WorldWideScience

Sample records for replace damaged tissue

  1. Tissue engineered devices for ligament repair, replacement and ...

    African Journals Online (AJOL)

    potential, severe damage warrants surgical intervention including complete replacement. Ligaments are longitudinally arranged, complex tissues; the mechanical properties of ligaments are a direct result of their components and the arrangement of these components in the tissue. It is these mechanics that have made ...

  2. Radiobiology in clinical radiation therapy - Part III: Normal tissue damage

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.

    1996-01-01

    Objective: This is the third part of a course designed for residents in radiation oncology preparing for their boards. This part of the course will focus on the mechanisms underlying damage in normal tissues. Although conventional wisdom long held that killing and depletion of a critical cell(s) in a tissue was responsible for the later expression of damage, histopathologic changes in normal tissue can now be explained and better understood in terms of the new molecular biology. The concept that depletion of a single cell type is responsible for the observed histopathologic changes in normal tissues has been replaced by the hypothesis that damage results from the interaction of many different cell systems, including epithelial, endothelial, macrophages and fibroblasts, via the production of specific autocrine, paracrine and endocrine growth factors. A portion of this course will discuss the clinical and experimental data on the production and interaction of those cytokines and cell systems considered to be critical to tissue damage. It had long been suggested that interindividual differences in radiation-induced normal tissue damage was genetically regulated, at least in part. Both clinical and experimental data supported this hypothesis but it is the recent advances in human and mouse molecular genetics which have provided the tools to dissect out the genetic component of normal tissue damage. These data will be presented and related to the potential to develop genetic markers to identify sensitive individuals. The impact on clinical outcome of the ability to identify prospectively sensitive patients will be discussed. Clinically it is well-accepted that the volume of tissue irradiated is a critical factor in determining tissue damage. A profusion of mathematical models for estimating dose-volume relationships in a number of organs have been published recently despite the fact that little data are available to support these models. This course will review the

  3. Human skeletal muscles replaced to a high degree by white adipose tissue.

    Science.gov (United States)

    Ina, Keisuke; Kitamura, Hirokazu; Masaki, Takayuki; Tatsukawa, Shuji; Yoshimatsu, Hironobu; Fujikura, Yoshihisa

    2011-02-01

    Extreme replacement of skeletal muscles by adipose tissue was found in an 86-year old Japanese male cadaver during dissection practice for medical students at Oita University School of Medicine. Especially, the bilateral sartorius muscles looked overall like adipose tissue. The man had suffered from diabetes mellitus, renal failure, hypertension and hypothyroidism before his death. He was also an alcohol drinker. He had been bedridden late in life. The cause of death was renal failure. In microscopy, the adipose tissue-like sartorius muscle was shown to consist of leptin-positive adipocytes with a small number of degenerated muscle fibers. Fatty replacement, or fatty degeneration, appears to result from endocrine and metabolic disorders, and being bedridden leads to muscle atrophy and damage, although the origin of the adipocytes which emerged in the degenerated muscles is unknown.

  4. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    Xu Feng; Wen Ting; Lu Tianjian; Seffen Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.

  5. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.

    Science.gov (United States)

    Gregor, Aleš; Filová, Eva; Novák, Martin; Kronek, Jakub; Chlup, Hynek; Buzgo, Matěj; Blahnová, Veronika; Lukášová, Věra; Bartoš, Martin; Nečas, Alois; Hošek, Jan

    2017-01-01

    The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold

  6. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  7. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    徐峰; 文婷; 卢天健; Seffen; Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great...

  8. Periodontal tissue damage in smokers

    Directory of Open Access Journals (Sweden)

    Hutojo Djajakusuma

    2006-09-01

    Full Text Available Dental plaque is the primary etiological factor in periodontal diseases. However, there are many factors that can modify how an individual periodontal tissue will respond to the accumulation of dental plaque. Among such risk factors, there is increasing evidence that smoking tobacco products alters the expression and rate of progression of periodontal diseases. The aim of this study was to find out the loss of periodontal tissue adhesion in smokers by measuring pocket depth using probe, and by measuring alveolar bone damage using Bone Loss Score (BLS radiographic methods on teeth 12, 11, 21, 22, 32, 31, 41, 42. Based on T Test statistical analysis, there were significant differences in pocket depth damage of alveolar bone in smokers and non smokers. In conclusion there were increasing pocket depth and alveolar bone damage in smokers.

  9. Esophageal tissue engineering: a new approach for esophageal replacement.

    Science.gov (United States)

    Totonelli, Giorgia; Maghsoudlou, Panagiotis; Fishman, Jonathan M; Orlando, Giuseppe; Ansari, Tahera; Sibbons, Paul; Birchall, Martin A; Pierro, Agostino; Eaton, Simon; De Coppi, Paolo

    2012-12-21

    A number of congenital and acquired disorders require esophageal tissue replacement. Various surgical techniques, such as gastric and colonic interposition, are standards of treatment, but frequently complicated by stenosis and other problems. Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function. We review the literature of esophageal tissue engineering, discuss its implications, compare the methodologies that have been employed and suggest possible directions for the future. Medline, Embase, the Cochrane Library, National Research Register and ClinicalTrials.gov databases were searched with the following search terms: stem cell and esophagus, esophageal replacement, esophageal tissue engineering, esophageal substitution. Reference lists of papers identified were also examined and experts in this field contacted for further information. All full-text articles in English of all potentially relevant abstracts were reviewed. Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation. When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality. Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration, whilst omental wrapping to induce vascularization of the construct has an uncertain benefit. Decellularized matrices have been recently suggested as the optimal choice for scaffolds, but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution. Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds

  10. Esophageal tissue engineering: A new approach for esophageal replacement

    Institute of Scientific and Technical Information of China (English)

    Giorgia Totonelli; Panagiotis Maghsoudlou; Jonathan M Fishman; Giuseppe Orlando; Tahera Ansari; Paul Sibbons; Martin A Birchall

    2012-01-01

    A number of congenital and acquired disorders require esophageal tissue replacement.Various surgical techniques,such as gastric and colonic interposition,are standards of treatment,but frequently complicated by stenosis and other problems.Regenerative medicine approaches facilitate the use of biological constructs to replace or regenerate normal tissue function.We review the literature of esophageal tissue engineering,discuss its implications,compare the methodologies that have been employed and suggest possible directions for the future.Medline,Embase,the Cochrane Library,National Research Register and ClinicalTrials.gov databases were searched with the following search terms:stem cell and esophagus,esophageal replacement,esophageal tissue engineering,esophageal substitution.Reference lists of papers identified were also examined and experts in this field contacted for further information.All full-text articles in English of all potentially relevant abstracts were reviewed.Tissue engineering has involved acellular scaffolds that were either transplanted with the aim of being repopulated by host cells or seeded prior to transplantation.When acellular scaffolds were used to replace patch and short tubular defects they allowed epithelial and partial muscular migration whereas when employed for long tubular defects the results were poor leading to an increased rate of stenosis and mortality.Stenting has been shown as an effective means to reduce stenotic changes and promote cell migration,whilst omental wrapping to induce vascularization of the construct has an uncertain benefit.Decellularized matrices have been recently suggested as the optimal choice for scaffolds,but smart polymers that will incorporate signalling to promote cell-scaffold interaction may provide a more reproducible and available solution.Results in animal models that have used seeded scaffolds strongly suggest that seeding of both muscle and epithelial cells on scaffolds prior to implantation is a

  11. Expediting the transition from replacement medicine to tissue engineering.

    Science.gov (United States)

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  12. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  13. Radiation-induced normal tissue damage: implications for radiotherapy

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    Radiotherapy is an important treatment modality for many malignancies, either alone or as a part of combined modality treatment. However, despite technological advances in physical treatment delivery, patients suffer adverse effects from radiation therapy due to normal tissue damage. These side effects may be acute, occurring during or within weeks after therapy, or intermediate to late, occurring months to years after therapy. Minimizing normal tissue damage from radiotherapy will allow enhancement of tumor killing and improve tumor control and patients quality of life. Understanding mechanisms through which radiation toxicity develops in normal tissue will facilitate the development of next generation radiation effect modulators. Translation of these agents to the clinic will also require an understanding of the impact of these protectors and mitigators on tumor radiation response. In addition, normal tissues vary in radiobiologically important ways, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response. Therefore, successful development of radiation modulators may require multiple approaches to address organ/site-specific needs. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects. Further, an understanding of mechanisms of normal tissue damage will allow development of predictive biomarkers; however harmonization of such assays is critical. This is a necessary step towards patient-specific treatment customization. Examples of important adverse effects of radiotherapy either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors for improving therapeutic outcome will be highlighted. (author)

  14. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  15. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  16. A trivariate optimal replacement policy for a deteriorating system based on cumulative damage and inspections

    International Nuclear Information System (INIS)

    Tsai, Hsin-Nan; Sheu, Shey-Huei; Zhang, Zhe George

    2017-01-01

    In this article, we study a trivariate replacement model for a deteriorating system consisting of two units. Failures of unit 1 can be classified into two types. Type I failure (minor failure) is fixed by a minimal repair and type II failure (catastrophic failure) is removed by a replacement. Both types of failures can only be detected through inspection. Each type I failure of unit 1 will result in a random amount of damage to unit 2 and the damages are cumulative. The probability of type I failure or type II failure is assumed to depend on the number of failures since the last replacement. We formulate a replacement policy based on the number of type I failure, the occurrence of the first type II failure, and the amount of accumulative damages. Hence the system is replaced either preventively or correctively at any of the following four conditions depend on whichever occurs first; preventively (a) at the Nth type I failure; or (b) when the total damage of unit 2 exceeds a pre-specified level Z (but less than the failure level l); and, correctively (c) at the first type II failure; or (d) when the total damage of unit 2 exceeds a failure level l, where Z and l represent the thresholds of total damage level for unit 2 to preventive and corrective replacements, respectively. Although a type I failure can be fixed by a minimal repair, but the operating period is stochastically decreasing and repair time is stochastically increasing as time goes on. The minimal total expected long-run net cost per unit time of the system is derived and a computational algorithm for determining the optimal policy is developed. A real-world application from electric power industry is provided. Several past studied are shown to be special cases of our model. Finally, a numerical example is presented. - Highlights: • A trivariate replacement policy for a deteriorating system with two units is proposed. • A real-world application from the electric power industry is provided. • The

  17. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  18. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  19. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  20. Mechanisms Underlying Testicular Damage and Dysfunction in Mice With Partial IGF-1 Deficiency and the Effectiveness of IGF-1 Replacement Therapy.

    Science.gov (United States)

    Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique

    2015-12-01

    To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  2. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  3. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Science.gov (United States)

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  4. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  5. Skin grafting and tissue replacement for treating foot ulcers in people with diabetes.

    Science.gov (United States)

    Santema, Trientje B; Poyck, Paul P C; Ubbink, Dirk T

    2016-02-11

    Foot ulceration is a major problem in people with diabetes and is the leading cause of hospitalisation and limb amputations. Skin grafts and tissue replacements can be used to reconstruct skin defects for people with diabetic foot ulcers in addition to providing them with standard care. Skin substitutes can consist of bioengineered or artificial skin, autografts (taken from the patient), allografts (taken from another person) or xenografts (taken from animals). To determine the benefits and harms of skin grafting and tissue replacement for treating foot ulcers in people with diabetes. In April 2015 we searched: The Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE and EBSCO CINAHL. We also searched clinical trial registries to identify ongoing studies. We did not apply restrictions to language, date of publication or study setting. Randomised clinical trials (RCTs) of skin grafts or tissue replacements for treating foot ulcers in people with diabetes. Two review authors independently extracted data and assessed the quality of the included studies. We included seventeen studies with a total of 1655 randomised participants in this review. Risk of bias was variable among studies. Blinding of participants, personnel and outcome assessment was not possible in most trials because of obvious differences between the treatments. The lack of a blinded outcome assessor may have caused detection bias when ulcer healing was assessed. However, possible detection bias is hard to prevent due to the nature of the skin replacement products we assessed, and the fact that they are easily recognisable. Strikingly, nearly all studies (15/17) reported industry involvement; at least one of the authors was connected to a commercial organisation or the study was funded by a commercial organisation. In addition, the funnel plot for

  6. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  7. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    Science.gov (United States)

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc

  8. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    International Nuclear Information System (INIS)

    Kim, Seung Hyup; Park, Jae Hyung; Kang, Heung Sik; Kim, Chu Wan; Han, Man Chung; Kim, Yong Il

    1989-01-01

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  9. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    Science.gov (United States)

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  10. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  11. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  12. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  13. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  15. Regulation of annexins following infection like tissue damage – investigated by 2-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Wulff, Tune; Nielsen, Michael Engelbrecht

    are regulated after tissue damaged on the protein level. These proteins have been assign to functions like regulation of coagulation, apoptosis, and exocytosis, indicating their importance following infection and subsequent repair in fish. In addition the regulation observed in this study are supported...... an established model. In the model infection is mimicked by a well-defined tissue damage allowing each fish to be equally affected. Samples were taken 7 days after tissue damage and included samples from the damaged tissue, internal control and an external control. Changes in protein expression between the wound...... by previous findings on the mRNA level, where both proteins are regulated following infection. In conclusion this study show regulation on the protein level of two members of the annexin protein family after infection like tissue damage....

  16. The Role of Recipient T Cells in Mesenchymal Stem Cell-Based Tissue Regeneration

    OpenAIRE

    Liu, Yi; Wang, Songlin; Shi, Songtao

    2012-01-01

    Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addi...

  17. EXPERIMENTAL RESEARCH OF REGENERATIVE FEATURES IN BONE TISSUES AROUND IMPLANTS AFTER ONE-STAGE BILATERAL TOTAL HIP REPLACEMENT

    Directory of Open Access Journals (Sweden)

    V. M. Mashkov

    2012-01-01

    Full Text Available Objective: to research the specific features of regenerative processes of bone tissue around implants after one-stage bilateral total hip replacement in experiment. Material and methods: 27 total hip replacement operations have been performed in 18 rabbits of breed "chinchilla" to which bipolar femoral endoprosthesis made of titanic alloy PT-38, one type-size, with friction pair metal-on-metal and neck-shaft angle 165 degrees have been implanted: total unilateral hip replacement operations have been performed in 9 animals (control group, one-stage bilateral total hip replacement operations have been performed in 9 animals (experimental group. During research they have been on radiological and clinical checking-up. After the experiment the animals had histological tests of the tissues around endoprosthesis components. Results and conclusions: After one-stage bilateral total hip replacement in early terms of research more expressed changes of bone tissue in the form of its thinning and decompaction were found around implants. One-stage bilateral total hip replacement did not essentially influence on the speed of osteogenesis around endoprothesis components in comparison with unilateral total hip replacement, so in late terms of observation in both groups the fixing of endoprothesis components did not differ.

  18. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    Science.gov (United States)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  19. Midterm outcome of valve-sparing aortic root replacement in inherited connective tissue disorders.

    Science.gov (United States)

    Tanaka, Hiroshi; Ogino, Hitoshi; Matsuda, Hitoshi; Minatoya, Kenji; Sasaki, Hiroaki; Iba, Yutaka

    2011-11-01

    This study determined the midterm outcome of valve-sparing aortic root replacement for patients with inherited connective tissue disorders. From 1993 to 2008, 94 patients underwent valve-sparing aortic root replacement. Sixty patients (64%), average age 33 years (range, 15 to 61 years), had inherited connective tissue disorders: Marfan syndrome, 54 (92%); Loeys-Dietz syndrome, 5 (8%); and smooth muscle α-actin (ACTA2) mutation in 1. Median preoperative sinus diameter was 52 mm (range, 42 to 76 mm), and moderate/severe aortic regurgitation was present in 14 (23%). Seven (12%, 1993 to 1999) underwent remodeling procedures, and 53 had reimplantation procedures. Cusp repair was performed in 4. Median follow-up was 55 months (range, 1 to 149 months). There were 15 patients in the early term (1993 to 2000) and 45 in the late term (2001 to 2008). Four late deaths occurred (cardiac, 3; aortic, 1), with 10-year survival of 86%. Rates of freedom from aortic valve replacement at 5 and 10 years were 85% and 58% in remodeling and 96% and 58% in reimplantation. Risk factors for reoperations were postprocedure intraoperative aortic insufficiency greater than mild (p = 0.046), remodeling procedure (p = 0.016), and early term (p = 0.0002). One patient (2%) with none/trivial postprocedure aortic insufficiency required aortic valve replacement. Freedom from reoperation in patients with none/trivial postprocedure aortic insufficiency at 5 and 10 years was 100% and 67%. Meticulous control of aortic insufficiency during operation would bring favorable midterm durability in valve-sparing aortic root replacement using a reimplantation technique, even in patients with inherited connective tissue disorders. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    regeneration since its genome is well-described and it is easy visually to follow the wound healing. In this study, carps were physically damaged in the musculature using sterile needles at day 10, 16, 24, 47 and 94 post hatch. Muscle tissue samples were subsequently taken at day 1, 3 and 7 post damage...... healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  1. Renal tissue damage induced by focused shock waves

    Science.gov (United States)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  2. Alternatives to eye bank native tissue for corneal stromal replacement.

    Science.gov (United States)

    Brunette, Isabelle; Roberts, Cynthia J; Vidal, François; Harissi-Dagher, Mona; Lachaine, Jean; Sheardown, Heather; Durr, Georges M; Proulx, Stéphanie; Griffith, May

    2017-07-01

    Corneal blindness is a major cause of blindness in the world and corneal transplantation is the only widely accepted treatment to restore sight in these eyes. However, it is becoming increasingly difficult for eye banks to meet the increasing demand for transplantable tissue, which is in part due to population aging. Donor tissue shortage is therefore a growing concern globally and there is a need for alternatives to human donor corneas. Biosynthetic corneal substitutes offer several significant advantages over native corneas: Large-scale production offers a powerful potential solution to the severe shortage of human donor corneas worldwide; Good manufacturing practices ensure sterility and quality control; Acellular corneal substitutes circumvent immune rejection induced by allogeneic cells; Optical and biomechanical properties of the implants can be adapted to the clinical need; and finally these corneal substitutes could benefit from new advances in biomaterials science, such as surface coating, functionalization and nanoparticles. This review highlights critical contributions from laboratories working on corneal stromal substitutes. It focuses on synthetic inert prostheses (keratoprostheses), acellular scaffolds with and without enhancement of endogenous regeneration, and cell-based replacements. Accent is put on the physical properties and biocompatibility of these biomaterials, on the functional and clinical outcome once transplanted in vivo in animal or human eyes, as well as on the main challenges of corneal stromal replacement. Regulatory and economic aspects are also discussed. All of these perspectives combined highlight the founding principles of the clinical application of corneal stromal replacement, a concept that has now become reality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  4. Ultrasound-induced cavitation damage to external epithelia of fish skin.

    Science.gov (United States)

    Frenkel, V; Kimmel, E; Iger, Y

    1999-10-01

    Transmission electron microscopy was used to show the effects of therapeutic ultrasound (fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.

  5. The role of connective tissue in late effects of radiation

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1979-01-01

    Connective tissues not only serve as support, but also filter and censor the physical and molecular information reaching cells. The late change in connective tissues, i.e. fibrosis several months or years after the irradiation with 1000 rad or more, has been well known, and the dreaded sequel of radiation therapy, but connective tissues are affected already at much earlier time. The change in irradiated connective tissues may be distinguished in 3 phases after irradiation, the change in permeability within hours, damage to cell replacement systems within days and months and the late change of fibrosis, vascular damage and parenchymal atrophy after months and years. Glomerular sclerosis, tubular atrophy and interstitial fibrosis after the excessive irradiation of kidneys, accompanied by renal failure and hypertension, are usually considered as the consequence of vascular or tubular damage, but recent investigation suggested that the change in blood flow is correlated also with the increase in collagen, so that fibrosis may represent an important factor in the pathogenesis of renal damage. Radiofibrosis is considered simply as a result of the vascular damage due to the deficient or abnormal replacement of endothelial cells and/or due to arteriolo-capillary fibrosis. The late effects depend on early ones, and the endothelial cells would be only one. Other possible paths could depend on low fibrinolytic activity and immunological reactions. (Yamashita, S.)

  6. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  7. The role of tissue damage in whiplash associated disorders: Discussion paper 1

    Science.gov (United States)

    Bogduk, Nikolai; Ivancic, Paul C.; McLean, Samuel A.; Siegmund, Gunter P.; Winkelstein, Beth

    2011-01-01

    STUDY DESIGN Non-systematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Non-systematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research. PMID:22020601

  8. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, M.; Romano, V.; Forrer, M.; Weber, H.P. (Inst. of Applied Physics, Bern Univ. (Switzerland)); Mischler, C.; Mueller, O.M. (Anatomical Inst., Bern Univ. (Switzerland))

    1991-04-01

    The damage created instantaneously in dorsal skin and in the subjacent skeletal muscle layer after CO{sub 2} and Er{sup 3+} laser incisions is histologically and ultrastructurally investigated. Light microscopical examinations show an up to three times larger damage zone in the subcutaneous layer of skeletal muscle than in the connective tissue above. The extent of thermally altered muscle tissue is classified by different zones and characterized by comparison to long time heating injuries. The unexpectedly large damage is a result of the change of elastic properties occurring abruptly at the transition between different materials. This leads to a discontinuity of the cutting dynamics that reduces the ejection of tissue material. We show that the degree of thermal damage originates from the amount of hot material that is not ejected out of the crater acting as a secondary heat source. (orig.).

  9. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  10. Nd : YAG surgical laser effects in canine prostate tissue: temperature and damage distribution

    NARCIS (Netherlands)

    van Nimwegen, S. A.; L'Eplattenier, H. F.; Rem, A. I.; van der Lugt, J. J.; Kirpensteijn, J.

    2009-01-01

    An in vitro model was used to predict short-term, laser-induced, thermal damage in canine prostate tissue. Canine prostate tissue samples were equipped with thermocouple probes to measure tissue temperature at 3, 6, 9 and 12 mm depths. The tissue surface was irradiated with a Nd:YAG laser in contact

  11. Effect of laminaria japonica polysaccharides (LJP) on radiation damage of testis tissue in male rats

    International Nuclear Information System (INIS)

    Ren Shicheng; Luo Qiong; Yang Mingliang; Yang Jiajuan; Yan Jun; Li Zhuoneng; Wang Lihong; Cui Xiaoyan

    2007-01-01

    Objective: To observe the effect of laminaria japonica polysaccharides (LJP) on local radiation damage of testis tissue in male rats. Methods: The Wistar rats were randomly divided into 4 groups: the normal group, the model group, positive control group and LJP treatment group (50 mg·kg -1 ·d -1 ). LJP was applied to the treatment group for 10 d before local irradiation with γ-ray (6.0 Gy). The morphological change of the testis, organ index of testis and epididymides, sperm count, motility rate, superoxide dismutase (SOD) activity and malonic aldehyde (MDA) contents were measured. Results: LJP could make the damaged testis recover to near normal, elevate the organ index of testis and epididymides, promote the sperm count and motility rate, increase the activity of SOD and decrease the contents of MDA in testis tissue. Conclusions: LJP could inhibit testis tissue damage induced by local radiation, hence enhance the significant radioprotective effect to testis tissue. LJP has the conspicuous protective effect on radiation damage of testis tissue. (authors)

  12. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  13. Hip Replacement Surgery

    Science.gov (United States)

    ... Outreach Initiative Breadcrumb Home Health Topics English Español Hip Replacement Surgery Basics In-Depth Download Download EPUB ... PDF What is it? Points To Remember About Hip Replacement Surgery Hip replacement surgery removes damaged or ...

  14. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    Science.gov (United States)

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  16. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  17. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  18. Replacing Heavily Damaged Teeth by Third Molar Autotransplantation With the Use of Cone-Beam Computed Tomography and Rapid Prototyping.

    Science.gov (United States)

    Verweij, Jop P; Anssari Moin, David; Wismeijer, Daniel; van Merkesteyn, J P Richard

    2017-09-01

    This article describes the autotransplantation of third molars to replace heavily damaged premolars and molars. Specifically, this article reports on the use of preoperative cone-beam computed tomographic planning and 3-dimensional (3D) printed replicas of donor teeth to prepare artificial tooth sockets. In the present case, an 18-year-old patient underwent autotransplantation of 3 third molars to replace 1 premolar and 2 molars that were heavily damaged after trauma. Approximately 1 year after the traumatic incident, autotransplantation with the help of 3D planning and rapid prototyping was performed. The right maxillary third molar replaced the right maxillary first premolar. The 2 mandibular wisdom teeth replaced the left mandibular first and second molars. During the surgical procedure, artificial tooth sockets were prepared with the help of 3D printed donor tooth copies to prevent iatrogenic damage to the actual donor teeth. These replicas of the donor teeth were designed based on the preoperative cone-beam computed tomogram and manufactured with the help of 3D printing techniques. The use of a replica of the donor tooth resulted in a predictable and straightforward procedure, with extra-alveolar times shorter than 2 minutes for all transplantations. The transplanted teeth were placed in infraocclusion and fixed with a suture splint. Postoperative follow-up showed physiologic integration of the transplanted teeth and a successful outcome for all transplants. In conclusion, this technique facilitates a straightforward and predictable procedure for autotransplantation of third molars. The use of printed analogues of the donor teeth decreases the risk of iatrogenic damage and the extra-alveolar time of the transplanted tooth is minimized. This facilitates a successful outcome. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Cell kinetical aspect of normal tissue damages in relation to radiosensitivity of cells, especially from the points of LQ model

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Oohara, Hiroshi.

    1989-01-01

    Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)

  20. Skin grafting and tissue replacement for treating foot ulcers in people with diabetes

    NARCIS (Netherlands)

    Santema, Trientje B.; Poyck, Paul P. C.; Ubbink, Dirk T.

    2016-01-01

    Foot ulceration is a major problem in people with diabetes and is the leading cause of hospitalisation and limb amputations. Skin grafts and tissue replacements can be used to reconstruct skin defects for people with diabetic foot ulcers in addition to providing them with standard care. Skin

  1. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    Science.gov (United States)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  2. Human prenatal progenitors for pediatric cardiovascular tissue engineering

    NARCIS (Netherlands)

    Schmidt, D.

    2007-01-01

    Pediatric cardiovascular tissue engineering is a promising strategy to overcome the lack of autologous, growing replacements for the early repair of congenital malformations in order to prevent secondary damage to the immature heart. Therefore, cells should be harvested during pregnancy as soon as

  3. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Goethem, Marc-Jan van; Bron, Reinier; Hogewerf, Wytse; Brandenburg, Sytze; Langendijk, Johannes A.; Luijk, Peter van; Coppes, Robert P.

    2012-01-01

    Purpose: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. Methods and Materials: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. Results: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. Conclusions: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.

  4. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  5. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences

    Directory of Open Access Journals (Sweden)

    Viktor M Pastukh

    2011-03-01

    Full Text Available Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COPD

  6. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  7. Analysis of growth and tissue replacement rates by stable sulfur isotope turnover.

    Science.gov (United States)

    Arneson, L. S.; Macko, S. A.; Macavoy, S. E.

    2003-12-01

    Stable isotope analysis has become a powerful tool to study animal ecology. Analysis of stable isotope ratios of elements such as carbon, nitrogen, sulfur, hydrogen, oxygen and others have been used to trace migratory routes, reconstruct dietary sources and determine the physiological condition of individual animals. The isotopes most commonly used are carbon, due to differential carbon fractionation in C3 and C4 plants, and nitrogen, due to the approximately 3% enrichment in 15N per trophic level. Although all cells express sulfur-containing compounds, such as cysteine, methionine, and coenzyme A, the turnover rate of sulfur in tissues has not been examined in most studies, owing to the difficulty in determining the δ 34S signature. In this study, we have assessed the rate of sulfur isotopic turnover in mouse tissues following a diet change from terrestrial (7%) to marine (19%) source. Turnover models reflecting both growth rate and metabolic tissue replacement will be developed for blood, liver, fat and muscle tissues.

  8. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1983-01-01

    Defects in DNA-repair mechanisms render xeroderma pigmentosum cells hypersensitive to killing by the uv-type of DNA-damaging agent. Some xeroderma pigmentosum patients develop a primary neuronal degeneration, and cell lines from patients with the earliest onset of neurodegeneration are the most sensitive to killing by uv radiation. These findings led to the neuronal DNA integrity theory which holds that when the integrity of neuronal DNA is destroyed by the accumulation of unrepaired DNA damaged spontaneously or by endogenous metabolites, the neurons will undergo a primary degeneration. Cells from patients with Cockayne syndrome, a demyelinating disorder with a primary retinal degeneration, are also hypersensitive to the uv-type of DNA-damaging agent. Cells from patients with the primary neuronal degeneration of ataxia telangiectasia are hypersensitive to the x-ray-type of DNA-damaging agent. Cells from other patients with primary degeneration of excitable tissue also have hypersensitivity to the x-ray-type of DNA-damaging agent. These disorders include (1) primary neuronal degenerations which are either genetic (e.g., Huntington disease, familial dysautonomia, Friedreich ataxia) or sporadic (e.g., Alzheimer disease, Parkinson disease), (2) primary muscle degenerations (e.g., Duchenne muscular dystrophy), and (3) a primary retinal degeneration (Usher syndrome). Death of excitable tissue in vivo in these radiosensitive diseases may result from unrepaired DNA. This hypersensitivity provides the basis for developing suitable presymptomatic and prenatal tests for these diseases, for elucidating their pathogenesis, and for developing future therapies. 119 references, 3 figures, 3 tables

  9. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  10. Using electrolyte leakage tests to determine lifting windows and detect tissue damage

    Science.gov (United States)

    Richard W. Tinus

    2002-01-01

    Physiological testing is rapidly coming into use as a means to determine the condition of nursery stock and predict how it will respond to treatment or use. One such test, the electrolyte leakage test, can be used to measure cold hardiness and detect tissue damage. The principle of this test is that when cell membranes are damaged, electrolytes leak out into the water...

  11. Non-damaging laser therapy of the macula: Titration algorithm and tissue response

    Science.gov (United States)

    Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip

    2014-02-01

    Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.

  12. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  13. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.

    Science.gov (United States)

    Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan

    2018-04-01

    Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  15. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  16. The influence of parotid gland sparing on radiation damages of dental hard tissues.

    Science.gov (United States)

    Hey, Jeremias; Seidel, Johannes; Schweyen, Ramona; Paelecke-Habermann, Yvonne; Vordermark, Dirk; Gernhardt, Christian; Kuhnt, Thomas

    2013-07-01

    The aim of the present study was to evaluate whether radiation damage on dental hard tissue depends on the mean irradiation dose the spared parotid gland is subjected to or on stimulated whole salivary flow rate. Between June 2002 and October 2008, 70 patients with neck and cancer curatively irradiated were included in this study. All patients underwent dental treatment referring to the guidelines and recommendations of the German Society of Dental, Oral and Craniomandibular Sciences prior, during, and after radiotherapy (RT). During the follow-up period of 24 months, damages on dental hard tissues were classified according to the RTOG/EORTC guidelines. The mean doses (D(mean)) during spared parotid gland RT were determined. Stimulated whole saliva secretion flow rates (SFR) were measured before RT and 1, 6, 12, 24 months after RT. Thirty patients showed no carious lesions (group A), 18 patients developed sporadic carious lesions (group B), and 22 patients developed general carious lesions (group C). Group A patients received a D mean of 21.2 ± 11.04 Gy. Group B patients received a D(mean) of 26.5 ± 11.59 Gy and group C patients received a D(mean) of 33.9 ± 9.93 Gy, respectively. The D(mean) of group A was significantly lower than the D(mean) of group C (p dental hard tissue correlates with increased mean irradiation doses as well as decreased salivary flow rates. Parotid gland sparing resulting in a dose below 20 Gy reduces radiation damage on dental hard tissues, and therefore, the dose may act as a predictor for the damage to be expected.

  17. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  18. Evidence for cell-replacement repair of X-ray-induced teratogenic damage in male genital imaginal discs of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Fukunaga, Akihiro; Kondo, Sohei

    1985-01-01

    Male genital imaginal discs from old (late-third-instar) larvae of Drosophila that had been X-irradiated with appropriate doses developed into severely damaged adult genitalia when implanted into old larvae, but they developed into completely normal adult genitalia when transplanted into 2-day-younger larvae. Complete repair of X-ray-induced teratogenic damage in the genital discs on transplantation into young host larvae was similar in the wild-type and mei-9sup(a) strains. The results are discussed in relation to the hypothesis that repair of X-ray-induced teratogenic damage depends not on DNA repair but on replacement of damage-bearing primordial cells by healthy ones after suicidal elimination of the former. (Auth.)

  19. Disease related tissue damage and subsequent changes in fillet structure

    DEFF Research Database (Denmark)

    of the fish and subsequent a reduction in price. Despite this, the impact of infectious diseases on the meat quality and the mechanisms behind are poorly investigated. Wound repair is a dynamic, interactive response to tissue injury that involves a complex interaction and cross talk of various cell types......, extracellular matrix molecules, soluble mediators and cytokines. In order to describe the molecular mechanisms and processes of wound repair, a panel of genes covering immunological factors and tissue regeneration were used to measure changes at the mRNA level following mechanical tissue damage in rainbow trout...... (Oncorhynchus mykiss). Needle disrupted muscle tissue was sampled at different time points and subject to real-time RT-PCR for measuring the expression of the genes IL-1β, IL-8, IL-10, TGF-β, Myostatin-1ab, MMP-2, CTGF, Collagen-1α, VEGF, iNOS, Arg-2 and FGF. The results showed an initial phase with up...

  20. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  1. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration.

    Science.gov (United States)

    Glaser, Talita; Cappellari, Angélica Regina; Pillat, Micheli Mainardi; Iser, Isabele Cristiana; Wink, Márcia Rosângela; Battastini, Ana Maria Oliveira; Ulrich, Henning

    2012-09-01

    Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.

  2. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  3. Tissue Damage Caused by Myeloablative, but Not Non-Myeloablative, Conditioning before Allogeneic Stem Cell Transplantation Results in Dermal Macrophage Recruitment without Active T-Cell Interaction

    Directory of Open Access Journals (Sweden)

    Peter van Balen

    2018-02-01

    Full Text Available IntroductionConditioning regimens preceding allogeneic stem cell transplantation (alloSCT can cause tissue damage and acceleration of the development of graft-versus-host disease (GVHD. T-cell-depleted alloSCT with postponed donor lymphocyte infusion (DLI may reduce GVHD, because tissue injury can be restored at the time of DLI. In this study, we investigated the presence of tissue injury and inflammation in skin during the period of hematologic recovery and immune reconstitution after alloSCT.MethodsSkin biopsies were immunohistochemically stained for HLA class II, CD1a, CD11c, CD40, CD54, CD68, CD86, CD206, CD3, and CD8. HLA class II-expressing cells were characterized as activated T-cells, antigen-presenting cells (APCs, or tissue repairing macrophages. In sex-mismatched patient and donor couples, origin of cells was determined by multiplex analysis combining XY-FISH and fluorescent immunohistochemistry.ResultsNo inflammatory environment due to pretransplant conditioning was detected at the time of alloSCT, irrespective of the conditioning regimen. An increase in HLA class II-positive macrophages and CD3 T-cells was observed 12–24 weeks after myeloablative alloSCT, but these macrophages did not show signs of interaction with the co-localized T-cells. In contrast, during GVHD, an increase in HLA class II-expressing cells coinciding with T-cell interaction was observed, resulting in an overt inflammatory reaction with the presence of activated APC, activated donor T-cells, and localized upregulation of HLA class II expression on epidermal cells. In the absence of GVHD, patient derived macrophages were gradually replaced by donor-derived macrophages although patient-derived macrophages were detectable even 24 weeks after alloSCT.ConclusionConditioning regimens cause tissue damage in the skin, but this does not result in a local increase of activated APC. In contrast to the inflamed situation in GVHD, when interaction takes place between

  4. Insurance for replacement power costs

    International Nuclear Information System (INIS)

    Cleaver, A.

    1980-01-01

    Although careful consideration is given to insurance against physical damage to plant and equipment, little thought is given to the costs that will be incurred in replacing the power that is lost while a relatively efficient system is out of action. The results of an investigation carried out for a generating authority with an installed capacity of about 3000 MW is given. Replacement power costs for different cases of severity of damage range from Pound1.17m per month for damage to central services taking out all four units. (author)

  5. Effect of propolis feeding on rat tissues damaged by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Seo, Eul Won [Andong National Univ., Andong (Korea, Republic of); Ji, Tae Jeong [Kaya Univ., Goryeong (Korea, Republic of)

    2007-06-15

    Present study aimed to investigate the radioprotective effects of propolis feeding on rat tissues damaged by X-ray irradiation. It was shown that the number of white blood cell in X-ray irradiated group supplemented with propolis increased as much to those of the control group and also the GOT activities among the blood components were decreased after propolis feeding. The mineral contents such as Mg, Fe, Ca, Mn, Cu, Mo, Ni, As in liver were increased as compared with those of the control group but maintained lower level than those of only irradiated groups, implying that the propolis feeding elevated the recovery capability of white blood cell effectively and propolis have a potential resistance to cell damage by X-ray. According to histological observations of the testis, intestine and liver tissues which are irradiated after feeding propolis, the numbers of damaged undifferentiated cells were decreased in testis and the shape of the goblet cells and inner and outer muscular layers in intestine were restored to the original state and the hepatocytes and interlobular veins were shown intact in liver, suggesting that propolis has a potential capacity to restore cell shapes or resist deformation of cell.

  6. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues.

    Science.gov (United States)

    Baltaci, A K; Mogulkoc, R; Salbacak, A; Celik, I; Sivrikaya, A

    2012-01-01

    The objective of the present study was to examine the effects of zinc supplementation on the oxidant damage in lung and liver tissues in rats exposed to a 50-Hz frequency magnetic field for 5 minutes every other day over a period of 6 months. The study included 24 adult male Sprague-Dawley rats, which were divided into the three groups in equal numbers: Group 1, the control group (G1); Group 2, the group exposed to an electromagnetic field (G2); and Group 3, the group, which was exposed to an EMF and supplemented with zinc (G3). At the end of the 6-month procedures, the animals were decapitated to collect lung and liver tissue samples, in which MDA was analyzed using the "TBARS method (nmol/g/protein)", GSH by the "biuret method (mg/g/protein)" and zinc levels by atomic emission (µg/dl). MDA levels in lung and liver tissues in G2 were higher than those in G1 and G3, and the levels in G3 were higher than those in G1 (pelectromagnetic field caused cellular damage in lung and liver tissues and zinc supplementation inhibited the inflicted cellular damage. Another important result of this study that needs emphasis was that exposure to an electromagnetic field led to a significant decrease in zinc levels in lung and liver tissues (Tab. 3, Ref. 23).

  7. Computer-aided cartilage tissue-engineering : a numerical evaluation of the influence of inhomogeneities, collagen architecture and temporal culture effects

    NARCIS (Netherlands)

    Khoshgoftar, M.

    2012-01-01

    Hyaline articular cartilage has a crucial role in the distribution of joint mechanical loads and smooth movement of bones. Because of its poor healing capacity, cartilage damage is progressive and may lead to osteoarthritis (OA). Replacing damaged cartilage with tissue engineered (TE) cartilage is

  8. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  9. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    Science.gov (United States)

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  10. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  11. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  12. Comparison of tissue damage caused by various laser systems with tissue tolerable plasma by light and laser scan microscopy

    International Nuclear Information System (INIS)

    Vandersee, Staffan; Lademann, Jürgen; Richter, Heike; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard

    2013-01-01

    Tissue tolerable plasma (TTP) represents a novel therapeutic method with promising capabilities in the field of dermatological interventions, in particular disinfection but also wound antisepsis and regeneration. The energy transfer by plasma into living tissue is not easily educible, as a variety of features such as the medium’s actual molecule-stream, the ions, electrons and free radicals involved, as well as the emission of ultraviolet, visible and infrared light contribute to its increasingly well characterized effects. Thus, relating possible adversary effects, especially of prolonged exposure to a single component of the plasma’s mode of action, is difficult. Until now, severe adverse events connected to plasma exposure have not been reported when conducted according to existing therapeutic protocols. In this study, we have compared the tissue damage-potential of CO 2 and dye lasers with TTP in a porcine model. After exposure of pig ear skin to the three treatment modalities, all specimens were examined histologically and by means of laser scan microscopy (LSM). Light microscopical tissue damage could only be shown in the case of the CO 2 laser, whereas dye laser and plasma treatment resulted in no detectable impairment of the specimens. In the case of TTP, LSM examination revealed only an impairment of the uppermost corneal layers of the skin, thus stressing its safety when used in vivo. (letter)

  13. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  15. The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage

    NARCIS (Netherlands)

    van Wilgen, C. Paul; Keizer, Doeke

    The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back

  16. Tissue composition of the leg and meat quality of sheep fed castor bean hulls in replacement of tifton hay

    Directory of Open Access Journals (Sweden)

    Stela Antas Urbano

    2013-10-01

    Full Text Available The effects of replacing Tifton hay with castor bean hulls (0, 33, 66 and 100% on the leg tissue composition, chemical composition, physicochemical parameters and sensorial traits of sheep meat were studied. A total of 28 non-castrated sheep averaging seven months in age with an average initial weight of 19.5±4.3 kg were assigned to a randomized block design with four treatments and seven replicates and were slaughtered after 70 days of confinement. At slaughter, body weight and leg, muscle and bone weights decreased linearly, whereas the muscle-to-bone ratio increased linearly according to the treatments. There was a quadratic effect on yellow intensity (maximum of 8.05 with replacement of 54.5% and the percentage of cooking losses (minimum of 33.8% with replacement of 45.17%. The treatment employed did not affect either the chemical composition or sensorial traits of the lamb meat. Although replacing Tifton hay with castor bean hulls alters the tissue composition of the leg as well as some physicochemical parameters of the meat, the sensory analysis indicated good acceptability of the meat, regardless of the inclusion of this byproduct.

  17. Apoptosis modulation in the immune system reveals a role of neutrophils in tissue damage in a murine model of chlamydial genital infection.

    Science.gov (United States)

    Zortel, Tom; Schmitt-Graeff, Annette; Kirschnek, Susanne; Häcker, Georg

    2018-03-07

    Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of Bcl-2 in haematopoietic cells (Bcl-2-mice), and mice where mature neutrophils are lacking due to the deletion of Mcl-1 in myeloid cells (LysM-cre-mcl-1-flox-mice; Mcl-1-mice). We monitored bacterial clearance, cellular infiltrate and long-term tissue damage. Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2-mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2-mice caused increased tissue damage. The loss of neutrophils in Mcl-1-mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1-mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Inhibition of apoptosis in the haematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.

  18. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E

    2003-07-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  19. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2003-01-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  20. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  1. On radiation damage to normal tissues and its treatment. Pt. 2

    International Nuclear Information System (INIS)

    Michalowski, A.S.

    1994-01-01

    In addition to transiently inhibiting cell cycle progression and sterilizing those cells capable of proliferation, irradiation disturbs the homeostasis effected by endogenous mediators of intercellular communication (humoral component of tissue response to radiation). Changes in the mediator levels may modulate radiation effects either by a assisting a return to normality (e.g., through a rise in H-type cell lineage-specific growth factors) or by aggravating the damage. The latter mode is illustrated with reports on changes in eicosanoid levels after irradiation and on results of empirical treatment of radiation injuries with anti-inflammatory drugs. Prodromal, acute and chronic effects of radiation are accompanied by excessive production of eicosanoids (prostaglandins, prostacyclin, thromboxanes and leukotrienes). These endogenous mediators of inflammatory reactions may be responsible for the vasodilatation, vasoconstriction, increased microvascular permeability, thrombosis and chemotaxis observed after radiation exposure. Glucocorticoids inhibit eicosanoid synthesis primarily by interfering with phospholipase A 2 whilst non-steroidal anti-inflammatory drugs prevent prostaglandin/thromboxane synthesis by inhibiting cycloxygenase. When administered after irradiation on empirical grounds, drugs belonging to both groups tend to attenuate a range of prodomal, acute and chronic effects of radiation in man and animals. Taken together, these two sets of observations are highly suggestive of a contribution of humoral factors to the adverse responses of normal tissues and organs to radiation. A full account of radiation damage should therefore consist of complementary descriptions of cellular and humoral events. Further studies on anti-inflammatory drug treatment of radiation damage to normal organs are justified and desirable. (orig.)

  2. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  3. From DNA lesions to tissue malfunction

    International Nuclear Information System (INIS)

    Denekamp, J.

    1989-01-01

    After large doses of radiation, tissues fail to function when the proliferating cells lose their clonogenic ability. This results from unrepaired or misrepaired double strand breaks in the DNA. The lesions are inflicted immediately but there is a variable latent period before tissue damage is expressed. This ranges from a few days in intestine, to weeks in skin, and to months or years in deep visceral tissues, e.g. heart, lung, kidney, spinal cord. The latency relates to the proliferation kinetics of each tissue component. Doses of 10-30 Gy do not cause serious functional defects in differentiated cells, but they prevent successful mitosis in proliferating cells. Thus each tissue continues to function until its differentiated cells are lost by normal wear and tear processes. After a time which relates to the natural lifespan of the differentiated cells, failure to provide replacement cells from the proliferating compartment becomes important and the tissue shows atrophy and eventually a functional deficit. If the radiation exposure is divided into a series of smaller exposures or is given at a low dose-rate, the biochemical repair of DNA is more effective and less damage is observed. After high LET ionizing radiation, e.g. neutrons or α particles, the response is almost linear and is not affected by doserate or fractionation. (author)

  4. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  5. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  6. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  7. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  8. Pain and Tissue Damage in Response to Orthodontic Tooth Movement: Are They Correlated?

    Science.gov (United States)

    Cuoghi, Osmar A; Topolski, Francielle; de Faria, Lorraine P; de Mendonça, Marcos R

    2016-09-01

    To evaluate the correlation between pain and tissue damage in response to orthodontic tooth movement (OTM), such as hyalinization and external apical root resorption (EARR). The literature review was used as a methodological strategy, following the knowledge development process - constructivist (ProKnow-C). Study axes were defined and keywords that best represented each axis were selected. The terms were submitted to an adherence test and validation, resulting in 12 keyword combinations. Searches were carried out in the most representative databases for the selected terms, without restriction as for language or publication dates. Retrieved studies were filtered using the EndNote X6 program and classified according to analysis of title, abstract, and keywords. The final portfolio of articles was submitted to bibliometric and systematic analysis. A total of 1,091 studies were retrieved, out of which 719 were repeated and 335 were removed in the classification stage. A total of 37 articles remained in the final portfolio. Only one article was in line with the purpose of this study, indicating absence of correlation between pain and EARR in response to OTM. Further studies are necessary to confirm whether orthodontic pain might serve as a criterion for the use of appropriate mechanical forces, contributing to minimize tissue damage following OTM. This article presents a systematic literature review, in which scientific evidence of the correlation between pain and tissue damage during orthodontic movement was studied, providing a scientific answer for the following question: Is pain reported by patients associated with application of inappropriate orthodontic force? Thus, it aims at aiding the orthodontist in the definition of clinical parameters for the use of optimal orthodontic force.

  9. In vitro prediction of in vivo skin damage associated with the wiping of dry tissue against skin.

    Science.gov (United States)

    Koenig, David W; Dvoracek, Barb; Vongsa, Rebecca

    2013-02-01

    The ideal gentle cleansing product is one that effectively removes soils while minimizing damage to the skin. Thus, measuring physical abrasion caused by cleansing tissues is critical to the continued development of gentle cleansing products. Current analysis of cleansing materials for skin gentleness is time consuming and requires expensive human subject testing. This report describes the development of a rapid and inexpensive bench assay for the assessment of skin abrasion caused by wiping. Coefficient of friction (COF) evaluations using bench methods were compared with results from clinical studies of repeated wiping and with confocal visualizations of excised skin. A Monitor/Slip and Friction instrument (model 32-06; TMI, Amityville, NY, USA) was used to measure tissue friction on simulated skin (Vitro-Skin, N19-5X; IMS, Milford, CT, USA). Clinical data from a 4-day repetitive forearm wiping study measuring transepidermal water loss (TEWL) in 30 subjects was compared with results from the bench top assay. In addition, excised skin samples were also treated using the COF bench assay and examined using confocal microscopy to visualize stratum corneum damage caused by wiping. Using the bench COF assay, we were able to distinguish between bath tissue codes by comparing average static friction value (ASFV) for the test codes, where lower ASFV indicated less abrasive tissue. The ASFV followed the same gentleness trend observed in the clinical study. Confocal microscopy of excised skin wiped with the same materials indicated stratum corneum damage consistent with the bench COF and clinical TEWL observations. We observed significant correlation between bench and clinical methods for measuring skin damage caused by wiping of skin with tissue. The bench method will facilitate rapid and inexpensive skin gentleness assessment of cleansing materials. © 2012 John Wiley & Sons A/S.

  10. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  11. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  12. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    International Nuclear Information System (INIS)

    Freemont, Anthony J.; Hoyland, Judith

    2006-01-01

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed

  13. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  14. Modeling collagen remodeling in tissue engineered cardiovascular tissues

    NARCIS (Netherlands)

    Soares, A.L.F.

    2012-01-01

    Commonly, heart valve replacements consist of non-living materials lacking the ability to grow, repair and remodel. Tissue engineering (TE) offers a promising alternative to these replacement strategies since it can overcome its disadvantages. The technique aims to create an autologous living tissue

  15. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  16. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    Science.gov (United States)

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  17. The number of bleaching sessions influences pulp tissue damage in rat teeth.

    Science.gov (United States)

    Cintra, Luciano Tavares Angelo; Benetti, Francine; da Silva Facundo, Aguinaldo Cândido; Ferreira, Luciana Louzada; Gomes-Filho, João Eduardo; Ervolino, Edilson; Rahal, Vanessa; Briso, André Luiz Fraga

    2013-12-01

    Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. The number of bleaching sessions directly influenced the extent of pulp damage. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Effects of heavy ions on rabbit tissues: damage to the forebrain

    International Nuclear Information System (INIS)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T.

    1982-01-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of 60 Co γ-photons (LETsub(infinity)=0.3 keV/μm), Ne ions (LETsub(infinity)=35+-3 keV/μm) or Ar ions (LETsub(infinity)=90+-5 keV/μm). Other rabbits received fractionated doses of 60 Co γ-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals. (author)

  19. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  20. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  1. Risk-adjusted survival after tissue versus mechanical aortic valve replacement: a 23-year assessment.

    Science.gov (United States)

    Gaca, Jeffrey G; Clare, Robert M; Rankin, J Scott; Daneshmand, Mani A; Milano, Carmelo A; Hughes, G Chad; Wolfe, Walter G; Glower, Donald D; Smith, Peter K

    2013-11-01

    Detailed analyses of risk-adjusted outcomes after mitral valve surgery have documented significant survival decrements with tissue valves at any age. Several recent studies of prosthetic aortic valve replacement (AVR) also have suggested a poorer performance of tissue valves, although analyses have been limited to small matched series. The study aim was to test the hypothesis that AVR with tissue valves is associated with a lower risk-adjusted survival, as compared to mechanical valves. Between 1986 and 2009, primary isolated AVR, with or without coronary artery bypass grafting (CABG), was performed with currently available valve types in 2148 patients (1108 tissue valves, 1040 mechanical). Patients were selected for tissue valves to be used primarily in the elderly. Baseline and operative characteristics were documented prospectively with a consistent variable set over the entire 23-year period. Follow up was obtained with mailed questionnaires, supplemented by National Death Index searches. The average time to death or follow up was seven years, and follow up for survival was 96.2% complete. Risk-adjusted survival characteristics for the two groups were evaluated using a Cox proportional hazards model with stepwise selection of candidate variables. Differences in baseline characteristics between groups were (tissue versus mechanical): median age 73 versus 61 years; non-elective surgery 32% versus 28%; CABG 45% versus 35%; median ejection fraction 55% versus 55%; renal failure 6% versus 1%; diabetes 18% versus 7% (pvalves; however, after risk adjustment for the adverse profiles of tissue valve patients, no significant difference was observed in survival after tissue or mechanical AVR. Thus, the hypothesis did not hold, and risk-adjusted survival was equivalent, of course qualified by the fact that selection bias was evident. With selection criteria that employed tissue AVR more frequently in elderly patients, tissue and mechanical valves achieved similar survival

  2. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    Science.gov (United States)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  3. Damage to apparel layers and underlying tissue due to hand-gun bullets.

    Science.gov (United States)

    Carr, Debra; Kieser, Jules; Mabbott, Alexander; Mott, Charlotte; Champion, Stephen; Girvan, Elizabeth

    2014-01-01

    Ballistic damage to the clothing of victims of gunshot wounds to the chest can provide useful forensic evidence. Anyone shot in the torso will usually be wearing clothing which will be damaged by the penetrating impact event and can reportedly be the source of some of the debris in the wound. Minimal research has previously been reported regarding the effect of bullets on apparel fabrics and underlying tissue. This paper examines the effect of ammunition (9 mm full metal jacket [FMJ] DM11 A1B2, 8.0 g; and soft point flat nose Remington R357M3, 10.2 g) on clothing layers that cover the torso (T-shirt, T-shirt plus hoodie, T-shirt plus denim jacket) and underlying structures represented by porcine thoracic wall (skin, underlying tissue, ribs). Impacts were recorded using a Phantom V12 high speed camera. Ejected bone debris was collected before wound tracts were dissected and measured; any debris found was recovered for further analysis. Size and mass of bony debris was recorded; fibre debris recovered from the wound and impact damage to fabrics were imaged using scanning electron microscopy (SEM). Remington R357M3 ammunition was characteristically associated with stellate fabric damage; individual fibres were less likely to show mushrooming. In contrast, 9 mm FMJ ammunition resulted in punch-out damage to fabric layers, with mushrooming of individual fibres being more common. Entry wound sizes were similar for both types of ammunition and smaller than the diameter of the bullet that caused them. In this work, the Remington R357M3 ammunition resulted in larger exit wounds due to the bullet construction which mushroomed. That fabric coverings did not affect the amount of bony debris produced is interesting, particularly given there was some evidence that apparel layers affected the size of the wound. Recent work has suggested that denim (representative of jeans) can exacerbate wounding caused by high-velocity bullet impacts to the thigh when the bullet does not

  4. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.

    Science.gov (United States)

    Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J

    2008-02-01

    Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial

  5. Mechanostimulation Protocols for Cardiac Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marco Govoni

    2013-01-01

    Full Text Available Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.

  6. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  7. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    Science.gov (United States)

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  8. Comparing damage on retrieved total elbow replacement bushings with lab worn specimens subjected to varied loading conditions.

    Science.gov (United States)

    Willing, Ryan

    2018-01-09

    Complication rates following total elbow replacement (TER) with conventional implants are relatively high due to mechanical failure involving the UHMWPE bushings. Unfortunately, there are no standardized pre-clinical durability testing protocols for assessing the durability of TER components. This study examines the damage observed on retrieved humeral bushings, and then uses in vitro durability testing with two different loading protocols to compare resulting damage. Damage on 25 pairs of retrieved humeral bushings was characterized using micro-computed tomographic imaging techniques. The damage was compared with that of in vitro test specimens which were subjected to 200 K cycles of either high joint reaction force (high JRF) or high varus moment (high VM) loading. Material removal (mass loss) from bushing components was measured using gravimetric techniques. Thinning was less for retrieved bushings which were still assembled in their humeral component, versus bushings which were loose (0.3 ± 0.3 mm vs. 0.6 ± 0.3 mm, p = 0.02). Comparing in vitro test specimens, thinning due to high VM loading was 0.9 ± 0.3 mm, versus 0.2 ± 0.0 mm for high JRF loading (p = 0.08); however, the actual material removal rates from the humeral bushings were not different between the two protocols (48 ± 5 mm 3 /Mc vs. 43 ± 2 mm 3 /Mc, p = 1). Neither loading protocol could produce damage patterns fully representative of the spectrum of damage patterns observed on clinical retrievals. Pre-clinical testing should employ multiple loading protocols to characterize implant performance under a broader spectrum of usage. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  10. Perspectives for computational modeling of cell replacement for neurological disorders

    Directory of Open Access Journals (Sweden)

    James B Aimone

    2013-11-01

    Full Text Available Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.

  11. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  12. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  13. Comparison of renal artery, soft tissue, and nerve damage after irrigated versus nonirrigated radiofrequency ablation.

    Science.gov (United States)

    Sakakura, Kenichi; Ladich, Elena; Fuimaono, Kristine; Grunewald, Debby; O'Fallon, Patrick; Spognardi, Anna-Maria; Markham, Peter; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Shen, Kai; Kolodgie, Frank D; Joner, Michael; Virmani, Renu

    2015-01-01

    The long-term efficacy of radiofrequency ablation of renal autonomic nerves has been proven in nonrandomized studies. However, long-term safety of the renal artery (RA) is of concern. The aim of our study was to determine if cooling during radiofrequency ablation preserved the RA while allowing equivalent nerve damage. A total of 9 swine (18 RAs) were included, and allocated to irrigated radiofrequency (n=6 RAs, temperature setting: 50°C), conventional radiofrequency (n=6 RAs, nonirrigated, temperature setting: 65°C), and high-temperature radiofrequency (n=6 RAs, nonirrigated, temperature setting: 90°C) groups. RAs were harvested at 10 days, serially sectioned from proximal to distal including perirenal tissues and examined after paraffin embedding, and staining with hematoxylin-eosin and Movat pentachrome. RAs and periarterial tissue including nerves were semiquantitatively assessed and scored. A total of 660 histological sections from 18 RAs were histologically examined by light microscopy. Arterial medial injury was significantly less in the irrigated radiofrequency group (depth of medial injury, circumferential involvement, and thinning) than that in the conventional radiofrequency group (Pradiofrequency group (Pradiofrequency group and conventional radiofrequency group (P=0.36), there was a trend toward less nerve damage in the irrigated compared with conventional. Compared to conventional radiofrequency, circumferential medial damage in highest-temperature nonirrigated radiofrequency group was significantly greater (Pradiofrequency ablation, and there is a trend toward less nerve damage. © 2014 American Heart Association, Inc.

  14. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  15. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Arpita Chatterjee

    2018-01-01

    Full Text Available Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs, ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.

  16. Use of NASA Bioreactor in Engineering Tissue for Bone Repair

    Science.gov (United States)

    Duke, Pauline

    1998-01-01

    This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.

  17. DNA damage in plant herbarium tissue.

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  18. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  19. LYCOPENE EFFICIENCY IN THE MODULATION OF OXIDATIVE DAMAGE IN DIFFERENT TISSUES OF GAMMA IRRADIATED RATS

    International Nuclear Information System (INIS)

    EL-TAHAWY, N.A.; NADA, A.S.; REZK, R.G.

    2008-01-01

    Exposure to ionizing radiation induces oxidative stress that has been recognized as an important etiological factor in the causation of several chronic diseases. Lycopene, a carotenoid almost exclusively present in tomatoes and tomatoes products, is a lipid soluble antioxidant claimed to possess cardio protective and anticancer properties. The present study was designed to determine the possible modulator effects of lycopene on radiation-induced oxidative damage to liver, spleen and lung tissues. Animals were supplemented with lycopene (5 mg/kg body weight/ day) by gavages for two weeks before whole body exposure to gamma rays and within the period of irradiation (3 successive doses, each of 3 Gy at 72 hours intervals). Animals were sacrificed on the 3 r d day post the last irradiation session.The results obtained in the present study showed that whole body gamma irradiation produced oxidative stress manifested by significant elevation in lipid peroxides levels measured as thiobarbituric acid reactive substances (TBARS) associated with significant decrease of nitric oxide (NO) content. Non-significant change in total cupper (Cu) in the three tissues was recorded while significant increase of total iron (Fe) was observed in liver and spleen tissues only. Liver tissue of irradiated rats showed significant decrease in the activities of the antioxidant enzymes as superoxide dismutase (SOD) and catalase (CAT). In spleen tissues, there was a significant increase of SOD and significant decrease of CAT activities while in lung tissues, both SOD and CAT activities showed significant increase.Histological observations of photomicrograph of liver sections showed that radiation-induced sever damage obvious by dilated portal vein, ruptured hepatocytes, necrotic, pyknotic, karyolitic nuclei and vacuolated cytoplasm. In spleen tissue, radiation was induced degeneration of lymphatic nodules, dilation follicular artery and marked hemorrhage. In lung tissue, radiation- induces ill

  20. Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering

    Science.gov (United States)

    Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor

    2012-10-01

    Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.

  1. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  2. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  3. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering.

    Science.gov (United States)

    Rahmani Del Bakhshayesh, Azizeh; Annabi, Nasim; Khalilov, Rovshan; Akbarzadeh, Abolfazl; Samiei, Mohammad; Alizadeh, Effat; Alizadeh-Ghodsi, Mohammadreza; Davaran, Soodabeh; Montaseri, Azadeh

    2018-06-01

    The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.

  4. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  5. David valve-sparing aortic root replacement: equivalent mid-term outcome for different valve types with or without connective tissue disorder.

    Science.gov (United States)

    Kvitting, John-Peder Escobar; Kari, Fabian A; Fischbein, Michael P; Liang, David H; Beraud, Anne-Sophie; Stephens, Elizabeth H; Mitchell, R Scott; Miller, D Craig

    2013-01-01

    Although implicitly accepted by many that the durability of valve-sparing aortic root replacement in patients with bicuspid aortic valve disease and connective tissue disorders will be inferior, this hypothesis has not been rigorously investigated. From 1993 to 2009, 233 patients (27% bicuspid aortic valve, 40% Marfan syndrome) underwent Tirone David valve-sparing aortic root replacement. Follow-up averaged 4.7 ± 3.3 years (1102 patient-years). Freedom from adverse outcomes was determined using log-rank calculations. Survival at 5 and 10 years was 98.7% ± 0.7% and 93.5% ± 5.1%, respectively. Freedom from reoperation (all causes) on the aortic root was 92.2% ± 3.6% at 10 years; 3 reoperations were aortic valve replacement owing to structural valve deterioration. Freedom from structural valve deterioration at 10 years was 96.1% ± 2.1%. No significant differences were found in survival (P = .805, P = .793, respectively), reoperation (P = .179, P = .973, respectively), structural valve deterioration (P = .639, P = .982, respectively), or any other functional or clinical endpoints when patients were stratified by valve type (tricuspid aortic valve vs bicuspid aortic valve) or associated connective tissue disorder. At the latest echocardiographic follow-up (95% complete), 202 patients (94.8%) had none or trace aortic regurgitation, 10 (4.7%) mild, 0 had moderate to severe, and 1 (0.5%) had severe aortic regurgitation. Freedom from greater than 2+ aortic regurgitation at 10 years was 95.3% ± 2.5%. Six patients sustained acute type B aortic dissection (freedom at 10 years, 90.4% ± 5.0%). Tirone David reimplantation valve-sparing aortic root replacement in carefully selected young patients was associated with excellent clinical and echocardiographic outcome in patients with either a tricuspid aortic valve or bicuspid aortic valve. No demonstrable adverse influence was found for Marfan syndrome or connective tissue disorder on durability, clinical outcome

  6. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs.

    Science.gov (United States)

    Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben

    2015-06-01

    There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  8. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Leaf hairs of Olea europaea protect underlying tissues against ultraviolet-B radiation damage

    International Nuclear Information System (INIS)

    Karabourniotis, G.; Kyparissis, A.; Manetas, Y.

    1993-01-01

    The photochemical efficiency of photosystem II, as measured by chlorophyll fluorescence induction, was not affected in de-haired olive leaves kept in the dark or intact leaves irradiated with a moderate (3.75 W m-2) ultraviolet-B (UV-B) intensity. In de-haired, UV-B-irradiated leaves, however, the ratio of variable to maximum (F(v)/F(m)) chlorophyll fluorescence declined significantly and irreversibly. Reduction in F(v)/V(m) was associated with an increase in instantaneous and a decrease in maximum (F(m)) fluorescence, indicating perturbation by the UV-B exposure of more than one photosynthetic site. Extensive epidermal browning in de-haired, UV-B irradiated leaves was also observed, indicating possible damage to cell membranes. The results strengthen the hypothesis that leaf hairs protect the underlying tissues against UV-B radiation damage

  10. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2017-06-01

    Full Text Available Aim: This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Materials and Methods: Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1 expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. Results: There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Conclusion: Honey can improve the liver tissue based on: (1 Mobilization of endogenous stem cells (CD34 and CD45; (2 Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3 regeneration histologically of liver tissue.

  11. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  12. Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement

    International Nuclear Information System (INIS)

    Van Uden, S; Silva-Correia, J; Correlo, V M; Oliveira, J M; Reis, R L

    2015-01-01

    fibroblast’s cell line. This study proposed a simple, rapid, and low-cost strategy to fabricate custom-tailored annulus fibrosus scaffolds. In the future, this strategy might be used in association with nucleus pulposus regeneration strategies to facilitate the development of tissue-engineered total disc replacement implants specific to each patient, with a goal of full IVD regeneration. (paper)

  13. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells

    International Nuclear Information System (INIS)

    Zhang, H.; Wheeler, K.T.

    1994-01-01

    Detection and quantification of hypoxic cells in solid tumors is important for many experimental and clinical situations. Several laboratories, including ours, have suggested that assays which measure radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) might be used to detect or quantify hypoxic cells in tumors and normal tissues. Recently, we demonstrated the feasibility of using an alkaline elution assay that measures strand breaks and DPCs to detect and/or quantify hypoxic cells in tissues. For this approach to be valid, DPCs must not be formed to any great extent in irradiated oxygenated cells, and the formation and repair of strand breaks and DPCs in oxygenated cells must not be modified appreciably by physiological factors (e.g., temperature, pH and nutrient depletion) that are often found in solid tumors. To address these issues, two sets of experiments were performed. In one set of experiments, oxygenated 9L cells in tissue culture, subcutaneous 9L tumors and rat cerebella were irradiated with doses of 15 or 50 Gy and allowed to repair until the residual strand break damage was low enough to detect DPCs. In another set of experiments, oxygenated exponentially growing or plateau-phase 9L cells in tissue culture were irradiated with a dose of 15 Gy at 37 or 20 degrees C, while the cells were maintained at a pH of either 6.6 or 7.3. DNA-protein crosslinks were formed in oxygenated cells about 100 times less efficiently than in hypoxic cells. In addition, temperature, pH, nutrient depletion and growth phase did not appreciably alter the formation and repair of strand breaks or the formation of DPCs in oxygenated 9L cells. These results support the use of this DNA damage assay for the detection and quantification of hypoxic cells in solid tumors. 27 refs., 5 tabs

  14. Radiation damages in solids and tissues

    International Nuclear Information System (INIS)

    Cevc, P.; Kogovsek, F.; Kanduser, A.; Peternelj, M.; Skaleric, U.; Funduk, N.

    1977-01-01

    In submitted research work we have studied radiation damages in ferroelectric crystals and application of ferroelectric crystals. Studying the radiation damages we have introduced new technique of EPR measurements under high hydrostatic pressure, that will enable us to obtain additional data on crystal lattice dynamics. A change of piroelectric coefficient with high radiation doses in dopped TGS has been measured also

  15. [Pannus Formation Six-years after Aortic and Mitral Valve Replacement with Tissue Valves;Report of a Case].

    Science.gov (United States)

    Nakamura, Makoto; Muraoka, Arata; Aizawa, Kei; Akutsu, Hirohiko; Kurumisawa, Soki; Misawa, Yoshio

    2015-07-01

    A 77-year-old man presented with exertional dyspnea. He had undergone aortic and mitral valve replacement with tissue valves 6-years earlier. The patient's hemoglobin level was 9.8 g/dl and serum aspartate aminotransferase (70 mU/ml) and lactate dehydrogenase (1,112 mU/ml) were elevated. Echocardiography revealed stenosis of the prosthetic valve in the aortic position with peak flow velocity of 3.8 m/second and massive mitral regurgitation. The patient underwent repeat valve replacement. Pannus formation around both implanted valves was observed. The aortic valve orifice was narrowed by the pannus, and one cusp of the prosthesis in the mitral position was fixed and caused the regurgitation, but they were free from cusp laceration or calcification. The patient's postoperative course was uneventful, and he continues to do well 14 months after surgery.

  16. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  17. Joint Replacement Surgery: Health Information Basics for You and Your Family

    Science.gov (United States)

    ... Initiative Breadcrumb Home Health Topics English Español Joint Replacement Surgery Basics In-Depth Download Download EPUB Download ... What is it? Points To Remember About Joint Replacement Surgery Joint replacement surgery removes damaged or diseased ...

  18. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  19. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Maraelys Morales González

    2018-04-01

    Full Text Available One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.

  20. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  1. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  2. Instrumental and laboratory assessment of stressful remodelling processes in bone tissue at total hip replacement

    Directory of Open Access Journals (Sweden)

    E.V. Karjakina

    2010-06-01

    Full Text Available Research objective is to estimate stressful remodelling features of bone tissue according to the densitometry data and to the level of biochemical markers of bone resorption and formation in total hip replacement (THR. Bone tissue mineral density (BTMD, condition of calcium-phosphoric metabolism and biochemical markers of bone formation (osteocalcin and bone isoenzyme of alkaline phosphatase and resorption (С-terminal bodypeptide of the I type collagen have been determined in 52 patients with coxarthrosis of ll-lll stages with marked joint dysfunction before and after THR. The control group included 24 donors. The data were considered to be reliable when the probability index was р<0,05. The reliable (р<0,05 change of BTMD was determined only in 3-6 months after the operation, whereas the change of biochemical markers of remodeling had already been done after 1,5-3 months, allowing to define the group of patients with obvious negative bone balance: strong predominance of resorption processes without compensation of the subsequent adequate osteogenesis, that subsequently could lead to significant bone tissue deficiency in the area adjacent to the endoprosthesis. Changes of indices of calcium-phosphoric metabolism were not certain during the investigation term. ln conclusion it is to state that biochemical markers of remodeling in comparison with BTMD allow to estimate objectively features of adaptive bone tissue remodeling after THR in earlier periods and to define group of patients with sharp intensification of metabolism and obvious negative bone balance

  3. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2016-04-01

    Full Text Available The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM and other extracellular matrix (ECM proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  4. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  5. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study.

    Science.gov (United States)

    Beer, F; Körpert, W; Buchmair, A G; Passow, H; Meinl, A; Heimel, P; Moritz, A

    2013-05-01

    Since the diode laser is a good compromise for the daily use in dental offices, finding usage in numerous dental indications (e.g., surgery, periodontics, and endodontics), the minimization of the collateral damage in laser surgery is important to improve the therapeutical outcome. The aim of this study was to investigate the effect of water/air cooling on the collateral thermal soft tissue damage of 980-nm diode laser incisions. A total of 36 mechanically executed laser cuts in pork liver were made with a 980-nm diode laser in micropulsed mode with three different settings of water/air cooling and examined by histological assessment to determine the area and size of carbonization, necrosis, and reversible tissue damage as well as incision depth and width. In our study, clearly the incision depth increased significantly under water/air cooling (270.9 versus 502.3 μm-test group 3) without significant changes of incision width. In test group 2, the total area of damage was significantly smaller than in the control group (in this group, the incision depth increases by 65 %). In test group 3, the total area of damage was significantly higher (incision depth increased by 85 %), but the bigger part of it represented a reversible tissue alteration leaving the amount of irreversible damage almost the same as in the control group. This first pilot study clearly shows that water/air cooling in vitro has an effect on collateral tissue damage. Further studies will have to verify, if the reduced collateral damage we have proved in this study can lead to accelerated wound healing. Reduction of collateral thermal damage after diode laser incisions is clinically relevant for promoted wound healing.

  6. Ex Vivo Growth of Bioengineered Ligaments and Other Tissues

    Science.gov (United States)

    Altman, Gregory; Kaplan, David L.; Martin, Ivan; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues for use in surgical replacement of damaged anterior cruciate ligaments has been invented. An anterior cruciate ligament is one of two ligaments (the other being the posterior cruciate ligament) that cross in the middle of a knee joint and act to prevent the bones in the knee from sliding forward and backward relative to each other. Anterior cruciate ligaments are frequently torn in sports injuries and traffic accidents, resulting in pain and severe limitations on mobility. By making it possible to grow replacement anterior cruciate ligaments that structurally and functionally resemble natural ones more closely than do totally synthetic replacements, the method could create new opportunities for full or nearly full restoration of functionality in injured knees. The method is also adaptable to the growth of bioengineered replacements for other ligaments (e.g., other knee ligaments as well as those in the hands, wrists, and elbows) and to the production of tissues other than ligaments, including cartilage, bones, muscles, and blood vessels. The method is based on the finding that the histomorphological properties of a bioengineered tissue grown in vitro from pluripotent cells within a matrix are affected by the direct application of mechanical force to the matrix during growth generation. This finding provides important new insights into the relationships among mechanical stress, biochemical and cell-immobilization methods, and cell differentiation, and is applicable to the production of the variety of tissues mentioned above. Moreover, this finding can be generalized to nonmechanical (e.g., chemical and electromagnetic) stimuli that are experienced in vivo by tissues of interest and, hence, the method can be modified to incorporate such stimuli in the ex vivo growth of replacements for the various tissues mentioned above. In this method, a three-dimensional matrix made of a suitable material is seeded with pluripotent stem

  7. Modulation of radiation induced DNA damage by natural products in hemopoietic tissue of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2014-01-01

    Ionizing radiation is known to induce oxidative stress through generation of ROS leading to a variety of DNA lesions. However, the most dangerous DNA lesions which are responsible for the origin of lethal effects, mutagenesis, genomic instability and carcinogenesis are the DSBs. During recent years efforts are being made to identify phytochemicals, antioxidants or neutraxeuticals which can reduce harmful effect of radiation during accidental exposure or prevent normal tissue injury during radiotherapy. In the present study, we have investigated the radioprotective role of curcumin, a dietary antioxidant, taurine, malabaricone-C, and umbelliferone, for their radioprotective properties in hemopoietic cells of mice. Groups of mice-were fed 1% of curcumin in diet for three weeks. Similarly other groups of mice were injected i.p. with 50 mg/kg body weight of taurine for five consecutive days. After the completion of the treatment mice pre-treated with curcumin and taurine were exposed to 3 Gy of gamma rays. Malabaricone-C was tested for its radiomodulation potential in vitro, in spleenocytes of mouse. Spleenocytes were isolated and treated with different concentrations (0.5-25 ìM) of malabaricone-C. Immediately after irradiation, alkaline comet assay were performed using standard procedures. Twenty four post radiation exposure mice were sacrificed for micronucleus test. Results of these studies showed significant reduction in DNA damage by curcumin. The micronucleus data showed marginal increase in the frequency of micronucleated erythrocytes in curcumin fed group as compared to the controls. Mice receiving curcumin for 3 weeks in diet followed by gamma radiation (3 Gy), showed approximately 50% reduction in the frequency of micro nucleated polychromatic erythrocytes. Pre-treatment of mice with taurine significantly (p < 0.01) reduced the frequency of gamma rays induced mn-PCEs in bone marrow tissue. Malabaricone-C at 1.5 ìM concentration showed very good protection

  8. Fibre-reinforced hydrogels for tissue engineering

    Science.gov (United States)

    Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan

    2017-11-01

    Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).

  9. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  10. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  11. Reliability tests for reactor internals replacement technology

    International Nuclear Information System (INIS)

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  12. Modification by cystamine of radiation-induced free radical damages to biomolecules in tissues of mouse organs

    International Nuclear Information System (INIS)

    Svistunenko, D.A.; Gudtsova, K.V.

    1989-01-01

    The method of low-temperature ESR-spectroscopy was used to study a modifying effect of cystamine on the yield of radiation-induced free radicals in different biomolecules of liver and spleen tissues of mice. Intraperitoneal administration of cystamine (150 mg/kg) 15 min before isolation and freezing of the tissues was shown to reduce by 11 per cent the yield of radicals of H-adducts of thymine DNA bases, to decrease by 23 per cent the yield of radicals of triacyglycerol and phospholipid radiolysis, and to increase by 24 per cent the yield of radicals of lipid fatty acid residues in splenic tissues. According to the criterion used, cystamine has no modyfying action on the yield of free-radical damages to liver biomolecules

  13. Comparison of single, fractionated and hyperfractionated irradiation on the development of normal tissue damage in rat lung

    International Nuclear Information System (INIS)

    Giri, P.G.S.; Kimler, B.F.; Giri, U.P.; Cox, G.G.; Reddy, E.K.

    1985-01-01

    The effect of fractionated thoracic irradiation on the development of normal tissue damage in rats was compared to that produced by single doses. Animals received a single dose of 15 Gy, 30 Gy in 10 daily fractions of 3 Gy each (fractionation), or 30 Gy in 30 fractions of 1 Gy each 3 times a day (hyperfractionation). The treatments produced minimal lethality since a total of only 6 animals died between days 273 and 475 after the initiation of treatment, with no difference in survival observed between the control and any of the 3 treated groups. Despite the lack of lethality, evidence of lung damage was obtained by histological examination. Animals that had received either single doses or fractionated doses had more of the pulmonary parenchyma involved than did animals that had received hyperfractionated doses. The authors conclude that, in the rat lung model, a total radiation dose of 30 Gy fractionated over 14 days produces no more lethality nor damage to lung tissue than does 15 Gy delivered as a single dose. However, long-term effects as evidenced by deposits of collagen and development of fibrosis are significantly reduced by hyperfractionation when compared to single doses and daily fractionation

  14. Long Term Survivorship of a Severely Notched Femoral Stem after Replacing the Fractured Ceramic head with a Cobalt-Chromium Head.

    Science.gov (United States)

    Panagopoulos, Andreas; Tatani, Irini; Megas, Panagiotis

    2016-01-01

    Although ceramic head fracture occurs infrequently today, in the event of a fracture, the resulting revision surgery can prove very challenging, since the ceramic particles lodge into the surrounding soft tissue and can cause rapid implant failure. A case of long term survivorship of a severed notched femoral stem after replacing the fractured femoral head with a cobalt-chromium one is reported in a 40-year old woman with hip dysplasia who underwent an uncomplicated total hip arthroplasty. The incident of ceramic femoral head fracture occurred 14 months postoperatively without reporting any significant trauma. Intraoperative findings at revision were a multifragmented femoral head and a damaged polyethylene insert along with diffuse metallosis and excessive wear of the cone of the stem. Both the stem and the acetabular component were stable. After removal of ceramic fragments, metallotic tissue excision and careful lavage of the joint, the inlay was replaced by a similar one and a cobalt-chromium femoral head was placed to the existing notched taper of the firmly incorporated stem. At the 13 th year follow up examination, the patient had no pain, used no walking aids, and had normal activity with no signs of wearing or loosening in the plain x-rays. Despite current recommendations of using ceramic femoral heads in cases of fracture or to revise the severely damaged stems we were able to provide a long term survivorship up to 13 years postoperatively of a cobalt-chromium femoral head applied to a severe damaged stem.

  15. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  16. Turbine casing bolts; a life assessment and bolt replacement strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J H [ESB, Power Generation, Dublin (Ireland)

    1999-12-31

    The present presentation describes a detailed study concerning the life assessment and replacement strategy of large turbine casing bolts in a 120 MW steam raising unit. After 122000 hours service, circa 1991/92, the Cr-Mo-V steel casing bolts, involving a total of 184 bolts, from two identical 120 MW units, termed Units 1 and 2, were examined to establish the extent of Reverse Temper Embrittlement, RTE, and creep damage suffered during service. The bolt replacement plans for the two units were as follows; Unit 1 bolts were completely replaced with new bolts while Unit 2 embrittled bolts were withdrawn from service and replaced with Non- Embrittled bolts from Unit 1; basically Unit 2 bolts were made up from a mixture of Unit 1 and 2 Non- Embrittled bolts which had been in service for 122000 hours. Remnant life assessments, concerning both embrittlement and creep damage aspects, were earned out on this series of easing bolts at service times 122000, 150000 and 200000 hours. These assessments involved the use of general embrittlement and creep damage laws which were empirically derived and concerned such parameters as microstructural grain size, bulk phosphorus content and accumulated service strain. (orig.) 7 refs.

  17. Turbine casing bolts; a life assessment and bolt replacement strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J.H. [ESB, Power Generation, Dublin (Ireland)

    1998-12-31

    The present presentation describes a detailed study concerning the life assessment and replacement strategy of large turbine casing bolts in a 120 MW steam raising unit. After 122000 hours service, circa 1991/92, the Cr-Mo-V steel casing bolts, involving a total of 184 bolts, from two identical 120 MW units, termed Units 1 and 2, were examined to establish the extent of Reverse Temper Embrittlement, RTE, and creep damage suffered during service. The bolt replacement plans for the two units were as follows; Unit 1 bolts were completely replaced with new bolts while Unit 2 embrittled bolts were withdrawn from service and replaced with Non- Embrittled bolts from Unit 1; basically Unit 2 bolts were made up from a mixture of Unit 1 and 2 Non- Embrittled bolts which had been in service for 122000 hours. Remnant life assessments, concerning both embrittlement and creep damage aspects, were earned out on this series of easing bolts at service times 122000, 150000 and 200000 hours. These assessments involved the use of general embrittlement and creep damage laws which were empirically derived and concerned such parameters as microstructural grain size, bulk phosphorus content and accumulated service strain. (orig.) 7 refs.

  18. Protective effect of hydroalcoholic extract of tribulus terrestris on Cisplatin induced renal tissue damage in male mice.

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  19. Crossroads of Wnt and Hippo in epithelial tissues.

    Science.gov (United States)

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  1. Negative Outcomes of Poly(l-Lactic Acid) Fiber-Reinforced Scaffolds in an Ovine Total Meniscus Replacement Model.

    Science.gov (United States)

    Patel, Jay M; Merriam, Aaron R; Kohn, Joachim; Gatt, Charles J; Dunn, Michael G

    2016-09-01

    Our objective was to test the efficacy of collagen-hyaluronan scaffolds reinforced with poly(l-lactic acid) (PLLA) fibers in an ovine total meniscus replacement model. Scaffolds were implanted into 9 sheep (n = 1 at 8 weeks, n = 2 at 16 weeks, n = 3 at both 24, 32 weeks) following total medial meniscectomy. From 16 weeks on, explants were characterized by confined compression creep, histological, and biochemical analyses. Articular surfaces were observed macroscopically and damage was ranked histologically using the Mankin score. At sacrifice, three of the nine PLLA scaffolds had completely ruptured, and the intact scaffolds experienced progressive shape changes and severe narrowing in the body region at 16, 24, and 32 weeks. Aggregate compressive modulus and permeability did not improve with time. Histological and biochemical analyses showed significantly less extracellular matrix and less matrix organization compared to native tissue. Osteophytes, bone erosion, and cartilage damage were observed, increasing with time postimplantation. A buildup of lactic acid and/or the rapid loss of scaffold mechanical integrity due to PLLA degradation are probable causes for the joint abnormalities observed in this study. These results are in sharp contrast to those of our previous successful total meniscus replacement studies using polyarylate [p(DTD DD)] fiber-reinforced scaffolds. This suggests that PLLA fiber as produced in this study cannot be used as reinforcement for a meniscus replacement scaffold.

  2. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    Science.gov (United States)

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  3. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    Directory of Open Access Journals (Sweden)

    Dota A

    2013-01-01

    Full Text Available Atsuyoshi Dota, Yuko Takaoka-Shichijo, Masatsugu NakamuraOphthalmic Research and Development Center, Santen Pharmaceutical Co, Ltd, Ikoma-shi, Nara, JapanPurpose: The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models.Methods: Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model.Results: Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score.Conclusion: These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.Keywords: gefarnate, fluorescein staining, rose bengal permeability, rabbit, cat, dry eye

  4. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar

    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane

  5. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  6. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  7. Effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage

    Directory of Open Access Journals (Sweden)

    Nan-Lin Meng

    2017-05-01

    Full Text Available Objective: To study the effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage. Methods: Patients with pulpal and periapical diseases who received root canal therapy in our hospital between May 2013 and October 2016 were retrospectively analyzed, and according to the different root canal filling materials they used, they were divided into epoxy group and bioceramic group who used epoxy paste and bioceramic paste as root canal filling materials respectively. Before and after treatment, gingival crevicular fluid was collected respectively to determine the levels of inflammatory factors, oxidative stress products, cell apoptosis molecules and protease-related molecules. Results: 2 weeks after treatment, IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid of epoxy group were not significantly different from those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1 and MMP-2 levels in gingival crevicular fluid of bioceramic group were significantly higher than those before treatment while Bcl-2, TIMP-1 and TIMP-2 levels were significantly lower than those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid were significantly different between two groups of patients after treatment. Conclusion: Epoxy paste for dental restoration causes less damage to periodontal tissue than bioceramic paste.

  8. Effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage

    Institute of Scientific and Technical Information of China (English)

    Nan-Lin Meng

    2017-01-01

    Objective:To study the effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage.Methods: Patients with pulpal and periapical diseases who received root canal therapy in our hospital between May 2013 and October 2016 were retrospectively analyzed, and according to the different root canal filling materials they used, they were divided into epoxy group and bioceramic group who used epoxy paste and bioceramic paste as root canal filling materials respectively. Before and after treatment, gingival crevicular fluid was collected respectively to determine the levels of inflammatory factors, oxidative stress products, cell apoptosis molecules and protease-related molecules.Results: 2 weeks after treatment, IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid of epoxy group were not significantly different from those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1 and MMP-2 levels in gingival crevicular fluid of bioceramic group were significantly higher than those before treatment while Bcl-2, TIMP-1 and TIMP-2 levels were significantly lower than those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid were significantly different between two groups of patients after treatment.Conclusion:Epoxy paste for dental restoration causes less damage to periodontal tissue than bioceramic paste.

  9. Stochastic Threshold Exponential (TE) Model for Hematopoietic Tissue Reconstitution Deficit after Radiation Damage.

    Science.gov (United States)

    Scott, B R; Potter, C A

    2014-07-01

    Whole-body exposure to large radiation doses can cause severe loss of hematopoietic tissue cells and threaten life if the lost cells are not replaced in a timely manner through natural repopulation (a homeostatic mechanism). Repopulation to the baseline level N 0 is called reconstitution and a reconstitution deficit (repopulation shortfall) can occur in a dose-related and organ-specific manner. Scott et al. (2013) previously introduced a deterministic version of a threshold exponential (TE) model of tissue-reconstitution deficit at a given follow-up time that was applied to bone marrow and spleen cellularity (number of constituent cells) data obtained 6 weeks after whole-body gamma-ray exposure of female C.B-17 mice. In this paper a more realistic, stochastic version of the TE model is provided that allows radiation response to vary between different individuals. The Stochastic TE model is applied to post gamma-ray-exposure cellularity data previously reported and also to more limited X-ray cellularity data for whole-body irradiated female C.B-17 mice. Results indicate that the population average threshold for a tissue reconstitution deficit appears to be similar for bone marrow and spleen and for 320-kV-spectrum X-rays and Cs-137 gamma rays. This means that 320-kV spectrum X-rays could successfully be used in conducting such studies.

  10. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage

    Science.gov (United States)

    Lokhandwalla, Murtuza; Sturtevant, Bradford

    2000-07-01

    Focused shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) cause stone fragmentation. The process of stone fragmentation is described in terms of a dynamic fracture process. As is characteristic of all brittle materials, fragmentation requires nucleation, growth and coalescence of flaws, caused by a tensile or shear stress. The mechanisms, operative in the stone, inducing these stresses have been identified as spall and compression-induced tensile microcracks, nucleating at pre-existing flaws. These mechanisms are driven by the lithotripter-generated shock wave and possibly also by cavitation effects in the surrounding fluid. In this paper, the spall mechanism has been analysed, using a cohesive-zone model for the material. The influence of shock wave parameters, and physical properties of stone, on stone comminution is described. The analysis suggests a potential means to exploit the difference between the stone and tissue physical properties, so as to make stone comminution more effective, without increasing tissue damage.

  11. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  12. Tissue engineered devices for ligament repair, replacement and ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-29

    Dec 29, 2009 ... These devices use a wide variety of materials and designs to replicate ligament mechanics and allow for new tissue regeneration. Key words: Anterior cruciate ligament (ACL), tissue engineering, cells, tensile, stress relaxation, polymer, allograft, xenograft. INTRODUCTION. The anterior cruciate ligament ...

  13. Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice

    Directory of Open Access Journals (Sweden)

    Amir Raoofi

    2015-01-01

    Full Text Available Background: According beneficial effects of Tribulus terrestris (TT extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS (EBEWE Pharma, Unterach, Austria induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6. The first group (control was treated with normal saline (0.9% NaCl and experimental groups with CIS (E1, CIS + 100 mg/kg extract of TT (E2, CIS + 300 mg/kg extract of TT (E3, CIS + 500 mg/kg extract of TT (E4 intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey′s post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman′s capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  14. Protective Effect of Hydroalcoholic Extract of Tribulus Terrestris on Cisplatin Induced Renal Tissue Damage in Male Mice

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    Background: According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal–Wallis and Mann–Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice. PMID:25789143

  15. Tissue properties and collagen remodeling in heart valve tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.

    2012-01-01

    Valvular heart disease is a major health problem worldwide causing morbidity and mortality. Heart valve replacement is frequently applied to avoid serious cardiac, pulmonary, or systemic problems. However, the current replacements do not consist of living tissue and, consequently, cannot grow,

  16. Feed water distribution pipe replacement at Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.; Elsing, B. [Imatran Voima Loviisa NPP (Finland)

    1995-12-31

    Imatran Voima Oy operates two WWER-440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of feed water distribution (FWD) pipe were observed in 1989. The FWD-pipe T-connection had suffered from severe erosion corrosion damages. Similar damages have been been found also in other WWER-440 type NPPs. In 1989 the nozzles of the steam generator YB11 were inspected. No signs of the damages or signs of erosion were detected. The first damaged nozzles were found in 1992 in steam generators of both units. In 1992 it was started studying different possibilities to either repair or replace the damaged FWD-pipes. Due to the difficult conditions for repairing the damaged nozzles it was decided to study different FWD-pipe constructions. In 1991 two new feedwater distributors had been implemented at Dukovany NPP designed by Vitckovice company. Additionally OKB Gidropress had presented their design for new collector. In spring 1994 all the six steam generators of Rovno NPP unit 1 were replaced with FWD-pipes designed by OKB Gidropress. After the implementation an experimental program with the new systems was carried out. Due to the successful experiments at Rovno NPP Unit 1 it was decided to implement `Gidropress solution` during 1994 refueling outage into the steam generator YB52 at Loviisa 2. The object of this paper is to discuss the new FWD-pipe and its effects on the plant safety during normal and accident conditions. (orig.).

  17. Feed water distribution pipe replacement at Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S; Elsing, B [Imatran Voima Loviisa NPP (Finland)

    1996-12-31

    Imatran Voima Oy operates two WWER-440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of feed water distribution (FWD) pipe were observed in 1989. The FWD-pipe T-connection had suffered from severe erosion corrosion damages. Similar damages have been been found also in other WWER-440 type NPPs. In 1989 the nozzles of the steam generator YB11 were inspected. No signs of the damages or signs of erosion were detected. The first damaged nozzles were found in 1992 in steam generators of both units. In 1992 it was started studying different possibilities to either repair or replace the damaged FWD-pipes. Due to the difficult conditions for repairing the damaged nozzles it was decided to study different FWD-pipe constructions. In 1991 two new feedwater distributors had been implemented at Dukovany NPP designed by Vitckovice company. Additionally OKB Gidropress had presented their design for new collector. In spring 1994 all the six steam generators of Rovno NPP unit 1 were replaced with FWD-pipes designed by OKB Gidropress. After the implementation an experimental program with the new systems was carried out. Due to the successful experiments at Rovno NPP Unit 1 it was decided to implement `Gidropress solution` during 1994 refueling outage into the steam generator YB52 at Loviisa 2. The object of this paper is to discuss the new FWD-pipe and its effects on the plant safety during normal and accident conditions. (orig.).

  18. MRI in diagnostic of soft tissue damages by fractures of lateral tibial plate

    International Nuclear Information System (INIS)

    Dimitrova, D.; Proichev, V.; Popov, I.

    2015-01-01

    Full text: The knee is one of the most often injured joint. Fractures of tibial condyles are the most common articular damages. Koton and Berg call them „bumper“ fractures the tibia plateau is vulnerable to both high- and low-energy injury mechanisms due to its vulnerable position in the lower extremity. It must bear significant weight and sustain significant impact and deceleration forces with little skeletal constraint, and has scant surrounding soft tissue and a tethered medial and lateral integument. Furthermore, the tibial plateau has relatively forgiving ligamentous attachments that must allow for a large range of motion in a single plane. Not surprisingly, given the diversity of injury, management of these fractures has come to include a wide variety of treatment strategies. traditionally, ligament injury associated with plateau fractures has been diagnosed indirectly with stress radiographs and physical examination. With increasing use of more sensitive MRI and arthroscopy, associated ligament and meniscus injuries have been found in significant percentages of plateau fractures. these soft tissue injuries consist primarily of MCL lesions, meniscal injuries, and ACL disruptions. However, studies addressing associated soft tissue injuries all agree that neither the type of plateau fracture nor the presence or absence of ligament injury correlates with the incidence of meniscal tears

  19. PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing.

    Science.gov (United States)

    Eshel-Green, Tal; Eliyahu, Shaked; Avidan-Shlomovich, Shlomit; Bianco-Peled, Havazelet

    2016-06-15

    Utilization of animal parts in ex-vivo mucoadhesion assays is a common approach that presents many difficulties due to animal rights issues and large variance between animals. This study examines the suitability of two PEGDA (poly(ethylene glycol) diacrylate) based hydrogels to serve as tissue mimetics for mucoadhesion evaluation. One hydrogel, termed PEGDA-QT, was composed of pentaerythritol tetrakis (3-mercaptopropionate) and PEG and contained free thiol groups mimicking those found in natural mucosa. The other hydrogel was formed by UV (ultraviolet) curing of PEGDA and mimicked the mechanical property of mucosa but not its chemical constitute. When ranking different first generation mucoadhesive polymers using a tensile assay, both hydrogels showed good agreement with the ranking achieved for porcine small intestine. However, only PEGDA-QT and porcine small intestine shared a similar displacement curve. The same ranking for PEGDA-QT and porcine small intestine was also observed when comparing a second-generation mucoadhesive polymer, thiolated alginate, to native alginate. Our findings suggest that PEGDA-QT could serve as a replacement for porcine small intestine in both mucoadhesion evaluations using a tensile machine and the flow-through method for first and second-generation mucoadhesive polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    International Nuclear Information System (INIS)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko

    1994-01-01

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with 137 Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs

  1. Nuclear facilities: repair and replacement technologies

    International Nuclear Information System (INIS)

    2005-01-01

    The oldest operating reactors are more than 35 years old and are now facing major maintenance operations. The first replacement of a pressurizer took place in autumn 2005 at the St-Lucie plant (Usa) while steam generators have been currently replaced since 1983. Nuclear industry has to adapt to this new market by proposing innovative technological solutions in the reactor maintenance field. This document gathers the 9 papers presented at the conference. The main improvements concern repair works on internal components of PWR-type reactors, the replacement of major components of the primary coolant circuit and surface treatments to limit the propagation of damages. The first paper shows that adequate design and feedback experience are good assets to manage the ageing of a nuclear unit. Another paper shows that a new repair method of a relief valve can avoid its replacement. (A.C.)

  2. Dynamic compression of human and ovine meniscal tissue compared with a potential thermoplastic elastomer hydrogel replacement.

    Science.gov (United States)

    Fischenich, Kristine M; Boncella, Katie; Lewis, Jackson T; Bailey, Travis S; Haut Donahue, Tammy L

    2017-10-01

    Understanding how human meniscal tissue responds to loading regimes mimetic of daily life as well as how it compares to larger animal models is critical in the development of a functionally accurate synthetic surrogate. Seven human and eight ovine cadaveric meniscal specimens were regionally sectioned into cylinders 5 mm in diameter and 3 mm thick along with 10 polystyrene-b-polyethylene oxide block copolymer-based thermoplastic elastomer (TPE) hydrogels. Samples were compressed to 12% strain at 1 Hz for 5000 cycles, unloaded for 24 h, and then retested. No differences were found within each group between test one and test two. Human and ovine tissue exhibited no regional dependency (p Human samples relaxed quicker than ovine tissue or the TPE hydrogel with modulus values at cycle 50 not significantly different from cycle 5000. Ovine menisci were found to be similar to human menisci in relaxation profile but had significantly higher modulus values (3.44 MPa instantaneous and 0.61 MPa after 5000 cycles compared with 1.97 and 0.11 MPa found for human tissue) and significantly different power law fit coefficients. The TPE hydrogel had an initial modulus of 0.58 MPa and experienced less than a 20% total relaxation over the 5000. Significant differences in the magnitude of compressive modulus between human and ovine menisci were observed, however the relaxation profiles were similar. Although statistically different than the native tissues, modulus values of the TPE hydrogel material were similar to those of the human and ovine menisci, making it a material worth further investigation for use as a synthetic replacement. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2722-2728, 2017. © 2017 Wiley Periodicals, Inc.

  3. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  4. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  5. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages.

    Directory of Open Access Journals (Sweden)

    Julia Esser-von Bieren

    Full Text Available Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα, but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp. Mice lacking antibodies (JH (-/- or activating Fc receptors (FcRγ(-/- harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

  6. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

    2016-10-01

    In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.

    Science.gov (United States)

    Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide

    2018-02-01

    Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal

  8. Scientific and industrial status of tissue engineering

    African Journals Online (AJOL)

    SERVER

    2007-12-28

    Dec 28, 2007 ... with artificial materials e.g. replacement of aortic artery with Dacron. ... Employment of living cells to replace the lost tissue, which is the basis of tissue ...... by the US National Intelligence Council, the Intelligence. Technology ...

  9. Effects of different progestin regimens in hormone replacement therapy on blood coagulation factor VII and tissue factor pathway inhibitor

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Skouby, S O.; Andersen, L F

    2002-01-01

    BACKGROUND: Long-term hormone replacement therapy (HRT) reduces cardiovascular risk, but an early increased risk was reported in women with coronary heart disease. In such women the arterial intima can express tissue factor, and changes in coagulation factor VII (factor VII) and tissue factor...... pathway inhibitor (TFPI) may be deleterious. METHODS: We measured factor VII clotting activity, activated factor VII, and concentrations of factor VII and TFPI during 12 months in healthy post-menopausal women randomized to: (i). cyclic oral estrogen/progestin (n = 25); (ii). long-cycle oral estrogen......: No variations were observed in the reference group. There was a substantial decrease in TFPI concentrations in the HRT groups irrespective of the type of progestin. In women receiving long-cycle treatment, all factor VII measures increased during the unopposed estrogen periods, and the increase was reversed...

  10. Regeneration and replacement in the vertebrate inner ear.

    Science.gov (United States)

    Matsui, Jonathan I; Parker, Mark A; Ryals, Brenda M; Cotanche, Douglas A

    2005-10-01

    Deafness affects more than 40 million people in the UK and the USA, and many more world-wide. The primary cause of hearing loss is damage to or death of the sensory receptor cells in the inner ear, the hair cells. Birds can readily regenerate their cochlear hair cells but the mammalian cochlea has shown no ability to regenerate after damage. Current research efforts are focusing on gene manipulation, gene therapy and stem cell transplantation for repairing or replacing damaged mammalian cochlear hair cells, which could lead to therapies for treating deafness in humans.

  11. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  12. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  13. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  14. Enzyme Replacement Therapy for Fabry Disease

    Directory of Open Access Journals (Sweden)

    Maria Dolores Sanchez-Niño PhD

    2016-11-01

    Full Text Available Fabry disease is a rare X-linked disease caused by the deficiency of α-galactosidase that leads to the accumulation of abnormal glycolipid. Untreated patients develop potentially lethal complications by age 30 to 50 years. Enzyme replacement therapy is the current standard of therapy for Fabry disease. Two formulations of recombinant human α-galactosidase A (agalsidase are available in most markets: agalsidase-α and agalsidase-β, allowing a choice of therapy. However, the US Food and Drug Administration rejected the application for commercialization of agalsidase-α. The main difference between the 2 enzymes is the dose. The label dose for agalsidase-α is 0.2 mg/kg/2 weeks, while the dose for agalsidase-β is 1.0 mg/kg/2 weeks. Recent evidence suggests a dose-dependent effect of enzyme replacement therapy and agalsidase-β is 1.0 mg/kg/2 weeks, which has been shown to reduce the occurrence of hard end points (severe renal and cardiac events, stroke, and death. In addition, patients with Fabry disease who have developed tissue injury should receive coadjuvant tissue protective therapy, together with enzyme replacement therapy, to limit nonspecific progression of the tissue injury. It is likely that in the near future, additional oral drugs become available to treat Fabry disease, such as chaperones or substrate reduction therapy.

  15. Neoproteoglycans in tissue engineering

    Science.gov (United States)

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  16. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  17. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  18. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of

  19. In Vivo Wear Performance of Cobalt-Chromium Versus Oxidized Zirconium Femoral Total Knee Replacements.

    Science.gov (United States)

    Gascoyne, Trevor C; Teeter, Matthew G; Guenther, Leah E; Burnell, Colin D; Bohm, Eric R; Naudie, Douglas R

    2016-01-01

    This study examines the damage and wear on the polyethylene (PE) inserts from 52 retrieved Genesis II total knee replacements to identify differences in tribological performance between matched pairs of cobalt-chromium (CoCr) and oxidized zirconium (OxZr) femoral components. Observer damage scoring and microcomputed tomography were used to quantify PE damage and wear, respectively. No significant differences were found between CoCr and OxZr groups in terms of PE insert damage, surface penetration, or wear. No severe damage such as cracking or delamination was noted on any of the 52 PE inserts. Observer damage scoring did not correlate with penetrative or volumetric PE wear. The more costly OxZr femoral component does not demonstrate clear tribological benefit over the standard CoCr component in the short term with this total knee replacement design. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  1. Long-Term Survival of Dialysis Patients with Bacterial Endocarditis Undergoing Valvular Replacement Surgery in the United States

    Science.gov (United States)

    Leither, Maxwell D.; Shroff, Gautam R.; Ding, Shu; Gilbertson, David T.; Herzog, Charles A.

    2013-01-01

    Background Bacterial endocarditis in dialysis patients is associated with high mortality rates. The literature is limited regarding long-term outcomes of valvular replacement surgery and choice of prosthesis in dialysis patients with bacterial endocarditis. Methods and Results Dialysis patients hospitalized for bacterial endocarditis, 2004-2007, were studied retrospectively using data from the US Renal Data System. Long-term survival of patients undergoing valve replacement surgery with tissue or non-tissue valves was compared using the Kaplan-Meier method. A Cox proportional hazards model was used to identify independent predictors of mortality in patients undergoing valvular replacement surgery. During the study period, 11,156 dialysis patients were hospitalized for bacterial endocarditis and 1267 (11.4%) underwent valvular replacement surgery (tissue valve 44.3%, non-tissue valve 55.7%). In the valve replacement cohort, 60% were men, 50% white, 54% aged 45-64 years, and 36% diabetic. Estimated survival with tissue and non-tissue valves, respectively, at 0.5, 1, 2, and 3 years was 59% and 60%, 48% and 50%, 35% and 37%, and 25% and 30% (log rank P = 0.42). Staphylococcus was the predominant organism (66% of identified organisms). Independent predictors of mortality in patients undergoing valve replacement surgery included older age, diabetes as cause of end-stage renal disease, surgery during index hospitalization, staphylococcus as the causative organism, and dysrhythmias as a comorbid condition. Conclusions Valve replacement surgery is appropriate for well-selected dialysis patients with bacterial endocarditis, but is associated with high mortality rates. Survival does not differ with tissue or non-tissue prosthesis. PMID:23785002

  2. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser.

    Science.gov (United States)

    Hendriks, Marja-Liisa; van der Valk, Paul; Lambalk, Cornelis B; Broeckaert, Mark A M; Homburg, Roy; Hompes, Peter G A

    2010-02-01

    To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Experimental prospective design. University clinic. Six fresh bovine ovaries per technique. Carbon dioxide (CO(2)) laser, monopolar electrocoagulation, and bipolar electrocoagulation were used for in vitro ovarian drilling. Amount of inflicted ovarian damage per procedure. Bipolar electrocoagulation resulted in significantly more destruction per burn than the CO(2) laser and monopolar electrocoagulation (287.6 versus 24.0 and 70.0 mm(3), respectively). The damage found per lesion was multiplied by the regularly applied number of punctures per procedure in daily practice (based on the literature). Again, the bipolar electrocoagulation resulted in significantly more tissue damage than the CO(2) laser and monopolar coagulation (2,876 versus 599 and 700 mm(3), respectively). Ovarian drilling, especially bipolar electrocoagulation, causes extensive destruction of the ovary. Given the same clinical effectiveness of the various procedures, it is essential to use the lowest possible dose that works; thus, the first choice should be CO(2) laser or monopolar electrocoagulation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine.

    Directory of Open Access Journals (Sweden)

    Yu Moriguchi

    Full Text Available The most common reason that adults in the United States see their physician is lower back or neck pain secondary to degenerative disc disease. To date, approaches to treat degenerative disc disease are confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Tissue engineered intervertebral discs (TE-IVDs have been proposed as an alternative approach and have shown promise in replacing native IVD in the rodent tail spine. Here we demonstrate the efficacy of our TE-IVDs in the canine cervical spine. TE-IVD components were constructed using adult canine annulus fibrosis and nucleus pulposus cells seeded into collagen and alginate hydrogels, respectively. Seeded gels were formed into a single disc unit using molds designed from the geometry of the canine spine. Skeletally mature beagles underwent discectomy with whole IVD resection at levels between C3/4 and C6/7, and were then divided into two groups that received only discectomy or discectomy followed by implantation of TE-IVD. Stably implanted TE-IVDs demonstrated significant retention of disc height and physiological hydration compared to discectomy control. Both 4-week and 16-week histological assessments demonstrated chondrocytic cells surrounded by proteoglycan-rich matrices in the NP and by fibrocartilaginous matrices in the AF portions of implanted TE-IVDs. Integration into host tissue was confirmed over 16 weeks without any signs of immune reaction. Despite the significant biomechanical demands of the beagle cervical spine, our stably implanted TE-IVDs maintained their position, structure and hydration as well as disc height over 16 weeks in vivo.

  4. Epimorphic regeneration approach to tissue replacement in adult mammals

    Science.gov (United States)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  5. Bioactive scaffolds for the controlled formation of complex skeletal tissues

    NARCIS (Netherlands)

    Hofmann, S.; Garcia-Fuentes, M.; Eberli, D.

    2011-01-01

    Tissue Engineering may offer new treatment alternatives for organ replacement or repair deteriorated organs. Among the clinical applications of Tissue Engineering are the production of artificial skin for burn patients, tissue engineered trachea, cartilage for knee-replacement procedures, urinary

  6. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    Science.gov (United States)

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2018-06-01

    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  7. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    Science.gov (United States)

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  8. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing.

    Science.gov (United States)

    Partridge, Susan; Tipper, Joanne L; Al-Hajjar, Mazen; Isaac, Graham H; Fisher, John; Williams, Sophie

    2018-05-01

    Wear and fatigue of polyethylene acetabular cups have been reported to play a role in the failure of total hip replacements. Hip simulator testing under a wide range of clinically relevant loading conditions is important. Edge loading of hip replacements can occur following impingement under extreme activities and can also occur during normal gait, where there is an offset deficiency and/or joint laxity. This study evaluated a hip simulator method that assessed wear and damage in polyethylene acetabular liners that were subjected to edge loading. The liners tested to evaluate the method were a currently manufactured crosslinked polyethylene acetabular liner and an aged conventional polyethylene acetabular liner. The acetabular liners were tested for 5 million standard walking cycles and following this 5 million walking cycles with edge loading. Edge loading conditions represented a separation of the centers of rotation of the femoral head and the acetabular liner during the swing phase, leading to loading of the liner rim on heel strike. Rim damage and cracking was observed in the aged conventional polyethylene liner. Steady-state wear rates assessed gravimetrically were lower under edge loading compared to standard loading. This study supports previous clinical findings that edge loading may cause rim cracking in liners, where component positioning is suboptimal or where material degradation is present. The simulation method developed has the potential to be used in the future to test the effect of aging and different levels of severity of edge loading on a range of cross-linked polyethylene materials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1456-1462, 2018. © 2017 Wiley Periodicals, Inc.

  9. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin

    Science.gov (United States)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Joshua T.; Mackanos, Mark A.; Nanney, Lillian B.; Contag, Christopher H.; Davidson, Jeffrey M.; Jansen, E. Duco

    2013-01-01

    Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 μm), protein (amide-II band, 6.45 μm), and both water and protein (amide-I band, 6.10 μm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 μm have approximately 4× higher hsp70 expression than 6.10 μm. Histology shows that under comparable fluences, tissue injury at the 2.94-μm wavelength was 2× and 3× deeper than 6.45 and 6.10 μm, respectively. The 6.10-μm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-μm wavelength is a superior wavelength for laser ablation of skin. PMID:19021444

  10. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue.

    Science.gov (United States)

    Guo, Ting; Lembong, Josephine; Zhang, Lijie Grace; Fisher, John P

    2017-06-01

    In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.

  11. Low doses of ionizing radiation: Relationship between biological benefit and damage induction. A synopsis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Absorption of ionizing radiation in biological tissue stochastically interacts with constituent atoms and molecules and always generates energy deposition (track) events accompanied by bursts of reactive oxygen species (ROS). These ROS are quite similar to those ROS that arise abundantly and constantly by normal oxidative metabolism. ROS effects from either source need attention when assessing radiation-induced alterations in biological structure and function. Endogenous ROS alone induce about 10 6 DNA oxyadducts per cell per day compared to about 5x10 -3 total DNA damage per average cell per day from background radiation exposure (1 mGy per year). At this background level, the corresponding ratio of probabilities of endogenous versus radiogenic DNA double strand breaks (DSBs) per cell per day is about 103 with some 25-40 % of low-LET caused radiogenic DNA-DSBs being of the multi-damage-site type. Radiogenic DNA damage increases in proportion to absorbed dose over a certain dose range. By evolution, tissues possess physiological mechanisms of protection against an array of potentially toxic agents, externally from the environment and endogenously from metabolism, mainly against the abundantly and constantly produced ROS. Ad hoc protection operates at a level that is genetically determined. Following small to moderate perturbation of cell-tissue homeostasis by a toxic impact, adaptive responses develop with a delay and may last from hours to weeks, even months, and aim at protecting the system against renewed insults. Protective responses encompass defense by scavenging mechanisms, DNA repair, damage removal largely by apoptosis and immune responses, as well as changes in cell proliferation. Acute low-dose irradiation below about 0.2 Gy can not only disturb cell-tissue homeostasis but also initiate adaptived protection that appears with a delay of hours and may last from less than a day to months. The balance between damage production and adaptive protection favors

  12. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  13. Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers).

    Science.gov (United States)

    Moore, Zena; Patton, Declan; Rhodes, Shannon L; O'Connor, Tom

    2017-04-01

    Current detection of pressure ulcers relies on visual and tactile changes at the skin surface, but physiological changes below the skin precede surface changes and have a significant impact on tissue health. Inflammatory and apoptotic/necrotic changes in the epidermal and dermal layers of the skin, such as changes in interstitial fluid (also known as subepidermal moisture (SEM)), may precede surface changes by 3-10 days. Those same epidermal and subepidermal changes result in changes in the electrical properties (bioimpedance) of the tissue, thereby presenting an objective, non-invasive method for assessing tissue damage. Clinical studies of bioimpedance for the detection of pressure ulcers have demonstrated that changes in bioimpedance correlate with increasing severity of pressure ulcer stages. Studies have also demonstrated that at anatomical locations with pressure ulcers, bioimpedance varies with distance from the centre of the pressure ulcers. The SEM Scanner, a handheld medical device, offers an objective and reliable method for the assessment of local bioimpedance, and therefore, assessment of tissue damage before signs become visible to the unaided eye. This literature review summarises pressure ulcer pathophysiology, principles of bioimpedance and clinical research using bioimpedance technology to assess pressure ulcers. © 2016 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. Esophageal tissue engineering: Current status and perspectives.

    Science.gov (United States)

    Poghosyan, T; Catry, J; Luong-Nguyen, M; Bruneval, P; Domet, T; Arakelian, L; Sfeir, R; Michaud, L; Vanneaux, V; Gottrand, F; Larghero, J; Cattan, P

    2016-02-01

    Tissue engineering, which consists of the combination and in vivo implantation of elements required for tissue remodeling toward a specific organ phenotype, could be an alternative for classical techniques of esophageal replacement. The current hybrid approach entails creation of an esophageal substitute composed of an acellular matrix and autologous epithelial and muscle cells provides the most successful results. Current research is based on the use of mesenchymal stem cells, whose potential for differentiation and proangioogenic, immune-modulator and anti-inflammatory properties are important assets. In the near future, esophageal substitutes could be constructed from acellular "intelligent matrices" that contain the molecules necessary for tissue regeneration; this should allow circumvention of the implantation step and still obtain standardized in vivo biological responses. At present, tissue engineering applications to esophageal replacement are limited to enlargement plasties with absorbable, non-cellular matrices. Nevertheless, the application of existing clinical techniques for replacement of other organs by tissue engineering in combination with a multiplication of translational research protocols for esophageal replacement in large animals should soon pave the way for health agencies to authorize clinical trials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Clinical light damage to the eye

    International Nuclear Information System (INIS)

    Miller, D.

    1987-01-01

    This book contains four sections: The Nature of Light and of Light Damage to Biological Tissues; Light Damage to the Eye; Protecting the Eye from Light Damage; and Overview of Light Damage to the Eye. Some of the paper titles are: Ultraviolet-Absorbing Intraocular Lens Implants; Phototoxic Changes in the Retina; Light Damage to the Lens; and Radiation, Light, and Sight

  16. Pericardial tissue valves and Gore-Tex conduits as an alternative for right ventricular outflow tract replacement in children.

    Science.gov (United States)

    Allen, Bradley S; El-Zein, Chawki; Cuneo, Betina; Cava, Joseph P; Barth, Mary Jane; Ilbawi, Michel N

    2002-09-01

    There is still no perfect conduit for reconstruction of the right ventricular outflow tract (RVOT) in children. Homografts are not always available in the appropriate size, and degenerate in a few years. This study evaluates the pericardial valve with Gore-Tex conduit as an alternative for RVOT construction. From January 1, 1993, to September 30, 1999, a pericardial tissue valve was inserted in all patients undergoing RVOT reconstruction or pulmonary valve replacement (PVR) who were large enough to accommodate a tissue valve. In patients without a native main pulmonary artery, a new technique was used to construct an RV-PA conduit out of a flat sheet of Gore-Tex, as Dacron frequently leads to stenosis. Data were collected by retrospective review, follow-up echocardiograms, and assessment by a single cardiologist. There were 48 patients, 22 undergoing a PVR alone and 26 a RV-PA valved Gore-Tex conduit. Diagnosis included tetralogy of Fallot (n = 25); truncus arteriosis (n = 9); ventricular septal defect with PA (n = 5); DORV (n = 4); D-TGA with PS (n = 2); and 1 each IAA with sub AS, VSD with PI, and PS s/p Ross procedure. Patient age ranged from 3 to 33 years and 98% were reoperations. The valve sizes ranged from 19 to 33 mm and the median hospital length of stay was 4 days. There were 2 (4.2%) perioperative and 1 (2.1%) late deaths, none related to the valve or Gore-Tex conduit. At a follow-up of 15 to 86 months (mean 43 +/- 16 months), all remaining 45 patients are New York Heart Association class I, all valves are functional, and no patient has required valve or conduit replacement or revision; more importantly, echocardiogram revealed no significant valve or conduit stenosis (mean gradient 16 +/- 8 mm Hg) and no evidence of regurgitation or structural degeneration. A pericardial tissue valve and Gore-Tex conduit provides a reliable alternative for RVOT reconstruction in pediatric patients. It is readily available, molds in the limited retrosternal space, and

  17. Damage assessment for seismic response of recycled concrete filled steel tube columns

    Science.gov (United States)

    Huang, Yijie; Xiao, Jianzhuang; Shen, Luming

    2016-09-01

    A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).

  18. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    Science.gov (United States)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  19. Seismic Performances of Replaceable Steel Connection with Low Yield Point Metal

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2015-01-01

    Full Text Available Compared with the traditional steel rigid connection, the beam-column connections with weakened beam end have better ductility, but the local buckling in the weakened zone and the overall lateral deformation may occur in strong earthquake. The replaceable steel connection with low yield point metal is proposed based on the concept of earthquake resilient structure. In this connection, the weakened parts in the flange slab and web plate are filled with low yield point metal, and the metal firstly yields and dissipates energy sufficiently in earthquake; hence, the main parts are intact and the yield point metal can be replaced. The seismic performances of the three types of connections which include traditional connection, beam end weakened connection, and replaceable connection with low yield point steel under low cycle reciprocating load are studied. In addition, the energy dissipation capacity and damage characteristics of different connections are compared. The multiscale finite element models for the steel frames with different connections are analyzed by time-history method; both the computational efficiency and the accuracy are assured. The analysis results approve that the replaceable connection can confine the major damage in the replacement material and have better energy dissipation ability, safety reserves, and resilient ability.

  20. SU-E-T-168: Evaluation of Normal Tissue Damage in Head and Neck Cancer Treatments

    International Nuclear Information System (INIS)

    Ai, H; Zhang, H

    2014-01-01

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients

  1. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  2. [Biofabrication: new approaches for tissue regeneration].

    Science.gov (United States)

    Horch, Raymund E; Weigand, Annika; Wajant, Harald; Groll, Jürgen; Boccaccini, Aldo R; Arkudas, Andreas

    2018-04-01

    The advent of Tissue Engineering (TE) in the early 1990ies was fostered by the increasing need for functional tissue and organ replacement. Classical TE was based on the combination of carrier matrices, cells and growth factors to reconstitute lost or damaged tissue and organs. Despite considerable results in vitro and in experimental settings the lack of early vascularization has hampered its translation into daily clinical practice so far. A new field of research, called "biofabrication" utilizing latest 3D printing technologies aims at hierarchically and spatially incorporating different cells, biomaterials and molecules into a matrix to alleviate a directed maturation of artificial tissue. A literature research of the relevant publications regarding biofabrication and bioprinting was performed using the PubMed data base. Relevant papers were selected and evaluated with secondary analysis of specific citations on the bioprinting techniques. 180 relevant papers containing the key words were identified and evaluated. Basic principles into the developing field of bioprinting technology could be discerned. Key elements comprise the high-throughput assembly of cells and the fabrication of complex and functional hierarchically organized tissue constructs. Five relevant technological principles for bioprinting were identified, such as stereolithography, extrusion-based printing, laser-assisted printing, inkjet-based printing and nano-bioprinting. The different technical methods of 3D printing were found to be associated with various positive but also negative effects on cells and proteins during the printing process. Research efforts in this field obviously aim towards the development of optimizing the so called bioinks and the printing technologies. This review details the evolution of the classical methods of TE in Regenerative Medicine into the evolving field of biofabrication by bioprinting. The advantages of 3D bioprinting over traditional tissue engineering

  3. The influence of combined treatment of Cd, and γ-irradiation on DNA damage and repair in lymphoid tissues of mice

    International Nuclear Information System (INIS)

    Privezentsev, K.V.; Sirota, N.P.; Gaziev, A.I.

    1996-01-01

    The effect of combined treatment of Cd and γ-irradiation on DNA damage and repair was studied in lymphoid tissues of mice using single-cell gel assay. Single i.p. injection of CdCl 2 (1 mg Cd/kg body wt), 2 h prior to irradiation resulted in increasing of DNA lesions in peripheral blood lymphocytes (PBL) when compared to non-injected animals. However, the same treatment, 48 h prior to irradiation is shown to decrease DNA damage in PBL and splenocytes in comparison with untreated mice. In thymocytes maximal protective effect of Cd was determined when mice were irradiated in 24 h after injection. The protective effect observed is due to decreasing of initial level of DNA damage in thymocytes as well as acceleration of DNA repair in PBL and splenocytes. 28 refs.; 2 figs

  4. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  5. Ultrasonic energy vs monopolar electrosurgery in laparoscopic cholecystectomy: a comparison of tissue damage

    Directory of Open Access Journals (Sweden)

    Mehdi Asgari

    2016-04-01

    Full Text Available Background: Laparoscopic cholecystectomy is a minimally invasive procedure whereby the gallbladder is removed using laparoscopic techniques. Monopolar electerosurgical energy is the method of dissection of gallbladder from liver bed. Ultrasonic energy causes less thermal damage and suggests an alternative to monopolar elevterocautery. Leptin is a tissue factor and C-reactive protein (CRP is an acute phase protein that builds up in surgical damages. In laparoscopy, pneumoperitoneum and thermal damage cause this increase. In this study, after completion of surgery with both methods, plasma leptin and CPR were measured. Next, the complications and benefits of the two methods were compared. Methods: This single blind randomized clinical trial was conducted on 78 patients who were candidate for laparoscopic cholecystectomy in surgery clinic of Razi Teaching Hospital in Ahvaz Jundishapur University of Medical Sciences from March 2013 to March 2015. Patients were divided randomly into two groups of ultrasonic and electerocautery. Then, leptin’s level and CRP’s level were measured at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in the two groups. Results: This study shows that the average rate of leptin at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. The average rate of CRP at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. Conclusion: The level of leptin and CRP shows that surgery with ultrasonic method will provoke the immune system less than electerocautery method.

  6. Livers, guts and gills: mapping the decay profiles of soft tissues to understand authigenic mineral replacement.

    Science.gov (United States)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2016-04-01

    The hard mineralised parts of organisms such as shells, teeth and bones dominate the fossil record. There are, however, sites around the world where soft-tissues are preserved often through rapid replacement of original tissue by rapidly-precipitating authigenic minerals. These exceptionally well-preserved soft-bodied fossils are much more informative about the anatomy, physiology, ecology and behaviour of ancient organisms as well as providing a more inclusive picture of ecosystems and evolution throughout geological time. However, despite the wealth of information that soft-bodied fossils can provide they must first be correctly interpreted as the processes of both decay and preservation act to modify the carcass from its in vivo condition. Decay leads to alteration of the appearance and topology of anatomy, and ultimately to loss. Preservation is selective with some anatomical features being more likely to be captured than others. These problems are especially germane to the interpretation of deep-time and/or enigmatic fossils where no modern analogue exist for comparative anatomical analysis. It is therefore of vital importance to understand the processes carcasses undergo during the fossilisation process, , in order to interpret the anatomical remains of fossils and thus extract true evolutionary presence or absence of anatomy from absence due to taphonomic biases. We have designed a series of novel experiments to investigate, in real time, how decay processes affect the fossilisation potential of soft-tissues - especially of internal anatomy. Our data allow us to unravel both the timing and sequence of anatomical decay of different organs. At the same time through measuring Eh and pH in selected organs we can predict when anatomical features will fall in to the window of authigenic mineralization and thus potentially become preserved. We can also place constraints on which minerals will operate to capture tissues. Our findings are applied to the fossil record

  7. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats.

    Science.gov (United States)

    Martins, C N; Moraes, M B; Hauck, M; Guerreiro, L F; Rossato, D D; Varela, A S; da Rosa, C E; Signori, L U

    2016-12-01

    To investigate the combined effects of cryotherapy and pulsed ultrasound therapy (PUT) on oxidative stress parameters, tissue damage markers and systemic inflammation after musculoskeletal injury. Experimental animal study. Research laboratory. Seventy male Wistar rats were divided into five groups: control, lesion, cryotherapy, PUT, and cryotherapy+PUT. The gastrocnemius muscle was injured by mechanical crushing. Cryotherapy was applied immediately after injury (immersion in water at 10°C for 20minutes). PUT was commenced 24hours after injury (1MHz, 0.4W/cm 2SPTA , 20% duty cycle, 5minutes). All animals were treated every 8hours for 3 days. Oxidative stress in muscle was evaluated by concentration of reactive oxygen species (ROS), lipid peroxidation (LPO), anti-oxidant capacity against peroxyl radicals (ACAP) and catalase. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were assessed. When applied individually, cryotherapy and PUT reduced CK, LDH, CRP and LPO caused by muscle damage. Cryotherapy+PUT in combination maintained the previous results, caused a reduction in ROS [P=0.005, mean difference -0.9×10 -8 relative area, 95% confidence interval (CI) -0.2 to -1.9], and increased ACAP {P=0.007, mean difference 0.34 1/[relative area with/without 2,2-azobis(2-methylpropionamidine)dihydrochloride], 95% CI 0.07 to 0.61} and catalase (P=0.002, mean difference 0.41units/mg protein, 95% CI 0.09 to 0.73) compared with the lesion group. Cryotherapy+PUT in combination reduced oxidative stress in muscle, contributing to a reduction in adjacent damage and tissue repair. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  8. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Beatriz Hernández-Monjaraz

    2018-03-01

    Full Text Available Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.

  9. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    International Nuclear Information System (INIS)

    Ralfs, Julie D.

    2002-01-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  10. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Directory of Open Access Journals (Sweden)

    Germana Zaccagnini

    Full Text Available Magnetic resonance imaging (MRI provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time, diffusion-tensor imaging (Fractional Anisotropy and perfusion by Dynamic Contrast-Enhanced MRI (K-trans were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1 T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2 Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3 K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  11. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Science.gov (United States)

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  12. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  14. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    Science.gov (United States)

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  15. An in vitro evaluation of various biomaterials for the development of a tissue-engineered lacrimal gland

    Science.gov (United States)

    Selvam, Shivaram

    The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland. The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport. The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology. The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion. The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA

  16. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    International Nuclear Information System (INIS)

    Herppich, Werner B.; Zabler, Simon; Dawson, Martin; Choinka, Gerard; Manke, Ingo

    2015-01-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  17. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  18. The Symmetry of Adverse Local Tissue Reactions in Patients with Bilateral Simultaneous and Sequential ASR Hip Replacement.

    Science.gov (United States)

    Madanat, Rami; Hussey, Daniel K; Donahue, Gabrielle S; Potter, Hollis G; Wallace, Robert; Bragdon, Charles R; Muratoglu, Orhun K; Malchau, Henrik

    2015-10-01

    The purpose of this study was to evaluate whether patients with bilateral metal-on-metal (MoM) hip replacements have symmetric adverse local tissue reactions (ALTRs) at follow-up. An MRI of both hips was performed at a mean time of six years after surgery in 43 patients. The prevalence and severity of ALTRs were found to be similar in simultaneous hips but differences were observed in sequential hips. The order and timing of sequential hip arthroplasties did not affect the severity of ALTRs. Thus, in addition to metal ion exposure from an earlier MoM implant other factors may also play a role in the progression of ALTRs. Bilateral implants should be given special consideration in risk stratification algorithms for management of patients with MoM hip arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ralfs, Julie D

    2002-07-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  20. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  1. Multi-scale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    International Nuclear Information System (INIS)

    Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.; Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.

    2010-01-01

    We present the latest advances of the multi-scale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multi-scale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This quantification allows the studying of how the clusterization of DNA lesions affects the lethality of damage. We discuss the first results of molecular dynamics simulations of ubiquitin in the environment of thermal spikes, predicted to occur in tissue for a short time after an ion's passage in the vicinity of the ions' tracks. (authors)

  2. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.

    Science.gov (United States)

    Elliott Donaghue, Irja; Tam, Roger; Sefton, Michael V; Shoichet, Molly S

    2014-09-28

    Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Wood Petrifaction: A New View of Permineralization and Replacement

    Directory of Open Access Journals (Sweden)

    George E. Mustoe

    2017-11-01

    Full Text Available Petrified wood has traditionally been divided into two categories based on preservation processes: permineralization (where tissues are entombed within a mineral-filled matrix and replacement (where organic anatomical features have been replicated by inorganic materials. New analytical evidence suggests that for most petrified wood, permineralization and replacement are not independent processes; instead, both processes may occur contemporaneously during diagenesis. Infiltration of mineral-bearing groundwater may initially cause permineralization of cellular tissues, but the wood is undergoing gradual degradation. The degree of anatomical preservation thus depends on the relative rates of mineral precipitation and tissue destruction. Rapid rates of mineralization under relatively mild Eh and pH conditions favor the preservation of organic matter. These conditions appear to be more common for calcium carbonate deposition than for silicification, based on observations of fossil woods from many localities. Because of these preservational complexities, “mineralization” and “mineralized” are more accurate as general descriptive terms than “permineralization” and “permineralized”.

  4. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  5. Analysis of Mitral Valve Replacement Outcomes is Enhanced by Meaningful Clinical Use of Electronic Health Records

    Science.gov (United States)

    Chen, John C; Pfeffer, Thomas; Johnstone, Shelley; Chen, Yuexin; Kiley, Mary-Lou; Richter, Richard; Lee, Hon

    2013-01-01

    Objective: Cardiac surgical mortality has improved during the last decade despite the aging of the population. An integrated US health plan developed a heart valve registry to track outcomes and complications of heart valve operations. This database was used for longitudinal evaluation of mitral valve (MV) outcomes from 1999 to 2008 at four affiliated hospitals. Methods: We identified 3130 patients in the Apollo database who underwent 3180 initial MV procedures. Internal administrative and Social Security Administration databases were merged to determine survival rates. Electronic health records were searched to ascertain demographics, comorbidities, and postoperative complications. Cox regression was used to evaluate mean survival and identify risk factors. Results: The procedures included 1160 mechanical valve replacements, 1159 tissue valve replacements, and 861 annuloplasties. The mean age of patients undergoing these procedures was 58 ± 11 years, 69 ± 12 years, and 62 ± 12 years, respectively. Mean survival was 8.9 ± 0.1 years for mechanical valve replacement, 7.0 ± 0.1 years for tissue valve replacement, and 7.7 ± 0.1 years for annuloplasty. Early in the study, there was a preference for implanting mechanical MVs. Beginning in 2003, more patients received tissue valve replacements rather than mechanical valves. Over time, there was an increasing trend of annuloplasty. Cox regression analysis identified the following risk factors for increased ten-year mortality: tissue valve implantation; advanced age; female sex; nonelective, nonisolated procedure; diabetes; postoperative use of banked blood products; previous cardiovascular intervention; dialysis; and longer perfusion time. Hospital location, reoperation, preoperative anticoagulation, and cardiogenic shock were not statistically significant risk factors. Conclusions: When controlling for other risk factors, we observed a lower long-term survival rate for tissue valve replacement compared with

  6. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  7. Can Rotational Atherectomy Cause Thermal Tissue Damage? A Study of the Potential Heating and Thermal Tissue Effects of a Rotational Atherectomy Device

    International Nuclear Information System (INIS)

    Gehani, Abdurrazzak A.; Rees, Michael R.

    1998-01-01

    Purpose: Thermal tissue damage (TTD) is customarily associated with some lasers. The thermal potential of rotational atherectomy (RA) devices is unknown. We investigated the temperature profile and potential TTD as well as the value of fluid flushing of an RA device. Methods: We used a high-resolution infrared imaging system that can detect changes as small as 0.1 deg. C to measure the temperature changes at the tip of a fast RA device with and without fluid flushing. To assess TTD, segments of porcine aorta were subjected to the rotating tip under controlled conditions, stained by a special histochemical stain (picrisirius red) and examined under normal and polarized light microscopy. Results: There was significant heating of the rotating cam. The mean 'peak' temperature rise was 52.8 ± 16.9 deg. C. This was related to rotational speed; thus the 'peak' temperature rise was 88.3 ± 12.6 deg. C at 80,000 rpm and 17.3 ± 3.8 deg. C at 20,000 rpm (p < 0.001, t-test). Fluid flushing at 18 ml/min reduced, but did not abolish, heating of the device (11.8 ± 2.9 deg. C). A crater was observed in all segments exposed to the rotating tip. The following features were most notable: (i) A zone of 'thermal' tissue damage extended radially from the crater reaching adventitia in some sections, especially at high speeds. This zone showed markedly reduced or absent birefringence. (ii) Fluid flushing of the catheter reduced the above changes but increased the incidence and extent of dissections in the media, especially when combined with high atherectomy speeds. (iii) These changes were observed in five of six specimens exposed to RA without flushing, but in only one of six with flushing (p < 0.05). (iv) None of the above changes was seen in control segments. Conclusion: RA is capable of generating significant heat and potential TTD. Fluid flushing reduced heating and TTD. These findings warrant further studies in vivo, and may influence the design of atherectomy devices

  8. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Thornber, C.S.; Walbot, V.

    1997-01-01

    Ultraviolet radiation has diverse morphogenetic and damaging effects on plants. The end point of damage is reduced plant growth, but in the short term UV radiation damages specific cellular components. We measured cyclobutane pyrimidine dimers in maize DNA from plants grown in natural solar radiation. Green maize tissues had detectable DNA damage, roots had less damage, and anthers had much more damage than green leaves. This heterogeneity in damage levels may reflect differences in dose received or in damage repair. The architecture of green tissues had no measurable effects on DNA damage levels, as leaf sheath and leaf blade were equivalent. We observed a slight increase in damage levels in plants sampled at the end of the day, but there was no accumulation of damage over the growing season. We measured photoreactivation, and found substantial levels of this light-dependent repair in both the epidermis and inner cell layers of leaves, and in all organelles that contain DNA – the nucleus, chloroplasts and mitochondria. We conclude that maize has efficient mechanisms for photo repair of daily UV-induced DNA damage that prevent accumulation

  9. Primary extra-cranial meningioma following total hip replacement

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, T.J.; Beggs, I. [Royal Infirmary, Department of Radiology, Edinburgh (United Kingdom); Patton, J.T.; Porter, D. [Royal Infirmary, Department of Orthopaedics, Edinburgh (United Kingdom); Salter, D.M.; Al-Nafussi, A. [Royal Infirmary, Department of Pathology, Edinburgh (United Kingdom)

    2009-01-15

    A 61-year-old man presented with pain at the left hip and decreased mobility 10 years after total hip replacement. Imaging demonstrated a large destructive expansile mass adjacent to the prosthesis. Histological analysis confirmed the presence of an extra-cranial meningioma. Primary tumours after total hip replacement are rare and include soft tissue sarcomas, bone sarcomas and lymphomas. To our knowledge, no previous cases of primary extracranial meningioma have been identified. The imaging features, histology, pathogenesis and differential diagnosis are discussed. (orig.)

  10. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  11. Putative photoacoustic damage in skin induced by pulsed ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Flotte, T.J.; McAuliffe, D.J.; Jacques, S.L.

    1988-05-01

    Argon-fluoride excimer laser ablation of guinea pig stratum corneum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting that photoacoustic waves have a role in tissue damage. Laser irradiation (193 nm, 14-ns pulse) at two different radiant exposures, 62 and 156 mJ/cm2 per pulse, was used to ablate the 15-microns-thick stratum corneum of the skin. Light and electron microscopy of immediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 microns, respectively, below the ablation site. These depths are far in excess of the optical penetration depth of 193-nm light (1/e depth = 1.5 micron). The damage is unlikely to be due to a photochemical mechanism because (a) the photons will not penetrate to these depths, (b) it is a long distance for toxic photoproducts to diffuse, and (c) damage is proportional to laser pulse intensity and not the total dose that accumulates in the residual tissue; therefore, reciprocity does not hold. Damage due to a thermal mechanism is not expected because there is not sufficient energy deposited in the tissue to cause significant heating at such depths. The damage is most likely due to a photoacoustic mechanism because (a) photoacoustic waves can propagate deep into tissue, (b) the depth of damage increases with increasing laser pulse intensity rather than with increasing total residual energy, and (c) the effects are immediate. These effects should be considered in the evaluation of short pulse, high peak power laser-tissue interactions.

  12. Overview of tracheal tissue engineering: clinical need drives the laboratory approach.

    Science.gov (United States)

    Ott, Lindsey M; Weatherly, Robert A; Detamore, Michael S

    2011-08-01

    Breathing is a natural function that most of us do not even think about, but for those who suffer from disease or damage of the trachea, the obstruction of breathing can mean severe restrictions to quality of life or may even be fatal. Replacement and reconstruction of the trachea is one of the most difficult procedures in otolaryngology/head and neck surgery, and also one of the most vital. Previous reviews have focused primarily on clinical perspectives or instead on engineering strategies. However, the current review endeavors to bridge this gap by evaluating engineering approaches in a practical clinical context. For example, although contemporary approaches often include in vitro bioreactor pre-culture, or sub-cutaneous in vivo conditioning, the limitations they present in terms of regulatory approval, cost, additional surgery, and/or risk of infection challenge engineers to develop the next generation of biodegradable/resorbable biomaterials that can be directly implanted in situ. Essentially, the functionality of the replacement is the most important requirement. It must be the correct shape and size, achieve an airtight fit, resist collapse as it is replaced by new tissue, and be non-immunogenic. As we look to the future, there will be no one-size-fits-all solution.

  13. Natural resource damage assessment

    International Nuclear Information System (INIS)

    Seddelmeyer, J.

    1991-01-01

    The assessment and collection of natural resource damages from petroleum and chemical companies unfortunate enough to have injured publicly owned natural resources is perhaps the most rapidly expanding area of environmental liability. The idea of recovering for injury to publicly owned natural resources is an extension of traditional common law tort concepts under which a person who negligently injures another or his property is called upon to compensate the injured party. Normally, once liability has been established, it is a fairly straightforward matter to calculate the various elements of loss, such as the cost to repair or replace damaged property, or medical expenses, and lost income. More difficult questions, such as the amount to be awarded for pain and suffering or emotional distress, are left to the jury, although courts limit the circumstances in which the jury is permitted to award such damages

  14. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  15. Renal replacement lipomatosis: multidetector-row computed tomography findings in one case

    International Nuclear Information System (INIS)

    Calisir, C.; Can, C.; Kebapci, M.

    2007-01-01

    Replacement lipomatosis of the kidney is the result of severe atrophy of the renal parenchyma often caused by chronic calculus disease with secondary marked benign proliferation of fibrofatty tissue replacing atrophied renal parenchyma. Different radiological modalities have been used to illustrate this entity, with magnetic resonance imaging, ultrasound, intravenous pyelogram, and computed tomography (CT) used most frequently. We report multidedector CT (MDCT) findings of replacement lipomatosis in a 50-year-old woman. We think that it accurately provides a complete one-step diagnostic workup and appropriate pre-surgical planning for patients for whom there is a suspicion of replacement lipomatosis

  16. Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications

    KAUST Repository

    Limongi, Tania; Schipani, Rossana; Di Vito, Anna; Giugni, Andrea; Francardi, Marco; Torre, Bruno; Allione, Marco; Miele, Ermanno; Malara, Natalia Maria; Alrasheed, Salma; Raimondo, Raffaella; Candeloro, Patrizio; Mollace, Vincenzo; Di Fabrizio, Enzo M.

    2015-01-01

    Material science, cell biology, and engineering are all part of the research field of tissue engineering. It is the application of knowledge, methods and instrumentations of engineering and life science to the development of biocompatible solutions for repair and/or replace tissues and damaged organs. Last generation microfabrication technologies utilizing natural and synthetic biomaterials allow the realization of scaffolds resembling tissue-like structures as skin, brain, bones, muscles, cartilage and blood vessels. In this work we describe an effective and simple micromolding fabrication process allowing the realization of 3D polycaprolactone (PCL) scaffold for human neural stem cells (hNSC) culture. Scanning Electron Microscopy has been used to investigate the micro and nano features characterizing the surface of the device. Immunofluorescence analysis showed how, after seeding cells onto the substrate, healthy astrocytes grew up in a well-organized 3D network. Thus, we proposed this effective fabrication method for the production of nanopatterned PCL pillared scaffold providing a biomimetic environment for the growth of hNSC, a promising and efficient means for future applications in tissue engineering and regenerative medicine.

  17. Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications

    KAUST Repository

    Limongi, Tania

    2015-06-01

    Material science, cell biology, and engineering are all part of the research field of tissue engineering. It is the application of knowledge, methods and instrumentations of engineering and life science to the development of biocompatible solutions for repair and/or replace tissues and damaged organs. Last generation microfabrication technologies utilizing natural and synthetic biomaterials allow the realization of scaffolds resembling tissue-like structures as skin, brain, bones, muscles, cartilage and blood vessels. In this work we describe an effective and simple micromolding fabrication process allowing the realization of 3D polycaprolactone (PCL) scaffold for human neural stem cells (hNSC) culture. Scanning Electron Microscopy has been used to investigate the micro and nano features characterizing the surface of the device. Immunofluorescence analysis showed how, after seeding cells onto the substrate, healthy astrocytes grew up in a well-organized 3D network. Thus, we proposed this effective fabrication method for the production of nanopatterned PCL pillared scaffold providing a biomimetic environment for the growth of hNSC, a promising and efficient means for future applications in tissue engineering and regenerative medicine.

  18. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  19. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, A. I.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2017-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  20. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, Agnieszka; Hannink, G.; Buma, P.; Grijpma, Dirk W.

    2016-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  1. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  2. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.

    Science.gov (United States)

    Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E

    2017-09-01

    This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    Science.gov (United States)

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-09-12

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.

  4. CD11b⁺, Ly6G⁺ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection.

    Directory of Open Access Journals (Sweden)

    Matthew A Fischer

    2011-11-01

    Full Text Available The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b⁺Ly6C⁺Ly6G⁻ monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b⁺Ly6C⁺Ly6G⁺ cells. The phenotype of the CD11b⁺Ly6C⁺Ly6G⁺ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b⁺Ly6C⁺Ly6G⁺ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b⁺Ly6C⁺Ly6G⁺ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G⁺ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b⁺Ly6C⁺Ly6G⁺ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction.

  5. Replacement of fine particle purification filter of the PHT purification system - 15083

    International Nuclear Information System (INIS)

    Lee, D.S.

    2015-01-01

    The increase of chalk river unidentified deposit (CRUD), a particulate corrosion product in PHT (primary heat transport) system with increased operating years of a nuclear power plant causes: -) the problems of increased heavy water decomposition and deuterium formation reaction due to catalytic reaction with CRUD, -) damage to PHT pump seal due to a corrosion product, -) damage to fuel channel closure seal, and increased radiation exposure of workers due to elevated dose rate in steam generator water chamber. Wolsung unit 3 and 4 have replaced fine filter media in PHT purification system in phases reducing the pore size of the filter media (5 μm → 2 μm → 1 μm → 0.45 μm) to solve this problem. The phased replacement of fine filter media by the one with a smaller pore size reduced CRUD in PHT system significantly and also radiation dose rate in steam generator water chamber. Accordingly, many problems related to the aging of a plant (including increased radiation exposure of workers during outage, damage to mechanical seal of PHT pump) have been solved. (author)

  6. Engineering tendon and ligament tissues: present developments towards successful clinical products.

    Science.gov (United States)

    Rodrigues, Márcia T; Reis, Rui L; Gomes, Manuela E

    2013-09-01

    Musculoskeletal diseases are one of the leading causes of disability worldwide. Among them, tendon and ligament injuries represent an important aspect to consider in both athletes and active working people. Tendon and ligament damage is an important cause of joint instability, and progresses into early onset of osteoarthritis, pain, disability and eventually the need for joint replacement surgery. The social and economical burden associated with these medical conditions presents a compelling argument for greater understanding and expanding research on this issue. The particular physiology of tendons and ligaments (avascular, hypocellular and overall structural mechanical features) makes it difficult for currently available treatments to reach a complete and long-term functional repair of the damaged tissue, especially when complete tear occurs. Despite the effort, the treatment modalities for tendon and ligament are suboptimal, which have led to the development of alternative therapies, such as the delivery of growth factors, development of engineered scaffolds or the application of stem cells, which have been approached in this review. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  8. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  9. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S.A.; Titov, V.F. [OKB Gidropress (Russian Federation); Notaros, U.; Lenkei, I. [NPP Paks (Hungary)

    1995-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  10. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S A; Titov, V F [OKB Gidropress (Russian Federation); Notaros, U; Lenkei, I [NPP Paks (Hungary)

    1996-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  11. Carcass characteristics of lambs fed spineless cactus as a replacement for sugarcane.

    Science.gov (United States)

    de Oliveira, Juliana Paula Felipe; de Andrade Ferreira, Marcelo; Alves, Adryanne Marjorie Souza Vitor; de Melo, Ana Caroline Cerqueira; de Andrade, Ida Barbosa; Urbano, Stela Antas; Suassuna, Juraci Marcos Alves; de Barros, Leonardo José Assis; de Barros Melo, Tobias Tobit

    2018-04-01

    Fresh sugarcane has been a new roughage source for ruminant's in semiarid regions, a function of the decline of sugar and alcohol industry in recent years. However, there is little data published regarding lambs fed sugarcane associated with spineless cactus. This study evaluated the effect of sugarcane replacement with spineless cactus (0%, 33%, 66%, and 100%) in the diet of Santa Inês lambs on carcass characteristics. Thirty-six non-castrated Santa Ines lambs at four months of age and an initial body weight of 22±2.3 kg were assigned in a randomized block design and slaughtered after 70 days of confinement. The effects of spineless cactus as a replacement for sugarcane in the diet of the lambs on the carcass characteristics, commercial cut weight and yield, leg tissue composition, and carcass measurements were studied. The study revealed quadratic behavior in slaughter body weight, and hot and cold carcass weight, with maximum values of 38.60, 18.60, and 18.11 kg and replacement levels of 40.18%, 44.42%, and 43.14%, respectively. The cold carcass yield presented an increasing linear behavior. The compactness index of carcass and leg presented a quadratic effect, with estimated maximal values of 0.28 and 0.57 kg/cm and replacement levels of 43.37% and 45.5%, respectively. The weights of commercial cuts of leg, loin, shoulder, and breast showed quadratic behavior, with maximum values of 2.79, 0.852, 1.46, and 1.30 kg and replacement levels of 49.5, 45.32, 39.0, and 40.7, respectively. For tissue composition, quadratic behavior was verified for leg weight, subcutaneous fat, and total fat. The replacement of sugarcane by spineless cactus at level 44% is recommended for finishing lambs considering that this level improved most of the carcass characteristics, weights, and yields of commercial cuts and leg tissue composition.

  12. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  13. Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings.

    Science.gov (United States)

    Nayak, Madhusmita; Saha, Ashis; Pradhan, Avinash; Samanta, Mrinal; Giri, Shiba Shankar

    2017-03-01

    Silver barb (Puntius gonionotus) is considered a promising medium carp species for freshwater aquaculture in Asia. This study in silver barb was carried out to evaluate the effects of total or partial substitution of dietary fish oil (FO) with linseed oil (LO) on growth, nutrient utilization, whole-body composition, muscle and liver fatty acid composition. Fish (12.1±0.4g of initial body weight) were fed for 60days with five experimental iso-proteinous, iso-lipidic and iso-caloric diets in which FO (control diet) was replaced by 33.3%, 50%, 66.7% and 100% LO. Final weight, weight gain, percent weight gain, SGR decreased linearly (p0.05) affect the feed conversion ratio (FCR), protein efficiency ratio (PER) and whole body proximate composition. Furthermore, enhanced level of LO increased α-linolenic acid (ALA; 18:3n3) and linoleic acid (LA; 18:2n6) and decreased eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) in muscle and liver. To understand the molecular mechanism of long chain-polyunsaturated fatty acid (LC-PUFA) biosynthesis, we cloned and characterized the fatty acyl Δ6 desaturase (Δ6 fad) cDNA and investigated its expression in various organs/tissues following replacement of FO with LO in the diet. The full-length Δ6 fad cDNA was 2056bp encoding 444 amino acids and was widely expressed in various organs/tissues. Replacement of FO with LO increased the expression of Δ6 fad mRNA in liver, muscle and intestine but no significant difference was found in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Meniscal replacement using a porous polymer prosthesis : A preliminary study in the dog

    NARCIS (Netherlands)

    Veth, RPH; Jansen, HWB; Nielsen, HKL; deGroot, JH; Pennings, AJ

    A porous polyurethane prosthesis was used to replace the lateral meniscus in the dog. After an initial ingrowth of fibrous tissue, the prostheses became filled with tissue strongly resembling normal meniscal fibrocartilage. Although less severe than seen after total meniscectomy, cartilage

  15. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    OpenAIRE

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at ...

  16. Poly (Ethylene Glycol)-Based Hydrogels as Self-Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties.

    Science.gov (United States)

    Jamadi, Mahsa; Shokrollahi, Parvin; Houshmand, Behzad; Joupari, Mortaza Daliri; Mashhadiabbas, Fatemeh; Khademhosseini, Ali; Annabi, Nasim

    2017-08-01

    Tissue expansion is used by plastic/reconstructive surgeons to grow additional skin/tissue for replacing or repairing lost or damaged soft tissues. Recently, hydrogels have been widely used for tissue expansion applications. Herein, a self-inflating tissue expander blend composition from three different molecular weights (2, 6, and 10 kDa) of poly (ethylene glycol) diacrylate (PEGDA) hydrogel with tunable mechanical and swelling properties is presented. The in vitro results demonstrate that, of the eight studied compositions, P6 (PEGDA 6 kDa:10 kDa (50:50)) and P8 (PEGDA 6 kDa:10 kDa (35:65)) formulations provide a balance of mechanical property and swelling capability suitable for tissue expansion. Furthermore, these expanders can be compressed up to 60% of their original height and can be loaded and unloaded cyclically at least ten times with no permanent deformation. The in vivo results indicate that these two engineered blend compositions are capable to generate a swelling pressure sufficient to dilate the surrounding tissue while retaining their original shape. The histological analyses reveal the formation of fibrous capsule at the interface between the implant and the subcutaneous tissue with no signs of inflammation. Ultimately, controlling the PEGDA chain length shows potential for the development of self-inflating tissue expanders with tunable mechanical and swelling properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    Science.gov (United States)

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  18. Prosthetic valve sparing aortic root replacement: an improved technique.

    Science.gov (United States)

    Leacche, Marzia; Balaguer, Jorge M; Umakanthan, Ramanan; Byrne, John G

    2008-10-01

    We describe a modified surgical technique to treat patients with a previous history of isolated aortic valve replacement who now require aortic root replacement for an aneurysmal or dissected aorta. This technique consists of replacing the aortic root with a Dacron conduit, leaving intact the previously implanted prosthesis, and re-implanting the coronary arteries in the Dacron graft. Our technique differs from other techniques in that we do not leave behind any aortic tissue remnant and also in that we use a felt strip to obliterate any gap between the old sewing ring and the newly implanted graft. In our opinion, this promotes better hemostasis. We demonstrate that this technique is safe, feasible, and results in acceptable outcomes.

  19. Fundamentals of bladder tissue engineering | Mahfouz | African ...

    African Journals Online (AJOL)

    Fundamentals of bladder tissue engineering. ... could affect the bladder and lead to eventual loss of its integrity, with the need for replacement or repair. ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on ...

  20. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVES: To assess levels of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine; 8-oxo-dG) and lipid peroxidation (4-hydroxy-2-nonenal; 4-HNE) in serum, synovial fluid and tissue of patients with inflammatory arthritis in relation to in vivo hypoxia levels, disease activity and angiogenic markers. METHODS: Oxygen levels in synovial tissue were assessed using an oxygen\\/temperature probe. Nuclear and cytoplasmic 8-oxo-dG and 4-HNE levels were assessed in synovial tissue from 23 patients by immunohistochemistry. 8-Oxo-dG and 4-HNE levels in serum and synovial fluid were determined using 8-oxo-dG and hexanoyl-Lys (HEL) adduct ELISAs, respectively. Serum vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) levels were also measured by ELISA. RESULTS: The median oxygen tension in synovial tissue was profoundly hypoxic at 19.35 mm Hg (2.5%). Nuclear 8-oxo-dG levels were significantly higher than nuclear 4-HNE levels in the lining and sublining layers (all p<0.001). In contrast, cytoplasmic 4-HNE levels were higher than cytoplasmic 8-oxo-dG levels in both cell layers (all p<0.001). Reduced in vivo oxygen tension correlated with high lipid peroxidation in synovial fluid (p=0.027; r=0.54) and tissue (p=0.004; r=0.58). Serum VEGF levels were positively correlated with cytoplasmic 4-HNE expression (p=0.05; r=0.43) and intensity (p=0.006; r=0.59) in the lining layer. Serum Ang2 levels were positively correlated with nuclear 4-HNE expression and intensity in both cell layers (all p < or = 0.05). DAS28-C-reactive protein was correlated with nuclear 4-HNE expression in the sublining layer (p=0.02; r=0.48) and DAS28-erythrocyte sedimentation rate was correlated with nuclear 4-HNE expression in both cell layers (p < or = 0.03). CONCLUSIONS: Lipid peroxidation is associated with low oxygen tension in vivo, disease activity and angiogenic marker expression in inflammatory arthritis.

  1. Neutron RBE for normal tissues

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1979-01-01

    RBE for various normal tissues is considered as a function of neutron dose per fraction. Results from a variety of centres are reviewed. It is shown that RBE is dependent on neutron energy and is tissue dependent, but is not specially high for the more critical tissues or for damage occurring late after irradiation. (author)

  2. Engineering vascular development for tissue regeneration

    NARCIS (Netherlands)

    Rivron, N.C.

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an

  3. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures

    NARCIS (Netherlands)

    Gonzales, V.K.; Mulder, E.L.W. de; Boer, T. den; Hannink, G.; Tienen, T.G. van; Heerde, W.L. van; Buma, P.

    2013-01-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three

  4. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    the replacement of wide bone tissue defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Endoscopic Approach for Tissue Expansion for Different Cosmetic ...

    African Journals Online (AJOL)

    Background/Purpose: The use of tissue expanders in plastic and reconstruction surgery is now well established for large defects in adults & children. Tissue expansion is one of the reconstructive surgeon's alternatives in providing optimal tissue replacement when skin shortage is a major problem. Predesigned plan about ...

  6. Membrane supported scaffold architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient

  7. Protective effect of pumpkin powder (Cucurbita pepo L. on fetal testicular tissue damage in alloxan- induced diabetic rats

    Directory of Open Access Journals (Sweden)

    2014-08-01

    Full Text Available The occurrence of abnormalities in different organs of the fetus and newborn of diabetic mothers has been proven today. Considering the irreversible damages of the disease in newborns’ reproductive system any action to reduce the abnormalities has an especial importance and necessity. In this experimental study, the protective effects of pumpkin powder on reducing testicular tissue damages of rats born from diabetic mothers has been studied. The pregnant rats were divided into 4 groups of 10 rats, as follows: 1 treatment group with pumpkin powder, 2 diabetic control group, 3 treatment group (diabetic animals treated with pumpkin powder and 4 healthy control group. Experimental diabetes was induced in pregnant rats by intraperitoneal injection of 120 mg/kg b.w. alloxan monohydrate. The first and third groups received 2 g/kg b.w. pumpkin powder for 4 weeks via gavage. The histological and morphometric changes such as weight, seminiferous tubules diameter, spermatogonia, leydig and sertoli cell numbers were compared. Data was analyzed using the ANOVA and Tukey multiple comparisons test and p

  8. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  9. Comparison of a ZGP OPO with a Mark-III FEL as a Potential Replacement for Mid-Infrared Soft Tissue Ablation Applications

    CERN Document Server

    Mackanos, M A

    2005-01-01

    A Mark-III FEL, tuned to 6.45 μm has demonstrated minimal collateral damage and high ablation yield in soft tissue. Further clinical advances are limited due to the overhead associated with an FEL; alternative mid-IR sources are needed. The FEL parameters needed to carry out efficient ablation with minimal damage must be determined. Studies by this author have shown that the unique pulse structure of the FEL does not play a role in this process [1]. We focused on comparing the macropulse duration of the FEL with a ZGP-OPO. No difference in pulse structure between the two laser sources with respect to the ablation threshold of water and mouse dermis was seen. There is a difference between the sources with respect to the crater depths in gelatin and mouse dermis. At 6.1 μm, the OPO craters are 8 times the depth of the FEL ones. Brightfield imaging shows the classic ablation mechanism. The timescale of the crater formation, ejection, and collapse occurs on a faster scale for the OPO. Histology ...

  10. T lymphocytes and normal tissue responses to radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; McBride, William H.

    2012-01-01

    There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.

  11. Studies on the strategies of minimizing radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research (1) mechanisms involved in bone marrow damage after total body irradiation, (2) extraction of components that are useful in protecting hematopoietic system from radiation damage, (3) cell therapy approach in restoring the damaged tissue, (4) development of radioprotective chemical reagent, and (5) epidemiological study on the population that had been exposed to radiation.

  12. Studies on the strategies of minimizing radiation damage

    International Nuclear Information System (INIS)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research 1) mechanisms involved in bone marrow damage after total body irradiation, 2) extraction of components that are useful in protecting hematopoietic system from radiation damage, 3) cell therapy approach in restoring the damaged tissue, 4) development of radioprotective chemical reagent, and 5) epidemiological study on the population that had been exposed to radiation

  13. Esophageal replacement in children: Challenges and long-term outcomes

    Directory of Open Access Journals (Sweden)

    Giampiero Soccorso

    2016-01-01

    Full Text Available Replacement of a nonexistent or damaged esophagus continues to pose a significant challenge to pediatric surgeons. Various esophageal replacement grafts and techniques have not produced consistently good outcomes to emulate normal esophagus. Therefore, many techniques are still being practiced and recommended with no clear consensus. We present a concise literature review of the currently used techniques and with discussions on the advantages and anticipated morbidity. There are no randomized controlled pediatric studies to compare different types of esophageal replacements. Management and graft choice are based on geographical and personal predilections rather than on any discernible objective data. The biggest series with long-term outcome are reported for gastric transposition and colonic replacement. Comparison of different studies shows no significant difference in early (graft necrosis and anastomotic leaks or late complications (strictures, poor feeding, gastro-esophageal reflux, tortuosity of the graft, and Barrett′s esophagus. The biggest series seem to have lower complications than small series reflecting the decennials experience in their respective centers. Long-term follow-up is recommended following esophageal replacement for the development of late strictures, excessive tortuosity, and Barrett′s changes within the graft. Once child overcomes initial morbidity and establishes oral feeding, long-term consequences and complications of pediatric esophageal replacement should be monitored and managed in adult life.

  14. Cellular proliferation and regeneration following tissue damage. Progress report. [Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.V.

    1976-10-01

    Results are reported from a study of wound healing in tissues of the eye, particularly lens, cornea, and surrounding tissues. The reactions of these tissues to mechanical injuries, as well as injuries induced by chemotoxic agents were studied. It is postulated that a better understanding of the basic reactions of the eye to injurious agents may be of importance in the evaluation of potential environmental hazards.

  15. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the osteoarthritis initiative

    International Nuclear Information System (INIS)

    Hafezi-Nejad, Nima; Eng, John; Demehri, Shadpour; Zikria, Bashir; Carrino, John A.

    2015-01-01

    To evaluate, in a confirmatory fashion, whether baseline and change from baseline to 24-month follow-up in cartilage damage, bone marrow lesions and meniscal damage are predictors of knee replacement (KR) in subjects with a high risk of osteoarthritis (OA), independent of the level of physical activity, symptom severity and radiographic abnormalities. Data from the Osteoarthritis Initiative's (OAI) baseline and 24-month follow-up knee MRIs of 115 patients (age range: 45-78 years; 48 % female; BMI: 20.9-48.7) were analyzed. Cartilage, bone marrow and menisci were semi-quantitatively scored according to the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and Boston-Leeds Osteoarthritis Knee Score (BLOKS) systems in all compartments. Baseline and 24-month interval changes in structural tissue damage assessed by BLOKS and WORMS were used as predictors of KR independent of clinical and radiographic parameters using Cox hazard analysis. Adjustments were performed for age, gender, BMI and physical activity (Physical Activity Scale for the Elderly: PASE), Western Ontario and McMaster Questionnaire (WOMAC) total score and radiographic Kellgren-Lawrence (KL) score. BLOKS and WORMS baseline cartilage scores were predictors of KR independent of the PASE, WOMAC and KL score. One score increase in the average baseline BLOKS full-thickness cartilage defect score was associated with a [hazard ratio (95 % CI)] 13.55 (3.61-50.89) times greater risk of KR independent of the PASE, WOMAC and KL score. Net reclassification improvements (NRIs) of the additional evaluation of 24-month follow-up MRI scores and assessment of changes were not significant for prediction of KR (NRI range: - 7.23 - 24.8 %). The BLOKS cartilage score for full-thickness cartilage defects had the highest hazard for KR. Follow-up MRI changes in structural tissue damage, detected by BLOKS and WORMS cartilage, bone marrow or meniscus scores (up to 24 months) had no significant predictive value in addition

  16. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the osteoarthritis initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hafezi-Nejad, Nima; Eng, John; Demehri, Shadpour [Johns Hopkins University School of Medicine, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Zikria, Bashir [Johns Hopkins University, Department of Orthopedic Surgery, Baltimore, MD (United States); Carrino, John A. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States)

    2015-11-15

    To evaluate, in a confirmatory fashion, whether baseline and change from baseline to 24-month follow-up in cartilage damage, bone marrow lesions and meniscal damage are predictors of knee replacement (KR) in subjects with a high risk of osteoarthritis (OA), independent of the level of physical activity, symptom severity and radiographic abnormalities. Data from the Osteoarthritis Initiative's (OAI) baseline and 24-month follow-up knee MRIs of 115 patients (age range: 45-78 years; 48 % female; BMI: 20.9-48.7) were analyzed. Cartilage, bone marrow and menisci were semi-quantitatively scored according to the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and Boston-Leeds Osteoarthritis Knee Score (BLOKS) systems in all compartments. Baseline and 24-month interval changes in structural tissue damage assessed by BLOKS and WORMS were used as predictors of KR independent of clinical and radiographic parameters using Cox hazard analysis. Adjustments were performed for age, gender, BMI and physical activity (Physical Activity Scale for the Elderly: PASE), Western Ontario and McMaster Questionnaire (WOMAC) total score and radiographic Kellgren-Lawrence (KL) score. BLOKS and WORMS baseline cartilage scores were predictors of KR independent of the PASE, WOMAC and KL score. One score increase in the average baseline BLOKS full-thickness cartilage defect score was associated with a [hazard ratio (95 % CI)] 13.55 (3.61-50.89) times greater risk of KR independent of the PASE, WOMAC and KL score. Net reclassification improvements (NRIs) of the additional evaluation of 24-month follow-up MRI scores and assessment of changes were not significant for prediction of KR (NRI range: - 7.23 - 24.8 %). The BLOKS cartilage score for full-thickness cartilage defects had the highest hazard for KR. Follow-up MRI changes in structural tissue damage, detected by BLOKS and WORMS cartilage, bone marrow or meniscus scores (up to 24 months) had no significant predictive value in addition

  17. Nano-calciumphosphate scaffold generation for bone repair/replacement: elucidating the signalling response and cell cycle

    CSIR Research Space (South Africa)

    Wepnener, I

    2010-09-01

    Full Text Available Strong, bioinert materials have always been the focus for bone replacement and repair. This practice has since moved towards materials that can mimic living tissue and aid the healing process (i.e. be replaced by natural bone); thus materials...

  18. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

    Science.gov (United States)

    Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M

    2009-06-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

  19. Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration

    Science.gov (United States)

    Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.

    2009-01-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040

  20. Bentall operation, total aortic replacement and mitral valve replacement for a young adult with Marfan syndrome: a case of three-staged operation.

    Science.gov (United States)

    Inui, K; Shimazaki, Y; Watanabe, T; Kuraoka, S; Minowa, T; Miura, M; Oshikiri, S; Toyama, H

    1998-08-01

    In Marfan syndrome, the most common cardiovascular abnormalities are dilatation of the aorta and aortic valve regurgitation in adult patients. Mitral valve dysfunction is the most common cause of morbidity and mortality in infants and children with Marfan syndrome, and is not frequently operated on in adult Marfan patients who undergo surgery for diseases of the aortic root and total aorta. This report describes a successfully three-staged operation for a 24 year-old man with Marfan syndrome who underwent an emergent Bentall operation and aortic arch replacement, total aortic replacement and mitral valve replacement over 2 years. Mitral valve regurgitation was mild but increased after the second operation. The graft was tightly adhesive and invasive to the sternum. Endoscopic view was helpful to avoid graft damage at resternotomy. The postoperative course was uneventful in each operation. Microscopic examination of the mitral valve leaflets showed abnormal increase of mucopolysaccharides, and disruption and fragmentation of elastic fibers.

  1. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  2. Oxidative damage and aging: spotlight on mitochondria.

    Science.gov (United States)

    Linford, Nancy J; Schriner, Samuel E; Rabinovitch, Peter S

    2006-03-01

    Whereas free radical damage has been proposed as a key component in the tissue degeneration associated with aging, there has been little evidence that free radical damage limits life span in mammals. The current research shows that overexpression of the antioxidant enzyme catalase in mitochondria can extend mouse life span. These results highlight the importance of mitochondrial damage in aging and suggest that when targeted appropriately, boosting antioxidant defenses can increase mammalian life span.

  3. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  4. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  5. TU-F-CAMPUS-T-05: Replacement Computational Phantoms to Estimate Dose in Out-Of-Field Organs and Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, K [Oregon State University, Corvallis, Oregon (United States); Oregon Health and Science University, Portland, Oregon (United States); Tannous, J; Nabha, R; Feghali, J; Ayoub, Z; Jalbout, W; Youssef, B [American University of Beirut Medical Center, Beirut (Lebanon); Taddei, P [American University of Beirut Medical Center, Beirut (Lebanon); The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To estimate the absorbed dose in organs and tissues at risk for radiogenic cancer for children receiving photon radiotherapy for localized brain tumors (LBTs) by supplementing their missing body anatomies with those of replacement computational phantoms. Applied beyond the extent of the RT Images collected by computed tomography simulation, these phantoms included RT Image and RT Structure Set objects that encompassed sufficient extents and contours for dosimetric calculations. Method: Nine children, aged 2 to 14 years, who received three-dimensional conformal radiotherapy for low-grade LBTs, were randomly selected for this study under Institutional-Review-Board protocol. Because the extents of their RT Images were cranial only, they were matched for size and sex with patients from a previous study with larger extents and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the patients’ data and those of the replacement computational phantoms using commercial software. In-field dose was calculated with a clinically-commissioned treatment planning system, and out-of-field dose was estimated with an analytical model. Results: Averaged over all nine children and normalized for a therapeutic dose of 54 Gy prescribed to the PTV, where the PTV is the GTV, the highest mean organ doses were 3.27, 2.41, 1.07, 1.02, 0.24, and 0.24 Gy in the non-tumor remainder, red bone marrow, thyroid, skin, breasts, and lungs, respectively. The mean organ doses ranged by a factor of 3 between the smallest and largest children. Conclusion: For children receiving photon radiotherapy for LBTs, we found their doses in organs at risk for second cancer to be non-negligible, especially in the non-tumor remainder, red bone marrow, thyroid, skin, breasts, and lungs. This study demonstrated the feasibility for patient dosimetry studies to augment missing patient anatomy by applying size- and sex-matched replacement

  6. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  7. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  8. Changes in the rate of proliferation in normal tissues after irradiation

    International Nuclear Information System (INIS)

    Denekamp, J.

    1975-01-01

    In tissues where reproductive cell death is known to cause the functional tissue damage (e.g., intestine and skin), repopulation becomes important only after the death of the radiation-damaged cells. Since these tissues have a fairly rapid turnover, this can occur within a short period of time and can assist in the healing of tissues during fractionated therapy. However, in tissues which express their damage late, such as the lung, it is very unlikely that repopulation will be stimulated before cell death is manifested and this does not occur during the period over which fractionated radiotherapy is administered. Although repopulation may be of no importance in these tissues, e.g., lungs and kidneys, there appears to be some other ''repair'' process which requires additional radiation dose to be administered to achieve the same endpoint if the overall time is increased

  9. Stem cell-derived angiogenic/vasculogenic cells: Possible therapies for tissue repair and tissue engineering

    NARCIS (Netherlands)

    Zwaginga, J. J.; Doevendans, P.

    2003-01-01

    1. The recent ability to isolate stem cells and study their specific capacity of self-renewal with the formation of different cell types has opened up exciting vistas to help the repair of damaged tissue and even the formation of new tissue. In the present review, we deal with the characteristics

  10. X-ray investigations of lead shot pellets in the tissues of various species of birds found dead in Northern Germany

    International Nuclear Information System (INIS)

    Averbeck, C.; Kempen, E.; Petermann, S.; Prueter, J.; Vaur, G.; Visse, C.

    1990-01-01

    Within the period 1985-1988 467 specimens of dead or moribund birds including 51 species were collected in northern Germany, and x-rayed to ascertain lead pellet damage. In 15.8% of the cases evidence of lead bullets was found in the tissues. In over 80% of the cases lead pellets were found, and in 11 (14.9%) of the animals air rifle ammunition was discovered. Along with wood cock, greylag geese, and eider ducks several species of sea gulls were especially affected. The exact causes of death of the lead damaged birds could usually not be determined. The problems with lead pellet ammunition are presented and a legally designated maximum shooting distance is recommended. The replacement of lead pellets with small caliber ammunition for hunting from blinds is also discussed. Bullets are considered more effective for the hunting of knob-billed swans

  11. Synthetic ossicular replacements: Normal and abnormal CT appearance

    International Nuclear Information System (INIS)

    Swartz, J.D.; Zwillenberg, S.; Berger, A.S.; Granoff, D.W.; Popky, G.L.

    1986-01-01

    Numerous synthetic ossicular replacements are currently in use. The TORP conducts sound from the newly formed tympanic membrane to the oval window; the PORP is used when the stapes superstructure is maintained, being interposed between the tympanic membrane and the stapes capitulum. In 12 patients the surgical results of ossicular replacement procedures were good, which gave the author the opportunity to study the normal CT appearance. In an additional 10 patients CT was performed before surgical revision. Using CT, they have been able to diagnose subluxation and fibrous tissue fixation. In two patients the CT appearance was unremarkable, but at surgery lateralization of the graft was found, with a nonfunctioning interface

  12. [Effect of oxidative stress-associated damage to the lung tissue caused by different body mass index in the rat models].

    Science.gov (United States)

    Li, X Y; Zhang, X J; Zhao, J H; Xu, J Y

    2016-12-12

    Objective: To investigate the influence of different diets on serum protein expression levels of 4-hydroxynonenal (4-HNE), thioredoxin (Trx), thioredoxin reductase (TrxR) and the activities of Trx and TrxR, and to explore the effect of damage to the lung tissue and the underlying mechanisms of different body mass index caused by different diets in the rat models . Method: Healthy clean male SD rats were randomly divided into normal group, emaciation group and fat group, which were raised by different diets for 6 months.Then the rats were sacrificed and the serum and lung tissue were prepared. The levels of 4-HNE, Trx and TrxR in peripheral blood were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA), and the activities of Trx and TrxR were measured by chemical methods. Results: Compared with the normal group, the lung tissue had more apparent emphysema in the emaciation and the fat groups under light microscope, and more inflammatory cell infiltration in alveolar septum was observed in the fat group.The levels of 4-HNE in the fat group[(24.7±8.7)mg/L]was significantly higher than that in the normal group[(15.4±4.7)mg/L, P 0.05)in the levels of 4-HNE between the emaciation and the normal groups. The levels of TrxR in the emaciation group[(7.7±1.4)μg/ml]was significantly higher than that in the normal and the fat groups[(6.2±1.1), (4.9±1.4)μg/ml, all P 0.05). The activity of Trx in the emaciation group[(32.4±8.5)×10 -3 A ·min -1 ·mg -1 ]was significantly higher than that in the normal group[(19.6±3.3)×10 -3 A ·min -1 ·mg -1 ]and the fat group[(11.3±7.5)×10 -3 A ·min -1 ·mg -1 , all P 0.05). Conclusion: Both high BMI and low BMI can affect the oxidative stress of the body, resulting in increased oxidants and decreased antioxidants, and can cause damage to the lung tissue in the rat models.

  13. 7 CFR 160.78 - Loss or damage of standards.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) NAVAL STORES REGULATIONS AND.... The cost of making necessary repairs to any duplicates, or of replacing those damaged beyond repair...

  14. Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy.

    Science.gov (United States)

    Antonucci, Ivana; Pantalone, Andrea; Tete, Stefano; Salini, Vincenzo; Borlongan, Cesar V; Hess, David; Stuppia, Liborio

    2012-01-01

    Stem cells have been proposed as a powerful tool in the treatment of several human diseases, both for their ability to represent a source of new cells to replace those lost due to tissue injuries or degenerative diseases, and for the ability of produce trophic molecules able to minimize damage and promote recovery in the injured tissue. Different cell types, such as embryonic, fetal or adult stem cells, human fetal tissues and genetically engineered cell lines, have been tested for their ability to replace damaged cells and to restore the tissue function after transplantation. Amniotic fluid -derived Stem cells (AFS) are considered a novel resource for cell transplantation therapy, due to their high renewal capacity, the "in vitro" expression of embryonic cell lineage markers, and the ability to differentiate in tissues derived from all the three embryonic layers. Moreover, AFS do not produce teratomas when transplanted into animals and are characterized by a low antigenicity, which could represent an advantage for cell transplantation or cell replacement therapy. The present review focuses on the biological features of AFS, and on their potential use in the treatment of pathological conditions such as ischemic brain injury and bone damages.

  15. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration

    International Nuclear Information System (INIS)

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2012-01-01

    Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/Collagen (PLLA/PAA/Col I and III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p ≤ 0.05) in PLLA/PAA/Col I and III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I and III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I and III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues. - Highlights: ► Differentiation of adipose derived stem cells in the presence of bFGF for wound healing ► Introduction of PAA as ECM mimetic cell binding moiety ► Combination of PLLA/PAA/Col I and III nanofibers and stem cell therapy for skin regeneration.

  16. Composite poly-L-lactic acid/poly-({alpha},{beta})-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, Rajeswari [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Venugopal, Jayarama Reddy, E-mail: nnijrv@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Sundarrajan, Subramanian [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Mukherjee, Shayanti [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Sridhar, Radhakrishnan [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Ramakrishna, Seeram, E-mail: seeram@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore)

    2012-08-01

    Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-L-lactic acid/poly-({alpha},{beta})-DL-aspartic acid/Collagen (PLLA/PAA/Col I and III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p {<=} 0.05) in PLLA/PAA/Col I and III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I and III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I and III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues. - Highlights: Black-Right-Pointing-Pointer Differentiation of adipose derived stem cells in the presence of bFGF for wound healing Black-Right-Pointing-Pointer Introduction of PAA as ECM mimetic cell binding moiety Black-Right-Pointing-Pointer Combination of PLLA/PAA/Col I and III nanofibers and stem cell therapy for skin regeneration.

  17. Milk phospholipid's protective effects against UV damage in skin equivalent models

    Science.gov (United States)

    Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.

    2012-03-01

    Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.

  18. Relationship between X-ray irradiation and chromosomal damage in bone marrow tissue of mice

    International Nuclear Information System (INIS)

    Chaubey, R.C.; George, K.P.; Sundaram, K.

    1976-01-01

    X-ray induced chromosomal damage in bone-marrow tissue of male mice was studied using micronucleus technique. Dose response relationship was evaluated. Male Swiss mice received whole body x-ray irradiation at different doses from 25-1000 rads. Animals were sacrificed at the end of 24 hours, bone-marrow smears were made and stained in May-Grunwald-Giemsa. The preparatians were scored for the following types of aberrations: micronuclei in young erythocytes-polychromatic cells and in the mature erythrocytes-normechromatic cells. A dose dependent increase in the frequency of micronuclei in polychromatic cells up to a dose of 100 rads was observed. In addition the effect of post-irradiation duration on the frequency of micronuclei in polychromatic and normochromatic cells were studied. Male Swiss mice were exposed to 200 rads x-rays and were then sacrificed at different time intervals after irradiation and bone-marrow preparations were made and scored. Maximum polychromatic cells with micronuclei were observed in 24 hours post-irradiated animals, thereafter a decrease in the frequency of polychromatic cells with micronuclei was observed in 40 hours post irradiated animals. (author

  19. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  20. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  1. The role of meniscal tissue in joint protection in early osteoarthritis.

    Science.gov (United States)

    Verdonk, Rene; Madry, Henning; Shabshin, Nogah; Dirisamer, Florian; Peretti, Giuseppe M; Pujol, Nicolas; Spalding, Tim; Verdonk, Peter; Seil, Romain; Condello, Vincenzo; Di Matteo, Berardo; Zellner, Johannes; Angele, Peter

    2016-06-01

    It is widely accepted that partial meniscectomy leads to early onset of osteoarthritis (OA). A strong correlation exists between the amount and location of the resected meniscus and the development of degenerative changes in the knee. On the other hand, osteoarthritic changes of the joint alter the structural and functional integrity of meniscal tissue. These alterations might additionally compromise the limited healing capacity of the meniscus. In young, active patients without cartilage damage, meniscus therapy including partial meniscectomy, meniscus suture, and meniscus replacement has proven beneficial effects in long-term studies. Even in an early osteoarthritic milieu, there is a relevant regenerative potential of the meniscus and the surrounding cartilage. This potential should be taken into account, and meniscal surgery can be performed with the correct timing and the proper indication even in the presence of early OA.

  2. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  3. Stem cell research: licit or complicit? Is a medical breakthrough based on embryonic and fetal tissue compatible with Catholic teaching?

    Science.gov (United States)

    Branick, V; Lysaught, M T

    1999-01-01

    In November 1998 biologists announced that they had discovered a way to isolate and preserve human stem cells. Since stem cells are capable of developing into any kind of human tissue or organ, this was a great scientific coup. Researchers envision using the cells to replace damaged organs and to restore tissue destroyed by, for example, Parkinson's disease, diabetes, or even Alzheimer's. But, since stem cells are taken from aborted embryonic and fetal tissue or "leftover" in vitro embryos, their use raises large ethical issues. The National Institutes of Health (NIH) recently decided to fund research employing, not stem cells, but "cell lines" derived from them. The NIH has essentially made an ethical determination, finding sufficient "distance" between cell lines and abortion. Can Catholic universities sponsoring biological research agree with this finding? Probably not. In Catholic teaching, the concept of "complicity" would likely preclude such research. However, Catholic teaching would probably allow research done with stem cells obtained from postpartum placental tissue and from adult bone marrow and tissue. These cells, which lack the pluripotency of embryonic and fetal stem cells, are nevertheless scientifically promising and do not involve the destruction of human life.

  4. Evaluation of normal tissue responses to high-LET radiations

    International Nuclear Information System (INIS)

    Halnan, K.E.

    1979-01-01

    Clinical results presented have been analysed to evaluate normal tissue responses to high-LET radiations. Damage to brain, spinal cord, gut, skin, connective tissue and bone has occurred. A high RBE is probable for brain and possible for spinal cord and gut but other reasons for damage are also discussed. A net gain seems likely. Random controlled trials are advocated. (author)

  5. 43 CFR 11.82 - Damage determination phase-alternatives for restoration, rehabilitation, replacement, and/or...

    Science.gov (United States)

    2010-10-01

    ... provided by those resources had the discharge of oil or release of the hazardous substance under... recovery with minimal management actions. Possible alternatives within this range could reflect varying rates of recovery, combinations of management actions, and needs for resource replacements or...

  6. Correlations between reinfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    NARCIS (Netherlands)

    Spekkers, M.H.; Zhou, Q.; Arnbjerg-Nielsen, K.; Clemens, F.H.L.R.; ten Veldhuis, J.A.E.

    2013-01-01

    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus,

  7. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading

    NARCIS (Netherlands)

    Loerakker, S.; Manders, E.; Strijkers, G.J.; Nicolay, K.; Baaijens, F.P.T.; Bader, D.L.; Oomens, C.W.J.

    2011-01-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period.

  8. The Application of Corals in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2017-05-01

    Full Text Available Natural coral exoskeleton and coralline hydroxyapatite have been used as bone replacement graft for repairing of bone defects in animal models and humans since two decades ago. These bone replacement grafts have an osteoconductive, biodegradable and biocompatible features. Currently, three lines of researches in bone tissue engineering are conducting on corals. Corals have been used for construction of bony composites, stem cells attachments, and the growth factors-scaffold-based approaches. This review have paid to the wide range of coral use in clinical experiments as a bone graft substitute and cell-scaffold-based approaches in bone tissue engineering.

  9. The effect of preheated tendon as a lean meat replacement on the properties of fine emulsion sausages.

    Science.gov (United States)

    Sadler, D H; Young, O A

    1993-01-01

    Tendon from beef hind leg muscles was used to replace some of the lean in a conventional emulsion formulation. The tendon was homogenized and either used raw or preheated for 2·5 h at a range of temperatures (50, 60, 70, 80°C) before use. Texture analysis and sensory evaluation were performed on cylinders of cooked sausage. Texture analysis was carried out on formulations which had 20% of meat protein replaced by 20% tendons which were raw or had been preheated to 50, 60, 70, or 80°C. Fracturability decreased by about 40% with raw tendon, but was restored to within 20% of the no-replacement control if the tendon had been preheated. Hardness was approximately doubled by replacement with raw tendon or tendon heated at 50°C. At temperatures higher than that, hardness returned to approximately no-replacement levels. For sensory evaluation (0-25% replacement; preheating at 70°C), sausages were assessed by a 12-member panel for texture, flavour and overall acceptability. All attributes decreased with increasing collagen content, the decrease being less marked with preheated tendon. Thus more connective tissue could be added for the same panel score if the tissue was preheated. Comparison of the texture profile and the panel scores for texture at the same lean replacement level suggested that reduced fracturability was the texture parameter that panellists objected to when heated tendon replaced some of the lean. Other researchers have shown that connective tissue preheated to 100°C before addition in emulsion sausages results in improved yields and better sensory attributes, but the present results show that temperatures as low as 60°C can be effective for beef tendon. Copyright © 1993. Published by Elsevier Ltd.

  10. Preventative Valve-Sparing Aortic Root Replacement and Pregnancy Outcome in Marfan Syndrome

    OpenAIRE

    Sokol, Vesna; Zlopaša, Gordan; Herman, Mislav; Planinić, Pavao; Micevska, Ana

    2012-01-01

    In Marfan syndrome, with dilatation of the aortic root secondary to an underlying connective tissue defect, pregnancy can cause hemodynamic stress leading to the development of an aortic aneurysm and even a fatal aortic dissection. In the presence of existing aortic root enlargement and a family history of aortic dissection, preventative elective surgery is suggested. Aortic root replacement with or without a valve-sparing procedure is superior to total aortic root replacement with ...

  11. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    Science.gov (United States)

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to frost damage events more common.

  13. Subthreshold displacement damage in copper--aluminum alloys during electron irradiation

    International Nuclear Information System (INIS)

    Drosd, R.; Kosel, T.; Washburn, J.

    1976-12-01

    During electron irradiation at low energies which results in a negligible damage rate in a pure material, lighter solute atoms are displaced, which may in turn indirectly displace solvent atoms by a focussed replacement collision or an interstitial diffusion jump. The extent to which lighter solute atoms contribute to the subthreshold damage rate has been examined by irradiating copper--aluminum alloys at high temperatures in a high voltage electron microscope. The damage rate, as measured by monitoring the growth rate of dislocation loops, at 300 kV was found to increase linearly with the aluminum concentration

  14. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  15. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  17. Autogenous Transplantation for Replacing a Hopeless Tooth.

    Science.gov (United States)

    Zakershahrak, Mehrsa; Moshari, Amirabbas; Vatanpour, Mehdi; Khalilak, Zohreh; Jalali Ara, Afsoon

    2017-01-01

    Autogenous tooth transplantation (ATT) is a simple and reasonable choice for replacing the missing teeth when a proper donor tooth is available. This report presents a case of successful ATT of a maxillary right third molar for replacement of mandibular right second molar with a concomitant endodontic-periodontal disease. The mandibular second molar was believed to be hopeless due to a severe damage to coronal tooth structure, inappropriate root canal treatment and apical radiolucency. After extraction of mandibular second molar and maxillary third molar (the donor), the tooth was re-implanted into the extracted socket of second molar site. Root canal therapy was then performed. After 3 years, clinical and radiographic examinations revealed satisfying results, with no signs and symptoms. The patient is asymptomatic and the transplanted tooth is still functional with no signs of marginal periodontal pathosis. Radiographies showed bone regeneration in the site of previous extensive periapical lesion, normal periodontal ligament with no signs of root resorption.

  18. Mechanical design criteria for intervertebral disc tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  20. Reparative inflammation takes charge of tissue regeneration

    NARCIS (Netherlands)

    Karin, Michael; Clevers, Hans

    2016-01-01

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an

  1. Effects of elevated iodine in milk replacer on calf performance.

    Science.gov (United States)

    Jenkins, K J; Hidiroglou, M

    1990-03-01

    Calves were fed milk replacer containing .57, 10, 50, 100, or 200 ppm iodine (from ethylenediaminedihydroiodide) in DM, from 3 to 38 d of age, to estimate the minimum toxic concentration of iodine. Only the 200 ppm iodine intake reduced weight gains, DM intake, feed efficiency, and DM digestibility. At the 100 and 200 ppm iodine intakes, protein digestibility was reduced, and calves showed typical symptoms of iodine toxicity (nasal discharge, excessive tear and saliva formation, and coughing from tracheal congestion). Thyroid iodine increased with every elevation in iodine intake. Iodine in plasma, bile, and non-thyroid tissues started to increase at the 50 ppm intake and, except for muscle, tended to increase again at the 100 and 200 ppm intakes. Thus, the preruminant calf tolerated up to 50 ppm iodine in milk replacer DM for 5 wk postpartum. However, as iodine concentrations in plasma and nonthyroid tissues started to increase at 50 ppm iodine, an upper limit of 10 ppm would be more preferable.

  2. Expandable Total Humeral Replacement in a Child with Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Eric R. Henderson

    2015-01-01

    Full Text Available Case. A right-handed 8-year-old female patient presented with a conventional, high-grade osteosarcoma involving her right humerus; through-shoulder amputation was recommended. After consultation, total humerus resection with expandable, total humeral endoprosthesis reconstruction was performed with a sleeve to encourage soft-tissue ingrowth. At three-year follow-up she has received one lengthening procedure and her functional scores are excellent. Conclusion. Total humeral resection and replacement in the pediatric population are rare and although early reports of expandable total humeral endoprosthesis outcomes demonstrate high failure rates, this patient’s success indicates that expandable total humeral replacement is a viable option.

  3. Cardiac stroke following total knee replacement in an ochronotic arthropathy: Case report and literature review

    Directory of Open Access Journals (Sweden)

    Saurabh Jain

    2016-01-01

    Full Text Available Alkaptonuria is a rare autosomal recessive disorder caused by defective metabolism of homogentisic acid (HGA which on accumulation in the connective tissues causes arthritis, darkening of urine and connective tissue pigmentation. Knee is most commonly affected joint whereas pigment deposition is seen in entire body causing cardiovascular, genitourinary, ocular, cutaneous, and musculoskeletal complications. We here report such a case of bilateral ochronotic arthropathy, who was diagnosed to be alkaptonuric only during joint exploration. He sustained a cardiac catastrophic stroke on 3 rd post operative day of the left knee replacement which was done one week after the right knee replacement. With prompt treatment and good hospital care, the patient was revived successfully, without valvulotomy or valvular replacement. The spectrum of clinical manifestations are discussed in the report with emphasis on thorough history and clinical examination of the patient, before taking the patient to the total knee replacement to make accurate diagnosis before hand and be prepared for the complications or catastrophic by a multidisciplinary approach.

  4. Contribution to the microchemistry of smoke damage by fluoride. The migration of fluorides in plant tissue. 2. The visible damage

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P

    1953-01-01

    In continuation of former investigations, a theory of damage caused by fluorine compounds on green plants was developed. It is possible to differentiate between acute and chronic damages by use of microanalytical estimation of total fluorine and inorganic and organic fluorine compounds in the plants.

  5. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  6. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    International Nuclear Information System (INIS)

    Cucinotta, Francis A

    2016-01-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  7. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  8. Development of damage functions for high-rise building components

    International Nuclear Information System (INIS)

    Kustu, O.; Miller, D.D.; Brokken, S.T.

    1982-10-01

    The component approach for predicting the effects that ground motion from underground nuclear explosions will have on structures involves predicting the damage to each structural and nonstructural component of a building on the basis of the expected local deformation that most affects the damage to the component. This study was conducted to provide the basic data necessary to evaluate the component approach. Available published laboratory test data for various high-rise building components were collected. These data were analyzed statistically to determine damage threshold values and their variabilities, which in turn were used to derive component damage functions. The portion of construction costs attributable to various building components was determined statistically. This information was needed because component damage functions define damage as a percentage of the replacement values of the component, and, in order to calculate the overall building damage factor, the relative cost of each component must be estimated. The feasibility of the component approach to damage prediction is demonstrated. It is recommended that further experimental research directed towards developing an adequate data base of component damage thresholds for all significant building components should be encouraged. Parallel to this effort, detailed damage data from specific buildings damaged in earthquakes should be collected to verify the theoretical procedure

  9. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  10. DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

    Science.gov (United States)

    Mueller, Michael M; Castells-Roca, Laia; Babu, Vipin; Ermolaeva, Maria A; Müller, Roman-Ulrich; Frommolt, Peter; Williams, Ashley B; Greiss, Sebastian; Schneider, Jennifer I; Benzing, Thomas; Schermer, Bernhard; Schumacher, Björn

    2014-12-01

    Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

  11. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  12. Situation-dependent repair of DNA damage in yeast

    International Nuclear Information System (INIS)

    von Borstel, R.C.; Hastings, P.J.

    1985-01-01

    The concept of channelling of lesions in DNA into defined repair systems has been used to explain many aspects of induced and spontaneous mutation. The channelling hypothesis states that lesions excluded from one repair process will be taken up by another repair process. This is a simplification. The three known modes of repair of damage induced by radiation are not equivalent modes of repair; they are, instead, different solutions to the problem of replacement of damaged molecules with new molecules which have the same informational content as those that were damaged. The mode of repair that is used is the result of the response to the situation in which the damage takes place. Thus, when the most likely mode of repair does not take place, then the situation changes with respect to the repair of the lesion; the lesion may enter the replication fork and be reparable by another route

  13. Nuclear facilities: repair and replacement technologies; Installations nucleaires: technologies de reparation et de remplacement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The oldest operating reactors are more than 35 years old and are now facing major maintenance operations. The first replacement of a pressurizer took place in autumn 2005 at the St-Lucie plant (Usa) while steam generators have been currently replaced since 1983. Nuclear industry has to adapt to this new market by proposing innovative technological solutions in the reactor maintenance field. This document gathers the 9 papers presented at the conference. The main improvements concern repair works on internal components of PWR-type reactors, the replacement of major components of the primary coolant circuit and surface treatments to limit the propagation of damages. The first paper shows that adequate design and feedback experience are good assets to manage the ageing of a nuclear unit. Another paper shows that a new repair method of a relief valve can avoid its replacement. (A.C.)

  14. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  15. Effects of Resveratrol on Methotrexate-Induced Testicular Damage in Rats

    Directory of Open Access Journals (Sweden)

    Esin Yuluğ

    2013-01-01

    Full Text Available This study investigated the probable protective effects of resveratrol (RES, an antioxidant, against methotrexate- (MTX- induced testis damage. Twenty-four male Sprague Dawley rats were randomly divided into four groups: control, RES, MTX, and MTX + RES groups. Rats were sacrificed at the end of the experiment. Plasma and tissue malondialdehyde (MDA levels, superoxide dismutase (SOD and catalase (CAT activity in tissue, testicular histopathological damage scores, and testicular and epididymal epithelial apoptotic index (AI were evaluated. The MTX group had significantly higher plasma and tissue MDA levels and significantly lower SOD and CAT activity than those of the control group. In the MTX + RES group, plasma and tissue MDA levels decreased significantly and SOD activity rose significantly compared to the MTX group. The MTX group had significantly lower Johnsen’s testicular biopsy score (JTBS values than those of the control group. JTBS was significantly higher in the MTX + RES group than in the MTX group. AI increased in the testis and epididymis in the MTX group and significantly decreased in the MTX + RES group. Our results indicate that RES has protective effects against MTX-induced testis damage at the biochemical, histopathological, and apoptotic levels.

  16. The volume of fluid injected into the tissue expander and the tissue expansion

    Directory of Open Access Journals (Sweden)

    Mahmood Omranifard

    2014-01-01

    Full Text Available Background: Replacement of the lost tissue is the major concerns of the plastic surgeons. Expanded area should be coherent with the surrounding tissue. Tissue expansion technique is the reforming methods the skin tissue scarcities. Several methods for tissue expansion are available; including usage of silicon balloon and injecting fluid into the tissue expander. Materials and Methods: In a clinical trial study, 35 patients, with burn scars, in the face, skull and neck area were studied. We provided a tissue expander device with capacities of 125, 250 and 350cc. Fluid was injected inside the device, 3 consecutive weeks with 1-week interval. After 3 months the device was set out and the tissue expansion was measured using a transparent board and the results were analyzed. Multiple regression was done by SPSS 20 to analyze the data. Results: Regression model showed Skin expansion was positively correlated with the volume of the injected fluid. For each centimeter square of skin expansion, about 6-8 ml of fluid must be injected. Conclusion: Correction of skin defects resulting from burning scar is possible using tissue expanders. The tissue expansion is correlated with the amount of the injected fluid.

  17. A replacement LH2 recirculation line before installation in Discovery

    Science.gov (United States)

    1999-01-01

    A spare four-inch diameter LH2 recirculation line (shown in photo) will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  18. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement.

    Science.gov (United States)

    Fan, Rong; Bayoumi, Ahmed S; Chen, Peter; Hobson, Christopher M; Wagner, William R; Mayer, John E; Sacks, Michael S

    2013-02-22

    Surgical replacement of the pulmonary valve (PV) is a common treatment option for congenital pulmonary valve defects. Engineered tissue approaches to develop novel PV replacements are intrinsically complex, and will require methodical approaches for their development. Single leaflet replacement utilizing an ovine model is an attractive approach in that candidate materials can be evaluated under valve level stresses in blood contact without the confounding effects of a particular valve design. In the present study an approach for optimal leaflet shape design based on finite element (FE) simulation of a mechanically anisotropic, elastomeric scaffold for PV replacement is presented. The scaffold was modeled as an orthotropic hyperelastic material using a generalized Fung-type constitutive model. The optimal shape of the fully loaded PV replacement leaflet was systematically determined by minimizing the difference between the deformed shape obtained from FE simulation and an ex-vivo microCT scan of a native ovine PV leaflet. Effects of material anisotropy, dimensional changes of PV root, and fiber orientation on the resulting leaflet deformation were investigated. In-situ validation demonstrated that the approach could guide the design of the leaflet shape for PV replacement surgery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    Science.gov (United States)

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Biomechanics Analysis of Pressure Ulcer Using Damaged Interface Model between Bone and Muscle in the Human Buttock

    Science.gov (United States)

    Slamet, Samuel Susanto; Takano, Naoki; Tanabe, Yoshiyuki; Hatano, Asako; Nagasao, Tomohisa

    This paper aims at building up a computational procedure to study the bio-mechanism of pressure ulcer using the finite element method. Pressure ulcer is a disease that occurs in the human body after 2 hours of continuous external force. In the very early stage of pressure ulcer, it is found that the tissues inside the body are damaged, even though skin surface looks normal. This study assumes that tension and/or shear strain will cause damage to loose fibril tissue between the bone and muscle and that propagation of damaged area will lead to fatal stage. Analysis was performed using the finite element method by modeling the damaged fibril tissue as a cutout. By varying the loading directions and watching both tensile and shear strains, the risk of fibril tissue damage and propagation of the damaged area is discussed, which may give new insight for the careful nursing for patients, particularly after surgical treatment. It was found that the pressure ulcer could reoccur for a surgical flap treatment. The bone cut and surgical flap surgery is not perfect to prevent the bone-muscle interfacial damage.

  1. 78 FR 66852 - Housing Assistance Due to Structural Damage

    Science.gov (United States)

    2013-11-07

    ... constructed. This type of housing would have a life expectancy of more than 5 years, but less than 25 years... FEMA-2010-0035] RIN 1660-AA68 Housing Assistance Due to Structural Damage AGENCY: Federal Emergency...'s repair, replacement, and housing construction assistance regulations that clarify the eligibility...

  2. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  3. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  4. Why shorter half-times of repair lead to greater damage in pulsed brachytherapy

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1993-01-01

    Pulsed brachytherapy consists of replacing continuous irradiation at low dose-rate with a series of medium dose-rate fractions in the same overall time and to the same total dose. For example, pulses of 1 Gy given every 2 hr or 2 Gy given every 4 hr would deliver the same 70 Gy in 140 hr as continuous irradiation at 0.5 Gy/hr. If higher dose-rates are used, even with gaps between the pulses, the biological effects are always greater. Provided that dose rates in the pulse do not exceed 3 Gy/hr, and provided that pulses are given as often as every 2 hr, the inevitable increases of biological effect are no larger than a few percent (of biologically effective dose or extrapolated response dose). However, these increases are more likely to exceed 10% (and thus become clinically significant) if the half-time of repair of sublethal damage is short (less than 1 hr) rather than long. This somewhat unexpected finding is explained in detail here. The rise and fall of Biologically Effective Dose (and hence of Relative Effectiveness, for a constant dose in each pulse) is calculated during and after single pulses, assuming a range of values of T 1/2 , the half-time of sublethal damage repair. The area under each curve is proportional to Biologically Effective Dose and therefore to log cell kill. Pulses at 3 Gy/hr do yield greater biological effect (dose x integrated Relative Effectiveness) than lower dose-rate pulses or continuous irradiation at 0.5 Gy/hr. The contrast is greater for the short T 1/2 of 0.5 hr than for the longer T 1/2 of 1.5 hr. More biological damage will be done (compared with traditional low dose rate brachytherapy) in tissues with short T 1/2 (0.1-1 hr) than in tissues with longer T 1/2 values. 8 refs., 3 figs

  5. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  6. Progress on materials and scaffold fabrications applied to esophageal tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Qiuxiang; Shi, Peina; Gao, Mongna; Yu, Xuechan; Liu, Yuxin; Luo, Ling; Zhu, Yabin, E-mail: zhuyabin@nbu.edu.cn

    2013-05-01

    The mortality rate from esophageal disease like atresia, carcinoma, tracheoesophageal fistula, etc. is increasing rapidly all over the world. Traditional therapies such as surgery, radiotherapy or chemotherapy have been met with very limited success resulting in reduced survival rate and quality of patients' life. Tissue-engineered esophagus, a novel substitute possessing structure and function similar to native tissue, is believed to be an effective therapy and a promising replacement in the future. However, research on esophageal tissue engineering is still at an early stage. Considerable research has been focused on developing ideal scaffolds with optimal materials and methods of fabrication. This article gives a review of materials and scaffold fabrications currently applied in esophageal tissue engineering research. - Highlights: ► Natural and synthesized materials are being developed as scaffold matrices. ► Several technologies have been applied to reconstruct esophagus tissue scaffold. ► Tissue-engineered esophagus is a promising artificial replacement.

  7. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    Science.gov (United States)

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at

  8. Primary separator replacement for Bruce Unit 8 steam generators

    International Nuclear Information System (INIS)

    Roy, S.B.; Mewdell, C.G.; Schneider, W.G.

    2000-01-01

    During a scheduled maintenance outage of Bruce Unit 8 in 1998, it was discovered that the majority of the original primary steam separators were damaged in two steam generators. The Bruce B steam generators are equipped with GXP type primary cyclone separators of B and W supply. There were localized perforations in the upper part of the separators and large areas of generalized wall thinning. The degradation was indicative of a flow related erosion corrosion mechanism. Although the unit- restart was justified, it was obvious that corrective actions would be necessary because of the number of separators affected and the extent of the degradation. Repair was not considered to be a practical option and it was decided to replace the separators, as required, in Unit 8 steam generators during an advanced scheduled outage. GXP separators were selected for replacement to minimize the impact on steam generator operating characteristics and analysis. The material of construction was upgraded from the original carbon steel to stainless steel to maximize the assurance of full life. The replacement of the separators was a first of a kind operation not only for Ontario Power Generation and B and W but also for all CANDU plants. The paper describes the degradations observed and the assessments, the operating experience, manufacture and installation of the replacement separators. During routine inspection in 1998, many of the primary steam separators in two of steam generators at Bruce Nuclear Division B Unit 8 were observed to have through wall perforations. This paper describes assessment of this condition. It also discusses the manufacture and testing of replacement primary steam separators and the development and execution of the replacement separator installation program. (author)

  9. Comparison of international guidelines for regenerative medicine: Knee cartilage repair and replacement using human-derived cells and tissues.

    Science.gov (United States)

    Itoh, Kuni; Kano, Shingo

    2016-07-01

    Regenerative medicine (RM) is an emerging field using human-derived cells and tissues (HCT). Due to the complexity and diversity of HCT products, each country has its own regulations for authorization and no common method has been applied to date. Individual regulations were previously clarified at the level of statutes but no direct comparison has been reported at the level of guidelines. Here, we generated a new analytical framework that allows comparison of guidelines independent from local definitions of RM, using 2 indicators, product type and information type. The guidelines for products for repair and replacement of knee cartilage in Japan, the United States of America, and Europe were compared and differences were detected in both product type and information type by the proposed analytical framework. Those findings will be critical not only for the product developers to determine the region to initiate the clinical trials but also for the regulators to assess and build their regulations. This analytical framework is potentially expandable to other RM guidelines to identify gaps, leading to trigger discussion of global harmonization in RM regulations. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review.

    Science.gov (United States)

    Miron, Richard J; Fujioka-Kobayashi, Masako; Bishara, Mark; Zhang, Yufeng; Hernandez, Maria; Choukroun, Joseph

    2017-02-01

    The growing multidisciplinary field of tissue engineering aims at predictably regenerating, enhancing, or replacing damaged or missing tissues for a variety of conditions caused by trauma, disease, and old age. One area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. This systematic review gathered all the currently available in vitro, in vivo, and clinical literature utilizing PRF for soft tissue regeneration, augmentation, and/or wound healing. In total, 164 publications met the original search criteria, with a total of 48 publications meeting inclusion criteria (kappa score = 94%). These studies were divided into 7 in vitro, 11 in vivo, and 31 clinical studies. In summary, 6 out of 7 (85.7%) and 11 out of 11 (100%) of the in vitro and in vivo studies, respectively, demonstrated a statistically significant advantage for combining PRF to their regenerative therapies. Out of the remaining 31 clinical studies, a total of 8 reported the effects of PRF in a randomized clinical trial, with 5 additional studies (13 total) reporting appropriate controls. In those clinical studies, 9 out of the 13 studies (69.2%) demonstrated a statistically relevant positive outcome for the primary endpoints measured. In total, 18 studies (58% of clinical studies) reported positive wound-healing events associated with the use of PRF, despite using controls. Furthermore, 27 of the 31 clinical studies (87%) supported the use of PRF for soft tissue regeneration and wound healing for a variety of procedures in medicine and dentistry. In conclusion, the results from the present systematic review highlight the positive effects of PRF on wound healing after regenerative therapy for the management of various soft tissue defects found in medicine and dentistry.

  11. Probabilistic Assessment of Structural Seismic Damage for Buildings in Mid-America

    International Nuclear Information System (INIS)

    Bai, Jong-Wha; Hueste, Mary Beth D.; Gardoni, Paolo

    2008-01-01

    This paper provides an approach to conduct a probabilistic assessment of structural damage due to seismic events with an application to typical building structures in Mid-America. The developed methodology includes modified damage state classifications based on the ATC-13 and ATC-38 damage states and the ATC-38 database of building damage. Damage factors are assigned to each damage state to quantify structural damage as a percentage of structural replacement cost. To account for the inherent uncertainties, these factors are expressed as random variables with a Beta distribution. A set of fragility curves, quantifying the structural vulnerability of a building, is mapped onto the developed methodology to determine the expected structural damage. The total structural damage factor for a given seismic intensity is then calculated using a probabilistic approach. Prediction and confidence bands are also constructed to account for the prevailing uncertainties. The expected seismic structural damage is assessed for a typical building structure in the Mid-America region using the developed methodology. The developed methodology provides a transparent procedure, where the structural damage factors can be updated as additional seismic damage data becomes available

  12. Increased abundance of ADAM9 transcripts in the blood is associated with tissue damage [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Darawan Rinchai

    2016-10-01

    Full Text Available Background: Members of the ADAM (a disintegrin and metalloprotease domain family have emerged as critical regulators of cell-cell signaling during development and homeostasis. ADAM9 is consistently overexpressed in various human cancers, and has been shown to play an important role in tumorigenesis. However, little is known about the involvement of ADAM9 during immune-mediated processes. Results: Mining of an extensive compendium of transcriptomic datasets identified important gaps in knowledge regarding the possible role of ADAM9 in immunological homeostasis and inflammation: 1 The abundance of ADAM9 transcripts in the blood was increased in patients with acute infection but, 2 changed very little after in vitro exposure to a wide range of pathogen-associated molecular patterns (PAMPs. 3 Furthermore it was found to increase significantly in subjects as a result of tissue injury or tissue remodeling, in absence of infectious processes. Conclusions: Our findings indicate that ADAM9 may constitute a valuable biomarker for the assessment of tissue damage, especially in clinical situations where other inflammatory markers are confounded by infectious processes.

  13. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  14. TOTAL JOINT REPLACEMENT OF THE LOWER EXTREMITY IN PATIENTS WITH JUVENILE IDIOPATHIC ARTHRITIS

    Directory of Open Access Journals (Sweden)

    Стюарт Б. Гудмэн

    2014-03-01

    Full Text Available Joint replacement of the lower extremity in Juvenile Idiopathic Arthritis (JIA is becoming more commonly performed worldwide. These young adults experience severe pain and disability from end-stage arthritis, and require joint replacement of the hip or knee to alleviate pain, and restore ambulation and function. These procedures are very challenging from the anesthesia and surgical point of view, due to small overall proportions, numerous bony and other deformities and soft tissue contractures. Joint replacement operations for JIA are best performed by experienced teams, where pre-operative and peri-operative care, and post-operative rehabilitation can be optimized in a collaborative, patient-centered environment.

  15. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    Science.gov (United States)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  16. Studies of cartilaginous tissue using Raman spectroscopy method

    Science.gov (United States)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  17. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  18. Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee.

    Science.gov (United States)

    McDermott, Ian

    2011-04-01

    The menisci of the knee are important load sharers and shock absorbers in the joint. Meniscal tears are common, and whenever possible meniscal tears should be surgically repaired. Meniscectomy leads to a significant increased risk of osteoarthritis, and various options now exist for replacing missing menisci, including the use of meniscal scaffolds or the replacement of the entire meniscus by meniscal allograft transplantation. The field of meniscal surgery continues to develop apace, and the future may lie in growing new menisci by tissue engineering techniques.

  19. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering.

    Science.gov (United States)

    Oberpenning, F; Meng, J; Yoo, J J; Atala, A

    1999-02-01

    Human organ replacement is limited by a donor shortage, problems with tissue compatibility, and rejection. Creation of an organ with autologous tissue would be advantageous. In this study, transplantable urinary bladder neo-organs were reproducibly created in vitro from urothelial and smooth muscle cells grown in culture from canine native bladder biopsies and seeded onto preformed bladder-shaped polymers. The native bladders were subsequently excised from canine donors and replaced with the tissue-engineered neo-organs. In functional evaluations for up to 11 months, the bladder neo-organs demonstrated a normal capacity to retain urine, normal elastic properties, and histologic architecture. This study demonstrates, for the first time, that successful reconstitution of an autonomous hollow organ is possible using tissue-engineering methods.

  20. Generator replacement is associated with an increased rate of ICD lead alerts.

    Science.gov (United States)

    Lovelock, Joshua D; Cruz, Cesar; Hoskins, Michael H; Jones, Paul; El-Chami, Mikhael F; Lloyd, Michael S; Leon, Angel; DeLurgio, David B; Langberg, Jonathan J

    2014-10-01

    Lead malfunction is an important cause of morbidity and mortality in patients with an implantable cardioverter-defibrillator (ICD). We have shown that the failure of recalled high-voltage leads significantly increases after ICD generator replacement. However, generator replacement has not been recognized as a predictor of lead failure in general. The purpose of this study is to assess the effect of ICD generator exchange on the rate of ICD lead alerts. A time-dependent Cox proportional hazards model was used to analyze a database of remotely monitored ICDs. The model assessed the impact of generator exchange on the rate of lead alerts after ICD generator replacement. The analysis included 60,219 patients followed for 37 ± 19 months. The 5-year lead survival was 99.3% (95% confidence interval 99.2%-99.4%). Of 60,219 patients, 7458 patients (12.9%) underwent ICD generator exchange without lead replacement. After generator replacement, the rate of lead alerts was more than 5-fold higher than in controls with leads of the same age without generator replacement (hazard ratio 5.19; 95% confidence interval 3.45-7.84). A large number of lead alerted within 3 months of generator replacement. Lead alerts were more common in patients with single- vs dual-chamber ICDs and in younger patients. Sex was not associated with lead alerts. Routine generator replacement is associated with a 5-fold higher risk of lead alert compared to age-matched leads without generator replacement. This suggests the need for intense surveillance after generator replacement and the development of techniques to minimize the risk of lead damage during generator replacement. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  2. Gentilly 2 divider plate replacement

    International Nuclear Information System (INIS)

    Forest, J.; Klisel, E.; McClellan, G.; Schnelder, W.

    1995-01-01

    The steam generators at the Gentilly 2 Nuclear Plant in operation since 1983 were built with primary divider plates of a bolted panel configuration. During a routine outage inspection, it was noted that two bolts had dislodged from the divider and were located lying in the primary head. Subsequent inspections revealed erosion damage to a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. After evaluation of various options, it was decided that the panel type dividers would be replaced with a single piece floating design. The divider itself was to be of a one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat bar was provided. To counteract erosion concerns, the new divider is fitted with erosion resistant inserts or weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider strength during LOCA conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider to a variety of small and large LOCA conditions. The paper describes the diagnosis of the original divider plates and the design, manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  3. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    Full Text Available Ji Jun, Ji Shang-Yi, Yang Jian-An, He Xia, Yang Xiao-Han, Ling Wen-Ping, Chen Xiao-LingDepartment of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of ChinaBackground: There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined.Aims: To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound.Methods: A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method

  4. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  5. Which is the most preventive measure against tail damage in finisher pigs: tail docking, straw provision or lowered stocking density?

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2018-01-01

    One challenge of intensive pig production is tail damage caused by tail biting, and farmers often decrease the prevalence of tail damage through tail docking. However, tail docking is not an optimal preventive measure against tail damage and thus, it would be preferable to replace it. The aim of ...

  6. Estimate of the damage in organs induced by neutrons in three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.; Uribe, M. del R.

    2014-08-01

    By means of Monte Carlo methods was considered the damage in the organs, induced by neutrons, of patients with cancer that receive treatment in modality of three-dimensional conformal radiotherapy (3D-CRT) with lineal accelerator Varian Ix. The objective of this work was to estimate the damage probability in radiotherapy patients, starting from the effective dose by neutrons in the organs and tissues out of the treatment region. For that a three-dimensional mannequin of equivalent tissue of 30 x 100 x 30 cm 3 was modeled and spherical cells were distributed to estimate the Kerma in equivalent tissue and the absorbed dose by neutrons. With the absorbed dose the effective dose was calculated using the weighting factors for the organ type and radiation type. With the effective dose and the damage factors, considered in the ICRP 103, was considered the probability of damage induction in organs. (Author)

  7. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    Science.gov (United States)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  8. Ovarian damage due to cyst removal

    DEFF Research Database (Denmark)

    Perlman, Signe; Kjer, Jens J

    2016-01-01

    INTRODUCTION: Surgical treatment of endometriomas and potential damage to the ovary have been debated. Studies have described the inconsistent risk of unintended removal of ovarian tissue when a cystectomy of an endometrioma is performed. We evaluated the risk of inadvertently removed ovarian tis...

  9. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  10. Disruption of the ECM33 Gene in Candida albicans Prevents Biofilm Formation, Engineered Human Oral Mucosa Tissue Damage and Gingival Cell Necrosis/Apoptosis

    Directory of Open Access Journals (Sweden)

    Mahmoud Rouabhia

    2012-01-01

    Full Text Available In this study we demonstrated that ΔCaecm33 double mutant showed reduced biofilm formation and causes less damage to gingival mucosa tissues. This was confirmed by the reduced level of necrotic cells and Bax/Bcl2 gene expression as apoptotic markers. In contrast, parental and Caecm33 mutant strains decreased basement membrane protein production (laminin 5 and type IV collagen. We thus propose that ECM33 gene/protein represents a novel target for the prevention and treatment of infections caused by Candida.

  11. Applying of neural networks in determination of replacement cycle of spare parts

    International Nuclear Information System (INIS)

    Saric, Tomislav; Majdandzic; Niko; Lujic, Roberto

    2003-01-01

    The article shows neural networks applicability to determine expected working time of equipment components before the damage. The results based on measure - simulated values of suggested model have been presented. Advantages of suggested model have been analyzed compared to traditional way of replacement of spare parts and components. Implementation possibility of suggested model in Management Information Maintenance System has been described. (author)

  12. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement.

    Science.gov (United States)

    Mantoku, Akiko; Chatani, Masahiro; Aono, Kazushi; Inohaya, Keiji; Kudo, Akira

    2016-01-15

    Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The effect of growth hormone replacement on the thyroid axis in patients with hypopituitarism: in vivo and ex vivo studies.

    Science.gov (United States)

    Glynn, Nigel; Kenny, Helena; Quisenberry, Leah; Halsall, David J; Cook, Paul; Kyaw Tun, Tommy; McDermott, John H; Smith, Diarmuid; Thompson, Christopher J; O'Gorman, Donal J; Boelen, Anita; Lado-Abeal, Joaquin; Agha, Amar

    2017-05-01

    Alterations in the hypothalamic-pituitary-thyroid axis have been reported following growth hormone (GH) replacement. The aim was to examine the relationship between changes in serum concentration of thyroid hormones and deiodinase activity in subcutaneous adipose tissue, before and after GH replacement. A prospective, observational study of patients receiving GH replacement as part of routine clinical care. Twenty adult hypopituitary men. Serum TSH, thyroid hormones - free and total thyroxine (T4) and triiodothyronine (T3) and reverse T3, thyroglobulin and thyroid-binding globulin (TBG) levels were measured before and after GH substitution. Changes in serum hormone levels were compared to the activity of deiodinase isoenzymes (DIO1, DIO2 and DIO3) in subcutaneous adipose tissue. The mean daily dose of growth hormone (GH) was 0·34 ± 0·11 mg (range 0·15-0·5 mg). Following GH replacement, mean free T4 levels declined (-1·09 ± 1·99 pmol/l, P = 0·02). Reverse T3 levels also fell (-3·44 ± 1·42 ng/dl, P = 0·03) and free T3 levels increased significantly (+0·34 ± 0·15 pmol/l, P = 0·03). In subcutaneous fat, DIO2 enzyme activity declined; DIO1 and DIO3 activities remained unchanged following GH substitution. Serum TSH, thyroglobulin and TBG levels were unaltered by GH therapy. In vitro analysis of subcutaneous adipose tissue from hypopituitary human subjects demonstrates that GH replacement is associated with significant changes in deiodinase isoenzyme activity. However, the observed variation in enzyme activity does not explain the changes in the circulating concentration of thyroid hormones induced by GH replacement. It is possible that deiodinase isoenzymes are differentially regulated by GH in other tissues including liver and muscle. © 2016 John Wiley & Sons Ltd.

  14. Wound healing potential of adipose tissue stem cell extract.

    Science.gov (United States)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Preventative valve-sparing aortic root replacement and pregnancy outcome in Marfan syndrome.

    Science.gov (United States)

    Sokol, Vesna; Zlopasa, Gordan; Herman, Mislav; Planinić, Pavao; Micevska, Ana

    2012-06-01

    In Marfan syndrome, with dilatation of the aortic root secondary to an underlying connective tissue defect, pregnancy can cause hemodynamic stress leading to the development of an aortic aneurysm and even a fatal aortic dissection. In the presence of existing aortic root enlargement and a family history of aortic dissection, preventative elective surgery is suggested. Aortic root replacement with or without a valve-sparing procedure is superior to total aortic root replacement with prosthetic valve/tube graft. It provides excellent survival with low rates of aortic - valve related complications.

  16. The pediculated gastrocnemius muscle flap as a treatment for soft tissue problems of the knee – indication, placement and results

    Directory of Open Access Journals (Sweden)

    Moebius, Boris

    2012-01-01

    Full Text Available With the increase of endoprosthetic knee replacements, there is also an increase of critical wounds to the knee due to a high incidence of soft tissue problems (ranging from wound healing defects to severe wound infections. The literature describes a general rate of soft tissue complications of up to 20% [1], [2], with 5% [3] involving exposed bone. These complications are an increasingly important problem for surgeons. Since sufficient coverage of bones, tendons and prosthetic material with soft tissue is a necessity, the use of a pediculated muscle flap is the only solution in some cases. The gastrocnemius muscle is very useful for this purpose. It is an elaborate procedure which is associated with a high rate of complications. However, this procedure can establish a secure coverage with soft tissue, and the function of the prosthesis and the patient’s extremity can be saved. We have treated 23 patients with a gastrocnemius rotation flap after knee prosthesis or knee arthrodesis infection with consecutive soft tissue damage at our hospital from 8/2004 through 3/2011. The overall rate of healing of the knee infections with stable soft tissue status is almost 87%. The revision rate with lifting of the flap and revision of the sutures at the point of insertion as well as the point of extraction was about 35% with long-term conservative or additional surgical treatments.

  17. Long-term damage management strategies for optimizing steam generator performance

    International Nuclear Information System (INIS)

    Egan, G.R.; Besuner, P.M.; Fox, J.H.; Merrick, E.A.

    1991-01-01

    Minimizing long-term impact of steam generator operating, maintenance, outage, and replacement costs is the goal of all pressurized water reactor utilities. Recent research results have led to deterministic controls that may be implemented to optimize steam generator performance and to minimize damage accumulation. The real dilemma that utilities encounter is the decision process that needs to be made in the face of uncertain data. Some of these decisions involve the frequency and extent of steam generator eddy current tube inspections; the definition of operating conditions to minimize the rate of corrosion reactions (T (hot) , T (cold) ; and the imposition of strict water quality management guidelines. With finite resources, how can a utility decide which damage management strategy provides the most return for its investment? Aptech Engineering Services, Inc. (APTECH) developed a damage management strategy that starts from a deterministic analysis of a current problem- primary water stress corrosion cracking (PWSCC). The strategy involves a probabilistic treatment that results in long-term performance optimization. By optimization, we refer to minimizing the total cost of operating the steam generator. This total includes the present value costs of operations, maintenance, outages, and replacements. An example of the application of this methodology is presented. (author)

  18. Revitalization of the damaged machine parts by hard facing as a way of saving funds

    Directory of Open Access Journals (Sweden)

    Vukić Lazić

    2016-09-01

    Full Text Available The objective of the research, presented in this paper, was to demonstrate the superiority of the hard facing as the revitalization technology of various damaged machine parts. The analysis of the two different revitalization methods of the damaged machine parts is presented – the replacement of the damaged part by the new – spare part and reparation by hard facing. The comparison is done on the example of hard facing and replacing of damaged loader's teeth. The paper presents a method for calculating costs of the two revitalization technologies based on their profitability and their comparison. That method could be applied for similar calculations for any machine part, with smallest or no adjustments. The paper presents a verification of advantage of applying the hard facing as the machine parts reparatory technology with respect to the other revitalization technology. The savings realized by application of hard facing reparation of the loader's teeth reach 73.5 % for one set of teeth and 82.40per annum of the costs for purchasing the new spare parts. The analysis was conducted under an assumption that organization of the maintenance function is at the exceptionally high level so that the purchasing of the new part/repairing of the damaged one is always done in time. This idealized approach was adopted since in that way one obtains the least economic effects of the reparatory technology application with respect to replacing the part with the spare one. In any other case the economic effects would be significantly higher, namely even more positive in favor of the hard facing revitalization technology.

  19. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Hip joint replacement

    Science.gov (United States)

    Hip arthroplasty; Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... Your hip joint is made up of 2 major parts. One or both parts may be replaced during surgery: ...

  1. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  2. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats.

    Science.gov (United States)

    Zhang, R Y; Jin, W; Feng, P F; Liu, J H; Mao, S Y

    2018-03-19

    In the current intensive production system, ruminants are often fed high-grain (HG) diets. However, this feeding pattern often causes rumen metabolic disorders and may further trigger laminitis, the exact mechanism is not clear. This study investigated the effect of HG diet feeding on fermentative and microbial changes in the rumen and on the expression of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in the lamellar tissue. In all, 12 male goats were fed a hay diet (0% grain; n=6) or an HG diet (56.5% grain; n=6). On day 50 of treatment, samples of blood, rumen content, and lamellar tissue of hooves of goats were collected. The data showed that compared with the hay group, HG-fed goats had lower (Pdiet feeding altered the composition of rumen bacterial community, and correspondingly, the results suggested that their functions in the HG group were also altered. HG diet feeding increased (Pbacterial community, and lead to higher levels of LPS in the peripheral blood, and further activated the inflammatory response in lamellar tissues, which may progress to the level of laminar damage.

  3. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  4. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  5. An investigation of the damaged zone created by perforating

    International Nuclear Information System (INIS)

    Pucknell, J.K.; Behrmann, L.A.

    1991-01-01

    This paper reports on underbalance perforation flow experiments performed on reservoir and outcrop sandstones to investigate the perforation damaged zone. Cores from several different formations were perforated under reservoir conditions. After perforating, the cores were examined using CAT scans (Computer Aided tomography), thin sections and mercury porosimetry. In conjunction with these measurements, permeabilities in the damaged zone were measured using a minipermeameter and radial flow permeameter or were estimated from pore size distribution. The density and porosity of the damaged zone (at least for saturated rocks) is essentially the same as that in the undamaged rock. The damaged zone is not compacted, contrary to suggestions made in earlier work. However, the creation of this zone involves the destruction of large pores. The volume lost from these pores is replaced by microfractures created when rock grains are fractured by penetration of the shaped charge jet. This reduction in the average pore size causes a reduction in the permeability with the damaged zone. Although direct measurement of this permeability was made difficult by naturally occurring permeability variations, unambiguous measurements were obtained

  6. Protective function of complement against alcohol-induced rat liver damage.

    Science.gov (United States)

    Bykov, Igor L; Väkevä, Antti; Järveläinen, Harri A; Meri, Seppo; Lindros, Kai O

    2004-11-01

    The complement system can promote tissue damage or play a homeostatic role in the clearance and disposal of damaged tissue. We assessed the role of the terminal complement pathway in alcohol-induced liver damage in complement C6 (C6-/-) genetically deficient rats. C6-/- and corresponding C6+/+ rats were continuously exposed to ethanol by feeding ethanol-supplemented liquid diet for six weeks. Liver samples were analyzed for histopathology and complement component deposition by immunofluorescence microscopy. Prostaglandin E receptors and cytokine mRNA levels were analyzed by RT-PCR and plasma cytokines by ELISA. Deposition of complement components C1, C3, C8 and C9 was observed in C6+/+ rats, but not in C6-/- animals. The histopathological changes, the liver weight increase and the elevation of the plasma pro-/anti-inflammatory TNF-alpha/IL-10 ratio were, on the other hand, more marked in C6-/- rats. Furthermore, ethanol enhanced the hepatic mRNA expression of the prostaglandin E receptors EP2R and EP4R exclusively in the C6-/- rats. Our results indicate that a deficient terminal complement pathway predisposes to tissue injury and promotes a pro-inflammatory cytokine response. This suggests that an intact complement system has a protective function in the development of alcoholic liver damage.

  7. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  8. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  9. Engineering Human Neural Tissue by 3D Bioprinting.

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2018-01-01

    Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

  10. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Sondhaus, C.A.; Altman, K.I.

    1998-01-01

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts

  11. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  12. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  13. Imidacloprid enhances liver damage in Wistar rats: Biochemical, oxidative damage and histological assessment

    Directory of Open Access Journals (Sweden)

    Sana Chakroun

    2017-12-01

    Full Text Available Objective: To investigate the potential adverse effects of imidacloprid on biochemical parameters, oxidative stress and liver damage induced in the rat by oral sub-chronic imidaclopride exposure. Methods: Rats received three different doses of imidacloprid (1/45, 1/22 and 1/10 of LD50 given through gavage for 60 days. Two dozen of male Wistar rats were randomly divided into four experimental groups. Liver damage was determined by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase leakages. The prooxidant-antioxydant status in hepatic tissue homogenate was evaluated by measuring the degree of lipid peroxidation, the antioxidant enzymes activities such as catalase, superoxide dismutase and glutathione peroxidase (GPx. Results: The relative liver weight was significantly higher than that of control and other treated groups at the highest dose 1/10 of LD50 of imidacloprid. Additionally, treatment of rats with imidacloprid significantly increased liver lipid peroxidation (P ≤ 0.05 or 0.01 which went together with a significant decrease in the levels of superoxide dismutase and catalase activities. Parallel to these changes, imidacloprid treatment enhanced liver damage as evidence by sharp increase in the liver enzyme activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase. These results were also confirmed by histopathology. Conclusions: In light of the available data, it is our thought that after imidacloprid sub-chronic exposure, depletion of antioxidant enzymes is accompanied by induction of potential oxidative stress in the hepatic tissues that might affect the function of the liver which caused biochemical and histopathological alteration.

  14. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  15. Laser-assisted cold-sprayed hydroxyapatite/titanium composites: evaluation for tissues engineering applications

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2013-08-01

    Full Text Available This research work seeks to establish titanium alloys (Ti-6Al-4V), in the field of tissue engineering, as material of interest for bone replacement with a particular focus on hip implants replacement. The aim of this study was to produce a surface...

  16. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Kolff, M. Willemijn [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Holman, Rebecca [Clinical Research Unit, Academic Medical Center (AMC), Amsterdam (Netherlands); Leeuwen, Caspar M. van; Korshuize-van Straten, Linda; Kroon-Oldenhof, Rianne de; Rasch, Coen R.N.; Tienhoven, Geertjan van; Crezee, Hans [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands)

    2017-06-01

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79 sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.

  17. Human tissue in systems medicine.

    Science.gov (United States)

    Caie, Peter D; Schuur, Klaas; Oniscu, Anca; Mullen, Peter; Reynolds, Paul A; Harrison, David J

    2013-12-01

    Histopathology, the examination of an architecturally artefactual, two-dimensional and static image remains a potent tool allowing diagnosis and empirical expectation of prognosis. Considerable optimism exists that the advent of molecular genetic testing and other biomarker strategies will improve or even replace this ancient technology. A number of biomarkers already add considerable value for prediction of whether a treatment will work. In this short review we argue that a systems medicine approach to pathology will not seek to replace traditional pathology, but rather augment it. Systems approaches need to incorporate quantitative morphological, protein, mRNA and DNA data. A significant challenge for clinical implementation of systems pathology is how to optimize information available from tissue, which is frequently sub-optimal in quality and amount, and yet generate useful predictive models that work. The transition of histopathology to systems pathophysiology and the use of multiscale data sets usher in a new era in diagnosis, prognosis and prediction based on the analysis of human tissue. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  18. Aortic Root Replacement for Children With Loeys-Dietz Syndrome.

    Science.gov (United States)

    Patel, Nishant D; Alejo, Diane; Crawford, Todd; Hibino, Narutoshi; Dietz, Harry C; Cameron, Duke E; Vricella, Luca A

    2017-05-01

    Loeys-Dietz syndrome (LDS) is an aggressive aortopathy with a proclivity for aortic aneurysm rupture and dissection at smaller diameters than other connective tissue disorders. We reviewed our surgical experience of children with LDS to validate our guidelines for prophylactic aortic root replacement (ARR). We reviewed all children (younger than 18 years) with a diagnosis of LDS who underwent ARR at our institution. The primary endpoint was mortality, and secondary endpoints included complications and the need for further interventions. Thirty-four children with LDS underwent ARR. Mean age at operation was 10 years, and 15 (44%) were female. Mean preoperative root diameter was 4 cm. Three children (9%) had composite ARR with a mechanical prosthesis, and 31 (91%) underwent valve-sparing ARR. Concomitant procedures included arch replacement in 2 (6%), aortic valve repair in 1 (3%), and patent foramen ovale closure in 16 (47%). There was no operative mortality. Two children (6%) required late replacement of the ascending aorta, 5 (15%) required arch replacement, 1 (3%) required mitral valve replacement, and 2 (6%) had coronary button aneurysms/pseudoaneurysms requiring repair. Three children required redo valve-sparing ARR after a Florida sleeve procedure, and 2 had progressive aortic insufficiency requiring aortic valve replacement after a valve-sparing procedure. There were 2 late deaths (6%). These data confirm the aggressive aortopathy of LDS. Valve-sparing ARR should be performed when feasible to avoid the risks of prostheses. Serial imaging of the arterial tree is critical, given the rate of subsequent intervention. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  20. Use of intraventricular ribbon gauze to reduce particulate emboli during aortic valve replacement

    Directory of Open Access Journals (Sweden)

    Loubani Mahmoud

    2006-11-01

    Full Text Available Abstract Background The incidence of cerebrovascular accidents following aortic valve surgery remains a devastating complication. The aim of this study was to determine the number of potential embolic material arising during aortic valve replacement and to examine the efficacy of using ribbon gauze in the left ventricle during removal of the native valve and decalcification of the aortic annulus. Methods Ribbon gauze was inserted into the left ventricular cavity prior to aortic valve excision in an unselected, prospectively studied series of 30 patients undergoing aortic valve replacement. A further 30 lengths of ribbon gauze were soaked in the pericardiotomy blood of the same patients and all were subjected to histological analysis. Results The median number of tissue fragments from the aortic valve replacement group was significantly higher than in the control group 5 (0–18 versus 0 (0–1 (p = 3.6 × 10-5. The size of tissue fragments varied between 0.1 and 9.0 mm with a mean of 0.61 ± 1.12 mm and a median of 0.2 mm. There was a significantly higher number of tissue fragments associated with patients having surgery for aortic stenosis when compared with patients who had aortic regurgitation with median of 5 (0–18 versus 0 (0–3 (p = 0.8 × 10-3. Conclusion Significant capture of particulate debris by the intraventricular ribbon gauze suggests that the technique of left ventricular ribbon gauze insertion during aortic valve excision has merit.

  1. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement

    Science.gov (United States)

    Marei, Mona K.; El Backly, Rania M.

    2018-01-01

    Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such “replacement therapies” appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use. PMID:29770323

  2. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement

    Directory of Open Access Journals (Sweden)

    Mona K. Marei

    2018-05-01

    Full Text Available Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such “replacement therapies” appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.

  3. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Chang, T.D. [Veterans Administration Hospital, Martinez, CA (United States); Neev, J. [Beckman Laser Inst. and Medical Clinic, Irvine, CA (United States)

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  4. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  5. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  6. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    Science.gov (United States)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, pElevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  7. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  8. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  9. [Mini-subvastus approach for total knee replacement].

    Science.gov (United States)

    Halder, Andreas; Beier, Alexander; Neumann, Wolfram

    2009-03-01

    Total knee replacement in minimally invasive technique without any trauma to the extensor apparatus and with soft-tissue-referenced bone resections. Only the subvastus approach preserves the integrity of the extensor apparatus and has therefore been modified to become a minimally invasive technique with a shorter skin incision and lateralization instead of eversion of the patella. Soft-tissue balancing is done through this direct anterior approach. Mild to moderate varus osteoarthritis of the knee up to 15 degrees of malalignment, mild and passively correctable valgus osteoarthritis of the knee up to 10 degrees of malalignment. Severe, contract varus osteoarthritis of the knee, severe and moderate, contract valgus osteoarthritis of the knee, severe obesity, exceptionally muscular patients, decreased skin perfusion. Central skin incision from the superior pole of the patella to the tibial tubercle. Exposure of the medial retinaculum and mobilization of the vastus medialis muscle subcutaneously. Incision of the medial retinaculum and blunt separation of the vastus medialis muscle from the intermuscular septum. Lateralization of the patella and flexion of the knee joint. Resection of the tibia perpendicular to the diaphysis. Adjustment of the anteroposterior (AP) resection block at the level of the anterior femoral cortex and of rotation by applying equal tension to the collateral ligaments. Balancing of soft-tissue tension in flexion gap by release, if necessary. After AP resection fixation of distal resection block in planned valgus angle. Balancing of soft-tissue tension in extension gap by release, if necessary. After distal femur resection facet resection, adaptation of posterior femoral condyles, and implantation of prosthesis. Check on stability and range of motion. Wound closure. Full weight bearing from the 1st postoperative day, CPM (continuous passive motion) with up to 90 degrees flexion with peridural anesthesia as tolerated, stair climbing starting on

  10. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  11. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  12. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  13. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  14. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Bai, Xiaowen; Alt, Eckhard

    2010-01-01

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  15. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  16. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method.

    Science.gov (United States)

    Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M

    2017-02-01

    In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

  17. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm).

    Science.gov (United States)

    Salzberg, C Andrew

    2006-07-01

    Immediate breast reconstruction has become a standard of care following mastectomy for cancer, largely due to improved esthetic and psychologic outcomes achieved with this technique. However, the current historical standards--transverse rectus abdominis myocutaneous flap reconstruction and expander--implant surgery-still have limitations as regards patient morbidity, short-term body-image improvements, and even cost. To address these shortcomings, we employ a novel concept of human tissue replacement to enhance breast shape and provide total coverage, enabling immediate mound reconstruction without the need for breast expansion prior to permanent implant placement. AlloDerm (human acellular tissue matrix) is a human-derived graft tissue with extensive experience in various settings of skin and soft tissue replacement surgery. This report describes the success using acellular tissue matrix to provide total coverage over the prosthesis in immediate reconstruction, with limited muscle dissection. In this population, 49 patients (76 breasts) successfully underwent the acellular tissue matrix-based immediate reconstruction, resulting in durable breast reconstruction with good symmetry. These findings may predict that acellular tissue matrix-supplemented immediate breast reconstruction will become a new technique for the immediate reconstruction of the postmastectomy breast.

  18. Clinical performance - a reflection of damage accumulation in ceramic dental crowns

    Energy Technology Data Exchange (ETDEWEB)

    Rekow, D.E. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Thompson, V.P. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). New Jersey Dental School

    2001-07-01

    All-ceramic dental crowns have tremendous appeal for patients - their esthetics nearly match those of natural teeth. Unfortunately, the most esthetic materials are brittle and, consequently, are vulnerable to damage relating to shaping which is exacerbated during cyclic loading during normal chewing. Clinical performance of all-ceramic dental prostheses are directly dependent on damage introduced during fabrication and during fatigue loading associated with function. The accumulation of damage results in unacceptably high failure rates (where failure is defined as a complete fracture requiring replacement of the prosthesis). The relation between shaping damage and fatigue damage on clinical performance of all-ceramic dental crowns was investigated. Materials used commercially for all-ceramic crowns and investigated in this study included a series of different microstructures of machinable glass ceramics (Corning), aluminas and porcelains (Vita Zahnfabrik), and zirconia (Norton). As monolithic materials, strong, tough, fatigue-resistant materials are not sufficiently esthetic for crowns. Crowns fabricated from monolithic esthetic materials have high failure rates. Layering ceramics could provide acceptable strength through management of damage accumulation. (orig.)

  19. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  20. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: A study in a rat model of moderate and relatively high human exposure

    International Nuclear Information System (INIS)

    Brzoska, Malgorzata M.; Rogalska, Joanna; Kupraszewicz, Elzbieta

    2011-01-01

    It was investigated whether cadmium (Cd) may induce oxidative stress in the bone tissue in vivo and in this way contribute to skeleton damage. Total antioxidative status (TAS), antioxidative enzymes (glutathione peroxidase, superoxide dismutase, catalase), total oxidative status (TOS), hydrogen peroxide (H 2 O 2 ), lipid peroxides (LPO), total thiol groups (TSH) and protein carbonyl groups (PC) as well as Cd in the bone tissue at the distal femoral epiphysis and femoral diaphysis of the male rats that received drinking water containing 0, 5, or 50 mg Cd/l for 6 months were measured. Cd, depending on the level of exposure and bone location, decreased the bone antioxidative capacity and enhanced its oxidative status resulting in oxidative stress and oxidative protein and/or lipid modification. The treatment with 5 and 50 mg Cd/l decreased TAS and activities of antioxidative enzymes as well as increased TOS and concentrations of H 2 O 2 and PC at the distal femur. Moreover, at the higher exposure, the concentration of LPO increased and that of TSH decreased. The Cd-induced changes in the oxidative/antioxidative balance of the femoral diaphysis, abundant in cortical bone, were less advanced than at the distal femur, where trabecular bone predominates. The results provide evidence that, even moderate, exposure to Cd induces oxidative stress and oxidative modifications in the bone tissue. Numerous correlations noted between the indices of oxidative/antioxidative bone status, and Cd accumulation in the bone tissue as well as indices of bone turnover and bone mineral status, recently reported by us (Toxicology 2007, 237, 89-103) in these rats, allow for the hypothesis that oxidative stress is involved in the mechanisms of damaging Cd action in the skeleton. The paper is the first report from an in vivo study indicating that Cd may affect bone tissue through disorders in its oxidative/antioxidative balance resulting in oxidative stress.

  1. Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines.

    Science.gov (United States)

    Igarashi, Kazuei; Uemura, Takeshi; Kashiwagi, Keiko

    2018-01-01

    It is thought that the major factor responsible for cell damage is reactive oxygen species (ROS), but our recent studies have shown that acrolein (CH 2 =CH-CHO) produced from spermine and spermidine is more toxic than ROS. Thus, (1) the mechanism of acrolein production during brain stroke, (2) one of the mechanisms of acrolein toxicity, and (3) the role of glutathione in acrolein detoxification are described in this chapter.

  2. INHIBITION OF FRIED MEAT-INDUCED DNA DAMAGE: A DIETARY INTERVENTION STUDY IN HUMANS

    Science.gov (United States)

    Dietary exposures have been implicated as risk factors in colorectal cancer. Such agents may act by causing DNA damage or may be protective against DNA damage. The effects of dietary exposures in causing or preventing damage have not been assessed directly in colon tissues. In th...

  3. The design and development of a high-throughput magneto-mechanostimulation device for cartilage tissue engineering.

    Science.gov (United States)

    Brady, Mariea A; Vaze, Reva; Amin, Harsh D; Overby, Darryl R; Ethier, C Ross

    2014-02-01

    To recapitulate the in vivo environment and create neo-organoids that replace lost or damaged tissue requires the engineering of devices, which provide appropriate biophysical cues. To date, bioreactors for cartilage tissue engineering have focused primarily on biomechanical stimulation. There is a significant need for improved devices for articular cartilage tissue engineering capable of simultaneously applying multiple biophysical (electrokinetic and mechanical) stimuli. We have developed a novel high-throughput magneto-mechanostimulation bioreactor, capable of applying static and time-varying magnetic fields, as well as multiple and independently adjustable mechanical loading regimens. The device consists of an array of 18 individual stations, each of which uses contactless magnetic actuation and has an integrated Hall Effect sensing system, enabling the real-time measurements of applied field, force, and construct thickness, and hence, the indirect measurement of construct mechanical properties. Validation tests showed precise measurements of thickness, within 14 μm of gold standard calliper measurements; further, applied force was measured to be within 0.04 N of desired force over a half hour dynamic loading, which was repeatable over a 3-week test period. Finally, construct material properties measured using the bioreactor were not significantly different (p=0.97) from those measured using a standard materials testing machine. We present a new method for articular cartilage-specific bioreactor design, integrating combinatorial magneto-mechanostimulation, which is very attractive from functional and cost viewpoints.

  4. Activation and radiation damage in the environment of hadron accelerators

    CERN Document Server

    Kiselev, Daniela

    2013-01-01

    A component which suffers radiation damage usually also becomes radioactive, since the source of activation and radiation damage is the interaction of the material with particles from an accelerator or with reaction products. However, the underlying mechanisms of the two phenomena are different. These mechanisms are described here. Activation and radiation damage can have far-reaching consequences. Components such as targets, collimators, and beam dumps are the first candidates for failure as a result of radiation damage. This means that they have to be replaced or repaired. This takes time, during which personnel accumulate dose. If the dose to personnel at work would exceed permitted limits, remote handling becomes necessary. The remaining material has to be disposed of as radioactive waste, for which an elaborate procedure acceptable to the authorities is required. One of the requirements of the authorities is a complete nuclide inventory. The methods used for calculation of such inventories are presented,...

  5. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  6. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography

    NARCIS (Netherlands)

    Ronca, A.; Ambrosio, L.; Grijpma, D. W.

    The preparation of scaffolds to facilitate the replacement of damaged tissues and organs by means of tissue engineering has been much investigated. The key properties of the biomaterials used to prepare such scaffolds include biodegradability, biocompatibility and a well-defined three-dimensional

  7. Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography

    NARCIS (Netherlands)

    Ronca, A.; Ambrosio, L.; Grijpma, Dirk W.

    2013-01-01

    The preparation of scaffolds to facilitate the replacement of damaged tissues and organs by means of tissue engineering has been much investigated. The key properties of the biomaterials used to prepare such scaffolds include biodegradability, biocompatibility and a well-defined three-dimensional

  8. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  9. Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets

    DEFF Research Database (Denmark)

    Sugiharto, Sugiharto; Poulsen, Ann-Sofie Riis; Canibe, Nuria

    2015-01-01

    The present study investigated the effect of feeding bovine colostrum (BC) to piglets in comparison with feeding a milk replacer (MR) and conventional rearing by the sow on the intestinal immune system and number of enterotoxigenic Escherichia coli (ETEC) colonising the intestinal tissue. Piglets......-fed and Sow-Milk groups. The expression level of IL-2 was higher (P≤ 0·051) in piglets from the MR-fed group than in those from the other treatment groups. In conclusion, feeding BC rather than MR to the piglets reduced the colonisation of intestine by ETEC and modulated the intestinal immune system, whereas...

  10. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... Ankle replacement surgery is most often done while you are under general anesthesia. This means you will ...

  11. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  12. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  13. Self-supporting method; an alternative method for steel truss bridge element replacement

    Science.gov (United States)

    Arsyad, Muhammad; Sangadji, Senot; As'ad, Sholihin

    2017-11-01

    Steel truss bridge often requires replacement of its element due to serious damage caused by traffic accidents. This replacement is carried out using temporary supporting structure. It would be difficult when the available space for the temporary structure is quite limited and or the position of work is at a high elevation. The self-supporting method is proposed instead of temporary supporting structure. This paper will discuss an innovative method of bridge rehabilitation by utilizing the existing bridge structure. It requires such temporary connecting structure that installed on the existing bridge element, therefore, the forces during replacement process could be transferred to the bridge foundation directly. By taking the case on a steel truss bridge Jetis Salatiga which requires element replacement due to its damages on two main diagonals, a modeling is carried out to get a proper repair method. Structural analysis is conducted for three temporary connecting structure models: “I,” “V,” and triangular model. Stresses and translations that occur in the structure are used as constraints. Bridge bearings are modeled in two different modes: fixed-fixed system and fixed-free one. Temperature load is given in each condition to obtain the appropriate time for execution. The triangular model is chosen as the best one. In the fixed-fixed mode, this method can be carried out in a temperature range 27-28.8° C, while in fixed-free one, the temperature it is allowed between 27-43.4 °C. The D4 is dismantled first by cutting the D4 leaving an area of 1140.2 mm2 or 127 mm web length to enable plastic condition until the D4 collapses. At the beginning of elongation occurs, immediately performed a slowly jacking on a temporary connecting structure so that the force on D4 is gradually transferred to the temporary connecting structure then the D4 and D5 are set in their place.

  14. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  15. Nicotine replacement therapy

    Science.gov (United States)

    Smoking cessation - nicotine replacement; Tobacco - nicotine replacement therapy ... Before you start using a nicotine replacement product, here are some things to know: The more cigarettes you smoke, the higher the dose you may need to ...

  16. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Science.gov (United States)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  17. Investigation of retinal damage during refractive eye surgery

    Science.gov (United States)

    Schumacher, S.; Sander, M.; Dopke, C.; Grone, A.; Ertmer, W.; Lubatschowski, H.

    2005-04-01

    Ultrashort laser pulses are increasingly used in refractive eye surgery to cut inside transparent corneal tissue. This is exploited by the fs-LASIK procedure which affords the opportunity to correct ametropia without any mechanical effects. The cutting process is caused by the optical breakdown occurring in the laser focus. During this process only a certain amount of the pulse energy is deposited into the tissue. The remaining pulse energy propagates further through the eye and interacts with the retina and the strong absorbing tissue layers behind. Therefore this investigation shall clarify if the intensity of the remaining laser pulse and the resulting temperature field can damage the retina and the surrounding tissue. Threshold values of the retinal tissue and theoretical calculations of the temperature field will be presented.

  18. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon

    Directory of Open Access Journals (Sweden)

    Rodrigo Assunção Oliveira

    2017-01-01

    Full Text Available Previous studies have demonstrated the physiological changes induced by exercise exposure in hot environments. We investigated the hematological and oxidative changes and tissue damage induced by marathon race in different thermal conditions. Twenty-six male runners completed the São Paulo International Marathon both in hot environment (HE and in temperate environment (TE. Blood and urine samples were collected 1 day before, immediately after, 1 day after, and 3 days after the marathon to analyze the hematological parameters, electrolytes, markers of tissue damage, and oxidative status. In both environments, the marathon race promotes fluid and electrolyte imbalance, hemolysis, oxidative stress, immune activation, and tissue damage. The marathon runner’s performance was approximately 13.5% lower in HE compared to TE; however, in HE, our results demonstrated more pronounced fluid and electrolyte imbalance, renal damage, hemolysis, and immune activation. Moreover, oxidative stress induced by marathon in HE is presumed to be related to protein/purine oxidation instead of other oxidative sources. Fluid and electrolyte imbalance and protein/purine oxidation may be important factors responsible for hemolysis, renal damage, immune activation, and impaired performance after long-term exercise in HE. Nonetheless, we suggested that the impairment on performance in HE was not associated to the muscle damage and lipoperoxidation.

  19. Correlations between rainfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    DEFF Research Database (Denmark)

    Spekkers, Matthieu; Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus...... to underestimations of correlations between rainfall and damage variables. Rainfall data from two rain gauges were used to extract rainfall characteristics. From cross correlations between time series of rainfall and claim data, it can be concluded that rainfall events induce claims mostly on the same day, but also...

  20. A comprehensive investigation of trailing edge damage in a wind turbine rotor blade

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Eder, Martin Alexander; Belloni, Federico

    2016-01-01

    to damage. Empiricism tells that adhesive joints in blades often do not fulfil their expected lifetime, leading to considerable expenses because of repair or blade replacement. Owing to the complicated structural behaviour—in conjunction with the complex loading situation—literature about the root causes...

  1. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  2. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  3. Gentilly-2 and Point Lepreau divider plate replacement

    International Nuclear Information System (INIS)

    Schneider, W.; McClellan, G.; Weston, S.

    1996-01-01

    The steam generators at Hydro Quebec's Gentilly-2 and New Brunswick Power's Point Lepreau Nuclear Plants have been in operation since 1983, and were built with primary divider plates of a bolted panel configuration. During a routine outage inspection at Gentilly-2, it was noted that two bolts had dislodged from the divider plate and were located lying in the primary head. Subsequent inspections revealed erosion damage to a a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. Upon evaluation of various options, it was decided that the panel type divider plates would be replaced with a single piece floating design. The divider plate itself was to be of one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat was was provided. To counteract erosion concerns, the new divider plate is fitted with erosion resistant inserts of weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider plate strength during loss of coolant accident (LOCA) conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider plate to a variety of small and large LOCA conditions. Subsequently, Point Lepreau decided to replace their divider plates to address LOCA concerns. The paper describes the diagnosis of the original divider plates and the design. manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  4. Reduction of radiation-induced damage to salivary gland by bone marrow derived stem cells

    International Nuclear Information System (INIS)

    Coppes, R.P.; Wierenga, P.K.; Kampinga, H.H.; De Hann, G.

    2003-01-01

    Irradiation of the salivary glands can result in severe side effects that reduce the patient's quality of life. Late damage to the salivary glands is mainly caused by exhaustion of the tissue's stem cells. Post-irradiation replacement of salivary gland stem cells with healthy donor stem cells may reduce complications. Bone marrow derived stem cells (BMSC) have been show to be multipotent and engraft in many tissue after injury. In this study we assessed the potential of BMSC to reduce irradiation-induced salivary gland damage. The salivary glands of wild type C57Bl/6 mice were locally irradiated with 20 Gy. Thirty days later, BMSC from transgenic eGFP+ C57Bl/6 mice were transplanted by i.v. injection or by direct injection into the salivary glands. In addition, animals were transplanted with eGFP + bone marrow after 9.5 Gy TBI excluding the salivary glands. Subsequently, the animals were locally irradiated to the salivary gland with 20 Gy. Thirty days later i.v. G-CSF mobilised eGFP + bone marrow derived stem cells to the peripheral blood. Again thirty days after mobilisation, the salivary gland were harvested. eGFP + cells were detected by confocal laser fluorescence scanning microscopy and flow cytometry and H and E histology was performed. eGFP + cells were detected in the salivary gland after all protocols. The number of eGFP + cells in irradiated salivary glands was highest in animals treated with G-CSF. Intraglandular transplantation, in contrast, was successful only in 1 out of 8 attempts. Immuno-histochemistry using a-SM-actin antibodies showed the close vicinity of actin and eGFP within the cells, demonstrating the occurrence of BMSC derived myoepithelial cells in irradiated salivary gland. Further, cell-type specific antibodies will reveal the nature of all eGFP + cells. H and E histology revealed improved gland morphology in animals treated with G-CSF after irradiation when compared to the non-treated animals. These preliminary results indicate that bone

  5. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  6. INULIN AS A PREBIOTIC AND FAT REPLACER IN MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Dragan Vasilev

    2017-01-01

    Full Text Available Fat reduction in meat products is demanded by consumers concerninghealth issues but represents a serious challenge for meat industry as fatty tissue plays an important role for the products properties. Because of that, a special attention is paid to the substances that could replace fatty tissue in meat products. Inulin represents a non digestible fructooligosaccharide that on the one hand represents a good prebiotic substance and from the other hand posses such technological propeties that make it a good fat replacer. In  aqueous systems inulin forms a gel having a structure similar to fats, it has neutral taste and smell and have no impact on the aroma of meat products. Inulin could be added to meat products in form of powder as well as a water suspension. Low fat fermented sausages with good sensory quality could be produced with the addition of inulin as a fat replacer, and such products have abit lower pH- and aw-value and contain a higher number of lactic acid bacteria then conventional products. In heat treated sausages, inulin improves water holding capacity and stability of the low fat meat batter, which reduces cooking loss and shows no adverse effect on the sensory properties of the low fat product. But, there are also certain limitations because it should be paid attention to the degree of polymerization as well as the amount of inulin added the product. Otherwise, on the one hand there could be some adverse effectson sensory properties of the product and from the other hand an excessive amount of inulin could lead to digestive problems by consumers.

  7. Accumulation of senescent cells in mitotic tissue of aging primates.

    Science.gov (United States)

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  8. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    Science.gov (United States)

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Tissue reaction surrounding miniscrews for orthodontic anchorage: An animal experiment

    Directory of Open Access Journals (Sweden)

    Stephanie Shih-Hsuan Chen

    2012-03-01

    Results and conclusions: (1 Tissue surrounding roots damaged by a miniscrew showed a significant inflammatory response. (2 Root resorption was occasionally observed after 3 weeks following insertion of a miniscrew even if the miniscrew was not in direct contact with the root. (3 Root repair was noted with a cementoblast lining along the resorption surface at as early as 3 weeks after miniscrew insertion. Alveolar bone filled in the lesion when the root damage was large so that the contour of the alveolar bone followed that of the damaged root, with the width of the periodontal ligament space being maintained. (4 Stable miniscrews were mainly those which did not contact adjacent roots, and for which the surrounding tissue showed only a small inflammatory response with some extent of direct bone contact around the miniscrew. On the contrary, most of the failed miniscrews were those which had direct contact with adjacent roots, and which exhibited severe tissue inflammation and were covered by thick layers of soft tissue. Failure was detected 3 weeks after insertion. Surprisingly, the epithelial lining surrounding the miniscrews might not have spontaneously resolved 6 weeks after screw removal. Persistent infection in the sinus tract was noted, and this would require attention.

  10. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  11. Role of tissue engineered buccal mucosa for treatment of urethral stricture

    Directory of Open Access Journals (Sweden)

    Vaddi S

    2013-10-01

    Full Text Available Cell based therapies in Urology: Cell based therapy for tissue engineering in urology, like in other branches of medicine uses the principles of cell transplantation, materials science, and biomedical engineering to develop biologic substitutes that can restore and maintain function of the damaged or lost genitourinary organs. Most current strategies for tissue engineering depend on a sample of autologous cells from the diseased organ of the host. However in cases where primary autologous cells cannot be expanded, pluripotent stem cells are an ideal source. Biomaterials play a major role in genitourinary tissue engineering. They are used to replace biologic and mechanical functions of the native extracellular matrix. Three classes of biomaterials have been used for the engineering of genitourinary tissues: naturally derived materials, such as collagen and alginate; acellular tissue matrices, such as bladder submucosa and synthetic polymers, such as polyglycolic acid [1]. A lot of research is ongoing in urethral regeneration by tissue engineering and cell based therapy. Tubularized collagen matrices seeded with autologous cells are used to regenerate the urethra [2]. Urinary Bladder reconstruction is possible with bladder shaped biodegradable scaffold seeded with autologous urothelial cells and smooth muscle cells [3]. Ureteral acellular tubular grafts have been used to replace ureteral loss but with poor functional results [4]. Cell-seeded biodegradable polymer scaffolds have been used with more success to reconstruct ureteral tissues [3]. The kidney is the most challenging organ in the genitourinary system to reconstruct because of its complex structure and function. Cell based therapies are used for creation of functional renal structures in vivo. Renal tubular cells have been harvested, expanded in culture and seeded on to a tubular device to function as nephron [5]. The expansion of this system to larger three-dimensional structures is the

  12. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans

    OpenAIRE

    Hillel, Alexander T.; Unterman, Shimon; Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia

    2011-01-01

    Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal ligh...

  13. Tissue integration of polyacrylamide hydrogel: an experimental study of periurethral, perivesical, and mammary gland tissue in the pig

    DEFF Research Database (Denmark)

    Christensen, Lise H; Nielsen, John B; Mouritsen, Lone

    2008-01-01

    BACKGROUND Polyacrylamide hydrogel (PAAG) is a nondegradable water-based polymer with high viscoelasticity. The gel is used as a tissue filler, the only risk being prolonged infection with anaerobic, contaminating microorganisms if not treated early with broad-spectrum antibiotics. OBJECTIVE...... With silicone gel as reference, PAAG tissue integration and migration was studied in a longitudinal study of the pig. MATERIALS AND METHODS Forty-one pigs were used. PAAG and silicone gel were injected into mammary tissue, and PAAG was injected into urethral or bladder wall or the anal canal. Tissues...... and regional lymph nodes were examined at 1, 1 1/2, 3, 3 1/2, 6, 12, and 14 months, and other lymph nodes and organs were examined at 1, 6, 12, and 14 months. RESULTS PAAG was invaded by macrophages and giant cells that were gradually replaced by a network of fibrous tissue. Silicone gel was seen inside...

  14. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans.

    Science.gov (United States)

    Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael

    2017-02-01

    Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.

  15. Mitigation of Radiation-Induced Epithelial Damage by the TLR5 Agonist Entolimod in a Mouse Model of Fractionated Head and Neck Irradiation.

    Science.gov (United States)

    Toshkov, Ilia A; Gleiberman, Anatoli S; Mett, Vadim L; Hutson, Alan D; Singh, Anurag K; Gudkov, Andrei V; Burdelya, Lyudmila G

    2017-05-01

    Radiation treatment of head and neck cancer frequently causes severe collateral damage to normal tissues including mouth mucosa, salivary glands and skin. This toxicity limits the radiation dose that can be delivered and affects the patient's quality of life. Previous studies in mice and nonhuman primates showed that entolimod, a toll-like receptor 5 (TLR5) agonist derived from bacterial flagellin, effectively reduced radiation damage to hematopoietic and gastrointestinal tissues in both total-body and local irradiation scenarios, with no protection of tumors. Here, using a mouse model, we analyzed the efficacy of entolimod administered before or after irradiation in reducing damage to normal tissues. Animals received local fractionated radiation to the head and neck area, thus modeling radiotherapy of head and neck cancer. Tissue damage was evaluated through histomorphological examination of samples collected at different time points up to four weeks, mice were exposed locally to five daily fractions of 5, 6 or 7 Gy. A semiquantitative scoring system was used to assess the severity of observed pathomorphological changes. In this model, radiation damage was most severe in the lips, tongue and skin, moderate in the upper esophagus and minor in salivary glands. The kinetics of injury appearance and recovery of normal morphology varied among tissues, with maximal damage to the tongue, esophagus and salivary glands developing at earlier times (days 8-11 postirradiation) relative to that of lip and skin mucosa (days 11-15 postirradiation). While both tested regimens of entolimod significantly reduced the extent of radiation damage and accelerated restoration of normal structure in all tissues analyzed, administration of entolimod 1 h after each irradiation was more effective than treatment 30 min before irradiation. These results support the potential clinical use of entolimod as an adjuvant for improving the therapeutic index of head and neck cancer radiotherapy by

  16. Brain Tissues Oxidative Damage as a Possible Mechanism of Deleterious Effects of Propylthiouracil- Induced Hypothyroidism on Learning and Memory in Neonatal and Juvenile Growth in Rats

    Directory of Open Access Journals (Sweden)

    Esmeil Farrokhi

    2014-11-01

    randomly selected and tested in the Morris water maze (MWM. Then, samples of blood were collected to measure thyroxine. Finally, the brains were removed and total thiol groups and molondialdehyde (MDA concentrations were determined. Results: Compared to the control group’s offspring, serum thyroxine levels in the PTU group’s off spring were significantly low (P<0.001. In MWM, the escape latency and traveled path in the PTU group were significantly higher than that in the control group (P<0.01- P<0.001. In PTU group, the total thiol concentrations in both cortical and hippocampal tissues were significantly lower and MDA concentrations were higher than control group (P<0.001. Discussion: It seems that deleterious effect of hypothyroidism during neonatal and juvenile growth on learning and memory is at least in part due to brain tissues oxidative damage.

  17. Benfotiamine Protects against Peritoneal and Kidney Damage in Peritoneal Dialysis

    OpenAIRE

    Kihm, Lars P.; Müller-Krebs, Sandra; Klein, Julia; Ehrlich, Gregory; Mertes, Laura; Gross, Marie-Luise; Adaikalakoteswari, Antonysunil; Thornalley, Paul J.; Hammes, Hans-Peter; Nawroth, Peter P.; Zeier, Martin; Schwenger, Vedat

    2011-01-01

    Residual renal function and the integrity of the peritoneal membrane contribute to morbidity and mortality among patients treated with peritoneal dialysis. Glucose and its degradation products likely contribute to the deterioration of the remnant kidney and damage to the peritoneum. Benfotiamine decreases glucose-induced tissue damage, suggesting the potential for benefit in peritoneal dialysis. Here, in a model of peritoneal dialysis in uremic rats, treatment with benfotiamine decreased peri...

  18. Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach

    Science.gov (United States)

    Warner, James E.; Hochhalter, Jacob D.

    2016-01-01

    This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.

  19. Economic, human and environmental health benefits of replacing formaldehyde in the preservation of corpses.

    Science.gov (United States)

    Rocha Ferreira, Jussara; Cardoso Rezende, Lorenna; Barbosa, Abel De Souza; De Carvalho, Phellip; De Lima, Natácia Evangelista; Assis Carvalho, Alexandre

    2017-11-01

    Formaldehyde has been prominent in preserving biological tissues since the nineteenth century. Despite being admittedly harmful to health and to the environment, it is still widely used. The Morphology Department of the University of Brasília - Brazil, applied the rethink, reduce, reuse, recycle and responsibility methodology to their activities in an effort to protect the health of laboratory workers and users, save resources and reduce damage to the environment. Here we evaluate the results obtained a decade after the implementation of this proposal (2005-2015). Formaldehyde was replaced by alcohol and glycerol solutions in corpse conservation. Over five thousand dollars in public funds that would have been destined to buying preserving substances were saved annually, and over a hundred thousand liters of water that would have been contaminated and thrown into the sewage system were spared. The environment used to implement the study was improved and anatomical parts kept for study had their lifespan extended. It is noteworthy that such simple adjustments could cause pronounced changes in laboratory activities. We would avoid contaminating billions of liters of water and it would be possible to save millions if similar practices were implemented in all educational institutions having similar routines. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Insertion mechanics of bioinspired needles into soft tissues.

    Science.gov (United States)

    Sahlabadi, Mohammad; Khodaei, Seyedvahid; Jezler, Kyle; Hutapea, Parsaoran

    2017-12-22

    Most studies to date confirm that any increase in the needle insertion force increases the damage to the tissue. When it comes to brain tissue, even minor damage can cause a long-lasting traumatic brain injury. Thus there is a great demand for innovative minimally invasive needles among the medical community. In our previous studies a novel bioinspired needle design with specially designed barbs was used to perform insertion tests into Polyvinyl chloride (PVC) tissue-mimicking gels, in which it decreased the insertion force by as much as 25%. In this work, bioinspired needles were designed using a CAD software, and were then manufactured using a 3 D printer. The insertion tests into bovine brain and liver were then performed to further investigate the performance of our bioinspired needles in real tissues. Our results show that there was a 10-25% decrease in the insertion force for insertions into bovine brain, and a 35-45% reduction in the insertion force for insertions into bovine liver using the proposed bioinspired needles. The reduction in the insertion force is due to the decrease in the friction force of the bioinspired needle with the bovine tissues, and its results are consistent with our previous results.