WorldWideScience

Sample records for replace high energy

  1. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  2. Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-08-15

    Electric motors use major share (i.e. about 30-80% of total industrial energy consumption) of total industrial energy use around the world. Experiences from other countries show that government intervention in the form of regulations such as mandatory and voluntary approaches can save sizeable amount of energy along with the reduction in emissions associated with energy savings. This paper presents potential energy savings by introducing high-efficiency motors as a case study in Malaysian industrial sector. Emission reductions associated with the energy savings has been estimated and presented as well. It was also estimated that a cumulative amount of 1940 and 892 GWh of energy can be saved for 20 and 120 kW motors, respectively, in Malaysia relative to BAU over the next 10 years. Similarly, a cumulative amount of USD 100 million and USD 60 million can be saved as utility bills for the same motor categories. It has been found that the payback period of different capacities of motors are less than a year. Based on results, it was found that 1789 million kg of CO{sub 2} emission can be avoided by replacing standard motors with high-efficiency motors. (author)

  3. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    CERN Document Server

    Benussi, L; Piccolo, D; Saviano, G; Colafranceschi, S; Kjølbro, J; Sharma, A; Yang, D; Chen, G; Ban, Y; Li, Q

    2015-01-01

    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.

  4. Survival of ceramic bearings in total hip replacement after high-energy trauma and periprosthetic acetabular fracture.

    Science.gov (United States)

    Salih, S; Currall, V A; Ward, A J; Chesser, T J S

    2009-11-01

    Surgeons remain concerned that ceramic hip prostheses may fail catastrophically if either the head or the liner is fractured. We report two patients, each with a ceramic-on-ceramic total hip replacement who sustained high-energy trauma sufficient to cause a displaced periprosthetic acetabular fracture in whom the ceramic bearings survived intact. Simultaneous fixation of the acetabular fracture, revision of the cementless acetabular prosthesis and exchange of the ceramic bearings were performed successfully in both patients. Improved methods of manufacture of new types of alumina ceramic with a smaller grain size, and lower porosity, have produced much stronger bearings. Whether patients should be advised to restrict high-impact activities in order to protect these modern ceramic bearings from fracture remains controversial.

  5. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mark [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Norwich Radiology Academy, Norwich (United Kingdom); Reid, Karen [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Toms, Andoni P. [Norfolk and Norwich University Hospital and University of East Anglia, Norwich (United Kingdom)

    2013-02-15

    The aim of this study was to determine whether high keV monoenergetic reconstruction of dual energy computed tomography (DECT) could be used to overcome the effects of beam hardening artefact that arise from preferential deflection of low energy photons. Two phantoms were used: a Charnley total hip replacement set in gelatine and a Catphan 500. DECT datasets were acquired at 100, 200 and 400 mA (Siemens Definition Flash, 100 and 140 kVp) and reconstructed using a standard combined algorithm (1:1) and then as monoenergetic reconstructions at 10 keV intervals from 40 to 190 keV. Semi-automated segmentation with threshold inpainting was used to obtain the attenuation values and standard deviation (SD) of the streak artefact. High contrast line pair resolution and background noise were assessed using the Catphan 500. Streak artefact is progressively reduced with increasing keV monoenergetic reconstructions. Reconstruction of a 400 mA acquisition at 150 keV results in reduction in the volume of streak artefact from 65 cm{sup 3} to 17 cm{sup 3} (74 %). There was a decrease in the contrast to noise ratio (CNR) at higher tube voltages, with the peak CNR seen at 70-80 keV. High contrast spatial resolution was maintained at high keV values. Monoenergetic reconstruction of dual energy CT at increasing theoretical kilovoltages reduces the streak artefact produced by beam hardening from orthopaedic prostheses, accompanied by a modest increase in heterogeneity of background image attenuation, and decrease in contrast to noise ratio, but no deterioration in high contrast line pair resolution. (orig.)

  6. Ruminal fermentation of Nellore steers fed crude glycerine replacing starch vs. fibre-based energy ingredient in low or high concentrate diets

    Directory of Open Access Journals (Sweden)

    Josiane Fonseca Lage

    2017-02-01

    Full Text Available Twelve ruminally cannulated steers (401.0 ± 41.5 kg and 24 mo were used in a replicated arrangement truncated Latin Square with six animals in six treatments and four periods to evaluate the effect of crude glycerine (CG; 80.3% of glycerol with starch or fiber-based energy ingredients in the concentrate on DMI, DM (DMD and NDF digestibility (NDFD and ruminal parameters. Experimental periods were 19 days (14 days for adaptation and 5 days to sampling. Diets were: CO - without CG and corn as ingredient of concentrate; CGC - inclusion of CG (10% of DM with corn in the concentrate; and CGSH - inclusion of CG (10% of DM with soybean hulls (SH in the concentrate. All three diets were offered at low (LC or high (HC concentrate level, CL (40 or 60%. Animals fed LC or HC diets had similar DMI, DMD and NDFD. Animals fed diets with CG associated with corn or SH had higher propionate concentrations and lower A:P ratio. Diets with HC increase the propionate but do not affect the NDFD. CG (10% of DM can be used to replace corn or SH in diets with 40 or 60% of concentrate, without affect NDFD.

  7. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M. S.; Pantophlet, A. J.; van den Borne, J. J. G. C.; Hendriks, W. H.; Schols, H. A.; Gerrits, W. J. J.

    2016-01-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy

  8. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M. S.; Pantophlet, A. J.; van den Borne, J. J. G. C.; Hendriks, W. H.; Schols, H. A.; Gerrits, W. J. J.

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy

  9. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M.S.; Pantophlet, A.J.; Borne, van den J.J.G.C.; Hendriks, W.H.; Schols, H.A.; Gerrits, W.J.J.

    2016-01-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on

  10. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  11. Replacing coal power in Canada with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, C.; Kansal, V.; Kegel, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2005-07-01

    At present, coal represents 19 per cent of Canada's energy production and is responsible for 80 per cent of the energy industry's greenhouse gases (GHG). It has been estimated that GHG emission levels can be reduced by 14 per cent if coal power is replaced with a cleaner energy source. This paper suggested that, due to dwindling natural gas reserves, renewable energy sources should be considered as an economically viable substitute for coal. A breakdown of energy production in Canada in 2002 was presented, along with details of Canadian emissions. The total capacity and annual generation of emissions from coal were presented, as well as additional sources of pollution, such as transboundary pollution. Various government incentives for renewable energy source development were discussed. Wind energy costs were examined along with geothermal energy, tidal energy, biomass energy, and solar energy. Rebate programs were reviewed. The gradual elimination of coal as an energy source was examined by region. Details of alternative energy methods were presented, along with their associated costs. Costs were compared to coal production and did not include any government subsidies. It was concluded that the majority of renewable resources in Canada are competitive with coal prices and in some cases cheaper. However, the resources cannot meet the electricity demands of all regions. It was suggested that wind energy is often an excellent alternative to meeting demand, but that wind power is the only natural resource that actually costs more than coal. An incentive program similar to that of Denmark was proposed, whereby the subsidy decreases every 2 years to keep in line with projected technological improvements and rising energy rates. 37 refs., 9 tabs., 3 figs.

  12. Replacement of chemical rocket launchers by beamed energy propulsion.

    Science.gov (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  13. Dual mobility total hip replacement in a high risk population

    Science.gov (United States)

    Luthra, Jatinder Singh; Al Riyami, Amur; Allami, Mohamad Kasim

    2016-01-01

    Objective: The purpose of the study was to evaluate results of dual mobility total replacement in a high risk population who take hip into hyperflexed position while sitting and praying on the floor. Method: The study included 65 (35 primary total replacement and 30 complex total hip replacement) cases of total hip replacement using avantage privilege dual mobility cup system from biomet. A cemented acetabular component and on femoral side a bimetric stem, either cemented or uncemented used depending on the canal type. Ten cases were examined fluoroscopically in follow up. Result: There was dislocation in one patient undergoing complex hip replacement. Fluoroscopy study showed no impingement between the neck of prosthesis and acetabular shell at extremes of all movements. Conclusion: The prevalence of dislocation is low in our high risk population and we consider it preferred concept for patients undergoing complex total hip replacement. PMID:27924742

  14. Dual mobility total hip replacement in a high risk population

    Directory of Open Access Journals (Sweden)

    Luthra Jatinder Singh

    2016-01-01

    Full Text Available Objective: The purpose of the study was to evaluate results of dual mobility total replacement in a high risk population who take hip into hyperflexed position while sitting and praying on the floor. Method: The study included 65 (35 primary total replacement and 30 complex total hip replacement cases of total hip replacement using avantage privilege dual mobility cup system from biomet. A cemented acetabular component and on femoral side a bimetric stem, either cemented or uncemented used depending on the canal type. Ten cases were examined fluoroscopically in follow up. Result: There was dislocation in one patient undergoing complex hip replacement. Fluoroscopy study showed no impingement between the neck of prosthesis and acetabular shell at extremes of all movements. Conclusion: The prevalence of dislocation is low in our high risk population and we consider it preferred concept for patients undergoing complex total hip replacement.

  15. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Michael D D'Emic

    Full Text Available BACKGROUND: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. METHODOLOGY/PRINCIPAL FINDINGS: We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days. Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. CONCLUSIONS/SIGNIFICANCE: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size, and derived titanosaurs and

  16. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  17. The digestive system of 1-week-old Jersey calves is well suited to digest, absorb, and incorporate protein and energy into tissue growth even when calves are fed a high plane of milk replacer.

    Science.gov (United States)

    Liang, Yu; Carroll, Jeffery A; Ballou, Michael A

    2016-03-01

    The objectives of the current study were to determine the apparent digestibilities of nitrogen, organic matter, ash, and energy as well as investigate the nitrogen retention of calves fed different planes of milk replacer nutrition during the first week of life. Twelve Jersey calves were blocked by body weight at birth and randomly assigned to either a high plane of nutrition (HPN) or low plane of nutrition (LPN) treatment. The HPN calves were offered 19.2g of dry matter/kg of body weight of a 28% all-milk crude protein and 20% fat milk replacer. The LPN calves were fed 11.6g of dry matter/kg of body weight of a 20% all-milk crude protein and 20% fat milk replacer. All calves were given 3 L of pooled colostrum within 1h of birth after which they were assigned to treatments; no starter was offered during the study. Calves were given 1 d to adapt to their treatments and environment, so calves were 30 to 36 h old at the start of data collection. The study was divided into two 72-h periods. Total collection of feces occurred over each 72 h period, and total urine was collected for the last 24h of each period. Peripheral blood samples were collected at the beginning and end of each period and analyzed for plasma glucose and urea nitrogen concentrations. Data are reported as HPN vs. LPN, respectively. Fecal scores were greater for HPN calves during both periods; however, no difference was found in the dry matter percentage of feces (30.9 vs. 31.9 ± 0.06). No differences were found between treatments in either digestible or metabolizable energy efficiencies, which averaged 93.3 and 83.7%, respectively. A treatment × period interaction was found on the percentage of intake nitrogen retained, in which calves fed the HPN had a greater percentage of intake nitrogen retained during period 1 (87.9 vs. 78.4 ± 1.79%), but was not different from calves fed the LPN during period 2 (85.4 vs. 84.9 ± 1.79%). From these data therefore, we conclude that healthy neonatal calves have

  18. Effects of acute sprint interval cycling and energy replacement on postprandial lipemia.

    Science.gov (United States)

    Freese, Eric C; Levine, Ari S; Chapman, Donald P; Hausman, Dorothy B; Cureton, Kirk J

    2011-12-01

    High postprandial blood triglyceride (TG) levels increase cardiovascular disease risk. Exercise interventions may be effective in reducing postprandial blood TG. The purpose of this study was to determine the effects of sprint interval cycling (SIC), with and without replacement of the energy deficit, on postprandial lipemia. In a repeated-measures crossover design, six men and six women participated in three trials, each taking place over 2 days. On the evening of the first day of each trial, the participants either did SIC without replacing the energy deficit (Ex-Def), did SIC and replaced the energy deficit (Ex-Bal), or did not exercise (control). SIC was performed on a cycle ergometer and involved four 30-s all-out sprints with 4-min active recovery. In the morning of day 2, responses to a high-fat meal were measured. Venous blood samples were collected in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. There was a trend toward a reduction with treatment in fasting TG (P = 0.068), but no significant treatment effect for fasting insulin, glucose, nonesterified fatty acids, or betahydroxybutryrate (P > 0.05). The postprandial area under the curve (mmol·l(-1)·3 h(-1)) TG response was significantly lower in Ex-Def (21%, P = 0.006) and Ex-Bal (10%, P = 0.044) than in control, and significantly lower in Ex-Def (12%, P = 0.032) than in Ex-Bal. There was no treatment effect (P > 0.05) observed for area under the curve responses of insulin, glucose, nonesterified fatty acids, or betahydroxybutryrate. SIC reduces postprandial lipemia, but the energy deficit alone does not fully explain the decrease observed.

  19. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves.

    Science.gov (United States)

    Gilbert, M S; Pantophlet, A J; van den Borne, J J G C; Hendriks, W H; Schols, H A; Gerrits, W J J

    2016-02-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy and protein metabolism in veal calves. Forty male Holstein-Friesian calves (114±2.4 kg) were fed milk replacer containing 46% lactose (CON) or 31% lactose and 15% of glucose (GLUC), fructose (FRUC), or glycerol (GLYC). Solid feed was provided at 10 g of dry matter (DM)/kg of metabolic body weight (BW(0.75)) per day. After an adaptation of 48 d, individual calves were harnessed, placed in metabolic cages, and housed in pairs in respiration chambers. Apparent total-tract disappearance of DM, energy, and N and complete energy and N balances were measured. The GLUC, FRUC, and GLYC calves received a single dose of 1.5 g of [U-(13)C]glucose, [U-(13)C]fructose, or [U-(13)C]glycerol, respectively, with their milk replacer at 0630 h and exhaled (13)CO2 and (13)C excretion with feces was measured. Apparent total-tract disappearance was decreased by 2.2% for DM, 3.2% for energy, and 4.2% for N in FRUC compared with CON calves. Energy and N retention did not differ between treatments, and averaged 299±16 kJ/kg of BW(0.75) per day and 0.79±0.04 g/kg of BW(0.75) per day, respectively, although FRUC calves retained numerically less N (13%) than other calves. Recovery of (13)C isotopes as (13)CO2 did not differ between treatments and averaged 72±1.6%. The time at which the maximum rate of (13)CO2 production was reached was more than 3 h delayed for FRUC calves, which may be explained by a conversion of fructose into other substrates before being oxidized. Recovery of (13)C in feces was greater for FRUC calves (7.7±0.59%) than for GLUC (1.0±0.27%) and GLYC calves (0.5±0.04%), indicating incomplete absorption of fructose from the small intestine resulting in fructose excretion or

  20. High energy astrophysical neutrinos

    OpenAIRE

    Athar, H.

    2002-01-01

    High energy neutrinos with energy typically greater than tens of thousands of GeV may originate from several astrophysical sources. The sources may include, for instance, our galaxy, the active centers of nearby galaxies, as well as possibly the distant sites of gamma ray bursts. I briefly review some aspects of production and propagation as well as prospects for observations of these high energy astrophysical neutrinos.

  1. High Phenobarbital Clearance During Continuous Renal Replacement Therapy

    Science.gov (United States)

    Rosenborg, Staffan; Saraste, Lars; Wide, Katarina

    2014-01-01

    Abstract Phenobarbital is an old antiepileptic drug used in severe epilepsy. Despite this, little is written about the need for dose adjustments in renal replacement therapy. Most sources recommend a moderately increased dose guided by therapeutic drug monitoring. A 14 year old boy with nonketotic hyperglycinemia, a rare inborn error of metabolism, characterized by high levels of glycine, epilepsy, spasticity, and cognitive impairment, was admitted to the emergency department with respiratory failure after a few days of fever and cough. The boy was unconscious at admittance and had acute renal and hepatic failure. Due to the acute respiratory infection, hypoxic hepatic and renal failure occurred and the patient had a status epilepticus. The patient was intubated and mechanically ventilated. Continuous renal replacement therapy was initiated. Despite increased phenobarbital doses, therapeutic levels were not reached until the dose was increased to 500 mg twice daily. Therapeutic drug monitoring was performed in plasma and dialysate. Calculations revealed that phenobarbital was almost freely dialyzed. Correct dosing of drugs in patients on renal replacement therapy may need a multidisciplinary approach and guidance by therapeutic drug monitoring. PMID:25101986

  2. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  3. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  4. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  5. Modeling the Effect of Replacing Sugar-Sweetened Beverage Consumption with Water on Energy Intake, HBI Score, and Obesity Prevalence

    Directory of Open Access Journals (Sweden)

    Kiyah J. Duffey

    2016-06-01

    Full Text Available Sugar-sweetened beverages (SSB contribute to excessive weight gain through added energy intake. Replacing SSB with water is one strategy that has shown promise in helping lower excessive energy intake. Using nationally representative data from US adults (n = 19,718 from NHANES 2007–2012 we examine the impact of replacing SSB with water on Healthy Beverage Index (HBI scores and obesity prevalence. Replacing an 8-ounce serving of SSB with water lowered the percent of energy from beverages from 17% to 11% (among those consuming 1 serving SSB/day. Reductions in the percent energy from beverages were observed across all SSB consumption groups (1–2 servings/day and >2 servings/day. Among adults there was a 9% to 21% improvement in HBI score when one serving of water replaced one serving of SSB. Using previously published randomized controlled trials (RCT and meta-analyses of measured weight loss we also predicted a reduction in the prevalence of obesity (observed: 35.2%; predicted 33.5%–34.9%, p < 0.05 and increase in the prevalence of normal weight (observed: 29.7%; high weight loss: 31.3%, p < 0.05. Our findings provide further epidemiologic evidence that water in the place of SSB can be used as a strategy to limit energy intake and help individuals meet beverage intake recommendations.

  6. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning.

    Science.gov (United States)

    Boerman, J P; Potts, S B; VandeHaar, M J; Lock, A L

    2015-10-01

    The effects of partly replacing dietary starch with fiber and fat to provide a diet with similar net energy for lactation (NEL) density on yields of milk and milk components and on energy partitioning were evaluated in a crossover design experiment. Holstein cows (n = 32; 109 ± 22 d in milk, mean ± standard deviation) were randomly assigned to treatment sequence. Treatments were a high-starch diet containing 33% corn grain (mixture of dry ground and high-moisture corn; HS) or a high-fiber, high-fat diet containing 2.5% palmitic acid-enriched fatty acid (FA) supplement (HFF). Diets contained corn silage, alfalfa silage, and wheat straw as forage sources; HS contained 32% starch, 3.2% FA, and 25% neutral detergent fiber, whereas HFF contained 16% starch, 5.4% FA, and 33% neutral detergent fiber. Compared with HS, the HFF treatment reduced milk yield, milk protein concentration, and milk protein yield, but increased milk fat concentration, milk fat yield, milk energy output, and milk to feed ratio (energy-corrected milk/dry matter intake). The HFF treatment reduced the yield of de novo synthesized ( 16-carbon) milk FA was not different. The HFF treatment increased plasma concentrations of triglycerides and nonesterified fatty acids, but decreased plasma concentration of insulin. Compared with HS, the HFF treatment reduced body weight gain, change in body condition score, and fat thickness over the rump and rib. Calculated body energy gain, as a fraction of NEL use, was less for HFF than HS, whereas milk energy as a fraction of NEL use was increased for HFF. We concluded that the 2 treatments resulted in similar apparent NEL densities and intakes, but the HS treatment partitioned more energy toward body gain whereas the HFF treatment partitioned more energy toward milk. A high-fiber, high-fat diet might diminish the incidence of over conditioning in mid-lactation cows while maintaining high milk production. Copyright © 2015 American Dairy Science Association

  7. High-Energy Physics.

    Science.gov (United States)

    Creutz, Michael

    1983-01-01

    Experimentalists in particle physics have long regarded computers as essential components of their apparatus. Theorists are now finding that significant advances in some areas can be accomplished only in partnership with a machine. Needs of experimentalists, interests of theorists, and specialized computers for high-energy experiments are…

  8. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  9. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  10. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  11. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Ho [Korea Institute for Advancement of Technology, Korea Technology Center, Seoul (Korea, Republic of); Jung, Woo Jin [Graduate School of Information, Yonsei University, Seoul (Korea, Republic of); Kim, Tae Hwan; Lee, Sang Yong Tom [School of Business, Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  12. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States); Easley, S. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States)

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  13. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  14. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  15. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  16. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  17. 40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.

    Science.gov (United States)

    2010-07-01

    ... and End of Year Compliance § 74.47 Transfer of allowances from the replacement of thermal energy... seeking to transfer allowances based on the replacement of thermal energy. (3) Contents. Each thermal... energy plan, the Administrator will annually transfer allowances to the compliance account of each...

  18. Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

    Energy Technology Data Exchange (ETDEWEB)

    De Kleine, Robert D. [Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 440 Church St., Dana Bldg., Ann Arbor, MI 48109-1041 (United States); Keoleian, Gregory A., E-mail: gregak@umich.edu [Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 440 Church St., Dana Bldg., Ann Arbor, MI 48109-1041 (United States); Kelly, Jarod C. [Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 440 Church St., Dana Bldg., Ann Arbor, MI 48109-1041 (United States)

    2011-06-15

    A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: > Optimal replacement schedules for residential central air conditioners were found. > Minimizing energy required more frequent replacement than minimizing consumer cost. > Significant variation in optimal replacement was observed for Michigan and Texas. > Rebates for altering replacement patterns are not cost effective for GHG abatement. > Maintenance levels were significant in determining the energy and GHG impacts.

  19. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  20. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  1. Patient-prosthesis mismatch: surgical aortic valve replacement versus transcatheter aortic valve replacement in high risk patients with aortic stenosis.

    Science.gov (United States)

    Ghanta, Ravi K; Kron, Irving L

    2016-10-01

    Patient prosthesis mismatch (PPM) can occur when a prosthetic aortic valve has an effective orifice area (EOA) less than that of a native valve. A recent study by Zorn and colleagues evaluated the incidence and significance of PPM in high risk patients with severe aortic stenosis who were randomized to transcatheter aortic valve replacement (TAVR) or surgical aortic valve replacement (SAVR). TAVR is associated with decreased incidence of severe PPM compared to traditional SAVR valves. Severe PPM increases risk for death at 1 year postoperatively in high risk patients. The increased incidence of PPM is largely due to differences in valve design and should encourage development of newer SAVR valves to reduce risk for PPM. In addition more vigorous approaches to root enlargement in small annulus should be performed with SAVR to prevent PPM.

  2. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  3. 40 CFR 74.48 - Transfer of allowances from the replacement of thermal energy-process sources. [Reserved

    Science.gov (United States)

    2010-07-01

    ... and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Transfer of allowances from the replacement of thermal energy-process sources. 74.48 Section 74.48 Protection of Environment...

  4. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  5. 大规模替代化石及其他有限能源的固有安全高温核动力%An inherently-safe high-temperature nuclear energy producing process for the replacement of fossil and other depletive energy on a large scale

    Institute of Scientific and Technical Information of China (English)

    吕应中

    2011-01-01

    为充分发挥核能的巨大潜力,使之在21世纪内早日更大规模地替代煤炭和其他化石与水力能源,本文介绍如何通过创造性地改进融盐冷却球床高温堆-回路的热工水力设计,实现"在任何功率下长期自动运行生产高温核能方法".该方法在充满高沸点(融盐)一次载热剂的深池内,采用特别简单的一体化回路布置,使融盐沿水平方向流过位于池底的环状堆芯,吸收其中球形燃料元件的裂变热,升温后由中央流道上升;再通过位于池顶、淹没在融盐内的敞口式超低阻力换热器,可完全利用自然循环,将全部裂变能量输送给二次载热剂.冷却后的融盐依靠重力沿下降流道回到位于池底的堆芯.由于载热剂利用上升与下降流道间密度差产生的浮力进行自然循环,故无需任何循环泵.由于采用在线连续换料方法,该融盐反应堆可保持在很低的过剩反应性下运行.反应堆具有较大负温度系数,故可不依靠设置刚性控制棒系统,只跟随外负荷变化自动调节其堆芯裂变功率.此种固有安全核动力堆具有高度简单的反应堆结构,高度透明的安全性,高度灵活的功率范围与厂址选择,与比其他同类先进高温反应堆更低的投资和运行成本,其单堆的功率大小没有限制,既可与小型模块式电站竞争,又可建成以超过世界最大水电站的巨型电站,从而可以全面地大规模代替化石及其他受自然资源制约的能源,并与未来廉价的大规模可再生能源配合,保证世界可持续发展.%To fully exploit the huge potential of nuclear energy for the replacement of fossil and other depletive energy as early as practical in 21at century, a novel process for producing high-temperature nuclear with full-power natural circulation operation is proposed, based on the innovative thermal-hydraulic designs of the primary circuit of a liquid-salt-cooled pebble bed reactor. In a deep

  6. Study on energy demand function of korea considering replacement among energy sources and the structural changes of demand behavior

    Energy Technology Data Exchange (ETDEWEB)

    Moon, C.K. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    If the necessity of careful study on energy function is mentioned, it should be stressed that energy investment not only needs a long gestation period but also, acts as the bottleneck in the production capacity of an economy when investment is not enough. Thereby, the adverse effect of an energy supply shortage is very big. Especially, the replacement/supplemental relationship between energy and capital which corresponds to the movement on the iso-quanta curve is believed to have a direct relation with the answer as to whether long-term economic development would be possible under an energy crisis and its influence on technology selection. Furthermore, the advantages of technological advances which correspond to the movement on the iso-quanta curve has a direct relation with the question whether long-term economic development would be possible under an energy crisis depending on whether its direction is toward energy-saving or energy-consuming. This study tackles the main issues and outlines of the quantitative approach method based on the accounting approach method for modeling energy demand, quantitative economics approach method, and production model. In order to model energy demand of the Korean manufacturing industry, related data was established and a positive analytical model is completed and presented based on these. 122 refs., 10 tabs.

  7. Renewable Energy Riding High

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China is putting greater emphasis on green energy as it tries to clean up industry and meet target for cuts in carbon emissions over the past two years, China has already leapfrogged competitors from Denmark, Germany, Spain and the United States to become the world's largest maker of wind turbines and solar panels. At the same time, the country is also taking steps to build more nuclear reactors and energy-efficient coal power plants.

  8. Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit.

    Science.gov (United States)

    Dou, Chuandong; Ding, Zicheng; Zhang, Zijian; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2015-03-16

    The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C-C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices.

  9. High Energy Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  10. Replacement of Old Wind Turbines Assessed from Energy, Environmental and Economic Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rydh, Carl Johan (e-mail: carl.johan.rydh@hik.se); Jonsson, Maria; Lindahl, Pia

    2004-06-01

    Different operating conditions and alternatives for treatment and replacement of old 225 kW wind turbines (WTs) were evaluated from a life cycle perspective from cradle to grave. Indicators were calculated for primary fossil energy requirements (MJ{sub pf}/kWh{sub el}), CO{sub 2} emission (CO{sub 2}/kWh{sub el}) and economy (Euro/kWh{sub el}). Extending the service life ten years by renovation results in 32% lower primary energy requirements than if the WT is recycled after 20 years at the end of the technical service life. The primary fossil energy requirement for electricity production is 2.5 - 4.6 times higher for fossil based electricity production than for WTs. The energy payback time was calculated to 3.9 months for 225 kW WTs and to 2.7 months for 2 MW WTs. This means that after 3.9 months electricity production, the WT starts to generate net electricity. The CO{sub 2} emission for WTs was calculated to 7.2-11 g CO{sub 2}/kWh, which is 4.6 lower than the average Swedish electricity mix and 122 times lower than for a coal condensing plant. The highest CO{sub 2} emission for electricity generation from WTs was found in the phase of materials production (60-64% of the total emission) followed by production of WTs (32%). The phases of transportation/disassembly and renovation/maintenance have relatively low influence, contributing 2-3% and 2-6%. The monetary costs for electricity production were calculated to be in the range 0.029-0.054 Euro/kWh (excluding VAT and subsidies). The lowest cost was found for 2 MW WTs and the highest cost for renovation of 225 kW WTs. The relative importance of different parameters influence on energy requirements and CO{sub 2} emissions were found to be as follows: (1) service life, wind conditions/conversion efficiency and material requirement, (2) recycling rate and, (3) transportation distance. To utilise areas suitable for wind turbines efficiently, it is important to use the most efficient technologies with highest possible

  11. Flare physics at high energies

    Science.gov (United States)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  12. Energy spectra of high energy atmospheric neutrinos

    Science.gov (United States)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  13. Replacing soybean meal by high energy cottonseed meal in diets for dairy cattle: milk composition and economic viability Substituição do farelo de soja por farelo de algodão de alta energia em dietas para vacas leiteiras

    Directory of Open Access Journals (Sweden)

    Nelcino Francisco de Paula

    2010-03-01

    Full Text Available This study evaluated the effect of including increasing levels of high-energy cottonseed meal (zero, 8.7, 17.4, 26.1 and 34.8% of dry matter in replacement to soybean meal in concentrate for cows on third-end lactation, composition and economic viability. Five Holstein-Zebu lactating cows were distributed in Latin square 5x5 design, with five periods of 18 days. Diets were isonitrogenous, with 60% of corn silage and 40% of concentrate, as total mixed ration. Milk fat content and yield, and milk protein content were not influenced by the different protein sources. The inclusion of cottonseed meal high in energy to about 35% in the concentrate did not change the milk composition , and within the market situation in which they conducted the experiment to replace the soybean meal by cottonseed meal in high-energy diets cows average yield potential (+/- 15 kg/animal/day can increase the profitability.No presente estudo objetivou-se avaliar o efeito da inclusão de níveis crescentes do farelo de algodão de alta energia (zero; 8,7; 17,4; 26,1 e 34,8% da matéria seca em substituição ao farelo de soja no concentrado para vacas no terço final de lactação, sobre a composição do leite e viabilidade econômica. Foram utilizadas cinco vacas mestiças Holandês-Gir, em um delineamento em quadrado latino (5x5, com cinco períodos de 18 dias. As dietas foram calculadas para serem isonitrogenadas (14% proteína bruta, com 60% de silagem de milho e 40% de concentrado, misturadas diretamente no cocho. O teor e a produção de gordura e proteína do leite não foram influenciadas pelos níveis de farelo de algodão na dieta. O teor de proteína do leite esteve acima da média relatada na literatura. A inclusão de farelo de algodão de alta energia no concentrado para vacas com produção média diária de 14 kg/dia de leite proporcionou maior rentabilidade econômica.

  14. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    OpenAIRE

    F. Mat Yahaya; Muthusamy, K.; Sulaiman, N.

    2014-01-01

    This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0) with 100% ordinary Portland cement (control specimen) and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20) has been identified as the best performing mix after cubes (150×150×150 mm) containing various content of POFA as partial c...

  15. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  16. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  17. FDA OKs High-Tech Diabetes Device to Help Replace Fingerstick Tests

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162638.html FDA OKs High-Tech Diabetes Device to Help Replace ... too low, and potentially incorrect insulin dosing, the FDA said. The Dexcom G5 is the first continuous ...

  18. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  19. Very high energy neutrinos

    Science.gov (United States)

    Moscoso, Luciano; Spiering, Christian

    2000-03-01

    A sky survey with neutrinos may considerably extend our understanding of cosmic phenomena. Due to the low interaction cross section of neutrinos with matter and due to the high cosmic ray background the detector must be very large (of the order of 1 km 3) and must be shielded. These new devices consist of a network of photo-tubes which are deployed in the depth of the ocean, of a lake or of the ice of South Pole. The detection of the Cherenkov light emitted by muons produced in muon neutrino interactions with the matter surrounding the detector will allow the reconstruction of the neutrino direction with an angular resolution of the order or lower than one degree. Several projects are underway. Their status will be reviewed in this paper.

  20. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  1. The AAVSO High Energy Network

    Science.gov (United States)

    Price, Aaron

    2004-06-01

    The AAVSO is expanding its International Gamma-Ray Burst Network to incorporate other high energy objects such as blazars and magnetic cataclysmic variables (polars). The new AAVSO High Energy Network will be collaborating with the Global Telescope Network (GTN) to observe bright blazars in support of the upcoming GLAST mission. We also will be observing polars in support of the XMM mission. This new network will involve both visual and CCD obsrvers and is expected to last for many years.

  2. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    Science.gov (United States)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  3. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  4. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A

    2010-01-01

    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  5. Influence of portland cement replacement in high calcium fly ash geopolymer paste

    Directory of Open Access Journals (Sweden)

    Tanakorn Phoo-ngernkham

    2014-03-01

    Full Text Available This article presents the influence of ordinary Portland cement (OPC replacement in high calcium fly ash (FA geopolymer paste. FA was used to replace OPC at the rate of 5, 10 and 15% by mass of binder. Sodium silicate (Na2SiO3 and 10 molar sodium hydroxide (NaOH solutions were used as the alkaline solution in the reaction. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B ratio of 0.60 were used in all mixtures. The results of increase OPC replacement, the setting time and compressive strain capacity decreased while the compressive strength and modulus of elasticity increased. The compressive strength and modulus of elasticity at 28 days of geopolymer pastes with 15% OPC replacement were 36.7 MPa and 13,300 MPa, respectively.

  6. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  7. High-energy neutrino astrophysics

    Science.gov (United States)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  8. Simulation of High Energy Muons

    CERN Document Server

    Mashtakov, Konstantin

    2015-01-01

    Under the scope of a CERN summer student project, a Geant4 physical model has been developed and committed to the Geant4 repository to allow precise simulation of high-energy muons and hadrons transport inside a material. Resulted angular distributions produced by this model have small deviations from those that were obtained by the Geant4 model used by default. High-energetic muons energy losses inside the CMS tracker have also been estimated and may vary from 0.05% up to 2.5%.

  9. High Energy Astrophysics Program (HEAP)

    Science.gov (United States)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  10. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  11. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  12. Mexican High Energy Physics Network

    Science.gov (United States)

    D'Olivo, J. C.; Napsuciale, M.; Pérez-Angón, M. A.

    2016-10-01

    The Mexican High Energy Physics Network is one of CONACYT's thematic research networks, created with the aim of increasing the communication and cooperation of the scientific and technology communities of Mexico in strategic areas. In this report we review the evolution, challenges, achievements and opportunities faced by the network.

  13. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  14. High-energy atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2010-01-01

    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

  15. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    F. Mat Yahaya

    2014-06-01

    Full Text Available This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0 with 100% ordinary Portland cement (control specimen and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20 has been identified as the best performing mix after cubes (150×150×150 mm containing various content of POFA as partial cement replacement were prepared, continuously water cured and subjected to compressive strength test at 28 days. At the second stage of study, control specimen (P0 and high strength concrete mix containing 20% POFA (P20 were prepared in form of cylinders with reinforcement bar buried in the middle for corrosion resistance test. Specimens were subjected to half cell potential technique following the procedures outlined in ASTM C876 (1994. Incorporation of POFA as partial cement replacement has contributed to densification of microstructure making the concrete denser thus exhibit higher resistance towards corrosion as compared to plain concrete.

  16. Polarized beams in high energy circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1979-05-01

    In recent years, high energy physicists have become increasingly interested in the possible spin effects at high energies. To study those spin effects, it is desirable to have beams with high energy, high intensity and high polarization. In this talk, we briefly review the present status and the prospects for the near future of high energy polarized beams. 30 refs.

  17. 组合盘节能缓存替换机制%Energy-Efficient Replacement Schemes for Heterogeneous Drive

    Institute of Scientific and Technical Information of China (English)

    杨良怀; 周健; 龚卫华; 陈立军

    2013-01-01

    Much attention has recently been put on the energy-saving scheme for heterogeneous drive (H-Drive) which combines SSD and HDD. This paper focuses on the energy-efficient file buffering schemes for H-Drive while ensuring disk's lifespan. We propose a frequency-energy based replacement scheme (FEBR for short) by adapting previous replacement algorithm FBR with the help of an energy-cost model. And based on the sliding-window scheme, we also present a self-adaptive disk power management scheme by taking the disk lifespan into account, which adjusts timeout threshold according to the statistical behavior of user accesses. To explore the applicability of the existing replacement schemes ranging from page-based to file-based buffering scheme, we evaluate their effectiveness on energy-efficiency, performance, and HDD lifetime and compare them with our proposed scheme. With extensive experiments on four real-world file usage traces collected in our office, some useful conclusions are drawn: energy-saving in H-Drive is feasible, it can reach as high as 70%~80%; FBR and its variant FEBR, and GDS are the best ones among all those online buffering schemes evaluated while FEBR has some advantages over FBR and GDS; the proposed self-adaptive disk power management scheme can effectively control the disk's lifetime and it is inappropriate to power disk on or off by using those fixed-timeout threshold scheme prevailed previously.%利用组合盘(由固态盘和硬盘构成)进行节能是近年来的一个研究热点.对基于文件粒度的组合盘节能缓存机制开展了研究,利用能量代价模型改编FBR,提出了基于频率和能量的替换算法FEBR;同时,基于滑动窗口机制提出了考虑硬盘寿命的自适应磁盘电源管理机制;为探索现有缓存算法在新硬件结构上的适用性,对过去提出的一系列缓存替换算法在能效、性能、硬盘寿命影响等方面进行了较为全面的比较和评价.通过对收集的4个真

  18. Risk of low-energy hip, wrist, and upper arm fractures among current and previous users of hormone replacement therapy

    DEFF Research Database (Denmark)

    Hundrup, Yrsa Andersen; Høidrup, Susanne; Ekholm, Ola

    2004-01-01

    To examine the effect of oestrogen alone and in combination with progestin on the risk of low-energy, hip, wrist, and upper arm fractures. Additionally, to examine to what extent previous use, duration of use as well as recency of discontinuation of hormone replacement therapy (HRT) influences th...

  19. Using of solar energy in replacing of electric shower; Utilizacao da energia solar em substituicao a chuveiros eletricos

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Samuel Luna de [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Energia Solar (LABSOLAR)]. E-mail: samuel@labsolar.ufsc.br

    2000-07-01

    This chapter studies the utilization of solar energy heating as replacing electric showers, and presents proposals for solar heating to be used by low income residences, obtained results from different alternatives of solar heating and the economic feasibility of the propose systems.

  20. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  2. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  3. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  4. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate.

    Science.gov (United States)

    Vo, Thao T; Parrish, Damon A; Shreeve, Jean'ne M

    2014-08-27

    Considerable work has been focused on developing replacements for ammonium perchlorate (AP), a primary choice for solid rocket and missile propellants, due to environmental concerns resulting from the release of perchlorate into groundwater systems [corrected]. Additionally, the generation of hydrochloric acid contributes to high concentrations of acid rain and to ozone layer depletion. En route to synthesizing salts that contain cationic FOX-7, a novel, high oxygen-containing oxidizer, tetranitroacetimidic acid (TNAA), has been synthesized and fully characterized. The properties of TNAA were found to be exceptional, with a calculated specific impulse exceeding that of AP, leading to its high potential as a replacement for AP. TNAA can be synthesized easily in a one-step process by the nitration of FOX-7 in high yield (>93%). The synthesis, properties, and chemical reactivity of TNAA have been examined.

  5. ACD-A solution as anticoagulant during continuous renal replacement therapy in high risk bleeding patients

    Institute of Scientific and Technical Information of China (English)

    杨松涛

    2014-01-01

    Objective To assess the efficacy and safety of ACDA solution as anticoagulant during continuous renal replacement therapy(CRRT)in high risk of bleeding patients.Methods Forty high risk bleeding patients on continuous veno-venous hemofiltration(CVVH)were randomly divided into two groups:ACD-A group(22 patients,61 cases)and heparin-free group(18 patients,47cases).Serum creatinine,function of the coagulation

  6. AMRH and High Energy Reinicke Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Greenough, J A

    2001-05-14

    The authors describe AMRH results on a version of the Reinicke problem specified by the V and V group of LLNL's A-Div. The simulation models a point explosion with heat conduction. The problem specification requires that the heat conduction be replaced with diffusive radiation transport. The matter and radiation energy densities are tightly coupled.

  7. Performance of High-Strength Concrete Using Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Dr. M. Swaroopa Rani

    2015-04-01

    Full Text Available The advancement in material technology has led to development of concrete with higher strengths. Presence of high cementitious materials contents in high strength concrete mixes increases heat of hydration that causes higher shrinkage and leading it to potential of cracking. However, use of supplementary cementitious materials leads to control in heat of hydration which further avoids higher shrinkage. Materials such as fly ash, silica fume, metakaolin and ground granulated blast furnace slag are largely been used as supplementary cementitious materials in High strength concrete mixes. In the present study use of palm oil fuel ash (POFA as partial cement replacement in high strength concrete mixes is evaluated with an experimental study. High strength concrete mix of M60 grade is taken as a reference and the compressive strength, split tensile strength and flexural strength where performed for 7, 28 and 56 days and analyzed it with results for partial replacement mixes of POFA 5%, 10%, 15%, 20% & 25%. It has been observed that concrete with 15% replacement of POFA gave the highest strength.

  8. Developments in high energy theory

    Indian Academy of Sciences (India)

    Sunil Mukhi; Probir Roy

    2009-07-01

    This non-technical review article is aimed at readers with some physics back-ground, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical paradigm of String Theory – have been made to go beyond the Standard Model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors.

  9. Photoproduction at High Energy and High Intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  10. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  11. High Energy Gas Fracturing Test

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  12. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    Science.gov (United States)

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  13. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  14. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    Science.gov (United States)

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

  15. Corrigendum to "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system" [Energy 73, (2014), 110-125], doi

    DEFF Research Database (Denmark)

    Connolly, D.; Mathiesen, B. V.; Ridjan, I.

    2015-01-01

    In this communication, we give the following corrigendum to the original paper, “A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system” [1], to correct some typos and a figure which could mislead the readers: • Firstly, the incorr...

  16. Probing QCD at high energy

    CERN Document Server

    Voutilainen, Mikko

    2012-01-01

    We review recent experimental work on probing QCD at high $p_{T}$ at the Tevatron and at the LHC. The Tevatron has just finished a long and illustrious career at the forefront of high energy physics, while the LHC now has its physics program in full swing and is producing results at a quick rate in a new energy regime. Many of the LHC measurements extend well into the TeV range, with potential sensitivity to new physics. The experimental systematics at the LHC are also becoming competitive with the Tevatron, making precision measurements of QCD possible. Measurements of inclusive jet, dijet and isolated prompt photon production can be used to test perturbative QCD predictions and to constrain parton distribution functions, as well as to measure the strong coupling constant. More exclusive topologies are used to constrain aspects of parton shower modeling, initial and final state radiation. Interest in boosted heavy resonances has resulted in novel studies of jet mass and subjet structure that also test pertu...

  17. On the possibility of replacing high manganese cast steel military vehicle track pads with ADI

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2010-01-01

    Full Text Available The theoretical considerations of possibility replacing of high manganese cast steel used for military vehicle track pads with ADI are presented. Except these considerations, comparative investigations including tensile strength tests hardness measurements and impact resistance were included. Moreover, the structure investigation was carried out using either conventional light metallography and scanning (SEM. The last one was applied for fractography investigations, the aim of which was to discover the mode of fracture. The discussion of experimental results leads to conclusion that ADI, known as high friction resistant, looks to be concurrent material with respect to high manganese cast steel used now for tang track pads.

  18. Impending sources of energy to replace fire wood in semi arid climatic zones: A case study in Ethiopia

    Directory of Open Access Journals (Sweden)

    Mihret Dananto Ulsido

    2013-06-01

    Full Text Available The present study paper shows an alternative source of energy that can decrease the extensive use of fire wood in Ethiopia. The country’s entire rural area and significant part of urban population is completely dependent on fire wood as a source of energy. This practice takes its own toll, the forest is on the verge of being wiped out and as a result a clear change of climate and loss of natural biodiversity resources is visible. Fire wood is not the only source of energy available in the country. In this paper, based on their low cost, construction material availability and the required unskilled labor it is shown that biogas and solar energy are potentially feasible source of energy to replace firewood for cooking.

  19. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  20. High-throughput analysis of total nitrogen content that replaces the classic Kjeldahl method.

    Science.gov (United States)

    Yasuhara, T; Nokihara, K

    2001-10-01

    A high-throughput method for determination of total nitrogen content has been developed. The method involves decomposition of samples, followed by trapping and quantitative colorimetric determination of the resulting ammonia. The present method is rapid, facile, and economical. Thus, it can replace the classic Kjeldahl method through its higher efficiency for determining multiple samples. Compared to the classic method, the present method is economical and environmentally friendly. Based on the present method, a novel reactor was constructed to realize routine high-throughput analyses of multiple samples such as those found for pharmaceutical materials, foods, and/or excrements.

  1. High phenobarbital clearance during continuous renal replacement therapy: a case report and pharmacokinetic analysis.

    Science.gov (United States)

    Rosenborg, Staffan; Saraste, Lars; Wide, Katarina

    2014-08-01

    Phenobarbital is an old antiepileptic drug used in severe epilepsy. Despite this, little is written about the need for dose adjustments in renal replacement therapy. Most sources recommend a moderately increased dose guided by therapeutic drug monitoring.A 14 year old boy with nonketotic hyperglycinemia, a rare inborn error of metabolism, characterized by high levels of glycine, epilepsy, spasticity, and cognitive impairment, was admitted to the emergency department with respiratory failure after a few days of fever and cough. The boy was unconscious at admittance and had acute renal and hepatic failure.Due to the acute respiratory infection, hypoxic hepatic and renal failure occurred and the patient had a status epilepticus.The patient was intubated and mechanically ventilated. Continuous renal replacement therapy was initiated. Despite increased phenobarbital doses, therapeutic levels were not reached until the dose was increased to 500 mg twice daily. Therapeutic drug monitoring was performed in plasma and dialysate. Calculations revealed that phenobarbital was almost freely dialyzed.Correct dosing of drugs in patients on renal replacement therapy may need a multidisciplinary approach and guidance by therapeutic drug monitoring.

  2. High sensitivity fluid energy harvester

    CERN Document Server

    Morarka, Amit

    2016-01-01

    An ambient energy harvesting device was design and fabricated. It can harness kinetic energy of rain droplets and low velocity wind flows. The energy converted into electrical energy by using a single device. The technique used by the device was based on the principles of electromagnetic induction and cantilever. Readily available materials were characterized and used for the fabrication of cantilever. Under the laboratory conditions, water droplets having diameter 4mm and wind with speed 0.5m/s were used as the two distinct sources. Without making any changes in the geometry or the materials used, the device was able to convert kinetic energy from both the sources to provide voltage in the range of 0.7-1VAC. The work was conceptualized to provide an autonomous device which can harness energy from both the renewable energy sources.

  3. High Energy Computed Tomographic Inspection of Munitions

    Science.gov (United States)

    2016-11-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 815 Technical Report AREIS-TR-16006 HIGH ENERGY COMPUTED TOMOGRAPHIC INSPECTION OF MUNITIONS...REPORT DATE (DD-MM-YYYY) November 2016 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE HIGH ENERGY COMPUTED...otherwise be accomplished by other nondestructive testing methods. 15. SUBJECT TERMS Radiography High energy Computed tomography (CT

  4. Persistently High Hip Circumference after Bariatric Surgery Is a Major Hurdle to Successful Hip Replacement

    Directory of Open Access Journals (Sweden)

    Menachem M. Meller

    2014-01-01

    Full Text Available The prevalence of class III obesity (BMI≥40 kg/m2 in black women is 18%. As class III obesity leads to hip joint deterioration, black women frequently present for orthopedic care. Weight loss associated with bariatric surgery should lead to enhanced success of hip replacements. However, we present a case of a black woman who underwent Roux-en-Y gastric bypass with the expectation that weight loss would make her a better surgical candidate for hip replacement. Her gastric bypass was successful as her BMI declined from 52.0 kg/m2 to 33.7 kg/m2. However, her hip circumference after weight loss remained persistently high. Therefore, at surgery the soft tissue tunnel geometry presented major challenges. Tunnel depth and immobility of the soft tissue interfered with retractor placement, tissue reflection, and surgical access to the acetabulum. Therefore a traditional cup placement could not be achieved. Instead, a hemiarthroplasty was performed. After surgery her pain and reliance on external support decreased. But her functional independence never improved. This case demonstrates that a lower BMI after bariatric surgery may improve the metabolic profile and decrease anesthesia risk, but the success of total hip arthroplasties remains problematic if fat mass in the operative field (i.e., high hip circumference remains high.

  5. Economic feasibility of replacing sodium vapor and high pressure mercury vapor bulbs with LEDs for street lighting

    Directory of Open Access Journals (Sweden)

    Olusola Olorunfemi Bamisile

    2016-01-01

    Full Text Available The main aim of this article is to examine the feasibility of an energy audit program. LEDs are used to replace the sodium vapor lamps and high-pressured mercury vapor lamps that are currently used for the street lighting system in the Turkish Republic of Northern Cyprus. 44% of the fossil fuels imported into the Turkish Republic of Northern Cyprus is used for electricity generation, which makes the reduction in the consumption of electicity very important. This project will save as much as 36,880,410 kWh on site annually and 111,758,818 kWh from the source. The economic, environmental, and fossil fuels savings of this project are also evaluated.

  6. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  7. Lipid Replacement Therapy Drink Containing a Glycophospholipid Formulation Rapidly and Significantly Reduces Fatigue While Improving Energy and Mental Clarity

    Directory of Open Access Journals (Sweden)

    Robert Settineri

    2011-08-01

    Full Text Available Background: Fatigue is the most common complaint of patients seeking general medical care and is often treated with stimulants. It is also important in various physical activities of relatively healthy men and women, such as sports performance. Recent clinical trials using patients with chronic fatigue have shown the benefit of Lipid Replacement Therapy in restoring mitochondrial electron transport function and reducing moderate to severe chronic fatigue. Methods: Lipid Replacement Therapy was administered for the first time as an all-natural functional food drink (60 ml containing polyunsaturated glycophospholipids but devoid of stimulants or herbs to reduce fatigue. This preliminary study used the Piper Fatigue Survey instrument as well as a supplemental questionnaire to assess the effects of the glycophospholipid drink on fatigue and the acceptability of the test drink in adult men and women. A volunteer group of 29 subjects of mean age 56.2±4.5 years with various fatigue levels were randomly recruited in a clinical health fair setting to participate in an afternoon open label trial on the effects of the test drink. Results: Using the Piper Fatigue instrument overall fatigue among participants was reduced within the 3-hour seminar by a mean of 39.6% (p<0.0001. All of the subcategories of fatigue showed significant reductions. Some subjects responded within 15 minutes, and the majority responded within one hour with increased energy and activity and perceived improvements in cognitive function, mental clarity and focus. The test drink was determined to be quite acceptable in terms of taste and appearance. There were no adverse events from the energy drink during the study.Functional Foods in Health and Disease 2011; 8:245-254Conclusions: The Lipid Replacement Therapy functional food drink appeared to be a safe, acceptable and potentially useful new method to reduce fatigue, sustain energy and improve perceptions of mental function.

  8. Fat Reduction and Replacement in Dry-Cured Fermented Sausage by Using High Pressure Processing Meat as Fat Replacer and Olive Oil

    Directory of Open Access Journals (Sweden)

    Bolumar Tomas

    2015-09-01

    Full Text Available The present paper describes the modification of the lipid fraction of dry-cured fermented sausage through fat reduction (35% and fat replacement of animal fat with olive oil (up to 10%. High pressure processing (HPP treated meat was employed as a novel fat replacer to reduce the fat content and as a new strategy to enable a stable incorporation of olive oil in dry-cured fermented sausages. Chemical (proximate composition and fatty acid profile, physical (water retention, structure formation and colour and sensorial (appearance, texture and flavour properties were evaluated. It is concluded that 35% of fat reduction is possible without reduction of consumer acceptability. Moreover, the addition of HPP-treated meat as a fat replacer resulted in good mimic of the fat particles together with good physical and sensory properties. Therefore, it resulted in an effective and clean alternative (no added-additives for fat reduction. However, the incorporation of olive oil either by direct addition (4.3% oil or within a HPP-created protein network (10% oil resulted in unacceptable products since the oil was not properly retained inside the sausage matrix. Further studies are needed to find processing strategies that permit a stable incorporation of liquid plant oils to dry-cured fermented sausage for the development of healthier and more sustainable dry-cured fermented meat products.

  9. The role of biomass to replace fossil fuels in a regional energy system: The case of west Sweden

    Directory of Open Access Journals (Sweden)

    Kjärstad Jan

    2016-01-01

    Full Text Available This paper analyses the potential role of biomass to meet regional CO2 emission reduction targets up to year 2050 in two counties in the west of Sweden. It is concluded that the region could double its production capacity of solid biomass to 2030, from 6 to 12 TWh. Modelling of the electricity sector in the region indicates that bio-based electricity generation in combined heat and power plants could almost triple by 2050 while at the same time replace fossil based generation in district heating. Biomass can also contribute to fuel shift in the transport sector. Yet, the transport sector requires a series of actions to significantly reduce demand in combination with use of electricity and biofuels and its transformation is obviously strongly linked to an overall transformation of the European transport sector. The total need for biomass could potentially increase from 14 TWh in 2010 to 48 TWh already from 2040, considering the electricity and transport sectors and under the assumption that large energy savings can be achieved in the building sector and that all fossil based heat generation can be replaced by biomass heating. Assuming that biomass also replace the fossil based raw materials used by the industry, including three refineries, requires 170 TWh biomass to be compared to the 130 TWh currently used for the entire Sweden.

  10. High-Energy Astrophysics: An Overview

    Science.gov (United States)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  11. Ultra high energy cosmic rays: the highest energy frontier

    CERN Document Server

    Neto, João R T de Mello

    2015-01-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determ...

  12. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters

    Science.gov (United States)

    Mallick, D.; Amann, A.; Roy, S.

    2016-11-01

    Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

  13. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels?

    Science.gov (United States)

    Arutyunov, V. S.; Lisichkin, G. V.

    2017-08-01

    The state of the art and the major trends of development of world energy engineering are analyzed. It is concluded that throughout the 21st century the role of alternative sources will remain rather modest. Fossil fuel will still be the major source of energy until the end of the century. Because of depletion of accessible oil resources, the proportion of crude oil in the world energy balance will constantly decline, while the proportion of natural gas will grow. It is shown that energy production from any source, including alternative sources, cannot be environmentally benign if the scale of production is large. In the long term, humanity has no sources other than fusion energy, but transition to this source would not solve the problem of the planet's heat balance. The bibliography includes 70 references.

  14. On high energy tails in inelastic gases

    OpenAIRE

    Lambiotte, R.; Brenig, L.; Salazar, J. M.

    2005-01-01

    We study the formation of high energy tails in a one-dimensional kinetic model for granular gases, the so-called Inelastic Maxwell Model. We introduce a time- discretized version of the stochastic process, and show that continuous time implies larger fluctuations of the particles energies. This is due to a statistical relation between the number of inelastic collisions undergone by a particle and its average energy. This feature is responsible for the high energy tails in the model, as shown ...

  15. Short communication: Effects of increasing protein and energy in the milk replacer with or without direct-fed microbial supplementation on growth and performance of preweaned Holstein calves.

    Science.gov (United States)

    Geiger, A J; Ward, S H; Williams, C C; Rude, B J; Cabrera, C J; Kalestch, K N; Voelz, B E

    2014-11-01

    Forty-four Holstein calves were fed a direct-fed microbial (DFM) and 1 of 2 milk replacers to evaluate calf performance and growth. Treatments were (1) a control milk replacer [22:20; 22% crude protein (CP) and 20% fat], (2) an accelerated milk replacer (27:10; 27% CP and 10% fat), (3) the control milk replacer with added DFM (22:20+D), and (4) the accelerated milk replacer with added DFM (27:10+D). Dry matter intake, rectal temperatures, respiration scores and rates, and fecal scores were collected daily. Body weight, hip and withers height, heart girth, blood, and rumen fluid samples were collected weekly. Effects of treatment, sex, week, and their interactions were analyzed. Calves fed an accelerated milk replacer, regardless of DFM supplementation, consumed more CP and metabolizable energy in the milk replacer. No treatment differences were found for starter intake or intake of neutral detergent fiber or acid detergent fiber in the starter. Calves fed the accelerated milk replacer had greater preweaning and weaning body weight compared with calves fed the control milk replacer. Average daily gain was greater during the preweaning period for calves fed the accelerated milk replacer, but the same pattern did not hold true during the postweaning period. Feed efficiency did not differ among treatments. Hip height tended to be and withers height and heart girth were greater at weaning for calves fed the accelerated milk replacer compared with calves fed the control milk replacer. Fecal scores were greatest in calves fed DFM. Overall acetate, propionate, butyrate, and n-valerate concentrations were lower in calves fed the accelerated milk replacer, but DFM did not have an effect. Rumen pH was not different. Blood metabolites were unaffected by DFM supplementation, but calves fed the accelerated milk replacer had increased partial pressure of CO2, bicarbonate, and total bicarbonate in the blood. Direct-fed microbial supplementation did not appear to benefit the calf

  16. Replacement of Ni by Mn in High-Ni-Containing Austenitic Cast Steels used for Turbo-Charger Application

    Science.gov (United States)

    Jung, Seungmun; Jo, Yong Hee; Jeon, Changwoo; Choi, Won-Mi; Lee, Byeong-Joo; Oh, Yong-Jun; Kim, Gi-Yong; Jang, Seongsik; Lee, Sunghak

    2017-02-01

    High-temperature tensile properties of austenitic cast steels fabricated by replacing Ni by Mn in a 20 wt pct Ni-containing steel were investigated. In a steel where 8 wt pct Ni was replaced by 9.2 wt pct of Mn, 17.4 and 9.8 pct of ferrite existed in equilibrium phase diagrams and actual microstructures, respectively, because a role of Mn as an austenite stabilizer decreased, and led to deterioration of high-temperature properties. When 2 to 6 wt pct Ni was replaced by 2.3 to 6.9 wt pct Mn, high-temperature properties were comparable to those of the 20 wt pct Ni-containing steel because ferrites were absent, which indicated the successful replacement of 6 wt pct Ni by Mn, with cost reduction of 27 pct.

  17. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    Science.gov (United States)

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  18. High energy hadrons in extensive air showers

    Science.gov (United States)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  19. Theory of high-energy messengers

    CERN Document Server

    Dermer, Charles D

    2016-01-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  20. Theory of high-energy messengers

    Science.gov (United States)

    Dermer, Charles D.

    2016-05-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  1. Environmental engineering: energy value of replacing waste disposal with resource recovery

    Science.gov (United States)

    Iranpour; Stenstrom; Tchobanoglous; Miller; Wright; Vossoughi

    1999-07-30

    Although in the past, environmental engineering has been primarily concerned with waste disposal, the focus of the field is now shifting toward viewing wastes as potential resources. Because reclamation usually consumes less energy than producing new materials, increasing reclamation not only reduces pollution but saves energy. Technological innovations contributing to this shift are summarized here, and are variously classified as emerging technologies or research topics, as either new departures or incremental improvements, and as opportunistic innovations, or examples of a unifying strategy. Both liquid and solid waste examples are given, such as a recent discovery of effects in disinfecting microfiltered reclaimed wastewater with ultraviolet light. In addition to its value in reducing pollution and conserving energy, this reorientation of environmental engineering could contribute to a more general shift toward greater cooperation among organizations dealing with the environment.

  2. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  3. A replacement of high-k process for CMOS transistor by atomic layer deposition

    Science.gov (United States)

    Han, Jin-Woo; Choi, Byung Joon; Yang, J. Joshua; Moon, Dong-Il; Choi, Yang-Kyu; Williams, R. Stanley; Meyyappan, M.

    2013-08-01

    A replacement of high-k process was implemented on an independent double gate FinFET, following the ordinary gate-first process with minor modifications. The present scheme involves neither exotic materials nor unprecedented processing. After the source/drain process, the sacrificial gate oxide was selectively substituted with amorphous Ta2O5 via conformal plasma enhanced atomic layer deposition. The present gate-first gate-dielectric-last scheme combines the advantages of the process and design simplicity of the gate-first approach and the control of the effective gate workfunction and the interfacial oxide of the gate-dielectric-last approach. Electrical characterization data and cross-sectional images are provided as evidence of the concept.

  4. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus.

    Science.gov (United States)

    Arazoe, Takayuki; Ogawa, Tetsuo; Miyoshi, Kennosuke; Yamato, Tohru; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Arie, Tsutomu; Kuwata, Shigeru

    2015-07-01

    Genetic manipulation is key to unraveling gene functions and creating genetically modified strains of microbial organisms. Recently, engineered nucleases that can generate DNA double-strand breaks (DSBs) at a specific site in the desired locus within genome are utilized in a rapidly developing genome editing technology via DSBs repair. However, the use of engineered nucleases in filamentous fungi has not been validated. In this study, we demonstrated that tailor-made transcriptional activator-like effector nucleases (TALENs) system, Platinum-Fungal TALENs (PtFg TALENs), could improve the efficiency of homologous recombination-mediated targeted gene replacement by up to 100% in the rice blast fungus Pyricularia oryzae. This high-efficiency PtFg TALEN has great potential for basic and applied biological applications in filamentous fungi.

  5. High Energy Sources Observed with OMC

    CERN Document Server

    Risquez, D; Mas-Hesse, J M; Kuulkers, E

    2008-01-01

    The INTEGRAL Optical Monitoring Camera, OMC, has detected many high energy sources. We have obtained V-band fluxes and light curves for their counterparts. In the cases of previously unknown counterparts, we have searched for characteristic variations in optical sources around the high-energy target position. Results about the Galactic Bulge Monitoring, INTEGRAL Gamma-Ray sources (IGR), and other high energy sources are presented.

  6. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  7. Fast Electronics in High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, Clyde

    1958-08-08

    A brief review of fast electronics is given, leading up to the present state of the art. Cherenkov counters in high-energy physics are discussed, including an example of a velocity-selecting Cherenkov counter. An electronic device to aid in aligning external beams from high-energy accelerators is described. A scintillation-counter matrix to identify bubble chamber tracks is discussed. Some remarks on the future development of electronics in high-energy physics experiments are included.

  8. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  9. Improving the Efficiency of a High Speed Catamaran Through the Replacement of the Propulsion System

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2015-12-01

    Full Text Available The high speed vessels are primarily designed for short distances services as public transport of passengers and vehicles. The range of high speed, according to the Code of high-speed vessels begins at 20 knots, which depends on the cruise speed you desire for your vessel; you will have to use the most appropriate type of propellant. In general, in the past 20 years, they have been building high-speed vessels with speeds above 33 knots, which meant installing water jet propellants coupled to powerful engines and therefore of high consumption of fuel, increasing operating costs and causing increased air pollution. Although the prices of fuel have been reduced to half, due to the sharp fall in oil prices, the consumption of fuel and the air pollution remains high at these speeds and powers used, in addition to that the reduction of the time spent on each trip is not excessive, mainly in short routes that are less than an hour . This article is about adapting a ship of high-speed service, with a maximum speed in tests of 34 knots and to reduce its operating costs (fuel, maintenance, etc. and make it economically viable; before the transformation, this vessel was operating with a service speed of 22 knots, and with a consumption per mile of 135 litters of MGO. The transformation process has consisted by: – Replacement of the two original water jet with four shaft lines with fix pitch propeller. – Replacement of the two original main engines (2 x 6500 kW = 13000 kW by four engines (4 x 1380kW = 5.520 kW. – Changing the underwater hull shape to fit the new propellers and maximize its efficiency. – Relocation of auxiliary engines, to achieve the most efficient trim. – Installation of two lateral propellers to improve maneuverability and shorten the total time of journey. After the reform and the return to service of the vessel with a service speed of over 22 knots, it has been verified that the consumption per mile is of 45 litters MGO

  10. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  11. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  12. Replacing fossil based PET with biobased PEF; proess analysis, energy and GHG balance

    NARCIS (Netherlands)

    Eerhart, A.J.J.E.|info:eu-repo/dai/nl/341358541; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2012-01-01

    An energy and greenhouse gas (GHG) balance study was performed on the production of the bioplastic polyethylene furandicarboxylate (PEF) starting from corn based fructose. The goal of the study was to analyze and to translate experimental data on the catalytic dehydration of fructose to a simulation

  13. Replacing fossil based PET with biobased PEF; proess analysis, energy and GHG balance

    NARCIS (Netherlands)

    Eerhart, A.J.J.E.; Faaij, A.P.C.; Patel, M.K.

    2012-01-01

    An energy and greenhouse gas (GHG) balance study was performed on the production of the bioplastic polyethylene furandicarboxylate (PEF) starting from corn based fructose. The goal of the study was to analyze and to translate experimental data on the catalytic dehydration of fructose to a simulation

  14. Crossatron switch as thyratron replacement in high repetition rate, high average power modulators

    Science.gov (United States)

    Sullivan, J. S.

    1988-06-01

    The Crossatron is a cold cathode, low pressure, gas discharge switch with opening and closing capabilities. Due to its cold cathode operation, the Crossatron may offer lifetime advantages compared to the hydrogen thyratron. Unfortunately, little information regarding Crossatron lifetime and performance in high repetition rate, high average power, pulse modulators exists. Four prototype Crossatron devices, fabricated by Hughes Aircraft, were obtained to evaluate their performance and lifetime in high repetition rate, high average power, pulse modulators that had previously been equipped with hydrogen thyratrons. The prototype Crossatrons were evaluated over a range of operating parameters. Various grid drive, keep alive power levels and triggering schemes were employed in the tests. Switch parameters such as trigger time, anode fall time, jitter, recovery time, peak di/dt, switch efficiency, and the gas pumping effect of the discharge were observed. One Crossatron prototype was also subjected to lifetime tests that accumulated tens of billions of pulses. Lifetime data will be compared to various thyratron models tested similarly.

  15. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  16. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  17. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  18. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  19. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  20. Biomechanical Considerations in the Design of High-Flexion Total Knee Replacements

    Directory of Open Access Journals (Sweden)

    Cheng-Kung Cheng

    2014-01-01

    Full Text Available Typically, joint arthroplasty is performed to relieve pain and improve functionality in a diseased or damaged joint. Total knee arthroplasty (TKA involves replacing the entire knee joint, both femoral and tibial surfaces, with anatomically shaped artificial components in the hope of regaining normal joint function and permitting a full range of knee flexion. In spite of the design of the prosthesis itself, the degree of flexion attainable following TKA depends on a variety of factors, such as the joint’s preoperative condition/flexion, muscle strength, and surgical technique. High-flexion knee prostheses have been developed to accommodate movements that require greater flexion than typically achievable with conventional TKA; such high flexion is especially prevalent in Asian cultures. Recently, computational techniques have been widely used for evaluating the functionality of knee prostheses and for improving biomechanical performance. To offer a better understanding of the development and evaluation techniques currently available, this paper aims to review some of the latest trends in the simulation of high-flexion knee prostheses.

  1. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...

  2. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...

  3. Projects for ultra-high-energy circular colliders at CERN

    Science.gov (United States)

    Bogomyagkov, A. V.; Koop, I. A.; Levichev, E. B.; Piminov, P. A.; Sinyatkin, S. V.; Shatilov, D. N.; Benedict, M.; Oide, K.; Zimmermann, F.

    2016-12-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron-positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  4. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  5. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging.

    Science.gov (United States)

    Wang, Chuanxi; Wang, Yu; Xu, Lin; Shi, Xiaodong; Li, Xiangwei; Xu, Xiaowei; Sun, Hongchen; Yang, Bai; Lin, Quan

    2013-02-11

    Fluorescent gold nanodots (GNDs) are an important kind of nanoprobes. Herein, the application of galvanic replacement for the preparation of fluorescent GNDs is reported. Using presynthesized and size-controlled Ag nanodots (Ag NDs) as templates, the as-prepared GNDs have strong fluorescence (quantum yields ~10%) with high stability and surface bioactivity. The resultant GNDs show excellent photoluminescence properties with high photo-, time-, metal-, and pH-stability, which are attributed to the protective surface layer of glutathione (GSH) and the presence of Au(I)-S complexes on the surface of the gold core. GSH, a naturally occurring and readily available tripeptide with carboxyl and amino functional groups, allows good dispersion of the as-prepared GNDs in aqueous solution and favorable biocompatibility. These advantages, combined with their small size, mean that the as-prepared GNDs have potential application in biological labeling, especially as a DNA probe for the specific detection of nucleic acids. In this study, the CAL-27 cells are used as a model to evaluate the fluorescence imaging of GNDs.

  6. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  7. The effects of dimensional parameters on sensing and energy harvesting of an embedded PZT in a total knee replacement

    Science.gov (United States)

    Safaei, Mohsen; Anton, Steven R.

    2016-04-01

    Total Knee Replacement (TKR), one of the most common surgeries in the United States, is performed when the patient is experiencing significant amounts of pain or when knee functionality has become substantially degraded. Despite impressive recent developments, only about 85% of patients are satisfied with the pain reduction after one year. Therefore, structural health and performance monitoring are integral for intraoperative and postoperative feedback. In extension of the author's previous work, a new configuration for implementation of piezoelectric transducers in total knee replacement bearings is proposed and FEA modeling is performed to attain appropriate sensing and energy harvesting ability. The predicted force transmission ratio to the PZT (ratio of force applied to the bearing to force transferred to the embedded piezoelectric transducer) is about 6.2% compared to about 5% found for the previous encapsulated design. Dimensional parameters of the polyethylene bearing including the diameter and depth of the PZT pocket as well as the placement geometry of the PZT transducer within the bearing are hypothesized as the most influential parameters on the performance of the designed system. The results show a small change of 1% and 2.3% in the output of the system as a result of variation in the PZT location and pocket diameter, respectively. Whereas, the output of the system is significantly sensitive to the pocket depth; a pocket 0.01 mm deeper than the PZT transducer leads to no force transmission, and a pocket 0.15 mm shallower leads to full load transmission to the PZT. In order to develop a self-powered sensor, the amount of energy harvested from tibial forces for the proposed geometry is investigated.

  8. High-efficiency microstructured semiconductor neutron detectors for direct {sup 3}He replacement

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, R.G., E-mail: rfronk@ksu.edu [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Bellinger, S.L.; Henson, L.C. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Huddleston, D.E. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); Ochs, T.R. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McGregor, D.S. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2015-04-11

    High-efficiency Microstructured Semiconductor Neutron Detectors (MSNDs) have been tiled and arranged in a cylindrical form factor in order to serve as a direct replacement to aging and increasingly expensive {sup 3}He gas-filled proportional neutron detectors. Two 6-in long by 2-in diameter cylinders were constructed and populated with MSNDs which were then directly compared to a 4 atm Reuter Stokes {sup 3}He detector of the same dimensions. The Generation 1 MSND-based {sup 3}Helium-Replacement (HeRep Mk I) device contained sixty-four 1-cm{sup 2} active-area MSNDs, each with an intrinsic neutron detection efficiency of approximately 7%. A Generation 2 device (the HeRep Mk II) was populated with thirty 4-cm{sup 2} active-area MSNDs, with an intrinsic thermal neutron detection efficiency of approximately 30%. The MSNDs of each HeRep were integrated to count as a single device. The {sup 3}He proportional counter and the HeRep devices were tested while encased in a cylinder of high-density polyethylene measuring a total of 6-in by 9-in. The {sup 3}He counter and the HeRep Mk II were each placed 1 m from a 54-ng {sup 252}Cf source and tested for efficiency. The {sup 3}He proportional counter had a net count rate of 17.13±0.10 cps at 1 m. The HeRep Mk II device had a net count rate of 17.60±0.10 cps, amounting to 102.71±2.65% of the {sup 3}He gas counter while inside of the moderator. Outside of moderator, the {sup 3}He tube had a count rate of 3.35±0.05 cps and the HeRep Mk II device reported 3.19±05, amounting to 95.15±9.04% of the {sup 3}He neutron detector.

  9. Replacing Burning of Fossil Fuels with Solar Cell and Wind Energy: How Important and How Soon?

    Science.gov (United States)

    Partain, L., II; Hansen, R. T.; Hansen, S. F.; Bennett, D.; Newlands, A.

    2016-12-01

    The IPCC indicated that atmospheric CO2 rise should stop to control global climate change. CO2 is the longest lived, most problematic anthropogenic greenhouse emission from burning fossil fuel. For 2000 years atmospheric CO2 concentration remained 280 ppm until 1870, when it rose sharply and nonlinearly to 400 ppm, correlated with a 1oC global mean temperature rise. Antarctic ice core data for the past 400,000 years indicate, 80 ppm shifts in atmospheric CO2 concentrations with 10,000-30,000 year interglacial periods at 280 ppm, were between ice-age glacial periods of 75,000-100,000 years at 200 ppm. The last 12,000-year interglacial "Goldilocks" period so far spans 4 civilizations: 6000 years of Western, 4000-5000 years of Inca and Aztec and 7000-8000 years of Chinese civilizations. The UN-led 2015 Paris Agreement set a goal limiting temperature rise to 2oC to prevent devastating climate change. Unfortunately IPCC modeling found a substantial probability of a rise by 4oC or more should all current fossil fuels be burned by 2100. This would result in weather extremes, rising oceans, storm surges and temperatures where low-lying coastal regions, Pacific Islands and large equatorial regions of the world could become uninhabitable. By Swanson's Law, an empirical learning curve observation, solar cell production costs drop 50% for every 10X increase in their cumulative production. After 40 years and over 5 orders-of-magnitude cumulative production increase, solar cells currently provide over 1% of the world's electricity generating capacity at a cost competitive with electricity generated from burning fossil fuels. If their cumulative generating capacity keeps doubling every 2 years (similar to Moore's Law), energy equivalent to all the world's electricity generating capacity could be provided by solar cells by 2028. The variability of solar cell energy can be mitigated by combining it with wind power, storage, super grids, space mirrors, and demand response.

  10. Ultra high energy cosmic rays: the highest energy frontier

    Science.gov (United States)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  11. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  12. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  13. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  14. CERN and the high energy frontier

    Science.gov (United States)

    Tsesmelis, Emmanuel

    2014-04-01

    This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC), this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  15. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  16. EULEB EUropean high quality Low Energy Buildings

    OpenAIRE

    2006-01-01

    ABSTRACT: The EULEB-Project is intended to supply information to architects and engineers throughout Europe and beyond it. Within the EU it will support the new Energy Directive on Buildings through providing design and engineering details of European public high quality buildings with low energy consumption. By providing a CD containing information on architecture, energy consumption and economical efficiency as well as the comfort of these innovative buildings in use, the lac...

  17. Cosmic absorption of ultra high energy particles

    Science.gov (United States)

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2016-02-01

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  18. High Energy Processes in Pulsar Wind Nebulae

    CERN Document Server

    Bednarek, W

    2006-01-01

    Young pulsars produce relativistic winds which interact with matter ejected during the supernova explosion and the surrounding interstellar gas. Particles are accelerated to very high energies somewhere in the pulsar winds or at the shocks produced in collisions of the winds with the surrounding medium. As a result of interactions of relativistic leptons with the magnetic field and low energy radiation (of synchrotron origin, thermal, or microwave background), the non-thermal radiation is produced with the lowest possible energies up to $\\sim$100 TeV. The high energy (TeV) gamma-ray emission has been originally observed from the Crab Nebula and recently from several other objects. Recent observations by the HESS Cherenkov telescopes allow to study for the first time morphology of the sources of high energy emission, showing unexpected spectral features. They might be also interpreted as due to acceleration of hadrons. However, theory of particle acceleration in the PWNe and models for production of radiation ...

  19. Impacts of high energy prices on long-term energy-economic scenarios for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krey, V.; Markewitz, P. [Research Center Juelich, Inst. of Energy Res., Systems Analysis and Technology Evaluation, Juelich (Germany); Horn, M. [DIW Berlin, Berlin (Germany); Matthes, C.; Graichen, V.; Harthan, R.O.; Repenning, J. [Oeko-Institut, Berlin (Germany)

    2007-05-15

    Prices of oil and other fossil fuels on global markets have reached a high level in recent years. These levels were not able to be reproduced on the basis of scenarios and prognoses that were published in the past. New scenarios, based on higher energy price trajectories, have appeared only recently. The future role of various energy carriers and technologies in energy-economic scenarios will greatly depend on the level of energy prices. Therefore, an analysis of the impact of high energy prices on long-term scenarios for Germany was undertaken. Based on a reference scenario with moderate prices, a series of consistent high price scenarios for primary and secondary energy carriers were developed. Two scenarios with (i) continuously rising price trajectories and (ii) a price shock with a price peak during the period 2010-15 and a subsequent decline to the reference level are analysed. Two types of models have been applied in the analysis. The IKARUS energy systems optimisation model covers the whole of the German energy system from primary energy supply down to the end-use sectors. Key results in both high price scenarios include a replacement of natural gas by hard coal and renewable energy sources in electricity and heat generation. Backstop technologies like coal liquefaction begin to play a role under such conditions. Up to 10% of final energy consumption is saved in the end-use sectors, with the residential and transport sector being the greatest contributors. Even without additional restrictions, CO{sub 2} emissions significantly drop in comparison to the reference scenario. The ELIAS electricity investment analysis model focuses on the power sector. In the reference scenario with current allocation rules in the emissions trading scheme, the CO{sub 2} emissions decrease relatively steadily. The development is characterised by the phaseout of nuclear energy which is counterweighted by the increase of renewable. In the high price scenario, the CO{sub 2

  20. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    Directory of Open Access Journals (Sweden)

    Alaa M. Rashad

    2015-12-01

    Full Text Available Disposal of fly ash (FA resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a partial replacement of cement in traditional paste/mortar/concrete mixtures based on Portland cement (PC. Fresh properties, mechanical properties, abrasion resistance, thermal properties, drying shrinkage, porosity, water absorption, sorptivity, chemical resistance, carbonation resistance and electrical resistivity of paste/mortar/concrete mixtures containing HVFA (⩾45% as cement replacement have been reviewed. Furthermore, additives used to improve some properties of HVFA system have been reviewed.

  1. A Phenomenological Cost Model for High Energy Particle Accelerators

    CERN Document Server

    Shiltsev, Vladimir

    2014-01-01

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  2. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  3. 1570 nm High Energy Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  4. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  5. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  6. High-Mileage Runners Expend Less Energy

    Science.gov (United States)

    ... news/fullstory_163289.html High-Mileage Runners Expend Less Energy Extra movement seems to lead to changes ... efficient at running compared to those who run less, a new study finds. Jasper Verheul and colleagues ...

  7. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  8. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  9. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  10. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  11. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill

    2017-01-01

    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  12. A unified treatment of high energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Hladik, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[SAP AG, Berlin (Germany); Ostapchenko, S. [Moscow State Univ. (Russian Federation). Inst. of Nuclear Physics]|[Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1999-11-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author) 19 refs.

  13. Highly conductive paper for energy-storage devices

    KAUST Repository

    Hu, L.

    2009-12-07

    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30-47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices.

  14. High Energy Particles in the Solar Corona

    CERN Document Server

    Widom, A; Larsen, L

    2008-01-01

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  15. Identifying the nature of high energy Astroparticles

    CERN Document Server

    Mora, Karen Salomé Caballero

    2016-01-01

    High energy Astroparticles include Cosmic Ray, gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (up to $10^{20}$ eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  16. Cosmic Physics: The High Energy Frontier

    CERN Document Server

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies $10^8$ times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violation of Lorentz invariance, as well as Planck scale physics and quantum gravity.

  17. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M T

    2015-01-01

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  18. Shoulder Joint Replacement

    Science.gov (United States)

    ... Shoulder Replacement Options Shoulder replacement surgery is highly technical. It should be performed by a surgical team ... area and will meet a doctor from the anesthesia department. You, your anesthesiologist, and your surgeon will ...

  19. Enhanced Energy Density in Permanent Magnets using Controlled High Magnetic Field during Processing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, Bill [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Constantinides, Steve [Arnold Magnetic Technologies, Rochester, NY (United States)

    2016-05-05

    This ORNL Manufacturing Demonstraction Facility (MDF) technical collaboration focused on the use of high magnetic field processing (>2Tesla) using energy efficient large bore superconducting magnet technology and high frequency electromagnetics to improve magnet performance and reduce the energy budget associated with Alnico thermal processing. Alnico, alloys containing Al, Ni, Co and Fe, represent a class of functional nanostructured alloys, and show the greatest potential for supplementing or replacing commercial Nd-based rare-earth alloy magnets.

  20. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  1. Energy spectra of cosmic-ray nuclei at high energies

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Barbier, L; Beatty, J J; Bigongiari, G; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Maestro, P; Malinine, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, S W; Nutter, S; Park, I H; Park, N H; Seo, E S; Sina, R; Walpole, P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2009-01-01

    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $\\sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 \\pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 \\pm 0.025 $(stat.)$ \\pm 0.025 $(sys.) at $\\sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.

  2. Hemoglobin Wood beta97(FG4) His replaced by Leu. A new high-oxygen-affinity hemoglobin associated with familial erythrocytosis.

    Science.gov (United States)

    Taketa, F; Huang, Y P; Libnoch, J A; Dessel, B H

    1975-08-19

    The characterization of hemoglobin Wood (beta97(FG4) His replaced by Leu), a high oxygen affinity hemoglobin with reduced Hill constant is described. The amino acid substitution occurs at the alpha1beta2 interface, in the same position as in hemoglobin Malmö (beta97(FG4) His replaced by Gln) and in an homologous position when compared with hemoglobins Chesapeake (alpha92(FG4) Arg replaced by Leu) and J. Capetown (alpha92(fg4) arg replaced by Gln).

  3. A High Energy Nuclear Database Proposal

    CERN Document Server

    Brown, D A; Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interace. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for intertial confinement fusion and target a...

  4. Proposal for a High Energy Nuclear Database

    CERN Document Server

    Vogt, D A B R

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

  5. Unusually high serum levels of lactate dehydrogenase without perivalvular leakage following double valve replacement: predictor of tetany attack after thyroidectomy.

    Science.gov (United States)

    Ryomoto, Masaaki; Miyamoto, Yuji; Mitsuno, Masataka; Yamamura, Mitsuhiro; Ohata, Toshihiro; Tanaka, Hiroe

    2006-11-01

    A 57-year-old woman who complained of exertional dyspnea was diagnosed as having severe aortic valve stenosis and mitral valve regurgitation. The patient underwent double valve replacement with a mechanical prosthesis. Postoperative laboratory data showed unusually high serum lactate dehydrogenase (LDH) levels, even though no perivalvular leakage was detected by echocardiography. Tetany occurred suddenly owing to hypoparathyroidism, which seemed to be a late complication after thyroidectomy. After calcium administration, the symptoms dramatically diminished, as did the serum LDH levels. Hypoparathyroidism should be doubted if serum LDH levels increase higher than the normal range following valve replacement without obvious perivalvular leakage.

  6. High stored energy of metallic glasses induced by high pressure

    Science.gov (United States)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  7. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  8. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  9. Introduction to High-Energy Astrophysics

    Science.gov (United States)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  10. Why is High Energy Physics Lorentz Invariant?

    CERN Document Server

    Afshordi, Niayesh

    2015-01-01

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...

  11. Future high energy colliders symposium. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  12. [High Energy Physics: Research in high energy physics]. Annual report, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1982-12-31

    This report discusses high energy physics research on: Quantum chromodynamics; neutrinos; multiparticle spectrometers; inclusive scattering; Mark III detector; and cascade decays of phi resonances. (LSP)

  13. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  14. High Energy Sources Monitored with OMC

    CERN Document Server

    Risquez, D; Caballero-Garcia, M D; Alfonso-Garzon, J; Mas-Hesse, J M

    2008-01-01

    The Optical Monitoring Camera on-board INTEGRAL (OMC) provides Johnson V band photometry of any potentially variable source within its field of view. Taking advantage of the INTEGRAL capabilities allowing the simultaneous observation of different kind of objects in the optical, X and gamma rays bands, we have performed a study of the optical counterparts of different high-energy sources. Up to now, OMC has detected the optical counterpart for more than 100 sources from the High Energy Catalog (Ebisawa et al., 2003). The photometrically calibrated light curves produced by OMC can be accessed through our web portal at: http://sdc.laeff.inta.es/omc

  15. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  16. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  17. Interdisciplinary Aspects of High-Energy Astrophysics

    CERN Document Server

    Sigl, Guenter

    2011-01-01

    Modern astrophysics, especially at GeV energy scales and above is a typical example where several disciplines meet: The location and distribution of the sources is the domain of astronomy. At distances corresponding to significant redshift cosmological aspects such as the expansion history come into play. Finally, the emission mechanisms and subsequent propagation of produced high energy particles is at least partly the domain of particle physics, in particular if new phenomena beyond the Standard Model are probed that require base lines and/or energies unattained in the laboratory. In this contribution we focus on three examples: Highest energy cosmic rays, tests of the Lorentz symmetry and the search for new light photon-like states in the spectra of active galaxies.

  18. Transverse Diagnostics For High Energy Hadron Colliders

    CERN Document Server

    Castro Carballo, Maria Elena

    2007-01-01

    The Large Hadron Collider (LHC) is a circular synchrotron accelerator that will explore new Physics at the higher energies ever achieved, aiming to find the Higgs boson. The LHC is being built at CERN and by 2007 it will be ready to produce head-on collisions of protons at a centre-of-mass energy of 14 TeV. The employment of superconducting magnets for achieving high energies, the high luminosity required for physics, the limited dynamic aperture and the large energy stored in the beams will make the machine very challenging to operate, especially during the injection process and the energy ramp. Two particular problems will be a high sensitivity to beam losses and a relatively poor field quality requiring the use of many types of magnetic correction elements. This may lead to the inclusion of certain beam measurements in feedback loops, making special demands on the control system. The injection and acceleration of the LHC proton beams without particle losses and emittance blow up will require an accurate co...

  19. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin, E-mail: djanders@caltech.edu [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States)

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm{sup 3} lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm{sup 3} LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  20. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin [California Inst. of Technology (CalTech), Pasadena, CA (United States); Apreysan, Artur [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bornheim, Adi [California Inst. of Technology (CalTech), Pasadena, CA (United States); Duarte, Javier [California Inst. of Technology (CalTech), Pasadena, CA (United States); Newman, Harvey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pena, Cristian [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ronzhin, Anatoly [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trevor, Jason [California Inst. of Technology (CalTech), Pasadena, CA (United States); Xie, Si [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  1. Use of dried cassava root to replace corn in supplementation of Holstein cows grazing and consuming spontaneously, apparent digestibility and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ádler Carvalho da Silva

    2015-07-01

    Full Text Available The development of this experiment intended to evaluate the effect of replacing ground corn for dried and ground cassava roots with the levels of 0%, 25%, 50%, 75% and 100% in the experimental supplements for lactating cows kept on tropical irrigated and fertilized pastures. Ten Holstein cows were divided into two 5x5 Latin squares, with an initial lactation average of 150 days, 22 kg/day of average milk production of lactation and approximate initial average body eight of 603 kg. The animals were kept in pasture constituted by elephant grass (Pennisetum purpureum, SCHUM cv Pioneer, associated with Tifton 85 grass (Cynodon nlemfuensis, irrigated and fertilized with 600 kg of nitrogen per hectare/year. No significant effects on the substitution of ground corn for dried and ground cassava roots in the concentrate (P>0.05 over the spontaneous consumption of the total diet, with estimated average of 20.61 kg/DM/animal/day, apparent digestibility of DM with estimated average of 59.60% and energy balance with estimated average of +6.36 Mcal day-1. The results of this study demonstrate that the cassava root can be used as an energy source of high nutritional value for supplementation of lactating cows grazing on tropical pastures, similar to corn results.

  2. A two-dimensional model of cyclic strain accumulation in ultra-high molecular weight polyethylene knee replacements.

    Science.gov (United States)

    Reeves, E A; Barton, D C; FitzPatrick, D P; Fisher, J

    1998-01-01

    As new methods of sterilization of the ultra-high molecular weight polyethylene (UHMWPE) component in knee replacements are introduced, reported incidents of delamination will decrease. The prediction of plastic strain accumulation and associated failure mechanisms will then become more important in knee replacement design. The finite element analysis reported in this paper aims to advance the modelling of strain accumulation in UHMWPE over repeated gait cycles and seeks to determine the effects of the knee replacement design variables of geometry and kinematics. Material testing was performed under cyclic and creep conditions to generate the elastic, viscoplastic material model that has been used in this time-dependent analysis. Non-conforming geometries were found to accumulate plastic strains at higher rates than conforming geometries. The anatomical motion known as rollback initially produced lower strain rates, but predictions of the long-term response indicated that designs which allow rollback may produce higher strains than static designs after only about a week of loading for a knee replacement patient.

  3. Cosmic ray antiprotons at high energies

    Science.gov (United States)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  4. Ultra High Energy Cosmic Rays: Strangelets?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 吴飞

    2003-01-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of Te V-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3 × 1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  5. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... You may not be able to have a total ankle replacement if you have had ankle joint infections in ...

  6. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  7. Density Estimation Trees in High Energy Physics

    CERN Document Server

    Anderlini, Lucio

    2015-01-01

    Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

  8. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut

  9. Technology arising from High-Energy Physics

    CERN Multimedia

    1974-01-01

    An exibition was held as a part of the Meeting on Technology arising from High- Energy Physics (24-26 April 1974). The Proceedings (including a list of stands) were published as Yellow Report, CERN 74-9, vol. 1-2.

  10. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  11. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  12. High energy bosons do not propagate

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, M.A., E-mail: Kurkov@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: dvassil@gmail.com [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)

    2014-04-04

    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.

  13. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  14. Parameterized neural networks for high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Pierre; Sadowski, Peter [University of California, Department of Computer Science, Irvine, CA (United States); Cranmer, Kyle [NYU, Department of Physics, New York, NY (United States); Faucett, Taylor; Whiteson, Daniel [University of California, Department of Physics and Astronomy, Irvine, CA (United States)

    2016-05-15

    We investigate a new structure for machine learning classifiers built with neural networks and applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results. (orig.)

  15. Parameterized Machine Learning for High-Energy Physics

    CERN Document Server

    Baldi, Pierre; Faucett, Taylor; Sadowski, Peter; Whiteson, Daniel

    2016-01-01

    We investigate a new structure for machine learning classifiers applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results.

  16. Modulation of fibroblast growth factor 19 expression by bile acids, meal replacement and energy drinks, milk, and coffee.

    Directory of Open Access Journals (Sweden)

    Amanda M Styer

    Full Text Available BACKGROUND: The enterohepatic pathway involving the fibroblast growth factor 19 (FGF19 and bile acids (BA has been linked with the etiology and remission of type 2 diabetes (T2D following Roux-en-Y gastric bypass (RYGB surgery. Specifically, diabetic patients had lower FGF19 circulating levels but postoperative FGF19 and BA levels were higher in diabetic patients that experience remission of T2D, as compared to non-diabetic patients and diabetic patients that do not experience remission. It has been proposed that this may be due to the direct flow of digestate-free bile acids into the ileum benefiting mostly T2D patients without severe diabetes. METHODS/RESULTS: We used a human colorectal cell line (LS174T that endogenously expresses FGF19, real time PCR, and Elisas for precise quantitation of FGF19 mRNA and secreted protein levels. We report here that BA and fractions of BA stimulated FGF19 in vitro but this effect was partially blocked when BA were pre-incubated with a lipoprotein mix which emulates digested food. In addition, we show that FGF19 mRNA was stimulated by meal replacement drinks (Ensure, Glucerna, SlimFast, non-fat milk, and coffee which has been linked with reduced risk for developing diabetes. Pure caffeine and the 5-hour Energy drink, on the other hand, decreased FGF19 mRNA. CONCLUSIONS: In summary, FGF19 expression in vitro is modifiable by popular drinks suggesting that such approaches could potentially be used for modulating FGF19 expression in humans.

  17. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  18. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  19. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  20. Wafer Replacement Cluster Tool (Presentation);

    Energy Technology Data Exchange (ETDEWEB)

    Branz, H. M.

    2008-04-01

    This presentation on wafer replacement cluster tool discusses: (1) Platform for advanced R and D toward SAI 2015 cost goal--crystal silicon PV at area costs closer to amorphous Si PV, it's 15% efficiency, inexpensive substrate, and moderate temperature processing (<800 C); (2) Why silicon?--industrial and knowledge base, abundant and environmentally benign, market acceptance, and good efficiency; and (3) Why replace wafers?--expensive, high embedded energy content, and uses 50-100 times more silicon than needed.

  1. High energy H- ion transport and stripping

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  2. Proposal for a High Energy Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  3. High energy photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  4. High energy cosmic ray and neutrino astronomy

    CERN Document Server

    Waxman, E

    2011-01-01

    Cosmic-rays with energies exceeding 10^{19} eV are referred to as Ultra High Energy Cosmic Rays (UHECRs). The sources of these particles and their acceleration mechanism are unknown, and for many years have been the issue of much debate. The first part of this review describes the main constraints, that are implied by UHECR observations on the properties of candidate UHECR sources, the candidate sources, and the related main open questions. In order to address the challenges of identifying the UHECR sources and of probing the physical mechanisms driving them, a "multi-messenger" approach will most likely be required, combining electromagnetic, cosmic-ray and neutrino observations. The second part of the review is devoted to a discussion of high energy neutrino astronomy. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extra-Galactic neutrino sources, and may therefore play a key role in the near future in re...

  5. High Energy Polarization of Blazars : Detection Prospects

    CERN Document Server

    Chakraborty, Nachiketa; Fields, Brian

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (wit...

  6. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  7. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  8. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  9. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, N. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Pavlidou, V. [Department of Physics, University of Crete, 71003 Heraklion (Greece); Fields, B. D. [Department of Astronomy and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  10. The effect of the replacement of fat with carbohydrate-based fat replacers on the dough properties and quality of the baked pogaca: a traditional high-fat bakery product

    Directory of Open Access Journals (Sweden)

    Seher SERIN

    2016-01-01

    Full Text Available Abstract Pogaca is a traditional high-fat bakery product in Turkey. This study was conducted to evaluate the effect of fat replacement in pogaca formulation by various amounts (5, 10 and 15 g on 100 g wheat flour basis of inulin, polydextrose and maltodextrin on the properties of dough and quality of pogaca. Dough stickiness values were increased by increasing the amount of fat replacer at the all fat reduction levels (20, 30 and 40% studied. Extensibility and resistance to extension values of dough were also significantly changed due to the fat replacement. Sensory analysis of pogaca showed that the formulations prepared by maltodextrin and polydextrose generally received higher scores than the formulation prepared by inulin. Overall, it was observed that up to 30% of the fat can be replaced in pogaca formulation without any decrease in the physical, textural and sensory quality of pogaca.

  11. High Energy Cosmic Rays From Supernovae

    CERN Document Server

    Morlino, Giovanni

    2016-01-01

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around $\\sim 10^{17}$ eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerate...

  12. Low to high temperature energy conversion system

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  13. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  14. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  15. High Energy Neutrino Astronomy: Status and Perspectives

    CERN Document Server

    Spiering, Christian

    2008-01-01

    The year 2008 has witnessed remarkable steps in developing high energy neutrino telescopes. IceCube at the South Pole has been deployed with 40 of its planned 80 strings and reached half a cubic kilometer instrumented volume, in the Mediterranean Sea the "first-stage" neutrino telescope ANTARES has been completed and takes data with 12 strings. The next years will be key years for opening the neutrino window to the high energy universe. IceCube is presently entering a region with realistic discovery potential. Early discoveries (or non-discoveries) with IceCube will strongly influence the design and the estimated discovery chances of the Northern equivalent KM3NeT. Following theoretical estimates, cubic kilometer telescopes may just scratch the regions of discovery. Therefore detectors presently planned should reach sensitivities substantially beyond those of IceCube.

  16. High-energy ion implantation for ULSI

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, K.; Komori, S.; Kuroi, T.; Akasaka, Y. (LSI R and D Lab., Mitsubishi Electric Corp., Itami (Japan))

    1991-07-01

    The ''well engineering'' of a retrograde twin well formed by high-energy ion implantation for 0.5 {mu}m CMOS is demonstrated to be quite useful in improving many device characteristics, such as leakage current reduction, soft-error immunity, low latchup susceptibility, smaller device isolation dimensions, etc. In forming a heavily doped buried layer by high-energy ion implantation, a drastic reduction in leakage current has been found. This would be caused by gettering of impurities or microdefects by secondary defects which are induced either by implantation of dopant itself (''self-gettering'') or by an additional implantation of oxygen, carbon or fluorine (''proximity gettering''). (orig.).

  17. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  18. High energy physics at UC Riverside

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  19. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  20. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  1. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  2. High patient satisfaction in 445 patients who underwent fast-track hip or knee replacement

    DEFF Research Database (Denmark)

    Specht, Kirsten; Kjaersgaard-Andersen, Per; Kehlet, Henrik;

    2015-01-01

    Background and purpose - Patient satisfaction is important in fast-track total hip and knee replacement (THR, TKR). We assessed: (1) how satisfied patients were with the treatment; (2) factors related to overall satisfaction; and (3) whether there was a difference between THR and TKR regarding...... length of stay (LOS) and patient satisfaction. Patients and methods - In this follow-up study, a consecutive series of 445 patients undergoing THR and TKR completed a questionnaire 2 weeks after discharge. LOS and short-term patient satisfaction with the fast-track management were measured. Patient...... satisfaction was measured using a numerical rating scale (NRS; 0-10). Results - For THR, the median satisfaction score was 9-10 and for TKR it was 8.5-10 in all parameters. Older THR patients had higher overall satisfaction. No association was found between overall satisfaction following THR or TKR and sex...

  3. PECULIARITIES OF REPLACEMENT ENZYME THERAPY IN CHILDREN WITH CYSTIC FIBROSIS: BENEFITS OF HIGH-TECH ENZYMES

    Directory of Open Access Journals (Sweden)

    O.I. Simonova

    2011-01-01

    Full Text Available In the past years we have gained enormous success not only in the field of understanding of pathologic basis and genetics of cystic fibrosis, but we have also developed new therapeutic approach to this disease. Enzyme therapy is one of the main parts of a complex treatment of cystic fibrosis. Correct therapeutic decision upon medication and treatment regimen allows to reach dramatic amelioration o patient’s condition, and significantly decrease the risk of complications of the disease itself and side-effects of the treatment given. This article contains guidelines of enzyme therapy in cystic fibrosis and clinical mistakes analysis that occur while deciding upon therapy. Key words: chronic pancreatic failure, replacement enzyme therapy, kreon, cystic fibrosis, children. (Voprosy sovremennoi pediatrii — Current Pediatrics. — 2011; 10 (5: 152–156.

  4. Data Unfolding Methods in High Energy Physics

    CERN Document Server

    Schmitt, Stefan

    2016-01-01

    A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two procedures to choose the strength of the regularisation are tested, namely the L-curve scan and a scan of global correlation coefficients. The advantages and disadvantages of the unfolding methods and choices of the regularisation strength are discussed using a toy example.

  5. Surface spectroscopy using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, B.L.; Cocke, C.L.; Gray, T.J.; Justiniano, E.; Peercy, P.S.

    1983-04-01

    Surface atoms ionized by high energy heavy ions have been detected by time-of-flight and quadrupole mass spectroscopic techniques. The experimental arrangements are described and potential applications are suggested. Both techniques are demonstrated to produce significant improvements in the detection of atomic hydrogen, with the TOF method producing a nine order of magnitude increase in the sensitivity of atomic hydrogen compared to standard nuclear analysis methods.

  6. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  7. On the Origin of Ultra High Energy Cosmic Rays II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  8. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    OpenAIRE

    2015-01-01

    Disposal of fly ash (FA) resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA) as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a part...

  9. Data Preservation in High Energy Physics

    CERN Document Server

    Kogler, Roman; Steder, Michael

    2011-01-01

    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and pre...

  10. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  11. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  12. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  13. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  14. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  15. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  16. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  17. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  18. High-energy kink in high-temperature superconductors

    Science.gov (United States)

    Johnson, Peter; Valla, Tonica; Kidd, Tim; Yin, W. G.; Gu, Genda; Pan, Z.-H.; Fedorov, Alexei

    2007-03-01

    Photoemission studies show the presence of a high energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O4+δand La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be doping and momentum independent. The magnitude of the effect is momentum dependent. Scattering from short range or nearest neighbour spin excitations is found to supply an adequate description of the observed phenomena.

  19. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  20. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  1. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  2. High-Order Energy Stable WENO Schemes

    Science.gov (United States)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.

  3. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  4. High energy ion beam analysis at ARRONAX

    Energy Technology Data Exchange (ETDEWEB)

    Koumeir, C.; Haddad, F.; Michel, N. [Subatech, Nantes (France); GIP ARRONAX, Saint-Herblain (France); Guertin, A.; Metivier, V.; Michel, N.; Ragreb, D.; Servagent, N. [Subatech, Nantes (France)

    2013-07-01

    Full text: ARRONAX, acronym for 'Accelerator for Research in Radiochemistry and Oncology at Nantes' is a high energy cyclotron. It is characterized by the acceleration of several types of particle beams: 68 MeV alpha, 15-35 MeV deuterons and 30-68 MeV protons. A platform was implemented on ARRONAX to perform non-destructive materials analysis with X and gamma rays emission (PIXE-PIGE). A proper selection of the projectile type and beam energy allows to analyze heavy and light elements in thin and thick samples. Our research activities are oriented along three axes: 1) Measurements of K X-ray production cross section for various elements to complement the databases at high energy. A first experiment has been conducted to measure these cross sections for copper and gold with protons energy between 34 and 68 MeV. 2) Study of the detection sensitivity which depends on the nuclear background and the Bremsstrahlung radiations. A dedicated shielding has been developed and detection limits below tens of μg/g/μC have been assessed using different referenced samples from IAEA. 3) Determination of concentration profile as function of the depth in a thick target. Using layered samples, we have showed for a target consisting of three different layers, the possibility to determine the sequence and thickness of each layer by using X and gamma rays measured respectively during and after irradiation. During this talk, I will present the characteristics and the capabilities of our platform. In the near future we intend to install the PIGE technique and use it with 15 MeV deuterons to analyze lightweight elements. (author)

  5. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  6. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  7. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  8. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  9. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  10. Emittance reconstruction technique for the Linac4 high energy commissioning

    CERN Document Server

    Lallement, JB; Posocco, PA

    2012-01-01

    Linac4 is a new 160 MeV linear accelerator for negative Hydrogen ions (H-) presently under construction which will replace the 50 MeV proton Linac2 as injector for the CERN proton accelerator complex. Linac4 is 80 meters long and comprises a Low Energy Beam Transport line, a 3 MeV RFQ, a MEBT, a 50 MeV DTL, a 100 MeV CCDTL and a PIMS up to 160 MeV. The commissioning of the Linac is scheduled to start in 2013. It will be divided into several steps corresponding to the commissioning of the different accelerating structures. A temporary measurement bench will be dedicated to the high energy commissioning from 30 to 100 MeV (DTL tanks 2 and 3, and CCDTL). The commissioning of the PIMS will be done using the permanent equipment installed in between the end of the Linac and the main dump. This note describes the technique we will use for reconstructing the transverse emittances and the expected results.

  11. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  12. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  13. Computing support for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    This computing proposal (Task S) is submitted separately but in support of the High Energy Experiment (CLEO, Fermilab, CMS) and Theory tasks. The authors have built a very strong computing base at Florida over the past 8 years. In fact, computing has been one of the main contributions to their experimental collaborations, involving not just computing capacity for running Monte Carlos and data reduction, but participation in many computing initiatives, industrial partnerships, computing committees and collaborations. These facts justify the submission of a separate computing proposal.

  14. The High Energy Radiation Pattern from BFKLex

    CERN Document Server

    Chachamis, G

    2016-01-01

    We discuss a recent study on high-energy jet production in the multi-Regge limit done with the use of the Monte Carlo event generator BFKLex which includes collinear improvements in the form of double-log contributions. We will show results for the average transverse momentum and azimuthal angle of the final state jets when at least one of them is very forward in rapidity and another one is very backward. We also discuss the introduction of a new observable which accounts for the average rapidity ratio among subsequent emissions.

  15. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  16. Siberian Snakes in high-energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S R [Convergent Computing Inc, PO Box 561, Shoreham, NY 11786 (United States); Shatunov, Yu M [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Yokoya, K [National Laboratory for High-Energy Physics (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-09-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  17. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  18. Reclustering of high energy physics data

    CERN Document Server

    Schaller, M

    1999-01-01

    The coming high energy physics experiments will store Petabytes of data into object databases. Analysis jobs will frequently traverse collections containing millions of stored objects. Clustering is one of the most effective means $9 to enhance the performance of these applications. The paper presents a reclustering algorithm for independent objects contained in multiple possibly overlapping collections on secondary storage. The algorithm decomposes the stored $9 objects into a number of independent chunks and then maps these chunks to a traveling salesman problem. Under a set of realistic assumptions, the number of disk seeks is reduced almost to the theoretical minimum. Experimental results $9 obtained from a prototype are included. (17 refs).

  19. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  20. Horndeski/Galileon in High Energy Collisions

    CERN Document Server

    Latosh, B N

    2016-01-01

    Horndeski/Galileons may be considered as a proper generalization of General Relativity in high energy regime. Thus one may search for manifestation of Galileons interaction in collision experiments. In this paper we give arguments supporting this thesis. Galileon scalar field do not interact with matter via Standard Model interactions, we discuss a mechanism that allows Galileons to have influence on particle collisions. We give reasons to narrow the whole class of Horndeski/Galileons models to one particular term - John term from Fab Four subclass - for this particular issue. We were able to establish the constraint on the model coupling constant.

  1. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  2. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the + charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  3. Directed Replacement

    CERN Document Server

    Karttunen, L

    1996-01-01

    This paper introduces to the finite-state calculus a family of directed replace operators. In contrast to the simple replace expression, UPPER -> LOWER, defined in Karttunen (ACL-95), the new directed version, UPPER @-> LOWER, yields an unambiguous transducer if the lower language consists of a single string. It transduces the input string from left to right, making only the longest possible replacement at each point. A new type of replacement expression, UPPER @-> PREFIX ... SUFFIX, yields a transducer that inserts text around strings that are instances of UPPER. The symbol ... denotes the matching part of the input which itself remains unchanged. PREFIX and SUFFIX are regular expressions describing the insertions. Expressions of the type UPPER @-> PREFIX ... SUFFIX may be used to compose a deterministic parser for a ``local grammar'' in the sense of Gross (1989). Other useful applications of directed replacement include tokenization and filtering of text streams.

  4. Energy content, sensory properties, and microbiological shelf life of German bologna-type sausages produced with citrate or phosphate and with inulin as fat replacer.

    Science.gov (United States)

    Nowak, B; von Mueffling, T; Grotheer, J; Klein, G; Watkinson, B-M

    2007-11-01

    The aim of this study was to determine the feasibility of reducing energy content (9% to 48%) in bologna-type sausages by replacing fat with inulin and to study the effects of substituting citrate for phosphate in the traditional sausage formula. German-type mortadella was produced, and fat was replaced with increasing amounts of inulin as a frozen gel to yield 3%, 6%, 9%, and 12% inulin in the final product. In another part of the study, citrate was substituted for the phosphate in the recipe. All sausages produced were sliced, packaged under a modified atmosphere (70% N(2), 30% CO(2)), and stored for 23 d at +7 degrees C. Sausage quality was determined by chemical and instrumental texture profile analyses, color measurement, sensory evaluation, and microbiological testing. Replacing fat with inulin led to significant energy content reductions of up to 47.5% (with 12% inulin). However, the sensory properties of these sausages were also different from those of the control mortadella: fracturability fell, hardness and adhesiveness rose, and color became darker. In general, the substitution of citrate for phosphate significantly reduced the negative effects of inulin. There were no significant differences in microbiological stability between different inulin batches but there were significant differences between phosphate and citrate batches. Overall, the energy content of bologna-type sausages produced with citrate and with up to 6% inulin as a fat replacer was 22% lower than that of the control sausages. Furthermore, the sensory attributes (texture, color) of these 6% inulin-citrate sausages were comparable to the control sausages, and the sausages were microbiologically stable for 23 d of storage.

  5. Very-high energy emission from pulsars

    CERN Document Server

    Breed, M; Harding, A K

    2016-01-01

    The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 GeV, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, ...

  6. Highly Efficient Contactless Electrical Energy Transmission System

    Science.gov (United States)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  7. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  8. High Energy Laser for Space Debris Removal

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and

  9. Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel For Soot Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1997-01-01

    The high-energy-density (HED) fuels developed under U.S. Navy sponsorship as a replacement for conventional liquid fuels, in its missile propulsion systems have the drawback of high soot propensity: this makes misiles visible and thus strategically unacceptabel.

  10. High-energy astrophysics with neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chiarusi, T.; Spurio, M. [Universita di Bologna, Dipartimento di Fisica, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy)

    2010-02-15

    Neutrino astrophysics offers new perspectives on the Universe investigation: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos with respect to photons. While the small interaction cross section of neutrinos allows them to come from the core of astrophysical objects, it is also a drawback, as their detection requires a large target mass. This is why it is convenient to put huge cosmic neutrino detectors in natural locations, like deep underwater or under-ice sites. In order to supply for such extremely hostile environmental conditions, new frontier technologies are under development. The aim of this work is to review the motivations for high-energy neutrino astrophysics, the present status of experimental results and the technologies used in underwater/ice Cherenkov experiments, with a special focus on the efforts for the construction of a km{sup 3}-scale detector in the Mediterranean Sea. (orig.)

  11. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  12. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  13. HELIX: The High Energy Light Isotope Experiment

    Science.gov (United States)

    Wakely, Scott

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  14. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance.

  15. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  16. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  17. High energy electron beams for ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  18. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  19. Ultra-high energy physics and standard basic principles

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    relevance of UHECR phenomenology and weaken the status of the Planck scale hypothesis. Another crucial observation is that, already before incorporating standard matter and relativity, the SST geometry naturally yields a H t = 1 law where t is the age of the Universe and H the ratio between relative speeds and distances at cosmic scale. As standard cosmology is not required to get such a fundamental result, the need for a conventional Planck scale is far from obvious and the study of UHECR can potentially yield evidence for an alternative approach including new physics and new ultimate constituents of matter. UHECR may in particular allow to explore the possible indications of the existence of a transition scale at very high energy where the standard laws would start becoming less and less dominant and new physics would replace the conventional fundamental principles. We discuss prospects of searches for potential signatures of such a phenomenon.

  20. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  1. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    Science.gov (United States)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  2. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth;

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...... FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown....

  3. Gamma-ray bursts at high and very high energies

    Science.gov (United States)

    Piron, Frédéric

    2016-06-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future. xml:lang="fr"

  4. Gamma-Ray Bursts at high and very high energies

    CERN Document Server

    Piron, F

    2015-01-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future.

  5. Double charge exchange at high impact energies

    Science.gov (United States)

    Belkić, Dževad

    1994-03-01

    In fast ion-atom collisions, double ionization always dominates the two-electron transfer. For this reason, an adequate description of double charge exchange requires proper inclusion of intermediate ionization channels. This is even more important in two- than in one-electron transitions. First-order Born-type perturbation theories ignore throughout these electronic continuum intermediate states and hence provide utterly unreliable high energy cross sections for two-electron capture processes. Therefore, it is essential to use second- and higher-order theories, which include the intermediate ionization continua of the two electrons in an approximate manner. In the present paper, a new second-order theory called the Born distorted wave (BDW) approximation is introduced and implemented in the case of symmetric resonant double electron capture from the ground state of helium by fast alpha particles. A genuine four-body formalism is adopted, in contrast to the conventional independent particle model of atomic scattering theory. The obtained results for the total cross sections are compared with the available experimental data, and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BDW approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude. This strongly indicates that the role of continuum intermediate states is decisive, even at those incident energies for which the Thomas double scattering effects are not important. This is in sharp contrast to the case of one-electron transfer atomic reactions.

  6. Knee Replacement

    Science.gov (United States)

    ... need knee replacement surgery usually have problems walking, climbing stairs, and getting in and out of chairs. Some ... a total living space on one floor since climbing stairs can be difficult. Install safety bars or a ...

  7. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  8. High Energy Physics. Ultimate Structure of Matter and Energy.

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. covered are the mounting energy scale, discoveries at thigh energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included.

  9. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  10. High Energy Emissions from Young Stellar Objects

    Indian Academy of Sciences (India)

    A. C. Das; Ashok Ambastha

    2012-03-01

    X-ray emissions from Young Stellar Objects (YSO) are detected by many X-ray missions that are providing important information about their properties. However, their emission processes are not fully understood. In this research note, we propose a model for the generation of emissions from a YSO on the basis of a simple interaction between the YSO and its surrounding circumstellar accretion disc containing neutral gas and charged dust. It is assumed that the YSO has a weak dipole type magnetic field and its field lines are threaded into the circumstellar disc. Considering the motion of ions and charged dust particles in the presence of neutral gas, we show that the sheared dust-neutral gas velocities can lead to a current along the direction of ambient magnetic field. Magnitude of this current can become large and is capable of generating an electric field along the magnetic field lines. It is shown how the particles can gain energy up to MeV range and above, which can produce high-energy radiations from the YSO.

  11. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  12. High-energy astroparticle physics with CALET

    CERN Document Server

    Maestro, Paolo

    2013-01-01

    The CALorimetric Electron Telescope (CALET) will be installed on the Exposure Facility of the Japanese Experiment Module (JEM-EF) on the International Space Station (ISS) in 2014 where it will measure the cosmic-ray fluxes for five years. Its main scientific goals are to search for dark matter, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument, under construction, consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 X$_0$-thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 X$_0$-thick lead-tungstate calorimeter (TASC). The CHD can provide single-element separation in the interval of atomic number Z from 1 to 40, while IMC and TASC can measure the energy of cosmic-ray particles with excellent resolution in the range from few GeV up to several hundreds of TeV. Moreover, IMC and TASC provide the longitudin...

  13. Ultra-High Energy Probes of Classicalization

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupat...

  14. The KLOE-2 High Energy Tagger Detector

    CERN Document Server

    Babusci, D; Iafolla, L; Iannarelli, M; Mascolo, M; Messi, R; Moricciani, D; Saputi, A; Turri, E

    2012-01-01

    In order to fully reconstruct to the reaction e+e- to e+e- gamma-gamma in the energy region of the phi meson production, new detectors along the DAFNE beam line have to be installed in order to detect the scattered e+e-. The High Energy Tagger (HET) detector measures the deviation of leptons from their main orbit by determining their position and timing so to tag gamma-gamma physics events and disentangle them from background. The HET detectors are placed at the exit of the DAFNE dipole magnets, 11 m away from the IP, both on positron and electron lines. The HET sensitive area is made up of a set of 28 plastic scintillators. A dedicated DAQ electronics board based on a Xilinx Virtex-5 FPGA have been developed for this detector. It provides a MultiHit TDC with a time resolution of the order of 500 ps and the possibility to acquire data any 2.5 ns, thus allowing to clearly identify the correct bunch crossing. First results of the commissioning run are presented.

  15. High Energy Activation Data Library (HEAD-2009)

    CERN Document Server

    Korovin, Yury A; Konobeyev, Alexander Yu; Stankovskiy, Alexey Yu; Mashnik, Stepan G

    2010-01-01

    A proton activation data library for 682 nuclides from 1-H to 210-Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed: A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the fin...

  16. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  17. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  18. High Energy Astrophysics with the HAWC Observatory

    Science.gov (United States)

    Weisgarber, Thomas

    2014-08-01

    The High Altitude Water Cherenkov (HAWC) Observatory detects astrophysical gamma rays and cosmic rays in the energy range from 100 GeV to 100 TeV. Located at an elevation of 4100 meters on the slopes of Sierra Negra in the Mexican state of Puebla, HAWC comprises an array of 300 water Cherenkov tanks covering an area of 22000 square meters and is scheduled for completion in 2014. Using 1200 upward-facing photomultiplier tubes distributed throughout the tanks, HAWC measures the Cherenkov radiation generated by air-shower particles, from which the direction and energy of the primary particle may be determined. The detector has been taking data as a partial array for more than a year. I will highlight cosmic-ray and gamma-ray observations from this initial data set, including measurements of the cosmic-ray anisotropy and searches for transient sources. I will also discuss the expected contributions of HAWC to gamma-ray science as the detector enters full operation in the coming year.

  19. High-intensity sweeteners and energy balance.

    Science.gov (United States)

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.

  20. Continuous Renal Replacement Therapy: Reviewing Current Best Practice to Provide High-Quality Extracorporeal Therapy to Critically Ill Patients.

    Science.gov (United States)

    Connor, Michael J; Karakala, Nithin

    2017-07-01

    Continuous renal replacement therapy (CRRT) use continues to expand globally. Despite improving technology, CRRT remains a complex intervention. Delivery of high-quality CRRT requires close collaboration of a multidisciplinary team including members of the critical care medicine, nephrology, nursing, pharmacy, and nutrition support teams. While significant gaps in medical evidence regarding CRRT persist, the growing evidence base supports evolving best practice and consensus to define high-quality CRRT. Unfortunately, there is wide variability in CRRT operating characteristics and limited uptake of these best practices. This article will briefly review the current best practice on important aspects of CRRT delivery including CRRT dose, anticoagulation, dialysis vascular access, fluid management, and drug dosing in CRRT. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  2. Production performance of finisher broiler fed with cocoyam-corm meal as partial energy replacement for maize

    Directory of Open Access Journals (Sweden)

    Christian Paul P. de la Cruz

    2016-10-01

    Full Text Available Aim: The objective of this study was to evaluate the potential of Gabing San Fernando (Xanthosoma spp. corms as partial carbohydrate replacement for maize in finisher broiler production. Materials and Methods: The completely randomized design was utilized to investigate the effects of three finisher poultry diets prepared in varying amounts of cocoyam-corm meal set at 0% (control, 25%, and 50% (experimental replacement levels. Results: There were no significant differences (p≥0.05 as to mortality and body weight measurements between control and experimental groups. Similarly, the mean weights of selected internal organs and condemnable carcasses among treatment groups did not show any significant differences (p≥0.05. In terms of the average feed intakes, birds from 50%-cocoyam group had the highest mean value and were found to be statistically different (p≥0.01 from both control and 25%-cocoyam groups. However, feed conversion ratio did not significantly differ (p≥0.05 among three groups. Higher feed costs were associated with the 50%-cocoyam treatment diet, which was only consistent with higher feed inputs. Thus, the group fed with 50%-cocoyam meal had significantly higher total mean production costs (p<0.005 per bird, when other expenses were taken into account. The production costs for the group given 25%-cocoyam meal did not significantly differ (p≥0.05 from the control group. Conclusion: Partial replacement of maize with cocoyam-corm meal at 25% level was acceptable since inclusion at this level did not adversely affect the production performance of finisher broilers in terms of growth rate, mortality rate, and feeding efficiency. The use of cocoyam meal as nonconventional and alternative carbohydrate source in poultry diet presents positive economic implications, especially to smallhold farmers from the developing countries, like the Philippines.

  3. Transverse Lambda polarization at high energy colliders

    CERN Document Server

    Boer, Daniel

    2010-01-01

    Measurements of transverse polarization of Lambda hyperons produced in high energy pp collisions may help to address several open issues about Lambda production and polarization mechanisms, such as the amount of SU(3) breaking, the importance of gluons and sea quarks, and the origin of spontaneous Lambda polarization. The process p + p -> Lambda^\\uparrow + jet + X at midrapidity is ideally suited for this purpose, for instance at LHC's ALICE experiment. New expressions and predictions are presented for the transverse Lambda polarization in this process, within a factorized description which involves transverse momentum and spin dependence in the fragmentation process. Uncertainties from the unpolarized Lambda fragmentation functions, due to the unknown magnitude of SU(3) breaking and the apparent inconsistency between pp and e^+ e^- data, are investigated.

  4. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  5. High energy physics, past, present and future

    Science.gov (United States)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  6. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  7. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  8. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  9. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  10. High energy flare physics group summary

    Science.gov (United States)

    Ryan, J. M.; Kurfess, J. D.

    1989-01-01

    The contributions of the High Energy Flare Physics Special Session in the American Astronomical Society Solar Physics Division Meeting are reviewed. Oral and poster papers were presented on observatories and instruments available for the upcoming solar maximum. Among these are the space-based Gamma Ray Observatory, the Solar Flare and Cosmic Burst Gamma Ray Experiment on the Ulysses spacecraft, the Soft X Ray Telescope on the spacecraft Solar-A, and the balloon-based Gamma Ray Imaging Device. Ground based observatories with new capabilities include the BIMA mm-wave interferometer (Univ. of California, Berkeley; Univ. of Illinois; Univ. of Maryland), Owens Valley Radio Observatory and the Very Large Array. The highlights of the various instrument performances are reported and potential data correlations and collaborations are suggested.

  11. High energy neutrinos from astrophysical sources

    CERN Document Server

    Perrone, L

    2002-01-01

    Summary form only given. High energy muon neutrinos coming from astrophysical sources could be detected as upward-going muons produced in charged-current interactions of nu /sub mu /'s with the matter surrounding the detector. About 1300 events have been analyzed. We present the results of a search for either a diffuse astrophysical neutrino flux or a point-like source of neutrinos in the sample of upward-going muons gathered by MACRO. We find no evidence for either type of signal. The muon flux upper limit for the diffuse signal has been set at the level of 1.5*10/sup -14/cm/sup -2/ s/sup -1/ sr/sup -1/. (1 refs).

  12. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  13. High energy reactions and string theory

    CERN Document Server

    Peschanski, R

    2002-01-01

    String theory has long ago been initiated by the quest for a theoretical explanation of the observed high-energy ``Reggeization'' of strong interaction amplitudes. In terms of quantum field theory, it is the so-called ``soft'' regime, where the coupling constant is expected to be large and thus perturbative calculations inadequate. However, since then, no convincing derivation of the link between gauge field theory at strong coupling and string theory has come out. This 35-years-old puzzle is thus still unsolved. We discuss how modern tools like the AdS/CFT correspondence give a new insight on the problem by applying it to two-body elastic and inelastic scattering amplitudes. We obtain a geometrical interpretation of Reggeization and its relation with confinement in gauge theory.

  14. High-energy evolution to three loops

    CERN Document Server

    Caron-Huot, Simon

    2016-01-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  15. Non-collinearity in high energy processes

    Indian Academy of Sciences (India)

    P J Mulders

    2009-01-01

    We discuss the treatment of intrinsic transverse momenta in high energy scattering processes. Within the field theoretical framework of QCD, the process is described in terms of correlators containing quark and gluon fields. The correlators, parametrized in terms of distribution and fragmentation functions, contain matrix elements of nonlo-cal field configurations requiring a careful treatment to assure colour gauge invariance. It leads to nontrivial gauge links connecting the parton fields. For the transverse momentum- dependent correlators the gauge links give rise to time reversal odd phenomena, showing up as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon initial and final state interactions, depend on the colour flow in the process, challenging universality.

  16. Experiments with high-energy neutrino beams.

    Science.gov (United States)

    Steinberger, J

    1989-09-15

    Experiments in which high-energy neutrinos were used as projectiles have made substantial contributions to our understanding of both weak and strong interactions, as well as the structure of hadrons. This article offers some illustrations. It recalls the discovery of the neutral weak current and some experiments on its nature. The sections on charged-current inclusive scattering recall the important role of these experiments in the understanding of the quark structure of the nucleon and the validity of quantum chromodynamics. The section on dimuon production illustrates the role of neutrino experiments in establishing the Glashow-Iliopoulos-Maiani current as well as the measurement of the structure function of the strange quark in the nucleon.

  17. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette;

    2004-01-01

    randomly assigned to a diet high in protein ( 90 g/day) and sodium (180 mmol/day) ( calciuric diet) or a diet moderate in protein ( 70 g/day) and low in sodium ( 65 mmol/day) for 4 weeks followed by crossover to alternative dietary regimen for a further 4 weeks. The calciuric diet significantly (P......The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  18. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette

    2004-01-01

    randomly assigned to a diet high in protein ( 90 g/day) and sodium (180 mmol/day) ( calciuric diet) or a diet moderate in protein ( 70 g/day) and low in sodium ( 65 mmol/day) for 4 weeks followed by crossover to alternative dietary regimen for a further 4 weeks. The calciuric diet significantly (P......The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  19. Minimum Cost Design of Distributed Energy Resources with Studying the Effect of Capital Cost and Replacement Cost

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2012-02-01

    Full Text Available This study presents an optimized design of HPS in a distribution system including sources like, photovoltaic array, Diesel generator and battery bank.In this research, an algorithm has been developed for evaluation and cost optimization HPS. The costs include capital cost, replacement cost, operation and maintenance cost, fuel cost and production cost for HPS and DG power during different load profile. Then an objective function with aim to minimizing of total costs has been considered. A genetic algorithm approach is employed to obtain the best cost value of HPS construction. This study tested on case study network on Mardasht city in Iran.

  20. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  1. Experimental Plan for EDF Energy Creep Rabbit Graphite Irradiations- Rev. 2 (replaces Rev. 0 ORNL/TM/2013/49).

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL

    2014-07-01

    The experimental results obtained here will assist in the development and validation of future models of irradiation induced creep of graphite by providing the following data: Inert creep stain data from low to lifetime AGR fluence Inert creep-property data (especially CTE) from low to lifetime AGR fluence Effect of oxidation on creep modulus (by indirect comparison with experiment 1 and direct comparison with experiment 3 NB. Experiment 1 and 3 are not covered here) Data to develop a mechanistic understanding, including oAppropriate creep modulus (including pinning and high dose effects on structure) oInvestigation of CTE-creep strain behavior under inert conditions oInformation on the effect of applied stress/creep strain on crystallite orientation (requires XRD) oEffect of creep strain on micro-porosity (requires tomography & microscopy) This document describes the experimental work planned to meet the requirements of project technical specification [1] and EDF Energy requests for additional Pre-IE work. The PIE work is described in detail in this revision (Section 8 and 9).

  2. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  3. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  4. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  5. Long Life, High Energy Cell Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher energy density battery systems to meet the power requirements of future energy devices. In this proposed Phase I program, PSI will...

  6. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... Energy Physics Advisory Panel AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the High Energy Physics Advisory Panel (HEPAP.... FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  7. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... Energy Physics Advisory Panel AGENCY: Office of Science, Department of Energy. ACTION: Notice of Intent... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period beginning...-range planning and priorities in the national high-energy physics program. Additionally, the renewal...

  8. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  9. Phenomenology of hard diffraction at high energies

    CERN Document Server

    Machado, Magno V T

    2016-01-01

    We present some of the topics covered in two lectures under the same title that was given at the "Summer School on High Energy Physics at the LHC: New trends in HEP" in Natal, Brazil. In this contribution we give a brief review on the application of perturbative QCD to the hard diffractive processes. Such reactions involving a hard scale can be understood in terms of quarks and gluons degrees of freedom and have become an useful tool for investigating the low-$x$ structure of the proton and the behavior of QCD in the high-density regime. We start using the information from the $ep$ collisions at HERA concerned to the inclusive diffraction to introduce the concept of diffractive parton distributions. Their interpretation in the resolved pomeron model is addressed and we discuss the limits of diffractive hard-scattering factorization for hadron-hadron collisions. Some examples of phenomenology for the diffractive production of $W/Z$, heavy $Q\\bar{Q}$ and quarkonium in hadron-hadron reactions are presented. We a...

  10. Radio Detection of Ultra High Energy Neutrinos

    Science.gov (United States)

    Beatty, James J.

    2011-05-01

    Ultra high energy cosmic rays interact with the cosmic microwave background radiation, resulting in the production of energetic pions. These interactions result in energy loss by the incident cosmic ray leading to the Greisen-Zatsepin-Kuzmin (GZK) feature in the cosmic ray spectrum at about 4×10^19 eV, and the decay of the charged pions produced in these interactions results in neutrinos known as Berezinskii-Zatsepin (BZ) neutrinos. These neutrinos interact only via the weak interaction, with negligible absorption over cosmic distances but interaction lengths in the Earth of a few hundred kilometers. When these neutrinos interact in a dense medium, the electromagnetic component of the resulting shower develops a negative charge excess due to Compton scattering of the electrons from the medium and depletion of positrons by in-flight annihilation. This macroscopic charge excess moves at nearly the speed of light, and its passage through a dielectric medium results in coherent Cherenkov radiation at radio wavelengths longer than the size of the radiating region. This process is known as the Askaryan mechanism, and has been observed in accelerator experiments. The radio pulse is impulsive, and can be detected over large volumes in materials with long radio attenuation lengths, most notably the cold ice in the Antarctic ice sheet. Upper limits on the neutrino flux obtained by the balloon-borne instrument ANITA are now approaching the expected flux, and prototype in-ice antenna arrays are now being deployed. Prospects for large detectors capable of detecting hundreds of these neutrinos will be discussed. This work is supported by NASA under grants NNX08AC17G and NNX11AC45G, by the NSF under grant PHY-0758082, and by the Ohio State Center for Cosmology and Particle Astrophysics (CCAPP).

  11. The KLOE-2 high energy taggers

    Science.gov (United States)

    Curciarello, F.

    2017-06-01

    The precision measurement of the π0 → γγ width allows to gain insights into the low-energy QCD dynamics. A way to achieve the precision needed (1%) in order to test theory predictions is to study the π0 production through γγ fusion in the e+e- → e+e-γ*γ* → e+e-π0 reaction. The KLOE-2 experiment, currently running at the DAΦNE facility in Frascati, aims to perform this measurement. For this reason, new detectors, which allow to tag final state leptons, have been installed along the DAΦNE beam line in order to reduce the background coming from phi-meson decays. The High Energy Tagger (HET) detector measures the deviation of leptons from their main orbit by determining their position and timing. The HET detectors are placed in roman pots just at the exit of the DAΦNE dipole magnets, 11 m away from the IP, both on positron and electron sides. The HET sensitive area is made up of a set of 28 plastic scintillators. A dedicated DAQ electronic board, based on a Xilinx Virtex-5 FPGA, has been developed for this detector. It provides a MultiHit TDC with a time resolution of 550(1) ps and the possibility to clearly identify the correct bunch crossing (ΔTbunch ~ 2.7 ns). The most relevant features of the KLOE-2 tagging system operation as time performance, stability and the techniques used to determine the time overlap between the KLOE and HET asynchronous DAQs will be presented.

  12. Open Access Publishing in High-Energy Physics

    CERN Document Server

    Mele, S

    2007-01-01

    The goal of Open Access (OA) is to grant anyone, anywhere and anytime free access to the results of scientific research. The High- Energy Physics (HEP) community has pioneered OA with its "pre-print culture": the mass mailing, first, and the online posting, later, of preliminary versions of its articles. After almost half a century of widespread dissemination of pre-prints, the time is ripe for the HEP community to explore OA publishing. Among other possible models, a sponsoring consortium appears as the most viable option for a transition of HEP peer-reviewed literature to OA. A Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3) is proposed as a central body which would remunerate publishers for the peer-review service, effectively replacing the "reader-pays" model of traditional subscriptions with an "author-side" funding. Funding to SCOAP3 would come from HEP funding agencies and library consortia through a re-direction of subscriptions. This model is discussed in details togethe...

  13. Upgrading of biorenewables to high energy density fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  14. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  15. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement

    Institute of Scientific and Technical Information of China (English)

    Ankur Gupta; Garima Tripathi; Debrupa Lahiri; Kantesh Balani

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements.In the present work,UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA),bioinert aluminum oxide (Al2O3),and carbon nanotubes (CNTs) using compression molding.Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites.Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles.The hybrid composites exhibited hardness,elastic modulus and toughness comparable to that of UHMWPE.The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements,depicting synergistic enhancement in hardness and elastic modulus.Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties.

  16. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    Science.gov (United States)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  17. High-temperature steam oxidation testing of select advanced replacement alloys for potential core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-19

    Coupons from a total of fourteen commercial and custom fabricated alloys were exposed to 1 bar full steam with ~10 ppb oxygen content at 600 and 650°C. The coupons were weighed at 500-h intervals with a total exposure time of 5,000 h. The fourteen alloys are candidate alloys selected under the ARRM program, which include three ferritic steels (Grade 92, 439, and 14YWT), three austenitic stainless steels (316L, 310, and 800), seven Ni-base superalloys (X750, 725, C22, 690, 625, 625 direct-aging, and 625- plus), and one Zr-alloy (Zr–2.5Nb). Among the alloys, 316L and X750 are served as reference alloys for low- and high-strength alloys, respectively. The candidate Ni-base superalloy 718 was procured too late to be included in the tests. The corrosion rates of the candidate alloys can be approximately interpreted by their Cr, Ni and Fe content. The corrosion rate was significantly reduced with increasing Cr content and when Ni content is above ~15 wt%, but not much further reduced when Fe content is less than ~55 wt%. Simplified thermodynamics analyses of the alloy oxidation provided reasonable indications for the constituents of oxide scales formed on the alloys and explanations for the porosity and exfoliation phenomena because of the nature of specific types of oxides.

  18. Defining High-Energy Calibration Standards: IACHEC (International Astronomical Consortium for High-Energy Calibration)

    Science.gov (United States)

    Sembay, S.; Guainazzi, M.; Plucinsky, P.; Nevalainen, J.

    2010-07-01

    The International Astronomical Consortium for High-Energy Calibration (IACHEC) aims to provide standards for high energy calibration and supervise cross-calibration between different X-ray and Gamma-ray observatories. This goal is reached through Working Groups, involving around 40 astronomers worldwide. In these Groups, IACHEC members co-operate to define calibration standards and procedures. Their scope is primarily a practical one: a set of astronomical sources, data and results (eventually published in refereed journals) will be the outcome of a co-ordinated and standardized analysis of reference sources (``high-energy standard candles''). We briefly describe here just two of the many studies undertaken by the IACHEC; a cross-calibration analysis of O and Ne line fluxes from the thermal SNR 1E0102.2-7219, and at higher energies a comparison study of a sample of cluster temperatures and fluxes. A more detailed picture of the activities of the IACHEC is available via the information portal at http://web.mit.edu/iachec/.

  19. Esophageal replacement.

    Science.gov (United States)

    Kunisaki, Shaun M; Coran, Arnold G

    2017-04-01

    This article focuses on esophageal replacement as a surgical option for pediatric patients with end-stage esophageal disease. While it is obvious that the patient׳s own esophagus is the best esophagus, persisting with attempts to retain a native esophagus with no function and at all costs are futile and usually detrimental to the overall well-being of the child. In such cases, the esophagus should be abandoned, and the appropriate esophageal replacement is chosen for definitive reconstruction. We review the various types of conduits used for esophageal replacement and discuss the unique advantages and disadvantages that are relevant for clinical decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Transportable high-energy high-power generator.

    Science.gov (United States)

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  1. Applications analysis of high energy lasers

    Science.gov (United States)

    Arno, R. D.; Mackay, J. S.; Nishioka, K.

    1972-01-01

    An analysis and comparison of laser technology with competing technologies were made to determine possible laser applications. The analysis was undertaken as follows: (1) possible applications were listed and categorized; (2) required components were enumerated and the characteristics of these components were extrapolated; (3) complete system characteristics were calculated parametrically for selected applications using the postulated component characteristics; and (4) where possible and appropriate, comparisons were made with competing systems. It was found that any large scale replacement of existing systems and methods by lasers requires many technological advances in laser and associated systems. However, several applications appear feasible, such as low orbit drag make-up, orbit changing, communications, and illumination applications.

  2. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  3. High-Energy Neutrons from the Moon

    Science.gov (United States)

    Maurice, S.; Feldman, W. C.; Lawrence, D. J.; Elphic, R. E.; Gasnault, O.; dUston, C.; Lucey, P. G.

    1999-01-01

    Galactic cosmic rays that impact the lunar soil produce neutrons with energies from fractions of eV's to about 100 MeV. The high-energy band from 0.6 to 8.0 MeV is referred as the "fast neutron" band, which is measured by Lunar Prospector (LP) Gamma Ray Spectrometer. Fast neutrons play an important role in neutron spectroscopy that may be summarized as follows: Fast neutrons define the total neutron input to the moderating process toward low-energy populations, so that epithermal and thermal neutron leakage currents must be normalized to the leakage of fast neutrons; they allow the determination of the burial depth of H, a measure necessary to understand characteristics of water deposits; they provide information on the surface content in heavy elements, such as Ti and Fe; and they provide a direct insight into the evaporation process. As discussed hereafter, fast neutrons may yield information on other oxides, such as Si02. missing data. Mare have numerous features, that are resolved in fast neutrons. For instance, the region extending northwest of Aristarchus (23.7 deg N, 47.4 W) is clearly separated from Montes Harbinger (27.0N, 41.0W) by a high-emission channel, and Mare Vaporum (13.3 N, 3.6 E) is separated from Sinus Aestuun (10.9N, 8.8W) by a low-emission area. We present a new technique to extract information on soil composition from the fast-neutron measurements. The analysis is applied to the central mare region. There are two steps for the development of the technique. 1. For the first step, which has been fully completed, we assume that variations of fast-neutron counting rates are due solely to TiO. and FeO. Upon this assumption, we correlate Clementine Spectral Reflectance Fe and Ti oxide maps with fast measurements. Above 16.5% of FeO, effects of Ti02 variations show in LP data. Below 6.5% of FeO, Fe cannot be discriminated; this is the region of most highland terrains. Under assumption of only two oxides to modulate the signal, we show that fast

  4. Oklahoma Center for High Energy Physics (OCHEP)

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S; Strauss, M J; Snow, J; Rizatdinova, F; Abbott, B; Babu, K; Gutierrez, P; Kao, C; Khanov, A; Milton, K A; Neaman, H; H Severini, P Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging

  5. Optics of High-Energy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, Owen

    1960-05-01

    Many of the experiments now being conducted on high-energy accelerators requires the use of beams of charged secondary particles. It is worth while at this time to attempt to summarize information about some of the most useful methods of setting up such beams. We are not concerned here with the primary beam of the accelerator. Rather, they assume that a target is struck by the primary beam and that it is desired to form a beam from the secondary charged particles that emerge from collisions within the target. The simplest system of forming this beam of secondary particles involves the use of magnetic fields only. In most cases it is desirable to obtain a beam of particles of known magnetic rigidity, or momentum. The bulk of this article is addressed to this problem. Some comments are also made about the use of electric fields in conjunction with magnetic fields. The inclusion of electric fields allows the separation of a beam of known momentum into its various components according to the velocities of the particles, hence according to the masses of the particles. These are referred to as ''separated beams''.

  6. Low Energy High Brilliance Beam Characterization

    CERN Document Server

    Bähr, J

    2005-01-01

    Low energy high brilliance beam characterization plays an important role for electron sources and injectors of Free Electron Lasers (FELs) and electron linear accelerators as for example the future ILC project. The topic is discussed basing on solutions of the PITZ facility (PhotoInjector Test facility Zeuthen) which are compared with methods applied at other facilities. The properties of an electron beam produced at a laser-driven rf-gun is mainly influenced also by characteristics of the laser beam and the electron gun itself. Therefore aspects of diagnostics will be also discussed for the laser, laser beam line and gun as well. The main properties of the electron beam are transverse and longitudinal phase space and charge as well. The measurement of transverse beam size and position, transverse emittance, charge, beam current, and longitudinal phase space will be discussed in detail. The measurements of the transverse emittance at PITZ is based on a single slit method. The measurement of the longitudinal p...

  7. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  8. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  9. High-energy radiation from old pulsars

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we study nonthermal high energy radiation from old rotation-powered pulsars with ages greater than 106 yr based on the revised outer gap model.In this model,the inclination angle and geometry of the magnetic field have been taken into account,and the fractional size f of the outer gap is determined by the electron/positron pair production process.The cascade process caused by the back-flowing particles moving from the outer gap to the star will produce the observed nonthermal X-ray emission,and the relativistic particles accelerated in the outer gap will produce gamma-rays via curvature radiation.For nine old pulsars which have been detected to have nonthermal X-rays,we first use the observed nonthermal X-ray emission to estimate reasonable inclination angles,and then estimate their gamma-ray emissions.We also study the possibilities of gamma-ray emissions from other old rotation-powered pulsars.We compare our predicted gamma-ray flux with the sensitivities of AGILE and Fermi.

  10. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  11. An experimental high energy physics program

    Science.gov (United States)

    Gaidos, J. A.; Loeffler, F. J.; McIlwain, R. L.; Miller, D. H.; Palfrey, T. R.; Shibata, E. I.

    1989-05-01

    The CLEO detector accumulated, (approximately 480,000 B-mesons) the world's largest sample of B decays, before being shutdown in May 1988 for the installation of CLEO II. This data sample came from 335 pb(-1) accumulated at the upsilon (4S). The Cornell Electron Storage Ring set new luminosity records, reaching 3.5 pb(-1) in a single day. These data are being intensively analyzed and 21 papers were given at the Baltimore APS meeting. Among the highlights are: confirmation of B(sup 0)(bar B)(sup 0) mixing; discovery of the charm-strange baryon xi (sub c)(sup 0); limits on b yields u decay; and non-observation of B yields p(bar p)pi(pi), which was reported by the ARGUS collaboration. The construction of CLEO II is proceeding on schedule. The new 1.5 T superconducting magnet has passed all tests and all of the detector elements have been installed. This includes a 7800 CsI crystals electromagnetic shower calorimeter. The data from the Gamma Ray Astrophysics experiment show a significant signal for high energy gamma ray emission from Cygnus X-3 and also confirm the previously reported anomalous period from Her X-1. Meanwhile, the old 6 mirror telescope has been refitted with 26 high resolution mirrors and improved fast electronics. GRANDE, the next generation detector based on the water Cherenkov technique, has been formally proposed to HEPAP. The detector will search for neutrino emission in the Southern Hemisphere and gamma radiation in the Northern Hemisphere.

  12. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  13. High energy astroparticle physics for high school students

    CERN Document Server

    Krause, Maria; Classen, Lew; Holler, Markus; Hütten, Moritz; Raab, Susanne; Rautenberg, Julian; Schulz, Anneli

    2015-01-01

    The questions about the origin and type of cosmic particles are not only fascinating for scientists in astrophysics, but also for young enthusiastic high school students. To familiarize them with research in astroparticle physics, the Pierre Auger Collaboration agreed to make 1% of its data publicly available. The Pierre Auger Observatory investigates cosmic rays at the highest energies and consists of more than 1600 water Cherenkov detectors, located near Malarg\\"{u}e, Argentina. With publicly available data from the experiment, students can perform their own hands-on analysis. In the framework of a so-called Astroparticle Masterclass organized alongside the context of the German outreach network Netzwerk Teilchenwelt, students get a valuable insight into cosmic ray physics and scientific research concepts. We present the project and experiences with students.

  14. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  15. Readmission rates after transcatheter aortic valve replacement in high- and extreme-risk patients with severe aortic stenosis.

    Science.gov (United States)

    Forcillo, Jessica; Condado, Jose F; Binongo, Jose N; Lasanajak, Yi; Caughron, Hope; Babaliaros, Vasilis; Devireddy, Chandan; Leshnower, Bradley; Guyton, Robert A; Block, Peter C; Simone, Amy; Keegan, Patricia; Khairy, Paul; Thourani, Vinod H

    2017-08-01

    In high- or extreme-risk patients undergoing transcatheter aortic valve replacement, readmissions have not been adequately studied and are the subject of increased scrutiny by healthcare systems. The objectives of this study were to determine the incidence of 30-day and 1-year cardiac and noncardiac readmissions, identify predictors of readmission, and assess the association between readmission and 1-year mortality. A retrospective review was performed on 714 patients who underwent transcatheter aortic valve replacement from September 2007 to January 2015 at Emory University. Patients' median age was 83 years, and 46.6% were female. Early all-cause readmission for the cohort was 10.5%, and late readmission was 18.8%. Anemia was related to both early all-cause (hazard ratio [HR], 0.74) and cardiovascular-related readmission (HR, 0.60). A 23-mm valve implanted was associated with early all-cause readmission (HR, 1.73). Length of hospital stay was related to late all-cause (HR, 1.14) and cardiovascular-related readmission (HR, 1.21). Postoperative permanent stroke had an impact on late cardiovascular-related readmission (HR, 3.60; 95% confidence interval, 1.13-11.49). Multivariable analysis identified anemia as being associated with 30-day all-cause readmission, and anemia and postoperative stroke were associated with 30-day cardiovascular-related readmission. Readmissions seemed to be related to 1-year mortality (HR, 2.04; 95% confidence interval, 1.33-3.12). We show some baseline comorbidities and procedural complications that are directly associated with early and late readmissions, and anemia and postoperative stroke were associated with an increase in mortality. Moreover, we found that readmission was associated with double the hazard of death within 1 year. Whether treatment of identified risk factors could decrease readmission rates and mortality warrants further investigation. Copyright © 2017 The American Association for Thoracic Surgery. Published by

  16. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  17. Can low energy electrons affect high energy physics accelerators?

    CERN Document Server

    Cimino, R; Furman, M A; Pivi, M; Ruggiero, F; Rumolo, Giovanni; Zimmermann, Frank

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at whic...

  18. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  19. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  20. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant... Energy Physics Advisory Panel will be renewed for a two-year period, beginning on August 12, 2011. The... priorities in the national High Energy Physics program. Additionally, the renewal of the HEPAP has...

  1. Phase conjugation of high energy lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  2. Clostridial fermentation of high-energy sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.

    1989-01-01

    Pretreatment of biomass has been shown to increase the efficiency of microbial conversion of lignocellulose to energy or chemicals. Most chemical and physical pretreatments, however, are too expensive for practical application. Biological pretreatment during ensilage storage offers the potential for a low cost pretreatment process for herbaceous biomass. A number of cellulolytic microorganisms occurring naturally in silages or inoculated into the biomass during ensiling could result in significant hydrolysis of lignocellulose during storage prior to conversion to the final end products. The overall objective of this research was to induce clostridial fermentation in sorghum during ensiling through either manipulation of environmental conditions or inoculation with clostridium bacteria. The first objective was to determine whether environmental conditions can influence the natural microorganisms population distribution during ensiling, thus leading to clostridial fermentation. The second objective was to determine whether cellulolytic clostridia can compete with lactic acid bacteria in the ensiling process, resulting in a clostridial fermentation. Two studies were conducted to investigate these two objectives. Three levels of water soluble sugars ranging from 180g/kg D.M. to 15g/Kg D.M. and five levels of moisture contents ranging from 58% to 81% were used in the first part of this investigation. The fermentation types were generally heterolactic acid fermentation though sporadic clostridial fermentations were observed. The major products from the fermentations were lactic acid, acetic acid, ethanol, and mannitol. Although the effects of water soluble sugar and moisture content were highly significant for the amount of lactic acid and total products in the fermentations, the two factors were not enough to induce cellulolytic clostridial fermentation.

  3. Doctor Referral of Overweight People to a Low-Energy Treatment (DROPLET) in primary care using total diet replacement products: a protocol for a randomised controlled trial.

    Science.gov (United States)

    Jebb, Susan A; Astbury, Nerys M; Tearne, Sarah; Nickless, Alecia; Aveyard, Paul

    2017-08-04

    The global prevalence of obesity has risen significantly in recent decades. There is a pressing need to identify effective interventions to treat established obesity that can be delivered at scale. The aim of the Doctor Referral of Overweight People to a Low-Energy Treatment (DROPLET) study is to determine the clinical effectiveness, feasibility and acceptability of referral to a low-energy total diet replacement programme compared with usual weight management interventions in primary care. The DROPLET trial is a randomised controlled trial comparing a low-energy total diet replacement programme with usual weight management interventions delivered in primary care. Eligible patients will be recruited through primary care registers and randomised to receive a behavioural support programme delivered by their practice nurse or a referral to a commercial provider offering an initial 810 kcal/d low-energy total diet replacement programme for 8 weeks, followed by gradual food reintroduction, along with weekly behavioural support for 24 weeks. The primary outcome is weight change at 12 months. The secondary outcomes are weight change at 3 and 6 months, the proportion of participants achieving 5% and 10% weight loss at 12 months, and change in fat mass, haemoglobin A1c, low-density lipoprotein cholesterol and systolic and diastolic blood pressure at 12 months. Data will be analysed on the basis of intention to treat. Qualitative interviews on a subsample of patients and healthcare providers will assess their experiences of the weight loss programmes and identify factors affecting acceptability and adherence. This study has been reviewed and approved by the National Health ServiceHealth Research Authority (HRA)Research Ethics Committee (Ref: SC/15/0337). The trial findings will be disseminated to academic and health professionals through presentations at meetings and peer-reviewed journals and to the public through the media. If the intervention is effective, the results

  4. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  5. Partial Replacement with Menhaden Oil Improves Peripheral Neuropathy in High-Fat-Fed Low-Dose Streptozotocin Type 2 Diabetic Rat

    OpenAIRE

    Coppey, Lawrence J.; Amey Holmes; Davidson, Eric P.; Yorek, Mark A.

    2012-01-01

    Aims. To determine the effect of partial replacement of a high-fat diet with menhaden oil on diabetic neuropathy in an animal model of type 2 diabetes. Materials and Methods. High-fat/low-dose streptozotocin diabetic rats were used to examine the influence of replacing 50% of the source of the high-fat diet (lard) with menhaden oil, a natural source of n-3 fatty acids, on diabetic neuropathy. Endpoints included analyses of glucose tolerance, fatty liver disease, serum and liver fatty acid com...

  6. Research of the temperature measurement of high-energy laser energy meter and energy loss compensation technique

    Science.gov (United States)

    Yu, Xun; Wang, Hui; Wu, Ji'an; Wang, Fang; Li, Qian

    2009-11-01

    The energy measurement of high energy laser is converts incident laser energy into heat energy, calculates energy utilizing absorber temperature rise, thus the energy value can be gained. Temperature measurement of high-energy laser energy meter and energy loss compensation during the course of the measurement were studied here. Firstly, temperature-resistance characteristics of resistance wire was analyzed, which was winded on exterior surface of the absorbing cavity of high-energy laser energy meter and used in temperature measurement. Least square method was used to process experiment data and a compensation model was established to calibrate the relationship of temperature vs. resistance. Experiment proved that, error between resistance wire and Pt100 is less than 0.01Ω and temperature error is less than 0.02°C. This greatly improves accuracy of the high energy meter measurement result. Secondly, aimed to the compensation of laser energy loss caused by absorbing cavity's heat exchange, the heat energy loss of absorbing cavity, resulted from thermal radiation, heat convection and heat conduction was analyzed based on heat transfer theory. Its mathematics model was established. Least square method was used to fit a curve of experiment data in order to compensate energy loss. Repetitiveness of measurement is 0.7%, which is highly improved.

  7. Impact of hormone replacement therapy on cardiac metabolic indicators in men with high cardiovascular risk and hypogonadism

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2014-12-01

    Full Text Available The paper evaluates the impact of hormone replacement therapy (HRT with androgens on cardiac metabolic indicators in men with high cardiovascular risk (CVR and androgen deficiency state. An open-label randomized clinical trial enrolled 52 men aged 30–64 years with high CVR and detected androgen-deficiency state. The men were randomized into 2 groups: a control group (CG (n = 26 continued to receive the pre-trial therapy; during the previous therapy, a study group (SG (n = 26 had daily applications of transdermal gel with testosterone (AndroGel in a daily dose of 50 mg of testosterone in 5 g of the gel. The trial lasted 180 days. The changes in the indicators under study were traced 90 days after treatment initiation at an intermediate visit and 180 days after the initiation of treatment – at the end of its treatment.At the end of the trial, HRT in men with androgen deficiency and high CVR led to normalization of testosterone levels in all the SG patients and to improvement in erectile function by 12 %. Androgen therapy caused a statistically significant reduction in blood pressure by 10 %; no changes were virtually observed in the CG. HRT promoted a slight, but significant weight loss (by an average of 2.8 kg and waist circumference (by an average of 1.7 cm. The therapy performed also lowered the concentration of total cholesterol by an average of 11 % and that of triglycerides by 22 %. During the therapy, there was a significant decrease in fasting insulin and glucose levels. Overall, the course therapy with transdermal gel in combination with testosterone resulted in a reduction in the expected total CVR by 30 %. Thus, HRT using testosterone preparations in men with hypogonadism and high CVR led to normalization of testosterone levels and major cardiac metabolic indicators and to improvement in erectile function.

  8. Impact of hormone replacement therapy on cardiac metabolic indicators in men with high cardiovascular risk and hypogonadism

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2014-01-01

    Full Text Available The paper evaluates the impact of hormone replacement therapy (HRT with androgens on cardiac metabolic indicators in men with high cardiovascular risk (CVR and androgen deficiency state. An open-label randomized clinical trial enrolled 52 men aged 30–64 years with high CVR and detected androgen-deficiency state. The men were randomized into 2 groups: a control group (CG (n = 26 continued to receive the pre-trial therapy; during the previous therapy, a study group (SG (n = 26 had daily applications of transdermal gel with testosterone (AndroGel in a daily dose of 50 mg of testosterone in 5 g of the gel. The trial lasted 180 days. The changes in the indicators under study were traced 90 days after treatment initiation at an intermediate visit and 180 days after the initiation of treatment – at the end of its treatment.At the end of the trial, HRT in men with androgen deficiency and high CVR led to normalization of testosterone levels in all the SG patients and to improvement in erectile function by 12 %. Androgen therapy caused a statistically significant reduction in blood pressure by 10 %; no changes were virtually observed in the CG. HRT promoted a slight, but significant weight loss (by an average of 2.8 kg and waist circumference (by an average of 1.7 cm. The therapy performed also lowered the concentration of total cholesterol by an average of 11 % and that of triglycerides by 22 %. During the therapy, there was a significant decrease in fasting insulin and glucose levels. Overall, the course therapy with transdermal gel in combination with testosterone resulted in a reduction in the expected total CVR by 30 %. Thus, HRT using testosterone preparations in men with hypogonadism and high CVR led to normalization of testosterone levels and major cardiac metabolic indicators and to improvement in erectile function.

  9. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  10. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  11. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  12. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart Paul [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1999-07-31

    The differential cross section for two-­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles θcm =37°, 53°, 70°, and 90° as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90°. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70° and 90° show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37° and 53°g data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  13. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart

    1999-07-31

    The differential cross section for two­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles theta_cm =37deg, 53deg, 70deg, and 90deg as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90deg. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70deg and 90deg show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37deg and 53deg data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  14. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    Science.gov (United States)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  15. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  16. Simplification of Sun Tracking Mode to Gain High Concentration Solar Energy

    Directory of Open Access Journals (Sweden)

    Omar Aliman

    2007-01-01

    Full Text Available Power conversion from solar thermal energy to electrical energy is still very cost-intensive. Serious effort has to be given in the development of the concentrator or heliostat structure expenditure which contributing the most expensive component in a central receiver solar power plant. With current development to find alternatives and lower down the capital, a new mode of sun tracking has been developed and feasibility tested. As it applies a single stage collector replacing conventional double stages structure, the new technique has significantly benefits use in high temperature and high concentration solar energy applications. Meanwhile, the stationary or fixed target (receiver offers more convenient working environment for various applications. Large and heavy solar powered Stirling Engine could be placed at the stationary location. On the other advantage offers by the new technique, the optical alignment was reasonably easier and less time consuming.

  17. Neutral Pion Photoproduction at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Sibirtsev, Alexander; Haidenbauer, J.; Krewald, Siegfried; Meissner, Ulf-G.; Thomas, Anthony

    2009-01-01

    A Regge model with absorptive corrections is employed in a global analysis of the world data on the reactions Å pâ R0p and Å nâ R0n for photon energies from 3 to 18 GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross sections and single- and double polarization observables at td2 GeV2 allows us to determine the non-resonant part of the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below 3 GeV. A detailed comparison with recent data from the CLAS and CB-ELSA Collaborations in that energy region is presented. Furthermore, the prospects for determining the R0 radiative decay width via the Primakoff effect from the reaction Å pâ R0p are explored.

  18. High energy particle collisions near black holes

    Directory of Open Access Journals (Sweden)

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  19. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Ridjan, Iva

    2014-01-01

    Identifying renewable energy alternatives in transport is particularly complicated, since the end-user can vary from a single-person car to a cargo ship. The aim of this paper is to aid this process by comparing 7 different methods for producing transport fuels in terms of the resources required...... for these fuels. Based on the assumptions in this study, some of the renewable fuels proposed here would be cheaper than oil in the year 2050. However, this is based on fuel production costs only and does do not consider other key costs, such as the infrastructure costs, which will be considered in the future...

  20. Is the electron radiation length constant at high energies?

    Science.gov (United States)

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  1. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  2. The early high-energy afterglow emission from short GRBs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We calculate the high energy afterglow emission from short Gamma-Ray Bursts(SGRBs) in the external shock model.There are two possible components contributing to the high energy afterglow:electron synchrotron emission and synchrotron self-Compton(SSC) emission.We find that for typical parameter values of SGRBs,the early high-energy afterglow emission in 10 MeV-10 GeV is dominated by synchrotron emission.For a burst occurring at redshift z = 0.1,the high-energy emission can be detectable by Fermi LAT if the blast wave has energy E ≥ 1051 ergs and the fraction of electron energy εe≥ 0.1.This provides a possible explanation for the high energy tail of SGRB 081024B.

  3. Very high energy neutrinos; Les neutrinos de tres haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, L. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); Spiering, Ch. [Desy-Zeuthen (Germany)

    2000-03-01

    A sky survey with neutrinos may considerably extend our understanding of cosmic phenomena. Due to the low interaction cross section of neutrinos with matter and due to the high cosmic ray background the detector must be very large (of the order of 1 km{sup 3}) and must be shielded. These new devices consist of a network of photo-tubes which are deployed in the depth of the ocean, of a lake or of South Pole. The detection of the Cherenkov light emitted by muons produced in muon neutrino interactions with the matter surrounding the detector will allow the reconstruction of the neutrino direction with an angular resolution of the order or lower than one degree. Several projectsare underway. Their status will be reviewed in this paper. (authors)

  4. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori.

    Science.gov (United States)

    Long, Dingpei; Lu, Weijian; Zhang, Yuli; Bi, Lihui; Xiang, Zhonghuai; Zhao, Aichun

    2015-03-05

    We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs.

  5. Two methods of tuning threshold voltage of bulk FinFETs with replacement high-k metal-gate stacks

    Science.gov (United States)

    Xu, Miao; Zhu, Huilong; Zhang, Yanbo; Xu, Qiuxia; Zhang, Yongkui; Qin, Changliang; Zhang, Qingzhu; Yin, Huaxiang; Xu, Hao; Chen, Shuai; Luo, Jun; Li, Chunlong; Zhao, Chao; Ye, Tianchun

    2017-03-01

    In this work, we propose two threshold voltage (VTH) tuning methods for bulk FinFETs with replacement high-k metal gate. The first method is to perform a vertical implantation into fin structure after dummy gate removal, self-aligned forming halo & punch through stop pocket (halo & PTSP) doping profile. The second method is to execute P+/BF2+ ion implantations into the single common work function (WF) layer in N-/P-FinFETs, respectively. These two methods have been investigated by TCAD simulations and MOS-capacitor experiments respectively, and then integrated into FinFET fabrication successfully. Experimental results show that the halo & PTSP doping profile can reduce VTH roll off and total variation. With P+/BF2+ doped WF layer, the VTH-sat shift -0.43 V/+1.26 V for N-FinFETs and -0.75 V/+0.11 V for P-FinFETs, respectively, with gate length of 500 nm. The proposed two methods are simple and effective for FinFET VTH tuning, and have potential for future application of massive production.

  6. Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement.

    Science.gov (United States)

    Hesse, Almut; Biyikal, Mustafa; Rurack, Knut; Weller, Michael G

    2016-02-01

    An improved antibody against the explosive pentaerythritol tetranitrate (PETN) was developed. The immunogen was designed by the concept of bioisosteric replacement, which led to an excellent polyclonal antibody with extreme selectivity and immunoassays of very good sensitivity. Compounds such as nitroglycerine, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, hexogen (RDX), 2,4,6-trinitroaniline, 1,3-dinitrobenzene, octogen (HMX), triacetone triperoxide, ammonium nitrate, 2,4,6-trinitrophenol and nitrobenzene were tested for potential cross-reactivity. The detection limit of a competitive enzyme-linked immunosorbent assay was determined to be around 0.5 µg/l. The dynamic range of the assay was found to be between 1 and 1000 µg/l, covering a concentration range of three decades. This work shows the successful application of the bioisosteric concept in immunochemistry by exchange of a nitroester to a carbonate diester. The antiserum might be used for the development of quick tests, biosensors, microtitration plate immunoassays, microarrays and other analytical methods for the highly sensitive detection of PETN, an explosive frequently used by terrorists, exploiting the extreme difficulty of its detection. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus.

    Science.gov (United States)

    Arazoe, Takayuki; Miyoshi, Kennosuke; Yamato, Tohru; Ogawa, Tetsuo; Ohsato, Shuichi; Arie, Tsutomu; Kuwata, Shigeru

    2015-12-01

    CRISPR/Cas-derived RNA-guided nucleases (RGNs) that can generate DNA double-strand breaks (DSBs) at a specific sequence are widely used for targeted genome editing by induction of DSB repair in many organisms. The CRISPR/Cas system consists of two components: a single Cas9 nuclease and a single-guide RNA (sgRNA). Therefore, the system for constructing RGNs is simple and efficient, but the utilization of RGNs in filamentous fungi has not been validated. In this study, we established the CRISPR/Cas system in the model filamentous fungus, Pyricularia oryzae, using Cas9 that was codon-optimized for filamentous fungi, and the endogenous RNA polymerase (RNAP) III U6 promoter and a RNAP II fungal promoter for the expression of the sgRNA. We further demonstrated that RGNs could recognize the desired sequences and edit endogenous genes through homologous recombination-mediated targeted gene replacement with high efficiency. Our system will open the way for the development of various CRISPR/Cas-based applications in filamentous fungi.

  8. The impact of hormone replacement therapy on menopausal symptoms in younger high-risk women after prophylactic salpingo-oophorectomy

    NARCIS (Netherlands)

    J.B. Madalinska; M. van Beurden; E.M.A. Bleiker; H.B. Valdimarsdottir; J. Hollenstein; L.F. Massuger; K.N. Gaarenstroom; M.J.E. Mourits; R.H.M. Verheijen; E.B.L. van Dorst; H. van der Putten; K. van der Velden; H. Boonstra; N.K. Aaronson

    2006-01-01

    Purpose Preventive health strategies for women at increased hereditary risk of ovarian cancer include gynecologic screening (GS) and/or prophylactic oophorectomy (PBSO). Hormone replacement therapy (HRT) is often prescribed to compensate for postsurgical endocrine deficiencies. This study examined t

  9. The impact of hormone replacement therapy on menopausal symptoms in younger high-risk women after prophylactic salpingo-oophorectomy.

    NARCIS (Netherlands)

    Madalinska, J.B.; Beurden, M. van; Bleiker, E.M.A.; Valdimarsdottir, H.B.; Hollenstein, J.; Massuger, L.F.A.G.; Gaarenstroom, K.N.; Mourits, M.J.E.; Verheijen, R.H.; Dorst, E.B.L. van; Putten, H. van der; Velden, K. van der; Boonstra, H.; Aaronson, N.K.

    2006-01-01

    PURPOSE: Preventive health strategies for women at increased hereditary risk of ovarian cancer include gynecologic screening (GS) and/or prophylactic oophorectomy (PBSO). Hormone replacement therapy (HRT) is often prescribed to compensate for postsurgical endocrine deficiencies. This study examined

  10. The impact of hormone replacement therapy on menopausal symptoms in younger high-risk women after prophylactic salpingo-oophorectomy.

    NARCIS (Netherlands)

    Madalinska, J.B.; Beurden, M. van; Bleiker, E.M.A.; Valdimarsdottir, H.B.; Hollenstein, J.; Massuger, L.F.A.G.; Gaarenstroom, K.N.; Mourits, M.J.E.; Verheijen, R.H.; Dorst, E.B.L. van; Putten, H. van der; Velden, K. van der; Boonstra, H.; Aaronson, N.K.

    2006-01-01

    PURPOSE: Preventive health strategies for women at increased hereditary risk of ovarian cancer include gynecologic screening (GS) and/or prophylactic oophorectomy (PBSO). Hormone replacement therapy (HRT) is often prescribed to compensate for postsurgical endocrine deficiencies. This study examined

  11. Total and High Molecular Weight Adiponectin Expression Is Decreased in Patients with Common Variable Immunodeficiency: Correlation with Ig Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Antonio Pecoraro

    2017-07-01

    Full Text Available Adiponectin (Acrp30 is an adipokine widely studied for its beneficial metabolic properties. It circulates as low molecular weight (LMW, medium molecular weight (MMW, and high molecular weight (HMW oligomers. The latter exerts the most potent biological effects. Acrp30 attracted renewed interest with the finding that it was associated with the development and progression of immune disorders. The mechanisms underlying this association and the role of Acrp30 in the pathophysiology of immune-mediated conditions remain unknown. Common variable immunodeficiency (CVID is a primary immunodeficiency characterized by chronic activation of the immune system, impaired antibody production, and imbalanced cytokine production. In the attempt to shed light on the expression of Acrp30 in CVID, we: (a investigated total Acrp30 and its oligomerization state in CVID patients undergoing maintenance Ig replacement therapy; (b assessed the effects of Ig replacement therapy on Acrp30 expression in treatment-naïve CVID patients, namely, patients not treated before diagnosis, before and after the first Ig administration; and (c evaluated the correlation between Acrp30 levels and clinical phenotypes of the disease. As controls, we analyzed healthy subjects and patients affected by a non-immunodeficiency chronic inflammatory demyelinating polyneuropathy (CIDP, before and after Ig infusion. We found that total Acrp30 and HMW oligomers were decreased in CVID but not in CIDP patients versus controls. Moreover, Acrp30 levels were correlated with IgA levels and were associated with two CVID phenotypes, namely, autoimmune cytopenia and enteropathy. Receiver operating characteristic curve analysis indicated that Acrp30 modulation is specific for CVID patients. Acrp30 and HMW levels quickly and dramatically increased after Ig infusion only in eight treatment-naïve CVID patients but not in five CIDP patients. This finding indicates that Ig administration per se is not able to

  12. Trends in Vascular Complications in High-Risk Patients Following Transcatheter Aortic Valve Replacement in the United States.

    Science.gov (United States)

    Ando, Tomo; Akintoye, Emmanuel; Telila, Tesfaye; Briasoulis, Alexandros; Takagi, Hisato; Grines, Cindy L; Afonso, Luis

    2017-02-10

    Vascular complications (VC) following transcatheter aortic valve replacement (TAVR) are associated with worse outcomes. The trend of VC incidence in patients considered high risk is unclear. We sought to assess the trend of VC after TAVR in patients at high risk. We investigated the VC trend in female, diabetes mellitus, and peripheral vascular disease (PVD) patients. Patients who underwent TAVR from 2011 to 2014 in the United States were identified using the International Classification of Diseases-Ninth Revision code 35.05 from the Nationwide Inpatient Sample database. Frequency of any VC (per 100 transcatheter aortic valve implantation procedure or hospital discharges) for each year from 2011 to 2014 was assessed for the overall population as well as within each category of high-risk cohorts. The overall VC rate was 6.0% (2,044/33,790). Patients who had VC were more likely to be female and had higher rates of PVD at baseline. The annual rate of VC in the overall population from 2011 to 2014 was 4.6%, 9.4%, 6.8%, and 4.4%, respectively. There was a significant increase in VC rate from 2011 to 2012 (p = 0.03), whereas there was a significant decrease in VC rate from 2012 to 2014 (p <0.001). The rate of VC between 2011 and 2014 was similar (p = 0.82). The rate of VC did not increase in any of the high-risk groups from 2011 to 2012. However, the rate of VC from 2012 to 2014 decreased significantly in all the high-risk groups. The VC rate was similar for groups between 2011 and 2014. The overall VC rate among TAVR patients initially increased from 2011 to 2012 but decreased thereafter. Similar trend in VC rate was found among high-risk patients except that the initial increase in rates from 2011 to 2012 did not reach statistical significance. Whether further reduction in VC with improvement in devices and operator/center experience for both overall and high-risk groups in TAVR occurs will require continuous longitudinal monitoring.

  13. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  14. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  15. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  16. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  17. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  18. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    Energy Technology Data Exchange (ETDEWEB)

    Ostowari, Ken; Nosson, Ali

    2000-09-30

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  19. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  20. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  1. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  2. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  3. Requirements for very high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1985-04-01

    In this introductory paper at the second Workshop on Laser Acceleration my main goal is to set what I believe to be the energy and luminosity requirements of the machines of the future. These specifications are independent of the technique of accelerations. But, before getting to these technical questions, I will briefly review where we are in particle physics, for it is the large number of unanswered questions in physics that motivates the search for effective accelerators.

  4. High Energy Effects of Noncommutative Spacetime Geometry

    CERN Document Server

    Sidharth, Burra G

    2016-01-01

    In this paper, we endeavour to obtain a modified form of the Foldy-Wouthuysen and Cini-Toushek transformations by resorting to the noncommutative nature of space-time geometry, starting from the Klein-Gordon equation. Also, we obtain a shift in the energy levels due to noncommutativity and from these results a limit for the Lorentz factor in the ultra-relativistic case has been derived in conformity with observations

  5. Neural Computing in High Energy Physics

    Institute of Scientific and Technical Information of China (English)

    O.D.Joukov; N.D.Rishe

    2001-01-01

    Artifical neural networks (ANN) are now widely used successfully as tools for hith energy physics.The paper covers two aspects.First,mapping ANNs onto the proposed ring and linear systolic array provides an efficient implementation of VLSI-based architectures since in this case all connections among processing elements are local and regular,Second.it is discussed algorthmic organizing of such structures on the base of modular algebra whose use can provide an essential increase of system throughput.

  6. Future scientific applications for high-energy lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.W. [comp.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  7. High Temperature Superconducting Magnets for Efficient Low Energy Beam Transport Systems

    CERN Document Server

    Popovic, M; Johnson, R P; Nipper, J H

    2013-01-01

    Modern ion accelerators and ion implantation systems need very short, highly versatile, Low Energy Beam Transport (LEBT) systems. The need for reliable and continuous operation requires LEBT designs to be simple and robust. The energy efficiency of available high temperature superconductors (HTS), with efficient and simple cryocooler refrigeration, is an additional attraction. Innovative, compact LEBT systems based on solenoids designed and built with high-temperature superconductor will be developed using computer models and prototyped. The parameters will be chosen to make this type of LEBT useful in a variety of ion accelerators, ion implantation systems, cancer therapy synchrotrons, and research accelerators, including the ORNL SNS. The benefits of solenoids made with HTS will be evaluated with analytical and numerical calculations for a two-solenoid configuration, as will be used in the SNS prototype LEBT that will replace the electrostatic one at SNS, and a single solenoid configuration, as was proposed...

  8. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    Science.gov (United States)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  9. Some Intensive and Extensive Quantities in High-Energy Collisions

    CERN Document Server

    Tawfik, A

    2013-01-01

    We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

  10. High tonnage harvesting and skidding for loblolly pine energy plantations

    Science.gov (United States)

    Patrick Jernigan; Tom Gallagher; Dana Mitchell; Mathew Smidt; Larry Teeter

    2016-01-01

    The southeastern United States has a promising source for renewable energy in the form of woody biomass. To meet the energy needs, energy plantations will likely be utilized. These plantations will contain a high density of small-stem pine trees. Since the stems are relatively small when compared with traditional product removal, the harvesting costs will increase. The...

  11. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  12. JACEE results on very high energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); JACEE Collaboration

    1996-12-31

    Direct observations of cosmic ray interactions in emulsion chambers of the JACEE experiment at energies above 1 TeV/nucleon are presented. An analysis of two decay of short lived particles produced in cosmic ray interactions is described. The known decay modes of bottom and charged particles do not account satisfactorily for the observations. This could possibly indicate a new decay channel of a heavy particle. The JACEE results support the hypothesis of existence of a long-flying component in cosmic ray showers. An interaction event was observed which may be the first direct observation of (mini)anticentauro interaction. (author) 13 refs, 12 figs, 1 tab

  13. Range fluctuations of high energy muons passing through matter

    Science.gov (United States)

    Minorikawa, Y.; Mitsui, K.

    1985-01-01

    The information about energy spectrum of sea level muons at high energies beyond magnetic spectrographs can be obtained from the underground intensity measurements if the fluctuations problems are solved. The correction factor R for the range fluctuations of high energy muons were calculated by analytical method of Zatsepin, where most probable energy loss parameter are used. It is shown that by using the R at great depth together with the slope, lambda, of the vertical depth-intensity (D-I) curve in the form of exp(-t/lambda), the spectral index, gamma, in the power law energy spectrum of muons at sea level can be obtained.

  14. Low and High Energy Modeling in Geant4

    CERN Document Server

    Wright, Dennis H; Folger, Günter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; Heikkinen, Aatos; Wellisch, Hans-Peter

    2007-01-01

    Four of the most-used Geant4 hadronic models, the Quark-gluon string, Bertini-style cascade, Binary cascade and Chiral Invariant Phase Space, are discussed. These models cover high, medium and low energies, respectively, and represent a more theoretical approach to simulating hadronic interactions than do the Low Energy and High Energy Parameterized models. The four models together do not yet cover all particles for all energies, so the Low Energy and High Energy Parameterized models, among others, are used to fill the gaps.The validity range in energy and particle type of each model is presented, as is a discussion of the models' distinguishing features. The main modeling stages are also described qualitatively and areas for improvement are pointed out for each model.

  15. Low And High Energy Modeling in GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Dennis H.; Koi, Tatsumi; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Wellisch,

    2007-10-05

    Four of the most-used Geant4 hadronic models, the Quark-gluon string, Bertini-style cascade, Binary cascade and Chiral Invariant Phase Space, are discussed. These models cover high, medium and low energies, respectively, and represent a more theoretical approach to simulating hadronic interactions than do the Low Energy and High Energy Parameterized models. The four models together do not yet cover all particles for all energies, so the Low Energy and High Energy Parameterized models, among others, are used to fill the gaps. The validity range in energy and particle type of each model is presented, as is a discussion of the models' distinguishing features. The main modeling stages are also described qualitatively and areas for improvement are pointed out for each model.

  16. Replacement of the Bryostatin A- and B-Pyran Rings With Phenyl Rings Leads to Loss of High Affinity Binding With PKC.

    Science.gov (United States)

    Petersen, Mark E; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Keck, Gary E

    2016-10-19

    We describe a convergent synthesis of a bryostatin analogue in which the natural A- and B-ring pyrans have been replaced by phenyl rings. The new analogue exhibited PMA like behavior in cell assays, but failed to maintain high affinity binding for PKC, despite retaining an unaltered C-ring 'binding domain'.

  17. Replacing foods high in saturated fat by low-saturated fat alternatives: a computer simulation of the potential effects on reduction of saturated fat consumption

    NARCIS (Netherlands)

    Schickenberg, B.; Assema, P.; Brug, J.; Verkaik-Kloosterman, J.; Ocke, M.C.; Vries, de N.

    2009-01-01

    10 en%) increased from 23.3 % to 86.0 %. We conclude that the replacement of relatively few important high-saturated fat products by available lower-saturated fat alternatives can significantly reduce saturated fat intake and increase the proportion of individuals complying with recommended intake

  18. FACT - Monitoring Blazars at Very High Energies

    CERN Document Server

    Dorner, D; Bergmann, M; Biland, A; Balbo, M; Bretz, T; Buss, J; Einecke, S; Freiwald, J; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Meier, K; Mueller, S; Neise, D; Neronov, A; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Steinbring, T; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2015-01-01

    The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of La Palma in October 2011 as a proof of principle for silicon based photosensors in Cherenkov Astronomy. The scientific goal of the project is to study the variability of active galatic nuclei (AGN) at TeV energies. Observing a small sample of TeV blazars whenever possible, an unbiased data sample is collected. This allows to study the variability of the selected objects on timescales from hours to years. Results from the first three years of monitoring will be presented. To provide quick flare alerts to the community and trigger multi-wavelength observations, a quick look analysis has been installed on-site providing results publicly online within the same night. In summer 2014, several flare alerts were issued. Results of the quick look analysis are summarized.

  19. High energy diffraction processes - TOTEM experiment

    CERN Document Server

    Kaspar, Jan

    2005-01-01

    We study two problems in this thesis. First, we analyse a model for pp and anti-pp elastic scattering. The model was developed by M.M.Islam and coworkers in the past 25 years. Our aim was to make a prediction for differential cross section of pp scattering at energy of 14 TeV which will be measured by the TOTEM experiment at the LHC at CERN. Since protons carry electromagnetic charge, we had to take into account an electromagnetic interaction and effects of the interference between electromagnetic and hadronic forces. We also analysed the model in the impact parameter representation. It enabled us to gain information about range of hadronic forces responsible for elastic, inelastic and total pp and anti-pp scattering. In the second part we present our alignment method for detectors inside the Roman pots of the TOTEM experiment. The method was used during Roman Pot tests on the SPS beam last year.

  20. High Energy Neutrinos from Recent Blazar Flares

    CERN Document Server

    Halzen, Francis

    2016-01-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In June 2015, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of forty for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  1. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  2. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  3. Surface Pyrolysis of High Energy Materials

    Directory of Open Access Journals (Sweden)

    Luigi Deluca

    1998-10-01

    Full Text Available The Arrhenius zero-order phenomenological pyrolysis law, commonly used in conjunction with the Vieille ballistic law to study pressure-driven burning of energetic materials, is revisited. Motivated by experimental and theoretical work performed in 1984 in this Laboratory , a relationship among several interplaying parameters is found under steady-state conditions. This relationship corresponds to the Jacobian of the pyrolysis sensitivity parameters used in the Zeldovich-Novozhilov approach. The Arrhenius pyrolysis is still expressed in terms of a global surface activation energy, but consistency with the experimental ballistic law may require an explicit pressure dependence as well. This conclusion is supported by a variety of arguments drawn from different areas. The linear dependence of the pre-exponential factor on surface activation energy (known as kinetic compensation is proved and extended to the pressure exponent, for any given experimental data set under steady burning. Experimental results are reported for about a dozen solid propellants of different nature. The effects of surface pyrolysis explicit pressure dependence, although modest on steady-state burning, are potentially far-reaching for unsteady regime and/or unstable burning. The paper is mainly focussed on pressure-driven burning and Arrhenius pyrolysis, but the implemented method is believed to apply in general. Thus, enforcing KTSS zero-order phenomenological pyrolysis with the Vieille ballistic law yields similar results and requires an explicit pressure dependence. In case, the Zeldovich ballistic law is enforced instead of the classical Vieille law, no explicit pressure dependence is required. The unifying concept for these different trends is the pyrolysis Jacobian as a consistency requirement between the implemented steady pyrolysis and ballistic laws."

  4. AGNs and microquasars as high energy gamma-ray sources

    CERN Document Server

    Paredes, J M

    2004-01-01

    The extragalactic analogs of the microquasars, the quasars, are strong gamma-ray emitters at GeV energies. It is expected that microquasars are also gamma-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy gamma-ray sources.

  5. Apparatus for advancing a wellbore using high power laser energy

    Science.gov (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  6. Lean tissue mass and energy expenditure are retained in hypogonadal men with spinal cord injury after discontinuation of testosterone replacement therapy.

    Science.gov (United States)

    Bauman, William A; La Fountaine, Michael F; Cirnigliaro, Christopher M; Kirshblum, Steven C; Spungen, Ann M

    2015-01-01

    To determine whether favorable changes to lean tissue mass (LTM), resting energy expenditure (REE), and testosterone (T) that occurred with 12 months of physiological testosterone replacement therapy (TRT) were retained 6 months after discontinuing treatment. Prospective, open-label, controlled drug intervention trial. Metropolitan area hospitals. Eugonadal (n = 11) and hypogonadal (n = 13) men with chronic spinal cord injury (SCI). Hypogonadal subjects received a 5 or 10 mg transdermal T patch daily for 12 months, with adjustment of the dose to normalize the serum T concentration; TRT was discontinued after 12 months (TRT-12M) and subjects were followed for an additional 6 months and re-evaluated (Post-TRT). Total body dual energy X-ray absorptiometry and blood draws were performed at baseline (BL) prior to TRT, TRT-12M, and Post-TRT. Eugonadal subjects did not receive treatment and were evaluated at comparable time points. There were no significant differences between groups prior to TRT at BL for any of the study endpoints. In the hypogonadal group, a significant increase in LTM was observed from BL to TRT-12M (50.2 ± 7.4 vs. 52.9 ± 6.8 kg, P therapy may be associated with persistent beneficial effects on health and physical function of hypogonadal men with chronic SCI.

  7. Tau Air-Showers Signature of Ultra High Energy Neutrinos

    CERN Document Server

    Fargion, D

    2001-01-01

    The discover of Ultra High Energy Neutrino of astrophysical nature may be already reached. Indeed upward and horizontal tau Air-showers emerging from the Earth crust or mountain chains offer the best and most powerful signal of Ultra High Energy UHE neutrinos nu_tau}, bar\

  8. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [University of Chicago

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  9. The Role of Computing in High-Energy Physics.

    Science.gov (United States)

    Metcalf, Michael

    1983-01-01

    Examines present and future applications of computers in high-energy physics. Areas considered include high-energy physics laboratories, accelerators, detectors, networking, off-line analysis, software guidelines, event sizes and volumes, graphics applications, event simulation, theoretical studies, and future trends. (JN)

  10. Search for high-energy neutrinos from dust obscured Blazars

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; Vries, K. D.; Gentile, G.; Scholten, O.; van Eijndhoven, N.

    2015-01-01

    The recent discovery of high-energy cosmic neutrinos by the IceCube neutrino observatory opens up a new field in physics, the field of neutrino astronomy. Using the IceCube neutrino detector we plan to search for high-energy neutrinos emitted from Active Galactic Nuclei (AGN), since AGN are believed

  11. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  12. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  13. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  14. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind ...

  15. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  16. Heterologous replacement of the supposed host determining region of avihepadnaviruses: high in vivo infectivity despite low infectivity for hepatocytes.

    Directory of Open Access Journals (Sweden)

    Kai Dallmeier

    2008-12-01

    Full Text Available Hepadnaviruses, including hepatitis B virus (HBV, a highly relevant human pathogen, are small enveloped DNA viruses that replicate via reverse transcription. All hepadnaviruses display a narrow tissue and host tropism. For HBV, this restricts efficient experimental in vivo infection to chimpanzees. While the cellular factors mediating infection are largely unknown, the large viral envelope protein (L plays a pivotal role for infectivity. Furthermore, certain segments of the PreS domain of L from duck HBV (DHBV enhanced infectivity for cultured duck hepatocytes of pseudotyped heron HBV (HHBV, a virus unable to infect ducks in vivo. This implied a crucial role for the PreS sequence from amino acid 22 to 90 in the duck tropism of DHBV. Reasoning that reciprocal replacements would reduce infectivity for ducks, we generated spreading-competent chimeric DHBVs with L proteins in which segments 22-90 (Du-He4 or its subsegments 22-37 and 37-90 (Du-He2, Du-He3 are derived from HHBV. Infectivity for duck hepatocytes of Du-He4 and Du-He3, though not Du-He2, was indeed clearly reduced compared to wild-type DHBV. Surprisingly, however, in ducks even Du-He4 caused high-titered, persistent, horizontally and vertically transmissable infections, with kinetics of viral spread similar to those of DHBV when inoculated at doses of 10(8 viral genome equivalents (vge per animal. Low-dose infections down to 300 vge per duck did not reveal a significant reduction in specific infectivity of the chimera. Hence, sequence alterations in PreS that limited infectivity in vitro did not do so in vivo. These data reveal a much more complex correlation between PreS sequence and host specificity than might have been anticipated; more generally, they question the value of cultured hepatocytes for reliably predicting in vivo infectivity of avian and, by inference, mammalian hepadnaviruses, with potential implications for the risk assessment of vaccine and drug resistant HBV variants.

  17. High-energy photoproduction of neutral mesons

    CERN Document Server

    Charity, Tim

    1987-01-01

    This thesis presents results from the first full period of data-taking of the experiment WA69 at the Omega^'^ectrometer, CERN, Geneva. The experiment used a tagged photon beam of energy 60-180 GeV incident on a liquid hydrogen target to study photoproduction of hadronic states. The various components of the experiment are described, with particular emphasis on the electromagnetic calorimeters, and the associated offline software for event reconstruction and acceptance calculation. The performance of the outer calorimeter is discussed, and the pi^0 detection and reconstruction efficiency is examined by comparison with pi^{+/- } production. Searches for photoproduction of neutral meson states reveal a clear signal for the pi^0, eta^0 , and omega^0 mesons. The cross-section for elastic omega^0 production is estimated, and found to be consistent with the established value of 1 mub. The cross-section for inclusive pi^0 and eta^0 production is studied using the variable Feynman-x (x_{F }), and pi^0 production as a ...

  18. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  19. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

    Science.gov (United States)

    Wang, W. T.; Li, W. T.; Liu, J. S.; Zhang, Z. J.; Qi, R.; Yu, C. H.; Liu, J. Q.; Fang, M.; Qin, Z. Y.; Wang, C.; Xu, Y.; Wu, F. X.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2016-09-01

    By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ˜0.2 mrad rms divergence. The maximum six-dimensional brightness B6 D ,n is estimated as ˜6.5 ×1 015 A /m2/0.1 % , which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.

  20. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  1. Rapid Replacement Method of High Speed Turnout Switch Point Stock Rail%高速道岔转辙器基本轨快速更换方法

    Institute of Scientific and Technical Information of China (English)

    贾延春

    2014-01-01

    According to operating conditions of high speed railway in operation and practical replacement situation of turnout,the rapid replacement method which is extremely difficult of turnout stock rail is introduced.Based on the con-struction condition and the structural characteristics,the whole-disassembly and whole installation rapid replacement op-eration scheme of high speed turnout switch point tock rail is made..The engineering practice result indicates that the operation time of stock rail replacement can be controlled within six hours,conforming to the rapid construction require-ments of operating high-speed railway.The contrast of rail surface irregularity detection before and after rail replacement indicates that rail surface regularity is effectively improved after the rail replacement,the turnout laying and geometrical state detection result meet the technical requirements of high speed railway,verifying the good construction effect of rapid replacement method high-speed turnout stock rail.%根据已开通运营高速铁路的作业条件,结合道岔更换实际情况,介绍了针对道岔轨件更换中技术难度最大的道岔基本轨更换快速施工方法。结合高速道岔结构特点和施工实际情况,制定了直接将高速道岔转辙器基本轨整根拆卸并整根安装的快速更换作业方案。工程实践结果表明,按照该施工方法更换高速道岔基本轨,换轨作业时间可控制在6h以内,符合开通运营高速铁路快速施工的要求。换轨前后钢轨顶面不平顺检测对比表明,换轨后有效改善了道岔钢轨顶面平顺性,整组道岔铺设和几何状态检测结果符合高速道岔铺设技术条件要求,验证了高速道岔基本轨快速更换方法施工效果良好。

  2. [Estrogen replacement].

    Science.gov (United States)

    Søgaard, A J; Berntsen, G K; Magnus, J H; Tollan, A

    1998-02-10

    Recent research on long-term postmenopausal hormone replacement therapy (HRT) indicates a positive effect on both total mortality and morbidity. This has raised the question of widespread preventive long-term use of HRT. Possible side-effects and ideological issues related to preventive HRT have led to debate and uncertainty among health professionals, in the media, and in the population at large. In order to evaluate the level of knowledge about and attitudes towards HRT, a randomly selected group of 737 Norwegian women aged 16-79 was interviewed by the Central Bureau of Statistics. One in three women had received information about HRT in the last two years, mainly through weekly magazines and physicians. The proportion who answered the questions on knowledge correctly varied from 36% to 47%. Those who had been given information by a physician possessed accurate knowledge, had more positive attitudes towards HRT and were more willing to use HRT than women who had reviewed information through other channels. Women with a higher level of education were better informed and more knowledgeable than others, but were nevertheless more reluctant to use HRT than those who were less educated. The limited number of women who actually receive information on HRT, the low level of knowledge and the ambivalent attitudes toward HRT are a major challenge to the public health service.

  3. Design and clinical evaluation of a high-capacity digital image archival library and high-speed network for the replacement of cinefilm in the cardiac angiography environment

    Science.gov (United States)

    Cusma, Jack T.; Spero, Laurence A.; Groshong, Bennett R.; Cho, Teddy; Bashore, Thomas M.

    1993-09-01

    An economical and practical digital solution for the replacement of 35 mm cine film as the archive media in the cardiac x-ray imaging environment has remained lacking to date due to the demanding requirements of high capacity, high acquisition rate, high transfer rate, and a need for application in a distributed environment. A clinical digital image library and network based on the D2 digital video format has been installed in the Duke University Cardiac Catheterization Laboratory. The system architecture includes a central image library with digital video recorders and robotic tape retrieval, three acquisition stations, and remote review stations connected via a serial image network. The library has a capacity for over 20,000 Gigabytes of uncompressed image data, equivalent to records for approximately 20,000 patients. Image acquisition in the clinical laboratories is via a real-time digital interface between the digital angiography system and a local digital recorder. Images are transferred to the library over the serial network at a rate of 14.3 Mbytes/sec and permanently stored for later review. The image library and network are currently undergoing a clinical comparison with cine film for visual and quantitative assessment of coronary artery disease. At the conclusion of the evaluation, the configuration will be expanded to include four additional catheterization laboratories and remote review stations throughout the hospital.

  4. Fixed energy balance window quench correction for high precision LSC {sup 14}C dating

    Energy Technology Data Exchange (ETDEWEB)

    Tudyka, Konrad, E-mail: konrad.tudyka@polsl.pl [GADAM Centre of Excellence Gliwice Absolute Dating Methods Centre, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice (Poland); Pawlyta, Jacek; Pazdur, Anna [GADAM Centre of Excellence Gliwice Absolute Dating Methods Centre, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice (Poland)

    2011-10-15

    In this paper we present the new LSC spectra evaluation method for high precision {sup 14}C dating with Quantulus 1220{sup TM}. The generally used fixed window is replaced with the fixed energy balanced counting window. The lower and upper channel of the window in the multichannel analyzer vary according to the quench level of each individual measurement. The position of the window is determined with the external standard quench parameter SQP(E) of Quantulus 1220{sup TM}. We show how this fixed energy balance window for each sample secures high stability and reduced quench correction. This method is compared with the typically used fixed channel window. - Highlights: > In this paper we present the new LSC spectra evaluation method. > We show how to setup fixed energy balance window. > The lower and upper channel of the window vary according to the quench level of each individual measurement. > We show how fixed energy balance window secures high stability. > We show the benefits of the fixed energy balance window.

  5. Cross section to multiplicity ratios at very high energy

    Energy Technology Data Exchange (ETDEWEB)

    Block, M.M. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Stodolsky, L. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-06-27

    Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio σ{sup el}/N at 7 TeV, however, is not far from its asymptotic value.

  6. High Energy Batteries for Hybrid Buses

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Lu

    2010-12-31

    EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  7. High-Current Energy-Recovering Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  8. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  9. Diamond sensors for future high energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bachmair, Felix, E-mail: bachmair@phys.ethz.ch

    2016-09-21

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  10. High Energy Vision: Processing X-rays

    CERN Document Server

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  11. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  12. Diamond sensors for future high energy experiments

    Science.gov (United States)

    Bachmair, Felix

    2016-09-01

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  13. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  14. Origins and Impacts of High-Density Symmetry Energy

    CERN Document Server

    Li, Bao-An

    2016-01-01

    What is nuclear symmetry energy? Why is it important? What do we know about it? Why is it so uncertain especially at high densities? Can the total symmetry energy or its kinetic part be negative? What are the effects of three-body and/or tensor force on symmetry energy? How can we probe the density dependence of nuclear symmetry energy with terrestrial nuclear experiments? What observables of heavy-ion reactions are sensitive to the high-density behavior of nuclear symmetry energy? How does the symmetry energy affect properties of neutron stars, gravitational waves and our understanding about the nature of strong-field gravity? In this lecture, we try to answer these questions as best as we can based on some of our recent work and/or understanding of research done by others. This note summarizes the main points of the lecture.

  15. No reserved communication lanes for high energy

    Directory of Open Access Journals (Sweden)

    Nico Pitrelli

    2006-06-01

    Full Text Available The American particle physics community is in jeopardy and may end up drowning in a boundless sea trying to grasp at non-existing funds, dragging US physics and science as a whole to the bottom. This is a price the most powerful and high-tech country of the world cannot afford, as warned by the editors of a report published in late April by the National Academy of Sciences1. Behind so much alarm is the International Linear Collider (ILC – a large particle accelerator facility which, according to the report, should be built on American territory, if research on the elementary constituents of nature is to survive in the United States. The ILC will probably cost a total of five hundred million dollars in the first five years, whereas billions will have to be invested in the subsequent seven years. Hardly impressive, however, if compared with the Superconducting Super Collider (SSC, the biggest and costliest machine ever conceived in the history of science. Devised to describe the first instants of the universe, as many will recall, the SSC project was severely hampered by political and bureaucratic plots in 1993, when the Clinton administration decided to halt work on the accelerator, after ten years and approximately two billion dollars already spent.

  16. Molecular Dynamics of Materials Possessing High Energy Content.

    Science.gov (United States)

    1988-01-26

    I -RI90 634 MOLECULAR DYNAMICS OF MATERIALS POSSESSING HIGH ENERGY 1/1 r CONTENTCU) COLUMBIA UNIV MENd YORK N J TURRO 26 JAN GO I RFOSR-TR-88-0168...Bolling Air Force Base, D.C. 2 61102F_ 2303 I B2 11 T,TL.E (Inciuoe Security Classification) Molecular Dynamics of Materials Possessing High Energy...York 10027 (212) 280-2175 TITLE: MOLECULAR DYNAMICS OF MATERIALS POSSESSING HIGH ENERGY CONTENT .. 0 0 88 2 ... "" ’% ,i u , . .. .. ....... ŝ" ;! ,i

  17. High-energy limit of quantum electrodynamics beyond Sudakov approximation

    Directory of Open Access Journals (Sweden)

    Alexander A. Penin

    2015-05-01

    Full Text Available We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis of the high-energy processes in quantum chromodynamics is also discussed.

  18. High-energy limit of quantum electrodynamics beyond Sudakov approximation

    Energy Technology Data Exchange (ETDEWEB)

    Penin, Alexander A., E-mail: penin@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)

    2015-05-18

    We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis of the high-energy processes in quantum chromodynamics is also discussed.

  19. Numerical Relativity and High Energy Physics: Recent Developments

    CERN Document Server

    Berti, Emanuele; Crispino, Luis C B; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2016-01-01

    We review recent progress in the application of numerical relativity techniques to astrophysics and high-energy physics. We focus on some developments that took place within the "Numerical Relativity and High Energy Physics" network, a Marie Curie IRSES action that we coordinated, namely: spin evolution in black hole binaries, high-energy black hole collisions, compact object solutions in scalar-tensor gravity, superradiant instabilities and hairy black hole solutions in Einstein's gravity coupled to fundamental fields, and the possibility to gain insight into these phenomena using analog gravity models.

  20. Fundamental Physics With Cosmic High-Energy Gamma Rays

    CERN Document Server

    De Angelis, Alessandro

    2016-01-01

    High-energy photons (above the MeV) are a powerful probe for astrophysics and for fundamental physics under extreme conditions. During the recent years, our knowledge of the high-energy gamma-ray sky has impressively progressed thanks to the advent of new detectors for cosmic gamma rays, at ground (H.E.S.S., MAGIC, VERITAS, HAWC) and in space (AGILE, Fermi). This presentation reviews the present status of the studies of fundamental physics problems with high-energy gamma rays, and discusses the expected experimental developments.

  1. Peptide-Based Protein Capture Agents with High Affinity, Selectivity, and Stability as Antibody Replacements in Biodetection Assays

    Science.gov (United States)

    2014-08-01

    agent, peptide-based sensors, biological detection, antibody replacements 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...recombinant protein to that of Ricin, the F1 surface protein of Yersinia pestis required for effective internalization into cells [ref], the neurotoxin...ligand in addition to PA, including MS2 coat protein (MS2CP), Rivax, the F1 surface protein of Yersinia pestis, HS33A of Clostridium botulinum, and the

  2. Separated high-energy electron beams using synchrotron radiation

    CERN Document Server

    Farley, F J M; Picasso, Emilio

    1972-01-01

    Electrons with kinetic energy in the 100 GeV range may be separated from other particles by using their energy-loss due to synchrotron radiation in a high-field magnet. In this paper the associated fluctuations in energy and angle are shown to be small enough for the method to be useful. Detailed design formulae are presented for several magnet configurations. (7 refs).

  3. Ultra high energy primary composition and interaction studies with DUMAND

    Science.gov (United States)

    Allkofer, O. C.; Grieder, P. K. F.

    It is pointed out that the addition of a 'shallow muon array' or the Fly's Eye to DUMAND would maximize the amount of information gathered and would make possible a unique interpretation of the new acquired data. In conjunction with the shallow muon array, DUMAND would make it possible to determine the fraction of high-energy muons in showers, the shape of their energy spectrum, and the primary energy dependence of these observables, as well as various correlations.

  4. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  5. Are Inflationary Predictions Sensitive to Very High Energy Physics?

    CERN Document Server

    Burgess, C P; Lemieux, F; Holman, R

    2003-01-01

    It has been proposed that the successful inflationary description of density perturbations on cosmological scales is sensitive to the details of physics at extremely high (trans-Planckian) energies. We test this proposal by examining how inflationary predictions depend on higher-energy scales within a simple model where the higher-energy physics is well understood. We find the best of all possible worlds: inflationary predictions are robust against the vast majority of high-energy effects, but can be sensitive to some effects in certain circumstances, in a way which does not violate ordinary notions of decoupling. This implies both that the comparison of inflationary predictions with CMB data is meaningful, and that it is also worth searching for small deviations from the standard results in the hopes of learning about very high energies.

  6. High-energy neutrinos from sources in clusters of galaxies

    CERN Document Server

    Fang, Ke

    2016-01-01

    High-energy cosmic rays can be accelerated in clusters of galaxies, by mega-parsec scale shocks induced by accretion of gas during the formation of large-scale structure, or by powerful sources harbored in clusters. Once accelerated, the highest energy particles leave the cluster via almost rectilinear trajectories, while lower energy ones can be confined by the cluster magnetic field up to cosmological time and interact with the intracluster gas. Using a realistic model of the baryon distribution and the turbulent magnetic field in clusters, we studied the propagation and hadronic interaction of high-energy protons in the intracluster medium. We report the cumulative cosmic ray and neutrino spectra generated by galaxy clusters including embedded sources, and demonstrate that clusters can contribute a significant fraction of the observed IceCube neutrinos above 30 TeV while remaining undetected in high-energy cosmic rays and $\\gamma$ rays for reasonable choices of parameters and source scenarios.

  7. A Deep Sea Telescope for High Energy Neutrinos

    CERN Document Server

    Aslanides, Elie; Basa, S; Bernard, F; Bertin, V; Billault, M; Blanc, P E; Brunner, J; Calzas, A; Cassol, F; Carr, J; Cârloganu, C; Destelle, J J; Duval, P Y; Hubaut, F; Kajfasz, E; Jaquet, M; Laugier, D; Le Van-Suu, A; Liotard, P L; Martin, L; Montanet, François; Navas, S; Olivetto, C; Payre, P; Pohl, A; Potheau, R; Raymond, M; Talby, M; Tao, Charling; Vigeolas, E; Anvar, S; Azoulay, R; Bland, R; Blondeau, F; De Botton, N R; Bottu, N; Carton, H; Deck, P; Desages, F E; Dispau, G; Feinstein, F; Goret, P; Gosset, L G; Gournay, F; Hubbard, John R; Karolak, M; Kouchner, A; Lachartre, D; Lafoux, H; Lamare, P; Languillat, J C; Laugier, J P; Le Provost, H; Loucatos, Sotirios S; Magnier, P; Mazeau, B; Mols, P; Moscoso, L; Palanque-Delabrouille, Nathalie; Perrin, P; Poinsignon, J; Queinec, Y; Sacquin, Yu; Schuller, P; Stolarczyk, T; Tabary, A; Tayalati, Y; Vernin, P; Vignaud, D; Vilanova, D; Benhammou, Ya; Drouhin, F; Huss, D; Pallarès, A; Tzvetanov, T; Danilov, M V; Kagan, R; Rostovtsev, A A; Carmona, F E; Cases, R; Hernández, J J; Zúñiga, J; Racca, C; Zghiche, A; Van Dantzig, R; Engelen, J; Heijboer, A; De Jong, M; Kok, E; Kooijman, P M; Nooren, G J L; Oberski, J; De Witt-Huberts, P K A; De Wolf, E; Evans, D; Mahout, G; Kenyon, Ian Richard; Jovanovic, P; Newman, P; McMahon, T; Cooper, S; Fopma, J; Jelley, N A; Schuster, W; Tilav, S; Kudryavtsev, V A; McMillan, J; Spooner, N J C; Thompson, L; Wark, D; Cartwright, S L; Triay, R; Mazure, A; Amram, P; Boulesteix, J; Marcelin, M; Blanc, F; Coustillier, G; Fuda, J L; Millot, C; Drogou, J F; Festy, D; Herrouin, G; Le Guen, Y; Lemoine, L; Massol, A; Mazéas, F; Morel, J P; Rolin, J F; Valdy, P; Brooks, B; Compere, C

    2001-01-01

    The ANTARES Collaboration proposes to construct a large area water Cherenkov detector in the deep Mediterranean Sea, optimised for the detection of muons from high-energy astrophysical neutrinos. This paper presents the scientific motivation for building such a device, along with a review of the technical issues involved in its design and construction. The observation of high energy neutrinos will open a new window on the universe. The primary aim is to study particle acceleration mechanisms in energetic astrophysical objects such as AGN's and GRB's, which may also shed light on the origin of ultra-high-energy cosmic rays. At lower energies, non-baryonic dark matter may be detected through the neutrinos produced when gravitationally captured WIMPs annihilate in the cores of the Earth and the Sun. Neutrino oscillations can be measured by studying distortions in the energy spectrum of upward-going atmospheric nu's. The characteristics of the proposed site are an important consideration in detector design. Water...

  8. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  9. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy.

    Science.gov (United States)

    Camozzi, Valentina; Betterle, Corrado; Frigo, Anna Chiara; Zaccariotto, Veronica; Zaninotto, Martina; De Caneva, Erica; Lucato, Paola; Gomiero, Walter; Garelli, Silvia; Sabbadin, Chiara; Salvà, Monica; Costa, Miriam Dalla; Boscaro, Marco; Luisetto, Giovanni

    2017-08-09

    to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.

  10. Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions, and milk performance of Murciano-Granadina goats.

    Science.gov (United States)

    Criscioni, P; Fernández, C

    2016-01-01

    The objective of this experiment was to study the effects of substituting oat grain with rice bran on energy, nitrogen and carbon balance, methane emissions, and milk performance in dairy goats. Ten Murciano-Granadina dairy goats in late lactation (46.1 ± 3.07 kg) were assigned to 2 treatments in a crossover design, where each goat received both treatments in 2 periods. One group of 5 goats was fed a mixed ration with 379 g of oat grain/kg of dry matter (O diet) and the other group of 5 goats was fed a diet that replaced oat grain with 379 g/kg dry matter of rice bran (RB diet). Diets were formulated to be isoenergetic and isoproteic, so bypass fat was added to reach the same amount of energy in both diets. The goats were allocated to individual metabolism cages. After 14 d of adaptation, feed intake, total fecal and urine outputs, and milk yield were recorded daily over a 5-d period. Then, gas exchange measurements were recorded individually by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was different for both diets [1.83 ± 0.11 vs. 1.61 ± 0.08 (means ± SD), for O and RB, respectively]. Metabolizable energy intake and heat production were not significantly different between diets, with average values of 1,254 [standard error of the mean (SEM) = 110.0] and 640 (SEM = 21.0) kJ/kg of BW(0.75), respectively. Significant differences were found in milk fat content (5.3 and 6.9%, SEM = 0.36; for O and RB, respectively) and milk fatty acids: medium-chain fatty acids (17.17 vs. 12.90 g/100g, SEM = 0.969; for O and RB, respectively) and monounsaturated fatty acids (20.63 vs. 28.29 g/100g, SEM = 1.973; for O and RB, respectively). Enteric CH4 emission was lower for the RB diet (23.2 vs. 30.1g/d, SEM = 2.14; for O and RB, respectively), probably because of the higher lipid content in RB diets than O diets (11.7 vs. 4.1%, respectively). Lactating goats utilized RB without detrimental effects on energy metabolism. Higher milk fat

  11. High-resolution kinetic energy distributions via doppler shift measurements

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Buelow, S.; Baugh, D.; Wittig, C.

    1986-07-01

    In photolysis/probe experiments using pulsed sources, time delay produces both spatial and directional bias in the fragment distributions, thus enabling well-resolved kinetic energy distributions to be obtained from Doppler shift measurements. Data are presented for H-atoms detected using two-photon ionization, and high S/N and laser-limited kinetic energy resolution are demonstrated.

  12. Probing high energy levels of lanthanide ions - experiment and theory

    NARCIS (Netherlands)

    Peijzel, P.S.

    2004-01-01

    This thesis describes vacuum ultraviolet (VUV) spectroscopy of lanthanide ions. High-resolution emission and excitation spectra were recorded to investigate the VUV energy levels of lanthanide ions in fluoride and phosphate host lattices. A parameterized model for the calculation of the energy-level

  13. Quasi-elastic nuclear scattering at high energies

    Science.gov (United States)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1992-01-01

    The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.

  14. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  15. High Energy Phenomenology - Proceedings of the Workshop

    Science.gov (United States)

    Pérez, Miguel A.; Huerta, Rodrigo

    1992-06-01

    * Measuring Mt - How Well? * Sharper Predictions for Many Observables * Measuring Vts, Vtd, Vtb and Γ(t → bW) * Top Polarization Predictions - A New Observable * Testing QCD Polarization Predictions * Correlation of Top Spin Direction with Final b, l+ Directions and Top Mass Measurements * Measuring P_{pm} ^ t * General Top Couplings * One Loop Corrections to Top Decay * Decay Helicity Amplitudes * New Sources of CP Violation at the Weak Scale? * The Effect of Top Loops on Higgs Masses * Is t → Wb a Background for Studying TeV WW Interactions? * Predictions for Mt * Final Remarks * References * High Precision Radiative Corrections in the Semileptonic Decays of Hyperons * On the Decay W± → P±γ * The Decay H0 → γγ and Physics Beyond the Standard Model * Neutrino Masses and Double Beta Decay * Neutrino Oscillations in a Medium: Analytic Calculation of Nonadiabatic Transitions * Gauge-Invariant Perturbation Theory Near a Gauge Resonance * Lower Dimensional Divergences in Gauge Theories * Strange Stars: Which is the Ground State of QCD at Finite Baryon Number? * Experimental Signatures of the SU(5)c Color Model * Generalized Supersymmetric Quantum Mechanics * Chern-Simons Theories in 2 + 1 Dimensions * List of participants

  16. Demonstrating a directional detector based on neon for characterizing high energy neutrons

    CERN Document Server

    Hexley, A; Spitz, J; Conrad, J M

    2015-01-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. The standard version of the detector relies on a mixture of 600~torr gas composed of 87.5% $^4$He and 12.5% CF$_4$ for precisely measuring the energy and direction of neutron-induced nuclear recoils. We describe studies performed with a prototype detector investigating the use of Ne, as a replacement for $^4$He, in the gas mixture. Our discussion focuses on the advantages of Ne as the fast neutron target for high energy neutron events ($\\lesssim$100 MeV) and a demonstration that the mixture will be effective for this event class. We find that the achievable gain and transverse diffusion of drifting electrons in the Ne mixture are acceptable and that the detector uptime lost due to voltage breakdowns in the amplification plane is negligible, compared to $\\sim$ 20% with the $^4$He mixture.

  17. Demonstrating a directional detector based on neon for characterizing high energy neutrons

    Science.gov (United States)

    Hexley, Allie

    2016-03-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. The standard version of the detector relies on a mixture of 600 torr gas composed of 87.5% helium-4 and 12.5% tetrafluoromethane for precisely measuring the energy and direction of neutron-induced nuclear recoils. I describe studies performed with a prototype detector investigating the use of neon, as a replacement for helium-4, in the gas mixture. My discussion focuses on the advantages of neon as the fast neutron target for high energy neutron events (100 MeV) and a demonstration that the mixture will be effective for this event class. I show that the achievable gain and transverse diffusion of drifting electrons in the neon mixture are acceptable and that the detector uptime lost due to voltage breakdowns in the amplification plane is negligible, compared to 20% with the helium-4 mixture.

  18. Flux profile scanners for scattered high-energy electrons

    Science.gov (United States)

    Hicks, R. S.; Decowski, P.; Arroyo, C.; Breuer, M.; Celli, J.; Chudakov, E.; Kumar, K. S.; Olson, M.; Peterson, G. A.; Pope, K.; Ricci, J.; Savage, J.; Souder, P. A.

    2005-11-01

    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.

  19. Mn based olivine electrode material with high power and energy.

    Science.gov (United States)

    Kim, Jongsoon; Seo, Dong-Hwa; Kim, Sung-Wook; Park, Young-Uk; Kang, Kisuk

    2010-02-28

    We report the Mn based olivine electrode material with high power and energy. Easier and more frequent nucleation by Fe and Co in Mn-based olivines significantly enhanced the rate capability as evidenced by the electrochemical results.

  20. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.