WorldWideScience

Sample records for replacement battery shipments

  1. Replacing a battery by a nanogenerator with 20 V output

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Youfan; Lin, Long; Zhang, Yan; Wang, Zhong Lin [School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2012-01-03

    Replacing batteries by nanogenerators (NGs) in small consumer electronics is one of the goals in the emerging field of self-powered nanotechnology. We show that the maximum measured output voltage of an NG optimized with pretreatments on the as-grown ZnO nanowire films reaches 20 V and the output current exceeds 6 {mu}A, which corresponds to a power density of 0.2 W cm{sup -3}. The NG is also demonstrated to replace a battery for driving a electronic watch. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles

    Science.gov (United States)

    Mathew, M.; Kong, Q. H.; McGrory, J.; Fowler, M.

    2017-05-01

    The design and optimization of the battery pack in an electric vehicle (EV) is essential for continued integration of EVs into the global market. Reconfigurable battery packs are of significant interest lately as they allow for damaged cells to be removed from the circuit, limiting their impact on the entire pack. This paper provides a simulation framework that models a battery pack and examines the effect of replacing damaged cells with new ones. The cells within the battery pack vary stochastically and the performance of the entire pack is evaluated under different conditions. The results show that by changing out cells in the battery pack, the state of health of the pack can be consistently maintained above a certain threshold value selected by the user. In situations where the cells are checked for replacement at discrete intervals, referred to as maintenance event intervals, it is found that the length of the interval is dependent on the mean time to failure of the individual cells. The simulation framework as well as the results from this paper can be utilized to better optimize lithium ion battery pack design in EVs and make long term deployment of EVs more economically feasible.

  3. Automatic Docking System with Recharging and Battery Replacement for Surveillance Robot

    Directory of Open Access Journals (Sweden)

    M. Meena

    2012-06-01

    Full Text Available Most of the applications like industrial automation, home automation, hospitals, space exploration, military, etc, the surveillance robot are widely used. For that, continuous functioning of surveillance robot is necessary. In this paper, the development of automatic docking system with recharging and battery replacement process for surveillance robot is proposed. The robot can return to the docking station for recharging operations when the battery is low. The charging duration of the battery mounted in the robot is an important issue. To overcome this problem, battery replacement is a perfect solution. The battery is automatically exchanged within 30 seconds. So the robot needs not to be turned off for long duration of time while replacing the battery.

  4. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The guide... with regard to the maintenance, testing, and replacement of vented lead-acid storage batteries...

  5. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., DG-1269 ``Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear... lead-acid storage batteries in nuclear power plants. DATES: Submit comments by May 13, 2013....

  6. Replacement of battery in Asco NPP Chargers; Sustitucion de cargadores de baterias en C. N. Asco

    Energy Technology Data Exchange (ETDEWEB)

    Montero Lansanc, J.

    2013-07-01

    The purpose of this paper is to present the project to replace battery chargers at NPP Asco. It describes the reasons for the replacement, the project approach, the development to date and current status of the project, the economics, and some lessons learned during the process.

  7. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  8. Sustaining Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Bonnardel-Azzarelli, Betty [World Nuclear Transport Institute, Remo House, 4th Floor, 310-312 Regent Street, London, London W1B 3AX (United Kingdom)

    2009-06-15

    Transport plays an essential role in bringing the benefits of the atom to people the world over. Each day thousands of shipments of radioactive materials are transported on national and international routes. These consignments are essential to many aspects of modern life, from the generation of electricity, to medicine and health, scientific research and agriculture. Maintaining safe, cost-effective transport is essential to support them. Despite an outstanding safety record spanning over 45 years, the transport of radioactive materials cannot and must not be taken for granted. In an era of nuclear expansion, with increased transports required to more destinations, a worrisome trend for global supply is that some shipping companies, air carriers, ports and terminals, have instituted policies of not accepting radioactive materials. Experience has shown that the reasons for delays and denials of shipments are manifold and often have their origin in mis-perceptions about the nature of the materials and the requirements for their safe handling and carriage. There is growing recognition internationally of the problems created by shipment delays and denials and they now are being addressed in a more proactive way by such organisations as the International Atomic Energy Agency (IAEA). The rapidly changing supply-demand equation for fuel cycle services: substantial new nuclear build planned or underway in several countries, twenty-first century 'gold rush' fever in uranium exploration and mining, proposed new mechanisms to assure fuel supply to more countries while minimising proliferation risks. But, can supply to meet demand be assured, unless and until transport can be assured? And is it reasonable to expect that transport can be assured to meet the emerging demand-side of the fuel cycle equation when industry already is facing increased instances of shipment delays and denials? It is a worrisome trend for global supply of Class 7 radioactive materials that

  9. Degradation of Beta-Cloth Covering for a Battery Orbital Replacement Unit in Low Earth Orbit

    Science.gov (United States)

    Gaier, James R.; Baldwin, Sammantha; Folz, Angela D.; Waters, Deborah L.; Loos, Alyssa

    2016-01-01

    Samples from the B-cloth cover for a battery orbit replaceable unit from the International Space Station were characterized using optical and electron microscopy, UV-vis-NIR spectrophotometry, and x-ray energy dispersive spectroscopy. Results showed that in areas where the fabric was exposed to solar radiation the absorptance increased by as much as 20 percent, and the peak difference was in the ultraviolet, indicating that the increased absorptance may have been due to radiation. The emissivity of the material over a temperature range of 300 - 700 K was essentially unchanged.

  10. Degradation of Beta Cloth Covering for a Battery Orbital Replacement Unit in Low Earth Orbit

    Science.gov (United States)

    Gaier, James R.; Waters, Deborah L.; Baldwin, Sammantha; Folz, Angela D.; Loos, Alyssa

    2016-01-01

    Samples from the beta cloth cover for a battery orbit replaceable unit from the International Space Station (ISS) were characterized using optical and electron microscopy, UV-vis-NIR spectrophotometry, and x-ray energy dispersive spectroscopy. Results showed that in areas where the fabric was exposed to solar radiation the absorptance increased by as much as 20 percent, and the peak difference was in the ultraviolet, indicating that the increased absorptance may have been due to radiation. The emissivity of the material over a temperature range of 300 to 700 K was essentially unchanged.

  11. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Science.gov (United States)

    2010-01-08

    ... Between OECD Member Countries, Export Shipments of Spent Lead- Acid Batteries, Submitting Exception... OECD Member Countries, Export Shipments of Spent Lead-Acid Batteries, Submitting Exception Reports for... belonging to the Organization for Economic Cooperation and Development (OECD), establish notice and consent...

  12. Battery-quick-replacement Operation Mode for Electric Taxi Vehicle%纯电动出租汽车快速更换电池运营模式

    Institute of Scientific and Technical Information of China (English)

    王健; 梁桂航

    2011-01-01

    提出了纯电动出租汽车快速更换电池的运营模式:每一辆纯电动出租汽车配置2组电池,电池的所有权属于独立的电池租赁公司,每次更换电池的费用按实际用电量计算,电池租赁公司实行集中充电,分散更换.指出了快速更换电池运营模式的优点,并对该运营模式进行了经济分析.该运营模式的实施,可有效促进纯电动汽车的发展.%The battery-quick-replacement operation mode for electric taxi vehicles was proposed; Each electric taxi equipped with two groups of electric battery belongs to the independent battery leasing companies. The cost of replacing battery will be calculated according to actual consumption. The battery leasing companies will charge the replaced batteries in batches and distribute the charged batteries for new replacement. The advantage of the battery-quick-replacement operation mode was explained. The economic analysis of the battery-quick-replacement operation mode was performed. The implement of this operation mode is helpful for the development of electric taxi vehicle.

  13. Comparison of battery replacement stations and charging stations. Key elements of the supply system; Vergleich von Batteriewechselstationen und Ladesaeulen. Schluesselrolle fuer das Gesamtsystem

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, Romy; Dietz, Eric; Kremp, Sebastian [Technische Univ. Chemnitz (Germany). Studiengang ' Nachhaltige Energieversorgungstechnologien' ; Goetz, Andreas [Technische Univ. Chemnitz (Germany). Professur Energie- und Hochspannungstechnik; Rehme, Marco [Technische Univ. Chemnitz (Germany). Professur fuer Unternehmensrechnung und Controlling

    2011-10-17

    The battery is one of the most important and most costly components of electric-powered vehicles. Due to its high material cost, it has decisive influence on the whole investment cost of an electric-powered vehicle. It also decides the mileage and weight of the vehicle. The contribution compares various options for battery replacement or recharging. (orig./AKB)

  14. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  15. Supply Chain Shipment Pricing Data

    Data.gov (United States)

    US Agency for International Development — This data set provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to...

  16. A new valve-regulated lead/acid automotive battery for use in original equipment and supply to the replacement market

    Science.gov (United States)

    Fouache, S.; Douady, J. P.; Fossati, G.; Pascon, C.

    Valve-regulated lead/acid (VRLA) batteries have been available since the beginning of the 1970s for stationary applications. Nevertheless, the development and the commercialization of VRLA starter batteries have been very slow and mainlyrestricted to certain niche markets. This is due to the difficulty in designing products that comply with the technical specificationsrequired by the operating conditions of modern cars, and that have both a high level of reliability and a cost in accordance with the needs ofthe automotive market. The STR (sealed technology with gas recombination) battery has been developed in order to place on the automotiveoriginal equipment and replacement markets a battery with the benefits of the VRLA technology, namely: absolutely no maintenance; cleanand safe; good open-circuit storage; good cycling ability; performance comparable with that of flooded batteries (i.e., cranking powerand reserve capacity, charge acceptance, rechargeability, and life). Due to the technical choices made for the components and forthe manufacturing process, the STR battery is today manufactured on a production line very similar to that for a flooded battery, with agood level of productivity and the same reliability as the best flooded batteries. For all these reasons, the STR battery is producedat a cost that is acceptable for automotive applications.

  17. An algorithm for management of deep brain stimulation battery replacements: devising a web-based battery estimator and clinical symptom approach.

    Science.gov (United States)

    Montuno, Michael A; Kohner, Andrew B; Foote, Kelly D; Okun, Michael S

    2013-01-01

    Deep brain stimulation (DBS) is an effective technique that has been utilized to treat advanced and medication-refractory movement and psychiatric disorders. In order to avoid implanted pulse generator (IPG) failure and consequent adverse symptoms, a better understanding of IPG battery longevity and management is necessary. Existing methods for battery estimation lack the specificity required for clinical incorporation. Technical challenges prevent higher accuracy longevity estimations, and a better approach to managing end of DBS battery life is needed. The literature was reviewed and DBS battery estimators were constructed by the authors and made available on the web at http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. A clinical algorithm for management of DBS battery life was constructed. The algorithm takes into account battery estimations and clinical symptoms. Existing methods of DBS battery life estimation utilize an interpolation of averaged current drains to calculate how long a battery will last. Unfortunately, this technique can only provide general approximations. There are inherent errors in this technique, and these errors compound with each iteration of the battery estimation. Some of these errors cannot be accounted for in the estimation process, and some of the errors stem from device variation, battery voltage dependence, battery usage, battery chemistry, impedance fluctuations, interpolation error, usage patterns, and self-discharge. We present web-based battery estimators along with an algorithm for clinical management. We discuss the perils of using a battery estimator without taking into account the clinical picture. Future work will be needed to provide more reliable management of implanted device batteries; however, implementation of a clinical algorithm that accounts for both estimated battery life and for patient symptoms should improve the care of DBS patients. © 2012 International Neuromodulation Society.

  18. Design on CAN Network Project for Pure Electric Bus with Power Battery Replacement%换电式纯电动客车CAN网络方案设计

    Institute of Scientific and Technical Information of China (English)

    房永强

    2015-01-01

    结合某款换电式纯电动客车的研发与应用,介绍一种换电式纯电动客车三级CAN网络架构,以及合理的纯电动系统CAN总线管理方案。%Taking the R&D and application of a pure electric bus with the power battery replacement as an example, the author introduces a three-level CAN network architecture and appropriate management project of the control system based on the CAN bus of the pure electric system.

  19. 49 CFR 175.704 - Plutonium shipments.

    Science.gov (United States)

    2010-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section...

  20. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  1. Battery. Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Thiem, U.; Thielen, C.

    1992-03-19

    The invention concerns a battery consisting of at least one battery trough, which surrounds individual cells and has a lower inlet opening to connect to a pressurized pipe for a gaseous cooling medium; in its inside it has a lower distribution device for the cooling medium connected to the inlet opening and connected guide ducts taken through the internal space, and at least one upper outlet opening for the cooling medium. To achieve a better cooling system, it is proposed that the battery trough should surround several trough modules, which consist of a module container, whose floor has floor openings flush with the flow ducts between the individual cells and that the distribution device should have vertical separating bars, to the top edge of which the floor of the module container concerned is sealed.

  2. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries.

    Science.gov (United States)

    Liu, Jun; Yu, Litao; Wu, Chao; Wen, Yuren; Yin, Kuibo; Chiang, Fu-Kuo; Hu, Renzong; Liu, Jiangwen; Sun, Litao; Gu, Lin; Maier, Joachim; Yu, Yan; Zhu, Min

    2017-02-16

    In the current research project, we have prepared a novel Sb@C nanosphere anode with biomimetic yolk-shell structure for Li/Na-ion batteries via a nanoconfined galvanic replacement route. The yolk-shell microstructure consists of Sb hollow yolk completely protected by a well-conductive carbon thin shell. The substantial void space in the these hollow Sb@C yolk-shell particles allows for the full volume expansion of inner Sb while maintaining the framework of the Sb@C anode and developing a stable SEI film on the outside carbon shell. As for Li-ion battery anode, they displayed a large specific capacity (634 mAh g(-1)), high rate capability (specific capabilities of 622, 557, 496, 439, and 384 mAh g(-1) at 100, 200, 500, 1000, and 2000 mA g(-1), respectively) and stable cycling performance (a specific capacity of 405 mAh g(-1) after long 300 cycles at 1000 mA g(-1)). As for Na-ion storage, these yolk-shell Sb@C particles also maintained a reversible capacity of approximate 280 mAh g(-1) at 1000 mA g(-1) after 200 cycles.

  3. 7 CFR 922.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... COUNTIES IN WASHINGTON Order Regulating Handling Regulations § 922.54 Special purpose shipments. (a) Except... quantities, or types of shipments, or for such specified purposes (including shipments to facilitate...

  4. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  5. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-09-18

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist...: The Coast Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the...

  6. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-06-04

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist... and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United Grain Corporation facility on the...

  7. 7 CFR 916.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... Order Regulating Handling Regulations § 916.54 Special purpose shipments. (a) Except as otherwise... State of California; or (2) for such specified purposes (including shipments to facilitate the...

  8. 7 CFR 917.43 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... CALIFORNIA Order Regulating Handling Regulations § 917.43 Special purpose shipments. (a) Except as otherwise... continental United States; (2) for such specified purposes (including shipments to facilitate the conduct...

  9. 7 CFR 946.54 - Shipments for specified purposes.

    Science.gov (United States)

    2010-01-01

    ... POTATOES GROWN IN WASHINGTON Order Regulating Handling Regulation § 946.54 Shipments for specified purposes... part in order to facilitate shipments of potatoes for the following purposes: (1) Livestock feed;...

  10. 7 CFR 923.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... DESIGNATED COUNTIES IN WASHINGTON Order Regulating Handling Regulations § 923.54 Special purpose shipments... grading or packing to specified locations outside the production area and shipments to facilitate...

  11. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  12. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  13. 19 CFR 145.43 - Unaccompanied tourist shipments

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unaccompanied tourist shipments 145.43 Section 145.43 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF... tourist shipments Unaccompanied tourist shipments for which entry is claimed under subheading...

  14. 19 CFR 132.25 - Undeliverable shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Undeliverable shipment. 132.25 Section 132.25 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE... reasonable time, but not to exceed 30 days, the addressee fails to indicate to the port director an...

  15. 7 CFR 35.6 - Shipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shipment. 35.6 Section 35.6 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  16. LABELING OPTIONS FOR POSTAL SHIPMENTS BY PASSIVE RFID TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Ondrej Maslák

    2015-09-01

    Full Text Available This article discusses the topic of labeling postal shipments by passive radio frequency identification (RFID tags. Every delivery company needs to have all necessary information for every single postal shipment package it carries. Shipment package labeling is essential for processing and tracking the postal shipments along its delivery process. Using RFID technology for the process brings advantages in more efficient delivery and data collection along with regular information updates of shipment status across complete delivery chain.In this article, we focused on the problem of logical log of key shipment package information into EPC memory of the RFID smart label. We have taken into account the National postal administrator and its current system of shipment labeling. In the end, we presented a design for conversion of contemporary labeling using bar codes into labeling using RFID tags.

  17. Denial of shipments - myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Charrette, M.A.; McInnes, D. [MDS Nordion, Ottawa, ON (Canada)

    2004-07-01

    The global healthcare community depends on shipments of radioisotopes. MDS Nordion manufactures and distributes radioisotopes used in the medical, research and sterilization industries throughout the world. With a growing demand for radiation and radiation technology to prevent, diagnose and treat disease, it is important that the global health care industry have a secure and reliable supply of such important materials. Despite this ever increasing need, shipments of radioisotopes are being increasingly delayed and outright denied. This paper outlines the importance of radioisotopes to global healthcare. It also details examples of shipment denials and how this evolving situation has impeded the efficient transport of radioactive material which risks preventing the delivery of essential radioisotopes to many member states. Denial of shipments was identified as a key issue at the 2003 International Conference on the Safety of Transport of Radioactive Material, the 2003 International Atomic Energy Agency (IAEA) General Conference and at an IAEA Technical Meeting in January 2004. The outcome is that the IAEA is focused on better documenting the problem and is starting to develop ideas to address it. Moreover, governments, associations and modal organizations are becoming more aware of the matter. As a responsible partner in a unique industry, MDS Nordion encourages all IAEA Member States, commercial carriers, airports and ports to be engaged in this matter and accept the transport of radioactive material without additional requirements. In this respect, the collaboration of all organizations involved in this highly interactive global system of transport is vital to assure the effective transport of radioactive material for global health care.

  18. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  19. Outcomes and Cost-Effectiveness of Two Nicotine Replacement Treatment Delivery Models for a Tobacco Quitline

    Directory of Open Access Journals (Sweden)

    Lija Greenseid

    2011-05-01

    Full Text Available Many tobacco cessation quitlines provide nicotine replacement therapy (NRT in the U.S. but consensus is lacking regarding the best shipping protocol or NRT amounts. We evaluated the impact of the Minnesota QUITPLAN® Helpline’s shift from distributing NRT using a single eight-week shipment to a two-shipment protocol. For this observational study, the eight week single-shipment cohort (n = 247 received eight weeks of NRT (patches or gum at once, while the split-shipment cohort (n = 160 received five weeks of NRT (n = 94, followed by an additional three weeks of NRT if callers continued with counseling (n = 66. Patient satisfaction, retention, quit rates, and cost associated with the three groups were compared. A higher proportion of those receiving eight weeks of NRT, whether in one or two shipments, reported that the helpline was “very helpful” (77.2% of the single-shipment group; 81.1% of the two-shipment group than those receiving five weeks of NRT (57.8% of the one-shipment group (p = 0.004. Callers in the eight week two-shipment group completed significantly more calls (3.0 than callers in the five week one-shipment group (2.4 or eight week single-shipment group (1.7 (p < 0.001. Using both responder and intent-to-treat calculations, there were no significant differences in 30-day point prevalence abstinence at seven months among the three protocol groups even when controlling for demographic and tobacco use characteristics, and treatment group protocol. The mean cost per caller was greater for the single-shipment phase than the split-shipment phase ($350 vs. $326 due to the savings associated with not sending a second shipment to some participants. Assuming no difference in abstinence rates resulting from the protocol change, cost-per-quit was lowest for the five week one-shipment group ($1,155, and lower for the combined split-shipment cohort ($1,242 than for the single-shipment cohort ($1,350. Results of this evaluation indicate that

  20. Sea shipment of Japanese plutonium under international law

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, J.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1993-10-01

    The Japanese government`s shipment of plutonium from France to Japan raises a number of significant questions under international law. The first shipment, which began in November 1992 on the Akatsuki Maru, violated international law in several respects. This article analyzes the international law that governs these shipments, focusing on the rules that govern navigation on the high seas and exclusive economic zones, territorial seas, and international straits, and also addresses the question of liability for damage. 281 refs.

  1. Hubble Space Telescope Battery Capacity Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  2. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  3. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  4. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-ion cell life testing project. This paper will include an overview of the ISS Li-Ion battery system architecture and the progress of the Li-ion battery design and development.

  5. 24 CFR 3286.9 - Manufacturer shipment responsibilities.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Manufacturer shipment... Requirements § 3286.9 Manufacturer shipment responsibilities. (a) Providing information to HUD. At or before the time that each manufactured home is shipped by a manufacturer, the manufacturer must provide...

  6. 48 CFR 452.247-73 - Packing for Overseas Shipment.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Packing for Overseas Shipment. 452.247-73 Section 452.247-73 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE... Packing for Overseas Shipment. As prescribed in 447.305-10(c), insert the following clause: Packing...

  7. 48 CFR 452.247-72 - Packing for Domestic Shipment.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Packing for Domestic Shipment. 452.247-72 Section 452.247-72 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE... Packing for Domestic Shipment. As prescribed in 447.305-10(b), insert the following clause: Packing...

  8. 27 CFR 28.244 - Shipment to manufacturing bonded warehouse.

    Science.gov (United States)

    2010-04-01

    ... bonded warehouse. 28.244 Section 28.244 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Export Consignment § 28.244 Shipment to manufacturing bonded warehouse. Distilled spirits and wines withdrawn for shipment to a manufacturing bonded warehouse shall be consigned to the proprietor of...

  9. 9 CFR 104.6 - Products for transit shipment only.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PERMITS FOR BIOLOGICAL PRODUCTS § 104.6 Products for transit shipment only. An application for a permit for Transit Shipment Only shall be required when a biological product is being shipped from one foreign country...

  10. 19 CFR 148.114 - Shipment of unaccompanied articles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Shipment of unaccompanied articles. 148.114 Section 148.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... States § 148.114 Shipment of unaccompanied articles. One copy of the validated Customs Form 255 shall...

  11. Button batteries

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002764.htm Button batteries To use the sharing features on this page, please enable JavaScript. Button batteries are tiny, round batteries. They are commonly ...

  12. 77 FR 74777 - Safety Zones; Grain-Shipment Assistance Vessels; Columbia and Willamette Rivers

    Science.gov (United States)

    2012-12-18

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Grain-Shipment Assistance Vessels... transferring persons to or from grain-shipment vessels, and/or assisting grain-shipment vessel movements. These.... To do otherwise would be impracticable since the arrival of grain-shipment vessels cannot be delayed...

  13. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... battery size and chemistry. The high energy density (i.e., high energy to weight ratio) of lithium... batteries are often used in medical devices, computer memory and as replaceable batteries (AA and AAA size... numbers, types, and sizes of lithium batteries moving in transportation have grown steadily in recent...

  14. 327 to 324 Pin tube shipment quality management process plan

    Energy Technology Data Exchange (ETDEWEB)

    HAM, J.E.

    1998-11-05

    The B and W Hanford Company's (BWHC) 327 Facility, in the 300 Area of the Hanford Site, is preparing to ship five Pin Tubes to the 324 Facility for storage and eventual disposition. The Pin Tubes consist of legacy fuel pin pieces and drillings. They will be over-packed in new Pin Tubes and transported to 324 in three shipments. Once received at 324, two of the shipments will be combined for storage as a fissionable material batch, and the other shipment will be added to an existing batch.

  15. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  16. Frequent Questions on International Agreements on Transboundary Shipments of Waste

    Science.gov (United States)

    Answers FAQs such as How does the OECD control the shipment of hazardous waste between Member countries? Where do I find the green and amber lists of waste? Why hasn't the United States ratified the Basel Convention?

  17. Avian influenza surveillance sample collection and shipment protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Instructions for mortality collection and shipment of avian influenza (AI) live bird surveillance sample collections. AI sample collections will include...

  18. 7 CFR 947.54 - Shipments for specified purposes.

    Science.gov (United States)

    2010-01-01

    ... Order Regulating Handling Regulation § 947.54 Shipments for specified purposes. (a) Whenever the... modify, suspend, or terminate any or all regulations issued pursuant to this part, in order to facilitate...

  19. Stable isotope customer list and summary of shipments - FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C. (comp.)

    1979-05-01

    This compilation is divided into four sections: alphabetical lists of customers, of isotopes (cross-referenced to customer numbers), and of states and countries (cross-referenced to customer numbers), and a tabulation of the shipments of each isotope. (DLC)

  20. Case histories of West Valley spent fuel shipments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  1. 7 CFR 920.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA... (including shipments to facilitate the conduct of marketing research and development projects); or, (3)...

  2. 7 CFR 906.42 - Shipments for special purposes.

    Science.gov (United States)

    2010-01-01

    ... LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Regulation § 906.42 Shipments for special... combination thereof, in order to facilitate the handling of fruit: (a) For relief or for charity; (b)...

  3. 7 CFR 924.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... COUNTIES IN WASHINGTON AND IN UMATILLA COUNTY, OREGON Order Regulating Handling Regulations § 924.54... shipments to facilitate the conduct of marketing research and development projects established pursuant...

  4. 7 CFR 945.53 - Shipments for specified purposes.

    Science.gov (United States)

    2010-01-01

    ... POTATOES GROWN IN CERTAIN DESIGNATED COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating... order to facilitate shipments of potatoes for the following purposes: (a) Export; (b) Relief or...

  5. 7 CFR 966.54 - Shipments for special purposes.

    Science.gov (United States)

    2010-01-01

    ... Regulating Handling Regulation § 966.54 Shipments for special purposes. Upon the basis of recommendations and... facilitate handling of tomatoes for the following purposes: (a) For export; (b) For relief or for charity;...

  6. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... You may not be able to have a total ankle replacement if you have had ankle joint infections in ...

  7. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  8. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Science.gov (United States)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  9. Paintable battery

    National Research Council Canada - National Science Library

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary...

  10. Smart battery controller for lithium sulfur dioxide batteries

    Science.gov (United States)

    Atwater, Terrill; Bard, Arnold; Testa, Bruce; Shader, William

    1992-08-01

    Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

  11. Direct Methanol Fuel Cell Battery Replacement Program

    Science.gov (United States)

    2011-04-11

    Electrochemical Society Meeting, ABS#1089, Oct. 16th 2008, Hawaii, USA. 2. Hall, T.D.; Grice, C.R.; Swenson, L.R.; Smotkin, E.S., “Reversible and irreversible...degradation modes of DMFC anode catalysts”, 212th Electrochemical Society Meeting, ABS#819, Oct. 14th 2008, Hawaii, USA. 3. Yuan Zhang, James Cooper...Paul McGinn “Combinatorial Screening of Fuel Cell Catalysts” 211th Electrochemical Society Meeting, Phoenix, AZ, May, 2008 4. Hall, T.D.; Grice, Corey

  12. Safe battery solvents

    Science.gov (United States)

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  13. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  14. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  15. Use of sodium chloride and zeolite during shipment of Ancistrus triradiatus under high temperature

    Directory of Open Access Journals (Sweden)

    Wilson F. Ramírez-Duarte

    Full Text Available The use of sodium chloride (0.5 g/L and 1 g/L and zeolite (22.7 g/L during shipment (48 h of Ancistrus triradiatus at high temperatures (between 24.5 and 34ºC were evaluated. Several water quality parameters (dissolved oxygen, pH, conductivity, and total ammonia were measured before and after shipment. Glycemia was measured before shipment and at 24 and 48 h after shipment. After shipment, a resistance test was carried out in a high concentration of sodium chloride, and mortality was recorded after shipment, and 7 days post-shipment. While the two evaluated substances increased survival of A. triradiatus challenged by high temperatures during shipment, the best result was obtained with 1 g/L of sodium chloride.

  16. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    Energy Technology Data Exchange (ETDEWEB)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  17. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  18. Directed Replacement

    CERN Document Server

    Karttunen, L

    1996-01-01

    This paper introduces to the finite-state calculus a family of directed replace operators. In contrast to the simple replace expression, UPPER -> LOWER, defined in Karttunen (ACL-95), the new directed version, UPPER @-> LOWER, yields an unambiguous transducer if the lower language consists of a single string. It transduces the input string from left to right, making only the longest possible replacement at each point. A new type of replacement expression, UPPER @-> PREFIX ... SUFFIX, yields a transducer that inserts text around strings that are instances of UPPER. The symbol ... denotes the matching part of the input which itself remains unchanged. PREFIX and SUFFIX are regular expressions describing the insertions. Expressions of the type UPPER @-> PREFIX ... SUFFIX may be used to compose a deterministic parser for a ``local grammar'' in the sense of Gross (1989). Other useful applications of directed replacement include tokenization and filtering of text streams.

  19. 27 CFR 28.244a - Shipment to a customs bonded warehouse.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Shipment to a customs... Export Consignment § 28.244a Shipment to a customs bonded warehouse. Distilled spirits and wine withdrawn for shipment to a customs bonded warehouse shall be consigned in care of the customs officer in...

  20. 19 CFR 10.462 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packing materials and containers for shipment. 10... Free Trade Agreement Rules of Origin § 10.462 Packing materials and containers for shipment. (a) Packing materials and containers for shipment, as defined in § 10.450(m), are to be disregarded...

  1. 19 CFR 10.602 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packing materials and containers for shipment. 10...-Central America-United States Free Trade Agreement Rules of Origin § 10.602 Packing materials and containers for shipment. (a) Effect on tariff shift rule. Packing materials and containers for shipment,...

  2. 19 CFR 10.540 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packing materials and containers for shipment. 10...-Singapore Free Trade Agreement Rules of Origin § 10.540 Packing materials and containers for shipment. (a) Packing materials and containers for shipment, as defined in § 10.530(j) of this subpart, are to...

  3. 27 CFR 44.190 - Return of shipment to a manufacturer or customs warehouse proprietor.

    Science.gov (United States)

    2010-04-01

    ... manufacturer or customs warehouse proprietor. 44.190 Section 44.190 Alcohol, Tobacco Products and Firearms... of Shipments of Tobacco Products and Cigarette Papers and Tubes by Manufacturers and Export Warehouse Proprietors Consignment of Shipment § 44.190 Return of shipment to a manufacturer or customs...

  4. 10 CFR 71.64 - Special requirements for plutonium air shipments.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special requirements for plutonium air shipments. 71.64... MATERIAL Package Approval Standards § 71.64 Special requirements for plutonium air shipments. (a) A package for the shipment of plutonium by air subject to § 71.88(a)(4), in addition to satisfying...

  5. Knee Replacement

    Science.gov (United States)

    ... need knee replacement surgery usually have problems walking, climbing stairs, and getting in and out of chairs. Some ... a total living space on one floor since climbing stairs can be difficult. Install safety bars or a ...

  6. 22 CFR 211.4 - Availability and shipment of commodities.

    Science.gov (United States)

    2010-04-01

    ... effectively because of natural or other disturbances, (C) Where carriers to a specific country are unavailable... USE IN DISASTER RELIEF, ECONOMIC DEVELOPMENT AND OTHER ASSISTANCE § 211.4 Availability and shipment of... port of entry, upon completion of discharge by the ocean carrier (non-landlocked countries), or at...

  7. 7 CFR 322.27 - Eligible ports for transit shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Eligible ports for transit shipments. 322.27 Section 322.27 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT...

  8. 7 CFR 322.24 - Packaging of transit shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Packaging of transit shipments. 322.24 Section 322.24 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit...

  9. 7 CFR 322.8 - Packaging of shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Packaging of shipments. 322.8 Section 322.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation...

  10. 7 CFR 322.16 - Packaging of shipments.

    Science.gov (United States)

    2010-01-01

    ... vermiculite. (2) Other materials, such as host material for the organism, soil, or other types of packing... Restricted Organisms § 322.16 Packaging of shipments. (a) Restricted organisms must be packed in a container or combination of containers that will prevent the escape of the organisms and the leakage of...

  11. 41 CFR 101-26.311 - Frustrated shipments.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Frustrated shipments. 101-26.311 Section 101-26.311 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES...

  12. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  13. 48 CFR 52.247-52 - Clearance and Documentation Requirements-Shipments to DOD Air or Water Terminal Transshipment...

    Science.gov (United States)

    2010-10-01

    ... Documentation Requirements-Shipments to DOD Air or Water Terminal Transshipment Points. 52.247-52 Section 52.247... and Documentation Requirements—Shipments to DOD Air or Water Terminal Transshipment Points. As... Requirements—Shipments to DOD Air or Water Terminal Transshipment Points (FEB 2006) All shipments to water...

  14. Paintable battery.

    Science.gov (United States)

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials such as metals, glass, glazed ceramics and flexible polymer substrates. We also demonstrate the possibility of interconnected modular spray painted battery units to be coupled to energy conversion devices such as solar cells, with possibilities of building standalone energy capture-storage hybrid devices in different configurations.

  15. Esophageal replacement.

    Science.gov (United States)

    Kunisaki, Shaun M; Coran, Arnold G

    2017-04-01

    This article focuses on esophageal replacement as a surgical option for pediatric patients with end-stage esophageal disease. While it is obvious that the patient׳s own esophagus is the best esophagus, persisting with attempts to retain a native esophagus with no function and at all costs are futile and usually detrimental to the overall well-being of the child. In such cases, the esophagus should be abandoned, and the appropriate esophageal replacement is chosen for definitive reconstruction. We review the various types of conduits used for esophageal replacement and discuss the unique advantages and disadvantages that are relevant for clinical decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Facilitation of the USHPRR Program MP-1 Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, Eric C.

    2017-04-11

    This report describes the activities necessary to support the numerous transportation tasks involved with the successful completion of the mini-plate MP-1 and future MP experiments for the U.S. High Performance Research Reactor HEU to LEU conversion program. It includes information about the general activities necessary to implement equipment, operational processes, and safety basis changes required at the shipping facility and receipt facilities to support the shipments.

  17. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  18. Lithium ion rechargeable batteries materials, technology, and new applications

    CERN Document Server

    Ozawa, Kazunori

    2012-01-01

    Lithium ion batteries are both an established commercial market as well as a field of constant research and crucial for technological leadership. For example, battery duration is an extremely important selling point with almost any portable or handheld electronic device. Notebook computers, digital cameras, mobile phones, PDAs, mp3-players all rely on lithium ion batteries. Ultimately, powerful batteries are needed in vehicles to supplement or even entirely replace combustion engines. Starting out with an introduction to the fundamentals of lithium ion batteries, this book begins by descri

  19. Stable isotope customer list and summary of shipments - FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C. (comp.)

    1983-12-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  20. Stable Isotope Customer List and Summary of Shipments. FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, J. G. [comp.

    1985-11-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  1. International Space Station Lithium-Ion Battery Start-Up

    Science.gov (United States)

    Dalton, Penni J.; North, Tim; Bowens, Ebony; Balcer, Sonia

    2017-01-01

    International Space Station Lithium-Ion Battery Start-Up.The International Space Station (ISS) primary Electric Power System (EPS) was originally designed to use Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. As the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. The first set of 6 Li-ion battery replacements were launched in December 2016 and deployed in January 2017. This paper will discuss the Li-ion battery on-orbit start-up and the status of the Li-Ion cell and ORU life cycle testing.

  2. 76 FR 24713 - Cooperative Inspection Programs: Interstate Shipment of Meat and Poultry Products

    Science.gov (United States)

    2011-05-02

    ..., and 381 Cooperative Inspection Programs: Interstate Shipment of Meat and Poultry Product; Final Rule... Cooperative Inspection Programs: Interstate Shipment of Meat and Poultry Products AGENCY: Food Safety and... amending the Federal meat and poultry products inspection regulations to establish a new...

  3. 22 CFR 201.46 - Compensation to supplier if shipment is prohibited.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Compensation to supplier if shipment is... Commodities and Commodity-Related Services § 201.46 Compensation to supplier if shipment is prohibited. (a) Payment to supplier. USAID shall make appropriate payment to a supplier for the value of...

  4. 76 FR 81360 - Cooperative Inspection Programs: Interstate Shipment of Meat and Poultry Products; Correction

    Science.gov (United States)

    2011-12-28

    ... Programs: Interstate Shipment of Meat and Poultry Products; Correction AGENCY: Food Safety and Inspection... small State-inspected establishments will be eligible to ship meat and poultry products in interstate..., ``Cooperative Inspection Programs; Interstate Shipment of Meat and Poultry Products'' (76 FR 24714). The final...

  5. 78 FR 6209 - Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-01-30

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and...: The Coast Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the...

  6. 22 CFR 123.13 - Domestic aircraft shipments via a foreign country.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Domestic aircraft shipments via a foreign... REGULATIONS LICENSES FOR THE EXPORT OF DEFENSE ARTICLES § 123.13 Domestic aircraft shipments via a foreign... United States to another location in the United States via a foreign country. The pilot of the...

  7. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Science.gov (United States)

    2010-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  8. 77 FR 14445 - Leakage Tests on Packages for Shipment of Radioactive Material

    Science.gov (United States)

    2012-03-09

    ... COMMISSION Leakage Tests on Packages for Shipment of Radioactive Material AGENCY: Nuclear Regulatory... Standard N14.5-1997, ``Radioactive Materials--Leakage Tests on Packages for Shipment'' approved February... receiving radioactive material. II. Further Information Revision 1 of Regulatory Guide 7.4 was issued with...

  9. The selective use of emergency shipments for service-contract differentiation

    NARCIS (Netherlands)

    Alvarez, E.M.; Heijden, van der M.C.; Zijm, W.H.M.

    2013-01-01

    Suppliers of capital goods increasingly offer performance-based service contracts with customer-specific service levels. We use selective emergency shipments of spare parts to differentiate logistic performance: We apply emergency shipments in out-of-stock situations for combinations of parts and cu

  10. The selective use of emergency shipments for service-contract differentiation

    NARCIS (Netherlands)

    Alvarez, Elisa; van der Heijden, Matthijs C.; Zijm, Willem H.M.

    2013-01-01

    Suppliers of capital goods increasingly offer performance-based service contracts with customer-specific service levels. We use selective emergency shipments of spare parts to differentiate logistic performance: We apply emergency shipments in out-of-stock situations for combinations of parts and

  11. 77 FR 18871 - Administrative Guide for Verifying Compliance With Packaging Requirements for Shipment and...

    Science.gov (United States)

    2012-03-28

    ... COMMISSION Administrative Guide for Verifying Compliance With Packaging Requirements for Shipment and Receipt... Guide 7.7, ``Administrative Guide for Verifying Compliance with Packaging Requirements for Shipment and... administrative requirements for transporting licensed material under 10 CFR part 71, ``Packaging and...

  12. 76 FR 4001 - Foreign Trade Regulations (FTR): Mandatory Automated Export System Filing for All Shipments...

    Science.gov (United States)

    2011-01-21

    ... Commerce Census Bureau 15 CFR Part 30 Foreign Trade Regulations (FTR): Mandatory Automated Export System... Foreign Trade Regulations (FTR): Mandatory Automated Export System Filing for All Shipments Requiring... Automated Export System (AES) or through AESDirect for all shipments of used self-propelled...

  13. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  14. Silicene for Na-ion battery applications

    Science.gov (United States)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  15. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  16. Digital Batteries

    Science.gov (United States)

    Hubler, Alfred

    2009-03-01

    The energy density in conventional capacitors is limited by sparking. We present nano-capacitor arrays, where - like in laser diodes and quantum wells [1] - quantization prevents dielectric breakthrough. We show that the energy density and the power/weight ratio are very high, possibly larger than in hydrogen [2]. Digital batteries are a potential clean energy source for cars, laptops, and mobile devices. The technology is related to flash drives. However, because of the high energy density, safety is a concern. Digital batteries can be easily and safely charged and discharged. In the discharged state they pose no danger. Even if a charged digital battery were to explode, it would produce no radioactive waste, no long-term radiation, and probably could be designed to produce no noxious chemicals. We discuss methodologies to prevent shorts and other measures to make digital batteries safe. [1] H. Higuraskh, A. Toriumi, F. Yamaguchi, K. Kawamura, A. Hubler, Correlation Tunnel Device, U. S. Patent No. 5,679,961 (1997) [2] Alfred Hubler, http://server10.how-why.com/blog/

  17. [Estrogen replacement].

    Science.gov (United States)

    Søgaard, A J; Berntsen, G K; Magnus, J H; Tollan, A

    1998-02-10

    Recent research on long-term postmenopausal hormone replacement therapy (HRT) indicates a positive effect on both total mortality and morbidity. This has raised the question of widespread preventive long-term use of HRT. Possible side-effects and ideological issues related to preventive HRT have led to debate and uncertainty among health professionals, in the media, and in the population at large. In order to evaluate the level of knowledge about and attitudes towards HRT, a randomly selected group of 737 Norwegian women aged 16-79 was interviewed by the Central Bureau of Statistics. One in three women had received information about HRT in the last two years, mainly through weekly magazines and physicians. The proportion who answered the questions on knowledge correctly varied from 36% to 47%. Those who had been given information by a physician possessed accurate knowledge, had more positive attitudes towards HRT and were more willing to use HRT than women who had reviewed information through other channels. Women with a higher level of education were better informed and more knowledgeable than others, but were nevertheless more reluctant to use HRT than those who were less educated. The limited number of women who actually receive information on HRT, the low level of knowledge and the ambivalent attitudes toward HRT are a major challenge to the public health service.

  18. First shipment of magnets from CERN to SESAME

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    On Monday, 19 October, CERN will bid a fond farewell to two containers of magnets. Their destination: SESAME, the synchrotron light source under construction in Jordan.   The SESAME magnets, ready for transport. The containers hold 31 sextupoles, produced in Cyprus and France, and 32 quadrupoles, produced in Spain and Turkey. The magnets will rejoin 8 dipoles (from the UK) that are already at SESAME. The quadrupoles and sextupoles were checked and measured at CERN before this shipment, while the dipoles went via the ALBA synchrotron, near Barcelona, where magnetic measurements were carried out. With this shipment, around 50% of the magnets for the SESAME storage ring will have been delivered. The containers are expected to arrive just in time for the upcoming SESAME Council meeting at the end of November. The rest of the magnets – as well as all the power supplies and related control modules – have been produced and will be delivered to SESAME at th...

  19. 49 CFR 375.511 - May I use an alternative method for shipments weighing 3,000 pounds or less?

    Science.gov (United States)

    2010-10-01

    ... weighing 3,000 pounds or less? 375.511 Section 375.511 Transportation Other Regulations Relating to... alternative method for shipments weighing 3,000 pounds or less? For shipments weighing 3,000 pounds or less (1,362 kilograms or less), you may weigh the shipment upon a platform or warehouse certified scale...

  20. Management of deep brain stimulator battery failure: battery estimators, charge density, and importance of clinical symptoms.

    Directory of Open Access Journals (Sweden)

    Kaihan Fakhar

    Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.

  1. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  2. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  3. New Horizons for Conventional Lithium Ion Battery Technology.

    Science.gov (United States)

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-02

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

  4. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-10-16

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

  5. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  6. Battery chargers; Chargeurs de batteries

    Energy Technology Data Exchange (ETDEWEB)

    Peutot, Ch. [Lycee Leonard-de-Vinci de Melun, 77 (France)

    2001-05-01

    Two categories of battery chargers exist: external ones and internal ones. In the first category two types are developing today: direct contact chargers for fast and normal charging, and contact-less chargers. The second category is mainly devoted to vehicle applications (automobiles, trains etc..) and must fulfill strict technical-economical criteria (cost, weight, size, vibrations and shocks resistance, service life, power etc..). This article presents todays advance in chargers technology: 1 - general principles (different battery types, charging profiles, multiple chargers); 2 - chargers for low-cost applications (direct chargers, constant voltage chargers, voltage regulated chargers, integrated chargers, applications); 3 - advanced sinusoidal absorption chargers (general scheme, safety constraints, energy conversion structures ('buck', 'boost', 'cuck', 'flyback' switching power supplies), regulation control); 4 - concrete cases: single output and multi-output chargers. (J.S.)

  7. Quantitative estimation of sampling uncertainties for mycotoxins in cereal shipments.

    Science.gov (United States)

    Bourgeois, F S; Lyman, G J

    2012-01-01

    Many countries receive shipments of bulk cereals from primary producers. There is a volume of work that is on-going that seeks to arrive at appropriate standards for the quality of the shipments and the means to assess the shipments as they are out-loaded. Of concern are mycotoxin and heavy metal levels, pesticide and herbicide residue levels, and contamination by genetically modified organisms (GMOs). As the ability to quantify these contaminants improves through improved analytical techniques, the sampling methodologies applied to the shipments must also keep pace to ensure that the uncertainties attached to the sampling procedures do not overwhelm the analytical uncertainties. There is a need to understand and quantify sampling uncertainties under varying conditions of contamination. The analysis required is statistical and is challenging as the nature of the distribution of contaminants within a shipment is not well understood; very limited data exist. Limited work has been undertaken to quantify the variability of the contaminant concentrations in the flow of grain coming from a ship and the impact that this has on the variance of sampling. Relatively recent work by Paoletti et al. in 2006 [Paoletti C, Heissenberger A, Mazzara M, Larcher S, Grazioli E, Corbisier P, Hess N, Berben G, Lübeck PS, De Loose M, et al. 2006. Kernel lot distribution assessment (KeLDA): a study on the distribution of GMO in large soybean shipments. Eur Food Res Tech. 224:129-139] provides some insight into the variation in GMO concentrations in soybeans on cargo out-turn. Paoletti et al. analysed the data using correlogram analysis with the objective of quantifying the sampling uncertainty (variance) that attaches to the final cargo analysis, but this is only one possible means of quantifying sampling uncertainty. It is possible that in many cases the levels of contamination passing the sampler on out-loading are essentially random, negating the value of variographic quantitation of

  8. Performance of Orius insidiosus after storage, exposure to dispersal material, handling and shipment processes

    NARCIS (Netherlands)

    Bueno, V.H.P.; Carvalho, L.M.; Lenteren, van J.C.

    2014-01-01

    Storage, handling and shipment procedures are important factors influencing the quality of biological control agents. This study aimed to evaluate biological parameters and performance of Orius insidiosus (Say) after different storage periods at low temperatures, after exposure to different

  9. Determining Replenishment Lot Size and Shipment Policy for an EPQ Inventory Model with Delivery and Rework

    Directory of Open Access Journals (Sweden)

    Leopoldo Eduardo Cárdenas-Barrón

    2015-01-01

    Full Text Available The determination of production-shipment policies for a vendor-buyer system is dealt within this paper. The main objective is to derive the optimal replenishment lot size and shipment policy for an EPQ inventory model with multiple deliveries and rework. This inventory model contains two decision variables: the replenishment lot size and the number of deliveries. Previous researches solve this inventory model considering both variables to be continuous. However, the number of deliveries must be considered as a discrete variable. In this direction, this paper solves the inventory model considering two cases: Case 1: the replenishment lot size as a continuous variable and the number of shipments as a discrete variable and Case 2: the replenishment lot size and the number of shipments as discrete variables. The final results are two simple and easy-to-apply solution procedures to find the optimal values for the replenishment lot size and the number of deliveries for each case.

  10. Shipment Consolidation Policy under Uncertainty of Customer Order for Sustainable Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kang

    2017-09-01

    Full Text Available With increasing concern over the environment, shipment consolidation has become one of a main initiative to reduce CO2 emissions and transportation cost among the logistics service providers. Increased delivery time caused by shipment consolidation may lead to customer’s order cancellation. Thus, order cancellation should be considered as a factor in order uncertainty to determine the optimal shipment consolidation policy. We develop mathematical models for quantity-based and time-based policies and obtain optimality properties for the models. Efficient algorithms using optimal properties are provided to compute the optimal parameters for ordering and shipment decisions. To compare the performances of the quantity-based policy with the time-based policy, extensive numerical experiments are conducted, and the total cost is compared.

  11. Storage and shipment system for beer and beverage; Beer inryo hokan shukka system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    This storage and shipment system for beer and beverage was delivered to Suita factory of Asahi Breweries, Ltd. for reducing the shipment lead time essential for the total fresh management activity promoted by the whole company. Main specifications: (1) Warehouse capacity: 26,880 pallets, (2) Stacker crane: 24 units (twin shuttle system), (3) Conveyer: 1 unit, (4) Truck loader: 3 units, (5) Handling capacity: 760 pallet/h for storage, 670 pallet/h for shipment. Features: (1) Storage system directly connected with a plant by immediate automatic storage after palletizing, (2) One-point loading by a package loading berth with an alignment function, (3) High-speed mass storage and shipment handling by distributing system, (4) High reliability by block distributing system. (translated by NEDO)

  12. Stability of urinary fractionated metanephrines and catecholamines during collection, shipment, and storage of samples.

    NARCIS (Netherlands)

    Willemsen, J.J.; Ross, H.A.; Lenders, J.W.M.; Sweep, C.G.J.

    2007-01-01

    BACKGROUND: Measurements of 24-h fractionated urinary metanephrines and catecholamines are used for the diagnosis of pheochromocytoma, but adequate information is needed regarding collection, storage, and shipment conditions. METHODS: Spot urine samples were collected from 8 healthy volunteers. Aliq

  13. Use of sodium chloride and zeolite during shipment of Ancistrus triradiatus under high temperature

    Directory of Open Access Journals (Sweden)

    Wilson F. Ramírez-Duarte

    2011-01-01

    Full Text Available The use of sodium chloride (0.5 g/L and 1 g/L and zeolite (22.7 g/L during shipment (48 h of Ancistrus triradiatus at high temperatures (between 24.5 and 34ºC were evaluated. Several water quality parameters (dissolved oxygen, pH, conductivity, and total ammonia were measured before and after shipment. Glycemia was measured before shipment and at 24 and 48 h after shipment. After shipment, a resistance test was carried out in a high concentration of sodium chloride, and mortality was recorded after shipment, and 7 days post-shipment. While the two evaluated substances increased survival of A. triradiatus challenged by high temperatures during shipment, the best result was obtained with 1 g/L of sodium chloride.O uso de cloreto de sódio (0,5 g/L e 1 g/L e zeolita (22,7 g/L foram avaliados durante o transporte (48 h de Ancistrus triradiatus em altas temperaturas (entre 24,5 e 34ºC. Os seguintes parâmetros foram monitorados: pH, oxigênio dissolvido, condutividade e amônia antes e depois do transporte. Também foi mensurada a concentração de glicose no sangue antes do transporte e 0, 24 e 48 h após o transporte. Foi realizado um teste de resistência a altas concentrações de cloreto de sódio após o transporte, sendo registrada a mortalidade no final do transporte e após 7 dias. As duas substâncias testadas aumentam a sobrevivência de A. triradiatus a altas temperaturas durante o transporte, porém o melhor resultado foi obtido com o uso de 1 g/L cloreto de sódio.

  14. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  15. Reserve Li/SOC12 Battery Safety Testing

    Science.gov (United States)

    Dils, C. T.; Garoutte, K. F.

    1984-01-01

    A reserve Lithium/Thionyl Chloride Battery concept is developed and undergoing feasibility testing in terms of performance, safety and abusive conditions. The feasibility of employing a battery of this type to replace thermal batteries in certain applications is demonstrated. Excellent performance of a Li/SOCl2 reserve battery is obtained across the temperature range from 0 C to +44 C. Performance improvement over the thermal battery usage is greater by a factor of 3 when discharge time and energy density are compared. Performance over an expanded temperature range is also possible. Safety and abusive testing is accomplished successfully on a series of five units. Further performance improvements can be achieved with regard to battery weight and volume reductions.

  16. Survey of radioactive material shipments in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, J.L.; Cloninger, M.O.; Cole, B.M.; Medford, A.E.

    1976-04-01

    The survey period was from March 1, 1974, through February 28, 1975. Of over 15,000 NRC and Agreement States licensees, and ERDA prime contractors, 2275 received questionnaire packets. Approximately 59 percent of those recipients responded to the survey; of these respondents, 35 percent reported shipping activities. Based on the number of packages shipped annually, the major nuclides were /sup 131/I, /sup 125/I, /sup 99m/Tc, /sup 99/Mo, and /sup 238/U, while those shipped in the greatest amounts (grams or curies) were /sup 60/Co, /sup 192/Ir, and /sup 238/U. The majority of package types shipped were Types A and LS (low specific activity), while the most common modes of transport were rail and truck. The shipping activities of approximately 14,600 minor shippers were estimated to be on the order of 200,000 radioactive packages/year. The combined annual shipping activities of 761 major shippers, SNM licensees, and ERDA contractors who responded were estimated to be approximately 300,000 packages of SNM and Source Material plus 800,000 packages containing nuclides other than SNM or Source Material. There were also about 800,000 packages (mostly exempt) shipped by 21 apparent major shippers who responded to a part of the survey intended for minor shippers. Also, classified data containing information regarding nonweapons shipments indicated 850 packages. The possibility of using the survey data for projection use was briefly investigated.

  17. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2014-12-02

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  18. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  19. Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Gorlin, Y.; Patel, M.U.M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H.A.

    2016-01-01

    Replacement of conventional cars with battery electric vehicles (BEVs) offers an opportunity to significantly reduce future carbon dioxide emissions. One possible way to facilitate widespread acceptance of BEVs is to replace the lithium-ion batteries used in existing BEVs with a lithium-sulfur batte

  20. Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Y. Gorlin; M.U.M. Patel; A. Freiberg; Q. He; M. Piana; M. Tromp; H.A. Gasteiger

    2016-01-01

    Replacement of conventional cars with battery electric vehicles (BEVs) offers an opportunity to significantly reduce future carbon dioxide emissions. One possible way to facilitate widespread acceptance of BEVs is to replace the lithium-ion batteries used in existing BEVs with a lithium-sulfur batte

  1. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  2. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  3. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  4. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  5. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  6. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  7. Shoulder Joint Replacement

    Science.gov (United States)

    ... Shoulder Replacement Options Shoulder replacement surgery is highly technical. It should be performed by a surgical team ... area and will meet a doctor from the anesthesia department. You, your anesthesiologist, and your surgeon will ...

  8. Partial knee replacement - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  9. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when c

  10. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  11. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  12. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  13. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  14. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2009-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008.

  15. Lot sizing and unequal-sized shipment policy for an integrated production-inventory system

    Science.gov (United States)

    Giri, B. C.; Sharma, S.

    2014-05-01

    This article develops a single-manufacturer single-retailer production-inventory model in which the manufacturer delivers the retailer's ordered quantity in unequal shipments. The manufacturer's production process is imperfect and it may produce some defective items during a production run. The retailer performs a screening process immediately after receiving the order from the manufacturer. The expected average total cost of the integrated production-inventory system is derived using renewal theory and a solution procedure is suggested to determine the optimal production and shipment policy. An extensive numerical study based on different sets of parameter values is conducted and the optimal results so obtained are analysed to examine the relative performance of the models under equal and unequal shipment policies.

  16. Distribution and Diversity of Salmonella Strains in Shipments of Hatchling Poultry, United States, 2013.

    Science.gov (United States)

    Habing, G G; Kessler, S E; Mollenkopf, D F; Wittum, T E; Anderson, T C; Barton Behravesh, C; Joseph, L A; Erdman, M M

    2015-08-01

    Multistate outbreaks of salmonellosis associated with live poultry contact have been occurring with increasing frequency. In 2013, multistate outbreaks of salmonellosis were traced back to exposure to live poultry, some of which were purchased at a national chain of farm stores (Farm store chain Y). This study was conducted at 36 stores of Farm store chain Y and was concurrent with the timing of exposure for the human outbreaks of salmonellosis in 2013. We used environmental swabs of arriving shipment boxes of hatchling poultry and shipment tracking information to examine the distribution, diversity and anti-microbial resistance of non-typhoidal Salmonella (NTS) across farm stores and hatcheries. Isolates recovered from shipment boxes underwent serotyping, anti-microbial resistance (AMR) testing and pulsed-field gel electrophoresis (PFGE). Postal service tracking codes from the shipment boxes were used to determine the hatchery of origin. The PFGE patterns were compared with the PFGE patterns of NTS causing outbreaks of salmonellosis in 2013. A total of 219 hatchling boxes from 36 stores in 13 states were swabbed between 15 March 2013 and 18 April 2013. NTS were recovered from 59 (27%) of 219 hatchling boxes. Recovery was not significantly associated with species of hatchlings, number of birds in the shipment box, or the presence of dead, injured or sick birds. Four of the 23 PFGE patterns and 23 of 50 isolates were indistinguishable from strains causing human outbreaks in 2013. For serotypes associated with human illnesses, PFGE patterns most frequently recovered from shipment boxes were also more frequent causes of human illness. Boxes positive for the same PFGE pattern most frequently originated from the same mail-order hatchery. Only one of 59 isolates was resistant to anti-microbials used to treat Salmonella infections in people. This study provides critical information to address recurrent human outbreaks of salmonellosis associated with mail-order hatchling

  17. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  18. 49 CFR 173.475 - Quality control requirements prior to each shipment of Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Quality control requirements prior to each... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.475 Quality control requirements prior to each shipment of Class 7 (radioactive...

  19. 49 CFR 375.407 - Under what circumstances must I relinquish possession of a collect-on-delivery shipment...

    Science.gov (United States)

    2010-10-01

    ... possession of the shipment at the time of delivery. If there are either charges for any additional services... delivery. You must accept the form of payment agreed to at the time of estimate, unless the shipper agrees... possession of a collect-on-delivery shipment transported under a non-binding estimate? 375.407 Section 375...

  20. 49 CFR 375.709 - If a shipment is totally lost or destroyed, what charges may I collect at delivery?

    Science.gov (United States)

    2010-10-01

    ... MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HOUSEHOLD GOODS IN INTERSTATE COMMERCE; CONSUMER PROTECTION REGULATIONS Delivery of Shipments § 375.709 If a shipment is totally lost or destroyed, what... shipper's rights are in addition to, and not in lieu of, any other rights the individual shipper may have...

  1. 49 CFR 375.707 - If a shipment is partially lost or destroyed, what charges may I collect at delivery?

    Science.gov (United States)

    2010-10-01

    ... MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HOUSEHOLD GOODS IN INTERSTATE COMMERCE; CONSUMER PROTECTION REGULATIONS Delivery of Shipments § 375.707 If a shipment is partially lost or destroyed, what... the individual shipper. (d) The individual shipper's rights are in addition to, and not in lieu of...

  2. 9 CFR 73.6 - Placarding means of conveyance and marking billing of shipments of treated scabby cattle or...

    Science.gov (United States)

    2010-01-01

    ... marking billing of shipments of treated scabby cattle or cattle exposed to scabies. 73.6 Section 73.6... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.6 Placarding means of conveyance and marking billing of shipments of treated scabby cattle or cattle exposed...

  3. 31 CFR 358.9 - Who is responsible for the cost and risks associated with the shipment of securities?

    Science.gov (United States)

    2010-07-01

    ... § 358.9 Who is responsible for the cost and risks associated with the shipment of securities? The... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Who is responsible for the cost and risks associated with the shipment of securities? 358.9 Section 358.9 Money and Finance: Treasury...

  4. Rechargeable lithium batteries in the Navy -- Policy and protocol

    Energy Technology Data Exchange (ETDEWEB)

    Banner, J.A.; Winchester, C.S. [Naval Surface Warfare Center, Silver Spring, MD (United States). Carderock Div.

    1996-12-31

    Rechargeable lithium batteries are an emerging technology that is finding widespread use in myriad applications. These batteries are supplanting many others because of superior performance characteristics, including high energy density and improved cycle life. The newest model laptop computers, camcorders and cellular phones are using these systems to provide lighter products with longer battery life. Potential military-use scenarios for this technology range from propulsion power for autonomous unmanned vehicles to power sources for exercise mines. Current battery chemistries that might eventually be replaced by rechargeable lithium batteries include silver-zinc batteries, lithium-thionyl chloride batteries, and possibly lithium thermal batteries. The Navy is developing and implementing a universal test protocol for evaluating the safety characteristics of rechargeable lithium power sources, as discussed by Winchester et al (1995). Test plans based on this protocol are currently being used to evaluate both commercially available and developmental products. In this paper the authors will review the testing protocol that has been developed for evaluating the safety of rechargeable lithium batteries. Relevant data from current test programs will be presented.

  5. The Single-Vendor-Single-Buyer Integrated Production-Shipment Model with Stock Dependent Demand Rate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the integrated production-shipment models for the single-vendor-single-buyer system presented hitherto, thedemand rate of items is treated as a constant. However, many researchers have observed that the presence of morequantities of the same product tends to attract more customers. This suggests that the demand rate should depend on thestock level. This paper presents a single-vendor-single-buyer production-shipment model with the stock dependentdemand rate, based on the demand rate linearly depending upon the stock level at any instant of time.

  6. Determination of production-shipment policy using a two-phase algebraic approach

    Directory of Open Access Journals (Sweden)

    Huei-Hsin Chang

    2012-04-01

    Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.

  7. 49 CFR 375.805 - If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges...

    Science.gov (United States)

    2010-10-01

    ... shipment before the payment of ALL charges, how do I collect the balance? 375.805 Section 375.805... forced to relinquish a collect-on-delivery shipment before the payment of ALL charges, how do I collect the balance? On “collect-on-delivery” shipments, you must present your freight bill for all...

  8. Direct Methanol Fuel Cell (DMFC) Battery Replacement Program

    Science.gov (United States)

    2013-01-29

    required for maximum performance of electrochemical flow reactors . A reactant stream will favor the path of least resistance, potentially starving re...gions of the electrode assembly and lowering reactor efficiency. Array fuel cells are ideal for evaluation of catalytic layers, gas diffusion...layers, solid electrolytes , electrode fabrica- tion methods and flow uniformity. The coupling of Array fuel cell analysis with a modular flow-field

  9. Maintenance-free lead acid battery for inertial navigation systems aircraft

    Science.gov (United States)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  10. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  11. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  12. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June...

  13. 19 CFR 122.79 - Shipments to U.S. possessions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Shipments to U.S. possessions. 122.79 Section 122.79 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  14. 15 CFR 743.2 - High performance computers: Post shipment verification reporting.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false High performance computers: Post... ADMINISTRATION REGULATIONS SPECIAL REPORTING § 743.2 High performance computers: Post shipment verification... certain computers to destinations in Computer Tier 3, see § 740.7(d) for a list of these destinations...

  15. 21 CFR 1271.265 - Receipt, predistribution shipment, and distribution of an HCT/P.

    Science.gov (United States)

    2010-04-01

    ... distribution of an HCT/P. 1271.265 Section 1271.265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Practice § 1271.265 Receipt, predistribution shipment, and distribution of an HCT/P. (a) Receipt. You must evaluate each incoming HCT/P for the presence and significance of microorganisms and inspect for damage...

  16. 49 CFR 173.301b - Additional general requirements for shipment of UN pressure receptacles.

    Science.gov (United States)

    2010-10-01

    ... Group I performance level. (d) Non-refillable UN pressure receptacles. Non-refillable UN pressure... pressure receptacles. 173.301b Section 173.301b Transportation Other Regulations Relating to Transportation....301b Additional general requirements for shipment of UN pressure receptacles. (a) General....

  17. 7 CFR 932.60 - Reports of acquisitions, sales, uses, shipments and creditable brand advertising.

    Science.gov (United States)

    2010-01-01

    ... creditable brand advertising. 932.60 Section 932.60 Agriculture Regulations of the Department of Agriculture... Reports of acquisitions, sales, uses, shipments and creditable brand advertising. (a) Each handler shall... shall file such reports of creditable brand advertising as recommended by the committee and approved...

  18. 27 CFR 44.210 - Return of shipment to factory or export warehouse.

    Science.gov (United States)

    2010-04-01

    ... factory or export warehouse. 44.210 Section 44.210 Alcohol, Tobacco Products and Firearms ALCOHOL AND... Proprietors Miscellaneous Provisions § 44.210 Return of shipment to factory or export warehouse. A manufacturer or export warehouse proprietor may return to his factory or export warehouse, without...

  19. 9 CFR 73.5 - Interstate shipment of undiseased cattle from quarantined area; when permitted.

    Science.gov (United States)

    2010-01-01

    ... cattle from quarantined area; when permitted. 73.5 Section 73.5 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.5 Interstate shipment of undiseased cattle from quarantined area; when permitted. Cattle of any herd in any quarantined area, which herd is...

  20. 16 CFR 1610.39 - Shipments under section 11(c) of the Act.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Rules and Regulations § 1610.39 Shipments under... in commerce of articles of wearing apparel or textile fabrics for the purpose of finishing or... a statement disclosing such purpose. (b) An article of wearing apparel or textile fabric shall...

  1. EVALUATION OF CHROMOMYCIN A3 ASSAY IN HUMAN SPERM AFTER SIMULATED OVERNIGHT SHIPMENT

    Science.gov (United States)

    EVALUATION OF CHROMOMYCIN A3ASSAY IN HUMAN SPERM AFTER SIMULATED OVERNIGHT SHIPMENT. SC Jeffay1, R Morris Buus1, LF Strader1, AF Olshan2, DP Evenson3, SD Perreault1. 1US EPA/ORD, RTP, NC;2UNC-CH, Chapel Hill, NC;3SDSU, Brookings, SD.Semen collection kits that allow ...

  2. 77 FR 74587 - Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2012-12-17

    ... Department of Homeland Security Management Directive 023-01 and Commandant Instruction M16475.lD, which guide... categorically excluded from further review under paragraph 34(g) of Figure 2-1 of the Commandant Instruction. An... a maximum 200-yard radius of grain-shipment vessels when anchored, at any berth, moored, or in...

  3. Routing of radioactive shipments in networks with time-varying costs and curfews

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, L.A.; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-09-01

    This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.

  4. 7 CFR 318.47-4 - Shipments by the Department of Agriculture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Shipments by the Department of Agriculture. 318.47-4 Section 318.47-4 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES...

  5. 78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel

    Science.gov (United States)

    2013-05-28

    ...: Nuclear Regulatory Commission. ACTION: NUREG; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing Revision 2 of NUREG-0561, ``Physical Protection of Shipments of Irradiated Reactor... individuals granted unescorted access to SNF during transportation. DATES: Revision 2 of NUREG-0561...

  6. 78 FR 67927 - Foreign Trade Regulations (FTR): Mandatory Automated Export System Filing for All Shipments...

    Science.gov (United States)

    2013-11-13

    ... Export System Filing for All Shipments Requiring Shipper's Export Declaration Information: Substantive... the Automated Export System (AES) under control number 0607-0152. DATES: The effective date of the... instrument used for collecting export trade data, which is used by the Census Bureau for statistical...

  7. 15 CFR 30.35 - Procedure for shipments exempt from filing requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Procedure for shipments exempt from filing requirements. 30.35 Section 30.35 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS Exemptions From...

  8. 15 CFR 30.39 - Special exemptions for shipments to the U.S. Armed Services.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Special exemptions for shipments to the U.S. Armed Services. 30.39 Section 30.39 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE...

  9. 15 CFR 30.36 - Exemption for shipments destined to Canada.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Exemption for shipments destined to Canada. 30.36 Section 30.36 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS Exemptions From the...

  10. 75 FR 31288 - Plant-Verified Drop Shipment (PVDS)-Nonpostal Documentation

    Science.gov (United States)

    2010-06-03

    ... 111 Plant-Verified Drop Shipment (PVDS)--Nonpostal Documentation AGENCY: Postal Service TM . ACTION...; and to require segregation of documentation presented at the time of induction. DATES: Effective Date... other documentation presented at the time of mailing. This measure ensures that postal personnel will...

  11. Processing Discrepancy Reports Against Foreign Military Sales Shipments (Supplementation is Permitted at all Levels)

    Science.gov (United States)

    2007-11-02

    invoice should be attached to SF 364. Item 6 Transportation Document. The type of transportation document, Government Bill of Lading ( GBL ), Commercial...identifying number assigned to such document. This is a mandatory entry when shipment received was made via traceable means, e.g., GBL or CBL. The following

  12. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore...

  13. 49 CFR 173.302a - Additional requirements for shipment of nonliquefied (permanent) compressed gases in...

    Science.gov (United States)

    2010-10-01

    ..., 3AX, 3AA, 3AAX, and 3T cylinder may be filled with a compressed gas, other than a liquefied, dissolved... nonliquefied (permanent) compressed gases in specification cylinders. 173.302a Section 173.302a Transportation... PACKAGINGS Gases; Preparation and Packaging § 173.302a Additional requirements for shipment of nonliquefied...

  14. 9 CFR 351.16 - Certificate required for shipments of technical animal fat.

    Science.gov (United States)

    2010-01-01

    ... technical animal fat. 351.16 Section 351.16 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Transportation and Exportation of Certified Technical Animal Fat § 351.16 Certificate required for shipments...

  15. 19 CFR 18.24 - Retention of goods on dock; splitting of shipments.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retention of goods on dock; splitting of shipments... Transit Through the United States to Foreign Countries § 18.24 Retention of goods on dock; splitting of... dock, the port director, in his discretion, may allow in-transit merchandise, including merchandise...

  16. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    2012-01-01

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  17. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2011-01-01

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  18. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  19. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  20. Aeronautical Information System Replacement -

    Data.gov (United States)

    Department of Transportation — Aeronautical Information System Replacement is a web-enabled, automation means for the collection and distribution of Service B messages, weather information, flight...

  1. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  2. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC, Las Vegas, NV (United States)

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  3. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  4. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  5. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  6. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  7. Batteries not included

    Energy Technology Data Exchange (ETDEWEB)

    Valiante, U.

    1999-01-01

    Serious questions have arisen about the environmental damage caused by cadmium from rechargeable nickel cadmium batteries in municipal solid waste. Sweden, Belgium, several American states and Canadian provinces either have enacted, or are contemplating legislation to address disposal of cadmium-containing batteries. In a preemptive strike, industry is now developing its own recycling initiatives through the Rechargeable Battery Recycling Corporation (RBRC), established in the USA in 1996, and launched in Ontario in September 1997. The primary role of RBRC in Canada is to collect licensee funds from participating battery manufacturers and administer Ni-Cd battery recycling programs. RBRC is also tasked to establish consensus within provincial and federal regulatory bodies with regard to the issue of Ni-Cd battery waste management. Mounting concerns are expressed about conflicting statistics as to the volume of batteries collected for recycling, and more particularly, about the method of recycling that RBRC may be contemplating. The fear is that in the absence of a profitable incentive to battery distributors, or a profitable product that might result from the recycled material, combined with the pressure of the high cost of recycling Ni-Cd batteries, many of the recovered batteries could end up in landfills sites for hazardous wastes. This is especially likely since Ni-Cd batteries are not banned from landfill sites in Ontario. It is the view of this author that while RBRC`s `charge up to recycle` program makes all the right noises, it lacks a meaningful approach to actually increase diversion, measure results, or to prevent Ni-Cd rechargeable batteries from entering the solid waste stream.

  8. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  9. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  10. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries

    Science.gov (United States)

    Hendricks, Christopher; Williard, Nick; Mathew, Sony; Pecht, Michael

    2015-11-01

    Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.

  11. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  12. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  13. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  14. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  15. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  16. 3rd Quarter Transportation Report FY2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis B. [National Security Technologies, LLC (NSTec), Las Vegas, NV (United States)

    2015-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments.

  17. Battery Resistance Analysis of ISS Power System

    Science.gov (United States)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  18. Battery longevity in cardiac resynchronization therapy implantable cardioverter defibrillators.

    Science.gov (United States)

    Alam, Mian Bilal; Munir, Muhammad Bilal; Rattan, Rohit; Flanigan, Susan; Adelstein, Evan; Jain, Sandeep; Saba, Samir

    2014-02-01

    Cardiac resynchronization therapy (CRT) implantable cardioverter defibrillators (ICDs) deliver high burden ventricular pacing to heart failure patients, which has a significant effect on battery longevity. The aim of this study was to investigate whether battery longevity is comparable for CRT-ICDs from different manufacturers in a contemporary cohort of patients. All the CRT-ICDs implanted at our institution from 1 January 2008 to 31 December 2010 were included in this analysis. Baseline demographic and clinical data were collected on all patients using the electronic medical record. Detailed device information was collected on all patients from scanned device printouts obtained during routine follow-up. The primary endpoint was device replacement for battery reaching the elective replacement indicator (ERI). A total of 646 patients (age 69 ± 13 years), implanted with CRT-ICDs (Boston Scientific 173, Medtronic 416, and St Jude Medical 57) were included in this analysis. During 2.7 ± 1.5 years follow-up, 113 (17%) devices had reached ERI (Boston scientific 4%, Medtronic 25%, and St Jude Medical 7%, P battery was significantly worse for Medtronic devices compared with devices from other manufacturers (94% for Boston scientific, 67% for Medtronic, and 92% for St Jude Medical, P battery longevity by manufacturer was independent of pacing burden, lead parameters, and burden of ICD therapy. There are significant discrepancies in CRT-ICD battery longevity by manufacturer. These data have important implications on clinical practice and patient outcomes.

  19. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  20. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  1. Battery thermal management unit

    Science.gov (United States)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  2. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  3. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  4. Silicon Betavoltaic Batteries Structures

    Directory of Open Access Journals (Sweden)

    V.N. Murashev

    2015-12-01

    Full Text Available For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  5. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  6. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  7. Improvement of resource efficiency by efficient waste shipment inspections; Steigerung der Ressourceneffizienz durch effiziente Kontrollen von Abfallverbringungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Stephanie [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany)

    2011-09-15

    Illegal shipment of waste as well as enforcement related to waste shipment have been regularly the centre of attention of public and professional debates and are also a topic of cross-national relations. In addition, the fear persists that by illegal waste shipments waste is treated in plants neither adapted to protect the environment and health nor having sufficient recuperation capabilities for precious raw materials. This project therefore intends to clarify the status quo of waste shipment inspections in the 16 federal states of Germany (Bundeslaender, in the following cited as states or federal states) to identify potential for development regarding the organisation and execution of inspections and to elaborate recommendations to optimise enforcement activities and further development of European and German legislative regulations. In order to optimise the enforcement of the European Waste Shipment Regulation (WSR) and the German Waste Shipment Act (AbfVerbrG), an adequate number of qualified personnel is necessary within all bodies involved into waste shipment inspections. Those bodies are namely the competent waste authorities, customs, police, the Federal Office for Transport of Goods (BAG), the Federal Railway Authority (EBA) and the prosecution offices. An adequate number of qualified personnel is not provided for in all states/authorities. This is also reflected in the number of transport and plant inspections which deviate between zero to a fixed number per year as well as being continuously performed and based occasion-/cause oriented inspections. Tangible means like access to IT-systems and the Internet should be provided for on-site inspections. Besides qualified and experienced personnel also IT-Systems have a relevant impact on the preselection of the entity to be inspected as well as for on-the-spot investigations. Therefore IT-System can increase the efficiency of inspections (inspections per time unit resp. exposure of illegal shipments per time

  8. Improvement of resource efficiency by efficient waste shipment inspections; Steigerung der Ressourceneffizienz durch effiziente Kontrollen von Abfallverbringungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Stephanie [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany)

    2011-09-15

    Illegal shipment of waste as well as enforcement related to waste shipment have been regularly the centre of attention of public and professional debates and are also a topic of cross-national relations. In addition, the fear persists that by illegal waste shipments waste is treated in plants neither adapted to protect the environment and health nor having sufficient recuperation capabilities for precious raw materials. This project therefore intends to clarify the status quo of waste shipment inspections in the 16 federal states of Germany (Bundeslaender, in the following cited as states or federal states) to identify potential for development regarding the organisation and execution of inspections and to elaborate recommendations to optimise enforcement activities and further development of European and German legislative regulations. In order to optimise the enforcement of the European Waste Shipment Regulation (WSR) and the German Waste Shipment Act (AbfVerbrG), an adequate number of qualified personnel is necessary within all bodies involved into waste shipment inspections. Those bodies are namely the competent waste authorities, customs, police, the Federal Office for Transport of Goods (BAG), the Federal Railway Authority (EBA) and the prosecution offices. An adequate number of qualified personnel is not provided for in all states/authorities. This is also reflected in the number of transport and plant inspections which deviate between zero to a fixed number per year as well as being continuously performed and based occasion-/cause oriented inspections. Tangible means like access to IT-systems and the Internet should be provided for on-site inspections. Besides qualified and experienced personnel also IT-Systems have a relevant impact on the preselection of the entity to be inspected as well as for on-the-spot investigations. Therefore IT-System can increase the efficiency of inspections (inspections per time unit resp. exposure of illegal shipments per time

  9. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  10. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  11. Replacing a Missing Tooth

    Science.gov (United States)

    ... vessels in the tooth pulps are rather large. Drilling down these teeth for crowns may expose the ... porcelain replacement tooth is held in place by metal extensions cemented to the backs of the adjacent ...

  12. Hormone Replacement Therapy

    Science.gov (United States)

    ... before and during menopause, the levels of female hormones can go up and down. This can cause ... hot flashes and vaginal dryness. Some women take hormone replacement therapy (HRT), also called menopausal hormone therapy, ...

  13. Knee joint replacement

    Science.gov (United States)

    ... of your kneecap. Your kneecap is called the patella. The replacement part is usually made from a ... long. Then your surgeon will: Move your kneecap (patella) out of the way, then cut the ends ...

  14. Knee joint replacement - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the ... to slide 4 out of 4 Overview The knee is a complex joint. It contains the distal ...

  15. Product Platform Replacements

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    Purpose – It is argued in this article that too little is known about product platforms and how to deal with them from a manager's point of view. Specifically, little information exists regarding when old established platforms are replaced by new generations in R&D and production environments...... originality and value is achieved by focusing on product platform replacements believed to represent a growing management challenge....

  16. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... was realized for a 100 kW active rectier to be used in a 6 kV battery energy storage test bench. In the second part, dierent solutions for power converters to interface energy storage units to medium voltage grid are given. A new modular multilevel converter concept is introduced, where the energy storage......-voltage 100 kW bidirectional grid converter, to be used in a high voltage battery energy storage test bench. The control structure proved to be stable without damping. The converter was tested in the test bench and the experimental results are presented. Multilevel converters are replacing the classical two...

  17. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  18. Request for One-Time Shipment of 32 Watt PU-328 Source in 9968 Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Massey, W.M.

    1998-11-25

    The 9968 package is designed for surface shipment of fissile and other radioactive materials where a high degree of double containment is required. The use of the 9968 radioactive material package for a one time shipment of a 32 watt heat source versus the SARP approved maximum 30 watt heat source is addressed in this report. The analyses show that the small increase in heat load from 30 watts to 32 watts does not substantially increase internal temperatures or pressures that would approach limits for the package. Also, the weight of the content is within the current 9968 package limits. It is concluded that the 32-watt heat source can be safely shipped in the 9968 package and therefore a waiver to ship the source is justified.

  19. Simulation about Self-absorption of Ni-63 Nuclear Battery Using Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery.

  20. Simulation of Ni-63 based nuclear micro battery using Monte Carlo modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-10-15

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery.

  1. A rationale for maintaining the double containment requirement for plutonium shipments

    Energy Technology Data Exchange (ETDEWEB)

    Channell, James K. [Environmental Evaluation Group, Albuquerque, NM (US); Anastas, George [Environmental Evaluation Group, Albuquerque, NM (US)

    2003-12-31

    Current U.S. Nuclear Regulatory Commission (NRC) transportation regulations (10 CFR 71.63 (b)) require that all shipments containing more than 20 curies of plutonium must be transported in packages that provide double containment. On April 30, 2002 the NRC issued a proposed rule that would eliminate §71.63(b) and the double containment requirement. NRC’s reasons for proposing elimination of §71.63(b) are: (1) compatibility with International Atomic Energy Agency Transportation Safety Standards (which do not have the requirement); (2) the current rule is inconsistent with the A1/A2 system since it applies only to plutonium; (3) double containment causes a heavier package and results in higher transportation costs; (4) the separate inner containment results in additional radiation exposure; and (5) while there would be additional protection from a separate inner container in an accident; this type of approach is not “risk informed nor performance based.” The Environmental Evaluation Group (EEG) has been a proponent of the double containment requirement for the Waste Isolation Pilot Plant (WIPP) shipments for twenty years. This requirement affects shipments to WIPP much more than any other current or planned shipping campaign because reactor fuel elements, metal or metal alloy, and vitrified high-level waste are exempt from §71.63(b). EEG submitted comments on the Proposed Rule on July 26, 2002 (Appendix C). This report is an update and expansion of the July 26, 2002 comments. Actual WIPP experience with shipments in the double contained TRUPACT-II package is used to respond to NRC arguments for deletion of §71.63(b) and offers a rationale for maintaining the current requirement.

  2. Combining Diffusion and Grey Models Based on Evolutionary Optimization Algorithms to Forecast Motherboard Shipments

    OpenAIRE

    Fu-Kwun Wang; Yu-Yao Hsiao; Ku-Kuang Chang

    2012-01-01

    It is important for executives to predict the future trends. Otherwise, their companies cannot make profitable decisions and investments. The Bass diffusion model can describe the empirical adoption curve for new products and technological innovations. The Grey model provides short-term forecasts using four data points. This study develops a combined model based on the rolling Grey model (RGM) and the Bass diffusion model to forecast motherboard shipments. In addition, we investigate evolutio...

  3. Combining Diffusion and Grey Models Based on Evolutionary Optimization Algorithms to Forecast Motherboard Shipments

    OpenAIRE

    Fu-Kwun Wang; Yu-Yao Hsiao; Ku-Kuang Chang

    2012-01-01

    It is important for executives to predict the future trends. Otherwise, their companies cannot make profitable decisions and investments. The Bass diffusion model can describe the empirical adoption curve for new products and technological innovations. The Grey model provides short-term forecasts using four data points. This study develops a combined model based on the rolling Grey model (RGM) and the Bass diffusion model to forecast motherboard shipments. In addition, we investigate evolutio...

  4. Lawrence Livermore National Laboratory offsite hazardous waste shipment data validation report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy Headquarters requested this report to verify that Lawrence Livermore National Laboratory (LLNL) properly categorized hazardous waste shipped offsite from 1984 to 1991. LLNL categorized the waste shipments by the new guidelines provided on the definition of radioactive waste. For this validation, waste that has had no radioactivity added by DOE operations is nonradioactive. Waste to which DOE operations has added or concentrated any radioactivity is radioactive. This report documents findings from the review of available LLNL hazardous waste shipment information and summarizes the data validation strategy. The report discusses administrative and radiological control procedures in place at LLNL during the data validation period. It also describes sampling and analysis and surface survey procedures used in determining radionuclide concentrations for offsite release of hazardous waste shipments. The evaluation team reviewed individual items on offsite hazardous waste shipments and classified them, using the DOE-HQ waste category definitions. LLNL relied primarily on generator knowledge to classify wastes. Very little radioanalytical information exists on hazardous wastes shipped from LLNL. Slightly greater than one-half of those hazardous waste items for which the documentation included radioanalytical data showed concentrations of radioactivity higher than the LLNL release criteria used from 1989 to 1991. Based on this small amount of available radioanalytical data, very little (less than one percent) of the hazardous waste generated at the LLNL main site can be shown to contain DOE added radioactivity. LLNL based the criteria on the limit of analytical sensitivity for gross alpha and gross beta measurements and the background levels of tritium. Findings in this report are based on information and documentation on the waste handling procedures in place before the start of the hazardous waste shipping moratorium in May 1991.

  5. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  6. Industry Self-Regulation to Improve Student Health: Quantifying Changes in Beverage Shipments to Schools

    Science.gov (United States)

    Fitzpatrick, Brendan M.; Phillips, Elizabeth

    2012-01-01

    Objectives. We developed a data collection and monitoring system to independently evaluate the self-regulatory effort to reduce the number of beverage calories available to children during the regular and extended school day. We have described the data collection procedures used to verify data supplied by the beverage industry and quantified changes in school beverage shipments. Methods. Using a proprietary industry data set collected in 2005 and semiannually in 2007 through 2010, we measured the total volume of beverage shipments to elementary, middle, and high schools to monitor intertemporal changes in beverage volumes, the composition of products delivered to schools, and portion sizes. We compared data with findings from existing research of the school beverage landscape and a separate data set based on contracts between schools and beverage bottling companies. Results. Between 2004 and the 2009–2010 school year, the beverage industry reduced calories shipped to schools by 90%. On a total ounces basis, shipments of full-calorie soft drinks to schools decreased by 97%. Conclusions. Industry self-regulation, with the assistance of a transparent and independent monitoring process, can be a valuable tool in improving public health outcomes. PMID:22897528

  7. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  8. Baterias de níquel-hidreto metálico, uma alternativa para as baterias de níquel-cádmio Nickel-metal hydride batteries, an alternative for the nickel-cadmium batteries

    OpenAIRE

    2001-01-01

    Nickel metal hydride (Ni-MH) batteries have emerged as an alternative for replacement of nickel-cadmium batteries, because of their more environmental compatibility and high energy capacity. In this article, we described the properties and applications for Ni-MH batteries, giving some emphasis on the metal-hydride electrode, including the description of composition, the charge storage capacity and the discharge profile. The key component of the nickel-metal hydride electrode is a hydrogen sto...

  9. Optimal scheduling of logistical support for medical resources order and shipment in community health service centers

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2015-11-01

    Full Text Available Purpose: This paper aims to propose an optimal scheduling for medical resources order and shipment in community health service centers (CHSCs.Design/methodology/approach: This paper presents two logistical support models for scheduling medical resources in CHSCs. The first model is a deterministic planning model (DM, which systematically considers the demands for various kinds of medical resources, the lead time of supplier, the storage capacity and other constraints, as well as the integrated shipment planning in the dimensions of time and space. The problem is a multi-commodities flow problem and is formulated as a mixed 0-1 integer programming model. Considering the demand for medical resources is always stochastic in practice, the second model is constructed as a stochastic programming model (SM. A solution procedure is developed to solve the proposed two models and a simulation-based evaluation method is proposed to compare the performances of the proposed models. Findings andFindings: The main contributions of this paper includes the following two aspects: (1 While most research on medical resources optimization studies a static problem taking no consideration of the time evolution and especially the dynamic demand for such resources, the proposed models in our paper integrate time-space network technique, which can find the optimal scheduling of logistical support for medical resources order and shipment in CHSCs effectively. (2 The logistics plans in response to the deterministic demand and the time-varying demand are constructed as 0-1 mixed integer programming model and stochastic integer programming model, respectively. The optimal solutions not only minimize the operation cost of the logistics system, but also can improve the order and shipment operation in practice.Originality/value: Currently, medical resources in CHSCs are purchased by telephone or e-mail. The important parameters in decision making, i.e. order/shipment frequency

  10. Cell-balancing currents in parallel strings of a battery system

    Science.gov (United States)

    Dubarry, Matthieu; Devie, Arnaud; Liaw, Bor Yann

    2016-07-01

    Lithium-ion batteries are attractive for vehicle electrification or grid modernization applications. In these applications, battery packs are required to have multiple-cell configurations and battery management system to operate properly and safely. Here, a useful equivalent circuit model was developed to simulate the spontaneous transient balancing currents among parallel strings in a battery system. The simulation results were validated with experimental data to illustrate the accuracy and validity of the model predictions. Understanding the transient behavior of such cell and string balancing in a parallel circuit configuration is very important to assess the impacts of current fluctuation and cell variability on a battery system's performance, regarding durability, reliability, safety, abuse tolerance and failure prevention, including possible short circuit or open circuit conditions. Additional features and advantages, including the ability to assessing impacts on the performance of the string assemblies from string swapping or cell/module replacement in the strings, could be realized to aid battery management, maintenance and repair.

  11. International Space Station Nickel-Hydrogen Batteries Approached 3-Year On-Orbit Mark

    Science.gov (United States)

    Dalton, Penni J.

    2004-01-01

    The International Space Station's (ISS) electric power system (EPS) employs nickel-hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged, providing station power, during eclipse. The batteries are designed to operate at a maximum 35-percent depth of discharge during normal operation. Thirty-eight individual pressure vessel Ni-H2 battery cells are series-connected and packaged in an orbital replacement unit (ORU), and two ORUs are series-connected, using a total of 76 cells, to form one battery. When the ISS is in its assembly-complete form, the electrical power system will have a total of 24 batteries (48 ORUs) on-orbit. The ISS is the first application for low-Earth-orbit cycling of this quantity of series-connected cells.

  12. Lithium Sulfuryl Chloride Battery.

    Science.gov (United States)

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  13. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  14. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  15. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  16. Robotic mitral valve replacement.

    Science.gov (United States)

    Senay, Sahin; Gullu, Ahmet Umit; Kocyigit, Muharrem; Degirmencioglu, Aleks; Karabulut, Hasan; Alhan, Cem

    2014-01-01

    Robotic surgical techniques allow surgeons to perform mitral valve surgery. This procedure has gained acceptance, particularly for mitral valve repair in degenerative mitral disease. However, mitral repair may not always be possible, especially in severely calcified mitral valve of rheumatic origin. This study demonstrates the basic concepts and technique of robotic mitral valve replacement for valve pathologies that are not suitable for repair.

  17. Replacing America's Job Bank

    Science.gov (United States)

    Vollman, Jim

    2009-01-01

    The Job Central National Labor Exchange (www.jobcentral.com) has become the effective replacement for America's Job Bank with state workforce agencies and, increasingly, with community colleges throughout the country. The American Association of Community Colleges (AACC) has formed a partnership with Job Central to promote its use throughout the…

  18. Replacing America's Job Bank

    Science.gov (United States)

    Vollman, Jim

    2009-01-01

    The Job Central National Labor Exchange (www.jobcentral.com) has become the effective replacement for America's Job Bank with state workforce agencies and, increasingly, with community colleges throughout the country. The American Association of Community Colleges (AACC) has formed a partnership with Job Central to promote its use throughout the…

  19. Strain measurement based battery testing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  20. Novel, low-cost alternative technologies to tackle practical, industrial conundrums – a case study of batteries

    Directory of Open Access Journals (Sweden)

    Chan Victor K. Y.

    2016-01-01

    Full Text Available Whereas batteries in comparison with most other means of energy storage are more environmentally friendly and economical in their operation, they are beset by low energy replenishment rates, low energy storage density, high capital cost of themselves, and high capital cost of energy replenishment infrastructures. Mainly based on ergonomics, this paper proposes a novel, low-cost alternative technology to practically and industrially make these weaknesses irrelevant to some extent without calling for revolutionary technological breakthroughs in material science, batteries’ microstructures, or battery manufacturing technologies. The technology takes advantage of modularization of battery systems, prioritization of charging and discharging of battery module(s according to ease of unloading and/or loading the battery module(s and/or ease of loading replacement battery module(s of the battery module(s.

  1. Design and Implementation of Battery Management System for Electric Bicycle

    OpenAIRE

    Mohd Rashid Muhammad Ikram; Anak Johnny Osman James Ranggi

    2017-01-01

    Today the electric vehicle (EV) has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optim...

  2. Advances and development of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Trevey, James Edward

    Lithium-ion battery technologies have always been accompanied by severe safety issues; therefore recent research efforts have focused on improving battery safety. In large part, the hazardous nature of lithium-ion batteries stems from the high flammability of liquid electrolytes. Consequently, numerous researchers have attempted to replace liquid electrolytes with nonflammable solid electrolytes in order to avoid potential safety problems. Unfortunately, current solid electrolytes are incapable of performing as effectively as liquid electrolytes in lithium-ion batteries due to inferior electrochemical capabilities. While some "all-solid-state" batteries have found niche application, further technological advancement is required for large scale replacement of liquid-based batteries. The goal of this research is to develop all-solid-state batteries that can outperform liquid batteries and understand the mechanisms that dictate battery operation and behavior. This involves fabrication of highly conducting solid electrolytes, production and analyzation of batteries employing state-of-the-art electrode materials, and generation of high power and high energy density lithium batteries. In this dissertation, the first objective was to manufacture highly conducting solid electrolytes that are stable in contact with lithium metal. Numerous characterization techniques were used to gain understanding of physical and chemical properties of solid electrolytes, as well as mechanisms for fast ion conduction. A new process for production of highly conducting and stable solid electrolytes is developed and materials are used to evaluate performance of electrodes in an all-solid-state construction. The second objective of this work was to research the performance of both positive and negative electrodes incorporating solid electrolyte. Evaluation of electrochemical results allowed for a good understanding of reaction mechanisms taking place within composite battery materials and at

  3. COBE battery overview: History, handling, and performance

    Science.gov (United States)

    Yi, Thomas; Tiller, Smith; Sullivan, David

    1991-01-01

    The following topics are presented in viewgraph format: Cosmic Background Explorer (COBE) mission background; battery background and specifications; cell history; battery mechanical/structural design; battery test data; and flowcharts of the various battery approval procedures.

  4. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  5. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    Science.gov (United States)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10‑3 S cm‑1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  6. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    Science.gov (United States)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  7. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  8. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Overweight truck shipments to nuclear waste repositories: legal, political, administrative and operational considerations

    Energy Technology Data Exchange (ETDEWEB)

    1986-03-01

    This report, prepared for the Chicago Operations Office and the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), identifies and analyzes legal, political, administrative, and operational issues that could affect an OCRWM decision to develop an overweight truck cask fleet for the commercial nuclear waste repository program. It also provides information required by DOE on vehicle size-and-weight administration and regulation, pertinent to nuclear waste shipments. Current legal-weight truck casks have a payload of one pressurized-water reactor spent fuel element or two boiling-water reactor spent fuel elements (1 PWR/2 BWR). For the requirements of the 1960s and 1970s, casks were designed with massive shielding to accommodate 6-month-old spent fuel; the gross vehicle weight was limited to 73,280 pounds. Spent fuel to be moved in the 1990s will have aged five years or more. Gross vehicle weight limitation for the Interstate highway system has been increased to 80,000 pounds. These changes allow the design of 25-ton legal-weight truck casks with payloads of 2 PWR/5 BWR. These changes may also allow the development of a 40-ton overweight truck cask with a payload of 4 PWR/10 BWR. Such overweight casks will result in significantly fewer highway shipments compared with legal-weight casks, with potential reductions in transport-related repository risks and costs. These advantages must be weighed against a number of institutional issues surrounding such overweight shipments before a substantial commitment is made to develop an overweight truck cask fleet. This report discusses these issues in detail and provides recommended actions to DOE.

  10. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  11. Used batteries - REMINDER

    CERN Document Server

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  12. Combining Diffusion and Grey Models Based on Evolutionary Optimization Algorithms to Forecast Motherboard Shipments

    Directory of Open Access Journals (Sweden)

    Fu-Kwun Wang

    2012-01-01

    Full Text Available It is important for executives to predict the future trends. Otherwise, their companies cannot make profitable decisions and investments. The Bass diffusion model can describe the empirical adoption curve for new products and technological innovations. The Grey model provides short-term forecasts using four data points. This study develops a combined model based on the rolling Grey model (RGM and the Bass diffusion model to forecast motherboard shipments. In addition, we investigate evolutionary optimization algorithms to determine the optimal parameters. Our results indicate that the combined model using a hybrid algorithm outperforms other methods for the fitting and forecasting processes in terms of mean absolute percentage error.

  13. Stable isotope customer list and summary of shipments, FY 1985. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, J.G. (comp.)

    1986-01-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  14. Stable-isotope customer list and summary of shipments, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C. (comp.)

    1983-04-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The inforamtion is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  15. Ulnar head replacement.

    Science.gov (United States)

    Herbert, Timothy J; van Schoonhoven, Joerg

    2007-03-01

    Recent years have seen an increasing awareness of the anatomical and biomechanical significance of the distal radioulnar joint (DRUJ). With this has come a more critical approach to surgical management of DRUJ disorders and a realization that all forms of "excision arthroplasty" can only restore forearm rotation at the expense of forearm stability. This, in turn, has led to renewed interest in prosthetic replacement of the ulnar head, a procedure that had previously fallen into disrepute because of material failures with early implants, in particular, the Swanson silicone ulnar head replacement. In response to these early failures, a new prosthesis was developed in the early 1990s, using materials designed to withstand the loads across the DRUJ associated with normal functional use of the upper limb. Released onto the market in 1995 (Herbert ulnar head prosthesis), clinical experience during the last 10 years has shown that this prosthesis is able to restore forearm function after ulnar head excision and that the materials (ceramic head and noncemented titanium stem), even with normal use of the limb, are showing no signs of failure in the medium to long term. As experience with the use of an ulnar head prosthesis grows, so does its acceptance as a viable and attractive alternative to more traditional operations, such as the Darrach and Sauve-Kapandji procedures. This article discusses the current indications and contraindications for ulnar head replacement and details the surgical procedure, rehabilitation, and likely outcomes.

  16. Power supply system for traction batteries

    Energy Technology Data Exchange (ETDEWEB)

    Perkuhn, E. (DETA Akkumulatorenwerk G.m.b.H., Bad Lauterberg (Germany, F.R.))

    1977-12-01

    Battery life is usually shortest in combined systems. The author discusses the causes of battery wear; if the battery is serviced correctly, it is mainly the charging process which is responsible. This process is described and explained. Battery chargers are mentioned where charging voltage and charging current are best adapted to the battery requirements. These battery chargers are also switched off automatically.

  17. Relativity and the mercury battery.

    Science.gov (United States)

    Zaleski-Ejgierd, Patryk; Pyykkö, Pekka

    2011-10-06

    Comparative, fully relativistic (FR), scalar relativistic (SR) and non-relativistic (NR) DFT calculations attribute about 30% of the mercury-battery voltage to relativity. The obtained percentage is smaller than for the lead-acid battery, but not negligible.

  18. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  19. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  20. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments

    Energy Technology Data Exchange (ETDEWEB)

    Doerge, D. H.; Haffner, D. R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  1. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  2. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  3. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  4. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  5. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  6. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  7. Impact on global metal flows arising from the use of portable rechargeable batteries.

    Science.gov (United States)

    Rydh, Carl Johan; Svärd, Bo

    2003-01-20

    The use of portable rechargeable battery cells and their effects on global metal flows were assessed or the following three cases: (1) the base case, which reflects the situation in 1999 of the global production of batteries; (2) the global production of portable nickel-cadmium batteries in 1999, assumed to be replaced by other battery types; and (3) assessment of the projected battery market in 2009. The study included the following battery technologies: nickel-cadmium (NiCd); nickel-metal hydride (NiMH) (AB(5), AB(2)); and lithium-based batteries (Li-ion: Co, Ni, Mn; Li-polymer: V). Based on the lithospheric extraction indicator (LEI), which is the ratio of anthropogenic to natural metal flows, and the significance of battery production related to global metal mining, the potential environmental impact of metals used in different battery types was evaluated. The LEIs and average metal demand for the battery market in 1999, expressed as a percentage of global mining output in 1999, were estimated to be as follows: Ni 5.6 (2.0%); Cd 4.4 (37%); Li 0.65 (3.8%); V 0.33 (6.5%); Co 0.18 (15%); Nd 0.18 (8.4%); La 0.10 (9.5%); Ce 0.083 (4.4%); and Pr 0.073 (9.4%). The use of Ni and Cd is of the greatest environmental interest, due to their high LEIs. In the case of complete replacement of portable NiCd batteries by NiMH or Li-based batteries, the LEI for Ni (5.6) would change by -0.1-0.5% and the LEI for Cd would decrease from 4.4 to 3.0 (-31%). Meanwhile, the mobilization of metals considered less hazardous than Cd (LEI 0 batteries would result in decreased environmental impact. To decrease the impact on global metal flows arising from the use of portable batteries the following points should be considered: (1) development of battery technologies should aim at high energy density and long service life; (2) metals with high natural occurrence should be used; and (3) metals from disused batteries should be recovered and regulations implemented to decrease the need for

  8. 19 CFR 7.1 - Puerto Rico; spirits and wines withdrawn from warehouse for shipment to; duty on foreign-grown...

    Science.gov (United States)

    2010-04-01

    ... warehouse for shipment to; duty on foreign-grown coffee. 7.1 Section 7.1 Customs Duties U.S. CUSTOMS AND... warehouse for shipment to; duty on foreign-grown coffee. (a) When spirits and wines are withdrawn from a..., part 18 of this chapter. (c) A regular entry shall be made for all foreign-grown coffee shipped...

  9. 49 CFR 375.705 - If a shipment is transported on more than one vehicle, what charges may I collect at delivery?

    Science.gov (United States)

    2010-10-01

    ... vehicle, what charges may I collect at delivery? 375.705 Section 375.705 Transportation Other Regulations...; CONSUMER PROTECTION REGULATIONS Delivery of Shipments § 375.705 If a shipment is transported on more than one vehicle, what charges may I collect at delivery? (a) At your discretion, you may do one of...

  10. 49 CFR 375.521 - What must I do if an individual shipper wants to know the actual weight or charges for a shipment...

    Science.gov (United States)

    2010-10-01

    ... required at time of delivery is 110 percent of the estimated charges, but only if the individual shipper... know the actual weight or charges for a shipment before I tender delivery? 375.521 Section 375.521... GOODS IN INTERSTATE COMMERCE; CONSUMER PROTECTION REGULATIONS Pick Up of Shipments of Household Goods...

  11. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  12. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  13. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  14. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  15. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  16. Carbon conductor- and binder-free organic electrode for flexible organic rechargeable batteries with high energy density

    Science.gov (United States)

    Kim, Tae Sin; Lim, Ji-Eun; Oh, Min-Suk; Kim, Jae-Kwang

    2017-09-01

    For the first time, we report a poly (2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)-based organic electrode with 100 wt% active material loading. The electrochemical performance of the PTMA electrode for organic batteries was improved by replacing the aluminum current collector by graphite ones. The use of graphite current collector reduces the cell weight and increases its mechanical flexibility. The resulting battery with the new carbon conductor- and binder-free organic electrode with polyimide-based gel polymer electrolyte (GPE) displayed significantly higher increased energy density (470 Wh kg-1vs. cell weight), which is essential for making organic batteries competitive with conventional Li ion batteries.

  17. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  18. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0replace sodium ions of a precursor material with lithium ions.

  19. Aortic valve replacement

    DEFF Research Database (Denmark)

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A

    2008-01-01

    BACKGROUND AND AIMS OF THE STUDY: Prompted by anecdotal evidence and observations by surgeons, an investigation was undertaken into the potential differences in implanted aortic valve prosthesis sizes, during aortic valve replacement (AVR) procedures, between northern and southern European...... countries. METHODS: A multi-institutional, non-randomized, retrospective analysis was conducted among 2,932 patients who underwent AVR surgery at seven tertiary cardiac surgery centers throughout Europe. Demographic and perioperative variables including valve size and type, body surface area (BSA) and early...

  20. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.

  1. Calculation of buffer batteries with voltage-adding storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, R.V.; Koloskov, A.A.; Ratner, G.B.; Sharov, V.N.

    1982-01-01

    A technique is proposed for buffer storage batteries of the NKG type with voltage-adding storage batteries. These batteries (B) guarantee comparatively narrow range of change in the voltage for load with discharge of the storage batteries of the main B to the assigned minimum voltage. The purpose of the calculation is to determine the number of voltage-adding B and the number of storage batteries in each of them. The initial data for calculation are minimum and maximum values of voltage for load and storage batteries of the main B. Expressions have been obtained for determining the depth of the discharge and the final expression for determining the depth of the discharge and the final discharge voltage of the storage batteries of each voltage-adding B. The necessary formulas are presented and the order for making the calculation is given.

  2. International Space Station Nickel-Hydrogen Battery Start-Up and Initial Performance

    Science.gov (United States)

    Cohen, Fred; Dalton, Penni J.

    2001-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35% depth of discharge (DOD) maximum during normal operation. Thirty eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells, to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will describe the battery hardware configuration, operation, and role in providing power to the main power system of the ISS. We will also discuss initial battery start-up and performance data.

  3. The Optimum Replacement of Weapon

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; ZHANG Jin-chun

    2002-01-01

    The theory of LCC (Life Cycle Cost) is applied in this paper. The relation between the economic life of weapon and the optimum replacement is analyzed. The method to define the optimum replacement time of weapon is discussed.

  4. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  5. Total disc replacement.

    Science.gov (United States)

    Vital, J-M; Boissière, L

    2014-02-01

    Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    HR/SOC

    2001-01-01

    The French Ministry of Foreign Affairs has informed the Organization that it is shortly to replace all diplomatic cards, special cards and employment permits ('attestations de fonctions') now held by members of the personnel and their families. Between 2 July and 31 December 2001, these cards are to be replaced by secure, computerized equivalents. The old cards may continue to be used until 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015), in order to fill in a 'fiche individuelle' form, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format. The French card in their possession. An A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done...

  7. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division; Cards.Service@cern.ch

    2001-01-01

    The French Ministry of Foreign Affairs is currently replacing all diplomatic cards, special cards and employment permits («attestations de fonctions») held by members of the personnel and their families. These cards are replaced by secure, computerized equivalents. The old cards may no longer be used after 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015) between 8h30 and 12h30, in order to fill in a «fiche individuelle» form, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format, the French card in their possession, an A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done so, are also requested...

  8. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The French Ministry of Foreign Affairs has informed the Organization that it is shortly to replace all diplomatic cards, special cards and employment permits ('attestations de fonctions') now held by members of the personnel and their families. Between 2 July and 31 December 2001, these cards are to be replaced by secure, computerized equivalents. The old cards may continue to be used until 31 December 2001. For the purposes of the handover, members of the personnel are asked to go to the cards office (33/1-015), taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format, The French card in their possession, an A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done so, are also requested to take these items to the c...

  9. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The French Ministry of Foreign Affairs has informed the Organization that it is shortly to replace all diplomatic cards, special cards and employment permits ('attestations de fonctions') now held by members of the personnel and their families. Between 2 July and 31 December 2001, these cards are to be replaced by secure, computerized equivalents. A 'personnel office' stamped photocopy of the old cards may continue to be used until 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015), between 8:30 and 12:30, in order to fill a 'fiche individuelle' form (in black ink only), which has to be personally signed by themselves and another separately signed by members of their family, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format (signed on the back) The French card in their possession an A4 photocopy of the same Fre...

  10. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  11. Faster Replacement Paths

    CERN Document Server

    Williams, Virginia Vassilevska

    2010-01-01

    The replacement paths problem for directed graphs is to find for given nodes s and t and every edge e on the shortest path between them, the shortest path between s and t which avoids e. For unweighted directed graphs on n vertices, the best known algorithm runtime was \\tilde{O}(n^{2.5}) by Roditty and Zwick. For graphs with integer weights in {-M,...,M}, Weimann and Yuster recently showed that one can use fast matrix multiplication and solve the problem in O(Mn^{2.584}) time, a runtime which would be O(Mn^{2.33}) if the exponent \\omega of matrix multiplication is 2. We improve both of these algorithms. Our new algorithm also relies on fast matrix multiplication and runs in O(M n^{\\omega} polylog(n)) time if \\omega>2 and O(n^{2+\\eps}) for any \\eps>0 if \\omega=2. Our result shows that, at least for small integer weights, the replacement paths problem in directed graphs may be easier than the related all pairs shortest paths problem in directed graphs, as the current best runtime for the latter is \\Omega(n^{2.5...

  12. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  13. Characteristics and development report for the T1576 power supply and the MC3935 battery

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.; Robinson, C.E.

    1993-10-01

    This report describes the requirements, designs, performance, and development histories for the T1576 power supply and the MC3935 rechargeable battery. These devices are used to power Permissive Action Link (PAL) ground controllers. The T1576 consists of a stainless steel container, one SA3553 connector, and one MC3935 battery. The MC3935 is a vented nickel/cadmium battery with 24 cells connected in series. It was designed to deliver 5.5 Amp-hours at 25{number_sign}C and the one-hour rate, with a nominal voltage of 28 V. The battery was designed to operate for 5 years or 500 full charge/discharge cycles. The power supply is expected to last indefinitely with replacement batteries and hardware.

  14. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  15. Batteries: Imaging degradation

    Science.gov (United States)

    Shearing, Paul R.

    2016-11-01

    The degradation and failure of Li-ion batteries is strongly associated with electrode microstructure change upon (de)lithiation. Now, an operando X-ray tomography approach is shown to correlate changes in the microstructure of electrodes to cell performance, and thereby predict degradation pathways.

  16. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  17. Weston Standard battery

    CERN Multimedia

    This is a Weston AOIP standard battery with its calibration certificate (1956). Inside, the glassware forms an "H". Its name comes from the British physicist Edward Weston. A standard is the materialization of a given quantity whose value is known with great accuracy.

  18. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  19. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  20. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  1. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  2. Resource recovery of scrap silicon solar battery cell.

    Science.gov (United States)

    Lee, Ching-Hwa; Hung, Chi-En; Tsai, Shang-Lin; Popuri, Srinivasa R; Liao, Ching-Hua

    2013-05-01

    In order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry. The target metals Ag and Al weight percentage were found to be 1.67 and 7.68 respectively. A leaching process was adopted with nitric acid (HNO3), hydrochloric acid, sulfuric acid (H2SO4) and sodium hydroxide as leaching reagent to recover Ag and Al from a ground solar battery cell. Aluminum was leached 100% with 18N H2SO4 at 70°C and Ag was leached 100% with 6N HNO3. Pure Si of 100% was achieved from the leaching solution after the recovery of Ag and Al, and was analyzed by scanning electron microscope-energy dispersive spectroscopy. Aluminum was recovered by crystallization process and silver was recovered by precipitation, electrolysis and replacement processes. These processes were applied successfully in the recovery of valuable metal Ag of 98-100%.

  3. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pesaran, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Both the market penetration of plug-in electric vehicles (PEVs) and deployment of grid-connected energy storage systems are presently restricted by the high cost of batteries. Battery second use (B2U) strategies--in which a single battery first serves an automotive application, then is redeployed into a secondary market--could help address both issues by reducing battery costs to the primary (automotive) and secondary (electricity grid) users. This study investigates the feasibility of and major barriers to the second use of lithium-ion PEV batteries by posing and answering the following critical B2U questions: 1. When will used automotive batteries become available, and how healthy will they be? 2. What is required to repurpose used automotive batteries, and how much will it cost? 3. How will repurposed automotive batteries be used, how long will they last, and what is their value? Advanced analysis techniques are employed that consider the electrical, thermal, and degradation response of batteries in both the primary (automotive) and secondary service periods. Second use applications are treated in detail, addressing operational requirements, economic value, and market potential. The study concludes that B2U is viable and could provide considerable societal benefits due to the large possible supply of repurposed automotive batteries and substantial remaining battery life following automotive service. However, the only identified secondary market large enough to consume the supply of these batteries (utility peaker plant replacement) is expected to be a low margin market, and thus B2U is not expected to affect the upfront cost of PEVs.

  4. Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2013-03-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

  5. Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Pesaran, A.

    2013-01-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

  6. Toleration, Synthesis or Replacement?

    DEFF Research Database (Denmark)

    Holtermann, Jakob v. H.; Madsen, Mikael Rask

    2016-01-01

    to have considerable problems keeping a clear focus on the key question: What are the implications of this empirical turn in terms of philosophy of legal science, of the social understanding of IL, and, not least, of the place of doctrinal scholarship after the alleged Wende? What is needed, we argue......, in order to answer is not yet another partisan suggestion, but rather an attempt at making intelligible both the oppositions and the possibilities of synthesis between normative and empirical approaches to law. Based on our assessment and rational reconstruction of current arguments and positions, we...... therefore outline a taxonomy consisting of the following three basic, ideal-types in terms of the epistemological understanding of the interface of law and empirical studies: toleration, synthesis and replacement. This tripartite model proves useful with a view to teasing out and better articulating...

  7. 49 CFR 173.304b - Additional requirements for shipment of liquefied compressed gases in UN pressure receptacles.

    Science.gov (United States)

    2010-10-01

    ... compressed gases in UN pressure receptacles. 173.304b Section 173.304b Transportation Other Regulations...; Preparation and Packaging § 173.304b Additional requirements for shipment of liquefied compressed gases in UN... UN pressure receptacles subject to the requirements in this section and § 173.304. In addition,...

  8. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Science.gov (United States)

    2010-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises...

  9. 9 CFR 73.4 - Interstate shipment of exposed but not visibly diseased cattle from a quarantined or...

    Science.gov (United States)

    2010-01-01

    ... visibly diseased cattle from a quarantined or nonquarantined area; conditions under which permitted. 73.4... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.4 Interstate shipment of exposed but not visibly diseased cattle from a quarantined...

  10. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packaging and packing materials and containers for... RATE, ETC. United States-Bahrain Free Trade Agreement Rules of Origin § 10.815 Packaging and packing... good is packaged for retail sale and packing materials and containers for shipment are to...

  11. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packaging and packing materials and containers for... RATE, ETC. United States-Morocco Free Trade Agreement Rules of Origin § 10.775 Packaging and packing... good is packaged for retail sale and packing materials and containers for shipment are to...

  12. 15 CFR 30.40 - Special exemptions for certain shipments to U.S. government agencies and employees.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Special exemptions for certain shipments to U.S. government agencies and employees. 30.40 Section 30.40 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN...

  13. 41 CFR 102-118.130 - Must my agency use a GBL for express, courier, or small package shipments?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Must my agency use a GBL for express, courier, or small package shipments? 102-118.130 Section 102-118.130 Public Contracts and... Transportation Services § 102-118.130 Must my agency use a GBL for express, courier, or small package...

  14. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  15. Battery-free power for unattended ground sensors

    Science.gov (United States)

    Moldt, Vera A.

    2003-09-01

    In our current military environment, many operations are fought with small, highly mobile reconnaissance and strike forces that must move in and out of hostile terrain, setting up temporary bases and perimeters. As such, today's warfighter has to be well equipped to insure independent operation and survival of small, deployed groups. The use of unattended ground sensors in reconfigurable sensor networks can provide portable perimeter security for such special operations. Since all of the equipment for the missions must be carried by the warfighter, weight is a critical issue. Currently, batteries constitute much of that weight, as batteries are short-lived and unreliable. An alternative power source is required to eliminate the need for carrying multiple replacement batteries to support special operations. Such a battery-free, replenishable, energy management technology has been developed by Ambient Control Systems. Ambient has developed an advanced mid-door photovoltaic technology, which converts light to energy over a wide range of lighting conditions. The energy is then stored in supercapacitors, a highly robust, long-term storage medium. Ambient's advanced energy management technology will power remote sensor and control systems 24 hours/day, 7 days/week for over 20 years, without batteries, providing for ongoing detection, surveillance and other remote operations.

  16. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  17. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g)...

  18. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery...

  19. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery...

  20. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013, from...

  1. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  2. 75 FR 63 - Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery...

    Science.gov (United States)

    2010-01-04

    ... Batteries and Battery-Powered Devices; and Harmonization With the United Nations Recommendations... safe transportation of batteries and battery-powered devices. This final rule corrects several errors... clarifications addressing the safe transportation of batteries and battery-powered devices. This final rule...

  3. The cost and risk impacts of rerouting railroad shipments of hazardous materials.

    Science.gov (United States)

    Glickman, Theodore S; Erkut, Erhan; Zschocke, Mark S

    2007-09-01

    Rail shipments of hazardous materials expose the population near the routes to the possibility of an accident resulting in a spill. Rail routes are determined by economic concerns such as route length and the revenue generated for the originating carrier. In this paper we consider an alternate routing strategy that takes accident risks into account. We employ a model to quantify rail transport risk and then use a weighted combination of cost and risk and generate alternate routes. In some cases the alternate routes achieve significantly lower risk values than the practical routes at a small incremental cost. While there are generally fewer rerouting alternatives for rail than for road transport, considering the possible consequences of a train derailment we argue that risk should be taken into account when selecting rail routes and that the cost-risk tradeoffs should be evaluated.

  4. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    Directory of Open Access Journals (Sweden)

    Liviu Viman

    2016-03-01

    Full Text Available This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.

  5. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  6. The nuclear battery

    Science.gov (United States)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  7. Battery separator manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, N.I.; Sugarman, N.

    1974-12-27

    A battery with a positive plate, a negative plate, and a separator of polymeric resin having a degree of undesirable hydrophobia, solid below 180/sup 0/F, extrudable as a hot melt, and resistant to degradation by at least either acids or alkalies positioned between the plates is described. The separator comprises a nonwoven mat of fibers, the fibers being comprised of the polymeric resin and a wetting agent in an amount of 0.5 to 20 percent by weight based on the weight of the resin with the amount being incompatible with the resin below the melting point of the resin such that the wetting agent will bloom over a period of time at ambient temperatures in a battery, yet being compatible with the resin at the extrusion temperature and bringing about blooming to the surface of the fibers when the fibers are subjected to heat and pressure.

  8. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  9. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  10. Accumulator battery. Akkumulator

    Energy Technology Data Exchange (ETDEWEB)

    Poesch, G.; Hoogestraat, G.

    1987-04-02

    According to the invention, the pore volume of the active material is increased not by having more or bigger voids but by inserting open solid particles taking up the battery acid. By inserting mechanically stable solid particles embedding into the active material or meshing with it, mechanically stable electrodes with a large pore volume are obtained. The stability of the active material, in particular of the pasty battery plate material, is least impaired if the particles have a size of 0.5 to 40 ..mu..m and if the powdered lead used for producing the paste is adapted to the shape and amount of the particles with regard to its grain size distribution. The particles may be hollow microspheres or microcapsules with acid-permeable, mechanically resistant walls.

  11. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  12. Navy Lithium Battery Safety

    Science.gov (United States)

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  13. Miniaturized nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Adler, K.; Ducommun, G.

    1976-01-20

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a ..beta..-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case.

  14. Modular Battery Controller

    Science.gov (United States)

    Button, Robert M (Inventor); Gonzalez, Marcelo C (Inventor)

    2017-01-01

    Some embodiments of the present invention describe a battery including a plurality of master-less controllers. Each controller is operatively connected to a corresponding cell in a string of cells, and each controller is configured to bypass a fraction of current around the corresponding cell when the corresponding cell has a greater charge than one or more other cells in the string of cells.

  15. International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2002-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35 percent depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after eighteen months of cycling.

  16. Update on International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2003-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35% depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells, to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after two and a half years of cycling.

  17. Iron replacement therapy

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Coskun, Mehmet; Weiss, Günter

    2016-01-01

    PURPOSE OF REVIEW: Approximately, one-third of the world's population suffers from anemia, and at least half of these cases are because of iron deficiency. With the introduction of new intravenous iron preparations over the last decade, uncertainty has arisen when these compounds should be admini...... treatment, when to follow-up for relapse, which dosage and type of therapy should be recommended or not recommended, and if some patients should not be treated....... be administered and under which circumstances oral therapy is still an appropriate and effective treatment. RECENT FINDINGS: Numerous guidelines are available, but none go into detail about therapeutic start and end points or how iron-deficiency anemia should be best treated depending on the underlying cause...... of iron deficiency or in regard to concomitant underlying or additional diseases. SUMMARY: The study points to major issues to be considered in revisions of future guidelines for the true optimal iron replacement therapy, including how to assess the need for treatment, when to start and when to stop...

  18. 1st Quarter Transportation Report FY2017: Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2017-01-31

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.

  19. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  20. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  1. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  2. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  3. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  4. A VRLA battery simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-05-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet. (author)

  5. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  6. ZEBRA battery meets USABC goals

    Science.gov (United States)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  7. Hubble space telescope onboard battery performance

    Science.gov (United States)

    Rao, Gopalakrishna M.; Wajsgras, Harry; Vaidyanathan, Hari; Armontrout, Jon D.

    1996-01-01

    The performance of six 88 Ah Nickel-Hydrogen (Ni-H2) batteries that are used onboard in the Hubble Space Telescope (Flight Spare Module (FSM) and Flight Module 2 (FM2)) is discussed. These batteries have 22 series cells per battery and a common bus that would enable them to operate at a common voltage. It is launched on April 24, 1990. This paper reviews: the cell design, battery specification, system constraints, operating parameters, onboard battery management, and battery performance.

  8. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  9. Advanced Battery Diagnosis for Electric Vehicles

    OpenAIRE

    Lamichhane, Chudamani

    2008-01-01

    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  10. Using your shoulder after replacement surgery

    Science.gov (United States)

    Joint replacement surgery - using your shoulder; Shoulder replacement surgery - after ... You have had shoulder replacement surgery to replace the bones of your shoulder joint with artificial parts. The parts include a stem made of metal and a ...

  11. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  12. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  13. Educating My Replacement

    Science.gov (United States)

    Tarter, Jill

    , in partnership with the dedicated teachers out there, I think I can help promote the critical thinking skills and scientific literacy of the next generation of voters. Hopefully, I can also help train my replacement to be a better scientist, capable of seizing all the opportunities generated by advances in technology and our improved understanding of the universe to craft search strategies with greater probability of success than those I have initiated.

  14. [Ascending aorta replacement late after aortic valve replacement].

    Science.gov (United States)

    Hayashi, Yasunari; Ito, Toshiaki; Maekawa, Atsuo; Sawaki, Sadanari; Fujii, Genyo; Hoshino, Satoshi; Tokoro, Masayoshi; Yanagisawa, Junji

    2013-07-01

    Replacement of the asceding aorta is indicated in patients undergoing aortic valve replacement( AVR), if the diameter of the ascending aorta is greater than 5.0 cm. If the diameter of the asceding aorta is from 4.0 to 5.0 cm, it was arguable whether replacement of the ascending aorta should be performed. Nine patients who underwent reoperative ascending aorta replacement after AVR were reviewed retrospectively. Reoperation on the asending aorta replacement was performed 11.8±7.2 years (range 1y5m~23y3m) after AVR. Mean patient age was 69.9±6.3 (range 60~81). In 2 cases, reoperations were performed early year after AVR. Although ascending aorta was dilated at the 1st operation, replacement wasn't performed for the age and minimally invasive cardiac surgery (MICS). In 3 cases, reoperations were performed more than 10 years later. On these cases, ascending aorta aneurysm and dissection occurred with no pain and were pointed out by computed tomography(CT) or ultrasonic cardiogram(UCG). We think that patients with dilatation of the ascending aorta should undergo AVR and aorta replacement at the 1st operation regardness of age. It is important that patients who underwent AVR should undergo a regular checkup on the ascending aorta.

  15. Can Smartwatches Replace Smartphones for Posture Tracking?

    Directory of Open Access Journals (Sweden)

    Bobak Mortazavi

    2015-10-01

    Full Text Available This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch’s ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches’ ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.

  16. Can smartwatches replace smartphones for posture tracking?

    Science.gov (United States)

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-10-22

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.

  17. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a hi

  18. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  19. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  20. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  1. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  2. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  3. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  4. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  5. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  6. More disposable than ever? Consequences of non-removable batteries in mobile devices

    NARCIS (Netherlands)

    Bakker, C.A.; Kuijer, L.

    2014-01-01

    Mobile devices like smart phones, tablet computers and ultraportable laptops are experiencing rapid worldwide market growth and have relatively short lifespans. Recently, embedded (non-removable) batteries were introduced that cannot be replaced by consumers. This study traces the environmental and

  7. More disposable than ever? Consequences of non-removable batteries in mobile devices

    NARCIS (Netherlands)

    Bakker, C.A.; Kuijer, L.

    2014-01-01

    Mobile devices like smart phones, tablet computers and ultraportable laptops are experiencing rapid worldwide market growth and have relatively short lifespans. Recently, embedded (non-removable) batteries were introduced that cannot be replaced by consumers. This study traces the environmental and

  8. Metal oxides and lithium alloys as anode materials for lithium-ion batteries

    CSIR Research Space (South Africa)

    Kebede, M

    2016-07-01

    Full Text Available -generation anode materials for lithium–ion batteries with high prospect of replacing graphite. Most of these anode materials have higher specific capacities between the range of 600-1000 mA h g(sup-1) compared with 340 mA h g(sup-1) of graphite. These high...

  9. Network analysis of swine shipments in Ontario, Canada, to support disease spread modelling and risk-based disease management.

    Science.gov (United States)

    Dorjee, S; Revie, C W; Poljak, Z; McNab, W B; Sanchez, J

    2013-10-01

    Understanding contact networks are important for modelling and managing the spread and control of communicable diseases in populations. This study characterizes the swine shipment network of a multi-site production system in southwestern Ontario, Canada. Data were extracted from a company's database listing swine shipments among 251 swine farms, including 20 sow, 69 nursery and 162 finishing farms, for the 2-year period of 2006 to 2007. Several network metrics were generated. The number of shipments per week between pairs of farms ranged from 1 to 6. The medians (and ranges) of out-degree were: sow 6 (1-21), nursery 8 (0-25), and finishing 0 (0-4), over the entire 2-year study period. Corresponding estimates for in-degree of nursery and finishing farms were 3 (0-9) and 3 (0-12) respectively. Outgoing and incoming infection chains (OIC and IIC), were also measured. The medians (ranges) of the monthly OIC and IIC were 0 (0-8) and 0 (0-6), respectively, with very similar measures observed for 2-week intervals. Nursery farms exhibited high measures of centrality. This indicates that they pose greater risks of disease spread in the network. Therefore, they should be given a high priority for disease prevention and control measures affecting all age groups alike. The network demonstrated scale-free and small-world topologies as observed in other livestock shipment studies. This heterogeneity in contacts among farm types and network topologies should be incorporated in simulation models to improve their validity. In conclusion, this study provided useful epidemiological information and parameters for the control and modelling of disease spread among swine farms, for the first time from Ontario, Canada. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Battery Reinitialization of the Photovoltaic Module of the International Space Station

    Science.gov (United States)

    Hajela, Gyan; Cohen, Fred; Dalton, Penni

    2002-01-01

    The photovoltaic (PV) module on the International Space Station (ISS) has been operating since November 2000 and supporting electric power demands of the ISS and its crew of three. The PV module contains photovoltaic arrays that convert solar energy to electrical power and an integrated equipment assembly (IEA) that houses electrical hardware and batteries for electric power regulation and storage. Each PV module contains two independent power channels for fault tolerance. Each power channel contains three batteries in parallel to meet its performance requirements and for fault tolerance. Each battery consists of 76 Ni-Hydrogen (Ni-H2) cells in series. These 76 cells are contained in two orbital replaceable units (ORU) that are connected in series. On-orbit data are monitored and trended to ensure that all hardware is operating normally. Review of on-orbit data showed that while five batteries are operating very well, one is showing signs of mismatched ORUs. The cell pressure in the two ORUs differs by an amount that exceeds the recommended range. The reason for this abnormal behavior may be that the two ORUs have different use history. An assessment was performed and it was determined that capacity of this battery would be limited by the lower pressure ORU. Steps are being taken to reduce this pressure differential before battery capacity drops to the point of affecting its ability to meet performance requirements. As a first step, a battery reinitialization procedure was developed to reduce this pressure differential. The procedure was successfully carried out on-orbit and the pressure differential was reduced to the recommended range. This paper describes the battery performance and the consequences of mismatched ORUs that make a battery. The paper also describes the reinitialization procedure, how it was performed on orbit, and battery performance after the reinitialization. On-orbit data monitoring and trending is an ongoing activity and it will continue as

  11. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    Energy Technology Data Exchange (ETDEWEB)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  12. Economic impact of longer battery life of cardiac resynchronization therapy defibrillators in Sweden

    Directory of Open Access Journals (Sweden)

    Gadler F

    2016-10-01

    Full Text Available Fredrik Gadler,1 Yao Ding,2 Nathalie Verin,3 Martin Bergius,4 Jeffrey D Miller,5 Gregory M Lenhart,5 Mason W Russell5 1Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden; 2Truven Health Analytics, an IBM Company, Bethesda, MD, USA; 3Boston Scientific Corporation, Hemel Hempstead, Hertfordshire, UK; 4Boston Scientific Nordic AB, Helsingborg, Sweden; 5Truven Health Analytics, an IBM Company, Cambridge, MA, USA Objective: The objective of this study was to quantify the impact that longer battery life of cardiac resynchronization therapy defibrillator (CRT-D devices has on reducing the number of device replacements and associated costs of these replacements from a Swedish health care system perspective.Methods: An economic model based on real-world published data was developed to estimate cost savings and avoided device replacements for CRT-Ds with longer battery life compared with devices with industry-standard battery life expectancy. Base-case comparisons were performed among CRT-Ds of three manufacturers – Boston Scientific Corporation, St. Jude Medical, and Medtronic – over a 6-year time horizon, as per the available clinical data. As a sensitivity analysis, we evaluated CRT-Ds as well as single-chamber implantable cardioverter defibrillator (ICD-VR and dual-chamber implantable cardioverter defibrillator (ICD-DR devices over a longer 10-year period. All costs were in 2015 Swedish Krona (SEK discounted at 3% per annum.Results: Base-case analysis results show that up to 603 replacements and up to SEK 60.4 million cumulative-associated costs could be avoided over 6 years by using devices with extended ­battery life. The pattern of savings over time suggests that savings are modest initially but increase rapidly beginning in the third year of follow-up with each year’s cumulative savings two to three times the previous year. Evaluating CRT-D, ICD-VR, and ICD-DR devices together over a longer 10-year period, the

  13. Research on lithium batteries

    Science.gov (United States)

    Hill, I. R.; Goledzinowski, M.; Dore, R.

    1993-12-01

    Research was conducted on two types of lithium batteries. The first is a rechargeable Li-SO2 system using an all-inorganic electrolyte. A Li/liquid cathode system was chosen to obtain a relatively high discharge rate capability over the +20 to -30 C range. The fabrication and cycling performance of research cells are described, including the preparation and physical properties of porous polytetra fluoroethylene bonded carbon electrodes. Since the low temperature performance of the standard electrolyte was unsatisfactory, studies of electrolytes containing mixed salts were made. Raman spectroscopy was used to study the species present in these electrolytes and to identify discharge products. Infrared spectroscopy was used to measure electrolyte impurities. Film growth on the LiCl was also monitored. The second battery is a Li-thionyl chloride nonrechargeable system. Research cells were fabricated containing cobalt phthalo cyanine in the carbon cathode. The cathode was heat treated at different temperatures and the effect on cell discharge rate and capacity evaluated. Commercially obtained cells were used in an investigation of a way to identify substandard cells. The study also involved electrochemical impedance spectroscopy and cell discharging at various rates. The results are discussed in terms of LiCl passivation.

  14. Electric batteries. Lithium batteries; Piles electrique. Piles au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sarrazin, Ch. [Delegation Generale pour l' Armement, DGA/DRET, 75 - Paris (France)

    2002-05-01

    Lithium has the most negative potential and the highest mass capacity of all solid anode materials. It is the metal that allows to reach the highest mass energies in batteries when associated to a high potential cathode. The search for high performance cathodes has led to many different types of lithium batteries (transition metal oxides or sulfides, halogenides, oxi-halogenides, carbon, organic compounds etc..). These batteries can have a solid cathode (Li/CuO, Li/MnO{sub 2}, Li/CF{sub x}, etc..), or a liquid cathode (Li/SOCl{sub 2}, Li/SO{sub 2}, etc..) and in some cases they can have also a solid electrolyte, but not all types of lithium battery led to important industrial fabrication. The increasing use of lithium batteries is linked with the development of portable equipments for which, the compactness of the energy source is a key point. This article examines only the lithium batteries that have been the object of a significant industrial fabrication: lithium-sulfur dioxide, lithium-thionyl chloride, lithium-manganese dioxide, lithium-copper oxide, lithium-carbon fluoride, lithium-iron disulfide, other types of lithium batteries. (J.S.)

  15. Different roles of ionic liquids in lithium batteries

    Science.gov (United States)

    Eftekhari, Ali; Liu, Yang; Chen, Pu

    2016-12-01

    Ionic liquids are often named solvents of the future because of flexibility in design. This statement has given credence that ionic liquids should simply replace the problematic electrolytes of lithium batteries. As a result, the promising potentials of ionic liquids in electrochemical systems are somehow obscured by inappropriate expectations. We summarize recent advancements in this field, especially, ionic liquids as standalone electrolytes, additives, plasticizers in gel polymer electrolytes, and binders; and attempt to shed light on the future pathway of this area of research. Ionic liquids are not dilute media to serve as pure solvents in electrochemical systems where mobility of ions is the priority; instead, they can contribute to the ionic conductivity of various components in a battery system. Owing to the enormous possibilities of ionic liquids, it is not merely a matter of choice. Ionic liquids can be used to design novel types of electrolytes for a new generation of lithium batteries. A promising possibility, which is still at a very early stage, is supercooled ionic liquid crystals for fast ion diffusion through the guided channels of a liquid-like medium. This, of course, will be a breakthrough in the realm of electrochemistry, far beyond lithium battery field, when materialized.

  16. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  17. Electrocatalysts Prepared by Galvanic Replacement

    OpenAIRE

    Athanasios Papaderakis; Ioanna Mintsouli; Jenia Georgieva; Sotiris Sotiropoulos

    2017-01-01

    Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases) hydrogen evolution too...

  18. A Comparison of Two Panasonic Lithium-Ion Batteries and Cells for the IBM Thinkpad

    Science.gov (United States)

    Jeevarajan, Judith A.; Cook, Joseph S.; Davies, Francis J.; Collins, Jacob; Bragg, Bobby J.

    2003-01-01

    The IBM Thinkpad 760XD has been used in the Orbiter and International Space Station since 2000. The Thinkpad is powered by a Panasonic Li-ion battery that has a voltage of 10.8 V and 3.0 Ah capacity. This Thinkpad is now being replaced by the IBM Thinkpad A31P which has a Panasonic Li-ion battery that has a voltage of 10.8 V and 4.0 Ah capacity. Both batteries have protective circuit boards. The Panasonic battery for the Thinkpad 760XD had 12 Panasonic 17500 cells of 0.75 Ah capacity in a 4P3S cOnfiguration. The new Panasonic battery has 6 Panasonic 18650 cells of 2.0 Ah capacity in a 2P3S configuration. The batteries and cells for both models have been evaluated for performance and safety. A comparison of the cells under similar test conditions will be presented. The performance of the cells has been evaluated under different rates of charge and discharge and different temperatures. The cells have been tested under abuse conditions and the safety features in the cells evaluated. The protective circuit board in the battery was also tested under conditions of overcharge, overdischarge, short circuit and unbalanced cell configurations. The results of the studies will be presented in this paper.

  19. Advanced technology for environmentally friendly dry battery. Chikyu ni yasashii kandenchi no kaihatsu (kandenchi no musuigin, mu cadmium ka gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, O.; Miyasaka, K.; Maeda, M. (Toshiba battery Co. Ltd., Tokyo (Japan))

    1992-04-01

    A dry battery was developed that does not contain mercury and cadmium having been used in carbon-zinc batteries and alkaline batteries. This paper describes its summary. Mercury in carbon-zinc batteries is used as a corrosion inhibitor for zinc, and cadmium is used to retain mechanical strength of zinc cans. Surfactants and metal oxides were used as a corrosion inhibitor in place of mercury, added into separators. Magnesium was adopted to substitute cadmiun, and the required mechanical strength was obtained. Mercury in alkaline batteries prevents corrosion in zinc particles (which generated hydrogen gas) and gas generation from impurities (iron and others), and plays roles of improving contacts among zinc particles and suppressing electric resistance low. Discussions were given on zinc alloy composition and corrosion inhibitors to replace the mercury having these roles. For zinc alloy, an alloy using lead with less gas generation and excellent discharge characteristics and bismuth as an added element was adopted. 3 refs., 9 figs.

  20. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a

  1. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... quantity, size, watt hours, and whether the cells or batteries are packed in equipment, with equipment, or... 111 Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final rule. SUMMARY: The Postal... batteries and devices containing lithium batteries. This prohibition also extends to the mailing of lithium...

  2. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-ti

  3. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  4. 46 CFR 169.668 - Batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or...

  5. Principles of an Atomtronic Battery

    CERN Document Server

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  6. A new algorithm for solving the inventory routing problem with direct shipment

    Directory of Open Access Journals (Sweden)

    Ali Hossein Mirzaei

    2012-02-01

    Full Text Available   In this paper a multi-commodity multi-period inventory routing problem in a two-echelon supply chain consisting of a manufacturer and a set of retailers has been studied. In addition to inventory management and distribution planning, production planning has also been considered in the above problem. The objective is to minimize total system cost that consists of production setup, inventory holding and distribution costs. The commodities are delivered to the retailers by an identical fleet of limited capacity vehicles through direct shipment strategy. Also it is assumed that production and storage capacity is limited and stockout is not allowed. Since similar problems without distribution planning are known as NP-hard, this is also an NP-hard problem. Therefore, in this paper, a new improved particle swarm optimization algorithm has been developed consisting of two distinguished phases for problem solving. First, the values of binary variables are determined using the proposed algorithm and then, the continuous variables are calculated by solving a linear programming model. Performance of the proposed algorithm has been compared with genetic and original particle swarm optimization algorithms using various samples of random problems. The findings imply significant performance of the proposed algorithm.         

  7. Packaging design criteria for the N Reactor/single pass reactor fuel characterization shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, P.F.

    1994-08-31

    The majority of the spent fuel from the N Reactor and the single pass reactors (SPR) is presently being stored at the basins in the 100 K Area. Characterization of these fuels is essential to formulate a safe and efficient processing/disposal method for the spent fuel. Consequently, it is necessary to transport a cross section of spent fuel from the K Basins to the hot cells at the 327 Building in the 300 Area for analysis. The CNS 1-13G cask, a US Nuclear Regulatory Commission (NRC) certified cask manufactured by the ChemNuclear company, will be utilized for the transportation for irradiated fuel elements from the K Basins to the 327 Laboratories for characterization. The cask will utilize an inner container to compensate for the possibility of failed fuel cladding and to reduce the chances of contaminating the cask or the off loading facility. The Packaging Design Criteria (PDC) for these shipments establishes the acceptance criteria for the cask and for the design of an inner container that will be used in the Safety Evaluation for Packaging (SEP).

  8. Minimally invasive aortic valve replacement

    DEFF Research Database (Denmark)

    Foghsgaard, Signe; Schmidt, Thomas Andersen; Kjaergard, Henrik K

    2009-01-01

    In this descriptive prospective study, we evaluate the outcomes of surgery in 98 patients who were scheduled to undergo minimally invasive aortic valve replacement. These patients were compared with a group of 50 patients who underwent scheduled aortic valve replacement through a full sternotomy....... The 30-day mortality rate for the 98 patients was zero, although 14 of the 98 mini-sternotomies had to be converted to complete sternotomies intraoperatively due to technical problems. Such conversion doubled the operative time over that of the planned full sternotomies. In the group of patients whose...... is an excellent operation in selected patients, but its true advantages over conventional aortic valve replacement (other than a smaller scar) await evaluation by means of randomized clinical trial. The "extended mini-aortic valve replacement" operation, on the other hand, is a risky procedure that should...

  9. Ingestion of cylindrical batteries and its management.

    Science.gov (United States)

    Tien, Tony; Tanwar, Sudeep

    2017-01-17

    In contrast to the ingestion of coin batteries, the ingestion of cylindrical batteries is an uncommon medical presentation. Owing to their larger size, cylindrical battery ingestion can lead to serious complications including intestinal haemorrhage, bowel obstruction, bowel perforation, peritonitis and even death. We discuss the case of a 17-year-old girl who presented after swallowing three cylindrical batteries. Her medical history included depression and previous battery ingestion that required surgical removal. During this presentation however, these ingested batteries were removed endoscopically at oesophagogastroduodenoscopy and ileocolonoscopy. The patient was subsequently discharged without complication. This paper discusses the complications and management of cylindrical battery ingestion. 2017 BMJ Publishing Group Ltd.

  10. Energizing the future: New battery technology a reality today

    Science.gov (United States)

    Chase, Henry; Bitterly, Jack; Federici, Al

    1997-04-01

    The U.S. Flywheel Systems' flywheel energy storage system could be the answer to a critical question: How do we replace conventional chemical batteries with a more-efficient system that lasts longer and is non-polluting? The new product, which has a virtually unlimited life expectancy, has a storage capacity four times greater per pound than conventional chemical batteries. USFS designed and built each component of the system—from the specially wound carbon fiber wheel, the magnetic bearing, the motor/generator, and the electronic control. The flywheel is designed to spin at speeds up to 100,000 rpm and deliver about 50 horsepower using a proprietary high-speed, high-power-density motor/generator that is the size of a typical coffee mug. Some of the important markets and applications for the flywheel storage system include electric vehicles, back-up power supply, peak power smoothing, satellite energy storage systems, and locomotive power.

  11. Monothioanthraquinone as an organic active material for greener lithium batteries

    Science.gov (United States)

    Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut

    2014-12-01

    In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.

  12. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  13. Lewis Research Center battery overview

    Science.gov (United States)

    Odonnell, Patricia

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.

  14. Aqueous lithium air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  15. Computing lifetimes for battery-powered devices

    OpenAIRE

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-time Markov model, with a well-known battery model. For this combined model, we provide new algorithms to efficiently compute the expected lifetime and the distribution and expected value of the deli...

  16. Electro-chemical batteries for guided missiles

    Directory of Open Access Journals (Sweden)

    H. S. Jaggi

    1966-05-01

    Full Text Available Electro-chemical batteries owing to their simplicity and ease of stowage form one of the sources of electrical power inside a missile. However, all batteries are not suited for this application. This article describes the special features required of a missile borne battery pack and discusses the characteristics of various types of batteries available today in the world. Conclusions have been drawn as to the most suitable types of batteries for missile applications.

  17. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  18. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  19. Ultrasonic enhancement of battery diffusion.

    Science.gov (United States)

    Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J

    2014-03-01

    It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy.

  20. Composite materials for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  1. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  2. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    OpenAIRE

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space application...

  3. Storage Reliability of Reserve Batteries

    Science.gov (United States)

    2007-11-02

    batteries – Environmental concerns, lack of business – Non-availability of some critical materials • Lithium Oxyhalides are systems of choice – Good...exhibit good corrosion resistance to neutral electrolytes (LiAlCl4 in thionyl chloride and sulfuryl chloride ) • Using AlCl3 creates a much more corrosive...Storage Reliability of Reserve Batteries Jeff Swank and Allan Goldberg Army Research Laboratory Adelphi, MD 301-394-3116 jswank@arl.army.mil ll l

  4. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  5. Lithium battery safety and reliability

    Science.gov (United States)

    Levy, Samuel C.

    Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

  6. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  7. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  8. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  9. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  10. Knee Replacement: What you can Expect

    Science.gov (United States)

    ... improves function lessen with each additional surgery. Artificial knees can wear out Another risk of knee replacement ... replacement surgery to last about two hours. After knee replacement surgery After surgery, you're wheeled to ...

  11. Post-vehicle-application lithium-ion battery remanufacturing, repurposing and recycling capacity: Modeling and analysis

    Directory of Open Access Journals (Sweden)

    Charles Robert Standridge

    2015-05-01

    recycling is relatively constant regardless of the percent of post-vehicle-application batteries that are remanufactured.  The sum of the capacity for remanufacturing and recycling is relatively constant as well.  The need for new battery production capacity is reduced significantly (> 10% for remanufacturing percentages of 55% and above. Research limitations/implications: There is a high degree of uncertainty associated with any forecast concerning post-vehicle-application lithium-ion batteries due to a lack of experience with their remanufacturing, repurposing, and recycling. Practical implications: Electrification of vehicles appears to be the only technically feasible approach to meeting government regulations concerning mileage and emissions (Center for Climate and Energy Solutions 2013.  The planning in the present for the remanufacturing, repurposing, and recycling of the lithium-ion batteries used in electrification of vehicles is necessary.  Capacity estimation is one important component of such planning. Social implications: The electrification of vehicles versus the use of fossil fuels is consistent with the guiding principles of sustainability in helping to meet current needs without compromising the needs and resources of future generations.  Reusing entire lithium-ion batteries or recycling the materials of which they are composed further reinforces the sustainability of vehicle electrification. Originality/value: Estimates of recycling capacity needed in 2030, about 2.69M kWh, change little with the percent of post-vehicle-application batteries that are remanufactured.  The need for significant recycling capacity appears between 2022 and 2024, increasing steadily thereafter.  Similarly, the sum of remanufacturing and repurposing capacity is relatively constant indicating the need for flexible facilities that can do either task.  In addition by 2030, up to approximately 25% of new battery production could be replaced by remanufactured batteries.

  12. Homologous gene replacement in Physarum

    Energy Technology Data Exchange (ETDEWEB)

    Burland, T.G. [Univ. of Wisconsin, Madison, WI (United States); Pallotta, D. [Laval Univ., Quebec (Canada)

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1 in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.

  13. From lithium-ion to sodium-ion batteries: A materials perspective.

    Science.gov (United States)

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2017-06-19

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) are being reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electric batteries and the environment. 2. rev. and enlarged ed. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1990-01-01

    The book deals with the prodution, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. Subjects: 1. Toxicological aspects of battery substances; 2. legal foundations of environmental protection; 3. off-air purification in battery production; 4. dust monitoring; 5. waste water of the battery industry; 6. safety aspects of battery operation; 7. recycling of battery materials; 8. disposal of used primary batteries. (orig./MM) With 67 figs.

  15. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  16. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  17. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  18. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Barnes, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  19. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Harris, M.S.

    1994-12-01

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities.

  20. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  1. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  2. Cobra Probes Containing Replaceable Thermocouples

    Science.gov (United States)

    Jones, John; Redding, Adam

    2007-01-01

    A modification of the basic design of cobra probes provides for relatively easy replacement of broken thermocouples. Cobra probes are standard tube-type pressure probes that may also contain thermocouples and that are routinely used in wind tunnels and aeronautical hardware. They are so named because in side views, they resemble a cobra poised to attack. Heretofore, there has been no easy way to replace a broken thermocouple in a cobra probe: instead, it has been necessary to break the probe apart and then rebuild it, typically at a cost between $2,000 and $4,000 (2004 prices). The modified design makes it possible to replace the thermocouple, in minimal time and at relatively low cost, by inserting new thermocouple wire in a tube.

  3. Battery longevity from cardiac resynchronization therapy defibrillators: differences between manufacturers and discrepancies with published product performance reports.

    Science.gov (United States)

    Alam, Mian Bilal; Munir, Muhammad Bilal; Rattan, Rohit; Adelstein, Evan; Jain, Sandeep; Saba, Samir

    2017-03-01

    Cardiac resynchronization therapy (CRT) is an important treatment for heart failure that requires constant ventricular pacing, placing a high energy burden on CRT defibrillators (CRT-D). Longer battery life reduces the need for device changes and associated complications, thereby affecting patient outcomes and cost of care. We therefore investigated the time to battery depletion of CRT-D from different manufacturers and compared these results with manufacturers' published product performance reports (PPRs). All CRT-D recipients at our institution between January 2008 and December 2010 were included in this study cohort. The patients were followed up to the endpoint of battery depletion and were otherwise censored at the time of death, last follow-up, or device removal for any reason other than battery depletion. A total of 621 patients [173 Boston Scientific (BSC), 391 Medtronic (MDT), and 57 St. Jude Medical (SJM)] were followed up for a median of 3.7 (IQR 1.6-5.0) years, during which time 253 (41%) devices were replaced for battery depletion. Compared with MDT devices, battery depletion was 85 and 54% less likely to happen with BSC and SJM devices, respectively (P battery longevity by more than 20% 6 years after device implantation. Large differences in CRT-D battery longevity exist between manufacturers. Industry-published PPRs significantly overestimate device longevity. These data have important implications to patients, healthcare professionals, hospitals, and third-party payers.

  4. Renal replacement therapy in ICU

    Directory of Open Access Journals (Sweden)

    C Deepa

    2012-01-01

    Full Text Available Diagnosing and managing critically ill patients with renal dysfunction is a part of the daily routine of an intensivist. Acute kidney insufficiency substantially contributes to the morbidity and mortality of critically ill patients. Renal replacement therapy (RRT not only does play a significant role in the treatment of patients with renal failure, acute as well as chronic, but also has spread its domains to the treatment of many other disease conditions such as myaesthenia gravis, septic shock and acute on chronic liver failure. This article briefly outlines the role of renal replacement therapy in ICU.

  5. Prioritization methodology for chemical replacement

    Science.gov (United States)

    Goldberg, Ben; Cruit, Wendy; Schutzenhofer, Scott

    1995-01-01

    This methodology serves to define a system for effective prioritization of efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi quantitative approach derived from quality function deployment techniques (QFD Matrix). QFD is a conceptual map that provides a method of transforming customer wants and needs into quantitative engineering terms. This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives.

  6. Wafer Replacement Cluster Tool (Presentation);

    Energy Technology Data Exchange (ETDEWEB)

    Branz, H. M.

    2008-04-01

    This presentation on wafer replacement cluster tool discusses: (1) Platform for advanced R and D toward SAI 2015 cost goal--crystal silicon PV at area costs closer to amorphous Si PV, it's 15% efficiency, inexpensive substrate, and moderate temperature processing (<800 C); (2) Why silicon?--industrial and knowledge base, abundant and environmentally benign, market acceptance, and good efficiency; and (3) Why replace wafers?--expensive, high embedded energy content, and uses 50-100 times more silicon than needed.

  7. Polymer electrolytes for rechargeable lithium batteries. Final report; Polymere Elektrolyte fuer wiederaufladbare Lithium-Batterien. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sandner, B. [Halle-Wittenberg Univ., Merseburg (Germany). Inst. fuer Technische und Makromolekulare Chemie; Wegner, G.; Meyer, W. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Bronstert, B.; Moehwald, H.; Hennig, I. [BASF AG, Ludwigshafen am Rhein (Germany). Kunststofflaboratorium

    1999-07-01

    Rechargeable lithium batteries with water-free organic electrolytes have the highest energy density of all battery systems. Some of their weak points, e.g. concerning safety, cell production, cost etc. could be overcome by replacing the liquid low-molecular electrolytes with polymer electrolytes. The investigation focused on acrylically unsaturated oligomers/prepolymers. [German] Wiederaufladbare Lithiumbatterien mit wasserfreien organischen Elektrolyten sind die Akkumulatoren mit der hoechsten Energiedichte. Durch Ersatz der fluessigen niedermolekularen Elektrolyte durch Polymerfestelektrolyte koennen manche Schwachpunkte dieser Batterien, vor allem bezueglich Sicherheit, Zellfertigung, Kosten, etc., ausgeraeumt werden. Ausgangspunkt der Arbeiten waren acrylisch ungesaettigte Oligomere/Praepolymere. (orig.)

  8. Cell-level battery charge/discharge protection system. [electronic control techniques

    Science.gov (United States)

    Donovan, R. L.; Imamura, M. S.

    1977-01-01

    The paper describes three design approaches to individual cell monitoring and control for sealed secondary battery cells. One technique involves a modular strap-on single cell protector which contains all the electronics required for monitoring cell voltage, responding to external commands, and forming a bypass circuit for the cell. A second technique, the multiplexed cell protector, uses common circuitry to monitor and control each cell in a battery pack. The third technique, the computerized cell protector, by replacing the hard-wired logic of the multiplexed cell protector with a microprocessor, achieves greatest control flexibility and inherent computational capability with a minimum parts count implementation.

  9. Requirements for, and benefits of, environmentally sound and economically viable management of battery recycling in the Philippines in the wake of Basel Convention trade restrictions

    Science.gov (United States)

    Hoffmann, U.; Wilson, B.

    The ban on the export of used lead-acid batteries (ULAB) from Annex VII to non-Annex VII countries pursuant to decision III/1 of the Basel Convention reduced the availability of imported scrap feedstock for battery recycling in the Philippines. As ULAB supply from other developing countries becomes scarcer, the ban is likely to encourage and enhance collection and recuperation for domestically generated scrap. From a short-term perspective, this study explores the technological and managerial opportunities for improving the environmental and occupational health performance of the formal battery recycling sector and unregulated reconditioning. From a medium- and long-term point of view, the study investigates restructuring the informal ULAB's collection and recycling sector. The objective has been to make the smaller battery recyclers and reconditioners in the informal sector part of an effective and efficient collection infrastructure that supports an environmentally sound secondary lead sector. This approach gradually phases out uncontrolled, inefficient and environmentally unacceptable methods of secondary lead recovery. Due attention has also been paid to the logistical peculiarities of an archipelago, in particular the regional spread of collection infrastructure, collection and shipment costs as well as the assurance of environmentally safe transport.

  10. Air Force Phillips Laboratory Battery Program overview

    Science.gov (United States)

    House, Shaun

    1992-01-01

    Battery development and testing efforts at Phillips Laboratory fall into three main categories: nickel hydrogen, sodium sulfur, and solid state batteries. Nickel hydrogen work is broken down into a Low Earth Orbit (LEO) Life Test Program, a LEO Pulse Test Program, and a Hydrogen Embrittlement Investigation. Sodium sulfur work is broken down into a Geosynchronous Earth Orbit (GEO) Battery Flight Test and a Hot Launch Evaluation. Solid state polymer battery work consists of a GEO Battery Development Program, a Pulse Power Battery Small Business Innovation Research (SBIR), and an in-house evaluation of current generation laboratory cells. An overview of the program is presented.

  11. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  12. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  13. Bifunctional redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H. [Research Institute of Chemical Defense, Beijing 100083 (China)], E-mail: wen_yuehua@126.com; Cheng, J. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes.

  14. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  15. New composite separator pellet to increase power density and reduce size of thermal batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann; Roberts, Christine Cardinal; Grillet, Anne; Soehnel, Melissa Marie; Barringer, David Alan; DiAntonio, Christopher Brian; Chavez, Thomas P.; Ingersoll, David T.; Hughes, Lindsey Gloe; Evans, Lindsey R.; Fitchett, Stephanie

    2013-11-01

    We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

  16. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  17. Report on Status of Shipment of High Fluence Austenitic Steel Samples for Characterization and Stress Corrosion Crack Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Scarlett R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Keith J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    The goal of the Mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) task in the LWRS Program is to conduct experimental research into understanding how multiple variables influence the crack initiation and crack growth in materials subjected to stress under corrosive conditions. This includes understanding the influences of alloy composition, radiation condition, water chemistry and metallurgical starting condition (i.e., previous cold work or heat treatments and the resulting microstructure) has on the behavior of materials. Testing involves crack initiation and growth testing on irradiated specimens of single-variable alloys in simulated Light Water Reactor (LWR) environments, tensile testing, hardness testing, microstructural and microchemical analysis, and detailed efforts to characterize localized deformation. Combined, these single-variable experiments will provide mechanistic understanding that can be used to identify key operational variables to mitigate or control IASCC, optimize inspection and maintenance schedules to the most susceptible materials/locations, and, in the long-term, design IASCC-resistant materials. In support of this research, efforts are currently underway to arrange shipment of “free” high fluence austenitic alloys available through Électricité de France (EDF) for post irradiation testing at the Oak Ridge National Laboratory (ORNL) and IASCC testing at the University of Michigan. These high fluence materials range in damage values from 45 to 125 displacements per atom (dpa). The samples identified for transport to the United States, which include nine, no-cost, 304, 308 and 316 tensile bars, were relocated from the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Ulyanovsk Oblast, Russia, and received at the Halden Reactor in Halden, Norway, on August 23, 2016. ORNL has been notified that a significant amount of work is required to prepare the samples for further shipment to Oak Ridge, Tennessee. The

  18. Double emulsions as fat replacers

    NARCIS (Netherlands)

    Oppermann, Anika

    2017-01-01

    The use of double (w1/o/w2) emulsions, in which part of the oil is replaced by small water droplets, is a promising strategy to reduce oil content in food products. For successful applications, (1) significant levels of fat reduction (i.e. significant amounts of water inside the oil droplets) have

  19. Replacement policies for dairy cows

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund

    In a recent paper a hierarchical Markov decision processes (MDP) with finite state and action space was formulated for the dairy cow replacement problem with stage lengths of 1 d. Bayesian updating was used to predict the performance of each cow in the herd and economic decisions were based...

  20. Electrocatalysts Prepared by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Athanasios Papaderakis

    2017-03-01

    Full Text Available Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases hydrogen evolution too, both oxygen levels and the pH must be optimized. The resulting bimetallic material can in principle have a Mnoble-rich shell and M-rich core (denoted as Mnoble(M leading to a possible decrease in noble metal loading and the modification of its properties by the underlying metal M. This paper reviews a number of bimetallic or ternary electrocatalytic materials prepared by galvanic replacement for fuel cell, electrolysis and electrosynthesis reactions. These include oxygen reduction, methanol, formic acid and ethanol oxidation, hydrogen evolution and oxidation, oxygen evolution, borohydride oxidation, and halide reduction. Methods for depositing the precursor metal M on the support material (electrodeposition, electroless deposition, photodeposition as well as the various options for the support are also reviewed.

  1. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  2. Bonding over Dentin Replacement Materials.

    Science.gov (United States)

    Meraji, Naghmeh; Camilleri, Josette

    2017-08-01

    Dentin replacement materials are necessary in large cavities to protect the pulp and reduce the bulk of filling material. These materials are layered with a composite resin restorative material. Microleakage caused by poor bonding of composite resin to underlying dentin replacement material will result in pulp damage. The aim of this study was to characterize the interface between dentin replacement materials and composite resin and to measure the shear bond strength after dynamic aging. Biodentine (Septodont, Saint Maur-des-Fosses, France), Theracal LC (Bisco, Schaumburg, IL), and Fuji IX (GC, Tokyo, Japan) were used as dentin replacement materials. They were then overlaid with a total-etch and bonding agent or a self-etch primer and composite resin or a glass ionomer cement. All combinations were thermocycled for 3000 cycles. The interface was characterized using scanning electron microscopy and elemental mapping. Furthermore, the shear bond strength was assessed. The Biodentine surface was modified by etching. The Theracal LC and Fuji IX microstructure was unchanged upon the application of acid etch. The Biodentine and glass ionomer interface showed an evident wide open space, and glass particles from the glass ionomer adhered to the Biodentine surface. Elemental migration was shown with aluminum, barium, fluorine, and ytterbium present in Biodentine from the overlying composite resin. Calcium was more stable. The bond strength between Theracal LC and composite using a total-etch technique followed by self-etch primer achieved the best bond strength values. Biodentine exhibited the weakest bond with complete failure of bonding shown after demolding and thermocycling. Dynamic aging is necessary to have clinically valid data. Bonding composite resin to water-based dentin replacement materials is still challenging, and further alternatives for restoration of teeth using such materials need to be developed. Copyright © 2017 American Association of Endodontists

  3. Lithium batteries in Japan; Les batteries lithium au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Mercier, A.; Tarascon, J.M.

    2000-04-01

    This document is a mission report about the development of lithium batteries research in Japan. The mission took place between November 29 and December 3, 1999 and was organized by the Science and Technology Service of the French embassy in Tokyo. The organizations shown during the mission were: ETL, NEDO/LIBES, the Kyoto university, Yuasa, Hitachi, Matsushita, Japan Storage, Sanyo and Sony. The mission has shown that the government program is clearly backward. The Japanese research on battery materials remains important. The leaders of the lithium-ion technology are Sony, first, and then Hitachi and Sanyo. Applications of lithium-ion batteries are developing for small electric-powered vehicles. (J.S.)

  4. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  5. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, C.J. (Pacific Northwest Lab., Richland, WA (United States)); Lavender, J.C. (Westinghouse Hanford Co., Richland, WA (United States)); Wakeman, B.H. (Virginia Electric and Power Co., Richmond, VA (United States))

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel.

  6. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States); Lavender, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Wakeman, B.H. [Virginia Electric and Power Co., Richmond, VA (United States)

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel.

  7. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    Energy Technology Data Exchange (ETDEWEB)

    Doerge, D. H.; Miller, R. L.; Scotti, K. S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  8. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver;

    of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses......This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration...

  9. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration...... of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses...

  11. 46 CFR 111.15-5 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... must be as close as possible to the engine or engines. (c) Small batteries. Small size battery... 46 Shipping 4 2010-10-01 2010-10-01 false Battery installation. 111.15-5 Section 111.15-5 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-5 Battery...

  12. 46 CFR 111.15-2 - Battery construction.

    Science.gov (United States)

    2010-10-01

    ... that of a similar size lead-acid battery under similar charging condition. (d) Batteries must be... 46 Shipping 4 2010-10-01 2010-10-01 false Battery construction. 111.15-2 Section 111.15-2 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-2 Battery...

  13. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  14. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  15. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  16. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  17. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to...

  18. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  19. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  20. Flameless Candle Batteries Pose Risk to Kids

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162882.html Flameless Candle Batteries Pose Risk to Kids If swallowed, serious damage ... WEDNESDAY, Jan. 4, 2017 (HealthDay News) -- Tiny button batteries that light up flameless "tea candles" pose a ...

  1. The NTS-2 nickel-hydrogen battery

    Science.gov (United States)

    Betz, F.

    1977-01-01

    Features of the first operational nickel hydrogen battery are described as well as experiences encountered during its testing and installation. Battery performance since launching of the NTS-2 satellite is discussed.

  2. Market for nickel-cadmium batteries

    Science.gov (United States)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  3. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  4. New developments and applications of lead batteries; Neue Entwicklungen und Anwendungen der Bleibatterie

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R. [EXIDE Automotive Batterie GmbH, Bad Lauterberg (Germany)

    2003-07-01

    Gel batteries and AGM batteries are slowly replacing standard liquid electrolyte batteries. In applications involving uninterrupted power supply, there is a trend to higher power densities and shorter discharge dimes, e.g. 220 W/l for 15 minutes. Prototypes have already been constructed. This necessitates very thin grids with very narrow plate spacing. In telecommunications and solar engineering, higher energy densities are in the foreground, although high availability and long life will be observed as well. In motor car applications, new concepts like the 42 V board network system have significantly influenced battery development. Sealed batteries will be used, especially high-performance AGM batteries. The lead battery will continue to be the most common power storage system also in the years to come, with an increasing market share for sealed batteries. (orig.) [German] Im Bereich der Industriebatterien wird die verschlossene Ausfuehrung, sowohl Gel als auch AGM, immer mehr die Standardtype mit fluessigem Elektrolyten ersetzen. Bei USV Anwendungen geht die Entwicklung zu noch hoeheren Leistungsdichten bei kurzen Entladezeiten. Eine Leistungsdichte von 220 W/l ueber 15 Minuten ist hierbei keineswegs unrealistisch und Prototypen sind bereits gebaut worden. Hierzu werden sehr duenne Gitter mit entsprechen kleinen Plattenabstaenden benoetigt. Bei Telekombatterien und im Solarbereich wird die weitere Erhoehung der Energiedichte im Vordergrund stehen, jedoch weiterhin verbunden mit einer hohen Zuverlaessigkeit und langen Gebrauchdauer. Im Autobatteriebereich haben neue Konzepte (42 V Bordnetzsystem) einen bedeutenden Einfluss auf die Batterieentwicklung genommen. Es werden verschlossene Batterien zum Einsatz kommen, insbesondere AGM Hochleistungsbatterien. Die Bleibatterie wird in ihren traditionellen Anwendungsbereichen auch in den naechsten Jahrzehnten das am meisten verwendete Energiespeichersystem bleiben, wobei ein immer groesserer Anteil hiervon verschlossene

  5. NASA Alternative Orion Small Cell Battery Design Support

    Science.gov (United States)

    Haynes, Chuck

    2016-01-01

    The NASA Orion Crew Module Reference Design was produced to address large scale thermal runaway (TR) hazard with specific safety controls for the Orion Spacecraft. The design presented provides the description of a full scale battery design reference for implementation as a drop in replacement to meet all spacecraft energy requirements with compatible 120 Vdc electrical and mechanical interface using small cell technology (18650) packaging. The 32V SuperBrick incorporates unique support features and an electrical bus bar arrangement that allows cells negative can insertion into heat sink that is compressively coupled to the battery enclosure to promote good thermal management. The housing design also provides an internal flame suppression "filter tray" and positive venting path internal to the enclosure to allow hot effluent ejecta to escape in the event of single cell TR. Virtual cells (14P Banks) that are supported to provide cell spacing with interstitial materials to prevent side can failures that can produce cell to cell TR propagation. These features were successfully test in four separate TR run with the full scale DTA1 test article in February 2016. Successfully Completed Test Objectives - Four separate TR test runs with Full-Scale DTA1 housing with Two SuperBricks, Two SuperBrick Emulators All Tests resulted in "clean" gas with less than 6 C rise at Battery vent All Tests resulted in less than 2 C temperature rise on cold-plate outlet All Tests resulted in less than 6 psi pressure rise in the battery housing Test Run 1 -One neighbor cell TR, highest remaining neighbor 139 C. Ejecta shorted to bus caused prolonged additional heating, One shorted cell did experience TR after 12 minutes, remaining cells had adequate thermal margin Test Run 2 - No cell to cell propagation, highest neighbor cell 112 C; Test Run 3 - No cell to cell propagation, highest neighbor cell 96 C; Test Run 4 - No cell to cell propagation, highest neighbor cell 101 C; Primary TR testing

  6. Next Generation of Launcher & Space Vehicles Batteries

    Science.gov (United States)

    Laroye, J. F.; Brochard, P.; Grassien, J.-Y.; Masgrangeas, D.

    2008-09-01

    This paper presents several examples of Saft lithium batteries in use onboard launchers & space vehicles: ATV primary lithium manganese dioxide (LiMnO2) batteries and Rosetta primary lithium thionyl chloride (LiSOCl2) batteries as well as the VEGA rechargeable lithium-ion (Li-ion) avionics & thrust vector control (TVC) batteries.It gives an overview of possible chemistries and tradeoff to address these needs.

  7. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Maria Skyllas-Kazacos; Aishwarya Parasuraman; Tuti Mariana Lim; Suminto Winardi; Helen Prifti

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  8. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin;

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  9. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  10. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  11. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  12. Origami lithium-ion batteries.

    Science.gov (United States)

    Song, Zeming; Ma, Teng; Tang, Rui; Cheng, Qian; Wang, Xu; Krishnaraju, Deepakshyam; Panat, Rahul; Chan, Candace K; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such that the materials making the origami pattern do not experience large strain. The origami battery is fabricated through slurry coating of electrodes onto paper current collectors and packaging in standard materials, followed by folding using the Miura pattern. The resulting origami battery achieves significant linear and areal deformability, large twistability and bendability. The strategy described here represents the fusion of the art of origami, materials science and functional energy storage devices, and could provide a paradigm shift for architecture and design of flexible and curvilinear electronics with exceptional mechanical characteristics and functionalities.

  13. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  14. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  15. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  16. Factor structure of intelligence test battery KOG9

    Directory of Open Access Journals (Sweden)

    Lazarević Ljiljana B.

    2008-01-01

    Full Text Available Authors of Cybernetic model of cognitive functioning designed a battery of tests (KOG9, based on the model in order to assess cognitive efficiency. Authors assert that scale's factor structure comprises the three factors: perceptive, serial and parallel processing. Results of the previous research as well as the logical analysis of the origin and content of the tests suggested the possibility that more parsimonious two-factor solution can explain the structure of the correlations among them equally well. KOG9 battery was administered to 1116 students of Faculty of sport and physical education and students from Department of Psychology in order to study its latent structure. In spite of the fact that factor congruence analyses suggested higher robustness (cross-sample stability of the two-factor solution, results of both EFA and CFA spoke in favor of the three-factor solution. The problem of the lack of stability of the three-factor solution was located in not particularly well targeted choice of the markers of the efficacy of perceptual processing. The suggestion is to preserve the calculation of all three group scores, with some corrections. First of all, tests CF2 and/or GT7 should be replaced by some other perceptual test/tests of lower cognitive complexity. Some of the tests tapping parallel processing should be replaced by those more in line with the logic of the model.

  17. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  18. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  19. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  20. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.