WorldWideScience

Sample records for replace argon candles

  1. Increased Efficiency in SI Engine with Air Replaced by Oxygen in Argon Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N J; Rapp, V H; Flowers, D L; Aceves, S M; Chen, J; Dibble, R

    2010-01-13

    Basic engine thermodynamics predicts that spark ignited engine efficiency is a function of both the compression ratio of the engine and the specific heat ratio of the working fluid. In practice the compression ratio of the engine is often limited due to knock. Both higher specific heat ratio and higher compression ratio lead to higher end gas temperatures and increase the likelihood of knock. In actual engine cycles, heat transfer losses increase at higher compression ratios and limit efficiency even when the knock limit is not reached. In this paper we investigate the role of both the compression ratio and the specific heat ratio on engine efficiency by conducting experiments comparing operation of a single-cylinder variable-compression-ratio engine with both hydrogen-air and hydrogen-oxygen-argon mixtures. For low load operation it is found that the hydrogen-oxygen-argon mixtures result in higher indicated thermal efficiencies. Peak efficiency for the hydrogen-oxygen-argon mixtures is found at compression ratio 5.5 whereas for the hydrogen-air mixture with an equivalence ratio of 0.24 the peak efficiency is found at compression ratio 13. We apply a three-zone model to help explain the effects of specific heat ratio and compression ratio on efficiency. Operation with hydrogen-oxygen-argon mixtures at low loads is more efficient because the lower compression ratio results in a substantially larger portion of the gas to reside in the adiabatic core rather than in the boundary layer and in the crevices, leading to less heat transfer and more complete combustion.

  2. Candle flames in microgravity

    Science.gov (United States)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  3. Flameless Candle Batteries Pose Risk to Kids

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162882.html Flameless Candle Batteries Pose Risk to Kids If swallowed, serious damage ... WEDNESDAY, Jan. 4, 2017 (HealthDay News) -- Tiny button batteries that light up flameless "tea candles" pose a ...

  4. When a Standard Candle Flickers

    DEFF Research Database (Denmark)

    Wilson-Hodge, Colleen A; Cherry, Michael L; Case, Gary L;

    2011-01-01

    The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma-ray telescopes. Although small-scale variations in the nebula are well known,...

  5. Candle and candle wax containing metathesis and metathesis-like products

    Science.gov (United States)

    Murphy, Timothy A; Tupy, Michael J; Abraham, Timothy W; Shafer, Andy

    2014-04-01

    A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles, for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs, or tarts. The wax commonly includes other components in addition to the metathesis product.

  6. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  7. When a Standard Candle Flickers

    DEFF Research Database (Denmark)

    Wilson-Hodge, Colleen A; Cherry, Michael L; Case, Gary L

    2011-01-01

    The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma-ray telescopes. Although small-scale variations in the nebula are well known......, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in 2008 August, a ~ 7% (70 mCrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the ~ 15-50 ke......-100 keV band with GBM, Swift /BAT, and INTEGRAL /IBIS. The pulsed flux measured with RXTE /PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a ~ 3 year timescale are also seen independently...

  8. When A Standard Candle Flickers

    CERN Document Server

    Wilson-Hodge, Colleen A; Baumgartner, Wayne H; Beklen, Elif; Bhat, P Narayana; Briggs, Michael S; Camero-Arranz, Ascension; Case, Gary L; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H; Gehrels, Neil; Greiner, Jochen; Jahoda, Keith; Jenke, Peter; Kippen, R Marc; Kouveliotou, Chryssa; Krimm, Hans A; Kuulkers, Erik; Meegan, Charles A; Natalucci, Lorenzo; Paciesas, William S; Preece, Robert; Rodi, James C; Shaposhnikov, Nikolai; Skinner, Gerald K; Swartz, Doug; von Kienlin, Andreas

    2010-01-01

    The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma ray telescopes. Although small-scale variations in the nebula are well-known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in August 2008, a ~ 7% (70 mcrab) decline has been observed in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline is independently confirmed with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the INTErnational Gamma-Ray Astrophysics Laboratory Imager on Board INTEGRAL (IBIS). A similar decline is also observed in the ~3 - 15 keV data from the RXTE/PCA and INTEGRAL Joint European Monitor (JEM-X) and in the 50 - 100 keV band with GBM and INTEGRAL/IBIS. Observations from 100 to 500...

  9. Burns and injuries resulting from the use of gel candles.

    Science.gov (United States)

    Pickus, E J; Lionelli, G T; Parmele, J B; Lawrence, W T; Korentager, R A

    2001-01-01

    Scented gel candles are common decorative household items composed of gelled mineral oil, fragrances, and dye. Like traditional wax candles, they have an open flame. Because of defective design, there have been several burns and injuries caused by these products. Here we report our experience with a scald burn from a gel candle and describe 34 additional injuries attributed to gel candles previously unreported in the medical literature.

  10. 75 FR 38121 - Petroleum Wax Candles From China

    Science.gov (United States)

    2010-07-01

    ... COMMISSION Petroleum Wax Candles From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on petroleum wax candles from China... antidumping duty order on petroleum wax candles from China would be likely to lead to continuation or...

  11. Modeling Candle Flame Behavior In Variable Gravity

    Science.gov (United States)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process. This is the limiting case that the mass

  12. Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot

    Indian Academy of Sciences (India)

    C Justin Raj; Byung Chul Kim; Bo-Bae Cho; Won-Je Cho; Sung-Jin Kim; Sang Yeup Park; Kook Hyun Yu

    2016-02-01

    The electrochemical supercapacitor behaviour of bare, washed and nitric acid functionalized candle flame carbon soots were reported. Crystallinity and the morphology of the candle soots were recorded using X-ray diffraction analysis, scanning and transmission electron microscopy, respectively. The nitric acid functionalized candle soot showed an improved Brunauer–Emmett–Teller surface area of 137.93 from 87.495 m$^2$ g$^{−1}$ of washed candle soot. The presence of various functional groups in candle soots and the development of oxygen functionalities in the functionalized candle soot were examined through Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis. Raman spectra showed the characteristic peaks corresponding to the D (diamond) and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of 187 F g$^{−1}$ at 0.15 A g$^{−1}$ discharge current density, which is much higher than that of bare and washed candle soot electrodes.

  13. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2004-04-23

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  14. A Simple Candle Filter Safeguard Device

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Henderson, A.K.; Swanson, M.L.

    2002-09-18

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal utilization. Two main designs employ these turbines: those based on pressurized fluidized-bed combustors (PFBCs) and those based on integrated gasification combined cycles (IGCCs). In both designs, the suspended particulates, or dust, must be cleaned from the gas before it enters the turbine to prevent fouling and erosion of the blades. To produce the cleanest gas, barrier filters are being developed and are in commercial use. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the dust on the surface. The three main configurations are candle, cross-flow, and tube. Both candle and tube filters have been tested extensively. They are primarily composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer o n the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle, and individual elements can fail, allowing the particulates to pass through the hole left by the filter element and erode the turbine. Because of the possibility of occasional filter breakage, safeguard devices (SGDs) must be employed to prevent the dust streaming through broken filters from reaching the turbine. The Energy & Environmental Research Center (EERC) safeguard device is composed of three main parts: the ceramic substrate, the adhesive coating, and the safeguard device housing. This report describes the development and laboratory testing of each of those parts as well as the bench-scale performance of both types of complete SGDs.

  15. Candle Flames in Microgravity: USML-1 Results - 1 Year Later

    Science.gov (United States)

    Ross, H. D.; Dietrich, D. L.; Tien, J. S.

    1994-01-01

    We report on the sustained behavior of a candle flame in microgravity determined in the glovebox facility aboard the First United States Microgravity Labomtofy. In a quiescent, microgmvjfy environment, diffusive transport becomes the dominant mode of heat and mass transfer; whether the diffusive transport rate is fast enough to sustain low-gravity candle flames in air was unknown to this series of about 70 tests. After an initial transient in which soot is observed, the microgravity candle flame in air becomes and remains hemispherical and blue (apparently soot-Ne) with a large flame standoff distance. Near flame extinction, spontaneous flame oscillations are regularly observed; these are explained as a flashback of flame through a premixed combustible gas followed by a retreat owed to flame quenching. The frequency of oscillations can be related to diffusive transport rates, and not to residual buoyant convective flow. The fact that the flame tip is the last point of the flame to survive suggests that it is the location of maximum fuel reactivity; this is unlike normal gravity, where the location of maximum fuel reactivity is the flame base. The flame color, size, and shape behaved in a quasi-steady manner; the finite size of the glovebox, combined with the restricted passages of the candlebox, inhibited the observation of true steady-state burning. Nonetheless, through calculations, and inference from the series of shuttle tests, if is concluded that a candle can burn indefinitely in a large enough ambient of air in microgravity. After igniting one candle, a second candle in close pximity could not be lit. This may be due to wax coating the wick and/or local oxygen depletion around the second, unlit candle. Post-mission testing suggests that simultaneous ignition may overcome these behaviors and enable both candles to be ignited.

  16. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Roger H. L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-07-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures.

  17. Preliminary engineering design of sodium-cooled CANDLE core

    Science.gov (United States)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  18. Optimized Design and Discussion on Middle and Large CANDLE Reactors

    Directory of Open Access Journals (Sweden)

    Xiaoming Chai

    2012-08-01

    Full Text Available CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth and large (2000 MWth CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.

  19. Argon in action

    CERN Document Server

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  20. Thermophysical properties of argon

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  1. Using Quasars as Standard Candles for Studying Dark Energy

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Vestergaard, Marianne; Watson, D.

    2012-01-01

    We have recently demonstrated (Watson et al. 2011, ApJ, 740, L49) that quasars, or more generally active galactic nuclei (AGNs), can be used as standard candles for measuring distances in the universe, similar to Type Ia supernovae (SNe). Here, we present the initial findings of this new method...

  2. A CANDLE for a deeper in vivo insight

    Science.gov (United States)

    Coupé, Pierrick; Munz, Martin; Manjón, Jose V; Ruthazer, Edward S; Louis Collins, D.

    2012-01-01

    A new Collaborative Approach for eNhanced Denoising under Low-light Excitation (CANDLE) is introduced for the processing of 3D laser scanning multiphoton microscopy images. CANDLE is designed to be robust for low signal-to-noise ratio (SNR) conditions typically encountered when imaging deep in scattering biological specimens. Based on an optimized non-local means filter involving the comparison of filtered patches, CANDLE locally adapts the amount of smoothing in order to deal with the noise inhomogeneity inherent to laser scanning fluorescence microscopy images. An extensive validation on synthetic data, images acquired on microspheres and in vivo images is presented. These experiments show that the CANDLE filter obtained competitive results compared to a state-of-the-art method and a locally adaptive optimized nonlocal means filter, especially under low SNR conditions (PSNRimaging capabilities enabled by the proposed filter are demonstrated on deep tissue in vivo images of neurons and fine axonal processes in the Xenopus tadpole brain. PMID:22341767

  3. 75 FR 80843 - Petroleum Wax Candles From China

    Science.gov (United States)

    2010-12-23

    ....2(f)). Background The Commission instituted this review on July 1, 2010 (75 FR 38121) and determined on October 4, 2010 that it would conduct an expedited review (75 FR 63200, October 14, 2010). The... COMMISSION Petroleum Wax Candles From China Determination On the basis of the record \\1\\ developed in...

  4. Candle Soot Coating for Latent Fingermark Enhancement on Various Surfaces

    Directory of Open Access Journals (Sweden)

    Qianhui Wei

    2017-07-01

    Full Text Available We demonstrate a facile method termed candle soot coating (CSC for fast developing latent fingermarks (LFMs on various kinds of surfaces (glass, ceramic, metal, paper and adhesive tape. The CSC method can be considered as simple, fast, and low-cost as well as providing high contrast for LFM visualization in potential forensic applications.

  5. Filter holder and gasket assembly for candle or tube filters

    Science.gov (United States)

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  6. Proper Use of Candles During a Power Outage

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    Home fires are a threat after a natural disaster and fire trucks may have trouble getting to your home. If the power is out, use flashlights or other battery-powered lights if possible, instead of candles.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 8/20/2008.

  7. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker

    Science.gov (United States)

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea

    2013-01-01

    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  8. Future liquid Argon detectors

    CERN Document Server

    Rubbia, A

    2013-01-01

    The Liquid Argon Time Projection Chamber offers an innovative technology for a new class of massive detectors for rare-event detection. It is a precise tracking device that allows three-dimensional spatial reconstruction with mm-scale precision of the morphology of ionizing tracks with the imaging quality of a "bubble chamber", provides $dE/dx$ information with high sampling rate, and acts as high-resolution calorimeter for contained events. First proposed in 1977 and after a long maturing process, its holds today the potentialities of opening new physics opportunities by providing excellent tracking and calorimetry performance at the relevant multi-kton mass scales, outperforming other techniques. In this paper, we review future liquid argon detectors presently being discussed by the neutrino physics community.

  9. Synchronization in flickering of three-coupled candle flames

    Science.gov (United States)

    Okamoto, Keiko; Kijima, Akifumi; Umeno, Yoshitaka; Shima, Hiroyuki

    2016-10-01

    When two or more candle flames are fused by approaching them together, the resulting large flame often exhibits flickering, i.e., prolonged high-frequency oscillation in its size and luminance. In the present work, we investigate the collective behaviour of three-coupled candle flame oscillators in a triangular arrangement. The system showed four distinct types of syncronised modes as a consequence of spontaneous symmetry breaking. The modes obtained include the in-phase mode, the partial in-phase mode, the rotation mode, and an anomalous one called the “death” mode that causes a sudden stop of the flame oscillation followed by self-sustained stable combustion. We also clarified the correlation between the inter-flame distance and the frequency with which the modes occur.

  10. Long Gamma-Ray Bursts as standard candles

    CERN Document Server

    Lazzati, D; Ghisellini, G; Nava, L; Firmani, C; Morsony, B; Begelman, M C; Morsony, Brian

    2006-01-01

    As soon as it was realized that long GRBs lie at cosmological distances, attempts have been made to use them as cosmological probes. Besides their use as lighthouses, a task that presents mainly the technological challenge of a rapid deep high resolution follow-up, researchers attempted to find the Holy Grail: a way to create a standard candle from GRB observables. We discuss here the attempts and the discovery of the Ghirlanda correlation, to date the best method to standardize the GRB candle. Together with discussing the promises of this method, we will underline the open issues, the required calibrations and how to understand them and keep them under control. Even though GRB cosmology is a field in its infancy, ongoing work and studies will clarify soon if and how GRBs will be able to keep up to the promises.

  11. Temperature Regulation of the Accelerating Section in CANDLE Linac

    CERN Document Server

    Tunyan, Sergey; Grigoryan, Bagrat

    2005-01-01

    The temperature of the CANDLE S-Band Linac high-power RF components will be regulated by stand-alone closed loop (SACL) water system. The RF components are made of oxygen-free high conductivity copper and respond quickly to temperature changes. Temperature stabilization better than ± 0.1 C is required to achieve a good RF phase and energy stability. The temperature regulation and control philosophy along with the simulation results are discussed.

  12. Candle light-style OLED: a plausibly human-friendly safe night light

    Science.gov (United States)

    Jou, Jwo-Huei; Chen, Po-Wei; Hsieh, Chun-Yu; Wang, Ching-Chiun; Chen, Chien-Chih; Tung, F.-C.; Chen, Szu-Hao; Wang, Yi-Shan

    2013-09-01

    Candles emit sensationally-warm light with a very-low color-temperature, comparatively most suitable for use at night. In response to the need for such a human-friendly night light, we demonstrate the employment of a high number of candle light complementary organic emitters to generate mimic candle light based on organic light emitting diode (OLED). One resultant candle light-style OLED shows a very-high color rendering index, with an efficacy at least 300 times that of candles or twice that of an incandescent bulb. The device can be fabricated, for example, by using four candle light complementary emitters, namely: red, yellow, green, and sky-blue phosphorescent dyes, vacuum-deposited into two emission layers, separated by a nano-layer of carrier modulation material to maximize both the desirable very-high color rendering index and energy efficiency, while keeping the blue emission very low and red emission high to obtain the desirable low color temperature. With different layer structures, the OLEDs can also show color tunable between that of candle light and dusk-hue. Importantly, a romantic sensation giving and supposedly physiologically-friendly candle light-style emission can hence be driven by electricity in lieu of the hydrocarbon-burning and greenhouse gas releasing candles that were invented 5,000 years ago.

  13. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  14. Qualifications of Candle Filters for Combined Cycle Combustion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tomasz Wiltowski

    2008-08-31

    The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

  15. On Calibrations Using the Crab Nebula as a Standard Candle

    Science.gov (United States)

    Weisskopf, Martin; Guainazzi, Matteo; Jahoda, Keith; Shaposhnikov, Nikolai; ODell, Stephen; Zavlin, Vyacheslav; Wilson-Hodge, Colleen; Elsner, Ronald

    2009-01-01

    Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.

  16. Using Quasars as Standard Candles for Studying Dark Energy

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Vestergaard, Marianne; Watson, D.

    2012-01-01

    We have recently demonstrated (Watson et al. 2011, ApJ, 740, L49) that quasars, or more generally active galactic nuclei (AGNs), can be used as standard candles for measuring distances in the universe, similar to Type Ia supernovae (SNe). Here, we present the initial findings of this new method......, which relies on the technique of reverberation mapping to measure time delays between the quasar continuum and emission line variability signatures. Measuring this time delay effectively measures the radius between the central source and the emission-line gas. The emission line gas is photo...

  17. Autoinflammatory diseases in dermatology: CAPS, TRAPS, HIDS, FMF, Blau, CANDLE.

    Science.gov (United States)

    Tripathi, Shivani V; Leslie, Kieron S

    2013-07-01

    Autoinflammatory diseases, including CAPS, TRAPS, HIDS, FMF, Blau, and CANDLE, have unique dermatologic presentations that can be a clue to diagnosis. Although these conditions are rare, the morbidity and mortality can be severe, and well-informed physicians can place these conditions in their differential diagnosis when familiar with the dermatologic manifestations. This review article presents a brief overview of each condition, clues to diagnosis that focus of dermatologic manifestations and clinical images, basic laboratory tests and follow-up, a brief review of treatments, and concludes with an overview for these autoinflammatory conditions and their differential diagnoses. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Emissions of air pollutants from scented candles burning in a test chamber

    Science.gov (United States)

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe

    2012-08-01

    Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.

  19. 75 FR 70713 - Petroleum Wax Candles From the People's Republic of China: Final Results of Expedited Third...

    Science.gov (United States)

    2010-11-18

    ... order are certain scented or unscented petroleum wax candles made from petroleum wax and having fiber or... International Trade Administration Petroleum Wax Candles From the People's Republic of China: Final Results of... petroleum wax candles from the People's Republic of China (``PRC''). On the basis of a timely notice...

  20. 76 FR 773 - Petroleum Wax Candles From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-01-06

    ... a reasonably foreseeable future. See Petroleum Wax Candles From China Determination, 75 FR 80843... scented or unscented petroleum wax candles made from petroleum wax and having fiber or paper-cored wicks... International Trade Administration Petroleum Wax Candles From the People's Republic of China: Continuation...

  1. 76 FR 46277 - Petroleum Wax Candles From the People's Republic of China: Final Results of Request for Comments...

    Science.gov (United States)

    2011-08-02

    ... International Trade Administration Petroleum Wax Candles From the People's Republic of China: Final Results of... request for comments on the scope of antidumping duty order on petroleum wax candles from the People's... determinations involving the Order. \\1\\ See Petroleum Wax Candles from the People's Republic of China...

  2. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T

    2014-01-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  3. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  4. SYNTHESIS ALKANOLAMIDE TETRAHIDROXY OCTADECANOATE COMPOUND FROM CANDLE NUT OIL

    Directory of Open Access Journals (Sweden)

    Daniel Daniel

    2010-06-01

    Full Text Available Candle nut oil could be transesterificated by methanol with concentrated H2SO4 as a catalyst to form fatty acid methyl esther. Methyl linoleate could be separated by Column Chromatography mechanism technic partition from fatty acid methyl ester (FAME mixture, then it was treated by ethanolamine at base condition in benzene as solvent and sodium methylate as a catalyst at reflux condition for 6 hours to form an alkanolamide. Alkanolamide could be epoxydized by tert-buthyl hydroperoxyde and peroxygenase as a catalyst and it was refluxed for 6 hours at 40 °C and nitrogen gas condition to form the epoxy alkanolamide octadecanoate, and then it was hydrolyzed by HCl 0.1 M to form alkanolamide tetrahidroxy octadecanoate (Polyol. Alkanolamide tetrahidroxy octadecanoate could be separated by Column Chromatography using silica gel H 40 and the eluent was the mixture of chloroform, ethyl acetate, formic acid in a ratio 90:10:1 (v/v/v/. Determination of HLB value from alknolamide tetrahydroxy octadecanoate is 13.096. Therefore, this compound was particularly suitable for application as an o/w emulsifiers. All af the reaction steps were confirmed by using FT-IR, 1H-NMR, GC-MS, Gas Chromatography and TLC.   Keywords: Esterification, Candle nut oil, Surfactant, Amidation, Polyol.

  5. Proton Scattering on Liquid Argon

    Science.gov (United States)

    Bouabid, Ryan; LArIAT Collaboration

    2017-01-01

    LArIAT (Liquid Argon In A Test-beam) is a liquid argon time projection chamber (LArTPC) positioned in a charged particle beamline whose primary purpose is to study the response of LArTPC's to charged particle interactions. This previously unmeasured experimental data will allow for improvement of Monte Carlo simulations and development of identification techniques, important for future planned LArTPC neutrino experiments. LArIAT's beamline is instrumented to allow for the identification of specific particles as well as measurement of those particles' incoming momenta. Among the particles present in the beamline, the analysis presented here focuses on proton-Argon interactions. This study uses particle trajectories and calorimetric information to identify proton-Argon interaction candidates. We present preliminary data results on the measurement of the proton-Argon cross-section. Liquid Argon In A Test Beam. The work is my analysis made possible through the efforts of LArIAT detector, data, and software.

  6. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  7. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  8. Characterization of hazardous and odorous volatiles emitted from scented candles before lighting and when lit.

    Science.gov (United States)

    Ahn, Jeong-Hyeon; Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won

    2015-04-01

    Scented candles are known to release various volatile organic compounds (VOCs) including both pleasant aromas and toxic components both before lighting (off) and when lit (on). In this study, we explored the compositional changes of volatiles from scented candles under various settings to simulate indoor use. Carbonyl compounds and other VOCs emitted from six different candle types were analyzed under 'on/off' conditions. The six candle types investigated were: (1) Clean cotton (CT), (2) Floral (FL), (3) Kiwi melon (KW), (4) Strawberry (SB), (5) Vanilla (VN), and (6) Plain (PL). Although a large number of chemicals were released both before lighting and when lit, their profiles were noticeably distinguishable. Before lighting, various esters (n = 30) showed the most dominant emissions. When lit, formaldehyde was found to have the highest emission concentration of 2098 ppb (SB), 1022 ppb (CT), and 925 ppb (PL). In most lit scented candles, there was a general tendency to show increased concentrations of low boiling point compounds. For some scented candle products, the emission of volatiles occurred strongly both before lighting and when lit. For instance, in terms of TVOC (ppbC), the highest concentrations were observed from the KW product with their values of 12,742 (on) and 2766 ppbC (off). As such, the results suggest that certain scented candle products should act as potent sources of VOC emission in indoor environment, regardless of conditions--whether being lit or not.

  9. Constraining cosmological parameters when taking into account the distribution of candles

    CERN Document Server

    Qin, Y P; Dong, Y M; Zhang, F W; Li, H Z; Jia, L W; Mao, L S; Lu, R J; Yi, T F; Cui, X H; Zhang, Z B; Qin, Yi-Ping; Zhang, Bin-Bin; Dong, Yun-Ming; Zhang, Fu-Wen; Li, Huai-Zhen; Jia, Lan-Wei; Mao, Li-Sheng; Lu, Rui-Jing; Yi, Ting-Feng; Cui, Xiao-Hong; Zhang, Zhi-Bin

    2005-01-01

    We study in detail the effect of the distribution of cosmological candles. First,we propose to perform a Monte-Carlo simulation to check if the hypothesis that there is not a distribution of the deduced relative luminosity distance moduli of a sample, when the measurement uncertainty is negligible, is true. If there exists such a distribution, the statistic chi2 cannot be defined since the distribution itself is unclear. Second, we suggest replacing the conventional minimizing chi2 2 method with the least square method to find the best estimated cosmological parameters due to this definition problem. Once the cosmological parameters are determined with the least square method, the bare distribution (the intrinsic distribution which is independent of the measurement uncertainty)can be estimated and then a lower and upper limits of chi2 can be determined. With these two extreme values of chi2,we are able to make the confidence contour plot in the conventional way. In addition to the gold SN Ia sample and the GR...

  10. Three—Dimensional Flow Characteristics in One Ceramic Candle Filter

    Institute of Scientific and Technical Information of China (English)

    TaewonSeo; KihyunKeum; 等

    1999-01-01

    The objective of this study is to characterize the three-dimensional fluid flow in the vessel containing one ceramic candle filter.The three-dimensional governing equations are formulated in this study and the turbulent κ-ε model is adopted for the numerical computation.It is found that the viscous force is dominant in the porous region with compared to inertia force.Pressue decreases linearly when the flow passing through the porous medium.When the face velocity is 0.03 m/s,the pressure drop is about 350Pa.It has also been found that the fluid with the spiral motion to be sunk into the filter in the vessel.

  11. The Standardized Candle Method for Type II Plateau Supernovae

    Science.gov (United States)

    Olivares E., Felipe; Hamuy, Mario; Pignata, Giuliano; Maza, José; Bersten, Melina; Phillips, Mark M.; Suntzeff, Nicholas B.; Filippenko, Alexei V.; Morrel, Nidia I.; Kirshner, Robert P.; Matheson, Thomas

    2010-06-01

    In this paper, we study the "standardized candle method" using a sample of 37 nearby (redshift z color curves, and velocity curves. We find that the V-I color toward the end of the plateau can be used to estimate the host-galaxy reddening with a precision of σ(AV ) = 0.2 mag. The correlation between plateau luminosity and expansion velocity previously reported in the literature is recovered. Using this relation and assuming a standard reddening law (RV = 3.1), we obtain Hubble diagrams (HDs) in the BVI bands with dispersions of ~0.4 mag. Allowing RV to vary and minimizing the spread in the HDs, we obtain a dispersion range of 0.25-0.30 mag, which implies that these objects can deliver relative distances with precisions of 12%-14%. The resulting best-fit value of RV is 1.4 ± 0.1.

  12. Present and future prospects for GRB standard candles

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.S. [Harvard Smithsonian Center for Astrophysics, Cambridge (United States); Bloom, J.S. [California Univ., Berkeley (United States). Department of Astronomy; Harvard Smithsonian Center for Astrophysics, Cambridge (United States)

    2005-07-15

    Following our previous work, we conclude that a GRB standard candle constructed from the Ghirlanda et al. power-law relation between the geometry-corrected energy (E{sub {gamma}}) and the peak of the rest-frame prompt burst spectrum (E{sub p}) is not yet cosmographically useful, despite holding some potential advantages over SNe la, This is due largely to the small sample of {approx} 20 GRBs with the required measured redshifts, jet-breaks, and peak energies, and to the strong sensitivity of the goodness-of-fit of the power-law to input assumptions. The most important such finding concerns the sensitivity to the generally unknown density (and density profile), of the circumburst medium. Although the E{sub p}-E{sub {gamma}} relation is a highly significant correlation over many cosmologies, until the sample expands to include many low-z events, it will be most sensitive to {omega}M but essentially insensitive to {omega}A and w, with some hope of constraining dw/dt with high-z GRB data alone. The relation clearly represents a significant improvement in the search for an empirical GRB standard candle, but is further hindered by an unknown physical basis for the relation, the lack of a low-z training set to calibrate the relation in a cosmology-independent way, and several major potential systematic uncertainties and selection effects, Until these concerns are addressed, a larger sample is acquired, and attempts are made to marginalize or perform Monte Carlo simulations over the unknown density distribution, we urge caution concerning claims of the utility of GRBs for cosmography and especially the attempts to combine GRBs with SNe Ia.

  13. Using slow-release permanganate candles to remediate PAH-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, Lindy, E-mail: purplerauscher@neb.rr.com [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Sakulthaew, Chainarong, E-mail: chainarong@huskers.unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Department of Veterinary Technology, Kasetsart University, Bangkok 10900 (Thailand); Comfort, Steve, E-mail: scomfort1@unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer We quantified the efficacy of slow-release permanganate-paraffin candles to degrade and mineralize PAHs. Black-Right-Pointing-Pointer {sup 14}C-labeled PAHs were used to quantify both adsorption and transformation. Black-Right-Pointing-Pointer Permanganate-treated PAHs were more biodegradable in soil microcosms. Black-Right-Pointing-Pointer A flow-through candle system was used to quantify PAH removal in urban runoff. - Abstract: Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO{sub 4}) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using {sup 14}C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO{sub 2}), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide

  14. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    Science.gov (United States)

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer.

  15. An experimental design for the investigation of water repellent property of candle soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Bichitra Nanda; Kandasubramanian, Balasubramanian, E-mail: meetkbs@gmail.com

    2014-11-14

    The mechanistic aspect of candle soot particles under controlled atmosphere has been reported. The soot particles were characterized using Fourier transformation Infrared Spectroscopy, Raman spectroscopy, Transmission electron microscopy and X-ray diffraction. Hydrophobicity of the candle soot particles was confirmed from the presence of C–H group which enhances water repellency and can be used as filler material for fabrication of superhydrophobic coatings. The layered soot particle on the glass slide exhibits maximum water contact angle of 168°. Roughness of soot particle and various hydrophobic groups involved for obtaining superhydrophobicity were exposed. The Raman spectrum of soot particles revealed the presence of disorder graphene which was confirmed from appearance of D1 band. The agglomeration of candle soot particles has been discussed by measuring fractal dimension (D{sub f}) of the particles. The in-depth investigation for bringing the mechanism of formation of soot particle inside the flame reveals the inception of the first particles, growth of soot particles, particle coalescence, agglomeration and oxidation. Here, we have found that the mechanism of particle formation in candle flame involves various steps, in which the sintering as well as coalescence/collision process plays a major role. - Highlights: • Mechanistic aspect for hydrophobicity of candle soot is demonstrated. • Hydrophobicity of soot particles at different exposure time is described. • Agglomeration of soot particles related to fractal dimension is reported. • Mechanism of formation of soot particles in the candle flame is also described.

  16. Attainable superheat of argon-helium, argon-neon solutions.

    Science.gov (United States)

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  17. Type II Supernovae: Model Light Curves and Standard Candle Relationships

    Science.gov (United States)

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude—from 0.5 to 4.0 × 1051 ergs, with a typical value of ~0.9 × 1051 ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to ~20% using only photometric data.

  18. Type Ia Supernova as Standard Candles in the Near Infrared

    Science.gov (United States)

    Wood-Vasey, Michael; Garnavich, Peter; Matheson, Thomas; Jha, Saurabh; Rest, Armin; Allen, Lori

    2011-08-01

    We propose to observe 15 SNeIa in the near infrared (NIR) with WHIRC on the WIYN telescope during 12 nights of bright time in 2011B. These observations will create an infrared Hubble diagram extending to z~0.1 to verify recent evidence that SNIa are excellent standard candles in the NIR. We will observe 15 SNeIa at 0.02color evolution in the near infrared where dust extinction is significantly reduced. In addition these NIR data will allow us to (1) explore the recent correlation between optical luminosity and host galaxy mass; (2) improve our understanding of intrinsic colors of SNeIa, (3) and study the nature of dust in galaxies beyond our Milky Way. Our ideal observing plan would consist of nights spaced every three days in each of four consecutive lunations in 2011B. This is a pilot proposal. If successful, this project will lead to a larger survey to obtain NIR luminosity distances to 100 SNeIa out to z<0.1 to provide a solid anchor for measuring luminosity distances in the Universe. We are not asking for long-term status at this time.

  19. Casting light on BSM physics with SM standard candles

    Science.gov (United States)

    Curtin, David; Jaiswal, Prerit; Meade, Patrick; Tien, Pin-Ju

    2013-08-01

    The Standard Model (SM) has had resounding success in describing almost every measurement performed by the ATLAS and CMS experiments. In particular, these experiments have put many beyond the SM models of natural Electroweak Symmetry Breaking into tension with the data. It is therefore remarkable that it is still the LEP experiment, and not the LHC, which often sets the gold standard for understanding the possibility of new color-neutral states at the electroweak (EW) scale. Recently, ATLAS and CMS have started to push beyond LEP in bounding heavy new EW states, but a gap between the exclusions of LEP and the LHC typically remains. In this paper we show that measurements of SM Standard Candles can be repurposed to set entirely complementary constraints on new physics. To demonstrate this, we use W + W -cross section measurements to set bounds on a set of slepton-based simplified models which fill in the gaps left by LEP and dedicated LHC searches. Having demonstrated the sensitivity of the W + W -measurement to light sleptons, we also find regions where sleptons can improve the fit of the data compared to the NLO SM W + W -prediction alone. Remarkably, in those regions the sleptons also provide for the right relic-density of Bino-like Dark Matter and provide an explanation for the longstanding 3 σ discrepancy in the measurement of ( g - 2) μ.

  20. Unbiased constraints on the clumpiness of universe from standard candles

    CERN Document Server

    Li, Zhengxiang; Zhu, Zong-Hong

    2015-01-01

    We perform unbiased tests for the clumpiness of universe by confronting the Zel'dovich-Kantowski-Dyer-Roeder luminosity distance which describes the effect of local inhomogeneities on the propagation of light with the observational one estimated from measurements of standard candles, i.e., type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs). Methodologically, we first determine the light-curve fitting parameters which account for distance estimation in SNe Ia observations and luminosity/energy relations which are responsible for distance estimation of GRBs in the global fit to reconstruct the Hubble diagrams in the context of a clumpy universe. Subsequently, these Hubble diagrams allow us to achieve unbiased constraints on the matter density parameter $\\Omega_m$ as well as clumpiness parameter $\\eta$ which quantifies the fraction of homogeneously distributed matter within a given light cone. At 1$\\sigma$ confidence level, the constraints are $\\Omega_m=0.34\\pm0.02$ and $\\eta=1.00^{+0.00}_{-0.02}$ from the ...

  1. Evaluation of the efficacy of 3% citronella candles and 5% citronella incense for protection against field populations of Aedes mosquitoes.

    Science.gov (United States)

    Lindsay, L R; Surgeoner, G A; Heal, J D; Gallivan, G J

    1996-06-01

    We assessed the efficacy of 3% citronella candles and 5% citronella incense in protecting subjects from bites of Aedes spp. under field conditions. The study was conducted in a deciduous woodlot in Guelph, Ontario, Canada from July 26 to August 10, 1995. Eight subjects, dressed identically, were assigned to one of 8 positions on a grid within the study area. Two citronella candles, 2 citronella incense, 2 plain unscented candles, or no candles (i.e., nontreated controls) were assigned to 2 positions on the grid each evening. Subjects conducted 5-min biting counts at each position and performed 16 biting counts per evening. On average, subjects received 6.2 +/- 0.4, 8.2 +/- 0.5, 8.2 +/- 0.4, and 10.8 +/- 0.5 bites/ 5 min at positions with citronella candles, citronella incense, plain candles, and no candles, respectively. Although significantly fewer bites were received by subjects at positions with citronella candles and incense than at nontreated locations, the overall reduction in bites provided by the citronella candles and incense was only 42.3 and 24.2%, respectively.

  2. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  3. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... You may not be able to have a total ankle replacement if you have had ankle joint infections in ...

  4. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  5. Composing Experimental Environment of PRIDE Argon cell

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seonho; Jang, Yongkuk; Cho, Il Je [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In PRIDE depleted Uranium feed material and a depleted Uranium mixed with some surrogate material are used for performing engineering scale Pyroprocessing. PRIDE has to maintain inert atmosphere because of the characteristic of Electrolytic Reduction technology, Electro refining technology, Electrowinning technology. The impurity concentration of the Argon cell has to be under 50 ppm(Oxygen, moisture). Atmospheric pressure changes and temperature changes can affect the Argon cell's impurity concentration. In this paper, how to compose the Argon cell impurity concentration under 50 ppm to make the exact optimal experimental environment(Oxygen, moisture) will be introduced. Composing the exact optimal experimental environment by supplying Argon gas have been introduced in this paper. Continuously supplying Argon gas which is heavier than the Oxygen through the bottom of the Argon cell the oxygen eventually discharged through the high vent fan and lower the impurity concentration of Oxygen.

  6. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  7. Structural determination of argon trimer

    Directory of Open Access Journals (Sweden)

    Xiguo Xie

    2015-09-01

    Full Text Available Rare gas clusters are model systems to investigate structural properties at finite size. However, their structures are difficult to be determined with available experimental techniques because of the strong coupling between the vibration and the rotation. Here we experimentally investigated multiple ionization and fragmentation dynamics of argon trimer by ultrashort intense laser fields and reconstructed their structures with Coulomb explosion technique. The measured structure distribution was compared with our finite-temperature ab initio calculations and the discrepancy was discussed. The present study provides a guidance for the development of theoretical methods for exploring the geometric structure of rare gas clusters.

  8. Argon purge gas cooled by chill box

    Science.gov (United States)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  9. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume…

  10. Skin contact transfer of three fragrance residues from candles to human hands.

    Science.gov (United States)

    Api, Anne Marie; Bredbenner, Amy; McGowen, Margaret; Niemiera, David; Parker, Lori; Renskers, Kevin; Selim, Sami; Sgaramella, Richard; Signorelli, Richard; Tedrow, Sebastian; Troy, William

    2007-08-01

    The dermal hand transfer of three fragrance materials (cinnamic aldehyde, d-limonene and eugenol) from scented candles was determined in 10 subjects (i.e., 20 hands) after grasping scented candles for 5 consecutive 20s exposures/grasps. The fragrance materials from each subject's hands were recovered by isopropyl alcohol wipes and subsequent extractions. Removal efficiencies for both cinnamic aldehyde and eugenol placed directly on the hands were not concentration dependent and ranged from 103% to 106%. The removal efficiency of d-limonene showed an inverse relation with 74.3% removed at the low concentration of 50 microg and 63.8% removed at the high concentration of 500 microg. The residue/transfer of d-limonene from the candles to the hands was below the limit of detection of 50 microg. The residue/transfer of cinnamic aldehyde and eugenol to each subject's hands was consistent between subjects as well as between each exposure/grasp. The total mean residues of cinnamic aldehyde and eugenol transferred per grasp from the candles to the hands were 0.255 microg/cm(2) and 0.279 microg/cm(2), respectively.

  11. CANDLES AND INCENSE AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION: MARKET ANALYSIS AND LITERATURE SEARCH

    Science.gov (United States)

    The report summarizes available information on candles and incense as potential sources of indoor air pollution. It covers market information and a review of the scientific literature. The market information collected focuses on production and sales data, typical uses in the U.S....

  12. The Candle Scheme for Creating an on-line Computer Science Program - Experiences and Vision

    Directory of Open Access Journals (Sweden)

    Erkki SUTINEN

    2003-04-01

    Full Text Available Distance learning programs have rapidly increased during the past few decades. In fall 2000 the University of Joensuu started to offer distance Computer Science (CS studies to the high school students in surrounding rural areas of Joensuu. In this program high school students study the first year's university level CS studies over the web simultaneously with their regular high school studies. We describe the creation process of our virtual curriculum which is based the so-called Candle scheme. The Candle scheme search the most essential principles needed in on-line course design, supporting a student locally in her authentic learning needs via electronic tools in a light way. With the Candle scheme we have successfully focused in our design process on the most essential parts of the virtual study process. Our experiences of the Candle scheme in the creation process of the on-line CS program during years 2000-2002 indicate that the scheme is the functional one and expandable to other contexts as well.

  13. Hansa Candle viib küünlad Moskvasse / Väinu Rozental

    Index Scriptorium Estoniae

    Rozental, Väinu, 1957-

    2006-01-01

    Ilmunud ka: Delovõje Vedomosti 29. märts lk. 4. AS Hansa Candle paneb Viljandi tootmishoone liinid üles Moskva lähistele, et oma toodanguga jõuda Venemaa turule. Diagramm: Majandusnäitajad. Vt. samas: Küünlatehas otsib parafiinist odavamat tooret

  14. Directed Replacement

    CERN Document Server

    Karttunen, L

    1996-01-01

    This paper introduces to the finite-state calculus a family of directed replace operators. In contrast to the simple replace expression, UPPER -> LOWER, defined in Karttunen (ACL-95), the new directed version, UPPER @-> LOWER, yields an unambiguous transducer if the lower language consists of a single string. It transduces the input string from left to right, making only the longest possible replacement at each point. A new type of replacement expression, UPPER @-> PREFIX ... SUFFIX, yields a transducer that inserts text around strings that are instances of UPPER. The symbol ... denotes the matching part of the input which itself remains unchanged. PREFIX and SUFFIX are regular expressions describing the insertions. Expressions of the type UPPER @-> PREFIX ... SUFFIX may be used to compose a deterministic parser for a ``local grammar'' in the sense of Gross (1989). Other useful applications of directed replacement include tokenization and filtering of text streams.

  15. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements.

    Science.gov (United States)

    Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie

    2016-05-01

    In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push.

  16. Search for WIMPs in liquid argon

    CERN Document Server

    Amsler, C

    2011-01-01

    Our group from the University of Zurich is performing R&D work towards the design of a large liquid argon detector to detect Weakly Interacting Massive Particles (WIMPs). This project is developed within the DARWIN Collaboration funded by ASPERA to prepare a proposal for the next generation of WIMP searches using noble liquids. We are performing R&D to detect the VUV light from recoiling argon nuclei. Results obtained with one ton of liquid argon (ArDM prototype) and prospects using a monoenergetic neutron source are discussed.

  17. Knee Replacement

    Science.gov (United States)

    ... need knee replacement surgery usually have problems walking, climbing stairs, and getting in and out of chairs. Some ... a total living space on one floor since climbing stairs can be difficult. Install safety bars or a ...

  18. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  19. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  20. Clinical periodontics with the argon laser

    Science.gov (United States)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  1. Argon Laser Photoablation for Postburn Conjunctival Pigmentation

    Directory of Open Access Journals (Sweden)

    Seong Joon Ahn

    2014-01-01

    Full Text Available We report a case of an ocular burn injury from boiling water which resulted in conjunctival pigmentation, 1 week following injury. For cosmetic purposes, 2 sessions of argon laser photoablation were performed. One month after laser treatment, conjunctival pigmentation had been successfully removed and the patient was very satisfied with the results. Argon laser photoablation may be an effective way to remove postburn conjunctival pigmentation.

  2. Esophageal replacement.

    Science.gov (United States)

    Kunisaki, Shaun M; Coran, Arnold G

    2017-04-01

    This article focuses on esophageal replacement as a surgical option for pediatric patients with end-stage esophageal disease. While it is obvious that the patient׳s own esophagus is the best esophagus, persisting with attempts to retain a native esophagus with no function and at all costs are futile and usually detrimental to the overall well-being of the child. In such cases, the esophagus should be abandoned, and the appropriate esophageal replacement is chosen for definitive reconstruction. We review the various types of conduits used for esophageal replacement and discuss the unique advantages and disadvantages that are relevant for clinical decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan

    2008-01-01

    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  4. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Damiao Gouveia, Ana Cecilia; Koponen, Ismo Kalevi

    2017-01-01

    Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms that invo......Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms...... a significant influx of alveolar macrophages and polymorphonuclear leukocytes and increased concentrations of proteins and lactate dehydrogenase activity in bronchoalveolar fluid. Lower levels of these markers of inflammation and cytotoxicity were observed after i.t. instillation of the same dose of A...

  5. Pulse cleaning flow models and numerical computation of candle ceramic filters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and onedimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.

  6. Status and future prospect of 48Ca double beta decay search in CANDLES

    Science.gov (United States)

    Iida, T.; Nakajima, K.; Ajimura, S.; Batpurev, T.; Chan, W. M.; Fushimi, K.; Hazama, R.; Kakubata, H.; Khai, B. T.; Kishimoto, T.; Li, X.; Maeda, T.; Masuda, A.; Matsuoka, K.; Morishita, K.; Nakatani, N.; Nomachi, M.; Noshiro, S.; Ogawa, I.; Ohata, T.; Osumi, H.; Suzuki, K.; Tamagawa, Y.; Tesuno, K.; Trang, V. T. T.; Uehara, T.; Umehara, S.; Yoshida, S.

    2016-05-01

    The observation of neutrino-less double beta decay (0vßß) would be the most practical way to prove the Majorana nature of the neutrino and lepton number violation. CANDLES studies 48Ca double beta decay using CaF2 scintillator. The main advantage of 48Ca is that it has the highest Q-value (4.27 MeV) among all the isotope candidates for 0vßß. The CANDLES III detector is currently operating with 300kg CaF2 crystals in the Kamioka underground observatory, Japan. In 2014, a detector cooling system and a magnetic cancellation coil was installed with the aim to increase light emission of CaF2 scintillator and photo-electron collection efficiency of the photo-multipliers. After this upgrade, light yield was increased to 1000 p.e./MeV which is 1.6 times larger than before. According to data analysis and simulation, main background source in CANDLES is turned out to be high energy external gamma-ray originating neutron capture on the surrounding materials, so called (n,γ). Upgrading the detector by installing neutron and gamma-ray shield can reduce the remaining main backgrounds by two order magnitude. In this report, we discuss the detail of (n,γ) and background reduction by additional shielding.

  7. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles.

    Science.gov (United States)

    Skovmand, Astrid; Damiao Gouveia, Ana Cecilia; Koponen, Ismo Kalevi; Møller, Peter; Loft, Steffen; Roursgaard, Martin

    2017-07-05

    Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms that involve oxidative stress, inflammation and genotoxicity. The aim of this study was to compare pulmonary effects of candle light combustion particles (CP) with two benchmark diesel exhaust particles (A-DEP and SRM2975). Intratracheal (i.t.) instillation of CP (5mg/kg bodyweight) in C57BL/6n mice produced a significant influx of alveolar macrophages and polymorphonuclear leukocytes and increased concentrations of proteins and lactate dehydrogenase activity in bronchoalveolar fluid. Lower levels of these markers of inflammation and cytotoxicity were observed after i.t. instillation of the same dose of A-DEP or SRM2975. The i.t. instillation of CP did not generate oxidative damage to DNA in lung tissue, measured as DNA strand breaks and human 8-oxoguanine glycosylase-sensitive sites by the comet assay. The lack of genotoxic response was confirmed in lung epithelial (A549) cells, although the exposure to CP increased intracellular levels of reactive oxygen species. In conclusion, pulmonary exposure to particles from burning candles is associated with inflammation and cytotoxicity in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Granular-bed and ceramic candle filters in commercial plants: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1993-04-01

    Advanced coal fired power cycles require the removal of coal ash at high temperature and pressure. Granular-bed and ceramic candle filters can be used for this service. Conceptual designs for commercial size applications are made for each type of filter. The filters are incorporated in the design of a Foster Wheeler 450 MWe second generation pressurized fluidized bed combustion plant which contains a pressurized fluidized combustor and carbonizer. In a second application, the inters are incorporated in the design of a 100 MWe KRW (air) gasifier based power plant. The candle filter design is state of the art as determined from the open literature with an effort to minimize the cost. The granular-bed filter design is based on test work performed at high temperature and low pressure, tests at New York University performed at high pressure and temperate, and new analysis used to simplify the scale up of the filter and reduce overall cost. The incorporation of chemically reactive granites in the granular-bed filter for the removal of additional coal derived contaminants such as alkali or sulfur is considered. The conceptual designs of the granular-bed inter and the ceramic candle filter are compared in terms of the cost of electricity, capital cost, and operating and maintenance costs for each application.

  9. Argon Collection And Purification For Proliferation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  10. Attenuation of vacuum ultraviolet light in liquid argon

    CERN Document Server

    Neumeier, A; Oberauer, L; Potzel, W; Schönert, S; Dandl, T; Heindl, T; Ulrich, A; Wieser, J

    2015-01-01

    The transmission of liquid argon has been measured, wavelength resolved, for a wavelength interval from 118 to 250 nm. The wavelength dependent attenuation length is presented for pure argon. It is shown that no universal wavelength independent attenuation length can be assigned to liquid argon for its own fluorescence light due to the interplay between the wavelength dependent emission and absorption. A decreasing transmission is observed below 130 nm in both chemically cleaned and distilled liquid argon and assigned to absorption by the analogue of the first argon excimer continuum. For not perfectly cleaned argon a strong influence of impurities on the transmission is observed. Two strong absorption bands at 126.5 and 141.0 nm with approximately 2 and 4 nm width, respectively, are assigned to traces of xenon in argon. A broad absorption region below 180 nm is found for unpurified argon and tentatively attributed to the presence of water in the argon sample.

  11. Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    OpenAIRE

    2011-01-01

    A dielectric barrier discharge excited neutral argon (Ar I) excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV) emission at 126 nm and near infra...

  12. CANDLES project for the study of neutrino-less double beta decay of 48Ca

    Science.gov (United States)

    Yoshida, Sei

    2014-09-01

    There is, presently, strong evidence that neutrinos undergo flavor oscillations,and hence must have finite masses. Neutrino-less double beta (0 νββ) decay measurement offers a realistic opportunity to establish the Majorana nature of neutrinos and gives the absolute scale of the effective neutrino mass. CANDLES is the project to search for 0 νββ decay of 48Ca. A distinctive characteristic of 48Ca is the highest Q value (4.3 MeV) among 0 νββ isotopes. Therefore it enables us to measure 0 νββ decay signals in background free contribution. The CANDLES system consists of undoped CaF2 scintillators (CaF2),liquid scintillator (LS), and large photomultiplier tubes (PMTs). A large number of CaF2 crystals in the form of 10 cm cubes are immersed in the LS. Scintillating CaF2 crystals work as an active source detector for 0 νββ decay of 48Ca, together with LS as a multi-purpose detector component to both reject backgrounds and to propagate scintillation photons. PMTs are placed around the LS vessel to detect photons from both scintillators. The simple design concept of CANDLES enables us to increase the 48Ca source amount. 48Ca enrichment is also effective for the high sensitive measurement, because natural abundance of 48Ca is very low (0.19%). We have studied 48Ca enrichment and succeeded in obtaining enriched 48Ca although it is a small amount. Now we have developed the CANDLES III system, which contained with 300kg CaF2 crystals without enrichment, at the Kamioka underground laboratory. New light collection system was installed in 2012, and accordingly photo-coverage has been enlarged by about 80%. Further improvement will be expected in 2014 by installing a detector cooling system in order to increase light emission from CaF2 crystals. The detail of the latest CANDLES III (U.G.) system and its performance will be presented. Recently, we found that gamma rays from neutron captures on materials surrounding detector could be dominant background. These

  13. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber

    Science.gov (United States)

    Lee, S. C.; Wang, B.

    The objective of this study was to characterize the emissions of air pollutants from mosquito coils and candles burning in a large environmental test chamber. The target pollutants included particulate matters (PM 10, PM 2.5), carbon monoxide (CO), nitrogen oxides (NO x), methane (CH 4), non-methane hydrocarbons (NMHC), volatile organic compounds (VOCs) and carbonyl compounds. The average PM 10 concentrations for all tested mosquito coils exceeded Excellent and Good Classes objectives specified by Indoor Air Quality Objectives for Office Buildings and Public Places (IAQO) [ HKEPD, 2003. Guidance Notes for the Management of Indoor Air Quality in Offices and Public Places. Indoor Air Quality Management Group, The Government of the Hong Kong Special Administrative Region]. The emission factors (mg g -1 mosquito coil) of mosquito coils combustion were: PM 2.5, 20.3-47.8; PM 10, 15.9-50.8; CO, 74.6-89.1; NO, 0.1-0.5; NO 2, n.d.-0.1; NO x, 0.1-0.5; CH 4, n.d.-4.7; NMHC, 0.1-5.7. Formaldehyde and acetaldehyde were the most abundant carbonyls species in the coil smoke. The average concentrations of formaldehyde and benzene of all tested mosquito coils exceeded Good Class of IAQO. Nitrogen oxides were the most abundant gas pollutants relating to candle burning among all target air pollutants. The candle made of gel (CAN 4) would emit more air pollutants than the paraffin candles (CAN 1, 2 and 3) and beeswax candle (CAN 5). Among five candles tested, CAN 5, the one made of beeswax, generated relatively smaller amount of air pollutants. It was noted that the concentrations of most VOCs from candles combustion were below the detection limit.

  14. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  15. Effect of argon during diamond deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, D.C.; Mengui, U.A.; Contin, A.; Trava-Airoldi, V.J.; Baldan, M.R.; Corat, E.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Laboratorio Associado de Sensores e Materiais

    2014-07-01

    The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes is explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations. (author)

  16. ICARUS and status of liquid argon technology

    CERN Document Server

    Menegolli, Alessandro

    2012-01-01

    ICARUS T600 is the largest liquid Argon Time Projection Chamber (LAr TPC) detector ever realized. It operates underground at the LNGS laboratory in Gran Sasso. It has been smoothly running since summer 2010, collecting data with the CNGS (Cern to Gran Sasso) beam and with cosmic particles. Liquid Argon TPCs are indeed 'electronic bubble chambers', providing a completely uniform imaging calorimetry with unprecedented accuracy on such massive volumes. ICARUS T600 is internationally considered as a milestone towards the realization of the next generation of massive detectors (tens of ktons) for neutrino and rare event physics. Results will be presented on the data collected so far with the detector.

  17. Operation Behavior of a Multi-Candle Filter with Coupled Pressure Pulse Recleaning during Normal Operation and in the Case of a Filter Candle Failure

    Energy Technology Data Exchange (ETDEWEB)

    Mai, R.; Leibold, H. Seifert, H.; Heidenreich, S.; Haag, W.

    2002-09-18

    A pilot filter with the CPP recleaning system was installed and commissioned during the first half year of 2000 in ''PYDRA'', the pyrolytic rotary tube facility of the Institute for Technical Chemistry, Research Center Karlsruhe. The filter, with a rated throughput of 50 std.m{sup 3}/h, is equipped with two clusters of three filter candles each (DIA-SCHUMALITH{reg_sign} T 10-20, 1 = 1500 mm), and has been designed for a maximum operating temperature of 550 C. After commissioning, the filter was run in the stand-alone mode, first without pyrolysis, to filter sticky inorganic dust of the type which can arise in waste incineration in the temperature range above 400 C.

  18. Positive and negative pulsed corona in argon

    NARCIS (Netherlands)

    Veldhuizen, E.M. van; Rutgers, W.R.; Ebert, U.

    2002-01-01

    Photographs are obtained of corona discharges in argon at atmospheric pressure using a high resolution, intensified CCD camera. Positive and negative polarity is applied at the curved electrode in a point-plane gap and a plane-plane gap with a protruding point. Branching is observed in the positive

  19. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  20. 46 CFR 151.50-36 - Argon or nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  1. The Latest Version of the Standardized Candle Method for Type II Supernovae

    CERN Document Server

    Hamuy, M

    2003-01-01

    I use the largest available sample of Type II plateau supernovae to examine the previously reported luminosity-velocity relation. This study confirms such relation which permits one to standardize the luminosities of these objects from a spectroscopic measurement of their envelope velocities, and use them as extragalactic distance indicators. The "standard candle method" (SCM) yields a Hubble diagram with a dispersion of 0.3 mag, which implies that the SCM produces distances with a precision of 15%. Using two nearby supernovae with Cepheid distances I find Ho=81+/-10 km/s/Mpc, which compares with Ho=74 derived from Type Ia supernovae.

  2. Characterization of Carbon Deposits Formed During Plasma Pyrolysis of Xinjiang Candle Coal

    Science.gov (United States)

    Zhu, Guilin; Meng, Yuedong; Shu, Xingsheng; Fang, Shidong

    2009-08-01

    Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope (SEM) and the X-ray diffraction (XRD) method. It was found that carbon deposits located at different parts in the reactor exhibited different microscopic patterns. The formation mechanism of the carbon deposits was deduced. The downward increase in the graphitization degree of the carbon deposits was found and interpreted.

  3. Characterization of carbon deposits formed during plasma pyrolysis of Xinjiang candle coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.L.; Meng, Y.D.; Shu, X.S.; Fang, S.D. [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2009-08-15

    Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope (SEM) and the X-ray diffraction (XRD) method. It was found that carbon deposits located at different parts in the reactor exhibited different microscopic patterns. The formation mechanism of the carbon deposits was deduced. The down ward increase in the graphitization degree of the carbon deposits was found and interpreted

  4. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  5. Pulse Shape Discrimination in liquid argon and its implications for Dark Matter searches using depleted argon

    CERN Document Server

    Kryczynski, Pawel

    2012-01-01

    A brief outline of Dark Matter detection experiments using liquid argon technology is presented. The Pulse Shape background discrimination method (PSD) is described and the example of its use in 2.3 l R&D detector is given. Methods of calculating sensitivity of a Dark Matter detector are discussed and used to estimate the possible improvement of sensitivity after introduction of isotopically depleted liquid argon.

  6. Role of carbon monoxide in impaired endothelial function mediated by acute second-hand tobacco, incense, and candle smoke exposures.

    Science.gov (United States)

    Weber, Lynn P; Al-Dissi, Ahmad; Marit, Jordan S; German, Timothy N; Terletski, Sharilyn D

    2011-05-01

    The aim of this study was to determine if carbon monoxide (CO) is responsible for acute adverse cardiovascular effects of different sources of smoke: second-hand tobacco smoke (SHS), incense and candle smoke. Endothelial function was tested using flow-mediated dilation (FMD) in pigs and was shown to be sensitive to nitric oxide synthase blockade. Subsequent experiments showed that FMD was significantly impaired compared to sham-exposed pigs at 30 min after a 30-min exposure to all three sources of smoke. In contrast, SHS significantly increased systolic, diastolic and pulse pressures compared to sham-exposure, while both incense and candle smoke exposure had no effect. The FMD impairment correlated well with CO levels in the exposure chamber, but not total particulates or venous CO-hemoglobin. Therefore, this study suggests a gas phase component of smoke that accompanies CO, but not CO itself, is responsible for acute endothelial dysfunction after SHS, incense or candle smoke exposure.

  7. Comparison of the egg flotation and egg candling techniques for estimating incubation day of Canada Goose nests

    Science.gov (United States)

    Reiter, M.E.; Andersen, D.E.

    2008-01-01

    Both egg flotation and egg candling have been used to estimate incubation day (often termed nest age) in nesting birds, but little is known about the relative accuracy of these two techniques. We used both egg flotation and egg candling to estimate incubation day for Canada Geese (Branta canadensis interior) nesting near Cape Churchill, Manitoba, from 2000 to 2007. We modeled variation in the difference between estimates of incubation day using each technique as a function of true incubation day, as well as, variation in error rates with each technique as a function of the true incubation day. We also evaluated the effect of error in the estimated incubation day on estimates of daily survival rate (DSR) and nest success using simulations. The mean difference between concurrent estimates of incubation day based on egg flotation minus egg candling at the same nest was 0.85 ?? 0.06 (SE) days. The positive difference in favor of egg flotation and the magnitude of the difference in estimates of incubation day did not vary as a function of true incubation day. Overall, both egg flotation and egg candling overestimated incubation day early in incubation and underestimated incubation day later in incubation. The average difference between true hatch date and estimated hatch date did not differ from zero (days) for egg flotation, but egg candling overestimated true hatch date by about 1 d (true - estimated; days). Our simulations suggested that error associated with estimating the incubation day of nests and subsequently exposure days using either egg candling or egg flotation would have minimal effects on estimates of DSR and nest success. Although egg flotation was slightly less biased, both methods provided comparable and accurate estimates of incubation day and subsequent estimates of hatch date and nest success throughout the entire incubation period. ?? 2008 Association of Field Ornithologists.

  8. [Estrogen replacement].

    Science.gov (United States)

    Søgaard, A J; Berntsen, G K; Magnus, J H; Tollan, A

    1998-02-10

    Recent research on long-term postmenopausal hormone replacement therapy (HRT) indicates a positive effect on both total mortality and morbidity. This has raised the question of widespread preventive long-term use of HRT. Possible side-effects and ideological issues related to preventive HRT have led to debate and uncertainty among health professionals, in the media, and in the population at large. In order to evaluate the level of knowledge about and attitudes towards HRT, a randomly selected group of 737 Norwegian women aged 16-79 was interviewed by the Central Bureau of Statistics. One in three women had received information about HRT in the last two years, mainly through weekly magazines and physicians. The proportion who answered the questions on knowledge correctly varied from 36% to 47%. Those who had been given information by a physician possessed accurate knowledge, had more positive attitudes towards HRT and were more willing to use HRT than women who had reviewed information through other channels. Women with a higher level of education were better informed and more knowledgeable than others, but were nevertheless more reluctant to use HRT than those who were less educated. The limited number of women who actually receive information on HRT, the low level of knowledge and the ambivalent attitudes toward HRT are a major challenge to the public health service.

  9. Insights from Mendelian Interferonopathies: Comparison of CANDLE, SAVI with AGS, Monogenic Lupus.

    Science.gov (United States)

    Kim, Hanna; Sanchez, Gina A Montealegre; Goldbach-Mansky, Raphaela

    2016-10-01

    Autoinflammatory disorders are sterile inflammatory conditions characterized by episodes of early-onset fever and disease-specific patterns of organ inflammation. Recently, the discoveries of monogenic disorders with strong type I interferon (IFN) signatures caused by mutations in proteasome degradation and cytoplasmic RNA and DNA sensing pathways suggest a pathogenic role of IFNs in causing autoinflammatory phenotypes. The IFN response gene signature (IGS) has been associated with systemic lupus erythematosus (SLE) and other autoimmune diseases. In this review, we compare the clinical presentations and pathogenesis of two IFN-mediated autoinflammatory diseases, CANDLE and SAVI, with Aicardi Goutières syndrome (AGS) and monogenic forms of SLE (monoSLE) caused by loss-of-function mutations in complement 1 (C1q) or the DNA nucleases, DNASE1 and DNASE1L3. We outline differences in intracellular signaling pathways that fuel a pathologic type I IFN amplification cycle. While IFN amplification is caused by predominantly innate immune cell dysfunction in SAVI, CANDLE, and AGS, autoantibodies to modified RNA and DNA antigens interact with tissues and immune cells including neutrophils and contribute to IFN upregulation in some SLE patients including monoSLE, thus justifying a grouping of "autoinflammatory" and "autoimmune" interferonopathies. Understanding of the differences in the cellular sources and signaling pathways will guide new drug development and the use of emerging targeted therapies.

  10. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    Science.gov (United States)

    Widiawati, Nina; Su'ud, Zaki

    2015-09-01

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from -0.6695443 % at BOC to -0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  11. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    Science.gov (United States)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Asiah, Nur; Shafii, M. Ali

    2010-12-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (keff) is in almost linear relations with the change of the fuel volume to coolant ratio.

  12. Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres.

    Science.gov (United States)

    Manoukian, A; Quivet, E; Temime-Roussel, B; Nicolas, M; Maupetit, F; Wortham, H

    2013-07-01

    Volatile organic compounds (VOCs) and particles emitted by incense sticks and candles combustion in an experimental room have been monitored on-line and continuously with a high time resolution using a state-of-the-art high sensitivity-proton transfer reaction-mass spectrometer (HS-PTR-MS) and a condensation particle counter (CPC), respectively. The VOC concentration-time profiles, i.e., an increase up to a maximum concentration immediately after the burning period followed by a decrease which returns to the initial concentration levels, were strongly influenced by the ventilation and surface interactions. The obtained kinetic data set allows establishing a qualitative correlation between the elimination rate constants of VOCs and their physicochemical properties such as vapor pressure and molecular weight. The emission of particles increased dramatically during the combustion, up to 9.1(±0.2) × 10(4) and 22.0(±0.2) × 10(4) part cm(-3) for incenses and candles, respectively. The performed kinetic measurements highlight the temporal evolution of the exposure level and reveal the importance of ventilation and deposition to remove the particles in a few hours in indoor environments.

  13. Argon gas flow through glass nanopipette

    Science.gov (United States)

    Takami, Tomohide; Nishimoto, Kiwamu; Goto, Tadahiko; Ogawa, Shuichi; Iwata, Futoshi; Takakuwa, Yuji

    2016-12-01

    We have observed the flow of argon gas through a glass nanopipette in vacuum. A glass nanopipette with an inner diameter of 100 nm and a shank length of 3 mm was set between vacuum chambers, and argon gas was introduced from the top of the nanopipette to the bottom. The exit pressure was monitored with an increase in entrance pressure in the range of 50-170 kPa. Knudsen flow was observed at an entrance pressure lower than 100 kPa, and Poiseuille flow was observed at an entrance pressure higher than 120 kPa. The proposed pressure-dependent gas flow method provides a means of evaluating the glass nanopipette before using it for various applications including nanodeposition to surfaces and femtoinjection to living cells.

  14. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  15. Abnormal epidermal changes after argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, R.A.; Knobler, R.M.; Aberer, E.; Klein, W.; Kocsis, F.; Ott, E. (Univ. of Vienna (Austria))

    1991-02-01

    A 26-year-old woman with a congenital port-wine stain on the forehead was treated three times at 2-month intervals with an argon laser. Six months after the last treatment, moderate blanching and mild scaling confined to the treated area was observed. A biopsy specimen of the treated area revealed a significant decrease in ectatic vessels. However, epidermal changes similar to those of actinic keratosis with disorganized cell layers and marked cytologic abnormalities were seen. Analysis of peripheral blood lymphocytes for a defect in DNA repair was negative. Multiple, argon laser-induced photothermal effects may be responsible for the changes observed in our case and may lead to premalignant epidermal transformation.

  16. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav

    2005-01-01

    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  17. LIQUID ARGON CALORIMETER PERFORMANCE AT HIGH RATES

    CERN Document Server

    Kukhtin, V; The ATLAS collaboration

    2011-01-01

    The performance of the ATLAS liquid argon endcap and forward calorimeters has been projected at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity proton beams at IHEP/Protvino accelerator. The results of HV current and of pulse shape analysis, and also the dependence of signal amplitude on beam intensity are presented.

  18. An impact hypothesis for Venus argon anomalies

    Science.gov (United States)

    Kaula, W. M.; Newman, W. I.

    1997-03-01

    The Ar-36+38 argon-excess anomally of Venus has been hypothesized to have its origin in the impact of an outer solar system body of about 100-km diameter. A critical evaluation is made of this hypothesis and its competitors; it is judged that its status must for the time being remain one of 'Sherlock Holmes' type, in that something so improbable must be accepted when all alternatives are eliminated.

  19. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m(2)g(-1). As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  20. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Science.gov (United States)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  1. 75 FR 49475 - Petroleum Wax Candles From the People's Republic of China: Preliminary Results of Request for...

    Science.gov (United States)

    2010-08-13

    ... complaints by some importers prompted another telex to customs on March 20, 1986, in which `candles not... Communication Following the communications with NCA described above, the Department sent a telex to the U.S... Register (February 19, 1986, page 6016) and referenced in our February 20, 1986 telex is as follows:...

  2. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

    Science.gov (United States)

    Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

    2012-10-01

    Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 μg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers.

  3. FORMATION OF CARBON NANOSTRUCTURES USING ACETYLENE, ARGON-ACETYLENE AND ARGON-HYDROGEN-ACETYLENE PLASMAS

    OpenAIRE

    Marcinauskas, Liutauras; Grigonis, Alfonsas; Valincius, Vitas

    2013-01-01

    The amorphous carbon films were deposited on silicon-metal substrates by plasma jet chemical vapor deposition (PJCVD) and plasma enchanted CVD (PECVD). PJCVD carbon films have been prepared at atmospheric pressure in argon-acetylene and argon-hydrogen-acetylene plasma mixtures. The films deposited in Ar-C2H2 plasma are attributed to graphite-like carbon films. The formation of the nanocrystalline graphite was obtained in Ar-H2-C2H2 plasma. Addition of the hydrogen gas lead to the ...

  4. Model-independent estimations for the curvature from standard candles and clocks

    CERN Document Server

    Li, Zhengxiang; Liao, Kai; Zhu, Zong-Hong

    2016-01-01

    Model-independent estimations for the spatial curvature not only provide a test for the fundamental Copernican principle assumption, but also can effectively break the degeneracy between curvature and dark energy properties. In this paper, we propose to achieve model-independent constraints on the spatial curvature from observations of standard candles and standard clocks, without assuming any fiducial cosmology and other priors. We find that, for the popular Union2.1 type Ia supernovae (SNe Ia ) observations, the spatial curvature is constrained to be $\\Omega_K=-0.045_{-0.172}^{+0.176}$. For the latest joint light-curve analysis (JLA) of SNe Ia observations, we obtain $\\Omega_K=-0.140_{-0.158}^{+0.161}$. It is suggested that these results are in excellent agreement with the spatially flat Universe. Moreover, compared to other approaches aiming for model-independent estimations of spatial curvature, this method also achieves constraints with competitive precision.

  5. Image Analysis on Detachment Process of Dust Cake on Ceramic Candle Filter

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 焦海青; 陈鸿海

    2005-01-01

    Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.

  6. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    Science.gov (United States)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  7. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Monado, Fiber [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su' ud, Zaki; Waris, Abdul; Basar, Khairul [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  8. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating

    Science.gov (United States)

    Deng, Xu; Mammen, Lena; Butt, Hans-Jürgen; Vollmer, Doris

    2012-01-01

    Coating is an essential step in adjusting the surface properties of materials. Superhydrophobic coatings with contact angles greater than 150° and roll-off angles below 10° for water have been developed, based on low-energy surfaces and roughness on the nano- and micrometer scales. However, these surfaces are still wetted by organic liquids such as surfactant-based solutions, alcohols, or alkanes. Coatings that are simultaneously superhydrophobic and superoleophobic are rare. We designed an easily fabricated, transparent, and oil-rebounding superamphiphobic coating. A porous deposit of candle soot was coated with a 25-nanometer-thick silica shell. The black coating became transparent after calcination at 600°C. After silanization, the coating was superamphiphobic and remained so even after its top layer was damaged by sand impingement.

  9. The charge-asymmetric nonlocally-determined local-electric (CANDLE) solvation model

    CERN Document Server

    Sundararaman, Ravishankar

    2014-01-01

    Many important applications of electronic structure methods involve molecules or solid surfaces in a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical, calculations often employ continuum solvation models to approximate the effect of the solvent. Previous solvation models either involve a parametrization based on atomic radii, which limits the class of applicable solutes, or based on solute electron density, which is more general but less accurate, especially for charged systems. We develop an accurate and general solvation model that includes a cavity that is a nonlocal functional of both solute electron density and potential, local dielectric response on this nonlocally-determined cavity, and nonlocal approximations to the cavity-formation and dispersion energies. The dependence of the cavity on the solute potential enables an explicit treatment of the solvent charge asymmetry. With only three parameters per solvent, this `CANDLE' model simultaneously reproduce...

  10. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Guidoni, S. E. [NASA Goddard Space Flight Center/CUA, Code 674, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); McKenzie, D. E.; Longcope, D. W.; Yoshimura, K. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Plowman, J. E., E-mail: silvina.e.guidoni@nasa.gov [High Altitude Observatory, National Center for Atmospheric Research P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  11. Argon diffusion from biotite at high temperature and pressure

    Institute of Scientific and Technical Information of China (English)

    陈道公; 贾命命; 李彬贤; 陆全明; 谢鸿森; 侯渭

    1995-01-01

    t The experiments of argon diffusion dynamics for biotite were carried out at 700 -1000℃ and 0.5 - 2,0 GPa and the diffusion coefficient and activation energy using different models have been calculated. The results indicate that the pressure does affect the argon diffusion and its effect is opposite to that of temperature. When p increases, the activation energy increases and diffusion coefficient decreases. The relation between pressure, closure temperature and cooling rate has been obtained. It is postulated that in low T and high p conditions, the argon diffusion from the environment to the system could occur and incur the appearance of the external argon in minerals.

  12. Argon laser treatment of central serous chorioretinopathy

    Directory of Open Access Journals (Sweden)

    Ting- Bing Fang

    2013-04-01

    Full Text Available AIM: To observe the efficacy of the argon laser photocoagulation treatment of central serous chorioretinopathy(CSC. METHODS: The treatment groups: 18 patients(18 eyes, argon laser photocoagulation and oral jolethin, vitamin B1, inosine and venoruton tablets. Control group: 18 patients(18 eyes, oral lecithin complex iodine, vitamin B1, inosine, venoruton tablets. Foveal thickness and neuroepithelial layer detachment range were measured by optical coherence tomography(OCTbefore treatment, after 1 month and 3 months post-operation to compare the decline in value of foveal thickness and neuroepithelial layer detachment range of the two groups. RESULTS: After 1 month of treatment, the decline in value of the center foveal thickness: the value of treatment group was 256±72μm; the value of the control group was 82±57μm, and the difference of the two groups, P <0.05; the decline in value of neuroepithelial layer detachment range: the value of the treatment group was 3 548±168μm, the value of the control group was 1 520±143μm, And the difference of the two groups, P<0.05. After three months of treatment, the decline in value of the center foveal thickness: the value of treatment group was 383±75μm, the value of the control group was 312±67 μm, and the difference of the two groups, P<0.05; decline in value of neuroepithelial layer detachment range: the value of the treatment group was 4 908±172μm, the value of the control group was 4 211±153μm, and the difference of the two groups, P <0.05. The differences were statistically significant between the treatment and the control groups(two independent samples t-test. CONCLUSION:Argon laser photocoagulation treatment of CSC is an effective treatment method and can significantly shorten the course.

  13. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  14. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P

    2016-01-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  15. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  16. Optical readout of liquid argon ionisation

    Science.gov (United States)

    Spooner, N. J. C.; Lightfoot, P. K.; Barker, G. J.; Ramachers, Y. A.; Mavrokoridis, K.

    2011-07-01

    Reading out the charge from a very large liquid argon detector, such as proposed for next generation proton decay and long baseline neutrino detectors, represents a significant challenge. Current proposals suggest using wires in the liquid or a two-phase approach that can provide some gain via amplification in the gas phase. We present here work on an alternative new approach in which the charge is read out by optical means following generation of electroluminescence, such as in a THGEM (Thick Gas Electron Multiplier) mounted within the liquid. This has the potential for significant advantages by providing both simpler readout electronics and significant charge gain, without the need for the complexities of dual phase operation. Tests with a silicon photomultiplier (SiPM) mounted above a THGEM, all submerged in liquid argon, have allowed first demonstration of the technique. Sensitivity to 5.9 keV 55Fe gamma events was observed with an estimated gain of 150 photoelectrons per drifted electron. We review the concepts and results.

  17. Performance of a liquid argon accordion hadronic calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, D.M. [Alberta Univ., Edmonton, AB (Canada); Greeniaus, G. [Alberta Univ., Edmonton, AB (Canada); Kitching, P. [Alberta Univ., Edmonton, AB (Canada); Olsen, B. [Alberta Univ., Edmonton, AB (Canada); Pinfold, J.L. [Alberta Univ., Edmonton, AB (Canada); Rodning, N.L. [Alberta Univ., Edmonton, AB (Canada); Boos, E. [Alma-Ata (Kazakhstan); Schaoutnikov, B.O. [Alma-Ata (Kazakhstan); Aubert, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bazan, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Beaugiraud, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Boniface, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Colas, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Jezequel, S. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Leflour, T. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Maire, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Rival, F. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Stipcevic, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Thion, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; VanDenPlas, D. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Wingerter-Seez, I. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Zolnierowski, Y.P. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Chmeissani, M. [Universidad Autonoma de Barcelona (Spain); Fernandez, E. [Universidad Autonoma de Barcelona (Spain); Garrido, L. [Universidad Autonoma de Barcelona (Spain); Martinez, M. [Universidad Autonoma de Barcelona (Spain); Padilla, C. [Universidad Autonoma de Barcelona (Spain); Gordon, H.A. [Brookhaven National Lab., Upton, NY (United States); RD3 Colla...

    1995-02-15

    A liquid argon hadronic calorimeter using the ``accordion`` geometry and the electrostatic transformer readout scheme has been tested at CERN, together with a liquid argon accordion electromagnetic prototype. The results obtained for pions on the linearity, the energy resolution and the uniformity of the calorimeter response are well within the requirements for operation at the LHC. ((orig.))

  18. Comparison of Diode and Argon Laser Lesions in Rabbit Retina

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Xiaoxin Li; Bin Li; Jiping Da

    2004-01-01

    Purpose: To compare the histological alteration of retina with various spot intensities between diode and argon lasers in order to instruct the clinical use of 810 nm diode laser.Methods: Transpupillary retinal photocoagulations were performed on 42 eyes of 27pigmented rabbits. Histopathologic alteration of lesions in different intensities and different time intervals after irradiation produced by diode and argon laser was observed and compared using light microscopy. Areas of various lesions measured by image analysis system (CMIAS) were compared quantitatively.Results: Histopathologically, two-week-old grade 2 lesions produced by diode laser induced the disappearance of outer nuclear cells. More than a half of all showed reduction in number of outer nuclear layer cells in argon. Fibroblasts appeared in the diode grade 3lesions 5 days after irradiation. CMIAS data showed that all the areas of diode lesions immediately after photocoagulation were to be larger than those of argon laser lesions in the same spot intensity (P < 0.05). However, twenty-four hours after photocoagulation, the area of the diode lesions increased less than that of the argon laser lesions (8%vs.23%).Conclusion: The acute histological effect caused by 810 nm diode laser and argon green laser is similar,while the expansion of lesion area 24 hours after photocoagulation was less with the diode laser compared to the argon. This may be the first report in the literature regarding quantitative analysis of the delayed reaction of argon green lasers.

  19. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  20. Improved installation prototype for measurement of low argon-37 activity

    Science.gov (United States)

    Pakhomov, Sergei; Dubasov, Yuri

    2015-04-01

    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  1. Periodontal Manifestations of Chronic Atypical Neutrophilic Dermatosis With Lipodystrophy and Elevated Temperature (CANDLE) Syndrome in an 11 Year Old Patient

    OpenAIRE

    McKenna, Gerald J; Ziada, Hassan M.

    2015-01-01

    Introduction: Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) is an auto inflammatory syndrome caused by an autosomal recessive gene mutation. This very rare syndrome has been reported in only 14 patients worldwide. A number of clinical signs have been reported including joint contractures, muscle atrophy, microcytic anaemia, and panniculitis-induced childhood lipodystrophy. Further symptoms include recurrent fevers, purpuric skin lesions, periorb...

  2. Argon Diffusion Measured in Rhyolite Melt at 100 MPa

    Science.gov (United States)

    Weldon, N.; Edwards, P. M.; Watkins, J. M.; Lesher, C. E.

    2016-12-01

    Argon diffusivity (D_{Ar} ) controls the rate and length scale of argon exchange between melt and gas phases and is used as a parameter to model noble gas fractionation during magma degassing. D_{Ar} may also be useful in geochronology to estimate the distribution of excess (non-radiogenic) atmospheric argon in lavas. Our measurements of D_{Ar} in molten anhydrous rhyolite near 1000 °C and 100 MPa add to the existing dataset. Using a rapid-quench cold seal pressure apparatus we exposed cylindrical charges drilled from a Miocene rhyolite flow near Buck Mtn., CA to a pure argon atmosphere resulting in a gradually lengthening argon concentration gradient between the saturated surface and the argon poor interior. Argon concentration was measured by electron microprobe along radial transects from the center to the surface of bisected samples. D_{Ar} was calculated for each transect by fitting relative argon concentration (as a function of distance from the surface) to Green's function (given each experiment's specific temperature, pressure and runtime). Variability (σ = 1.202{μm }^{2} /s) was smaller than in previous studies, but still greater than what is likely due to analytical or experimental uncertainty. We observed a symmetric geometric bias in the distribution of argon in our samples, possibly related to advective redistribution of argon accompanying the deformation of cylindrical charges into spheroids driven by surface tension. Average diffusivity, D_{Ar} = 4.791{μm }^{2} /s, is close to the predicted value, D_{Ar} = {μm }^{2} /s ( σ_{ \\bar{x} } = 1.576 {μm }^{2} /s), suggesting that Behrens and Zhang's (2001) empirical model is valid for anhydrous rhyolite melts to relatively higher temperatures and lower pressures. Behrens, H. and Y. Zhang (2001). "Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation." Earth and Planetary Science Letters 192: 363-376.

  3. “晨举脂烛”解诂%Gloss and Emendation on“Holding Candles at Dawn”

    Institute of Scientific and Technical Information of China (English)

    李朝虹

    2014-01-01

    描述武王克商的“晨举脂烛”一语多次出现在典籍中,而现代辞书对“晨”的解释基本统一为日出前后天色已明的一段时间,此时仍“举脂烛”作战实在令人费解。经过考证,“晨”在古汉语中的时段是凌晨3-5点,天仍未亮,因此才会出现“晨举脂烛”作战一说。%The phrase“holding candles at dawn” appeared many times in the ancient books when describing King Wu’s fights with King Shang .However ,in different modern dictionaries and works ,“dawn” is always explained as the time around sunrise when the sky is already wide bright .It is strange to “hold candles to fight enemy at the sunrise” .By analyzing historical documents ,it is found that the time of “dawn” refers to the early morning around 3-5 o’clock .Thus ,“holding candles at daw n” holds w ater .

  4. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  5. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC arXiv

    CERN Document Server

    McCarthy, Thomas G.

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  6. Injection of photoelectrons into dense argon gas

    CERN Document Server

    Borghesani, A F

    2010-01-01

    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.

  7. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  8. Merging of high speed argon plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 22180 (United States); Elton, R. [University of Maryland, College Park, Maryland 20742 (United States)

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  9. Electron Impact Induced VUV Emission from Argon

    Science.gov (United States)

    Young, J. A.; Malone, C. P.; Johnson, P. V.

    2011-10-01

    Emission intensity and spectra are important tools for diagnosing plasma properties such as electron temperature and neutral density. In order to properly interpret emissions from low-density plasmas, accurate cross sections are needed, particularly low energy electron-impact cross sections. Of interest are the cross sections for Argon, a common species used in industrial and lighting applications. In this paper, we present recent measurements of electron-impact induced VUV emissions from Ar using a magnetically collimated monoenergetic beam of electrons and a 0.2m spectrometer. Specifically, we present emission excitation functions for both Ar I(1048 Å) and Ar I(1066 Å) emissions. Similarities and differences between current results and previously published emission results will be discussed. Also discussed will be the relation to recent electron energy loss results.

  10. ArgonCube: a Modular Approach for Liquid Argon TPC Neutrino Detectors for Near Detector Environments

    CERN Document Server

    Auger, M; Sinclair, JR

    2017-01-01

    Liquid Argon Time Projection Chambers (LAr TPCs) are an ideal detector candidate for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently under consideration at the future LBNF/DUNE facility in the United States. That particular endeavor would be on the very large mass scale of 40~kt. Following diverse and long standing R\\&D work conducted over several years, with contributions from international collaborators, we propose a novel LAr TPC based on a fully-modular, innovative design, ArgonCube. ArgonCube will demonstrate that LAr TPCs are a viable detector technology for high-energy and high-multiplicity environments, such as the DUNE near detector. Necessary R\\&D work is proceeding along two main pathways; the first, aimed at the demonstration of modular detector design and the second, at the exploration of new signal readout methods. This two-pronged approach has provided a hig...

  11. Stereoscopic Observation of Slipping Reconnection in A Double Candle-Flame-Shaped Solar Flare

    CERN Document Server

    Gou, Tingyu; Wang, Yuming; Liu, Kai; Zhuang, Bin; Chen, Jun; Zhang, Quanhao; Liu, Jiajia

    2016-01-01

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory (SDO). The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ~ 10 MK temperatures, hotter than the arch-shaped loops underneath. The "Ahead" satellite of the Solar Terrestrial Relations Observatory (STEREO) provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performing stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems, and that the reconstructed loops share similarity with the magne...

  12. Dark energy constraints from joint analysis of standard rulers and standard candles

    Institute of Scientific and Technical Information of China (English)

    Marek Biesiada; Beata Malec; Aleksandra Piórkowska

    2011-01-01

    We performed joint analysis of five cosmological models invoked to explain the accelerating expansion of the Universe.We used the data from strong gravitational lensing systems, locations of cosmic microwave background acoustic peaks and baryon acoustic oscillation data in combination with supernova Ia data (Union2 compilation).The observables we used came from both standard rulers and standard candles, so they had different parameter degeneracies and different restrictive powers in the parameter spaces of cosmological models.The best fits we obtained for the model parameters in joint analysis turned out to prefer cases effectively equivalent to the ACDM model.They were also in agreement with other combined studies performed by other authors on different sets of diagnostic probes.Information theoretic methods used to assess which model is most supported by the data lead to the conclusion that the concordance model ACDM is clearly preferred in joint analysis.The quintessence (both having constant or time varying equation of state) and Chaplygin gas get considerably less support from the data while the brane world (DGP) scenario is practically ruled out.

  13. Design Study of Small Pb-Bi Cooled Modified Candle Reactors

    Science.gov (United States)

    Su'ud, Zaki; Sekimoto, H.

    2010-06-01

    In this study application of modified CANDLE burnup scheme based long life Pb-Bi Cooled Fast Reactors for small long life reactors with natural Uranium as Fuel Cycle Input has been performed. The reactor cores are subdivided into several parts with the same volume in the axial directions. The natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2, and 10 years after that it is shifted to region 3. This concept is applied to all regions, i.e. shifted the core of I'th region into I+1 region after the end of 10 years burn-up cycle. The first region 1 is filled by fresh natural uranium fuel. Compared to the previous works, in a smaller reactor core the criticality need to be considered more carefully especially at the beginning of life. As an optimized design, a core of 85 cm radius and 150 cm height with 300 MWt power are selected. This core can be operated 10 years without refueling or fuel shuffling. The average discharge burn-up is 350 GWd/ton HM.

  14. Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

    Science.gov (United States)

    Su'ud, Zaki; Widiawati, Nina; Sekimoto, H.; Artoto, A.

    2017-01-01

    Safely analysis of 800MWt Pb-208 cooled fast reactors with natural Uranium as fuel cycle input employing axial-radial combined Modiified CANDLE burnup scheme has been performed. The analysis of unprotected loss of flow(ULOF) and unprotected rod run-out transient overpower (UTOP) are discussed. Some simulations for 800 MWt Pb-208 cooled fast reactors has been performed and the results show that the reactor can anticipate complete pumping failure inherently by reducing power through reactivity feedback and remove the rest of heat through natural circulations. Compared to the Pb-nat cooled long life Fast Reactors, Pb-208 cooled reactors have smaller Doppler but higher coolant density reactivity coefficient. In the UTOP accident case the analysis has been performed against external reactivity up to 0.003dk/k. And for ULOHS case it is assumed that the secondary cooling system has broken. During all accident the cladding temperature is the most critical. Especially for the case of UTOP accident. In addition the steam generator design has also consider excess power which may reach 50% extra during severe UTOP case..

  15. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  16. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    Science.gov (United States)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  17. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail: jmercer@pharmacy.ualberta.ca; Duke, M.J.M.; McQuarrie, S.A

    2000-06-01

    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  18. Shoulder Joint Replacement

    Science.gov (United States)

    ... Shoulder Replacement Options Shoulder replacement surgery is highly technical. It should be performed by a surgical team ... area and will meet a doctor from the anesthesia department. You, your anesthesiologist, and your surgeon will ...

  19. Partial knee replacement - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  20. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    CERN Document Server

    Regenfus, C; Amsler, C; Creus, W; Ferella, A; Rochet, J; Walter, M

    2012-01-01

    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  1. A Study of the Residual 39Ar Content in Argon from Underground Sources

    CERN Document Server

    Xu, J; Galbiati, C; Goretti, A; Guray, G; Hohman, T; Holtz, D; Ianni, A; Laubenstein, M; Loer, B; Love, C; Martoff, C J; Montanari, D; Mukhopadhyay, S; Nelson, A; Rountree, S D; Vogelaar, R B; Wright, A

    2012-01-01

    The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon.

  2. Liquid argon calorimeter performance at high rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2012-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $10^{12}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  3. Electron avalanches in liquid argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  4. Liquid Argon Calorimeter performance at High Rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  5. Size Determination of Argon Clusters from a Rayleigh Scattering Experiment

    Institute of Scientific and Technical Information of China (English)

    LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan

    2000-01-01

    Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.

  6. Standard rulers, candles, and clocks from the low-redshift universe.

    Science.gov (United States)

    Heavens, Alan; Jimenez, Raul; Verde, Licia

    2014-12-12

    We measure the length of the baryon acoustic oscillation (BAO) feature, and the expansion rate of the recent Universe, from low-redshift data only, almost model independently. We make only the following minimal assumptions: homogeneity and isotropy, a metric theory of gravity, a smooth expansion history, and the existence of standard candles (supernovæ) and a standard BAO ruler. The rest is determined by the data, which are compilations of recent BAO and type IA supernova results. Making only these assumptions, we find for the first time that the standard ruler has a length of 103.9±2.3h⁻¹ Mpc. The value is a measurement, in contrast to the model-dependent theoretical prediction determined with model parameters set by Planck data (99.3±2.1h⁻¹ Mpc). The latter assumes the cold dark matter model with a cosmological constant, and that the ruler is the sound horizon at radiation drag. Adding passive galaxies as standard clocks or a local Hubble constant measurement allows the absolute BAO scale to be determined (142.8±3.7 Mpc), and in the former case the additional information makes the BAO length determination more precise (101.9±1.9h⁻¹ Mpc). The inverse curvature radius of the Universe is weakly constrained and consistent with zero, independently of the gravity model, provided it is metric. We find the effective number of relativistic species to be N(eff)=3.53±0.32, independent of late-time dark energy or gravity physics.

  7. Effects of argon gas flow rate on laser-welding.

    Science.gov (United States)

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  8. Power Consideration for Pulsed Discharges in Potassium Seeded Argon

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-Guo; HE Jun-Jia; LIU Ke-Fu

    2007-01-01

    Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 ×10-21 Vm2) of E/N is enough to sustain an electron density of 10l9m-3 in 1 atm 1500 K Ar+0.1% K mixture, with a very small power input of about 0.08 × 104 W/m3.

  9. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  10. Communication: Trapping a proton in argon: Spectroscopy and theory of the proton-bound argon dimer and its solvation

    Science.gov (United States)

    McDonald, D. C.; Mauney, D. T.; Leicht, D.; Marks, J. H.; Tan, J. A.; Kuo, J.-L.; Duncan, M. A.

    2016-12-01

    Ion-molecule complexes of the form H+Arn are produced in pulsed-discharge supersonic expansions containing hydrogen and argon. These ions are analyzed and mass-selected in a reflectron spectrometer and studied with infrared laser photodissociation spectroscopy. Infrared spectra for the n = 3-7 complexes are characterized by a series of strong bands in the 900-2200 cm-1 region. Computational studies at the MP2/aug-cc-pVTZ level examine the structures, binding energies, and infrared spectra for these systems. The core ion responsible for the infrared bands is the proton-bound argon dimer, Ar-H+-Ar, which is progressively solvated by the excess argon. Anharmonic vibrational theory is able to reproduce the vibrational structure, identifying it as arising from the asymmetric proton stretch in combination with multiple quanta of the symmetric argon stretch. Successive addition of argon shifts the proton vibration to lower frequencies, as the charge is delocalized over more ligands. The Ar-H+-Ar core ion has a first solvation sphere of five argons.

  11. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  12. Superluminous Supernovae as Standardizable Candles and High-redshift Distance Probes

    Science.gov (United States)

    Inserra, C.; Smartt, S. J.

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = -21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM 20 decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  13. Aeronautical Information System Replacement -

    Data.gov (United States)

    Department of Transportation — Aeronautical Information System Replacement is a web-enabled, automation means for the collection and distribution of Service B messages, weather information, flight...

  14. Transport and stability studies on high band gap a-Si:H films prepared by argon dilution

    Indian Academy of Sciences (India)

    Purabi Gogoi; P N Dixit; Pratima Agarwal

    2008-02-01

    Device quality hydrogenated amorphous silicon films (a-Si:H) are deposited at a high deposition rate (4-5 Å/s) using a mixture of argon and hydrogen-diluted silane. The films exhibit good opto-electronic properties and show less degradation upon light soaking. Light-induced changes in conductivity could be annealed at much lower temperature. The presence of Ar* and atomic hydrogen in plasma replaces the weak Si-Si bonds, which are responsible for light-induced degradation by strong Si-Si bonds. This results in the improved stability of the films.

  15. Argon Nanoclusters with Fivefold Symmetry in Supersonic Gas Jets and Superfluid Helium

    Science.gov (United States)

    Danylchenko, O. G.; Boltnev, R. E.; Khmelenko, V. V.; Kiryukhin, V.; Konotop, O. P.; Lee, D. M.; Krainyukova, N. V.

    2017-04-01

    In this study argon nanoclusters (800 to ˜ 6500 atoms) formed in supersonic gas jets are compared to the nanoclusters stabilized in superfluid helium. High-energy electron and X-ray diffraction methods are utilized. Both techniques allow investigation of isolated clusters. It is shown that the theoretical prediction of the so-called multiply twinned particles with fivefold symmetry, such as icosahedra (ico) and decahedra (dec) is valid in the investigated cluster size interval. Around the point of the expected ico-to-dec size-dependent transformation at a cluster size of ˜ 2000 atoms, hexagonal ico and the statistical distribution of structures with a tendency for dec to replace ico are observed. Kinetic reasons, as well as temperature-related effects, could be responsible for the latter observations.

  16. The Spectroscopic Detectability of Argon in the Lunar Atmosphere

    CERN Document Server

    Parker, J W; Gladstone, G R; Shull, J M; Parker, Joel Wm.

    1999-01-01

    Direct measurements of the abundance of argon in the lunar atmosphere were made in 1973 by instruments placed on the Moon during the Apollo 17 mission, but the total daytime abundance is unknown due to instrument saturation effects; thus, until we are able to return to the Moon for improved direct measurements, we must use remote sensing to establish the daytime abundance. In this paper, we present a complete analysis of the potential for measuring argon in the lunar atmosphere via emission-line or absorption-line observations. We come to the surprising conclusion that the lower limit established by the in situ lunar argon measurements implies that any absorption-line measurement of argon in the lower, dayside lunar atmosphere requires analysis in the optically-thick regime. In light of this result, we present the results of our EUVS sounding rocket observations of the lunar occultation of Spica, which provide a new upper limit on the abundance of argon in the daytime lunar atmosphere. We also re-analyze a re...

  17. Irradiation damage simulation of Zircaloy-4 using argon ions bombardment

    Institute of Scientific and Technical Information of China (English)

    Dequan Peng; Xinde Bai; Feng Pan

    2008-01-01

    To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1×1016 to 1×1017 cm-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples wcrc analyzed using X-ray photoelectron spectroscopy (XPS). Transmission clcctron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L H2SO4 solution. It is found that there appear bubbles on the surface of the samples when the argon flucncc is 1×1016 cm-2. The microstructure of argon-implanted samples changes from amor-phous to partial amorphous, then to polycrystallinc, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of flucnce approximately, which is attributed to the linear increase of the irradiation damage.

  18. The Molecular Pathway of Argon-Mediated Neuroprotection

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich

    2016-10-01

    Full Text Available The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response.

  19. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  20. Laboratory Infrared Spectra of Polycyclic Aromatic Nitrogen Heterocycles: Quinoline, and Phenanthridine in Solid Argon and H2O

    Science.gov (United States)

    Bernstein, M. P.; Mattioda, A. L.; Sandford, S. A.; Hudgins, D. M.

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe. Their detection and identification are based on telescopic infrared (IR) spectra compared with laboratory data. Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are heterocyclic aromatics i.e., PAHs with carbon atoms replaced by a nitrogen atom. These molecules should be present in the interstellar medium, but have received relatively little attention. We present mid-IR spectra of two PANHs, quinoline (C9H7N), and phenanthridine (C13H9N) isolated in solid argon and frozen in solid H2O at 12 K, conditions yielding data directly comparable to astronomical observations. In contrast to simple PAHs, that do not interact strongly with solid H2O, the nitrogen atoms in PANHs are potentially capable of hydrogen bonding with H2O. Whereas the IR spectrum of phenanthridine in H2O is similar to that of the same compound isolated in an argon matrix, quinoline absorptions shift up to 16 cm(sup -1) (0.072 mm) between argon and H2O. Thus, astronomers will not always be able to rely on IR band positions of matrix isolated PANHs to correctly interpret the absorptions of PANHs frozen in H2O ice grains. Furthermore, our data suggest that relative band areas also vary, so determining column densities to better than a factor of 3 will require knowledge of the matrix in which the PANH is embedded and laboratory studies of relevant samples.

  1. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  2. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, A. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Dandl, T.; Himpsl, A. [Physik-Department E12, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Hofmann, M. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); KETEK GmbH, Hofer Straße 3, 81737 München (Germany); Oberauer, L.; Potzel, W.; Schönert, S. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Ulrich, A., E-mail: andreas.ulrich@ph.tum.de [Physik-Department E12, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-11

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  3. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    CERN Document Server

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  4. Studies of Electron Avalanche Behavior in Liquid Argon

    CERN Document Server

    Kim, J G; Jackson, K H; Kadel, R W; Kadyk, J A; Peskov, Vladimir; Wenzel, W A

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche behavior is erratic, but the addition of even a small amount of xenon (>100ppm) stabilizes the performance. Similar attempts with neon (30%) as an additive to argon have been unsuccessful. Tests with higher energy gamma rays (57Co) yield spectra and other performance characteristics quite similar to those using the 241Am source. Two types of signal pulses are commonly observed: a set of pulses that are sensitive to ambient pressure, and a set of somewhat smaller pulses that are not pressure dependent.

  5. Scintillation time dependence and pulse shape discrimination in liquid argon

    CERN Document Server

    Lippincott, W H; Gastler, D; Hime, A; Kearns, E; McKinsey, D N; Nikkel, J A; Stonehill, L C

    2008-01-01

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background and statistics-limited level of electronic recoil contamination to be $7.6\\times10^{-7}$ between 60 and 128 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 72 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination using the measured scintillation time dependence and predict the sensitivity to WIMP-nucleon scattering in three configurations of a liquid argon dark matter detector.

  6. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  7. On the Electric Breakdown in Liquid Argon at Centimeter Scale

    CERN Document Server

    Auger, M; Ereditato, A; Goeldi, D; Janos, S; Kreslo, I; Luethi, M; von Rohr, C Rudolf; Strauss, T; Weber, M S

    2015-01-01

    We present a study on the dependence of electric breakdown discharge parameters on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  8. The Simulation of the ATLAS Liquid Argon Calorimetry

    CERN Document Server

    Archambault, J P; Carli, T; Costanzo, D; Dell'Acqua, A; Djama, F; Gallas, M; Fincke-Keeler, M; Khakzad, M; Kiryunin, A; Krieger, P; Leltchouk, M; Loch, P; Ma, H; Menke, S; Monnier, E; Nairz, A; Niess, V; Oakham, G; Oram, C; Pospelov, G; Rajagopalan, S; Rimoldi, A; Rousseau, D; Rutherfoord, J; Seligman, W; Soukharev, A; Strízenec, P; Tóth, J; Tsukerman, I; Tsulaia, V; Unal, G; Grahn, K J

    2008-01-01

    In ATLAS, all of the electromagnetic calorimetry and part of the hadronic calorimetry is performed by a calorimeter system using liquid argon as the active material, together with various types of absorbers. The liquid argon calorimeter consists of four subsystems: the electromagnetic barrel and endcap accordion calorimeters; the hadronic endcap calorimeters, and the forward calorimeters. A very accurate geometrical description of these calorimeters is used as input to the Geant 4-based ATLAS simulation, and a careful modelling of the signal development is applied in the generation of hits. Certain types of Monte Carlo truth information ("Calibration Hits") may, additionally, be recorded for calorimeter cells as well as for dead material. This note is a comprehensive reference describing the simulation of the four liquid argon calorimeteter components.

  9. A therapeutic experience on Port Wine hemangiomas with Argon Laser

    Directory of Open Access Journals (Sweden)

    Farahvash M

    1997-09-01

    Full Text Available Port wine stains are benign but cosmetically devasting congenital angiomas. The argon laser is a therapeutic device newly applied to this condition. Our program was begun 6 years ago. From the beginning, the study was conceived as a clinical investigation of both the port wine stain and its argon laser therapy. A total of 218 patients with port wine stains have been studied and many aspects of their clinical condition detailed. Employing the Argon laser, test spots have been carried out in patients and the results have been analyzed with clinical aspects of the lesions. Altogether, 501 treatments were performed in 218 patients. Good to excellent results were obtained in 81 patients. Moderate Result was obtained in 31 weak result in 65 patients. Most common complication were hyperpigmentation and depressed scar.

  10. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  11. Filamentation of ultrashort laser pulses of different wavelengths in argon

    Indian Academy of Sciences (India)

    XIEXING QI; WENBIN LIN

    2017-02-01

    We investigate the filaments formed by the ultrashort laser pulses with different wavelengths of 400 nm, 586 nm and 800 nm propagating in argon. Numerical results show that, when the input power or the ratio of the input power to the critical power is given, the pulse with 400 nm wavelength has the largest on-axis intensity, as well as the narrowest filament and the most stable beam radius. These results indicate that the pulse with shorter wavelength is more suitable for the long-range propagation in argon.

  12. Measurement of Longitudinal Electron Diffusion in Liquid Argon

    CERN Document Server

    Li, Yichen; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, Jim; Tang, Wei; Viren, Brett

    2015-01-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the world's best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  13. Rotational spectrum and dynamics of tetrahydrofuran-argon

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, S.; Favero, P.G.; Caminati, W. [Dipartimento di Chimica ' G. Ciamician' dell' Universita, Via Selmi 2, I-40126 Bologna (Italy); Lopez, J.C.; Alonso, J.L. [Departamento de Quimica-Fisica, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid (Spain)

    1998-12-15

    The jet-cooled rotational spectrum of the tetrahydrofuran-argon molecular complex has been investigated by millimeter-wave absorption and Fourier transform microwave spectroscopies. The argon atom is located nearly over the oxygen atom, almost perpendicularly to the COC plane. Each rotational transition is split in two component lines due to the residual pseudorotational effects of the ring in the complex. The splitting between the two vibrational sublevels has been calculated to be 111.345(44) MHz. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved000.

  14. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  15. Breakdown voltage of metal-oxide resistors in liquid argon

    CERN Document Server

    Bagby, L F; James, C C; Jones, B J P; Jostlein, H; Lockwitz, S; Naples, D; Raaf, J L; Rameika, R; Schukraft, A; Strauss, T; Weber, M S; Wolbers, S A

    2014-01-01

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period to simulate the electric breakdown in a HV-divider chain. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131\\,kV pulses, the limit of the test setup.

  16. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer

    2014-01-01

    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  17. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    Science.gov (United States)

    Meyers, Joshua Evan

    than E(B - V ) candles than other SNe Ia. The second half of this thesis analyzes a sample of 40 deep, very high signal-to-noise ratio spectra of nearby SN Ia host galaxies. These host galaxies are chosen from the Nearby Supernova Factory, the SDSS-II SN Survey, and Swift-observed SNe, with the requirement that they have passive stellar populations suitable for detailed absorption line measurements. From these spectra, ages and the abundances of multiple elements, including Fe, Mg, C, N, and Ca are derived. The correlation between SN decline rate and host galaxy age is rediscovered at high significance. SN decline rate is also shown to be correlated with host [Fe/H], [C/Fe], and [N/Fe]. In contrast to studies of mixed-host samples, however, no evidence is found supporting a correlation with SN Hubble residuals and host galaxy properties. The wide range in age spanned by the sample, in particular, suggests that age is not responsible for the host-mass - Hubble residual relation reported in the literature.

  18. Replacing a Missing Tooth

    Science.gov (United States)

    ... vessels in the tooth pulps are rather large. Drilling down these teeth for crowns may expose the ... porcelain replacement tooth is held in place by metal extensions cemented to the backs of the adjacent ...

  19. Hormone Replacement Therapy

    Science.gov (United States)

    ... before and during menopause, the levels of female hormones can go up and down. This can cause ... hot flashes and vaginal dryness. Some women take hormone replacement therapy (HRT), also called menopausal hormone therapy, ...

  20. Knee joint replacement

    Science.gov (United States)

    ... of your kneecap. Your kneecap is called the patella. The replacement part is usually made from a ... long. Then your surgeon will: Move your kneecap (patella) out of the way, then cut the ends ...

  1. Knee joint replacement - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the ... to slide 4 out of 4 Overview The knee is a complex joint. It contains the distal ...

  2. Product Platform Replacements

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    Purpose – It is argued in this article that too little is known about product platforms and how to deal with them from a manager's point of view. Specifically, little information exists regarding when old established platforms are replaced by new generations in R&D and production environments...... originality and value is achieved by focusing on product platform replacements believed to represent a growing management challenge....

  3. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  4. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  5. Human-chromosome alterations induced by argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Simi, S.; Colella, C. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Mutagenesi e Differenziamento); Agati, G.; Fusi, F. (Florence Univ. (Italy). Ist. di Farmacologia); Corsi, M.F.; Pratesi, R. (Consiglio Nazionale delle Ricerche, Florence (Italy). Lab. di Elettronica Quantistica); Tocco, G.A. (Naples Univ. (Italy). Ist. di Istologia ed Embrilogia)

    1984-07-01

    The possible occurrence of genetic damage arising from exposure of human cells to visible laser light has been evaluated in PHA-stimulated human lymphocytes. Aneuploidy and chromosome aberrations have been observed after exposure to an argon laser. These findings appear of special interest in view of the possible role of these chromosome alterations in carcinogenesis.

  6. A 2-Dimensional Fluid Model for an Argon Rf Discharge

    NARCIS (Netherlands)

    Passchier, J. D. P.; W. J. Goedheer,

    1993-01-01

    A fluid model for an argon rf discharge in a cylindrical discharge chamber is presented. The model contains the particle balances for electrons and ions and the electron energy balance. A nonzero autobias voltage is obtained by imposing the condition that the time-averaged current toward the powered

  7. Thermal decomposition of Yttrium(III) isovalerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;

    2016-01-01

    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  8. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  9. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  10. Influence of Blowing of Argon on the Cleanness of Steel

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available The mechanical properties of steel components are controlled by the chemical composition and mechanical treatment to which thesteel is submitted. Non-metallic inclusions have a very high influence on the steel quality but secondary metallurgy enables to reduce their content in the steel. Possibilities of secondary metallurgy are relatively extensive but financial situation in Slovak foundries does not enable to make investments in secondary metallurgy in the near future. Accessible means for influencing of steel quality is injection of an inert gas .Main goal of experiments described in the article was verify the influence of blowing of argon into the steel in an electric inductionfurnace on its cleanness. Duration and flow-rate of argon blowing have a very clearly influence on the final content of non-metallicinclusions. Minimum time of argon blowing necessary for reducing of content of non-metallic inclusions in one tonne electric inductionfurnace was more then 6 minutes and recommended argon flow rate was 10 litters per minute.

  11. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  12. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  13. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  14. Pressure broadening of acetylene rotational Raman lines by argon

    OpenAIRE

    Ceruti, M; Frenkel, D.; Mctaque, J.P.

    1980-01-01

    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole moment. An empirical atom-atom anisotropic potential adequately parametrizes the results.

  15. Pressure broadening of acetylene rotational Raman lines by argon

    NARCIS (Netherlands)

    Ceruti, M.; Frenkel, D.; McTaque, J.P.

    1980-01-01

    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole m

  16. Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme

    Science.gov (United States)

    Nur Asiah, A.; Su'ud, Zaki; Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

  17. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    Science.gov (United States)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-01

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  18. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; a New Type of Standard Candle

    CERN Document Server

    Guiriec, S; Hartmann, D H; Granot, J; Asano, K; Meszaros, P; Gill, R; Gehrels, N; McEnery, J

    2016-01-01

    The origin of prompt emission from gamma ray bursts remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB gamma-ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  19. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  20. Attachment cooling of electrons in oxygen-argon and SF6-argon mixtures

    Science.gov (United States)

    Babaeva, Natalia; Kim, Sung Jin; Park, Gan Young; Lee, Jae Koo

    2004-09-01

    In e-beam sustained plasma different electron temperature can be obtained. Thus, in plasma of capacitive RF discharges in inert gases typical electron temperature is of the order of 2-3 eV. At certain conditions, in plasma of electronegative gases electron temperature can approach ion/neutral temperature. We consider e-beam sustained plasma of electronegative gases and their mixtures with argon where the main mechanism of plasma neutralization is connected with electron-molecule attachment. In such plasma, due to retardation of fast electrons of e-beam secondary electrons are created which loose their energy due to attachment. It is shown, that at certain conditions (in dependence of the e-beam intensity and spectrum of secondary electrons) electron temperature can obtain the values comparable or even less than temperature of neutral component. The effect can be explained by the increase of attachment rate coefficient with the increase of electron temperature (mean electron energy). Such a dependence leads to attachment of the fastest plasma electrons and selective loss of electrons whose energy exceeds the mean electron energy and, as a result, to effective electron cooling. The theoretical and numerical analysis of the problem has been conducted. The numerical results obtained using ELENDIF code are compared with Particle-in-cell/Monte Carlo simulations under similar conditions.

  1. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    Science.gov (United States)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  2. Argon metastable dynamics and lifetimes in a direct current microdischarge

    Science.gov (United States)

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-01

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  3. Argon metastable dynamics and lifetimes in a direct current microdischarge

    Energy Technology Data Exchange (ETDEWEB)

    Stefanović, Ilija [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kuschel, Thomas; Schröter, Sandra; Böke, Marc [Ruhr-Universität Bochum, Institute for Experimental Physics II, Universitätsstraße 150, 44780 Bochum (Germany)

    2014-09-21

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Ar{sup m} lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N₂ density [N₂]=0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H₂O]=0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H₂O]=1% and 2.6 ms for [H₂O]=0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  4. Evidence for Argon Content in Pure Oxygen from Thermal Data

    Science.gov (United States)

    Steur, Peter P. M.; Yang, Inseok; Pavese, Franco

    2017-02-01

    Since many years it is known that argon impurities in oxygen change the temperature of the oxygen triple point by +12 K{\\cdot }mol^{-1} (positive, while most impurities decrease the temperature) without any effect on the melting range of this transition, for the impurity concentrations usually encountered in nominally pure gases. It has been hypothesized that thermal measurements on the α -β solid-to-solid transition at 23.8 K or the β -γ solid-to-solid transition at 43.8 K may give reliable evidence regarding the argon content. However, such measurements require very long times for full completion of each transition (with prohibitive costs if liquid helium is used) and for the α -β solid-to-solid transition the heat pulse method cannot be applied reliably. The availability of closed-cycle refrigerators permits the first obstacle to be surmounted. The automatic system earlier developed at INRIM during the EU Multicells project and used extensively for the project on the isotopic effect in neon is perfectly suited for such measurements. Thus, the uncertainties of the temperature measurements are similar to those obtained previously (of the order of 0.1 mK or less). Three argon-in-oxygen mixtures were prepared gravimetrically and certified at KRISS, just as was previously done for the work on the neon isotopic compositions. Results of continuous-current measurements on the α -β solid-to-solid transition, along with the triple-point data obtained with the heat pulse method, are presented for one cell with a known doped argon content, to be compared with similar data from a cell with oxygen of very high purity. In addition, some preliminary data for the β -γ solid-to-solid transition are given. The measurements on the mixture with the highest argon content, about 1002 μmol{\\cdot } mol^{-1}, imply a (linear) sensitivity of (116 ± 7) K{\\cdot }mol^{-1} for the α -β transition. This sensitivity may be different at much lower argon contents, and follow

  5. Robotic mitral valve replacement.

    Science.gov (United States)

    Senay, Sahin; Gullu, Ahmet Umit; Kocyigit, Muharrem; Degirmencioglu, Aleks; Karabulut, Hasan; Alhan, Cem

    2014-01-01

    Robotic surgical techniques allow surgeons to perform mitral valve surgery. This procedure has gained acceptance, particularly for mitral valve repair in degenerative mitral disease. However, mitral repair may not always be possible, especially in severely calcified mitral valve of rheumatic origin. This study demonstrates the basic concepts and technique of robotic mitral valve replacement for valve pathologies that are not suitable for repair.

  6. Replacing America's Job Bank

    Science.gov (United States)

    Vollman, Jim

    2009-01-01

    The Job Central National Labor Exchange (www.jobcentral.com) has become the effective replacement for America's Job Bank with state workforce agencies and, increasingly, with community colleges throughout the country. The American Association of Community Colleges (AACC) has formed a partnership with Job Central to promote its use throughout the…

  7. Replacing America's Job Bank

    Science.gov (United States)

    Vollman, Jim

    2009-01-01

    The Job Central National Labor Exchange (www.jobcentral.com) has become the effective replacement for America's Job Bank with state workforce agencies and, increasingly, with community colleges throughout the country. The American Association of Community Colleges (AACC) has formed a partnership with Job Central to promote its use throughout the…

  8. A pressurized argon gas TPC as DUNE near detector

    CERN Document Server

    Martin-Albo, J

    2016-01-01

    DUNE is a new international experiment for neutrino physics and nucleon decay searches. It will consist of two detectors, about 1300 km apart, exposed to a multi-megawatt neutrino beam that will be built at Fermilab. One of the two detectors will be installed several hundred meters downstream of the neutrino production point with the primary role of characterising the energy spectrum and composition of the beam as well as performing precision measurements of neutrino cross sections. For the design of this so-called near detector, the DUNE Collaboration is considering, among other technologies, a pressurized argon gas time projection chamber. Such a detector, thanks to its low density and low detection thresholds, would allow the detailed measurement in argon of nuclear effects at the neutrino interaction vertex, which are considered at present one of the most important sources of systematic uncertainty for neutrino oscillation measurements.

  9. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  10. Breakdown voltage of metal-oxide resistors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Bagby, L. F. [Fermilab; Gollapinni, S. [Kansas State U.; James, C. C. [Fermilab; Jones, B. J.P. [MIT; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Naples, D. [Pittsburgh U.; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Schukraft, A. [Fermilab; Strauss, T. [Bern U., LHEP; Weber, M. S. [Bern U., LHEP; Wolbers, S. A. [Fermilab

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  11. Metal oxide morphology in argon-assisted glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J. B.; Taschuk, M. T.; Wakefield, N. G.; Sit, J. C.; Brett, M. J. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada) and NRC National Institute for Nanotechnology, Edmonton, AB T6G 2M9 (Canada)

    2012-03-15

    Glancing angle deposition (GLAD) is a thin film deposition technique capable of fabricating columnar architectures such as posts, helices, and chevrons with control over nanoscale film features. Argon bombardment during deposition modifies the GLAD process, producing films with new morphologies which have shown promise for sensing and photonic devices. The authors report modification of column tilt angle, film density, and specific surface area for 12 different metal oxide and fluoride film materials deposited using Ar-assisted GLAD. For the vapor flux/ion beam geometry and materials studied here, with increasing argon flux, the column tilt increases, film density increases, and specific surface area decreases. With a better understanding of the nature of property modification and the mechanisms responsible, the Ar-assisted deposition process can be more effectively targeted towards specific applications, including birefringent thin films or photonic crystal square spirals.

  12. Measurement of longitudinal electron diffusion in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yichen, E-mail: yichen@bnl.gov [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States); Tsang, Thomas [Instrumentation Division, Brookhaven National Laboratory, 20 N. Technology St., Building 535B, Upton, NY 11973 (United States); Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States); Rao, Triveni [Instrumentation Division, Brookhaven National Laboratory, 20 N. Technology St., Building 535B, Upton, NY 11973 (United States); Stewart, James; Tang, Wei; Viren, Brett [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States)

    2016-04-21

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement [1]. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev‐Timoshkin [2]. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  13. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Chren, D; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M-A; Dunford, M; Duperrin, A; Duran-Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Faccioli, P; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores-Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; Garcí­a, C; Garcí­a Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, S V; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O B; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques-Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hirose, M; Hirsch, F; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles-Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rosa, M; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J-R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martynenko, V; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J-P; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora-Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nicholson, C; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Pal, A; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M-A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, D; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa-Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero-Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F-W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua-Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, D; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schumacher, J; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solfaroli-Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra-Suay, L; Soukharev, A; Spagnolo, S; Spanò, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique-Aires-Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogt, H; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  14. Treatment of facial vascular lesions with an argon laser

    Science.gov (United States)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.

    1996-03-01

    Two-hundred-ninety-six patients with various vascular lesions of the face have been treated with argon laser LAK-1 in the Department of Dermatology Warsaw Medical Academy since April 1992. The diagnosis of the treated lesions was port-wine stains, multiple telangiectasiae and small, most often induced by trauma hemangioma cavernosum of the lip. Best results were achieved in the patients with small hemangiomas cavernosum of the lip and multiple telangiectasiae on the face. Cure rate in this group was 100%. In 112 port-wine stain cases fading of 50 - 75% comparing with the adjacent skin was achieved. With stress, the argon laser therapy is a method of choice for the treatment of hemangioma cavernosum, port-wine stains and multiple teleagiectasiae of the face.

  15. Detection of Cherenkov light emission in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bernardini, E.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bueno, A.; Calligarich, E.; Campanelli, M.; Carpanese, C.; Cavalli, D.; Cavanna, F. E-mail: flavio.cavanna@aquila.infn.it; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, C.; Cline, D.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Dolfini, R.; Felcini, M.; Ferrari, A.; Ferri, F.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Markiewicz, M.; Matthey, C.; Mauri, F.; Mazza, D.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Nurzia, G.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polchlopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Stepaniak, J.; Szarska, M.; Szeptycka, M.; Terrani, M.; Ventura, S.; Vignoli, C.; Wang, H.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zalipska, J.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W

    2004-01-11

    Detection of Cherenkov light emission in liquid argon has been obtained with an ICARUS prototype, during a dedicated test run at the Gran Sasso Laboratory external facility. Ionizing tracks from cosmic ray muons crossing the detector active volume have been collected in coincidence with visible light signals from a photo-multiplier (PMT) immersed in liquid argon. A 3D reconstruction of the tracks has been performed exploiting the ICARUS imaging capability. The angular distributions of the tracks triggered by the PMT signals show an evident directionality. By means of a detailed Monte Carlo simulation we show that the geometrical characteristics of the events are compatible with the hypothesis of Cherenkov light emission as the main source of the PMT signals.

  16. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  17. Infrared spectrum of the chloromethylene hydroperoxide cation in solid argon

    Science.gov (United States)

    Chen, Mohua; Zhou, Mingfei

    2013-07-01

    Infrared spectrum of the chloromethylene hydroperoxide cation, HC(Cl)OOH+ in solid argon is reported. The cation is produced by co-condensation of dichloromethane and dioxygen mixtures with high-frequency discharged argon at 4 K followed by visible light excitation. On the basis of isotopic substitutions as well as quantum chemical frequency calculations, absorptions at 3452.7, 3052.0, 1499.6, 976.9, 855.4 and 956.1 cm-1 are assigned to the O-H, C-H, Cdbnd O, C-Cl and O-O stretching and out-of-plane CH wagging vibrations of the chloromethylene hydroperoxy cation. The cation was predicted to have a singlet ground state with planar Cs symmetry.

  18. Trimming of a Migrated Biliary Nitinol Stent Using Argon Plasma

    Directory of Open Access Journals (Sweden)

    Hiroyuki Matsubayashi

    2009-07-01

    Full Text Available Metallic stent migration is a well-known complication which cannot always be managed by removal or repositioning, especially in case of uncovered stent. We report a patient who developed obstructive jaundice due to migration of an expandable metallic stent (EMS inserted in the lower bile duct. Trimming of the EMS using argon plasma was performed, with the power setting of 60 W and 2.0 l/min of argon flow. The distal part of the EMS was removed and mechanical cleaning using balloon catheter was performed for remnant EMS. Without additional stent insertion, jaundice was relieved in a few days. No complication was recognized during the procedure and no recurrence of jaundice in the rest of his life.

  19. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Di Marcello, Manuela; Matt, Muriel; Nacken, Manfred; Heidenreich, Steffen; Foscolo, Pier Ugo

    2010-09-01

    A bench-scale fluidized-bed biomass gasification plant, operating at atmospheric pressure and temperature within the range 800-820 degrees C, has been used to test an innovative gas cleaning device: a catalytic filter candle fitted into the bed freeboard. This housing of the gas conditioning system within the gasifier itself results in a very compact unit and greatly reduced thermal losses. Long term (22h) tests were performed on the gasifier both with and without the catalytic candle filter, under otherwise identical conditions. Analysis of the product gas for the two cases showed the catalytic filtration to give rise to notable improvements in both gas quality and gas yield: an increase in hydrogen yield of 130% and an overall increase in gas yield of 69% - with corresponding decreases in methane and tar content of 20% and 79%, respectively. HPLC/UV analysis was used to characterize the tar compounds.

  20. Measurement of scintillation efficiency for nuclear recoils in liquid argon

    CERN Document Server

    Gastler, D; Hime, A; Stonehill, L C; Seibert, S; Klein, J; Lippincott, W H; McKinsey, D N; Nikkel, J A

    2010-01-01

    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 \\pm 0.02 + 0.01(correlated) above 20 keVr.

  1. Monte Carlo Simulation of Argon in Nano-Space

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; YANG Chun; GUO Zeng-Yuan

    2000-01-01

    Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.

  2. Investigation of Non-Equilibrium Argon and Hydrogen Plasmas.

    Science.gov (United States)

    Braun, Christopher Gifford

    1987-09-01

    Theoretical and experimental investigations are made into non-equilibrium argon and hydrogen partially -ionized plasmas characteristic of glow discharge devices such as thyratrons and discharge tubes. For an argon plasma, the development and use of a collisional-radiative, steady -state, three-energy-level model is presented and experimental measurements on pulsed argon plasmas are briefly mentioned. Two different theoretical argon plasma models are discussed; the first is numerically solved using a non-Maxwellian electron distribution function, while the second is solved analytically, including atom-atom inelastic collisions, assuming Maxwellian electron and atom distribution functions. For a hydrogen plasma, experimental measurements using fluorescence and laser-induced fluorescence have been made in a modified hydrogen thyratron over a wide current density range (from 100 to 8,000 A/cm('2)) for the atomic hydrogen population densities n = 2,3,4. A pronounced rise in the atomic hydrogen excited state populations is observed after the end of the current pulse. A new method to measure the time-resolved electron density has been developed and results are presented. A time-dependent model for atomic hydrogen plasmas typical of a thyratron has been constructed, and preliminary results are shown. This model includes ten atomic energy levels (n = 1 to n = 9 and the continuum), takes into account energy balance with an externally supplied current density and assumes a Maxwellian electron distribution function. Implications of these measurements and theoretical analysis upon the operation of thyratrons are discussed. (Copies available exclusively from Micrographics Department, Doheny Library, University of Southern California, Los Angeles, CA 90089 -0182.).

  3. Liquid Argon Hadronic EndCap Production Database

    CERN Document Server

    Oram, C J; Wielers, M

    2004-01-01

    This document describes the contents of the Liquid Argon Hadronic EndCap (HEC) Production Database. At the time of the PRR (Production Readiness Review), the groups responsible for the production of the LAr HEC components and modules were required to provide a detailed plan as to what data should be stored in the production database and how the data should be accessed, displayed and queried in all reasonable foreseeable circumstances. This document describes the final database.

  4. The use of argon beam coagulation in pressure sore reconstruction.

    Science.gov (United States)

    Buck, Donald W; Lewis, Victor L

    2009-12-01

    Pressure sores are a significant source of physical and financial burden for debilitated patients. When conservative measures fail, surgical reconstruction with myocutaneous flaps may be the last hope for cure and/or improved quality of life in these patients. Adequate haemostasis is an integral component of these reconstructive procedures, as bleeding and haematoma formation can lead to increased morbidity. This study was designed to investigate the use of argon beam coagulation in patients undergoing bony debridement and subsequent pressure sore reconstruction with myocutaneous flaps. The clinical records of 34 patients undergoing pressure sore reconstruction with the use of argon beam coagulation from 2004 to 2006 at an academic institution were reviewed and outcomes were assessed. Reconstruction was performed by a single surgeon on 34 patients (31 men, three women; mean age 41+/-15 years), with a total of 41 pressure sores. Thirteen (32.5%) patients had evidence of osteomyelitis preoperatively and five (12.5%) had previous coccygectomies secondary to infection. Twenty-six (65%) of the pressure sores were treated with hamstring V-Y musculocutaneous flaps, 10 (25%) with gluteal flaps, and four (10%) with tensor fascia lata flaps. Overall, suture line dehiscence occurred in six (15%) cases, flap failure and pressure sore recurrence occurred in six (15%) cases, an abscess developed in one (2.5%) case, and a sinus tract with a superficial wound developed in one (2.5%) case. There were no complications related to haemostasis, including excessive bleeding or haematoma formation. Argon beam coagulation is an efficacious tool for achieving adequate haemostasis during pressure sore reconstruction, particularly when significant bony debridement is involved. The use of argon beam coagulation does not result in an increased complication or recurrence rate when compared with conventional electrocautery methods.

  5. Argon laser photocoagulation of cyclodialysis clefts after cataract surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B. [Univ. of Lund, Dept. of Ophthalmology, Lund (Sweden)

    1995-06-01

    Three patients with cyclodialysis clefts, hypotony and hypotonic retinopathy subsequent to cataract surgery were treated with argon laser photocoagulation. The hypotony was reversed in each patient and their visual acuity was normalized. Laser photocoagulation is a noninvasive treatment that can be repeated easily and safely. The complications of the treatment are minor. A hypertensive episode commonly occurs in the early postoperative period. (au) 8 refs.

  6. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  7. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan

    2009-01-01

    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment.it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  8. Isotopic fractionation of argon during stepwise release from shungite

    Science.gov (United States)

    Rison, W.

    1980-05-01

    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  9. Space-charge effects in liquid argon ionization chambers

    Science.gov (United States)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  10. Cryogenic Tests of the Atlas Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, A; Passardi, Giorgio

    2006-01-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature...

  11. Free electron lifetime achievements in liquid Argon imaging TPC

    Energy Technology Data Exchange (ETDEWEB)

    Baibussinov, B; Ceolin, M Baldo; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Varanini, F; Ventura, S [INFN, Sezione di Padova via Marzolo 8, I-35131 Padova (Italy); Calligarich, E [INFN, Sezione di Pavia via Bassi 6, I-27100 Pavia (Italy); Rubbia, C, E-mail: Carlo.Rubbia@cern.c [Laboratori Nazionali del Gran Sasso dell' INFN I-67010 Assergi (Italy)

    2010-03-15

    A key feature for the success of the liquid Argon imaging TPC (LAr-TPC) technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be continuously kept at an exceptionally low level by filtering and recirculating liquid Argon. Improved purification techniques have been applied to a 120 liters LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to determine the free electron lifetime in liquid Argon against electro-negative impurities. The short path length here observed (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic ray muons at sea level as a function of the drift distance. A free electron lifetime of tau {approx} (21.4{sup +7.3}{sub -4.3}) ms, namely > 15.8 ms at 90% C.L. has been observed over several weeks under stable conditions, corresponding to a residual Oxygen equivalent of {approx} 15 ppt (part per trillion). At 500 V/cm, the free electron speed is 1.5 mm/mus. In a LAr-TPC a free electron lifetime in excess of 15 ms corresponds for instance to an attenuation of less than 20% after a drift path of 5 m, opening the way to the operation of the LAr-TPC with exceptionally long drift distances.

  12. Tin LPP plasma control in the argon cusp source

    Science.gov (United States)

    McGeoch, Malcolm W.

    2016-03-01

    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  13. Vacuum ultraviolet radiation emitted by microwave driven argon plasmas

    Science.gov (United States)

    Espinho, S.; Felizardo, E.; Henriques, J.; Tatarova, E.

    2017-04-01

    Vacuum ultraviolet (VUV) radiation emitted by microwave driven argon plasmas has been investigated at low-pressure conditions (0.36 mbar). A classical surface-wave sustained discharge at 2.45 GHz has been used as plasma source. VUV radiation has been detected by emission spectroscopy in the 30-125 nm spectral range. The spectrum exhibits atomic and ionic argon emissions with the most intense spectral lines corresponding to the atomic resonance lines, at 104.8 nm and 106.7 nm, and to the ion lines, at 92.0 nm and 93.2 nm. Emissions at lower wavelengths were also detected, including lines with no information concerning level transitions in the well-known NIST database (e.g., the atomic line at 89.4 nm). The dependence of the lines' intensity on the microwave power delivered to the launcher was investigated. The electron density was estimated to be around 1012 cm-3 using the Stark broadening of the hydrogen Hβ line at 486.1 nm. The main population and loss mechanisms considered in the model for the excited argon atom and ion states emitting in the VUV range are discussed. The experimental results were compared to self-consistent model predictions, and a good agreement was obtained.

  14. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  15. K-Ar age of young volcanic rocks and excess argon--Binary mixing model and quantitative study of excess argon effect

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A binary mixing model for excess argon is suggested in the note. According to this model and the data of excess argon component obtained in our experiment , a quantitative study of the effect of excess argon on real K-Ar age of young volcanic rocks is done. The result indicates that the effect of 5% excess argon component in samples on K-Ar age of the samples more than 2 Ma is less than 7.36% and can lead K-Ar age of 0.5 Ma samples to increase by 32.4%, while 1% excess argon component leads K-Ar age of 0.5 Ma samples to increase by 6.26%. Therefore, when pre-processed excess argon component is ≤1%, K-Ar age of the samples more than 0.5 Ma should be credible. On this basis we suggest a principal opinion for evaluation of previous K-Ar dating results and propose that the matrix is used to determine K-Ar age of young volcanic rocks. For the samples less than 0.2 Ma, in the case of high excess argon content, even if only 1% excess argon component exists in their matrix, it can also greatly affect their K-A age. Thus it must be careful to treat the dating result.

  16. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    Science.gov (United States)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  17. Resonance broadening of argon lines in a micro-scaled atmospheric pressure plasma jet (argon μAPPJ)

    Science.gov (United States)

    Pipa, A. V.; Ionikh, Yu. Z.; Chekishev, V. M.; Dünnbier, M.; Reuter, S.

    2015-06-01

    Optical emission from atmospheric pressure micro-jet operating with pure argon (argon μAPPJ) flow has been detected with a moderate resolution spectrometer. Large broadening of the several argon (Ar) lines has been observed in the near infrared spectral region. This effect was attributed to resonance broadening of the s2 (Paschen notation) level in 3p54s configuration. In the present work, corresponding line profiles are suggested for plasma diagnostics. For this, a general case of resonance broadening coefficient of noble gases is discussed. As broadening reflects the Ar density, and the static gas pressure of the jet is in equilibrium with the ambient, the local gas temperature can be inferred. An estimation of gas temperature from the width of the 750 nm Ar line is in agreement with rotational temperature of OH radicals determined from the A2Σ+ → X2Π (0, 0) band. At low temperatures (300-600 K) and at partial Ar pressure near atmospheric, the resonance width of the suggested lines is very sensitive to small temperature variations. High temperature sensitivity and large width make the resonance broadened lines very attractive for diagnostics of low temperature discharges at elevated pressure, e.g., as they are used in plasma-medicine.

  18. Ulnar head replacement.

    Science.gov (United States)

    Herbert, Timothy J; van Schoonhoven, Joerg

    2007-03-01

    Recent years have seen an increasing awareness of the anatomical and biomechanical significance of the distal radioulnar joint (DRUJ). With this has come a more critical approach to surgical management of DRUJ disorders and a realization that all forms of "excision arthroplasty" can only restore forearm rotation at the expense of forearm stability. This, in turn, has led to renewed interest in prosthetic replacement of the ulnar head, a procedure that had previously fallen into disrepute because of material failures with early implants, in particular, the Swanson silicone ulnar head replacement. In response to these early failures, a new prosthesis was developed in the early 1990s, using materials designed to withstand the loads across the DRUJ associated with normal functional use of the upper limb. Released onto the market in 1995 (Herbert ulnar head prosthesis), clinical experience during the last 10 years has shown that this prosthesis is able to restore forearm function after ulnar head excision and that the materials (ceramic head and noncemented titanium stem), even with normal use of the limb, are showing no signs of failure in the medium to long term. As experience with the use of an ulnar head prosthesis grows, so does its acceptance as a viable and attractive alternative to more traditional operations, such as the Darrach and Sauve-Kapandji procedures. This article discusses the current indications and contraindications for ulnar head replacement and details the surgical procedure, rehabilitation, and likely outcomes.

  19. 论纳兰词中的灯烛意象%Analysis of the Image of Candles in Nalan Xingde’s Poems

    Institute of Scientific and Technical Information of China (English)

    李思园

    2016-01-01

    Images, including objects and feelings, are the key to poetry. Candles are the usual image in the classical poetry of China, which mean the worship of the sun and the ifre in ancient society. With time goes by, candles have more meanings, such in Nalan Xingde’s poems, which symbolizes the complex emotions in the particular experience of the author. In Nalan Xingde’s poems, it is unusual for us to see the positive meanings of candles; instead, the poet prefers to use the misshapen form of the candle or to create a negative atmosphere in a rainy night to express the sad feelings, which include the following three sides: the tragedy of marriage, the missing of the hometown, and the pure friendship between friends. With the sentimental candles, Nalan Xingde’s poems have the unique sensible and pure meanings, which are the charm of his poems.%意象是客观物象与主观情意的统一体,是诗词创作与品鉴的关键。灯烛是中国古典诗词中常见的一个意象,它体现着远古人类对光与火的原始崇拜,并由此衍生出光明与希望、温馨愉悦的情感体验以及悲剧性的人生感受等象征意义。灯烛意象是纳兰词中常见的意象之一,寄寓着词人复杂微妙的情感体验。在纳兰词中少有展现蜡烛积极的象征意义,更多的是通过对灯烛残缺形态的描绘以及夜雨孤灯时空场景的营造来体现词人独特的人生经历与情感体验。具体包括以下三点:婚姻爱情的痛苦体验、家园意识的归附以及真挚友谊的见证。灯烛意象以其迷离婉约、凄美感伤的审美意蕴对纳兰词哀感顽艳、自然真切的词风的形成起着很大的作用。

  20. Type II-P Supernovae from the SDSS-II Supernova Survey and the Standardized Candle Method

    CERN Document Server

    D'Andrea, Chris B; Dilday, Benjamin; Frieman, Joshua A; Holtzman, Jon; Kessler, Richard; Konishi, Kohki; Schneider, Donald P; Sollerman, Jesper; Wheeler, J C; Yasuda, Naoki; Cinabro, David; Jha, Saurabh; Nichol, Robert C; Lampeitl, Hubert; Smith, Mathew; Atlee, David W; Basset, Bruce; Castander, Francisco J; Goobar, Ariel; Miquel, Ramon; Nordin, Jakob; Östman, Linda; Prieto, Jose Luis; Quimby, Robert; Riess, Adam G; Stritzinger, Maximilian

    2009-01-01

    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey - II Supernova Survey. The redshifts of these SNe - 0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. (2009). We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 mus...

  1. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  2. Temporal evolution of electron beam generated Argon plasma in pasotron device

    Science.gov (United States)

    Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.

    2016-10-01

    The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.

  3. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment results were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.

  4. Aortic valve replacement

    DEFF Research Database (Denmark)

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A

    2008-01-01

    BACKGROUND AND AIMS OF THE STUDY: Prompted by anecdotal evidence and observations by surgeons, an investigation was undertaken into the potential differences in implanted aortic valve prosthesis sizes, during aortic valve replacement (AVR) procedures, between northern and southern European...... countries. METHODS: A multi-institutional, non-randomized, retrospective analysis was conducted among 2,932 patients who underwent AVR surgery at seven tertiary cardiac surgery centers throughout Europe. Demographic and perioperative variables including valve size and type, body surface area (BSA) and early...

  5. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.

  6. Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells

    Science.gov (United States)

    Li, Zaoyang; Liu, Lijun; Ma, Wencheng; Kakimoto, Koichi

    2011-03-01

    A global simulation including coupled oxygen and carbon transport was carried out to study the argon flow effects on the impurities transport in a directional solidification furnace for silicon solar cells. The simulation is based on a fully coupled calculation of the thermal and flow fields in a furnace including argon gas flow and melt convection. Five chemical reactions are considered in the impurity transport model. The effects of both the argon flow rate and the furnace pressure were examined. It was found that the argon flow has an important effect on the silicon melt convection, which will further influence the evaporation characteristic of SiO at the melt free surface. The amount of SiO carried away by the argon flow increases with increase in the argon flow rate while the CO gas can be prevented from being transported to the melt free surface. There exists a peak value for the concentration of impurities in the furnace chamber regarding argon flow rate due to the correlation among SiO evaporated, reacted and taken away. The pressure also influences the impurity transport in the furnace by modifying the pattern of argon flow. The numerical results demonstrate a method to control the oxygen and carbon transport in a directional solidification furnace by adjusting the argon flow rate and the furnace pressure.

  7. Influence of argon laser curing on resin bond strength.

    Science.gov (United States)

    Hinoura, K; Miyazaki, M; Onose, H

    1993-04-01

    Light cured resin composites are usually cured with halogen lamps whose light output decreases with time and distance to the resin surface. This study compared bond strengths of resins to tooth structure cured with either an argon laser or a conventional halogen light. The enamel and dentin of bovine incisors were ground on the buccal surface with wet #600 grit SiC paper. A 4 x 2 mm mold was placed on the tooth surface and Scotchbond 2/Silux and Clearfil Photobond/Photo Clearfil A were placed into the molds and cured using a Quick Light or an argon laser for exposure times of 10, 20, and 30 seconds, and distances of 0.0, 0.5, 1.0, and 1.5 mm from the resin surface. The intensity of the Quick Light was measured as 510 mW/cm2 at 470 +/- 15 nm and the intensity of the argon laser was adjusted to 510 mW/cm2 before curing. Shear bond tests at a crosshead speed of 1.0 mm/min were performed after 24 hours of storage in water. The bond strengths obtained with the halogen lamp and the laser were not significantly different at the same exposure times and at 0.0 or 0.5 mm from the resin surface. The laser cured bond strengths did not decrease with increasing distance whereas there was a significant decrease in halogen bond strengths at distances greater than 0.5 mm for both resins. The use of the laser might provide a clinical advantage in cases where the curing light source cannot be brought into proximity to the surface of the resin.

  8. The Optimum Replacement of Weapon

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; ZHANG Jin-chun

    2002-01-01

    The theory of LCC (Life Cycle Cost) is applied in this paper. The relation between the economic life of weapon and the optimum replacement is analyzed. The method to define the optimum replacement time of weapon is discussed.

  9. Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Directory of Open Access Journals (Sweden)

    Mike Collier

    2011-11-01

    Full Text Available A dielectric barrier discharge excited neutral argon (Ar I excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV emission at 126 nm and near infrared (NIR lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from de-excitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar.

  10. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00069444; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular dete...

  11. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00567140; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events even at rather low transverse energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of 1 MHz are planned, combined with longer latencies up to 60 micro-seconds in order to read out the necessary data from all detector channels. Under these conditions, the current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons a replacement of the LAr front-end and back-end readout system is foreseen for all 182,500 readout channels, with the exception of t...

  12. Development of ATLAS Liquid Argon Calorimeter readout electronics for the HL-LHC

    Science.gov (United States)

    Brooijmans, G.

    2017-07-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular detector pulses of about 400-600 nano-seconds length with signal currents up to 10 mA and a dynamic range of 16 bits. Results from performance simulation of the calorimeter readout system for different options and results from first tests of the components are presented.

  13. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    Science.gov (United States)

    Keller, Sandra; Bibinov, Nikita; Neugebauer, Alexander; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  14. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  15. Liquid Argon TPC Signal Formation, Signal Processing and Hit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baller, Bruce [Fermilab

    2017-03-11

    This document describes the early stage of the reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions requires knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise.

  16. Optical fiber read-out for liquid argon scintillation light

    CERN Document Server

    Csáthy, J Janicskó; Kratz, J; Schönert, S; Wiesinger, Ch

    2016-01-01

    In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R\\&D effort for the GERDA experiment.

  17. Large Area Pico-second Photodetectors (LAPPD) in Liquid Argon

    Science.gov (United States)

    Dharmapalan, Ranjan; Lappd Collaboration

    2015-04-01

    The Large Area Pico-second Photodetector (LAPPD) project has recently produced the first working devices with a small form factor and pico-second timing resolution. A number of current and proposed neutrino and dark matter experiments use liquid argon as a detector medium. A flat photodetector with excellent timing resolution will help with background suppression and improve the overall sensitivity of the experiment. We present the research done and some preliminary results to customize the LAPPD devices to work in a cryogenic environment. Argonne National Laboratory (LDRD) and DOE.

  18. Dimerization of argon and the properties of its small clusters

    Science.gov (United States)

    Titov, S. V.; Serov, S. A.; Ostrovskii, G. M.

    2016-12-01

    Statistical thermodynamic means are used to study the bound state of a small cluster AN (2 ≤ N ≤ 5) of Lennard-Jones particles in a spherical cavity. The statistical sum is calculated by the Monte Carlo method. For the dimer, integration is reduced to quadratures. The integration region contains only phase space points corresponding to the bound cluster state. Dimerization constant 2A = A2 is calculated via the probability of finding a molecule in the bound state using the example of argon.

  19. Kinetic modeling of the Townsend breakdown in argon

    Science.gov (United States)

    Macheret, S. O.; Shneider, M. N.

    2013-10-01

    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  20. The abundances of neon, sulfur, and argon in planetary nebulae

    Science.gov (United States)

    Beck, S. C.; Lacy, J. H.; Townes, C. H.; Aller, L. H.; Geballe, T. R.; Baas, F.

    1981-01-01

    New infrared observations of Ne II, Ar III, and S IV are used in optical observations of other ionization states of the considered elements to evaluate the abundances of neon, argon, and sulfur in 18 planetary nebulae. Attention is also given to one or more of the infrared lines in 18 other nebulae. It is pointed out that S IV was detected in approximately 90% of the observed objects, while Ar III was found in about 80%, and Ne II in roughly one-third. It is noted that optical observations typically include only a limited region of the nebula, while the infrared measurements frequently involve integration over the entire nebular image.

  1. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  2. Total disc replacement.

    Science.gov (United States)

    Vital, J-M; Boissière, L

    2014-02-01

    Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    HR/SOC

    2001-01-01

    The French Ministry of Foreign Affairs has informed the Organization that it is shortly to replace all diplomatic cards, special cards and employment permits ('attestations de fonctions') now held by members of the personnel and their families. Between 2 July and 31 December 2001, these cards are to be replaced by secure, computerized equivalents. The old cards may continue to be used until 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015), in order to fill in a 'fiche individuelle' form, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format. The French card in their possession. An A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done...

  4. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division; Cards.Service@cern.ch

    2001-01-01

    The French Ministry of Foreign Affairs is currently replacing all diplomatic cards, special cards and employment permits («attestations de fonctions») held by members of the personnel and their families. These cards are replaced by secure, computerized equivalents. The old cards may no longer be used after 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015) between 8h30 and 12h30, in order to fill in a «fiche individuelle» form, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format, the French card in their possession, an A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done so, are also requested...

  5. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The French Ministry of Foreign Affairs has informed the Organization that it is shortly to replace all diplomatic cards, special cards and employment permits ('attestations de fonctions') now held by members of the personnel and their families. Between 2 July and 31 December 2001, these cards are to be replaced by secure, computerized equivalents. The old cards may continue to be used until 31 December 2001. For the purposes of the handover, members of the personnel are asked to go to the cards office (33/1-015), taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format, The French card in their possession, an A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done so, are also requested to take these items to the c...

  6. REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The French Ministry of Foreign Affairs has informed the Organization that it is shortly to replace all diplomatic cards, special cards and employment permits ('attestations de fonctions') now held by members of the personnel and their families. Between 2 July and 31 December 2001, these cards are to be replaced by secure, computerized equivalents. A 'personnel office' stamped photocopy of the old cards may continue to be used until 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015), between 8:30 and 12:30, in order to fill a 'fiche individuelle' form (in black ink only), which has to be personally signed by themselves and another separately signed by members of their family, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format (signed on the back) The French card in their possession an A4 photocopy of the same Fre...

  7. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  8. Faster Replacement Paths

    CERN Document Server

    Williams, Virginia Vassilevska

    2010-01-01

    The replacement paths problem for directed graphs is to find for given nodes s and t and every edge e on the shortest path between them, the shortest path between s and t which avoids e. For unweighted directed graphs on n vertices, the best known algorithm runtime was \\tilde{O}(n^{2.5}) by Roditty and Zwick. For graphs with integer weights in {-M,...,M}, Weimann and Yuster recently showed that one can use fast matrix multiplication and solve the problem in O(Mn^{2.584}) time, a runtime which would be O(Mn^{2.33}) if the exponent \\omega of matrix multiplication is 2. We improve both of these algorithms. Our new algorithm also relies on fast matrix multiplication and runs in O(M n^{\\omega} polylog(n)) time if \\omega>2 and O(n^{2+\\eps}) for any \\eps>0 if \\omega=2. Our result shows that, at least for small integer weights, the replacement paths problem in directed graphs may be easier than the related all pairs shortest paths problem in directed graphs, as the current best runtime for the latter is \\Omega(n^{2.5...

  9. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  10. Prediction of Underground Argon Content for Dark Matter Experiments

    CERN Document Server

    Mei, D -M; Spaans, J; Koppang, M; Hime, A; Keller, C; Gehman, C M

    2009-01-01

    In this paper, we demonstrate the use of physical models to evaluate the production of $^{39}$Ar and $^{40}$Ar underground. Considering both cosmogenic $^{39}$Ar production and radiogenic $^{40}$Ar production in situ and from external sources, we can derive the ratio of $^{39}$Ar to $^{40}$Ar in underground sources. We show for the first time that the $^{39}$Ar production underground is dominated by stopping negative muon capture on $^{39}$K and ($\\alpha,n)$ induced subsequent $^{39}$K(n,p)$^{39}$Ar reactions. The production of $^{39}$Ar is shown as a function of depth. We demonstrate that argon depleted in $^{39}$Ar can be obtained only if the depth of the underground resources is greater than 500 m.w.e. below the surface. The depletion factor depends strongly on both radioactivity level and potassium content in the rock. We measure the radioactivity concentration and potassium concentration in the rock for a potential site of an underground argon source in South Dakota. Depending on the probability of $^{39...

  11. Transpupillary argon laser cyclophotocoagulation in the treatment of traumatic glaucoma.

    Science.gov (United States)

    Kim, D D; Moster, M R

    1999-10-01

    A patient with traumatic glaucoma who underwent transpupillary argon laser cyclophotocoagulation for management of uncontrolled intraocular pressure (IOP) despite maximally tolerated medical therapy is discussed. In this patient, pars plana vitrectomy, lensectomy, and removal of 180 degrees of necrotic iris had been performed after a blunt trauma with a bungee cord. Six weeks after surgery, the patient presented with an IOP of 40 mmHg despite therapy with three aqueous suppressants. The patient refused further surgical intervention and opted for transpupillary argon laser cyclophotocoagulation (TALC). The laser setting was 1,000 mW, with a 50-micron spot size for 0.1 second. A total of 293 laser exposures through a Goldmann contact lens was administered to all visible ciliary processes over 180 degrees where iris structures were absent. Ten weeks after TALC, the patient's IOP remained controlled with medications at 16 mmHg, and visual acuity had improved to 20/25 with an aphakic contact lens. In selected patients whose ciliary processes are visible with indirect gonioscopy due to the defect in the iris, TALC may be an effective alternative cyclodestructive procedure to lower IOP when conventional medical or laser treatments are not successful.

  12. Converging of Argon Cluster Ion Beams with a Glass Capillary

    Science.gov (United States)

    Shoji, Kazuhiro; Iuchi, Kensuke; Izumi, Motoki; Moritani, Kousuke; Inui, Norio; Mochiji, Kozo

    We have investigated the converging behavior of argon gas cluster ion beam passed through a glass capillary. The gas cluster ions are attractive as a projectile for SIMS from the view point of minimization of the damages. The cluster ion beam of 5 keV consisting of 500˜3000 argon atoms was injected in the capillary. The inner diameters of the capillary at the inlet and outlet were 0.8 mm and 9.6˜140 μm, respectively. Ion current from the outlet of the all the capillaries were detected. We obtained the converging factor of 2˜7, which depended on the incident ion current. The kinetic energy of the incident ions was found to be reduced by 20˜30% by passing through the capillary. Contrary, the velocity of the ions was not changed. These facts suggest that the cluster becomes 20˜30% smaller in mass by passing through the capillary. As far as we know, this is the first report on the study of the converging of cluster ions by using a glass capillary.

  13. Monte Carlo simulation of electron back diffusion in argon

    Science.gov (United States)

    Radmilović, M.; Stojanović, V.; Petrović, Z. Lj.

    1999-10-01

    Monte Carlo simulation was applied to study the back-diffusion of electrons in argon at low and moderate values of E/N from 10Td to 10 kTd. Simulations were performed for gaps of 1 cm and for pressures corresponding to the breakdown voltages taken from experimental Paschen curves. Effects of inelastic collisions, ionization, reflection of electrons and anisotropic scattering as well as anisotropic initial and reflected angular distributions of electrons were included. A complete and detailed set of electron scattering cross sections that describes well electron transport in argon was used. We found a very good agreement of the results of simulations with the experimental data for well defined initial conditions, and with several models available in the literature.(A.V. Phelps and Z.LJ. Petrović), Plasma Sources Sci. Tehnol. 8, R21 (1999). While effect of reflection may be large, for realistic values of reflection coefficient and for realistic secondary electron productions the effect may be neglected for the accuracy required in gas discharge modeling.

  14. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...... is associated to a solidification process. The final decomposition to La2O3 takes place via two intermediate products: La2O(C3H7CO2)4 and La2O2CO3 with release of CO2 and the symmetrical ketone C3H7COC3H7.......The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate...

  15. The development of a color-magnitude diagram for active galactic nuclei (AGN): hope for a new standard candle

    Science.gov (United States)

    McGinnis, G.; Chung, S.; Gonzales, E. V.; Gorjian, V.; Pruett, L.

    2015-12-01

    Of the galaxies in our universe, only a small percentage currently have Active Galactic Nuclei (AGN). These galaxies tend to be further out in the universe and older, and are different from inactive galaxies in that they emit high amounts of energy from their central black holes. These AGN can be classified as either Seyferts or quasars, depending on the amount of energy emitted from the center (less or more). We are studying the correlation between the ratio of dust emission and accretion disk emission to luminosities of AGN in order to determine if there is a relationship strong enough to act as a predictive model for distance within the universe. This relationship can be used as a standard candle if luminosity is found to determine distances in space. We have created a color-magnitude diagram depicting this relationship between luminosity and wavelengths, similar to the Hertzsprung-Russell (HR) diagram. The more luminous the AGN, the more dust surface area over which to emit energy, which results in a greater near-infrared (NIR) luminosity. This differs from previous research because we use NIR to differentiate accretion from dust emission. Using data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS), we analyzed over one thousand Type 1 Seyferts and quasars. We studied data at different wavelengths in order to show the relationship between color (the ratio of one wavelength to another) and luminosity. It was found that plotting filters i-K (the visible and mid-infrared regions of the electromagnetic spectrum) against the magnitude absolute K (luminosity) showed a strong correlation. Furthermore, the redshift range between 0.14 and 0.15 was the most promising, with an R2 of 0.66.

  16. Toleration, Synthesis or Replacement?

    DEFF Research Database (Denmark)

    Holtermann, Jakob v. H.; Madsen, Mikael Rask

    2016-01-01

    to have considerable problems keeping a clear focus on the key question: What are the implications of this empirical turn in terms of philosophy of legal science, of the social understanding of IL, and, not least, of the place of doctrinal scholarship after the alleged Wende? What is needed, we argue......, in order to answer is not yet another partisan suggestion, but rather an attempt at making intelligible both the oppositions and the possibilities of synthesis between normative and empirical approaches to law. Based on our assessment and rational reconstruction of current arguments and positions, we...... therefore outline a taxonomy consisting of the following three basic, ideal-types in terms of the epistemological understanding of the interface of law and empirical studies: toleration, synthesis and replacement. This tripartite model proves useful with a view to teasing out and better articulating...

  17. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings

    Science.gov (United States)

    Ott, Wayne R.; Siegmann, Hans C.

    This study employed two continuous particle monitors operating on different measurement principles to measure concentrations simultaneously from common combustion sources in indoor, outdoor, and in-transit settings. The pair of instruments use (a) photo-charging (PC) operating on the principle ionization of fine particles that responds to surface particulate polycyclic aromatic hydrocarbons (PPAHs), and (b) diffusion charging (DC) calibrated to measure the active surface area of fine particles. The sources studied included: (1) secondhand smoke (cigarettes, cigars, and pipes), (2) incense (stick and cone), (3) candles used as food warmers, (4) cooking (toasting bread and frying meat), (5) fireplaces and ambient wood smoke, and (6) in-vehicle exposures traveling on California arterials and interstate highways. The ratio of the PC to the DC readings, or the PC/DC ratio, was found to be different for major categories of sources. Cooking, burning toast, and using a "canned heat" food warmer gave PC/DC ratios close to zero. Controlled experiments with 10 cigarettes averaged 0.15 ng mm -2 (ranging from 0.11 to 0.19 ng mm -2), which was similar to the PC/DC ratio for a cigar, although a pipe was slightly lower (0.09 ng mm -2). Large incense sticks had PC/DC ratios similar to those of cigarettes and cigars. The PC/DC ratios for ambient wood smoke averaged 0.29 ng mm -2 on 6 dates, or about twice those of cigarettes and cigars, reflecting a higher ratio of PAH to active surface area. The smoke from two artificial logs in a residential fireplace had a PC/DC ratio of 0.33-0.35 ng mm -2. The emissions from candles were found to vary, depending on how the candles were burned. If the candle flickered and generated soot, a higher PC/DC ratio resulted than if the candle burned uniformly in still air. Inserting piece of metal into the candle's flame caused high PPAH emissions with a record PC/DC reading of 1.8 ng mm -2. In-vehicle exposures measured on 43- and 50-min drives on a

  18. Towards a liquid Argon TPC without evacuation filling of a 6$m^3$ vessel with argon gas from air to ppm impurities concentration through flushing

    CERN Document Server

    Curioni, A; Gendotti, A; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Resnati, F; Rubbia, A; Coleman, J; Lewis, M; Mavrokoridis, K; McCormick, K; Touramanis, C

    2010-01-01

    In this paper we present a successful experimental test of filling a volume of 6 $m^3$ with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to $all$ sources of impurities affecting directly the argon scintillation.

  19. Ful distil ation argon producing crud argon column on operating experience%全精馏制氩粗氩塔操作经验浅谈

    Institute of Scientific and Technical Information of China (English)

    马光显

    2015-01-01

    This paper briefly introduces the ful distil ation argon recovery process in the crude argon column in air separation system of cooling,heating and put some matters needing attention in use.%简要介绍了全精馏制氩过程中粗氩塔在空分系统降温、升温及投用中的一些注意事项。

  20. Study of electron recombination in liquid argon with the ICARUS TPC

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bruzzese, R.; Bueno, A.; Buzzanca, M.; Calligarich, E.; Campanelli, M.; Carbonara, F.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, K.; Cline, D.; Cocco, A.G.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Di Cicco, A.; Dolfini, R.; Ereditato, A.; Felcini, M.; Ferrari, A.; Ferri, F.; Fiorillo, G.; Galli, S.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Mangano, G.; Markiewicz, M.; Martinez de la Ossa, A.; Matthey, C.; Mauri, F.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.R. E-mail: paola.sala@cern.ch; Santorelli, R.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Spinelli, N.; Stepaniak, J.; Sulej, R.; Szarska, M.; Szeptycka, M.; Terrani, M.; Velotta, R.; Ventura, S.; Vignoli, C.; Wang, H.; Wang, X.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W

    2004-05-11

    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out.

  1. Characterising the light output from Argon bombs by two simultaneous diagnostic techniques

    CSIR Research Space (South Africa)

    Olivier, M

    2013-01-01

    Full Text Available The light output from Argon-bombs was investigated by means of ultra high speed photography (Cordin Model 550-32 camera) and locally developed photodiode sensors. Tubes of various sizes were inflated with Argon gas, and were detonated on one side...

  2. High-pressure gas hydrates of argon: compositions and equations of state.

    Science.gov (United States)

    Manakov, Andrey Yu; Ogienko, Andrey G; Tkacz, Marek; Lipkowski, Janusz; Stoporev, Andrey S; Kutaev, Nikolay V

    2011-08-11

    Volume changes corresponding to transitions between different phases of high-pressure argon gas hydrates were studied with a piston-cylinder apparatus at room temperature. Combination of these data with the data taken from the literature allowed us to obtain self-consistent set of data concerning the equations of state and compositions of the high-pressure hydrates of argon.

  3. Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    Science.gov (United States)

    Grace, Emily; Butcher, Alistair; Monroe, Jocelyn; Nikkel, James A.

    2017-09-01

    Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors. The index of refraction of liquid argon at the scintillation wavelength has not been measured, and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using existing data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship.

  4. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  5. Teeming stream protection using an argon shroud during casting of steel ingots

    Science.gov (United States)

    Zhang, Chao-jie; Bao, Yan-ping; Wang, Min; Zhang, Le-chen

    2017-01-01

    Two kinds of argon shroud protection devices with two different basic structures were designed and investigated. Industrial experiments and numerical simulations were used to examine the protection effect, and the mechanism of air entrapment during the casting of steel ingots was analyzed. The influence of the structure of the argon shroud protection device on the protection effect was investigated. An argon shroud protection device mounted to the nozzle holder on the bottom of the ladle does not provide a good protection effect because air can easily flow into the teeming system and cause reoxidation of molten steel during teeming. By contrast, an argon shroud protection device seated on the top of the central trumpet provides an excellent protection effect, where air has little chance of flowing into the teeming system during casting. The feasibilities of the argon shroud protection devices are discussed.

  6. Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    CERN Document Server

    Grace, Emily

    2015-01-01

    Like all the noble elements, argon and xenon are scintillators, \\emph{i.e.} they produce light when exposed to radiation. Large liquid argon detectors have become widely used in low background experiments, including dark matter and neutrino research. However, the index of refraction of liquid argon at the scintillation wavelength has not been measured and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using previously measured data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship. As a point of validation, we compare our extrapolated index of refraction for liquid xenon against the measured value and find agreement within the uncertainties. This method results in a Rayle...

  7. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    Science.gov (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  8. Simulation of argon response and light detection in the DarkSide-50 dual phase TPC

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; et al.

    2017-07-18

    A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.

  9. Iron replacement therapy

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Coskun, Mehmet; Weiss, Günter

    2016-01-01

    PURPOSE OF REVIEW: Approximately, one-third of the world's population suffers from anemia, and at least half of these cases are because of iron deficiency. With the introduction of new intravenous iron preparations over the last decade, uncertainty has arisen when these compounds should be admini...... treatment, when to follow-up for relapse, which dosage and type of therapy should be recommended or not recommended, and if some patients should not be treated....... be administered and under which circumstances oral therapy is still an appropriate and effective treatment. RECENT FINDINGS: Numerous guidelines are available, but none go into detail about therapeutic start and end points or how iron-deficiency anemia should be best treated depending on the underlying cause...... of iron deficiency or in regard to concomitant underlying or additional diseases. SUMMARY: The study points to major issues to be considered in revisions of future guidelines for the true optimal iron replacement therapy, including how to assess the need for treatment, when to start and when to stop...

  10. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F

    1997-01-01

    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  11. Nitridation in Photon-Assisted Process Using Argon Excimer Lamp

    Science.gov (United States)

    Toshikawa, Kiyohiko; Amari, Kouichi; Ishimura, Sou; Katto, Masahito; Yokotani, Atsushi; Kurosawa, Kou

    2006-05-01

    We attempted silicon nitridation that continuously deposits silicon with monosilane (SiH4) and nitrides the silicon with ammonia (NH3) at a low temperature using a vacuum ultraviolet excimer lamp. We used an argon excimer lamp (λ=126 nm, h ν=9.8 eV) so that SiH4 and NH3 can absorb photons and dissociate. Nitrogen exists only near the film surface at a low temperature, and its concentration increases at a high temperature. This photon-assisted process is very feasible for the nitridation of semiconductor devices and flat panel displays in the near future, because it is a low-temperature and low-damage process.

  12. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  13. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching

    Directory of Open Access Journals (Sweden)

    Jolie M. Nokes

    2016-03-01

    Full Text Available We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH substrates directly in commodity shrink wrap film utilizing Argon (Ar plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM images confirm the presence of these biomimetic structures. Contact angle (CA and contact angle hysteresis (CAH measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  14. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  15. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching.

    Science.gov (United States)

    Nokes, Jolie M; Sharma, Himanshu; Tu, Roger; Kim, Monica Y; Chu, Michael; Siddiqui, Ali; Khine, Michelle

    2016-03-14

    We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  16. Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors

    CERN Document Server

    Jones, B J P; Conrad, J M; Pla-Dalmau, A

    2013-01-01

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone (BP). We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  17. Argon plasma coagulation for treatment of hemorrhagic radiation gastroduodenitis

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Shu-Ji; Aoyama, Nobuo; Shirasaka, Daisuke; Inoue, Takashi; Kuroda, Kohei; Ebara, Shigeyuki; Tamura, Takao; Miyamoto, Masaki; Kasuga, Masato [Kobe Univ. (Japan). Graduate School of Medicine

    2002-01-01

    A 79-year-old man who had received radiotherapy for portal vein thrombosis due to hepatocellular carcinoma (HCC) 5 months earlier, showed progressive anemia and melena. Endoscopy on admission revealed diffuse bleeding from multiple telangiectasias on the anterior wall of the antrum and bulbus. We treated this patient with a new non-contact hemostatic method: the argon plasma coagulator (APC). The melena stopped after the first session and the hemoglobin level remained stable for 7 months. No delayed complications have been observed. Gastrointestinal bleeding from chronic radiation gastroduodenitis is rarely reported compared with radiation proctitis. This case demonstrates that APC is effective for hemostasis of diffuse bleeding from radiation gastroduodenitis, just as for radiation protitis. (author)

  18. A Thermodynamic Model for Argon Plasma Kernel Formation

    Directory of Open Access Journals (Sweden)

    James Keck

    2010-11-01

    Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.

  19. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of particles are needed to fully exploit the potential of the LAr-TPC technique. Herein, the novel method for electron neutrino classification is presented. The method constructs a feature descriptor from images of observed event. It characterizes the signal distribution propagated from vertex of interest, where the particle interacts with the detector medium. The classifier is learned with a constructed feature descriptor to decide whether the images represent the electron neutrino or cascade produced by photons. The proposed ap...

  20. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

  1. Liquid argon TPC signal formation, signal processing and reconstruction techniques

    Science.gov (United States)

    Baller, B.

    2017-07-01

    This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.

  2. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida;

    2015-01-01

    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...... into Y2O2CO3 with release of CO2 and 6-undecanone between 280°C and 490°C. A side reaction appears to yield elemental carbon and volatile decane (C10H22). Y2O2CO3 is converted to Y2O3 with release of CO2 between 500°C and 975°C....

  3. Uranium (III) precipitation in molten chloride by wet argon sparging

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  4. Flush-mounted probe diagnostics for argon glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  5. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  6. Grid pattern Argon Laser photocoagulation for diabetic diffuse macular edema

    Directory of Open Access Journals (Sweden)

    Karkhane R

    1998-05-01

    Full Text Available Purpose: to determine the effect of Grid pattern laser photocoagulation on diabetic diffuse macular edema with assessment of visual outcome. Patients & Methods: The author reviewed the medical records of 84 eyes of 62 patients with diabetic diffuse macular edema treated with Grid pattern green Argon laser photocoagulation in Farabi Eye Hospital between the years 1992-1995, the follow-up period was 16-48 months (average 24.55±6.42, median 28 mounths. Results: Visual acuity was improved in 11.9%; unchanged in 65.4% and worsened in 22.7% of eyes. Conclusion: In assessing long-term visual outcome, Grid laser photocoagulation is an effective modality in maintaining or improving visual acuity.

  7. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)

    2013-10-15

    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  8. Argon plasma immersion ion implantation of polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurin, A. [Applied and Plasma Physics, School of Physics (A28), University of Sydney, New South Wales 2006 (Australia)], E-mail: kond@mailcity.com; Gan, B.K.; Bilek, M.M.M.; McKenzie, D.R.; Mizuno, K. [Applied and Plasma Physics, School of Physics (A28), University of Sydney, New South Wales 2006 (Australia); Wuhrer, R. [Microstructural Analysis Unit, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 (Australia)

    2008-04-15

    Plasma immersion ion implantation (PIII), using bias voltages of 5, 10, 15 and 20 kV in an argon plasma and fluences in the range of 2 x 10{sup 14}-2 x 10{sup 16} ions/cm{sup 2}, was applied to 100 nm polystyrene films coated on silicon wafer substrates. The etching kinetics and structural changes induced in the polystyrene films were investigated with ellipsometry, Raman and FTIR spectroscopies, optical and scanning electron microscopies, atomic force microscopy and contact angle measurements. Effects such as carbonisation, oxidation and cross-linking were observed and their dependence on the applied bias voltage is reported. Variations in the etching rate during the PIII process and its relationship to carbonisation of the modified surface layer are explored.

  9. Photoionisation studies of homogeneous argon and krypton clusters using TPEPICO

    Energy Technology Data Exchange (ETDEWEB)

    Kamke, W.; Vries, J. de; Krauss, J.; Kaiser, E.; Kamke, B.; Hertel, I.V. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik)

    1989-12-01

    The photoionisation threshold region of homogeneous argon and krypton clusters Ar{sub n} and Kr{sub n} for n up to 24 formed in a free jet expansion has been studied in detail, using the threshold photoelectron photoion coincidence (TPEPICO) time of flight technique. Measurements performed at a variety of different expansion conditions (nozzle temperature and stagnation pressure) demonstrate that fragmentation of larger clusters contributes substantially to the shape of the TPEPICO spectra even for the smallest clusters and at all photon energies higher than about 200 meV to 400 meV above the ionisation threshold. The determination of ionisation potentials for these cluster ions is discussed and careful estimates are given and compared with recent theoretical values. (orig.).

  10. Studies on argon collisions with smooth and rough tungsten surfaces.

    Science.gov (United States)

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2013-09-01

    The aim of this work is to investigate argon scattering behaviors on the smooth and rough tungsten surfaces. Current work deals with numerical simulation of nanoscale heat transfer process accompanying with rarefied gas-solid substrate interactions using molecular dynamics (MD) method. Taking into account that this method is very time consuming, MD simulation using CUDA capable Graphic Cards is implemented. The results found that imperfection of the surface significantly influences on gas atom's momentum change upon collision. However, the energy exchange rate remains unchanged regardless to the surface roughness. This finding is in contrast with the results in extant literatures. We believed the results found in this paper are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow.

  11. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  12. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  13. Spectroscopic studies of cryogenic fluids: Benzene in argon and helium

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-09-01

    Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.

  14. Using your shoulder after replacement surgery

    Science.gov (United States)

    Joint replacement surgery - using your shoulder; Shoulder replacement surgery - after ... You have had shoulder replacement surgery to replace the bones of your shoulder joint with artificial parts. The parts include a stem made of metal and a ...

  15. Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tianchao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    recent analysis of health impacts from air pollutant inhalation in homes found that PM2.5 is the most damaging at the population level. Chronic exposure to elevated PM2.5 has the potential to damage human respiratory systems, and may result in premature death. PM2.5 exposures in homes can be mitigated through various approaches including kitchen exhaust ventilation, filtration, indoor pollutant source reduction and designing ventilation systems to reduce the entry of PM2.5 from outdoors. Analysis of the potential benefits and costs of various approaches can be accomplished using computer codes that simulate the key physical processes including emissions, dilution and ventilation. The largest sources of PM2.5 in residences broadly are entry from outdoors and emissions from indoor combustion. The largest indoor sources are tobacco combustion (smoking), cooking and the burning of candles and incense. Data on the magnitude of PM2.5 and other pollutant emissions from these events and processes are required to conduct simulations for analysis. The goal of this study was to produce a database of pollutant emission rates associated with cooking and the burning of candles and incense. The target use of these data is for indoor air quality modeling.

  16. Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh

    Science.gov (United States)

    Lister, Gordon S.; Baldwin, Suzanne L.

    1996-03-01

    Argon diffusion in mineral grains has been numerically modelled using P-T-t histories that may be relevant to multiply metamorphosed orogenic terranes and for rocks that have resided at high ambient temperatures in the Earth's crust for long durations. The MacArgon program generates argon concentration profiles in minerals assuming argon loss occurs via volume diffusion. It can be run on an Apple Macintosh computer, with arbitrary P-T-t histories used as input. Finite-difference equations are used in the calculation of 40Ar∗ concentration profiles across individual diffusion domains. The associated MacSpectrometer generates model spectra after a P-T-t history has been specified. The form of model {40Ar }/{39Ar } apparent age spectra suggests that considerable caution needs to be exercised in the use of the closure temperature concept and in the interpretation of the significance of plateaux observed in many {40Ar }/{39Ar } apparent age spectra, particularly in cases involving metamorphic rocks, where complex P-T-t histories might apply. Although modelled spectra cannot be directly compared to experimentally determined {40Ar }/{39Ar } age spectra, especially when hydrous phases are involved or in cases where loss of argon has not occurred via volume diffusion, they do provide insight into theoretically expected age spectra for samples that have experienced complex P-T-t histories. MacArgon can be obtained by e-mail from MacArgon artemis.earth.monash.edu.au with enquiries to gordonartemis.earth.monash.edu.au

  17. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  18. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  19. Educating My Replacement

    Science.gov (United States)

    Tarter, Jill

    , in partnership with the dedicated teachers out there, I think I can help promote the critical thinking skills and scientific literacy of the next generation of voters. Hopefully, I can also help train my replacement to be a better scientist, capable of seizing all the opportunities generated by advances in technology and our improved understanding of the universe to craft search strategies with greater probability of success than those I have initiated.

  20. [Ascending aorta replacement late after aortic valve replacement].

    Science.gov (United States)

    Hayashi, Yasunari; Ito, Toshiaki; Maekawa, Atsuo; Sawaki, Sadanari; Fujii, Genyo; Hoshino, Satoshi; Tokoro, Masayoshi; Yanagisawa, Junji

    2013-07-01

    Replacement of the asceding aorta is indicated in patients undergoing aortic valve replacement( AVR), if the diameter of the ascending aorta is greater than 5.0 cm. If the diameter of the asceding aorta is from 4.0 to 5.0 cm, it was arguable whether replacement of the ascending aorta should be performed. Nine patients who underwent reoperative ascending aorta replacement after AVR were reviewed retrospectively. Reoperation on the asending aorta replacement was performed 11.8±7.2 years (range 1y5m~23y3m) after AVR. Mean patient age was 69.9±6.3 (range 60~81). In 2 cases, reoperations were performed early year after AVR. Although ascending aorta was dilated at the 1st operation, replacement wasn't performed for the age and minimally invasive cardiac surgery (MICS). In 3 cases, reoperations were performed more than 10 years later. On these cases, ascending aorta aneurysm and dissection occurred with no pain and were pointed out by computed tomography(CT) or ultrasonic cardiogram(UCG). We think that patients with dilatation of the ascending aorta should undergo AVR and aorta replacement at the 1st operation regardness of age. It is important that patients who underwent AVR should undergo a regular checkup on the ascending aorta.

  1. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nitturi Naresh Kumar

    2016-08-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is widely used in artificial joints in the replacement of knee, hip and shoulder that has been impaired as a result of arthritis or other degenerative joint diseases. The UHMWPE made plastic cup is placed in the joint socket in contact with a metal or ceramic ball affixed to a metal stem. Effective reinforcement of multi-walled carbon nanotubes (MWCNTs in UHMWPE results in improved mechanical and tribological properties. The hydrophobic nature of the nanocomposites surface results in lesser contact with biological fluids during the physiological interaction. In this project, we investigate the UHMWPE/MWCNTs nanocomposites reinforced with MWCNTs at different concentrations. The samples were treated with cold argon plasma at different exposure times. The water contact angles for 60 min plasma-treated nanocomposites with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % MWCNTs were found to be 55.65°, 52.51°, 48.01°, 43.72°, and 37.18° respectively. Increasing the treatment time of nanocomposites has shown transformation from a hydrophobic to a hydrophilic nature due to carboxyl groups being bonded on the surface for treated nanocomposites. Wear analysis was performed under dry, and also under biological lubrication, conditions of all treated samples. The wear factor of untreated pure UHMWPE sample was reduced by 68% and 80%, under dry and lubricated conditions, respectively, as compared to 2 wt % 60 min-treated sample. The kinetic friction co-efficient was also noted under both conditions. The hardness of nanocomposites increased with both MWCNTs loading and plasma treatment time. Similarly, the surface roughness of the nanocomposites was reduced.

  2. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  3. Surface compositional changes in GaAs subjected to argon plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Surdu-Bob, C.C.; Sullivan, J.L.; Saied, S.O.; Layberry, R.; Aflori, M

    2002-12-30

    X-ray photoelectron spectroscopy (XPS) has been employed to study surface compositional changes in GaAs (1 0 0) subjected to argon plasma treatment. The experimental results have been explained in terms of predicted argon ion energies, measured ion densities and etch rates. A model is proposed for the processes taking place at the surface of GaAs in terms of segregation, sputtering and surface relaxation. Stopping and range of ions in matter (SRIM) code has also been employedan aid to identification of the mechanisms responsible for the compositional changes. Argon plasma treatment induced surface oxidation at very low energies and sputtering and surface damage with increasing energy.

  4. Wetting and evaporation of argon nanodroplets on smooth and rough substrates: Molecular dynamics simulations

    Science.gov (United States)

    Li, Qun; Wang, Baohe; Chen, Yonggang; Zhao, Zongchang

    2016-10-01

    Wetting and evaporation behaviors of argon nanodroplets on smooth and rough substrates are studied using molecular dynamics simulations. Effects of interaction energy between solid and argon atoms on wetting and evaporation and differences between nanodroplets on smooth and rough substrates have been investigated. The results show that for both smooth and rough substrates, as the interaction energy between solid and argon atoms increases, the contact angle and total evaporation increase. For rough substrates, the variations of contact angle and contact radius during evaporation progress are much more complex and the total evaporation is much larger than that of smooth substrates.

  5. Numerical and experimental study of transferred arcs in argon

    Energy Technology Data Exchange (ETDEWEB)

    Bini, R [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Monno, M [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Boulos, M I [Centre de Recherche en Energie, Plasma et Electrochimie (CREPE), Department de Genie Chimique Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, J1K1R2 (Canada)

    2006-08-07

    The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall

  6. Electrocatalysts Prepared by Galvanic Replacement

    OpenAIRE

    Athanasios Papaderakis; Ioanna Mintsouli; Jenia Georgieva; Sotiris Sotiropoulos

    2017-01-01

    Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases) hydrogen evolution too...

  7. Bronchoscopic electrocauterization versus argon plasma coagulation as a palliative management for patients with bronchogenic carcinoma

    Directory of Open Access Journals (Sweden)

    Amgad A. Farhat

    2015-01-01

    It was concluded that, therapeutic bronchoscopic intervention either by electrocautery or argon plasma coagulation is a safe and effective method for palliative management of patients with central malignant airway obstruction.

  8. Optimal cytoreduction with neutral argon plasma energy in selected patients with ovarian and primitive peritoneal cancer.

    Science.gov (United States)

    Renaud, Marie Claude; Sebastianelli, Alexandra

    2013-01-01

    Epithelial ovarian cancer (EOC) is a deadly disease for which optimal cytoreduction to microscopic disease has shown the best correlation with survival. Electrically neutral argon plasma technology is a novel surgical tool to allow aggressive cytoreduction in selected patients with EOC, primary peritoneal cancer, and tubal cancer. We conducted a prospective feasibility study of the use of neutral argon plasma technology to complete cytoreductive surgery in order to assess its ability to obtain optimal cytoreduction. Six patients had their surgery completed with the neutral argon plasma device. None of the patients would have had optimal surgery unless the device had been available. All patients had cytoreduction to less than 5 mm to 10 mm without additional morbidity. One patient had complete cytoreduction, and two had residual disease of less than 2 mm. Electrically neutral plasma argon technology is a useful technology to maximize cytoreduction and to reduce tumour burden in selected cases of EOC.

  9. Microwave Spectrum and Molecular Structure of the ARGON-CIS-1,2-DICHLOROETHYLENE Complex

    Science.gov (United States)

    Marshall, Mark D.; Leung, Helen O.; Nelson, Craig J.; Yoon, Leonard H.

    2016-06-01

    The non-planar molecular structure of the complex formed between the argon atom and cis-1,2-dichloroethylene is determined via analysis of its microwave spectrum. Spectra of the 35Cl and 37Cl isotopologues are observed in natural abundance and the nuclear quadrupole splitting due to the two chlorine nuclei is fully resolved. In addition, the complete quadrupole coupling tensor for the cis-1,2-dichloroethylene molecule, including the single non-zero off-diagonal element, has been determined. Unlike the argon-cis-1,2-difluoroethylene and the argon-vinyl chloride complexes, tunneling between the two equivalent non-planar configurations of argon-cis-1,2-dichloroethylene is not observed.

  10. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  11. Performance of the Signal Vacuum Cables of the Liquid Argon Calorimeter Endcap Cryostat Signal Feedthroughs

    CERN Document Server

    Axen, D A; Dowling, A; Dowling, A S; Fincke-Keeler, M; Hodges, T; Holness, F; Ince, T; Keeler, Richard K; Langstaf, R; Lefebvre, M; Lenckowski, M; Lindner, J; MacDonald, R; McDonald, R; Muzzeral, E; Poffenberger, P R; Van Uytven, J; Vowles, G; Wiggins, W

    2003-01-01

    This note presents of brief summary of the design specification and the performance under test of the signal vacuum cables which are used in the signal feedthroughs of the ATLAS liquid argon calorimeter endcap cryostats.

  12. Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy.

    Science.gov (United States)

    Lundwall, M; Pokapanich, W; Bergersen, H; Lindblad, A; Rander, T; Ohrwall, G; Tchaplyguine, M; Barth, S; Hergenhahn, U; Svensson, S; Björneholm, O

    2007-06-01

    Clusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells. Furthermore, the authors show that 2 ML of neon on the argon core is sufficient for neon valence band formation resembling the neon solid. For 1 ML of neon the authors observe a bandwidth narrowing to about half of the bulk value.

  13. Vacuum ultraviolet argon excimer laser excited by optical-field-induced ionized electrons produced in an argon-filled hollow fiber

    Science.gov (United States)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito

    2011-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Part of this work has been supported by

  14. Minimally invasive aortic valve replacement

    DEFF Research Database (Denmark)

    Foghsgaard, Signe; Schmidt, Thomas Andersen; Kjaergard, Henrik K

    2009-01-01

    In this descriptive prospective study, we evaluate the outcomes of surgery in 98 patients who were scheduled to undergo minimally invasive aortic valve replacement. These patients were compared with a group of 50 patients who underwent scheduled aortic valve replacement through a full sternotomy....... The 30-day mortality rate for the 98 patients was zero, although 14 of the 98 mini-sternotomies had to be converted to complete sternotomies intraoperatively due to technical problems. Such conversion doubled the operative time over that of the planned full sternotomies. In the group of patients whose...... is an excellent operation in selected patients, but its true advantages over conventional aortic valve replacement (other than a smaller scar) await evaluation by means of randomized clinical trial. The "extended mini-aortic valve replacement" operation, on the other hand, is a risky procedure that should...

  15. Free electron lifetime achievements in Liquid Argon Imaging TPC

    CERN Document Server

    Baibussinov, B; Calligarich, E; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Rubbia, C; Varanini, F; Ventura, S

    2010-01-01

    A key feature for the success of the Liquid Argon TPC technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be initially and continuously kept at an exceptional purity. New purification techniques have been applied to a 120 litres LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to monitor the LAr purity. The short path length used (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic rays muons at sea level. A free electron lifetime of (21.4+7.3-4.3) ms, namely > 15.8 ms at 90 % C.L. has been observed under stable conditions over several weeks, corresponding to about 15 ppt (part per trillion) of Oxygen equivalent. At 500 V/cm, where the electron speed is approximately of 1.5 mm/us, the free electron lifetime >15 ms corresponds to an attenuation <15 % for a drift path of 5 m, opening the way to reliable operation of LAr TPC for exceptionall...

  16. Using History To Teach Scientific Method: The Case of Argon

    Science.gov (United States)

    Giunta, Carmen J.

    1998-10-01

    The history of science is full of stories that exhibit scientific methodology to an exemplary degree. Such stories can be vehicles for the teaching of scientific thought to non-science majors in general-education science courses, particularly if they do not involve much technical background and are told in ordinary language. This paper illustrates the kind of lessons that can be gleaned from such stories by examining the discovery of argon, an episode replete with examples of how scientists pursue knowledge. Lord Rayleigh's use of multiple methods to determine the density of nitrogen; his persistent tracking down of a small but real anomaly in those measurements; his and William Ramsay's eventual realization that the anomaly was due to a previously unknown but relatively plentiful component of the atmosphere, an inert, monatomic gas; and Ramsay's subsequent successful search for other members of the inert gas family all illustrate the scientific approach to knowledge. This story can be presented to students in Rayleigh's words, annotated to supply background material and to pose questions.

  17. Liquid argon scintillation light studies in LArIAT

    Energy Technology Data Exchange (ETDEWEB)

    Kryczynski, Pawel [Fermilab

    2016-10-12

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  18. Ab interno sclerostomy with a high-powered argon endolaser.

    Science.gov (United States)

    Jaffe, G J; Williams, G A; Mieler, W F; Radius, R L

    1988-10-15

    We used a high-energy argon blue-green laser (15-W maximum power output) to create full-thickness sclerostomies from the region of the anterior chamber angle to the subconjunctival space in pigmented rabbits using an ab interno approach. One to four laser pulses delivered through a 300-micron noncontact fiberoptic probe produced patent sclerostomies in all 20 eyes treated using 0.1-second pulse duration and 5 to 14 W of power. No intraoperative complications were encountered. Intraocular pressure, measured in 12 animals, decreased an average of 12 mm Hg in the treated eye relative to the fellow eye on the first postoperative day. The drop in intraocular pressure was associated with formation of a functioning filtration bleb. Intraocular pressure returned to preoperative levels in ten of 12 (83%) of the animals by the fourth postoperative day, and there was an associated flattening of the filtration bleb. Histologic and radioautographic analysis indicated that the effect of the laser was focal. Tissue damage and cellular proliferative response were limited to within approximately 200 micron of the wound margin.

  19. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  20. TPEPICO studies near ionization threshold of argon and krypton clusters

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, J.; Vries, J. de; Steger, H.; Kaiser, E.; Kamke, B.; Kamke, W. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik Freiburg Univ. (Germany, F.R.). Freiburger Materialforschungszentrum)

    1991-01-01

    Single photon ionization of argon- and krypton clusters has been studied in the region between threshold and the ionization potential of the corresponding atom. Synchrotron radiation from the electron storage ring BESSY is used to ionize the clusters; threshold-photoelectron-photoion-coincidence (TPEPICO)-time-of-flight technique is used to detect ions correlated with the emission of zero-kinetic-energy-electrons. The spectra of the clusters in the range of n=2 to 15 are discussed in view of the extensive fragmentation taking place in these systems. In order to characterize the properties of the clusters a method using scaling laws is applied. The principles and the deduction of Hagena's scaling parameter {Gamma}{sup *} are briefly reviewed. Using {Gamma}{sup *} an experimentally derived mean cluster size for molecular beams can be assigned. This allows one to clearly demonstrate the systematic variations of the measured spectra due to cluster fragmentation. As a general feature it is observed that, in the range studied, the peak in the measured ionization rate for a cluster ion (fragment) of a given size shifts to higher photon energies as the mean cluster size is increased. (orig.).

  1. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    Science.gov (United States)

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  2. Installation of signal feedthroughs on an ATLAS liquid-argon calorimeter end-cap cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The liquid-argon calorimeters used for hadronic energy measurements in the end-cap regions of the ATLAS detector are housed in cryostats to maintain the argon at the very low temperature required. The cryostats are equipped with signal feedthroughs, through which pass the electrical lines carrying signals from the calorimeters. Photos 01, 02, 03: Installation of the signal feedthroughs on the first of the two end-cap cryostats.

  3. Detection of scintillation light in coincidence with ionizing tracks in a liquid argon time projection chamber

    CERN Document Server

    Cennini, P; Rubbia, Carlo; Sergiampietri, F; Bueno, A G; Campanelli, M; Goudsmit, P; Rubbia, André; Periale, L; Suzuki, S; Chen, C; Chen, Y; He, K; Huang, X; Li, Z; Lu, F; Ma, J; Xu, G; Xu, Z; Zhang, C; Zhang, Q; Zheng, S; Cavanna, F; Mazza, D; Piano Mortari, G; Petrera, S; Rossi, C; Mannocchi, G; Picchi, P; Arneodo, F; De Mitri, I; Palamara, O; Cavalli, D; Ferrari, A; Sala, P R; Borio di Tigliole, A A; Cesana, A; Terrani, M; Zavattari, C; Baibusinov, S; Bettini, A; Carpanese, C; Centro, Sandro; Favaretto, D; Pascoli, D; Pepato, Adriano; Pietropaolo, F; Ventura, Sandro; Benetti, P; Calligarich, E; Campo, S; Coco, S; Dolfini, R; Ghedi, B; Gigli-Berzolari, A; Mauri, F; Mazzone, L; Montanari, C; Piazzoli, A; Rappoldi, A; Raselli, G L; Rebuzzi, D; Rossella, M; Scannicchio, D A; Torre, P; Vignoli, C; Cline, D; Otwinowski, S; Wang, H; Woo, J

    1999-01-01

    A system to detect light from liquid argon scintillation has been implemented in a small, ICARUS-like, liquid argon time projection chamber. The system, which uses a VUV-sensitive photomultiplier to collect the light, has recorded many ionizing tracks from cosmic-rays in coincidence with scintillation signals. Our measurements demonstrate that scintillation light detection can provide an effective method for absolute time measurement of events and eventually a useful trigger signal. (19 refs).

  4. TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Ignarra, C M

    2013-01-01

    Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

  5. Optically Forbidden Excitations of 3s Electron of Argon by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    朱林繁; 成华东; 刘小井; 田鹏; 苑震生; 李文斌; 徐克尊

    2003-01-01

    The electron energy loss spectrum of argon in the energy region of 24.5-30.5eV was measured at 2.5 keV impact energy. The line profile parameters of the optically forbidden excitations of 3s-1ns (n = 4-6) and 3s-1nd (n = 3-7) of argon, I.e.,Eγ,Г,q and p,were determined.

  6. Effect of Ginkgo biloba on the lesions induced by retinal argon laser photocoagulation in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Clairambault, P.; Pairault, C.; Droy-Lefaix, M.T.; Magnier, B.; Magnier, M.

    1986-01-09

    In rabbits, retinal argon laser photocoagulation disrupts the arrangement of cell layers and produces interstitial edema. Photochemical and thermal energy is released with production of free oxygenated radicals that are responsible for destruction of cell membranes. Retinal argon laser photocoagulation in rabbits was used as a pharmacologic model to evaluate the protective effect of EGB 761 against membrane lesions and edema. As a strong free radicals scavengers, EGB 761 confirms its protective action on cells membranes and its anti-edema effect.

  7. Configurational Entropy,Diffusivity and Potential Energy Landscape in Liquid Argon

    Institute of Scientific and Technical Information of China (English)

    DUAN Yong-Ping; MA Cong-Xiao; LI Jia-Yun; LI Cong; WANG Dan; LI Mei-Li; SUN Min-Hua

    2009-01-01

    The configurational entropy, diffusion coefficient, dynamics and thermodynamics fragility indices of liquid argon are calculated using molecular dynamics simulations at two densities. The relationship between dynamics and thermodynamics properties is studied. The diffusion coefficient depends linearly on configurational entropy, which is consistent with the hypothesis of Adam-Gibbs. The consistence of dynamics and thermodynamics fragility indices demonstrates that dynamical behaviour is governed by thermodynamics behaviour in glass transition of liquid argon.

  8. Results from the first use of low radioactivity argon in a dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D’Angelo, D.; D’Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39 Ar at a level reduced by a factor ( 1.4 ± 0.2 ) × 10 3 relative to atmospheric argon. We report a background-free null result from ( 2616 ± 43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 × 10 - 44 cm 2 ( 8.6 × 10 - 44 cm 2 , 8.0 × 10 - 43 cm 2 ) for a WIMP mass of 100 GeV / c 2 ( 1 TeV / c 2 , 10 TeV / c 2 ).

  9. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others

    1996-12-31

    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  10. Results from the first use of low radioactivity argon in a dark matter search

    Science.gov (United States)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  11. Measurement of Ar resonance and metastable level number densities in argon containing plasmas

    Science.gov (United States)

    Fiebrandt, Marcel; Hillebrand, Bastian; Spiekermeier, Stefan; Bibinov, Nikita; Böke, Marc; Awakowicz, Peter

    2017-09-01

    The resonance 1s_4~({\\hspace{0pt}}^3P_1), ~1s_2~({\\hspace{0pt}}^1P_1) and metastable 1s_5~({\\hspace{0pt}}^3P_2), ~1s_3~({\\hspace{0pt}}^3P_0) level number densities of argon are determined by means of the branching fraction method in an inductively coupled plasma at 5 Pa and 10 Pa in argon with admixture of hydrogen, nitrogen and oxygen. The 1s_5~({\\hspace{0pt}}^3P_2) densities are compared to laser absorption spectroscopy measurements to evaluate the reliability of the branching fraction method and its limitations. The results are in good agreement and the use of a compact, low cost, low resolution spectrometer (Δλ = 1.3 nm) is sufficient to reliably determine the first four excited states of argon in argon-hydrogen and argon-oxygen mixtures. The addition of nitrogen results in unreliable densities, as the observed argon lines overlap with emission of the N_2(B^3\\Pi_g-A^3Σ_u^+) transition.

  12. Low radioactivity argon dark matter search results from the DarkSide-50 experiment

    CERN Document Server

    Agnes, P; Albuquerque, I F M; Alexander, T; Alton, A K; Arisaka, K; Back, H O; Baldin, B; Biery, K; Bonfini, G; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadonati, L; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Cao, H; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cocco, A G; Covone, G; Crippa, L; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, 25 A; Di Eusanio, F; Di Pietro, G; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giganti, C; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hungerford, E V; Ianni, Al; Ianni, An; James, I; Jollet, C; Keeter, K; Kendziora, C L; Kobychev, V; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Lombardi, P; Luitz, S; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Miletic, T; Milincic, R; Montanari, D; Monte, A; Montuschi, M; Monzani, M; Mosteiro, P; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Nelson, A; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Perasso, S; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeto, A; Reinhold, B; Renshaw, A L; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Sangiorgio, S; Savarese, C; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smallcomb, M; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xu, J; Yang, C; Yoo, J; Zavatarelli, S; Zec, A; Zhong, W; Zhu, C; Zuzel, G

    2015-01-01

    The DarkSide-50 dark matter search reports the first results obtained using a target of low-radioactivity argon extracted from underground sources. The experiment is located at the Laboratori Nazionali del Gran Sasso and uses a two-phase time projection chamber as a detector. A total of 155 kg of low radioactivity argon has been obtained, and we have determined that underground argon is depleted in Ar-39 by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. The underground argon was also found to contain (2.05 +- 0.13) mBq/kg of Kr-85. We found no evidence for dark matter in the form of WIMPs in 70.9 live-days of data with a fiducial mass of (36.9 +- 0.6) kg. When combined with our preceding search with an atmospheric argon target, we set a 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2 ) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2 ).

  13. Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An In Vitro Study.

    Directory of Open Access Journals (Sweden)

    Amirfarhang Miresmaeili

    2014-08-01

    Full Text Available This study was designed to evaluate the effect of argon laser irradiation on development and progress of enamel demineralization around orthodontic brackets.Fifty caries-free, intact human premolars were randomly assigned to one of the following five equal groups: Groups 1 (control and 2: The brackets were bonded using conventional halogen light for 40s and argon laser for 10s, respectively. Teeth in group 3 were lased with argon laser for 10s before bracket bonding with halogen light. Group 4 was the same as group 3 except that brackets were also bonded with argon laser. In group 5 samples were bonded conventionally, immersed in an artificial caries solution for two days and then irradiated for 10s with argon laser. All samples were subjected to demineralization by artificial caries solution for 10 days. After bracket removal, samples were buccolingually sectioned and evaluated by polarized light microscopy. Decalcified lesion depth in each section was measured by a trained examiner in a blind fashion. Data were analyzed in SPSS 14 using one-way ANOVA and Tukey's HSD post hoc test.The control group showed the greatest mean lesion depth while group 5 revealed the lowest. The laser-treated groups had significantly lower mean lesion depth compared with the control group (P<0.05 except for group 4 (P=0.192.Argon laser irradiation for 10s before or during bracket bonding can increase caries resistance of intact and demineralized enamel.

  14. TECHNICAL ANALYSIS BY THE JAPANESE CANDLES METHOD ON THE EXAMPLE OF AGRICULTURAL MARKETS ANALIZA TECHNICZNA METODA SWIEC JAPONSKICH NA PRZYKLADZIE RYNK ROLNYCH

    Directory of Open Access Journals (Sweden)

    ANNA JAKUBCZAK

    2013-03-01

    Full Text Available The key goal of work was to study of basic information possibilities of the Japanese Candles method and to present its usefulness to make decisions on agricultural markets. The method is a result of the evolution of methods of technical analysis, which lasted for centuries. The usefulness of this method to make decisions is high, but significantly affect have the ability to interpret the observed signals and taking into account the specificities of agricultural markets.Celem opracowania bylo zbadanie podstawowych mozliwosci informacyjnych metody swiec japonskich oraz przedstawienie jej przydatnosci do podejmowania decyzji na rynkach rolnych. Zaprezentowano zwiezla ewolucje metod analizy technicznej oraz scharakteryzowano podstawowe narzedzia metody swiec japonskich, takie jak objecie bessy i hossy, pojedyncze swiece i ich formacje dajace sygnal do wycofania z rynku, doji , luki oraz formacje kontynuacji trendu.

  15. Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet%Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    费小猛; Shin-ichi KURODA; Yuki KONDO; Tamio MORI; Katsuhiko HOSOI

    2011-01-01

    Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.

  16. Knee Replacement: What you can Expect

    Science.gov (United States)

    ... improves function lessen with each additional surgery. Artificial knees can wear out Another risk of knee replacement ... replacement surgery to last about two hours. After knee replacement surgery After surgery, you're wheeled to ...

  17. Scintillation light from cosmic-ray muons in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States). Physics Dept.; Mufson, S. [Indiana Univ., Bloomington, IN (United States). Astronomy Dept.; Howard, B. [Indiana Univ., Bloomington, IN (United States). Physics Dept.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  18. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Poterya, V., E-mail: poterya@jh-inst.cas.cz; Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M., E-mail: michal.farnik@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague (Czech Republic)

    2014-08-21

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large Ar{sub N} and (H{sub 2}O){sub N}, N{sup ¯}≈ 10{sup 2}–10{sup 3}, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX){sub n} clusters on Ar{sub N} upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H{sub 2}O){sub N}. The photodissociation on Ar{sub N} leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on Ar{sub N} are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H{sub 2}O){sub N} also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H{sub 3}O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H{sub 3}O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H{sub 2}O){sub N} is trapped in the ice nanoparticle.

  19. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  20. Homologous gene replacement in Physarum

    Energy Technology Data Exchange (ETDEWEB)

    Burland, T.G. [Univ. of Wisconsin, Madison, WI (United States); Pallotta, D. [Laval Univ., Quebec (Canada)

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1 in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.

  1. Resonator Coupling of Two Ring Cavity, Argon-Ion Lasers.

    Science.gov (United States)

    1987-12-01

    mirrors CMi and CM2, which coupled the backward traveling-waves, and coupling beamsplitters CB1 and CB2 , which coupled the forward traveling waves...these elements were replaced with flat, 32% beamsplitters. Alignment of beamsplitters CB1 and CB2 was difficult because each output beam was...Output Couplers--- --- CM2 C B 1 CB2 Figure 4: Orientation of Coupling Beamsplitters. Coupling beamsplitters CB1 and CB2 were roughly aligned such that

  2. Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors

    CERN Document Server

    Galbiati, C

    2007-01-01

    We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be <=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon (39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

  3. Cobra Probes Containing Replaceable Thermocouples

    Science.gov (United States)

    Jones, John; Redding, Adam

    2007-01-01

    A modification of the basic design of cobra probes provides for relatively easy replacement of broken thermocouples. Cobra probes are standard tube-type pressure probes that may also contain thermocouples and that are routinely used in wind tunnels and aeronautical hardware. They are so named because in side views, they resemble a cobra poised to attack. Heretofore, there has been no easy way to replace a broken thermocouple in a cobra probe: instead, it has been necessary to break the probe apart and then rebuild it, typically at a cost between $2,000 and $4,000 (2004 prices). The modified design makes it possible to replace the thermocouple, in minimal time and at relatively low cost, by inserting new thermocouple wire in a tube.

  4. Renal replacement therapy in ICU

    Directory of Open Access Journals (Sweden)

    C Deepa

    2012-01-01

    Full Text Available Diagnosing and managing critically ill patients with renal dysfunction is a part of the daily routine of an intensivist. Acute kidney insufficiency substantially contributes to the morbidity and mortality of critically ill patients. Renal replacement therapy (RRT not only does play a significant role in the treatment of patients with renal failure, acute as well as chronic, but also has spread its domains to the treatment of many other disease conditions such as myaesthenia gravis, septic shock and acute on chronic liver failure. This article briefly outlines the role of renal replacement therapy in ICU.

  5. Prioritization methodology for chemical replacement

    Science.gov (United States)

    Goldberg, Ben; Cruit, Wendy; Schutzenhofer, Scott

    1995-01-01

    This methodology serves to define a system for effective prioritization of efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi quantitative approach derived from quality function deployment techniques (QFD Matrix). QFD is a conceptual map that provides a method of transforming customer wants and needs into quantitative engineering terms. This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives.

  6. Wafer Replacement Cluster Tool (Presentation);

    Energy Technology Data Exchange (ETDEWEB)

    Branz, H. M.

    2008-04-01

    This presentation on wafer replacement cluster tool discusses: (1) Platform for advanced R and D toward SAI 2015 cost goal--crystal silicon PV at area costs closer to amorphous Si PV, it's 15% efficiency, inexpensive substrate, and moderate temperature processing (<800 C); (2) Why silicon?--industrial and knowledge base, abundant and environmentally benign, market acceptance, and good efficiency; and (3) Why replace wafers?--expensive, high embedded energy content, and uses 50-100 times more silicon than needed.

  7. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    National Research Council Canada - National Science Library

    F Sohbatzadeh; M Bagheri; S Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed...

  8. Preparation of primary reference material of argon in oxygen by the gravimetric method for application to thermometry

    Science.gov (United States)

    Yang, Inseok; Bok Lee, Jin; Moon, Dong Min; Seog Kim, Jin

    2017-04-01

    Three mixtures of argon in oxygen with (1000, 350, 120) μmol mol‑1 amount fractions of argon were prepared by the gravimetric method for application to thermometry. The mixtures are to be used to study the effects of argon impurity in oxygen on the temperature of the triple point of oxygen. From an uncertainty assessment compliant with the international standards, the relative uncertainty of the amount fraction of argon in the two-step dilution method used in this work ranged from 0.040% to 0.072%. The uncertainty was dominated by the uncertainties in weighing the mass of argon in the pre-mixture and weighing the mass of the pre-mixture in the final mixture. The internal consistency of the amount fraction of argon given by the gravimetric method was verified to be within 0.025% by measurements via gas chromatography with a thermal conductivity detector. The resultant uncertainty in the amount fraction of argon corresponds to less than 5 μK in the effect of argon impurity on the triple point of oxygen. Therefore, the mixtures have sufficient precision for the thermal study of the argon-in-oxygen mixtures.

  9. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  10. Argon laser versus erbium:YAG laser in the treatment of xanthelasma palpebrarum

    Science.gov (United States)

    Abdelkader, Mona; Alashry, Shereen Ezzelregal

    2014-01-01

    Background Xanthelasma palpebrarum is the most common of the xanthomas with asymptomatic, symmetrical, bilateral, soft, yellow, polygonal papules around the eyelids. Though it is a benign lesion causing no functional disturbance, it is esthetically annoying. The surgical laser offers an extremely elegant and powerful solution to this problem. Objective To evaluate the effectiveness of erbium:YAG and argon lasers in the treatment of xanthelasma lesions. Patients and methods Forty patients were included in the study. Twenty patients (15 patients were bilateral with 30 eyes either in the upper or lower lid and 5 patients were unilateral) were treated with erbium:YAG laser. Another 20 patients (10 patients were bilateral with 20 eyes and 10 patients were unilateral) were treated with argon laser. Results In the majority of treated patients (either treated with erbium:YAG or argon laser), xanthelasma lesions were completely disappeared or significantly decreased in size. Two patients showed pigmentary changes in the form of hypopigmentation with erbium:YAG laser (one case), another case showed hyperpigmentation. No intraoperative complication was observed. No significant scar or recurrence was observed. Conclusion Argon laser in xanthelasma is an easy, effective, and safe method of treatment for small lesions and YAG laser is more better for large lesions than argon laser. PMID:25892929

  11. Fast-imaging and spectroscopic analysis of atmospheric argon streamers for large gap arc breakdown

    Science.gov (United States)

    Pachuilo, Michael; Stefani, Francis; Bengtson, Roger; Raja, Laxminarayan

    2014-10-01

    A non-equilibrium plasma source has been developed to assist in the low-voltage arc breakdown of large electrode gaps. The source consists of a dielectric embedded wire helically wound around a confining cylindrical quartz chamber. Annular electrodes cap the ends of the quartz chamber. An argon feed gas is used to provide a uniform environment and exhausts to ambient atmospheric conditions. A negative polarity 50 kV trigger pulse is applied to the embedded trigger wire to initiate the arc breakdown. Application of the trigger pulse produces a localized coronal discharges along the inner surface of the quartz tube. The corona provides seed electrons through which streamers propagate from one of the main discharge electrode along the quartz surface until it reaches the opposite electrode to bridge the gap. Once the gap is bridged a spark over occurs and robust arc discharge is formed in the chamber volume. Fast imaging of the streamer propagation establishes its velocity in the range of ~ 100 km/s. Spectroscopy of the streamer discharge in atmospheric argon has been conducted and electron temperature and number density estimated from a collision radiative model. Argon spectrum is dominated by neutral argon lines in the 650--950 nm range, and singly ionized argon lines are observed in the ultra-violet to near UV (300--400 nm). Research was performed in connection with AFOSR Contract FA9550-11-1-0062.

  12. Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC

    CERN Document Server

    Calvo, J; Crivelli, P; Daniel, M; DiLuise, S; Gendotti, A; Horikawa, S; Molina-Bueno, L; Montes, B; Mu, W; Murphy, S; Natterer, G; Ngyuen, K; Periale, L; Quan, Y; Radics, B; Regenfus, C; Romero, L; Rubbia, A; Santorelli, R; Sergiampietri, F; Viant, T; Wu, S

    2016-01-01

    We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39-Ar and 83m-Kr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.

  13. Study of an Atmospheric Pressure Plasma Jet of Argon Generated by Column Dielectric Barrier Discharge

    Science.gov (United States)

    Nur, M.; Kinandana, A. W.; Winarto, P.; Muhlisin, Z.; Nasrudin

    2016-11-01

    An atmospheric of argon plasma jet was generated by using column dielectric barrier discharge has been investigated. In this study, argon gas was passed through the capillary column by regulating the flow rate of gas. This atmospheric pressure plasma jet (APPJ) was generated by a sinusoidal AC high voltage in the range of 0.4 kV to 10 kV and at frequencies of 15 kHz and 26 kHz. APPJ has been produced with flow rate of argon gas from 1 litter/min - 10 litters/min. The electric current has been taken with variation of voltage and each interval argon gas flow rate of 1 litter/min. The results show that electric current increase linearly and then it trends to saturation condition by the increasing of applied voltage. We found also that the length of the plasma jet increase by augmenting of applied voltage both for frequencies of 15 kHz and 26 kHz. Furthermore, our results show that length of plasma jet optimum for flow rate of argon gas of 2 litters/minute. In addition, we obtained that the larger applied voltage, the greater the temperature of the plasma jet.

  14. Double emulsions as fat replacers

    NARCIS (Netherlands)

    Oppermann, Anika

    2017-01-01

    The use of double (w1/o/w2) emulsions, in which part of the oil is replaced by small water droplets, is a promising strategy to reduce oil content in food products. For successful applications, (1) significant levels of fat reduction (i.e. significant amounts of water inside the oil droplets) have

  15. Replacement policies for dairy cows

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund

    In a recent paper a hierarchical Markov decision processes (MDP) with finite state and action space was formulated for the dairy cow replacement problem with stage lengths of 1 d. Bayesian updating was used to predict the performance of each cow in the herd and economic decisions were based...

  16. Electrocatalysts Prepared by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Athanasios Papaderakis

    2017-03-01

    Full Text Available Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases hydrogen evolution too, both oxygen levels and the pH must be optimized. The resulting bimetallic material can in principle have a Mnoble-rich shell and M-rich core (denoted as Mnoble(M leading to a possible decrease in noble metal loading and the modification of its properties by the underlying metal M. This paper reviews a number of bimetallic or ternary electrocatalytic materials prepared by galvanic replacement for fuel cell, electrolysis and electrosynthesis reactions. These include oxygen reduction, methanol, formic acid and ethanol oxidation, hydrogen evolution and oxidation, oxygen evolution, borohydride oxidation, and halide reduction. Methods for depositing the precursor metal M on the support material (electrodeposition, electroless deposition, photodeposition as well as the various options for the support are also reviewed.

  17. Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials.

    Science.gov (United States)

    Nasrabad, A E; Laghaei, R; Deiters, U K

    2004-10-01

    Gibbs ensemble Monte Carlo simulations were used to test the ability of intermolecular pair potentials derived ab initio from quantum mechanical principles, enhanced by Axilrod-Teller triple-dipole interactions, to predict the vapor-liquid phase equilibria of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton. The interaction potentials for Ne-Ne, Ar-Ar, Kr-Kr, and Ne-Ar were taken from literature; for Ar-Kr a different potential has been developed. In all cases the quantum mechanical calculations had been carried out with the coupled-cluster approach [CCSD(T) level of theory] and with correlation consistent basis sets; furthermore an extrapolation scheme had been applied to obtain the basis set limit of the interaction energies. The ab initio pair potentials as well as the thermodynamic data based on them are found to be in excellent agreement with experimental data; the only exception is neon. It is shown, however, that in this case the deviations can be quantitatively explained by quantum effects. The interaction potentials that have been developed permit quantitative predictions of high-pressure phase equilibria of noble-gas mixtures.

  18. Bonding over Dentin Replacement Materials.

    Science.gov (United States)

    Meraji, Naghmeh; Camilleri, Josette

    2017-08-01

    Dentin replacement materials are necessary in large cavities to protect the pulp and reduce the bulk of filling material. These materials are layered with a composite resin restorative material. Microleakage caused by poor bonding of composite resin to underlying dentin replacement material will result in pulp damage. The aim of this study was to characterize the interface between dentin replacement materials and composite resin and to measure the shear bond strength after dynamic aging. Biodentine (Septodont, Saint Maur-des-Fosses, France), Theracal LC (Bisco, Schaumburg, IL), and Fuji IX (GC, Tokyo, Japan) were used as dentin replacement materials. They were then overlaid with a total-etch and bonding agent or a self-etch primer and composite resin or a glass ionomer cement. All combinations were thermocycled for 3000 cycles. The interface was characterized using scanning electron microscopy and elemental mapping. Furthermore, the shear bond strength was assessed. The Biodentine surface was modified by etching. The Theracal LC and Fuji IX microstructure was unchanged upon the application of acid etch. The Biodentine and glass ionomer interface showed an evident wide open space, and glass particles from the glass ionomer adhered to the Biodentine surface. Elemental migration was shown with aluminum, barium, fluorine, and ytterbium present in Biodentine from the overlying composite resin. Calcium was more stable. The bond strength between Theracal LC and composite using a total-etch technique followed by self-etch primer achieved the best bond strength values. Biodentine exhibited the weakest bond with complete failure of bonding shown after demolding and thermocycling. Dynamic aging is necessary to have clinically valid data. Bonding composite resin to water-based dentin replacement materials is still challenging, and further alternatives for restoration of teeth using such materials need to be developed. Copyright © 2017 American Association of Endodontists

  19. Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.

    1993-04-05

    (1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.

  20. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    Science.gov (United States)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  1. Melting of "non-magic" argon clusters and extrapolation to the bulk limit

    Science.gov (United States)

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-01

    The melting of argon clusters ArN is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, "Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations," Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes.

  2. First measurement of surface nuclear recoil background for argon dark matter searches

    CERN Document Server

    Xu, Jingke; Westerdale, Shawn; Calaprice, Frank; Wright, Alexander; Shi, Zhiming

    2016-01-01

    One major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. The most dangerous surface background is the $^{206}$Pb recoils produced by $^{210}$Po decays. In this letter, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103keV $^{206}$Pb recoil background will produce a signal equal to that of a ~5keV (30keV) electron recoil ($^{40}$Ar recoil). In addition, we demonstrate that this dangerous $^{210}$Po surface background can be suppressed by a factor of ~100 or higher using pulse shape discrimination methods, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. We also discuss the impact on other low background experiments.

  3. Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates

    CERN Document Server

    Mao, Yijin; Chen, C L

    2016-01-01

    A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

  4. Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas

    Directory of Open Access Journals (Sweden)

    Anke Höllig

    2014-10-01

    Full Text Available Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon.

  5. Time Passes - Argon Isotopes as Tracers of Fluids in the Earth's Crust

    Science.gov (United States)

    Kelley, Simon P.

    2016-04-01

    Recent experimental measurements of noble gas solubility in silicate minerals (e.g. Jackson et al. 2013, 2015) means that we can begin to explore the use of noble gas partition between minerals and fluids to understand their residence and transport in the Earth's crust. One starting point for this exploration is the distribution of noble gases and halogens in crustal fluids which was reviewed by Kendrick and Burnard (2013). In particular, K&B (2013) noted that time is a key parameter in understanding noble gas tracers in crustal processes; yielding information such as the residence time of water in a reservoir based on 4He acquired from aquifer rocks, and the 40Ar/39Ar age of fluid inclusions based on trapped fluid and minerals in quartz. Argon isotope variations in natural systems have been measured during studies of 40Ar/39Ar ages to quantify the rates and timescales of crustal processes. There are also studies of fluids in similar rocks, notably in fluid inclusions, providing the opportunity to quantify the variations in the crust. Partition of argon between mineral phases under conditions of varying fluid availability can be compared in systems where 40Ar/39Ar measurements indicate the preservation of non-radiogenic argon (both excess and atmospheric) in the minerals. Rather than a simple picture of radiogenic argon contents increasing with crustal age, and gradual depletion of atmospheric argon in deeper fluids, what emerges is a sometimes dynamic and sometimes static system in different zones of the crust. While it can be shown that the hydrous fluid in sandstone reservoirs contained excess argon, analyses of authigenic minerals rarely exhibit 40Ar/39Ar ages in excess of the growth age. In this scenario, the incompatible nature of argon means that the fluid acts as an effective infinite reservoir and radiogenic argon dominates the potassium rich authigenic minerals. The controls on noble gas distribution are also well illustrated by deep crustal rocks such as

  6. Surface modification of poly (vinyl chloride) by long-distance and direct argon RF plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reports the effects of long- distance and direct argon radio frequency (RF) plasma surface treatment on polyvinyl chloride (PVC) films in terms of changes in surface wettability and surface chemistry. The surface properties are characterized by the water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The mechanism is further analyzed and the role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. Results show that the long-distance and direct RF plasma treatments modify the PVC surface in morphology and composition, and both modifications cause surface oxidation of PVC films, in the forming of functional groups enhancing polymer wettability. The effect of the long-distance argon RF plasma is more notable. This suggests that long-distance argon RF plasma could restrain the ion and electron eroding effect and enhance free radical reaction.

  7. [Argon plasma surgery (APC) in the upper aerodigestive tract. Initial results].

    Science.gov (United States)

    Bergler, W; Farin, G; Fischer, K; Hörmann, K

    1998-07-01

    Cold knife surgery, electrosurgery and laser surgery all offer techniques, instruments, equipment and systems for resecting and destroying mucosal lesions and for hemostasis in the upper aerodigestive tract. When used in the head and neck, argon plasma surgery (APS) offers a new, contact-free, electrosurgical technique in which high frequency current is applied through ionized, and thus electrically conductive, argon(argon plasma) to the tissue undergoing treatment. Especially noteworthy in APS are its advantages for removing a lesion and controlling bleeding: the technique is easy to control, and the depth of the thermal tissue destruction is limited to a maximum of 3 mm even in wide-area application, so that damage to adjacent or submucosal tissues can be avoided. Initial results with APS in the reduction of hyperplastic nasal turbinates, treatment of hereditary hemorrhagic teleangiectasia (Osler's disease) in the nasal mucosa, and in treating progressive juvenile papillomatosis of the larynx have shown clear advantages for APS over other methods used.

  8. The WArP Experiment: A Double-Phase Argon Detector for Dark Matter Searches

    Directory of Open Access Journals (Sweden)

    Andrea Zani

    2014-01-01

    Full Text Available Cryogenic noble liquids emerged in the previous decade as one of the best media to perform WIMP dark matter searches, in particular due to the possibility to scale detector volumes to multiton sizes. The WArP experiment was then developed as one of the first to implement the idea of coupling Argon in liquid and gas phase, in order to discriminate β/γ-interactions from nuclear recoils and then achieve reliable background rejection. Since its construction, other projects spawned, employing Argon and Xenon and following its steps. The WArP 100l detector was assembled in 2008 at the Gran Sasso National Laboratories (LNGS, as the final step of a years-long R&D programme, aimed at characterising the technology of Argon in double phase for dark matter detection. Though it never actually performed a physics run, a technical run was taken in 2011, to characterise the detector response.

  9. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    Science.gov (United States)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  10. Patient's evaluation of argon laser therapy of port wine stain, decorative tattoo, and essential telangiectasia.

    Science.gov (United States)

    Dixon, J A; Rotering, R H; Huether, S E

    1984-01-01

    One hundred fourteen patients were studied to assess their perception of the results of argon laser therapy for port wine stains (PWS), tattoos, or essential telangiectasia of legs. At least 1 yr following treatment patients were surveyed using a 30-item mail questionnaire. A 91% response rate was achieved. The findings indicate that patients with PWS and tattoo treated with argon laser are moderately satisfied with the results and 85% of them would have treatment again. Laser therapy of these lesions should be continued. Treatment results of essential telangiectasia of the legs are disappointing and only 49% of patients would have treatment again. Discontinuance of argon laser therapy using the described techniques is recommended.

  11. Producing 30 Tons of Underground Argon for the Next Generation Dark Matter Detector

    Science.gov (United States)

    Alexander, Thomas; DarkSide Collaboration Collaboration

    2017-01-01

    The DarkSide-20k experiment seeks to collect and purify 10s of tons of argon gas derived from the Doe Canyon CO2 well in southwestern Colorado, which has been shown to have a 39 Ar concentration of 0.73% of that found in argon collected from the atmosphere. Building upon the work of the DarkSide-50 collaboration, the DarkSide-20k experiment is building and installing a plant capable of producing 100 kg/day of 99.9% pure argon from the same underground source. To achieve this rate, the next generation plant (named Urania) will need to be able to mitigate minor contaminants in the well gas that hampered the previous generation plant. In this talk we will describe the new extraction plant, the identification of the minor contaminates, and how these contaminates are being mitigated.

  12. 40Ar/ 39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    Science.gov (United States)

    Landis, G. P.; Snee, L. W.

    1991-12-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [ 40Ar/ 39Ar ≃32o] than the much more abundant surface absorbed argon [ 40Ar/ 39Ar ≃295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150° -250°C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D≤1.5 x 10 -17 cm 2S -1 is calculated from 39Ar retention. 40Ar/ 39Ar age calculations indicate Dominican Republic amber is ≃ 45 Ma and North Dakota amber is ≃ 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O 2-rich end-member gas with air-like N 2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O 2 levels in the Late Cretaceous of ≃ 35%, and that atmospheric O 2 dropped by early Tertiary time to near a present atmospheric level of 21% O 2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O 2 reaction with amber).

  13. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, R. A. Costa; Kalinin, A.; Kuehnel, M.; Schottelius, A. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Hochhaus, D. C.; Neumayer, P. [EMMI Extreme Matter Institute and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); FIAS Frankfurt Institute for Advanced Studies, J. W. Goethe-Universitaet, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Polz, J. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Kaluza, M. C. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Froebelstieg 3, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2012-02-15

    We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-terawatt pulses.

  14. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the co......The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...

  15. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  16. Ablation of Barrett’s esophagus using the second-generation argon plasma coagulation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the efficacy and safety of the second-generation argon plasma coagulation (VIO APC) in ablation of Barrett’s esophagus. Methods Eighteen patients with Barrett’s esophagus (12 males, median age of 55 years, median length of 2.1 cm,1 low-grade dysplasia, 13 cases of short segment Barrett’s esophagus) received VIO APC, which was performed at a power setting of 40W and argon gas flow at 1.5-2.0 L/min, "forced" mode, in 1-3 sessions (mean 1.3). All the patients received treatment with hi...

  17. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  18. Attosecond time delay in valence photoionization and photorecombination of argon: a TDLDA study

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Ivanov, Misha; Chakraborty, Himadri S

    2015-01-01

    We determine and analyze the quantum phases and time delays in photoionization and photorecombination of valence 3p and 3s electrons of argon using the Kohn-Sham local density functional approach. The time-dependent local density approximation (TDLDA) is used to account for the electron correlation. Resulting attosecond Wigner-Smith time delays show excellent agreements with two recent independent experiments on argon that measured the relative 3s-3p time delay in photoionization [Physical Review Letters {\\bf 106}, 143002 (2011)] and the delay in 3p photorecombination [Physical Review Letters {\\bf 112}, 153002 (2014)

  19. Influence the loading effect on modification of PET film and fiber by Argon Plasma

    Science.gov (United States)

    Vasilkin, D. P.; Shikova, T. G.; Titov, V. A.; Smirnov, S. A.; Kuzmicheva, L. A.

    2017-01-01

    Poly(ethylene terepthalate) films and fabrics were modified by low-pressure argon plasma at different area of samples been treated. Contact angles for water and glycerol were measured and surface energy was calculated for film surface characterization. Height of water capillary rise was measured for fabric. The changes in chemical structure of surface layer were analyzed by ATR-FTIR method. Influence of sample area on non-homogeneity of plasma modification was shown. Some experiments were performed with polypropylene treatment in flowing plasma afterglow to confirm the reactions of oxygen active species originated from gas products of poly(ethylene terepthalate) etching in argon plasma.

  20. Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa

    Institute of Scientific and Technical Information of China (English)

    孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦

    2003-01-01

    Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.

  1. Pulse Compression by Filamentation in Argon with an Acoustic Optical Programmable Dispersive Filter for Predispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-Wei; JIANG Yong-Liang; LENG Yu-Xin; LIU Jun; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan

    2006-01-01

    @@ We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12fs.

  2. Research of On-line Analytical Method of Trace Oxygen and Water in Argon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Metal sodium has an active chemical quality. When it is used as a coolant in a fast neutron reactor, it must be protected by a cover gas argon for safety operation of the reactor. But oxygen and water in argon can produce chemical reaction with sodium. Then sodium hydroxide, sodium oxide and hydrogen can be produced. This will be harmful to the safety operation of reactor. The purpose of controlling a level of impurity in the cover gas is for controlling a level of impurity in sodium. The research is to find an on-line determining method and a sampling system to monitor

  3. Intermolecular interaction potentials of methane-argon complex calculated using LDA approaches

    Institute of Scientific and Technical Information of China (English)

    Bai Yu-Lin; Chen Xiang-Rong; Zhou Xiao-Lin; Yang Xiang-Dong; Wang Hai-Yan

    2004-01-01

    The intermolecular interaction potential for methane-argon complex is calculated by local density approximation (LDA) approaches. The calculated potential has a minimum when the intermolecular distance of methane-argon complex is 6.75 a.u.; the corresponding depth of the potential is 0.0163eV which has good agreement with experimental data. We also have made a nonlinear fitting of our results for the Lennard-Jones (12-6) potential function and obtain that V(R) = 143794365.332/R12 - 3032.093/R6 (R in a.u. and V(R) in eV).

  4. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    Science.gov (United States)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-07-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  5. Inner-shell Annihilation of Positrons in Argon, Iron and Copper Atoms

    CERN Document Server

    Abdel-Raouf, M A; El-Bakry, S Y

    2007-01-01

    The annihilation parameters of positrons with electrons in different shells of Argon, Iron and Copper atoms are calculated below the positronium (Ps) formation thresholds. Quite accurate ab initio calculations of the bound state wavefunctions of Argon, Iron and Copper orbitals are obtained from Cowan computer code. A least-squares variational method (LSVM) is used for determining the wavefunction of the positrons. The program is employed for calculating the s-wave partial cross sections of positrons scattered by Iron and Copper atoms. Our results of the effective charge are compared with available experimental and theoretical ones. --

  6. A 20-Liter Test Stand with Gas Purification for Liquid Argon Research

    CERN Document Server

    Li, Yichen; Tang, Wei; Joshi, Jyoti; Qian, Xin; Diwan, Milind; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tsang, Thomas; Zhang, Lige

    2016-01-01

    We describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). This system utilizes a simple, cost-effective gas argon (GAr) purification to achieve ultra-high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. A gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  7. Urbanization, Ikization, and Replacement Dynamics

    CERN Document Server

    Chen, Yanguang

    2015-01-01

    The phenomenon of Iks was first found by anthropologists and biologists, but it is actually a problem of human geography. However, it has not yet drawn extensive attention of geographers. In this paper, a hypothesis of ikization is presented that sudden and violent change of geographical environments results in dismantling of traditional culture, which then result in collective depravity of a nationality. By quantitative analysis and mathematical modeling, the causality between urbanization and ikization is discussed, and the theory of replacement dynamics is employed to interpret the process of ikization. Urbanization is in essence a nonlinear process of population replacement. Urbanization may result in ikization because that the migration of population from rural regions to urban regions always give rise to abrupt changes of geographical environments and traditional culture. It is necessary to protect the geographical environment against disruption, and to inherit and develop traditional culture in order t...

  8. [MINIMALLY INVASIVE AORTIC VALVE REPLACEMENT].

    Science.gov (United States)

    Tabata, Minoru

    2016-03-01

    Minimally invasive aortic valve replacement (MIAVR) is defined as aortic valve replacement avoiding full sternotomy. Common approaches include a partial sternotomy right thoracotomy, and a parasternal approach. MIAVR has been shown to have advantages over conventional AVR such as shorter length of stay and smaller amount of blood transfusion and better cosmesis. However, it is also known to have disadvantages such as longer cardiopulmonary bypass and aortic cross-clamp times and potential complications related to peripheral cannulation. Appropriate patient selection is very important. Since the procedure is more complex than conventional AVR, more intensive teamwork in the operating room is essential. Additionally, a team approach during postoperative management is critical to maximize the benefits of MIAVR.

  9. Mitochondrial Replacement: Ethics And Identity

    OpenAIRE

    Wrigley, Anthony; Wilkinson, Stephen; Appleby, John B

    2015-01-01

    Mitochondrial replacement techniques (MRTs) have the potential to allow prospective parents who are at risk of passing on debilitating or even life-threatening mitochondrial disorders to have healthy children to whom they are genetically related. Ethical concerns have however been raised about these techniques. This article focuses on one aspect of the ethical debate, the question of whether there is any moral difference between the two types of MRT proposed: Pronuclear Transfer (PNT) and Mat...

  10. Replacing magnets at the LHC

    CERN Multimedia

    LHC, LSI2, Point 4

    2013-01-01

    CERN engineers have been working through the night this week to move the final replacement dipole magnets into position on the Large Hadron Collider (LHC). Though there are several still to go, the teams expect to have completed the task by the end of this month. Dipole magnets bend the paths of particles as they travel around the circular accelerator. Of the LHC's 1232 dipoles – each 15 metres long and weighing 35 tonnes – 15 are being replaced as part of the long shutdown of CERN's accelerator complex. These 15 magnets suffered wear and tear during the LHC's first 4-year run. Three quadrupole-magnet assemblies – which help to focus particles into a tight beam – have also been replaced. Moving such heavy magnets requires specially adapted cranes and trailers both above and below ground. There are several access points on the LHC. Some, such as the 100-metre vertical access shaft down to the ALICE experiment, are equipped with lifts to allow technical personnel and visitors down to the caverns. Other ...

  11. Results of Austin Moore replacement.

    Directory of Open Access Journals (Sweden)

    Jadhav A

    1996-04-01

    Full Text Available Forty cases of Austin Moore Replacement done for transcervical fractures of the femur in patients were reviewed after a period of 12 to 48 months postoperatively (mean 26 mth. 30 cases (75% had mild to severe pain of non-infective origin, starting as early as 6 months postoperatively. This was irrespective of the make, size or position (varus/valgus of the prosthesis. Though the Aufranc and Sweet clinical scoring was satisfactory in 65% cases, radiological evidence of complications like sinking, protrusion, etc. were seen in majority of the cases. Calcar resorption was seen in 34 cases (85% as early as 4 months postoperatively. Results of THR and bipolar replacement done for transcervical fractures in recent literature show 85% pain-free cases at 5 years. We feel that Austin Moore Replacement should be reserved for patients more than 65 years of age and those who are less active or debilitated because of other factors, because of increased acetabular wear with time in the younger individual. This is corroborated by unsatisfactory results in patients less than 65 years of age (p < 0.05.

  12. The caudal septum replacement graft.

    Science.gov (United States)

    Foda, Hossam M T

    2008-01-01

    To describe a technique for reconstructing the lost tip support in cases involving caudal septal and premaxillary deficiencies. The study included 120 patients with aesthetic and functional nasal problems resulting from the loss of caudal septal and premaxillary support. An external rhinoplasty approach was performed to reconstruct the lost support using a cartilaginous caudal septum replacement graft and premaxillary augmentation with Mersilene mesh. The majority of cases (75%) involved revisions in patients who had previously undergone 1 or more nasal surgical procedures. A caudal septum replacement graft was combined with premaxillary augmentation in 93 patients (77.5%). The mean follow-up period was 3 years (range, 1-12 years). The technique succeeded in correcting the external nasal deformities in all patients and resulted in a significant improvement in breathing in 74 patients (86%) with preoperative nasal obstruction. There were no cases of infection, displacement, or extrusion. The caudal septum replacement graft proved to be very effective in restoring the lost tip support in patients with caudal septal deficiency. Combining the graft with premaxillary augmentation using Mersilene mesh helped increase support and stability over long-term follow-up.

  13. Episodic growth of Mt. Shasta, CA, documented by argon geochronology

    Science.gov (United States)

    Calvert, A. T.; Christiansen, R. L.

    2011-12-01

    eruptive focus shifted 1.5 km north (Misery Hill) between 50-35 ka, erupting silicic andesite and mafic dacite onto all sectors of the volcano. Flank vents directly south and north erupted domes and lavas 20-15 ka. At ~11 ka a voluminous episode began with the subplinian Red Banks pumice followed shortly by Shastina andesite/dacite lavas, domes, and pyroclastic flows, and soon after by Black Butte flank dacites. Existing 14C geochronology, and stratigraphic studies of the deposits show no eruptive breaks and constrain the episode to have lasted less than a few hundred years. Subsequent Holocene eruptions all issued from the modern summit (Hotlum cone), producing at least 10 large lava flows directed toward the NE sector, along with pyroclastic and debris flows, and a summit dome. Preliminary argon geochronology in progress dates summit lavas at 8.8, 5.8 and 4.7 ka.

  14. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    CERN Document Server

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  15. Numerical Simulation of the Thermal Conductivity of Thermal Insulation Pipe by Vacuum and High Pressure Argon Pre-filled

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    [Abstract]By analyzing the insulation effect of argon-filled tubing and vacuum-insulated tubing before and after hydrogen permeation respectively, a conclusion can be drawn that the insulated tubing filled with high pressure argon is better than the vacuum insulated tubing considering the lifetime and heat insulation effect.

  16. Microwave Spectra and Molecular Structures of 2-CHLORO-1,1-DIFLUOROETHYLENE and its Complex with Argon

    Science.gov (United States)

    Messinger, Joseph P.; Knowlton, Gregory S.; Sundheim, Kathryn M.; Leung, Helen O.; Marshall, Mark D.

    2013-06-01

    Chirped-pulse and Balle-Flygare spectrometers are used to obtain Fourier transform microwave spectra of 2-chloro-1,1-difluoroethylene and its complex with argon from 5.5 to 21.0 GHz, allowing for the geometries of both species to be determined. A total of six isotopologues are observed each for the monomer and dimer, including the most abundant species, the singly-substituted ^{37}Cl and two singly-substituted ^{13}C isotopologues in natural abundance, and deuterated versions of both the ^{35}Cl and ^{37}Cl species using an isotopically enriched sample. Similar to the previously studied argon-haloethylene complexes, the argon shows a preference for close contact with heavier atoms. Tunneling of the argon between two equivalent non-planar structures, similar to that in argon-cis-1,2-difluoroethylene, is not observed in this complex.

  17. Fusion following failed total ankle replacement.

    Science.gov (United States)

    Wünschel, Markus; Leichtle, Ulf G; Leichtle, Carmen I; Walter, Christian; Mittag, Falk; Arlt, Eva; Suckel, Andreas

    2013-04-01

    Although mid- to long-term results after total ankle replacement have improved because of available second- and third-generation devices, failure of total ankle replacement is still more common compared with total hip replacement and total knee replacement. The portfolio of available total ankle replacement revision component options is small. Furthermore, the bone stock of the tibiotalar region is scarce making it difficult and in some situations impossible to perform revision total ankle replacement. In these cases tibiotalar and tibiotalocalcaneal fusions are valuable options. This article describes which surgical procedures should be performed depending on the initial situation and gives detailed advice on surgical technique, postoperative care, and clinical results.

  18. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult.

    Directory of Open Access Journals (Sweden)

    Hélène N David

    Full Text Available In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD, and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA or to the occlusion of middle-cerebral artery (MCAO. We show that postexcitotoxic-postischemic argon reduces OGD-induced cell injury in brain slices, and further reduces NMDA-induced brain damage and MCAO-induced cortical brain damage in rats. Contrasting with its beneficial effect at the cortical level, we show that postischemic argon increases MCAO-induced subcortical brain damage and provides no improvement of neurologic outcome as compared to control animals. These results extend previous data on the neuroprotective action of argon. Particularly, taken together with previous in vivo data that have shown that intraischemic argon has neuroprotective action at both the cortical and subcortical level, our findings on postischemic argon suggest that this noble gas could be administered during but not after ischemia, i.e. before but not after reperfusion has occurred, in order to provide cortical neuroprotection and to avoid increasing subcortical brain damage. Also, the effects of argon are discussed as regards to the oxygen-like chemical, pharmacological, and physical properties of argon.

  19. LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation

    CERN Document Server

    Polshaw, J; Dessart, L; Fraser, M; Gal-Yam, A; Inserra, C; Sim, S A; Smartt, S J; Sollerman, J; Baltay, C; Rabinowitz, D; Benetti, S; Botticella, M T; Campbell, H; Chen, T -W; Galbany, L; McKinnon, R; Nicholl, M; Smith, K W; Sullivan, M; Takats, K; Valenti, S; Young, D R

    2015-01-01

    We present optical imaging and spectroscopy of supernova (SN) LSQ13fn, a type II supernova with several hitherto-unseen properties. Although it initially showed strong symmetric spectral emission features attributable to \\ion{He}{ii}, \\ion{N}{iii}, and \\ion{C}{iii}, reminiscent of some interacting SNe, it transitioned into an object that would fall more naturally under a type II-Plateau (IIP) classification. However, its spectral evolution revealed several unusual properties: metal lines appeared later than expected, were weak, and some species were conspicuous by their absence. Furthermore, the line velocities were found to be lower than expected given the plateau brightness, breaking the SNe~IIP standardised candle method for distance estimates. We found that, in combination with a short phase of early-time ejecta-circumstellar material interaction, metal-poor ejecta, and a large progenitor radius could reasonably account for the observed behaviour. Comparisons with synthetic model spectra of SNe~IIP of a g...

  20. Bactericidal activity and silver release of porous ceramic candle filter prepared by sintering silica with silver nanoparticles/zeolite for water disinfection

    Science.gov (United States)

    Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Thanh Nguyen, Duc; Hien Nguyen, Quoc

    2014-09-01

    Porous ceramic candle filters (PCCF) were prepared by sintering silica from rice husk with silver nanoparticles (AgNPs)/zeolite A at about 1050 °C to create bactericidal PCCF/AgNPs for water disinfection. The silver content in PCCF/AgNPs was of 300-350 mg kg-1 determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the average pore size of PCCF/AgNPs was of 50-70 Å measured by Brunauer-Emmett-Teller (BET) method. The bactericidal activity and silver release of PCCF/AgNPs have been investigated by flow test with water flow rate of 5 L h-1 and initial inoculation of E. coli in inlet water of 106 CFU/100 mL. The volume of filtrated water was collected up to 500 L. Results showed that the contamination of E. coli in filtrated water was water was low, far under the WHO guideline of 100 μg L-1 at maximum for drinking water. Based on the content of silver in PCCF/AgNPs and in filtrated water, it was estimated that one PCCF/AgNPs could be used to filtrate of ˜100 m3 water. Thus, as-prepared PCCF/AgNPs releases low content of silver into water and shows effectively bactericidal activity that is promising to apply as point-of-use water treatment technology for drinking water disinfection.

  1. Dietary patterns in pregnancy and effects on nutrient intake in the Mid-South: the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study.

    Science.gov (United States)

    Völgyi, Eszter; Carroll, Kecia N; Hare, Marion E; Ringwald-Smith, Karen; Piyathilake, Chandrika; Yoo, Wonsuk; Tylavsky, Frances A

    2013-05-03

    Dietary patterns are sensitive to differences across socio-economic strata or cultural habits and may impact programing of diseases in later life. The purpose of this study was to identify distinct dietary patterns during pregnancy in the Mid-South using factor analysis. Furthermore, we aimed to analyze the differences in the food groups and in macro- and micronutrients among the different food patterns. The study was a cross-sectional analysis of 1155 pregnant women (mean age 26.5 ± 5.4 years; 62% African American, 35% Caucasian, 3% Other; and pre-pregnancy BMI 27.6 ± 7.5 kg/m(2)). Using food frequency questionnaire data collected from participants in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study between 16 and 28 weeks of gestation, dietary patterns were identified using factor analysis. Three major dietary patterns, namely, Healthy, Processed, and US Southern were identified among pregnant women from the Mid-South. Further analysis of the three main patterns revealed four mixed dietary patterns, i.e., Healthy-Processed, Healthy-US Southern, Processed-US Southern, and overall Mixed. These dietary patterns were different (p food items, macro- and micro nutrients and aligned across socioeconomic and racial groups. Our study describes unique dietary patterns in the Mid-South, consumed by a cohort of women enrolled in a prospective study examining the association of maternal nutritional factors during pregnancy that are known to affect brain and cognitive development by age 3.

  2. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermilab; Carls, B. [Fermilab; James, C. [Fermilab; Johnson, B. [Fermilab; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Lundberg, B. [Fermilab; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Rebel, B. [Fermilab; Zeller, G. P. [Fermilab; Zuckerbrot, M. [Fermilab

    2014-11-04

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  3. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  4. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  5. Application of the Benedict-Webb-Rubin equation of state to argon

    Energy Technology Data Exchange (ETDEWEB)

    Zudkevitch, David; Kaufmann, Thomas G.

    1965-05-01

    The coefficients of the Benedict-Webb-Rubin equation of state have been developed for argon. Employing these coefficients, the volumetric behavior of argon has been predicted with an average deviation of 0.241% for 597 smoothed and experimental data points in the superheated region. At temperatures below the critical two sets of C0 's, one for the liquid and one for the vapor, were needed to relate the vapor pressure to the densities of saturated argon. Using the experimental data of Holst(l8) and Wilson(28), the reliability of the BWR coefficients were demonstrated by predicting the phase behavior of the argon-nitrogen system down to -326°F, Further improvement of the results was obtained when another set of C0 's were developed by equating the pure component vapor and liquid fugacities along the vapor pressure curves. In calculating enthalpy deviations from the ideal state the original BWR expression was modified to include explicitly the temperature dependence of the coefficient C0 . Predicted values of enthalpy deviations obtained with this expression showed good agreement with values from Din's compilation.

  6. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  7. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.

    2016-10-13

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  8. Darkside-20k: A 20 ton Liquid Argon Dark Matter Experiment

    Science.gov (United States)

    Back, Henning; Darkside-20k Collaboration

    2016-03-01

    The Darkside-20k detector is the next step in the Darkside dark matter search program at the Laboratori Nazionali del Gran Sasso in Italy. The Darkside detectors have grown in fiducial mass starting with 10kg in Darkside10, to 50 kg in Darkside50, and finally a proposed 20,000 kg fiducial mass, Darkside20k. The Darkside detectors are dual-phase argon TPCs that combine the very powerful scintillation pulse-shape analysis and ionization information to discriminate against background events. Two unique aspects to the Darkside program is the use of an external neutron veto based on borated liquid scintillator, and the use of low radioactivity argon from underground sources as the target. Argon from the atmosphere has an 39Ar activity of 1Bq/kg, which would be the limiting background, but the underground argon is essentially free of 39Ar. Additionally, the detector is placed in a water Cherenkov muon veto. Combining all these techniques allows Darkside-20k to achieve a background-free 100 t-yr exposure accumulated in a 5 yr run. Darkside-20k is expected to start operations in 2020 with data taking starting in 2021, and will be sensitive to WIMP-nucleon interaction cross sections of 1×10-47 cm2 (1x10-46 cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass.

  9. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  10. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    CERN Document Server

    Acciarri, R; James, C; Johnson, B; Jostlein, H; Lockwitz, S; Lundberg, B; Raaf, J L; Rameika, R; Rebel, B; Zeller, G P; Zuckerbrot, M

    2014-01-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per- trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  11. Effect of low electric fields on alpha scintillation light yield in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D' Angelo, D.; D' Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.

  12. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon

    Science.gov (United States)

    2013-06-01

    7) For the radiative transitions, data recommended by Wiese et al. [30] is used. The transition probabilities Amn (s -1...Atoms and Molecules, Published in the 20th Century: Argon, Rep. NIFS-DATA-72, National Institute for Fusion Science (Jpn), 2003. [30] W. L. Wiese , J

  13. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  14. Effect of Low Electric Fields on Alpha Scintillation Light Yield in Liquid Argon

    CERN Document Server

    Agnes, P; Alexander, T; Alton, A K; Asner, D M; Back, H O; Baldin, B; Biery, K; Bocci, V; Bonfini, G; Bonivento, W; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Caravati, M; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cicalò, C; Cocco, A G; Covone, G; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Dionisi, C; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giagu, S; Giganti, C; Giovanetti, G K; Goretti, A M; Granato, F; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hughes, D; Humble, P; Hungerford, E V; Ianni, A; James, I; Johnson, T N; Jollet, C; Keeter, K; Kendziora, C L; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Loer, B; Lombardi, P; Longo, G; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Milincic, R; Miller, J D; Montanari, D; Monte, A; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Agasson, A Navrer; Odrowski, S; Oleinik, A; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeti, M; Razeto, A; Reinhold, B; Renshaw, A L; Rescigno, M; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Sands, W; Savarese, C; Schlitzer, B; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Verducci, M; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xiao, X; Xu, J; Yang, C; Zhong, W; Zhu, C; Zuzel, G

    2016-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a $\\sim$2% increase in light yield compared to alphas in no field.

  15. Removal of Pendant Groups of Vinyl Polymers by Argon Plasma Treatment

    NARCIS (Netherlands)

    Groenewoud, L.M.H.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, J.

    1999-01-01

    Poly(acrylic acid) (PAAc) and poly(vinyl chloride) (PVC) were treated with an argon plasma to create unsaturated bonds at the surface. By use of X-ray photoelectron spectroscopy and Fourier transform infrared measurements, it was shown that the pendant groups of these polymers are removed by the arg

  16. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  17. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    CERN Document Server

    Acciarri, R; Asaadi, J; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fitzpatrick, R S; Fleming, B; Hackenburg, A; Horton-Smith, G; James, C; Lang, K; Luo, X; Mehdiyev, R; Page, B; Palamara, O; Rebel, B; Schukraft, A; Scanavini, G; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G P

    2016-01-01

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  18. Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    CERN Document Server

    Davis, R; Greenious, G; Kitching, P; Olsen, B; Pinfold, James L; Rodning, N L; Boos, E; Zhautykov, B O; Aubert, Bernard; Bazan, A; Beaugiraud, B; Boniface, J; Colas, Jacques; Eynard, G; Jézéquel, S; Le Flour, T; Linossier, O; Nicoleau, S; Sauvage, G; Thion, J; Van den Plas, D; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Chmeissani, M; Fernández, E; Garrido, L; Martínez, M; Padilla, C; Citterio, M; Gordon, H A; Lissauer, D; Ma, H; Makowiecki, D S; Radeka, V; Rahm, David Charles; Rescia, S; Stephani, D; Takai, H; Baisin, L; Berset, J C; Chevalley, J L; Gianotti, F; Gildemeister, O; Marin, C P; Nessi, Marzio; Poggioli, Luc; Richter, W; Vuillemin, V; Baze, J M; Delagnes, E; Gosset, L G; Lavocat, P; Lottin, J P; Mansoulié, B; Meyer, J P; Renardy, J F; Schwindling, J; Simion, S; Taguet, J P; Teiger, J; Walter, C; Collot, J; de Saintignon, P; Hostachy, J Y; Mahout, G; Barreiro, F; Del Peso, J; García, J; Hervás, L; Labarga, L; Romero, P; Scheel, C V; Chekhtman, A; Cousinou, M C; Dargent, P; Dinkespiler, B; Etienne, F; Fassnacht, P; Fouchez, D; Martin, L; Miotto, A; Monnier, E; Nagy, E; Olivetto, C; Tisserant, S; Battistoni, G; Camin, D V; Cavalli, D; Costa, G; Cozzi, L; Fedyakin, N N; Ferrari, A; Mandelli, L; Mazzanti, M; Perini, L; Resconi, S; Sala, P R; Beaudoin, G; Depommier, P; León-Florián, E; Leroy, C; Roy, P; Augé, E; Breton, D; Chase, Robert L; Chollet, J C; de La Taille, C; Fayard, Louis; Fournier, D; González, J; Hrisoho, A T; Jacquier, Y; Merkel, B; Nikolic, I A; Noppe, J M; Parrour, G; Pétroff, P; Puzo, P; Richer, J P; Schaffer, A C; Seguin-Moreau, N; Serin, L; Tisserand, V; Veillet, J J; Vichou, I; Canton, B; David, J; Genat, J F; Imbault, D; Le Dortz, O; Savoy-Navarro, Aurore; Schwemling, P; Eek, L O; Lund-Jensen, B; Söderqvist, J; Astbury, Alan; Keeler, Richard K; Lefebvre, M; Robertson, S; White, J

    1998-01-01

    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC ( Energy resolution, impact point resolution, angular resolution, $\\pi^o$/$\\gamma$ rejection ).

  19. CT assessment of liver hemodynamics in patients with hepatocellular carcinoma after argon-helium cryoablation

    Institute of Scientific and Technical Information of China (English)

    Xue-Jia Hao; Jin-Ping Li; Hui-Jie Jiang; Da-Qing Li; Zai-Sheng Ling

    2013-01-01

    BACKGROUND: Assessment  of  tumor  response  after  argon-helium  cryoablation  is  critical  in  guiding  future  therapy  for unresectable  hepatocellular  carcinoma.  This  study  aimed  to evaluate  liver  hemodynamics  in  hepatocellular  carcinoma after  argon-helium  cryoablation  with  computed  tomography perfusion. METHODS: The  control  group  comprised  40  volunteers without liver disease.  The  experimental  group  was  composed of  15  patients  with  hepatocellular  carcinoma  treated  with argon-helium  cryoablation.  Computed  tomography  perfusion parameters were measured: hepatic blood flow, hepatic blood volume,  mean  transit  time,  permeability  of  capillary  vessel surface, hepatic arterial fraction, hepatic arterial perfusion, and hepatic portal perfusion. RESULTS: After  treatment,  in  the  tumor  foci,  permeability of  capillary  vessel  surface  was  higher,  and  hepatic  blood flow,  hepatic  blood  volume,  hepatic  arterial  fraction,  and hepatic  arterial  perfusion  values  were  lower  (P0.05). CONCLUSION: Computed tomography perfusion can evaluate tumor response after argon-helium cryoablation.

  20. Arc Root Motions in an Argon-Hydrogen Direct-Current Plasma Torch at Reduced Pressure

    Institute of Scientific and Technical Information of China (English)

    HUANG He-Ji; PAN Wen-Xia; WU Cheng-Kang

    2008-01-01

    Arc root motions in generating dc argon hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.

  1. Characterization of an atmospheric double arc argon-nitrogen plasma source

    Science.gov (United States)

    Tu, X.; Chéron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-01

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  2. Effect of low electric fields on alpha scintillation light yield in liquid argon

    Science.gov (United States)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.

  3. Effect of low electric fields on alpha scintillation light yield in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D' Angelo, D.; D' Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.

  4. Liquid argon dielectric breakdown studies with the MicroBooNE purification system

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  5. Low energy (e,2e) ionization of Argon in the equal energy sharing geometry

    CERN Document Server

    Mazevet, S; Langlois, J M; Tweed, R J; Robaux, O; Tannous, C; Fakhreddine, K

    2002-01-01

    Quantum Defect theory is a well established theoretical concept in modern spectroscopy. We show that this approach is useful in electron impact ionization problems where state of the art theoretical methods are presently restricted mostly to simple atomic targets. For the well documented Argon ionization case in equal energy sharing geometry the approach suggested leads to significant improvements compared to previous calculations.

  6. Modified morphology of graphene sheets by Argon-atom bombardment: molecular dynamics simulations.

    Science.gov (United States)

    Wei, Xiao-Lin; Zhang, Kai-Wang; Wang, Ru-Zhi; Liu, Wen-Liang; Zhong, Jian-Xin

    2011-12-01

    By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area. The results indicate that, there is an exponential accumulated-damage for the impact of both the incident energy and the particle flux density and there is a critical incident energy ranging from 20-30 eV/atom in Argon-atom bombardment. Different configurations, such as sieve-like and circle-like graphene can be formed by controlling of different particle flux density as the incident energy is more than the critical value. Our results supply a feasible method on fabrication of porous graphene-based materials for gas-storages and molecular sieves, and it also helps to understand the damage mechanism of graphene-based electronic devices under high particle radiation.

  7. Radiology of total hip replacement

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, H.J.; Lovelock, J.E.; McCollister Evarts, C.; Geyer, D.

    1984-06-01

    The radiology of total hip replacement (THR) and its complications is reviewed in conjunction with a long-term follow-up study on 402 patients with 501 prostheses. The indications, contraindications, biomechanics, and operative management of these patients is discussed. Clinical complications such as deep vein thrombosis, pulmonary embolism, and hemorrhage are mentioned. Postoperative infections including granulomatous pseudotumors, dislocations and fractures, true loosening of the prosthesis, and heterotopic bone formation (HBF) are discussed and illustrated. The importance of differentiating the lucent line from true loosening is stressed. Mechanical and other clinical complications which are largely ignored by radiologists are also discussed. The uses of arthrography and bone scanning are included.

  8. [Proximal and total femur replacement].

    Science.gov (United States)

    Pennekamp, P H; Wirtz, D C; Dürr, H R

    2012-07-01

    Reconstruction of segmental bone defects of the proximal femur following wide tumor resection or revision arthroplasty. Aggressive benign or primary malignant bone tumors of the proximal femur; destructive metastases; massive segmental bone defects of the proximal femur; periprosthetic fractures. Local infection; very short life expectancy (acetabular bone stock. Anterolateral approach. Exposure and detachment of the iliopsoas and gluteus medius muscle from the proximal femur with a sufficient safety margin to the bone; distal transsection of the vastus lateralis/intermedius and rectus femoris muscle according to the extraosseous tumor extension; distal femur osteotomy al least 3 cm beyond the farthest point of tumor extension; in case of total femur replacement, additional lateral arthrotomy of the knee with resection of the ligaments and menisci; reaming of the medullary canal after securing the shaft with a Verbrugge clamp; trial assembly and reduction followed by the definitive implantation of the prosthesis with adjustment of the femoral neck anteversion in 5° increments; soft tissue reconstruction and fixation to an attachment tube covering the prosthesis; in case of total femur replacement, the preparation of the tibia is followed by the coupling of the tibial and femoral components. Infection prophylaxis, 20 kg partial weight bearing, continuous passive motion. A total of 20  patients with proximal femur replacement and 2 patients with total femur replacement implanted between June 2007 and December 2011 were retrospectively reviewed. Three patients had primary malignant bone tumors, while 19 patients underwent resection for metastatic disease. The mean age at surgery was 62.0 ± 18.1 years (18-82 years). Fifteen patients with a mean follow-up of 20.3 ± 17.2 months (4-51 months) were studied. Among the 22 cases, periprosthetic infection occurred in 3 patients (13.6%), dislocation in 2 patients (9.1%). Evaluation of the functional

  9. WA105: A large demonstrator of a liquid argon dual phase TPC

    Science.gov (United States)

    Zambelli, L.; Murphy, S.; WA105 Collaboration

    2017-09-01

    The Liquid argon technology has been chosen for the DUNE underground experiment for the study of neutrino oscillations, neutrino astrophysics and proton decay. This detector has excellent tracking and calorimetric capabilities much superior to currently operating neutrino detectors. WA105 is a large demonstrator of the dual-phase liquid argon TPC based on the GLACIER design, with a 6×6×6 m3 (appr. 300t) active volume. Its construction and operation test scalable solutions for the crucial aspects of this detector: ultra-high argon purity in non-evacuable tanks, long drifts, very high drift voltages, large area MPGD, cold preamplifiers. The TPC will be built inside a tank based on industrial LNG technology. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multipliers (LEM’s) provides amplification before the charge collection onto an anode plane with strip readout. This highly cost effective solution provides excellent imaging capabilities with equal charge sharing on both views. PMTs located at the bottom of the tank containing the liquid argon provide the readout of the scintillation light. This demonstrator is an industrial prototype of the design proposed for a large underground detector. WA105 is under construction at CERN and will be exposed to a charged particle beam (0.5 - 20 GeV/c) in the North Area in 2018. The data will provide necessary calibration of the detector performances and benchmark sophisticated reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program DUNE.

  10. B Plant process piping replacement feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  11. REMINDER REPLACEMENT OF FRENCH CARDS

    CERN Multimedia

    Human Resources Division; Cards.Service@cern.ch

    2001-01-01

    The French Ministry of Foreign Affairs is currently replacing all diplomatic cards, special cards and employment permits («attestations de fonctions») held by members of the personnel and their families. These cards are replaced by secure, computerized equivalents. The old cards may no longer be used after 31 December 2001. For the purposes of the handover, members of the personnel must go personally to the cards office (33/1-015) between 8h30 and 12h30, in order to fill in a «fiche individuelle» form, taking the following documents for themselves and members of their families already in possession of a French card : A recent identity photograph in 4.5 cm x 3.5 cm format, the French card in their possession, an A4 photocopy of the same French card, certified by the cards office as being a true copy. Those members of the personnel whose cards (and/or cards belonging to members of their families) are shortly due to expire, or have recently done so, are also requested...

  12. Total hip replacement in dancers.

    Science.gov (United States)

    Buyls, Inge R A E; Rietveld, A B M Boni; Ourila, Tiia; Emerton, Mark E; Bird, H A

    2013-04-01

    A case report of a professional contemporary dancer who successfully returned to the stage after bilateral total hip replacements (THR) for osteoarthritis is presented, together with her own commentary and a retrospective cohort study of total hip replacements in dancers. In the presented cohort, there were no post-operative dislocations or infections, the original pain had been relieved, rehabilitation was objectively normal and all resumed their dance (teaching) activities. Nevertheless, they were disappointed about the prolonged rehabilitation. Due to their high demands as professional dancers, post-operative expectations were too optimistic in view of the usual quick and favourable results of THR in the older and less physically active, general population. In all dancers with unilateral osteoarthritis, the left hip was involved, which may reflect the tendency to use the left leg as standing leg and be suggestive that strenuous physical activity may lead to osteoarthritis. Better rehabilitation guidelines are needed for dancer patients undergoing THR, especially drawing their attention to realistic post-operative expectations.

  13. OPTIMUM ORDERING POLICY FOR PREVENTIVE AGE REPLACEMENT

    Institute of Scientific and Technical Information of China (English)

    Young T.PARK; Jing SUN

    2009-01-01

    Most of the spare ordering policies treated up to now have assumed that preventive and corrective replacement costs are equal, which implies in essential that there is no significant need for preventive replacement. This paper presents an ordering policy for preventive age replacement with minimal repair. Introducing the replacement, repair, inventory holding and shortage costs, the expected cost rate is derived. A procedure to determine jointly the ordering time for a spare and the preventive replacement time for the operating unit so as to minimize the expected cost rate is proposed. To explain the ordering policy and the optimization procedure, a numerical example is also included.

  14. ORO. The physical developer replacement?

    Science.gov (United States)

    Wood, Michael A; James, Tim

    2009-12-01

    In the process of fingerprint development Physical Developer has been largely the method of choice on porous surfaces after coming into contact with wet environments. It is only recently that a new technique has been identified which could replace this standard technique. This study aims to build on previous research and expand knowledge regarding the technique. The study built on previous research and compared Physical Developer to Oil Red O, testing both on four paper types, while being placed in three different water types and an accelerant for various amounts of time. Marks were placed with both heavily 'loaded' sebaceous fingers and 'normal' un-washed fingers. Results show that Oil Red O consistently produced clearer more detailed marks from the 'loaded' fingers, but neither technique proved to work better on the 'normal' marks. Neither technique developed any prints from the accelerant.

  15. Optimal randomized scheduling by replacement

    Energy Technology Data Exchange (ETDEWEB)

    Saias, I.

    1996-05-01

    In the replacement scheduling problem, a system is composed of n processors drawn from a pool of p. The processors can become faulty while in operation and faulty processors never recover. A report is issued whenever a fault occurs. This report states only the existence of a fault but does not indicate its location. Based on this report, the scheduler can reconfigure the system and choose another set of n processors. The system operates satisfactorily as long as, upon report of a fault, the scheduler chooses n non-faulty processors. We provide a randomized protocol maximizing the expected number of faults the system can sustain before the occurrence of a crash. The optimality of the protocol is established by considering a closely related dual optimization problem. The game-theoretic technical difficulties that we solve in this paper are very general and encountered whenever proving the optimality of a randomized algorithm in parallel and distributed computation.

  16. Controversies in hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    A. Baziad

    2001-09-01

    Full Text Available Deficiency of estrogen hormone will result in either long-term or short-term health problems which may reduce the quality of life. There are numerous methods by which the quality of female life can be achieved. Since the problems occuring are due to the deficiency of estrogen hormone, the appropriate method to tackle the problem is by administration of estrogen hormone. The administration of hormone replacement therapy (HRT with estrogen may eliminate climacteric complaints, prevent osteoporosis, coronary heart disease, dementia, and colon cancer. Although HRT has a great deal of advantage, its use is still low and may result in controversies. These controversies are due to fact that both doctor and patient still hold on to the old, outmoded views which are not supported by numerous studies. Currently, the use of HRT is not only based on experience, or temporary observation, but more on evidence based medicine. (Med J Indones 2001; 10: 182-6Keywords: controversies, HRT

  17. Replacement reactor to revolutionise magnets

    CERN Document Server

    Atkins, G

    2002-01-01

    Electric motors, hearing aids and magnetic resonance imaging are only some of the applications that will benefit from the first advances in magnets in a quarter of a century. Magnets achieve their characteristics when electrons align themselves to produce a unified magnetic field. Neutrons can probe these magnetic structures. The focus is not just on making more powerful magnets, but also identifying the characteristics that make magnets cheaper and easier for industry to manufacture. Staff from the ANSTO's Neutron Scattering Group have already performed a number of studies on the properties of magnets using using HIFAR, but the Replacement Research Reactor that will produce cold neutrons would allow scientists to investigate the atomic properties of materials with large molecules. A suite of equipment will enable studies at different temperatures, pressures and magnetic fields

  18. Renal replacement therapy in Europe

    DEFF Research Database (Denmark)

    Noordzij, Marlies; Kramer, Anneke; Abad Diez, José M

    2014-01-01

    BACKGROUND: This article provides a summary of the 2011 ERA-EDTA Registry Annual Report (available at www.era-edta-reg.org). METHODS: Data on renal replacement therapy (RRT) for end-stage renal disease (ESRD) from national and regional renal registries in 30 countries in Europe and bordering the .......6-47.0], and on dialysis 39.3% (95% CI 39.2-39.4). The unadjusted 5-year patient survival after the first renal transplantation performed between 2002 and 2006 was 86.7% (95% CI 86.2-87.2) for kidneys from deceased donors and 94.3% (95% CI 93.6-95.0) for kidneys from living donors....

  19. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  20. Leptin replacement improves cognitive development.

    Directory of Open Access Journals (Sweden)

    Gilberto J Paz-Filho

    Full Text Available BACKGROUND: Leptin changes brain structure, neuron excitability and synaptic plasticity. It also regulates the development and function of feeding circuits. However, the effects of leptin on neurocognitive development are unknown. OBJECTIVE: To evaluate the effect of leptin on neurocognitive development. METHODOLOGY: A 5-year-old boy with a nonconservative missense leptin gene mutation (Cys-to-Thr in codon 105 was treated with recombinant methionyl human leptin (r-metHuLeptin at physiologic replacement doses of 0.03 mg/kg/day. Cognitive development was assessed using the Differential Ability Scales (DAS, a measure of general verbal and nonverbal functioning; and selected subtests from the NEPSY, a measure of neuropsychological functioning in children. PRINCIPAL FINDINGS: Prior to treatment, the patient was morbidly obese, hypertensive, dyslipidemic, and hyperinsulinemic. Baseline neurocognitive tests revealed slower than expected rates of development (developmental age lower than chronological age in a majority of the areas assessed. After two years, substantial increases in the rates of development in most neurocognitive domains were apparent, with some skills at or exceeding expectations based on chronological age. We also observed marked weight loss and resolution of hypertension, dyslipidemia and hyperinsulinemia. CONCLUSIONS: We concluded that replacement with r-metHuLeptin is associated with weight loss and changes in rates of development in many neurocognitive domains, which lends support to the hypothesis that, in addition to its role in metabolism, leptin may have a cognitive enhancing role in the developing central nervous system. TRIAL REGISTRATION: ClinicalTrials.gov NCT00659828.

  1. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, F.; Pauleau, Y.; Grob, J.J.; Babonneau, D

    2004-11-01

    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH{sub 4}-argon and C{sub 2}H{sub 2}-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH{sub 4} and C{sub 2}H{sub 2} concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH{sub 4}. Copper crystallites with an anisotropic shape were found in films deposited from C{sub 2}H{sub 2}. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C{sub 2}H radicals for films produced from CH{sub 4} and C

  2. Argon cluster ion beams for organic depth profiling: results from a VAMAS interlaboratory study.

    Science.gov (United States)

    Shard, Alexander G; Havelund, Rasmus; Seah, Martin P; Spencer, Steve J; Gilmore, Ian S; Winograd, Nicholas; Mao, Dan; Miyayama, Takuya; Niehuis, Ewald; Rading, Derk; Moellers, Rudolf

    2012-09-18

    The depth profiling of organic materials with argon cluster ion sputtering has recently become widely available with several manufacturers of surface analytical instrumentation producing sources suitable for surface analysis. In this work, we assess the performance of argon cluster sources in an interlaboratory study under the auspices of VAMAS (Versailles Project on Advanced Materials and Standards). The results are compared to a previous study that focused on C(60)(q+) cluster sources using similar reference materials. Four laboratories participated using time-of-flight secondary-ion mass spectrometry for analysis, three of them using argon cluster sputtering sources and one using a C(60)(+) cluster source. The samples used for the study were organic multilayer reference materials consisting of a ∼400-nm-thick Irganox 1010 matrix with ∼1 nm marker layers of Irganox 3114 at depths of ∼50, 100, 200, and 300 nm. In accordance with a previous report, argon cluster sputtering is shown to provide effectively constant sputtering yields through these reference materials. The work additionally demonstrates that molecular secondary ions may be used to monitor the depth profile and depth resolutions approaching a full width at half maximum (fwhm) of 5 nm can be achieved. The participants employed energies of 2.5 and 5 keV for the argon clusters, and both the sputtering yields and depth resolutions are similar to those extrapolated from C(60)(+) cluster sputtering data. In contrast to C(60)(+) cluster sputtering, however, a negligible variation in sputtering yield with depth was observed and the repeatability of the sputtering yields obtained by two participants was better than 1%. We observe that, with argon cluster sputtering, the position of the marker layers may change by up to 3 nm, depending on which secondary ion is used to monitor the material in these layers, which is an effect not previously visible with C(60)(+) cluster sputtering. We also note that electron

  3. Repressed ethylene production in the gynoecium of long-lasting flowers of the carnation 'White Candle': role of the gynoecium in carnation flower senescence.

    Science.gov (United States)

    Nukui, Hideki; Kudo, Sakiko; Yamashita, Atsushi; Satoh, Shigeru

    2004-03-01

    Ethylene production and expression of ethylene biosynthetic genes was investigated in senescing flowers of carnation (Dianthus caryophyllus L.) cultivars 'White Candle (WC)' and 'Light Pink Barbara (LPB)', with long and short vase-lives, respectively. Ethylene production from the gynoecium and petals of senescing 'WC' flowers was below the limit of detection, in agreement with the repressed ethylene production from the whole flowers. However, exogenous ethylene treatment caused the accumulation of transcripts for DC-ACS1 and DC-ACO1 genes in both the gynoecium and petals, resulting in ethylene production from the flowers. Moreover, application of ABA or IAA, which are known to exhibit their action through the induction of ethylene synthesis in the gynoecium, to 'WC' flowers from their cut stem-end induced ethylene production and wilting in the flowers. These findings suggested that, in 'WC' flowers the mechanism of ethylene biosynthesis, i.e. the induction of expression of genes for ethylene biosynthesis and the action of resulting enzymes, was not defective, but that its function was repressed during natural senescence. Transcripts of DC-ACO1, DC-ACS3, and DC-ACS1 were present in the gynoecium of senescing 'LPB' flowers. In the gynoecium of senescing 'WC' flowers, however, the DC-ACO1 transcript was present, but the DC-ACS1 transcript was absent and the DC-ACS3 transcript was detected only in a small amount; the latter two were associated with the low rate of ethylene production in the gynoecium of 'WC' flowers. These findings indicated that the repressed ethylene production in 'WC' flowers during natural senescence is caused by the repressed ethylene production in the gynoecium, giving further support for the role of the gynoecium in regulating petal senescence in carnation flowers.

  4. Dietary Patterns in Pregnancy and Effects on Nutrient Intake in the Mid-South: The Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE Study

    Directory of Open Access Journals (Sweden)

    Frances A. Tylavsky

    2013-05-01

    Full Text Available Dietary patterns are sensitive to differences across socio-economic strata or cultural habits and may impact programing of diseases in later life. The purpose of this study was to identify distinct dietary patterns during pregnancy in the Mid-South using factor analysis. Furthermore, we aimed to analyze the differences in the food groups and in macro- and micronutrients among the different food patterns. The study was a cross-sectional analysis of 1155 pregnant women (mean age 26.5 ± 5.4 years; 62% African American, 35% Caucasian, 3% Other; and pre-pregnancy BMI 27.6 ± 7.5 kg/m2. Using food frequency questionnaire data collected from participants in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE study between 16 and 28 weeks of gestation, dietary patterns were identified using factor analysis. Three major dietary patterns, namely, Healthy, Processed, and US Southern were identified among pregnant women from the Mid-South. Further analysis of the three main patterns revealed four mixed dietary patterns, i.e., Healthy-Processed, Healthy-US Southern, Processed-US Southern, and overall Mixed. These dietary patterns were different (p < 0.001 from each other in almost all the food items, macro- and micro nutrients and aligned across socioeconomic and racial groups. Our study describes unique dietary patterns in the Mid-South, consumed by a cohort of women enrolled in a prospective study examining the association of maternal nutritional factors during pregnancy that are known to affect brain and cognitive development by age 3.

  5. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT; Operacion de la Criogenia del Detector de Argon Liquido del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.

    2009-12-19

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  6. Compilation of electron collision excitation cross sections for neutral argon; Compilacion de resultados de secciones eficaces de excitacion para niveles del Argon neutro

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, F.

    1993-07-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p5 ns (n=4to 12), np(n=4to8) and nd(n=3to8)of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p5 ns (n=4 to 7), np (n=4 to 7) and nd (n=3 to 8). 3.- comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author) 35 refs.

  7. Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen

    Science.gov (United States)

    Yang, Li; Jiang, Caiyi; Guo, Shenghui; Zhang, Libo; Gao, Jiyun; Peng, Jinhui; Hu, Tu; Wang, Liang

    2016-09-01

    Diamond thin films are grown on silicon substrates by only using methanol and argon mixtures in microwave plasma chemical vapor deposition (MPCVD) reactor. It is worth mentioning that the novel strategy makes the synthesis reaction works smoothly without hydrogen atmosphere, and the substrates temperature is only 500 °C. The evidence of surface morphology and thickness under different time is obtained by characterizing the samples using scanning electron microscopy (SEM). X-ray diffractometer (XRD) spectrum reveals that the preferential orientation of (111) plane sample is obtained. The Raman spectra indicate that the dominant component of all the samples is a diamond. Moreover, the diamond phase content of the targeted films was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS) method, and the surface roughness of diamond films was investigated by atomic force microscope (AFM). Meanwhile, the possible synthesis mechanism of the diamond films in methanol- and argon-mixed atmosphere was discussed.

  8. Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Baptista, B; Chiu, C; Conrad, J M; Ignarra, C M; Jones, B J P; Katori, T; Mufson, S

    2012-01-01

    Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we show that the response of lightguides coated with TPB in a UV Transmitting (UVT) acrylic matrix is very similar to that of a coating using a polystyrene (PS) matrix. We obtain a factor of three higher light yield than has been previously reported from lightguides. This paper provides information on the response of the lightguides so that these can be modeled in simulations for future LArTPCs. This paper also identifies areas of R&D for potential improvements in the lightguide response

  9. Experimental study of electric breakdowns in liquid argon at centimeter scale

    CERN Document Server

    Blatter, A; Hsu, C -C; Janos, S; Kreslo, I; Luethi, M; von Rohr, C Rudolf; Schenk, M; Strauss, T; Weber, M S; Zeller, M

    2014-01-01

    In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Flash-overs across the ribbed dielectric of the high voltage feed-through are observed for a length of 300 mm starting from a voltage of 55 kV. These results contribute to set reference for the breakdown-free design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  10. Characteristics of a DC discharge with a water cathode in argon

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, S. A.; Shutov, D. A.; Bobkova, E. S.; Rybkin, V. V., E-mail: rybkin@isuct.ru [Ivanovo State University of Chemistry and Technology (Russian Federation)

    2016-01-15

    The characteristics of a dc discharge excited between a metal anode and a water cathode in argon were studied experimentally. The dimensions of the positive column and the electric field in it were measured, and the vibrational temperature in the positive column was determined from the N{sub 2}C{sup 3}Π{sub u} → B{sup 3}Π{sub g} (0–2) emission band. It is shown that the power deposited in the positive column is almost entirely spent on gas heating. The obtained dependence of the reduced electric field on the gas pressure and the ionization frequencies calculated by solving the Boltzmann equation indicate that electrons are lost diffusively, whereas ionization proceeds in a stepwise manner via the lower metastable states of argon atoms.

  11. Determination of the molar mass of argon from high-precision acoustic comparisons

    Science.gov (United States)

    Feng, X. J.; Zhang, J. T.; Moldover, M. R.; Yang, I.; Plimmer, M. D.; Lin, H.

    2017-06-01

    This article describes the accurate determination of the molar mass M of a sample of argon gas used for the determination of the Boltzmann constant. The method of one of the authors (Moldover et al 1988 J. Res. Natl. Bur. Stand. 93 85-144) uses the ratio of the square speed of sound in the gas under analysis and in a reference sample of known molar mass. A sample of argon that was isotopically-enriched in 40Ar was used as the reference, whose unreactive impurities had been independently measured. The results for three gas samples are in good agreement with determinations by gravimetric mass spectrometry; (  -  1)  =  (-0.31  ±  0.69)  ×  10-6, where the indicated uncertainty is one standard deviation that does not account for the uncertainties from the acoustic and mass-spectroscopy references.

  12. Background studies for a ton-scale argon dark matter detector (ArDM)

    CERN Document Server

    Kaufmann, L

    2006-01-01

    The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

  13. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M. [Bern U., LHEP; Del Tutto, M. [Oxford U.; Ereditato, A. [Bern U.; Fleming, B. [Yale U.; Goeldi, D. [Bern U., LHEP; Gramellini, E. [Yale U.; Guenette, R. [Oxford U.; Ketchum, W. [Fermilab; Kreslo, I. [U. Bern, AEC; Laube, A. [Oxford U.; Lorca, D. [U. Bern, AEC; Luethi, M. [U. Bern, AEC; Rudolf von Rohr, C. [U. Bern, AEC; Sinclair, J. R. [U. Bern, AEC; Soleti, S. R. [Oxford U.; Weber, M. [U. Bern, AEC

    2016-12-14

    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.

  14. Observation of the Dependence of Scintillation from Nuclear Recoils in Liquid Argon on Drift Field

    CERN Document Server

    Alexander, T; Cao, H; Cocco, A G; DeJongh, F; Fiorillo, G; Galbiati, C; Ghag, C; Grandi, L; Kendziora, C; Lippincott, W H; Loer, B; Love, C; Manenti, L; Martoff, C J; Meng, Y; Montanari, D; Mosteiro, P; Olvitt, D; Pordes, S; Qian, H; Rossi, B; Saldanha, R; Tan, W; Tatarowicz, J; Walker, S; Wang, H; Watson, A W; Westerdale, S; Yoo, J

    2013-01-01

    We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoiling nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.

  15. Commissioning and Charge Readout Calibration of a 5 Ton Dual Phase Liquid Argon TPC

    CERN Document Server

    AUTHOR|(CDS)2098555

    Dual phase time projection chambers with amplification of ionization electrons provide a novel technique for measuring and analyzing rare events with excellent spatial resolution and great calorimetric properties. This thesis describes the commissioning of the WA105 3 x 1 x 1 m3 dual phase liquid argon detector, built to demonstrate the performance of this kind of detector on large scales in order to determine the viability of giant dual phase time projection chambers in long baseline neutrino oscillation experiments. The properties of the insulation and the main tank vessel are described and analyzed, such as the pressure, temperature and argon purity requirements during operation in order to guarantee stable conditions and good event tracking. As signals are induced due to electrons from ionizing radiation, crosstalk is caused by capacitive couplings between strips of the charge readout plane and in the electronics of the data acquisition. These induced signals are studied and compared to capacitance and pu...

  16. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besana, M I; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M A; Dunford, M; Duperrin, A; Duran Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henss, T; Hernández Jiménez, Y; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez-Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Munwes, Y; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A -E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Ospanov, R; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossetti, V; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H C; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra Suay, L; Soukharev, A; Spagnolo, S; Spanó, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  17. Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Moss, Z; Collin, G; Conrad, J M; Jones, B J P; Moon, J; Toups, M; Wongjirad, T

    2014-01-01

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetra phenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars.

  18. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2016-01-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  19. Influence of dissociative recombination on the LTE of argon high-frequency plasmas at atmospheric pressure

    CERN Document Server

    Sainz, A; García, M C; Calzada, M D; Sainz, Abel; Margot, Joelle; Garcia, Maria Carmen; Calzada, Maria Dolores

    2004-01-01

    This work presents a few preliminary results from a collisional-radiative (CR) model intended to describe an argon microwave (2.45 GHz) plasma at atmospheric pressure. This model aims to investigate the influence of dissociative recombination products on the Saha-Boltzmann plasma equilibrium. The model is tested through comparison with experimental results obtained in an argon plasma column generated by a traveling electromagnetic surface-wave, which is suitable to perform a parametric investigation of the plasma. It is shown that dissociative recombination predominantly populates the 4s levels and the ground state. It is further observed that it strongly influences the population of the levels, specially those of lower energy. However, the higher levels (close to the ionization limit) appear to be in equilibrium whatever the plasma density. This allows assuming that the excitation temperature Texc determined from the upper levels in the atomic system in the Boltzmann-plot is equal to Te.

  20. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    Science.gov (United States)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.