practice in future. Conclusion: GDPs should have adequate knowledge and training of dental implants which can be incorporated at undergraduate or post doctoral level so that they are skilled to provide quality dental implant therapy to their patients confidently.

  12. Sol-gel synthesis and characterization of SiO{sub 2}/PEG hybrid materials containing quercetin as implants with antioxidant properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    In the present work, Silica/Polyethylene glycol (PEG) hybrid nanocomposites containing an antioxidant agent, the quercetin, were synthesized via sol-gel to be used as implants with antioxidant properties. Fourier transform infrared (FT-IR) analysis proved that a modification of both polymer and quercetin occurs due to synthesis process. Scanning electron microscope (SEM) showed that the proposed materials were hybrid nanocomposites. The bioactivity was ascertained by soaking the samples in a simulated body fluid (SBF).

  13. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    Science.gov (United States)

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  15. Effects of material growth technique and Mg doping on Er3+ photoluminescence in Er-implanted GaN

    International Nuclear Information System (INIS)

    Kim, S.; Henry, R. L.; Wickenden, A. E.; Koleske, D. D.; Rhee, S. J.; White, J. O.; Myoung, J. M.; Kim, K.; Li, X.; Coleman, J. J.

    2001-01-01

    Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies have been carried out at 6 K on the ∼1540 nm 4 I 13/2 - 4 I 15/2 emissions of Er 3+ in Er-implanted and annealed GaN. These studies revealed the existence of multiple Er 3+ centers and associated PL spectra in Er-implanted GaN films grown by metalorganic chemical vapor deposition, hydride vapor phase epitaxy, and molecular beam epitaxy. The results demonstrate that the multiple Er 3+ PL centers and below-gap defect-related absorption bands by which they are selectively excited are universal features of Er-implanted GaN grown by different techniques. It is suggested that implantation-induced defects common to all the GaN samples are responsible for the Er site distortions that give rise to the distinctive, selectively excited Er 3+ PL spectra. The investigations of selectively excited Er 3+ PL and PLE spectra have also been extended to Er-implanted samples of Mg-doped GaN grown by various techniques. In each of these samples, the so-called violet-pumped Er 3+ PL band and its associated broad violet PLE band are significantly enhanced relative to the PL and PLE of the other selectively excited Er 3+ PL centers. More importantly, the violet-pumped Er 3+ PL spectrum dominates the above-gap excited Er 3+ PL spectrum of Er-implanted Mg-doped GaN, whereas it was unobservable under above-gap excitation in Er-implanted undoped GaN. These results confirm the hypothesis that appropriate codopants can increase the efficiency of trap-mediated above-gap excitation of Er 3+ emission in Er-implanted GaN. [copyright] 2001 American Institute of Physics

  16. Tribological comparison of materials

    Science.gov (United States)

    Shi, Bing

    Approximately 600,000 total joint replacement surgeries are performed each year in the United States. Current artificial joint implants are mainly metal-on-plastic. The synthetic biomaterials undergo degradation through fatigue and corrosive wear from load-bearing and the aqueous ionic environment of the human body. Deposits of inorganic salts can scratch weight-bearing surfaces, making artificial joints stiff and awkward. The excessive wear debris from polyethylene leads to osteolysis and potential loosening of the prosthesis. The lifetime for well-designed artificial joints is at most 10 to 15 years. A patient can usually have two total joint replacements during her/his lifetime. Durability is limited by the body's reaction to wear debris of the artificial joints. Wear of the artificial joints should be reduced. A focus of this thesis is the tribological performance of bearing materials for Total Replacement Artificial Joints (TRAJ). An additional focus is the scaffolds for cell growth from both a tissue engineering and tribological perspective. The tribological properties of materials including Diamond-like Carbon (DLC) coated materials were tested for TRAJ implants. The DLC coatings are chemically inert, impervious to acid and saline media, and are mechanically hard. Carbon-based materials are highly biocompatible. A new alternative to total joints implantation is tissue engineering. Tissue engineering is the replacement of living tissue with tissue that is designed and constructed to meet the needs of the individual patient. Cells were cultured onto the artificial materials, including metals, ceramics, and polymers, and the frictional properties of these materials were investigated to develop a synthetic alternative to orthopedic transplants. Results showed that DLC coated materials had low friction and wear, which are desirable tribological properties for artificial joint material. Cells grew on some of the artificial matrix materials, depending on the

  17. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  18. Influence of conformity on the wear of total knee replacement: An experimental study.

    Science.gov (United States)

    Brockett, Claire L; Carbone, Silvia; Fisher, John; Jennings, Louise M

    2018-02-01

    Wear of total knee replacement continues to be a significant factor influencing the clinical longevity of implants. Historically, failure due to delamination and fatigue directed design towards more conforming inserts to reduce contact stress. As new generations of more oxidatively stable polyethylene have been developed, more flexibility in bearing design has been introduced. The aim of this study was to investigate the effect of insert conformity on the wear performance of a fixed bearing total knee replacement through experimental simulation. Two geometries of insert were studied under standard gait conditions. There was a significant reduction in wear with reducing implant conformity. This study has demonstrated that bearing conformity has a significant impact on the wear performance of a fixed bearing total knee replacement, providing opportunities to improve clinical performance through enhanced material and design selection.

  19. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO_3)_2 and NH_4H_2PO_4 components. During the electrochemical deposition Ag"+ and Zn"2"+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn"2"+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  20. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  1. Plant Materials as an Appropriate Replacement for Reducing Environmental Risk of using Chemical Insecticides (Case Study: Colorado Potato Beetle

    Directory of Open Access Journals (Sweden)

    Akram taghizadeh sarokolaei

    2017-10-01

    Full Text Available Introduction Natural and human hazards arising from the use of chemical pesticides to reduce pest damage are significantly increased. In this way, tend to use alternatives with similar efficacy and less risk like plant to control pests has increased. Therefore, it seems that plant compounds can be used as alternatives to chemical insecticides to protect agricultural products in the future. These compounds have no harmful and negative effects on nature and are safer than chemical insecticides; they decompose rapidly, do not remain in soil and water and have no effect on non-target populations. One of the important agricultural products around the world is potato and a major pest of it around the world and in Iran that damage the product is Colorado potato beetle, Leptinotarsa decemlineata (Say. Nowadays chemical control is the most common method to control of this pest but causes resistance. According to the Colorado potato beetle resistant to conventional chemical pesticides for controlling them, in recent year tendency to use insecticide with plant origin become more for this pest.One of the most important plant compounds are essential oils. Due to the low risk of essential oils to humans and the environment and their insecticidal effect, we motivated to investigate the insecticidal effects of three important medicinal plants on Colorado potato beetle for reducing the environmental hazards arising from the use of chemical insecticides. Materials and methods Three insecticides thiamethoxam, diniteforane, imidacloprid were bought and three essential oils Satureja khuzistanica Jamzad, Ocimum basilicum L. and Mentha spicata L. were gathered in spring then dried in shade at room temperature and for later use in special plastic bags were stored at -24 ° C. With Clevenger essential oils were extracted. In the spring and summer 4th instars larvae of Leptinotarsa decemlineata Say from potato fields of Ardabil plain collected. Investigation against this

  2. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  3. Concrete Waste as a Cement Replacement Material in Concrete Blocks for Optimization of Thermal and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Rosman M.S.

    2014-01-01

    Full Text Available The sustainability of the natural environment and eco-systems is of great importance. Waste generated from construction forces mankind to find new dumping grounds and at the same time, more natural resources are required for use as construction materials. In order to overcome this problem, this study was conducted to investigate the use of concrete waste in concrete blocks with a special focus on the thermal and mechanical properties of the resulting products. Three varieties of concrete mixtures were prepared, whereby they each contained different amounts of concrete waste of 0%, 5% and 15%, respectively. These mixtures were formed into cube specimens and were then analysed for data on their compressive strength, density and ultrasonic pulse. Thermal investigations were carried out on each admixture as well as on a control concrete block of model design. The thermal data results indicated that the 15% concrete waste mixture had the lowest temperature in comparison to the surrounding air. For density and compressive strength, the highest readings came from the control mixture at 2390 kg/m3 and 40.69 N/mm2, respectively, at 28 days. In terms of pulse velocity, the 5% concrete waste mixture indicated medium quality results of 4016 m/s.

  4. Ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Gusev, V.; Gusevova, M.

    1980-01-01

    The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)

  5. Ion implantation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V; Gusevova, M

    1980-06-01

    The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.

  6. Comparison of early clinical outcomes following transcatheter aortic valve implantation versus surgical aortic valve replacement versus optimal medical therapy in patients older than 80 years with symptomatic severe aortic stenosis.

    Science.gov (United States)

    Im, Eui; Hong, Myeong-Ki; Ko, Young-Guk; Shin, Dong-Ho; Kim, Jung-Sun; Kim, Byeong-Keuk; Choi, Donghoon; Shim, Chi Young; Chang, Hyuk-Jae; Shim, Jae-Kwang; Kwak, Young-Lan; Lee, Sak; Chang, Byung-Chul; Jang, Yangsoo

    2013-05-01

    Transcatheter aortic valve implantation (TAVI) has become an attractive therapeutic strategy for severe aortic stenosis (AS) in elderly patients due to its minimally-invasive nature. Therefore, early results of its clinical outcomes in elderly Korean patients were evaluated. We compared early clinical outcomes of TAVI, surgical aortic valve replacement (SAVR), and optimal medical therapy (OMT) in patients aged≥80 years with symptomatic severe AS. Treatment groups were allocated as follows: TAVI (n=10), SAVR (n=14), and OMT (n=42). Baseline clinical characteristics including predicted operative mortality were similar among the three groups. However, patients with New York Heart Association functional class III or IV symptoms and smaller aortic valve area were treated with TAVI or SAVR rather than OMT. In-hospital combined safety endpoints (all-cause mortality, major stroke, peri-procedural myocardial infarction, life-threatening bleeding, major vascular complication, and acute kidney injury) after TAVI or SAVR were significantly lower in the TAVI group than in the SAVR group (10.0% vs. 71.4%, respectively, p=0.005), along with an acceptable rate of symptom improvement and device success. During the follow-up period, the TAVI group showed the lowest rate of 3-month major adverse cardiovascular and cerebrovascular events, a composite of all-cause mortality, myocardial infarction, major stroke, and re-hospitalization (TAVI 0.0% vs. SAVR 50.0% vs. OMT 42.9%, p=0.017). Treatment with TAVI was associated with lower event rates compared to SAVR or OMT. Therefore, TAVI may be considered as the first therapeutic strategy in selected patients aged≥80 years with symptomatic severe AS.

  7. Comparison of 1-Year Outcome in Patients With Severe Aorta Stenosis Treated Conservatively or by Aortic Valve Replacement or by Percutaneous Transcatheter Aortic Valve Implantation (Data from a Multicenter Spanish Registry).

    Science.gov (United States)

    González-Saldivar, Hugo; Rodriguez-Pascual, Carlos; de la Morena, Gonzalo; Fernández-Golfín, Covadonga; Amorós, Carmen; Alonso, Mario Baquero; Dolz, Luis Martínez; Solé, Albert Ariza; Guzmán-Martínez, Gabriela; Gómez-Doblas, Juan José; Jiménez, Antonio Arribas; Fuentes, María Eugenia; Gay, Laura Galian; Ortiz, Martin Ruiz; Avanzas, Pablo; Abu-Assi, Emad; Ripoll-Vera, Tomás; Díaz-Castro, Oscar; Osinalde, Eduardo P; Martínez-Sellés, Manuel

    2016-07-15

    The factors that influence decision making in severe aortic stenosis (AS) are unknown. Our aim was to assess, in patients with severe AS, the determinants of management and prognosis in a multicenter registry that enrolled all consecutive adults with severe AS during a 1-month period. One-year follow-up was obtained in all patients and included vital status and aortic valve intervention (aortic valve replacement [AVR] and transcatheter aortic valve implantation [TAVI]). A total of 726 patients were included, mean age was 77.3 ± 10.6 years, and 377 were women (51.8%). The most common management was conservative therapy in 468 (64.5%) followed by AVR in 199 (27.4%) and TAVI in 59 (8.1%). The strongest association with aortic valve intervention was patient management in a tertiary hospital with cardiac surgery (odds ratio 2.7, 95% confidence interval 1.8 to 4.1, p <0.001). The 2 main reasons to choose conservative management were the absence of significant symptoms (136% to 29.1%) and the presence of co-morbidity (128% to 27.4%). During 1-year follow-up, 132 patients died (18.2%). The main causes of death were heart failure (60% to 45.5%) and noncardiac diseases (46% to 34.9%). One-year survival for patients treated conservatively, with TAVI, and with AVR was 76.3%, 94.9%, and 92.5%, respectively, p <0.001. One-year survival of patients treated conservatively in the absence of significant symptoms was 97.1%. In conclusion, most patients with severe AS are treated conservatively. The outcome in asymptomatic patients managed conservatively was acceptable. Management in tertiary hospitals is associated with valve intervention. One-year survival was similar with both interventional strategies. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Finite element analysis (FEA) of dental implant fixture for mechanical stability and rapid osseointegration

    Science.gov (United States)

    Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf

    2017-10-01

    For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.

  9. Evaluation of Bond Strength between Grooved Titanium Alloy Implant Abutments and Provisional Veneering Materials after Surface Treatment of the Abutments: An In vitro Study.

    Science.gov (United States)

    Venkat, Gowtham; Krishnan, Murugesan; Srinivasan, Suganya; Balasubramanian, Muthukumar

    2017-01-01

    Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell-Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman-Keuls post hoc test. The laser-etched samples showed higher bond strength. Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this study confirmed that a combination of surface treatments and bond agents enhances the

  10. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis.

    Science.gov (United States)

    Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias

    2014-11-01

    Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections

  11. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    Since the mid‑20th century, there has been an increase in interest in the implant process for the replacement of missing teeth. Branemark ... Ideal placement of the implant facilitates the establishment of favorable forces on the implants and the prosthetic component as well as ensures an aesthetic outcome. Therefore, it is ...

  12. Knee Replacement

    Science.gov (United States)

    ... days. Medications prescribed by your doctor should help control pain. During the hospital stay, you'll be encouraged to move your ... exercise your new knee. After you leave the hospital, you'll continue physical ... mobility and a better quality of life. And most knee replacements can be ...

  13. Midterm Results of Aortic Valve Replacement with Cryopreserved Homografts

    Directory of Open Access Journals (Sweden)

    Emre Özker

    2012-06-01

    Full Text Available Objective: The aim of this study was to analyze the midterm clinical results of aortic valve replacement with cryopreserved homografts.Materials and Methods: Aortic valve replacement was performed in 40 patients with cryopreserved homograft. The indications were aortic valve endocarditis in 20 patients (50%, truncus arteriosus in 6 patients (15%, and re-stenosis or regurtitation after aortic valve reconstruction in 14 (35% patients. The valve sizes ranged from 10 to 27mm. A full root replacement technique was used for homograft replacement in all patients.Results: The 30-day postoperative mortality rate was 12.5% (5 patients. There were four late deaths. Only one of them was related to cardiac events. Overall mortality was 22.5%. Thirty-three patients were followed up for 67±26 months. Two patients needed reoperation due to aortic aneurysm caused by endocarditis. The mean transvalvular gradient significantly decreased after valve replacement (p<0.003. The last follow up showed that the 27 (82% patients had a normal left ventricular function.Conclusion: Cryopreserved homografts are safe alternatives to mechanical valves that can be used when there are proper indications. Although it has a high perioperative mortality rate, cryopreserved homograft implantation is an alternative for valve replacement, particularly in younger patients and for complex surgical problems such as endocarditis that must be minimalized.

  14. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C 2 H 2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti 4+ , Ti 3+ and Ti 2+

  15. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  16. Characteristics of MOSFETs fabricated in silicon-on-insulator material formed by high-dose oxygen ion implantation

    International Nuclear Information System (INIS)

    Lam, H.W.; Pinizzotto, R.F.; Yuan, H.T.; Bellavance, D.W.

    1981-01-01

    By implanting a dose of 6 x 10 17 cm -2 of 32 O 2 + at 300 keV into a silicon wafer, a buried oxide layer is formed. Crystallinity of the silicon layer above the buried oxide layer is maintained by applying a high (>200 0 C) substrate temperature during the ion implantation process. A two-step anneal cycle is found to be adequate to form the insulating buried oxide layer and to repair the implantation damage in the silicon layer on top of the buried oxide. A surface electron mobility as high as 710 cm 2 /Vs has been measured in n-channel MOSFETs fabricated in a 0.5 μm-thick epitaxial layer grown on the buried oxide wafer. A minimum subthreshold current of about 10 pA per micron of channel width at Vsub(DS)=2 V has been measured. (author)

  17. Dental implants: A review.

    Science.gov (United States)

    Guillaume, B

    2016-12-01

    A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. The influence of storage and heat treatment on a magnesium-based implant material: an in vitro and in vivo study.

    Science.gov (United States)

    Bracht, Katja; Angrisani, Nina; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Reifenrath, Janin

    2015-10-19

    Magnesium alloys are recommended as a potential material for osteosynthesis. It is known that storage-induced property modifications can occur in materials like aluminum. Thus the aim of this study was to analyze the influence of storage durations of up to 48 weeks on the biomechanical, structural, and degradation properties of the degradable magnesium alloy LAE442. Extruded implants (n = 104; Ø 2.5 mm × 25 mm) were investigated after storage periods of 0, 12, 24, and 48 weeks in three different sub-studies: (I) immediately after the respective storage duration and after an additional (II) 56 days of in vitro corrosion in simulated body fluid (SFB), and (III) 48 weeks in vivo corrosion in a rabbit model, respectively. In addition, the influence of a T5-heat treatment (206 °C for 15 h in an argon atmosphere) was tested (n = 26; 0 week of storage). Evaluation was performed by three-point bending, scanning electron microscopy, radiography, µ-computed tomography, evaluation of the mean grain size, and contrast analysis of precipitations (such as aluminum or lithium). The heat treatment induced a significant reduction in initial stability, and enhanced the corrosion resistance. In vivo experiments showed a good biocompatibility for all implants. During the storage of up to 48 weeks, no significant changes occurred in the implant properties. LAE442 implants can be safely used after up to 48 weeks of storage.

  19. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis.

    Science.gov (United States)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten; Gotfredsen, Klaus

    2013-10-01

    The purpose of this clinical study was to describe outcome variables of all-ceramic and metal-ceramic implant-supported, single-tooth restorations. A total of 59 patients (mean age: 27.9 years) with tooth agenesis and treated with 98 implant-supported single-tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation of crowns, cement excess and technical complications. The aesthetic outcome was assessed by using the Copenhagen Index Score, and the patient-reported outcomes were recorded using the OHIP-49 questionnaire. The statistical analyses were mainly performed by using mixed model of ANOVA for quantitative data and PROC NLMIXED for ordinal categorical data. The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three abutment materials. The frequency of biological complications was higher at restorations with all-ceramic restorations than metal-ceramic crowns. Loss of retention, which was only observed at metal-ceramic crowns, was the most frequent technical complication, and the marginal adaptations of all-ceramic crowns were significantly less optimal than metal-ceramic crowns (P = 0.020). The professional-reported aesthetic outcome demonstrated significantly superior colour match of all-ceramic over metal

  20. Survival of dental implants placed in sites of previously failed implants.

    Science.gov (United States)

    Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-11-01

    To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A new organic reference material, l-glutamic acid, USGS41a, for δ(13) C and δ(15) N measurements - a replacement for USGS41.

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B; Mroczkowski, Stanley J; Brand, Willi A; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-04-15

    The widely used l-glutamic acid isotopic reference material USGS41, enriched in both (13) C and (15) N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41. USGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in (13) C and (15) N together with l-glutamic acid of normal isotopic composition. The δ(13) C and δ(15) N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ(13) CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ(13) CVPDB = -46.6 mUr), and IAEA-N-1 ammonium sulfate (δ(15) NAir = +0.43 mUr) and USGS32 potassium nitrate (δ(15) N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry. USGS41a is isotopically homogeneous; the reproducibility of δ(13) C and δ(15) N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ(13) C value of +36.55 mUr relative to VPDB and a δ(15) N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41. The new isotopic reference material USGS41a can be used with USGS40 (having a δ(13) CVPDB value of -26.39 mUr and a δ(15) NAir value of -4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. A new organic reference material, L-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Mroczkowski, Stanley J.; Brand, Willi A.; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-01-01

    RationaleThe widely used l-glutamic acid isotopic reference material USGS41, enriched in both 13C and 15N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41.MethodsUSGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in 13C and 15N together with l-glutamic acid of normal isotopic composition. The δ13C and δ15N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ13CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ13CVPDB = −46.6 mUr), and IAEA-N-1 ammonium sulfate (δ15NAir = +0.43 mUr) and USGS32 potassium nitrate (δ15N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry.ResultsUSGS41a is isotopically homogeneous; the reproducibility of δ13C and δ15N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ13C value of +36.55 mUr relative to VPDB and a δ15N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41.ConclusionsThe new isotopic reference material USGS41a can be used with USGS40 (having a δ13CVPDB value of −26.39 mUr and a δ15NAir value of −4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Single-tooth implant restorations in the esthetic zone--contemporary concepts for optimization and maintenance of soft tissue esthetics in the replacement of failing teeth in compromised sites.

    Science.gov (United States)

    Mankoo, Tidu

    2007-01-01

    In recent years, implant dentistry has undergone a profound shift in emphasis. The focus evolved first from a surgically driven approach to a prosthetically driven approach and now to a more biologically driven approach with the goal of optimizing and maintaining esthetics. While traditional implant protocols are well established for management of implants placed in healed edentulous sites, the data available offer little clarity on the factors and procedures for long-term esthetic success, particularly in terms of maintained stable soft tissue outcomes around implant restorations in the esthetic zone. Unfortunately, the 90%+ success rates indicated in most studies of dental implant systems today do not represent the success of the esthetic outcome. This has created a demand--certainly among clinicians in private practice focused on the ongoing maintenance of esthetic outcomes--for clear treatment protocols to achieve esthetic results that are not only predictable and consistent but that can withstand the test of time.

  4. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use

    Czech Academy of Sciences Publication Activity Database

    Starčuk jr., Zenon; Bartušek, Karel; Hubálková, H.; Bachorec, T.; Starčuková, Jana; Krupa, P.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 24-27 ISSN 1335-8871 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : magnetic resonance imaging * artifacts * metallic implants * dental alloys * magnetic susceptibility Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Dental implants in growing children

    Directory of Open Access Journals (Sweden)

    S K Mishra

    2013-01-01

    Full Text Available The replacement of teeth by implants is usually restricted to patients with completed craniofacial growth. The aim of this literature review is to discuss the use of dental implants in normal growing patients and in patients with ectodermal dysplasia and the influence of maxillary and mandibular skeletal and dental growth on the stability of those implants. It is recommended that while deciding the optimal individual time point of implant insertion, the status of skeletal growth, the degree of hypodontia, and extension of related psychological stress should be taken into account, in addition to the status of existing dentition and dental compliance of a pediatric patient.

  6. The use of light/chemically hardened polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide graft material in combination with polyanhydride around implants and extraction sockets in minipigs: Part II: histologic and micro-CT evaluations.

    Science.gov (United States)

    Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J; Abdallah, Rima; Morgan, Elise F; Diekwisch, Thomas G H; Ashman, Arthur; Van Dyke, Thomas

    2014-09-01

    This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P sockets with an intact crestal cortical bone. Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a well-organized implant-bone interface and is useful in crestal augmentation during immediate implant placement.

  7. Aspirin Versus Aspirin Plus Clopidogrel as Antithrombotic Treatment Following Transcatheter Aortic Valve Replacement With a Balloon-Expandable Valve: The ARTE (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation) Randomized Clinical Trial.

    Science.gov (United States)

    Rodés-Cabau, Josep; Masson, Jean-Bernard; Welsh, Robert C; Garcia Del Blanco, Bruno; Pelletier, Marc; Webb, John G; Al-Qoofi, Faisal; Généreux, Philippe; Maluenda, Gabriel; Thoenes, Martin; Paradis, Jean-Michel; Chamandi, Chekrallah; Serra, Vicenç; Dumont, Eric; Côté, Mélanie

    2017-07-10

    The aim of this study was to compare aspirin plus clopidogrel with aspirin alone as antithrombotic treatment following transcatheter aortic valve replacement (TAVR) for the prevention of ischemic events, bleeding events, and death. Few data exist on the optimal antithrombotic therapy following TAVR. This was a randomized controlled trial comparing aspirin (80 to 100 mg/day) plus clopidogrel (75 mg/day) (dual antiplatelet therapy [DAPT]) versus aspirin alone (single-antiplatelet therapy [SAPT]) in patients undergoing TAVR with a balloon-expandable valve. The primary endpoint was the occurrence of death, myocardial infarction (MI), stroke or transient ischemic attack, or major or life-threatening bleeding (according to Valve Academic Research Consortium 2 definitions) within the 3 months following the procedure. The trial was prematurely stopped after the inclusion of 74% of the planned study population. A total of 222 patients were included, 111 allocated to DAPT and 111 to SAPT. The composite of death, MI, stroke or transient ischemic attack, or major or life-threatening bleeding tended to occur more frequently in the DAPT group (15.3% vs. 7.2%, p = 0.065). There were no differences between groups in the occurrence of death (DAPT, 6.3%; SAPT, 3.6%; p = 0.37), MI (DAPT, 3.6%; SAT, 0.9%; p = 0.18), or stroke or transient ischemic attack (DAPT, 2.7%; SAPT, 0.9%; p = 0.31) at 3 months. DAPT was associated with a higher rate of major or life-threatening bleeding events (10.8% vs. 3.6% in the SAPT group, p = 0.038). There were no differences between groups in valve hemodynamic status post-TAVR. This small trial showed that SAPT (vs. DAPT) tended to reduce the occurrence of major adverse events following TAVR. SAPT reduced the risk for major or life-threatening events while not increasing the risk for MI or stroke. Larger studies are needed to confirm these results. (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation: The ARTE

  8. Impact of New-Onset Left Bundle Branch Block and Periprocedural Permanent Pacemaker Implantation on Clinical Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Regueiro, Ander; Abdul-Jawad Altisent, Omar; Del Trigo, María; Campelo-Parada, Francisco; Puri, Rishi; Urena, Marina; Philippon, François; Rodés-Cabau, Josep

    2016-05-01

    Available data on the clinical impact of new-onset left bundle branch block (LBBB) and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement (TAVR) remains controversial. We aimed to evaluate the impact of (1) periprocedural new-onset LBBB or PPI post-TAVR on cardiac mortality and all-cause 1-year mortality and (2) new-onset LBBB on the need for PPI at 1-year follow-up. We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on new-onset LBBB post-TAVR and the need for PPI or mortality at 1-year follow-up, or on 1-year mortality according to the need for periprocedural PPI post-TAVR. Data from 17 studies, including 4756 patients (8 studies) and 7032 patients (11 studies) for the evaluation of the impact of new-onset LBBB and periprocedural PPI post-TAVR were sourced, respectively (with 2 studies used for both outcomes). New-onset LBBB post-TAVR was associated with a higher risk of PPI (risk ratio [RR], 2.18; 95% confidence interval [CI], 1.28-3.70) and cardiac death (RR, 1.39; 95% CI, 1.04-1.86) during follow-up, as well with a tendency toward an increase in all-cause mortality (RR