WorldWideScience

Sample records for repetitive sequence families

  1. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  2. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  3. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    Science.gov (United States)

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal

  4. Repetitive DNA Sequences in Wheat and Its Relatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-yong; LI Da-yong

    2001-01-01

    Repetitive DNA sequences form a large portion of eukaryote genomes. Using wheat ( Triticum )as a model, the classification, features and functions of repetitive DNA sequences in the Tritieeae grass tribe is reviewed as well as the role of these sequences in genome differentiation, control and regulation of homologous chromosome synapsis and pairing. Transposable elements, as an important portion of dispersed repetitives,may play an essential role in gene mutation of the host. Dynamic models for change of copy number and sequences of the repetitive family are also presented after the models of Charlesworth et al. Application of repetitive DNA sequences in the study of evolution, chromosome fingerprinting and marker assisted gene transfer and breeding are described by taking wheat as an example.

  5. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species

    NARCIS (Netherlands)

    Kuipers, A.G.J.; Kamstra, S.A.; Jeu, de M.J.; Jacobsen, E.

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragm

  6. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  7. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota).

    Science.gov (United States)

    Chaiprasertsri, Nampech; Uno, Yoshinobu; Peyachoknagul, Surin; Prakhongcheep, Ornjira; Baicharoen, Sudarath; Charernsuk, Saranon; Nishida, Chizuko; Matsuda, Yoichi; Koga, Akihiko; Srikulnath, Kornsorn

    2013-01-01

    Two novel repetitive DNA sequences, VSAREP1 and VSAREP2, were isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) and characterized using molecular cytogenetics. The respective lengths and guanine-cytosine (GC) contents of the sequences were 190 bp and 57.5% for VSAREP1 and 185 bp and 59.7% for VSAREP2, and both elements were tandemly arrayed as satellite DNA in the genome. VSAREP1 and VSAREP2 were each located at the C-positive heterochromatin in the pericentromeric region of chromosome 2q, the centromeric region of chromosome 5, and 3 pairs of microchromosomes. This suggests that genomic compartmentalization between macro- and microchromosomes might not have occurred in the centromeric repetitive sequences of V. salvator macromaculatus. These 2 sequences did only hybridize to genomic DNA of V. salvator macromaculatus, but no signal was observed even for other squamate reptiles, including Varanus exanthematicus, which is a closely related species of V. salvator macromaculatus. These results suggest that these sequences were differentiated rapidly or were specifically amplified in the V. salvator macromaculatus genome.

  8. Family Sequencing and Cooperation

    NARCIS (Netherlands)

    Grundel, S.; Ciftci, B.B.; Borm, P.E.M.; Hamers, H.J.M.

    2012-01-01

    To analyze the allocation problem of the maximal cost savings of the whole group of jobs, we define and analyze a so-called corresponding cooperative family sequencing game which explicitly takes into account the maximal cost savings for any coalition of jobs. Using nonstandard techniques we prove t

  9. Piriform spider silk sequences reveal unique repetitive elements.

    Science.gov (United States)

    Perry, David J; Bittencourt, Daniela; Siltberg-Liberles, Jessica; Rech, Elibio L; Lewis, Randolph V

    2010-11-08

    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata , N. clavipes , and N. cruentata . The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6-8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group.

  10. Clinical application of gradient echo sequences with prolonged repetition times

    Energy Technology Data Exchange (ETDEWEB)

    Tiling, R.; Fink, U.; Deimling, M.; Bauer, W.M.; Yousry, T.; Krauss, B.

    1988-09-01

    Studies designed to optimise image contrasts of gradient echo sequences showed, that especially repetition times between 250 and 500 ms in combination with adequate echo times and flip angles provide new image contrasts. The clinical purpose of gradient echo sequences with longer TR was systematically evaluated in 450 patients. A major advantage of GE sequences was the low signal intensity of fat and bone tissue. On the other hand differnt pathologic changes showed a high signal intensity in comparison to T/sub 2/ weighted spin echo sequences as well. With the possibility of multiple slices GE sequences were of outstanding diagnostic value especially in MR of soft tissue and of the musculoskeletal system. T/sub 2/ weighted SE sequences provided no additional informations and could therefore be omitted in a great number of examinations.

  11. The Bartonella vinsonii subsp. arupensis Immunodominant Surface Antigen BrpA Gene, Encoding a 382-Kilodalton Protein Composed of Repetitive Sequences, Is a Member of a Multigene Family Conserved among Bartonella Species

    OpenAIRE

    Gilmore, Robert D.; Bellville, Travis M.; Sviat, Steven L.; Frace, Michael

    2005-01-01

    Bartonella proteins that elicit an antibody response during an infection are poorly defined; therefore, to characterize antigens recognized by the host, a Bartonella genomic expression library was screened with serum from an infected mouse. This process led to the discovery of a Bartonella vinsonii subsp. arupensis gene encoding a 382-kDa protein, part of a gene family encoding large proteins, each containing multiple regions of repetitive segments. The genes were termed brpA to -C (bartonell...

  12. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...... over all chromosomes of H. vulgare and the wild barley species H. bulbosum, H. marinum and H. murinum. Southern blot hybridization revealed different levels of polymorphism among barley species and the RFLP data were used to generate a phylogenetic tree for the genus Hordeum. Our data are in a good...

  13. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  14. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae

    Directory of Open Access Journals (Sweden)

    E. Coluccia

    2011-05-01

    Full Text Available Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42 but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR. Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.

  15. Code domains in tandem repetitive DNA sequence structures.

    Science.gov (United States)

    Vogt, P

    1992-10-01

    Traditionally, many people doing research in molecular biology attribute coding properties to a given DNA sequence if this sequence contains an open reading frame for translation into a sequence of amino acids. This protein coding capability of DNA was detected about 30 years ago. The underlying genetic code is highly conserved and present in every biological species studied so far. Today, it is obvious that DNA has a much larger coding potential for other important tasks. Apart from coding for specific RNA molecules such as rRNA, snRNA and tRNA molecules, specific structural and sequence patterns of the DNA chain itself express distinct codes for the regulation and expression of its genetic activity. A chromatin code has been defined for phasing of the histone-octamer protein complex in the nucleosome. A translation frame code has been shown to exist that determines correct triplet counting at the ribosome during protein synthesis. A loop code seems to organize the single stranded interaction of the nascent RNA chain with proteins during the splicing process, and a splicing code phases successive 5' and 3' splicing sites. Most of these DNA codes are not exclusively based on the primary DNA sequence itself, but also seem to include specific features of the corresponding higher order structures. Based on the view that these various DNA codes are genetically instructive for specific molecular interactions or processes, important in the nucleus during interphase and during cell division, the coding capability of tandem repetitive DNA sequences has recently been reconsidered.

  16. Molecular characterization and evolution of an interspersed repetitive DNA family of oysters.

    Science.gov (United States)

    López-Flores, Inmaculada; Ruiz-Rejón, Carmelo; Cross, Ismael; Rebordinos, Laureana; Robles, Francisca; Navajas-Pérez, Rafael; de la Herrán, Roberto

    2010-12-01

    When genomic DNA from the European flat oyster Ostrea edulis L. was digested by BclI enzyme, a band of about 150 bp was observed in agarose gel. After cloning and sequencing this band and analysing their molecular characteristics and genomic organization by means of Southern blot, in situ hybridisation, and polymerase chain reaction (PCR) protocols, we concluded that this band is an interspersed highly repeated DNA element, which is related in sequence to the flanking regions of (CT)-microsatellite loci of the species O. edulis and Crassostrea gigas. Furthermore, we determined that this element forms part of a longer repetitive unit of 268 bp in length that, at least in some loci, is present in more than one copy. By Southern blot hybridisation and PCR amplifications-using primers designed for conserved regions of the 150-bp BclI clones of O. edulis-we determined that this repetitive DNA family is conserved in five other oyster species (O. stentina, C. angulata, C. gigas, C. ariakensis, and C. sikamea) while it is apparently absent in C. gasar. Finally, based on the analysis of the repetitive units in these oyster species, we discuss the slow degree of concerted evolution in this interspersed repetitive DNA family and its use for phylogenetic analysis.

  17. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  18. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function.

    Science.gov (United States)

    Mehrotra, Shweta; Goyal, Vinod

    2014-08-01

    Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  19. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    in binary mixtures. PCR LUX primers were designed that amplify repetitive and single copy sequences to establish the species dependent number (constants) (SDC) of amplified repetitive sequences per genome. The SDCs and data from amplification of repetitive sequences were tested for their applicability...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  20. Accurate Prediction of the Statistics of Repetitions in Random Sequences: A Case Study in Archaea Genomes.

    Science.gov (United States)

    Régnier, Mireille; Chassignet, Philippe

    2016-01-01

    Repetitive patterns in genomic sequences have a great biological significance and also algorithmic implications. Analytic combinatorics allow to derive formula for the expected length of repetitions in a random sequence. Asymptotic results, which generalize previous works on a binary alphabet, are easily computable. Simulations on random sequences show their accuracy. As an application, the sample case of Archaea genomes illustrates how biological sequences may differ from random sequences.

  1. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).

    Science.gov (United States)

    He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei

    2015-04-18

    Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions

  2. Repetitive sequence analysis and karyotyping reveal different genome evolution and speciation of diploid and tetraploid Tripsacum dactyloides

    Directory of Open Access Journals (Sweden)

    Qilin Zhu

    2016-08-01

    Full Text Available In the subtribe Maydeae, Tripsacum and Zea are closely related genera. Tripsacum is a horticultural crop widely used as pasture forage. Previous studies suggested that Tripsacum might play an important role in maize origin and evolution. However, our understanding of the genomics and the evolution of Tripsacum remains limited. In this study, two diploids, T. dactyloides var. meridionale (2n = 36, MR and T. dactyloides (2n = 36, DD, and one tetraploid, T. dactyloides (2n = 72, DL were sequenced by low-coverage genome sequencing followed by graph-based cluster analysis. The results showed that 63.23%, 59.20%, and 61.57% of the respective genome of MR, DD, and DL were repetitive DNA sequence. The proportions of different repetitive sequences varied greatly among the three species. Fluorescence in situ hybridization (FISH analysis of mitotic metaphase chromosomes with satellite repeats as the probes showed that the FISH signal patterns of DL were more similar to that of DD than to that of MR. Comparative analysis of the repeats also showed that DL shared more common repeat families with DD than with MR. Phylogenetic analysis of internal transcribed spacer region sequences further supported the evolutionary relationship among the three species. Repetitive sequences comparison showed that Tripsacum shared more repeat families with Zea than with Coix and Sorghum. Our study sheds new light on the genomics of Tripsacum and differential speciation in the Poaceae family.

  3. A New Revised DNA Cramp Tool Based Approach of Chopping DNA Repetitive and Non-Repetitive Genome Sequences

    Directory of Open Access Journals (Sweden)

    V.Hari Prasad

    2012-11-01

    Full Text Available In vogue tremendous amount of data generated day by day by the living organism of genetic sequences and its accumulation in database, their size is growing in an exponential manner. Due to excessive storage of DNA sequences in public databases like NCBI, EMBL and DDBJ archival maintenance is tedious task. Transmission of information from one place to another place in network management systems is also a critical task. So To improve the efficiency and to reduce the overhead of the database need of compression arises in database optimization. In this connection different techniques were bloomed, but achieved results are not bountiful. Many classical algorithms are fails to compress genetic sequences due to the specificity of text encoded in dna and few of the existing techniques achieved positive results. DNA is repetitive and non repetitive in nature. Our proposed technique DNACRAMP is applicable on repetitive and non repetitive sequences of dna and it yields better compression ratio in terms of bits per bases. This is compared with existing techniques and observed that our one is the optimum technique and compression results are on par with existing techniques.

  4. Distribution of repetitive DNA sequences in chromosomes of five opisthorchid species (Trematoda, Opisthorchiidae).

    Science.gov (United States)

    Zadesenets, Kira S; Karamysheva, Tatyana V; Katokhin, Alexei V; Mordvinov, Viatcheslav A; Rubtsov, Nikolay B

    2012-03-01

    Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.

  5. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements

    Directory of Open Access Journals (Sweden)

    Pareja Eduardo

    2006-03-01

    Full Text Available Abstract Background Mobile elements are involved in genomic rearrangements and virulence acquisition, and hence, are important elements in bacterial genome evolution. The insertion of some specific Insertion Sequences had been associated with repetitive extragenic palindromic (REP elements. Considering that there are a sufficient number of available genomes with described REPs, and exploiting the advantage of the traceability of transposition events in genomes, we decided to exhaustively analyze the relationship between REP sequences and mobile elements. Results This global multigenome study highlights the importance of repetitive extragenic palindromic elements as target sequences for transposases. The study is based on the analysis of the DNA regions surrounding the 981 instances of Insertion Sequence elements with respect to the positioning of REP sequences in the 19 available annotated microbial genomes corresponding to species of bacteria with reported REP sequences. This analysis has allowed the detection of the specific insertion into REP sequences for ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01, ISPpu9 and ISPpu10 in P. putida KT2440, and ISRm22 and ISRm19 in Sinorhizobium meliloti 1021 genome. Preference for insertion in extragenic spaces with REP sequences has also been detected for ISPsy7 in P. syringae DC3000, ISRm5 in S. meliloti and ISNm1106 in Neisseria meningitidis MC58 and Z2491 genomes. Probably, the association with REP elements that we have detected analyzing genomes is only the tip of the iceberg, and this association could be even more frequent in natural isolates. Conclusion Our findings characterize REP elements as hot spots for transposition and reinforce the relationship between REP sequences and genomic plasticity mediated by mobile elements. In addition, this study defines a subset of REP-recognizer transposases with high target selectivity that can be useful in the development of new tools for

  6. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  7. One-way sequencing of multiple amplicons from tandem repetitive mitochondrial DNA control region.

    Science.gov (United States)

    Xu, Jiawu; Fonseca, Dina M

    2011-10-01

    Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.

  8. Molecular cytogenetic characterization of chromosome site-specific repetitive sequences in the Arctic lamprey (Lethenteron camtschaticum, Petromyzontidae)

    Science.gov (United States)

    Ishijima, Junko; Uno, Yoshinobu; Nunome, Mitsuo; Nishida, Chizuko; Kuraku, Shigehiro

    2017-01-01

    Abstract All extant lamprey karyotypes are characterized by almost all dot-shaped microchromosomes. To understand the molecular basis of chromosome structure in lampreys, we performed chromosome C-banding and silver staining and chromosome mapping of the 18S–28S and 5S ribosomal RNA (rRNA) genes and telomeric TTAGGG repeats in the Arctic lamprey (Lethenteron camtschaticum). In addition, we cloned chromosome site-specific repetitive DNA sequences and characterized them by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. Three types of repetitive sequences were detected; a 200-bp AT-rich repetitive sequence, LCA-EcoRIa that co-localized with the 18S–28S rRNA gene clusters of 3 chromosomal pairs; a 364-bp AT-rich LCA-EcoRIb sequence that showed homology to the EcoRI sequence family from the sea lamprey (Petromyzon marinus), which contains short repeats as centromeric motifs; and a GC-rich 702-bp LCA-ApaI sequence that was distributed on nearly all chromosomes and showed significant homology with the integrase-coding region of a Ty3/Gypsy family long terminal repeat (LTR) retrotransposon. All three repetitive sequences are highly conserved within the Petromyzontidae or within Petromyzontidae and Mordaciidae. Molecular cytogenetic characterization of these site-specific repeats showed that they may be correlated with programed genome rearrangement (LCA-EcoRIa), centromere structure and function (LCA-EcoRIb), and site-specific amplification of LTR retroelements through homogenization between non-homologous chromosomes (LCA-ApaI). PMID:28025319

  9. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species.

    Science.gov (United States)

    Kuipers, A G J; Kamstra, S A; de Jeu, M J; Visser, R G F

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68-127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed.

  10. Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region.

    Science.gov (United States)

    Sindičić, Magda; Gomerčić, Tomislav; Galov, Ana; Polanc, Primož; Huber, Duro; Slavica, Alen

    2012-06-01

    Mitochondrial DNA (mtDNA) control region (CR) of numerous species is known to include up to five different repetitive sequences (RS1-RS5) that are found at various locations, involving motifs of different length and extensive length heteroplasmy. Two repetitive sequences (RS2 and RS3) on opposite sides of mtDNA central conserved region have been described in domestic cat (Felis catus) and some other felid species. However, the presence of repetitive sequence RS3 has not been detected in Eurasian lynx (Lynx lynx) yet. We analyzed mtDNA CR of 35 Eurasian lynx (L. lynx L.) samples to characterize repetitive sequences and to compare them with those found in other felid species. We confirmed the presence of 80 base pairs (bp) repetitive sequence (RS2) at the 5' end of the Eurasian lynx mtDNA CR L strand and for the first time we described RS3 repetitive sequence at its 3' end, consisting of an array of tandem repeats five to ten bp long. We found that felid species share similar RS3 repetitive pattern and fundamental repeat motif TACAC.

  11. Interspecific "common" repetitive DNA sequences in salamanders of the genus Plethodon.

    Science.gov (United States)

    Mizuno, S; Andrews, C; Macgregor, H C

    1976-10-12

    Intermediate repetitive sequences of Plethodon cinereus which comprised about 30% of the genomic DNA were isolated and iodinated with 125I. About 5% of the 125I-repetitive fraction hybridized with a large excess of DNA from P. dunni at Cot 20. About half of the 125I-DNA in the hybrids was resistant to extensive digestion with S-1 nuclease. The average molecular size of the S-1 nuclease-resistant fraction was about 100 nucleotide pairs. The melting temperature of the S-1 nuclease-resistant fraction was about 2 degrees lower than that of the corresponding fraction made with P. cinereus DNA. These results are taken to indicate the presence in the genomes of P. cinereus and P. dunni of evolutionarily stable "common" repetitive sequences. The average frequency of repetition of the common repetitive sequences is about 6,000 X in both species. The common repetitive fraction is also present in the genomes of other species of Plethodon, although the general populations of intermediate repetitive sequences are markedly different from one species to another. The cinereus--dunni common repetitive sequences could not be detected in plethodontids belonging to different tribes, nor in more distantly related amphibians. The profiles of binding of the common repetitive sequences to CsCl or CS2SO4-Ag+ density gradient fractions of P. dunni DNA suggested that these sequences consisted of heterogeneous components with respect to base compositions, and that they did not include large amounts of the genes for ribosomal RNA, 5S RNA, 4S RNA, or histone messenger RNA. In situ hybridization of the 3H-labelled intermediate repetitive sequences of P. cinereus to male meiotic chromosomes of the same species gave autoradiographs after an exposure of seven days showing all 14 chromosomes labelled. The pattern of labelling appeared not to be random, but was impossible to analyse on account of the irregular shapes and different degrees of stretching of diplotene and prometaphase chromosomes. In

  12. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    R. Mezzanotte

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  13. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    J. Gosalvez

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  14. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    Science.gov (United States)

    García, G; Ríos, N; Gutiérrez, V

    2015-06-01

    Among Neotropical fish fauna, the South American killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) constitutes an excellent model to study the genomic evolutionary processes underlying speciation events. Recently, unusually large genome size has been described in 16 species of this genus, with an average DNA content of about 5.95 ± 0.45 pg per diploid cell (mean C-value of about 2.98 pg). In the present paper we explore the possible origin of this unparallel genomic increase by means of comparative analysis of the repetitive components using NGS (454-Roche) technology in the lowest and highest Rivulidae genomes. Here, we provide the first annotated Rivulidae-repeated sequences composition and their relative repetitive fraction in both genomes. Remarkably, the genomic proportion of the moderately repetitive DNA in Austrolebias charrua genome represents approximately twice (45%) of the repetitive components of the highly related rivulinae taxon Cynopoecilus melanotaenia (25%). Present work provides evidence about the impact of the repeat families that could be distinctly proliferated among sublineages within Rivulidae fish group, explaining the great genome size differences encompassing the differentiation and speciation events in this family.

  15. Polymerase Chain Reaction-based Suppression of Repetitive Sequences in Whole Chromosome Painting Probes for FISH

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L C; Pattee, M; Williams, J; Eklund, M; Bedford, J S; Christian, A T

    2004-04-21

    We have developed a method to suppress the PCR amplification of repetitive sequences in whole chromosome painting probes by adding Cot-1 DNA to the amplification mixture. The repetitive sequences in the Cot-1 DNA bind to their homologous sequences in the probe library, prevent the binding of primers, and interfere with extension of the probe sequences, greatly decreasing PCR efficiency selectively across these blocked regions. A second labeling reaction is then done and this product is resuspended in FISH hybridization mixture without further addition of blocking DNA. The hybridization produces little if any non-specific binding on any other chromosomes. We have been able to successfully use this procedure with both human and rat chromosome probes. This technique should be applicable in producing probes for CGH, M-FISH and SKY, as well as reducing the presence of repetitive DNA in genomic libraries.

  16. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position.

  17. Repetitive flanking sequences challenge microsatellite marker development: a case study in the lepidopteran Melanargia galathea.

    Science.gov (United States)

    Schmid, Max; Csencsics, Daniela; Gugerli, Felix

    2016-11-01

    Microsatellite DNA families (MDF) are stretches of DNA that share similar or identical sequences beside nuclear simple-sequence repeat (nSSR) motifs, potentially causing problems during nSSR marker development. Primers positioned within MDFs can bind several times within the genome and might result in multiple banding patterns. It is therefore common practice to exclude MDF loci in the course of marker development. Here, we propose an approach to deal with multiple primer-binding sites by purposefully positioning primers within the detected repetitive element. We developed a new protocol to determine the family type and the primer position in relation to MDFs using the software packages repark and repeatmasker together with an in-house R script. We re-evaluated newly developed nSSR markers for the lepidopteran Marbled White (Melanargia galathea) and explored the implications of our results with regard to published data sets of the butterfly Euphydryas aurinia, the grasshopper Stethophyma grossum, the conifer Pinus cembra and the crucifer Arabis alpina. For M. galathea, we show that it is not only possible to develop reliable nSSR markers for MDF loci, but even to benefit from their presence in some cases: We used one unlabelled primer, successfully binding within an MDF, for two different loci in a multiplex PCR, combining this family primer with uniquely binding and fluorescently labelled primers outside of MDFs, respectively. As MDFs are abundant in many taxa, we propose to consider these during nSSR marker development in taxa concerned. Our new approach might help in reducing the number of tested primers during nSSR marker development. © 2016 John Wiley & Sons Ltd.

  18. Investigating the work-family conflict and health link: Repetitive thought as a mechanism.

    Science.gov (United States)

    Davis, Kelly D; Gere, Judith; Sliwinski, Martin J

    2016-10-06

    Research is needed to investigate mechanisms linking work-family conflict to poor health in working adults. We took a novel approach to build on extant studies by testing a potential mechanism in these associations - repetitive thought. Data came from a sample of 203 partnered working adults. There were significant direct effects of work-family conflict with lower life satisfaction, positive affect, and perceived health as well as greater fatigue. As for total effects, work-family conflict was significantly associated with all health outcomes - life satisfaction, positive affect, negative affect, fatigue, perceived health, and chronic health conditions - in the expected directions through repetitive thought. This study provides support that repetitive thought is one potential mechanism of how work-family conflict can take a toll on psychological and physical health. Findings are discussed in relation to improving workplace policies to improve the health of working adults managing work-family conflict.

  19. Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate

    Science.gov (United States)

    Tcypkin, A. N.; Putilin, S. E.

    2017-01-01

    Experimental and numerical modeling techniques demonstrated the possibilities of the spectral-time encoding and decoding for time division multiplexing sequence of femtosecond subpulses with a repetition rate of up to 6.4 THz. The sequence was formed as a result of the interference of two phase-modulated pulses. We report the limits of the application of the developed method of controlling formed sequence at the spectral-temporal coding.

  20. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C

    2015-01-01

    Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.

  1. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences.

    Directory of Open Access Journals (Sweden)

    Kazumi Matsubara

    Full Text Available Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AATn microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGGn motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.

  2. Karyotypic Evolution and Chromosomal Organization of Repetitive DNA Sequences in Species of Panaque, Panaqolus, and Scobinancistrus (Siluriformes and Loricariidae) from the Amazon Basin.

    Science.gov (United States)

    Ayres-Alves, Thayana; Cardoso, Adauto Lima; Nagamachi, Cleusa Yoshiko; Sousa, Leandro Melo de; Pieczarka, Julio Cesar; Noronha, Renata Coelho Rodrigues

    2017-06-01

    Loricariidae family comprises the greatest variability of Neotropical catfish species, with more than 800 valid species. This family shows significant chromosomal diversity. Mapping of repetitive DNA sequences can be very useful in exploring such diversity, especially among groups that appear to share a preserved karyotypic macrostructure. We describe the karyotypes of Panaque armbrusteri and Panaqolus sp., as assessed using classical cytogenetic methods. Moreover, we offer a map of their repetitive sequences, including 18S and 5S ribosomal DNAs, the Rex1 and Rex3 retrotransposons, and the Tc1-mariner transposon in P. armbrusteri, Panaqolus sp., Scobinancistrus aureatus, and Scobinancistrus pariolispos. Those species share chromosome numbers of 2n = 52, but are divergent in their chromosome structures and the distributions of their repetitive DNA sequences. In situ hybridization with 18S and 5S rDNA probes confirms chromosome location in different pairs; in Panaqolus sp. these sites are in synteny. This multigene family organization can be explained by the occurrence of chromosome rearrangements, and possible events, such as transposition and unequal crossing-over. Rex1 and Rex3 retrotransposons and the Tc1-mariner transposon appeared predominantly dispersed and in small clusters in some chromosome regions. These data emphasize the importance of repetitive sequences in promoting the karyotypic evolution of these species.

  3. Stability of repetitive-sequence PCR patterns with respect to culture age and subculture frequency.

    Science.gov (United States)

    Kang, Hyunseok Peter; Dunne, W Michael

    2003-06-01

    To examine the stability of repetitive-sequence (rep) PCR profiles, six species of bacteria were subcultured to blood agar plates and DNA was extracted from the cultures after 24, 48, and 72 h of incubation at 35 degrees C. In addition, the same species were subcultured to fresh blood plates daily and DNA was extracted from the cultures after growth of 5, 10, and 15 subcultures, respectively. rep PCR analysis demonstrated that all rep PCR fingerprints from a single species were identical.

  4. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome.

    Science.gov (United States)

    Kolano, B; Gardunia, B W; Michalska, M; Bonifacio, A; Fairbanks, D; Maughan, P J; Coleman, C E; Stevens, M R; Jellen, E N; Maluszynska, J

    2011-09-01

    The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.

  5. Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome.

    Science.gov (United States)

    Kolano, Bozena; Plucienniczak, Andrzej; Kwasniewski, Miroslaw; Maluszynska, Jolanta

    2008-01-01

    In this study, a novel repetitive sequence pTaq10 was isolated from the Taq I digest of the genomic DNA of the pseudocereal Chenopodium quinoa. Sequence analysis indicated that this 286-bp monomer is not homologous to any known retroelement sequence. FISH and Southern blot analysis showed that this sequence is characterized by an interspersed genomic organization. After FISH, hybridization signals were observed as small dots spread throughout all of the chromosomes. pTaq hybridization signals were excluded from 45S rRNA gene loci, but they partly overlapped with 5S rDNA loci. pTaq10 is not a species-specific sequence, as it was also detected in C. berlandieri.

  6. Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition.

    Science.gov (United States)

    Venkatesan, S; Gershowitz, A; Moss, B

    1982-11-01

    The proximal part of the 10,000-base pair (bp) inverted terminal repetition of vaccinia virus DNA encodes at least three early mRNAs. A 2,236-bp segment of the repetition was sequenced to characterize two of the genes. This task was facilitated by constructing a series of recombinants containing overlapping deletions; oligonucleotide linkers with synthetic restriction sites provided points for radioactive labeling before sequencing by the chemical degradation method of Maxam and Gilbert (Methods Enzymol. 65:499-560, 1980). The ends of the transcripts were mapped by hybridizing labeled DNA fragments to early viral RNA and resolving nuclease S1-protected fragments in sequencing gels, by sequencing cDNA clones, and from the lengths of the RNAs. The nucleotide sequences for at least 60 bp upstream of both transcriptional initiation sites are more than 80% adenine . thymine rich and contain long runs of adenines and thymines with some homology to procaryotic and eucaryotic consensus sequences. The gene transcribed in the rightward direction encodes an RNA of approximately 530 nucleotides with a single open reading frame of 420 nucleotides. Preceding the first AUG, there is a heptanucleotide that can hybridize to the 3' end of 18S rRNA with only one mismatch. The derived amino acid sequence of the protein indicated a molecular weight of 15,500. The gene transcribed in the leftward direction encodes an RNA 1,000 to 1,100 nucleotides long with an open reading frame of 996 nucleotides and a leader sequence of only 5 to 6 nucleotides. The derived amino acid sequence of this protein indicated a molecular weight of 38,500. The 3' ends of the two transcripts were located within 100 bp of each other. Although there are adenine . thymine-rich clusters near the putative transcriptional termination sites, specific AATAAA polyadenylic acid signal sequences are absent.

  7. Evidence for a Familial Speech Sound Disorder Subtype in a Multigenerational Study of Oral and Hand Motor Sequencing Ability

    Science.gov (United States)

    Peter, Beate; Raskind, Wendy H.

    2011-01-01

    Purpose: To evaluate phenotypic expressions of speech sound disorder (SSD) in multigenerational families with evidence of familial forms of SSD. Method: Members of five multigenerational families (N = 36) produced rapid sequences of monosyllables and disyllables and tapped computer keys with repetitive and alternating movements. Results: Measures…

  8. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences.

    Science.gov (United States)

    Koo, Dal-Hoe; Nam, Young-Woo; Choi, Doil; Bang, Jae-Wook; de Jong, Hans; Hur, Yoonkang

    2010-04-01

    Chromosomes often serve as one of the most important molecular aspects of studying the evolution of species. Indeed, most of the crucial mutations that led to differentiation of species during the evolution have occurred at the chromosomal level. Furthermore, the analysis of pachytene chromosomes appears to be an invaluable tool for the study of evolution due to its effectiveness in chromosome identification and precise physical gene mapping. By applying fluorescence in situ hybridization of 45S rDNA and CsCent1 probes to cucumber pachytene chromosomes, here, we demonstrate that cucumber chromosomes 1 and 2 may have evolved from fusions of ancestral karyotype with chromosome number n = 12. This conclusion is further supported by the centromeric sequence similarity between cucumber and melon, which suggests that these sequences evolved from a common ancestor. It may be after or during speciation that these sequences were specifically amplified, after which they diverged and specific sequence variants were homogenized. Additionally, a structural change on the centromeric region of cucumber chromosome 4 was revealed by fiber-FISH using the mitochondrial-related repetitive sequences, BAC-E38 and CsCent1. These showed the former sequences being integrated into the latter in multiple regions. The data presented here are useful resources for comparative genomics and cytogenetics of Cucumis and, in particular, the ongoing genome sequencing project of cucumber.

  9. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

    Directory of Open Access Journals (Sweden)

    Reneker Jeff

    2005-05-01

    Full Text Available Abstract Background Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes. The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as spinocerebellar ataxia type 1 (SCA1. SCA1 is a hereditary neurodegenerative disease caused by an expanded CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through phase variation which is strongly associated with virulence determinants. A recent analysis of the complete sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists are increasingly interested in studying the function of small sequences of DNA. However, current search algorithms often generate thousands of matches – most of which are irrelevant to the researcher. Results We present our hash function as well as our search algorithm to locate small sequences of DNA within multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO database into these algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147 seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added annotation terms for the

  10. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal.

    Science.gov (United States)

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-02-04

    Genomic diversity of Portuguese accessions of Avena species--diploid A. strigosa and hexaploids A. sativa and A. sterilis--was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species--rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies--IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)--were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs.

  11. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal

    Science.gov (United States)

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-01-01

    Genomic diversity of Portuguese accessions of Avena species—diploid A. strigosa and hexaploids A. sativa and A. sterilis—was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species—rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies—IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)—were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs. PMID:26861283

  12. Distribution of Genes and Repetitive Elements in the Diabrotica virgifera virgifera Genome Estimated Using BAC Sequencing

    Directory of Open Access Journals (Sweden)

    Brad S. Coates

    2012-01-01

    Full Text Available Feeding damage caused by the western corn rootworm, Diabrotica virgifera virgifera, is destructive to corn plants in North America and Europe where control remains challenging due to evolution of resistance to chemical and transgenic toxins. A BAC library, DvvBAC1, containing 109,486 clones with 104±34.5 kb inserts was created, which has an ~4.56X genome coverage based upon a 2.58 Gb (2.80 pg flow cytometry-estimated haploid genome size. Paired end sequencing of 1037 BAC inserts produced 1.17 Mb of data (~0.05% genome coverage and indicated ~9.4 and 16.0% of reads encode, respectively, endogenous genes and transposable elements (TEs. Sequencing genes within BAC full inserts demonstrated that TE densities are high within intergenic and intron regions and contribute to the increased gene size. Comparison of homologous genome regions cloned within different BAC clones indicated that TE movement may cause haplotype variation within the inbred strain. The data presented here indicate that the D. virgifera virgifera genome is large in size and contains a high proportion of repetitive sequence. These BAC sequencing methods that are applicable for characterization of genomes prior to sequencing may likely be valuable resources for genome annotation as well as scaffolding.

  13. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  14. Repetitive DNA Sequences and Evolution of ZZ/ZW Sex Chromosomes in Characidium (Teleostei: Characiformes).

    Science.gov (United States)

    Scacchetti, Priscilla Cardim; Utsunomia, Ricardo; Pansonato-Alves, José Carlos; da Costa Silva, Guilherme José; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found.

  15. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  16. Cloning and characterization of a repetitive DNA sequence specific for Trichomonas vaginalis.

    Science.gov (United States)

    Paces, J; Urbánková, V; Urbánek, P

    1992-09-01

    A family of 650-bp-long repeats from the Trichomonas vaginalis genome, designated the Tv-E650 family, was cloned and sequenced. The nucleotide sequence is A+T-rich (73.3% A+T in the consensus sequence) and highly conserved among the 8 molecular clones analyzed. The differences among the clones are single-nucleotide and 2-nucleotide substitutions and insertions or deletions. The sequence uniformity of the clones as well as the presence of identical mutations in different clones suggest that efficient sequence homogenization mechanisms, such as gene conversion or recurring unequal crossing-over, operate in T. vaginalis. The copy number of the Tv-E650 repeats was estimated to be about 10(2)-10(3) per genome. Based on the DNA hybridization results, the Tv-E650 repeat family is conserved in all T. vaginalis strains examined, regardless of their diverse geographical origin. No hybridization of the Tv-E650 probe was found with the DNA from Trichomonas tenax, Trichomonas gallinae and Pentatrichomonas hominis, indicating that the Tv-E650 repeated sequences are species-specific. A dot blot hybridization protocol was developed which does not require isolation of DNA. By using this protocol it was possible to detect the DNA released from approximately 10(3) T. vaginalis cells per dot. These observations suggest that the Tv-E650 probe is potentially applicable to the identification and detection of T. vaginalis.

  17. All-optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs

    Science.gov (United States)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical repetition rate multiplication of pseudorandom bit sequences (PRBS) is demonstrated with all-optical wavelength conversion and optical logic gate 'OR' based on cascaded Tera-Hertz Optical Asymmetric Demultiplexers (TOADs). Its feasibility is verified by multiplication experiments from 500 Mb/s to 4 Gb/s for 23-1 PRBS and from 1 Gb/s to 4 Gb/s for 27-1 PRBS. This scheme can be employed for rate multiplication for much longer cycle PRBS at much higher bit rate over 40 Gb/s when the time-delay, the loss and the dispersion of the optical delay line are all precisely managed. The upper limit of bit rate will be restricted by the recovery time of semiconductor optical amplifier (SOA) finally.

  18. Repetitive sequence based polymerase chain reaction to differentiate close bacteria strains in acidic sites

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; YIN Hua-qun; LIU Yi; LIU Jie; LIU Xue-duan

    2008-01-01

    To study the diversity of bacteria strains newly isolated from several acid mine drainage(AMD) sites in China,repetitive sequence based polymerase chain reaction (rep-PCR),a well established technology for diversity analysis of closely related bacteria strains,was conducted on 30 strains of bacteria Leptospirillum ferriphilium,8 strains of bacteria Acidithiobacillus ferrooxidans,as well as the Acidithiobacillus ferrooxidans type strain ATCC (American Type Culture Collection) 23270.The results showed that,using ERIC and BOX primer sets,rep-PCR produced highly discriminatory banding patterns.Phylogenetic analysis based on ERIC-PCR banding types was made and the results indicated that rep-PCR could be used as a rapid and highly discriminatory screening technique in studying bacterial diversity,especially in differentiating bacteria within one species in AMD.

  19. Multilocus sequence analysis of the family Halomonadaceae.

    Science.gov (United States)

    de la Haba, Rafael R; Márquez, M Carmen; Papke, R Thane; Ventosa, Antonio

    2012-03-01

    Multilocus sequence analysis (MLSA) protocols have been developed for species circumscription for many taxa. However, at present, no studies based on MLSA have been performed within any moderately halophilic bacterial group. To test the usefulness of MLSA with these kinds of micro-organisms, the family Halomonadaceae, which includes mainly halophilic bacteria, was chosen as a model. This family comprises ten genera with validly published names and 85 species of environmental, biotechnological and clinical interest. In some cases, the phylogenetic relationships between members of this family, based on 16S rRNA gene sequence comparisons, are not clear and a deep phylogenetic analysis using several housekeeping genes seemed appropriate. Here, MLSA was applied using the 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA genes for species of the family Halomonadaceae. Phylogenetic trees based on the individual and concatenated gene sequences revealed that the family Halomonadaceae formed a monophyletic group of micro-organisms within the order Oceanospirillales. With the exception of the genera Halomonas and Modicisalibacter, all other genera within this family were phylogenetically coherent. Five of the six studied genes (16S rRNA, 23S rRNA, gyrB, rpoD and secA) showed a consistent evolutionary history. However, the results obtained with the atpA gene were different; thus, this gene may not be considered useful as an individual gene phylogenetic marker within this family. The phylogenetic methods produced variable results, with those generated from the maximum-likelihood and neighbour-joining algorithms being more similar than those obtained by maximum-parsimony methods. Horizontal gene transfer (HGT) plays an important evolutionary role in the family Halomonadaceae; however, the impact of recombination events in the phylogenetic analysis was minimized by concatenating the six loci, which agreed with the current taxonomic scheme for this family. Finally, the findings of

  20. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9.

    Science.gov (United States)

    Magnusson, Mattias; Tobes, Raquel; Sancho, Jaime; Pareja, Eduardo

    2007-07-01

    Bacterial DNA exerts immunostimulatory effects on mammalian cells via the intracellular TLR9. Although broad analysis of TLR9-mediated immunostimulatory potential of synthetic oligonucleotides has been developed, which kinds of natural bacterial DNA sequences are responsible for immunostimulation are not known. This work provides evidence that the natural DNA sequences named repetitive extragenic palindromic (REPs) sequences present in Gram-negative bacteria are able to produce innate immune system stimulation via TLR9. A strong induction of IFN-alpha production by REPs from Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, and Neisseria meningitidis was detected in splenocytes from 129 mice. In addition, the involvement of TLR9 in immune stimulation by REPs was confirmed using B6.129P2-Tlr9(tm1Aki) knockout mice. Considering the involvement of TLRs in Gram-negative septic shock, it is conceivable that REPs play a role in its pathogenesis. This study highlights REPs as a potential novel target in septic shock treatment.

  1. Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement

    Science.gov (United States)

    Liu, Sanzhen; Zheng, Jun; Migeon, Pierre; Ren, Jie; Hu, Ying; He, Cheng; Liu, Hongjun; Fu, Junjie; White, Frank F.; Toomajian, Christopher; Wang, Guoying

    2017-01-01

    The major component of complex genomes is repetitive elements, which remain recalcitrant to characterization. Using maize as a model system, we analyzed whole genome shotgun (WGS) sequences for the two maize inbred lines B73 and Mo17 using k-mer analysis to quantify the differences between the two genomes. Significant differences were identified in highly repetitive sequences, including centromere, 45S ribosomal DNA (rDNA), knob, and telomere repeats. Genotype specific 45S rDNA sequences were discovered. The B73 and Mo17 polymorphic k-mers were used to examine allele-specific expression of 45S rDNA in the hybrids. Although Mo17 contains higher copy number than B73, equivalent levels of overall 45S rDNA expression indicates that transcriptional or post-transcriptional regulation mechanisms operate for the 45S rDNA in the hybrids. Using WGS sequences of B73xMo17 doubled haploids, genomic locations showing differential repetitive contents were genetically mapped, which displayed different organization of highly repetitive sequences in the two genomes. In an analysis of WGS sequences of HapMap2 lines, including maize wild progenitor, landraces, and improved lines, decreases and increases in abundance of additional sets of k-mers associated with centromere, 45S rDNA, knob, and retrotransposons were found among groups, revealing global evolutionary trends of genomic repeats during maize domestication and improvement. PMID:28186206

  2. Stem-loop structures of the repetitive DNA sequences located at human centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Garcia, A.E.; Ratliff, R.; Moyzis, R.K. [Los Alamos National Lab., NM (United States); Catasti, P.; Hong, Lin; Yau, P. [California Univ., Davis, CA (United States). Dept. of Biological Chemistry; Bradbury, E.M. [Los Alamos National Lab., NM (United States)]|[California Univ., Davis, CA (United States). Dept. of Biological Chemistry

    1993-09-01

    The presence of the highly conserved repetitive DNA sequences in the human centromeres argues for a special role of these sequences in their biological functions - most likely achieved by the formation of unusual structures. This prompted us to carry out quantitative one- and two-dimensional nuclear magnetic resonance (lD/2D NMR) spectroscopy to determine the structural properties of the human centromeric repeats, d(AATGG){sub n.d}(CCATT){sub n}. The studies on centromeric DNAs reveal that the complementary sequence, d(AATGG){sub n.d}(CCATT){sub n}, adopts the usual Watson-Crick B-DNA duplex and the pyrimidine-rich d(CCATT){sub n} strand is essentially a random coil. However, the purine-rich d(AATGG){sub n} strand is shown to adopt unusual stem-loop structures for repeat lengths, n=2,3,4, and 6. In addition to normal Watson-Crick A{center_dot}T pairs, the stem-loop structures are stabilized by mismatch A{center_dot}G and G{center_dot}G pairs in the stem and G-G-A stacking in the loop. Stem-loop structures of d(AATGG)n are independently verified by gel electrophoresis and nuclease digestion studies. Thermal melting studies show that the DNA repeats, d(AATGG){sub n}, are as stable as the corresponding Watson-Crick duplex d(AATGG){sub n.d}(CCATT){sub n}. Therefore, the sequence d(AATGG){sub n} can, indeed, nucleate a stem-loop structure at little free-energy cost and if, during mitosis, they are located on the chromosome surface they can provide specific recognition sites for kinetochore function.

  3. Repetitive genomic sequences as a substrate for homologous integration in the Rhizopus oryzae genome.

    Science.gov (United States)

    Yuzbashev, Tigran V; Larina, Anna S; Vybornaya, Tatiana V; Yuzbasheva, Evgeniya Y; Gvilava, Ilia T; Sineoky, Sergey P

    2015-06-01

    The vast number of repetitive genomic elements was identified in the genome of Rhizopus oryzae. Such genomic repeats can be used as homologous regions for integration of plasmids. Here, we evaluated the use of two different repeats: the short (575 bp) rptZ, widely distributed (about 34 copies per genome) and the long (2053 bp) rptH, less prevalent (about 15 copies). The plasmid carrying rptZ integrated, but did so through a 2256-bp region of homology to the pyrG locus, a unique genomic sequence. Thus, the length of rptZ was below the minimal requirements for homologous strand exchange in this fungus. In contrast, rptH was used efficiently for homologous integration. The plasmid bearing this repeat integrated in multicopy fashion, with up to 25 copies arranged in tandem. The latter vector, pPyrG-H, could be a valuable tool for integration at homologous sequences, for such purposes as high-level expression of proteins. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Genomic fingerprinting Acinetobacter baumannii: amplification of multiple inter-repetitive extragenic palindromic sequences.

    Science.gov (United States)

    Sheehan, C; Lynch, M; Cullen, C; Cryan, B; Greer, P; Fanning, S

    1995-09-01

    Acinetobacter species are important nosocomial pathogens. A rapid and sensitive identification system, capable of providing strain identity at the genetic level, is required to identify outbreak strains and facilitate the early implementation of infection control procedures. Repetitive extragenic palindromic (REP) elements, have been identified in numerous bacteria and these genomic sequences provide useful targets for DNA amplification. A method for amplifying inter-REP DNA sequences, REP-multiple arbitrary amplicon profiling (REP-MAAP), is described and applied to 29 Acinetobacter baumannii from clinical samples. Amplified polymorphic DNA patterns were demonstrated for all isolates and those displaying identical REP-MAAP patterns were considered identical at the genetic level. In the spring of 1993, 10 intensive care unit patients had endotracheal colonization with A. baumannii (five with REP-MAAP I and five with REP-MAAP II patterns). These findings suggested nosocomial transmission of organisms which was terminated by standard infection control measures. No further A. baumannii were detected until the winter of 1993 when isolates of different REP-MAAP groups emerged, suggesting that factors other than nosocomial transmission were implicated.

  5. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Science.gov (United States)

    Afek, Ariel; Cohen, Hila; Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B

    2015-08-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  6. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Directory of Open Access Journals (Sweden)

    Ariel Afek

    2015-08-01

    Full Text Available Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large

  7. Differential effects of high-temperature stress on nuclear topology and transcription of repetitive noncoding and coding rye sequences.

    Science.gov (United States)

    Tomás, D; Brazão, J; Viegas, W; Silva, M

    2013-01-01

    The plant stress response has been extensively characterized at the biochemical and physiological levels. However, knowledge concerning repetitive sequence genome fraction modulation during extreme temperature conditions is scarce. We studied high-temperature effects on subtelomeric repetitive sequences (pSc200) and 45S rDNA in rye seedlings submitted to 40°C during 4 h. Chromatin organization patterns were evaluated through fluorescent in situ hybridization and transcription levels were assessed using quantitative real-time PCR. Additionally, the nucleolar dynamics were evaluated through fibrillarin immunodetection in interphase nuclei. The results obtained clearly demonstrated that the pSc200 sequence organization is not affected by high-temperature stress (HTS) and proved for the first time that this noncoding subtelomeric sequence is stably transcribed. Conversely, it was demonstrated that HTS treatment induces marked rDNA chromatin decondensation along with nucleolar enlargement and a significant increase in ribosomal gene transcription. The role of noncoding and coding repetitive rye sequences in the plant stress response that are suggested by their clearly distinct behaviors is discussed. While the heterochromatic conformation of pSc200 sequences seems to be involved in the stabilization of the interphase chromatin architecture under stress conditions, the dynamic modulation of nucleolar and rDNA topology and transcription suggest their role in plant stress response pathways.

  8. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  9. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  10. Pattern self-repetition of fingerprints, lip prints, and palatal rugae among three generations of family: A forensic approach to identify family hierarchy.

    Science.gov (United States)

    Mala, Sankeerti; Rathod, Vanita; Pundir, Siddharth; Dixit, Sudhanshu

    2017-01-01

    The unique pattern and structural diversity of fingerprints, lip prints, palatal rugae, and their occurrence in different patterns among individuals make it questionable whether they are completely unique even in a family hierarchy? Do they have any repetition of the patterns among the generations? Or is this a mere chaos theory? The present study aims to assess the pattern self-repetition of fingerprints, lip prints, and palatal rugae among three generations of ten different families. The present study was conducted at Rungta College of Dental Science and Research, Bhilai, India. Participants birth by origin of Chhattisgarh were only included in the study. Thirty participants from three consecutive generations of ten different families were briefed about the purpose of the study, and their fingerprints, lip prints, and palatal rugae impression were recorded and analyzed for the pattern of self-repetition. Multiple comparisons among the generations and one-way analysis of variance test were performed using SPSS 20 trial version. Among the pattern of primary palatal rugae, 10% showed repetition in all the three generations. Thirty percent showed repetition of the pattern of thumb fingerprints in all the three generation. The pattern of lip prints in the middle 1/3(rd) of lower lip, 20% showed repetition in alternative generations. The evaluations of fingerprints, lip prints, and palatal rugae showed fractal dimensions, occurring variations in dimensions according to the complexity of each structure. Even though a minute self-repetition in the patterns of lip, thumb, and palate among the three consequent generations in a family was observed considering the sample size, these results need to be confirmed in a larger sample, either to establish the role of chaos theory in forensic science or identifying a particular pattern of the individual in his family hierarchy.

  11. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).

    Science.gov (United States)

    Menzel, Gerhard; Dechyeva, Daryna; Wenke, Torsten; Holtgräwe, Daniela; Weisshaar, Bernd; Schmidt, Thomas

    2008-10-01

    The aim of this work was the identification and molecular characterization of novel sugar beet (Beta vulgaris) repetitive sequences to unravel the impact of repetitive DNA on size and evolution of Beta genomes via amplification and diversification. Genomic DNA and a pool of B. vulgaris repetitive sequences were separately used as probes for a screening of high-density filters from a B. vulgaris plasmid library. Novel repetitive motifs were identified by sequencing and further used as probes for Southern analyses in the genus Beta. Chromosomal localization of the repeats was analysed by fluorescent in situ hybridization on chromosomes of B. vulgaris and two other species of the section Beta. Two dispersed repetitive families pDvul1 and pDvul2 and the tandemly arranged repeat family pRv1 were isolated from a sugar beet plasmid library. The dispersed repetitive families pDvul1 and pDvul2 were identified in all four sections of the genus Beta. The members of the pDvul1 and pDvul2 family are scattered over all B. vulgaris chromosomes, although amplified to a different extent. The pRv1 satellite repeat is exclusively present in species of the section Beta. The centromeric satellite pBV1 by structural variations of the monomer and interspersion of pRv1 units forms complex satellite structures, which are amplified in different degrees on the centromeres of 12 chromosomes of the three species of the Beta section. The complexity of the pBV1 satellite family observed in the section Beta of the genus Beta and, in particular, the strong amplification of the pBV1/pRv1 satellite in the domesticated B. vulgaris indicates the dynamics of centromeric satellite evolution during species radiation within the genus. The dispersed repeat families pDvul1 and pDvul2 might represent derivatives of transposable elements.

  12. Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris).

    Science.gov (United States)

    Gao, Dongying; Zhao, Dongyan; Abernathy, Brian; Iwata-Otsubo, Aiko; Herrera-Estrella, Alfredo; Jiang, Ning; Jackson, Scott A

    2016-07-07

    Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris) and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH) analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T). Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.

  13. Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Dongying Gao

    2016-07-01

    Full Text Available Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T. Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.

  14. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  15. NEW FAMILY OF BIPOLAR SEQUENCES AND ITS CORRELATION SPECTRUM

    Institute of Scientific and Technical Information of China (English)

    Hu Fei; Wen Hong; Jin Fan

    2004-01-01

    Based on a class of bipolar sequences with two-values autocorrelation functions, a new family of bipolar sequences is constructed and its correlation spectrum is calculated. It is shown that the new family is optimal with respect to Welch's bound and is different from the small set of Kasami sequences, while both of them have the same correlation properties.

  16. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships.

    Science.gov (United States)

    Zhao, Xin; Lu, Jingyuan; Zhang, Zhonghua; Hu, Jiajin; Huang, Sanwen; Jin, Weiwei

    2011-01-01

    Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s. var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.

  17. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships

    Institute of Scientific and Technical Information of China (English)

    Xin Zhao; Jingyuan Lu; Zhonghua Zhang; Jiajin Hu; Sanwen Huang; Weiwei Jin

    2011-01-01

    Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s.var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.

  18. Evaluation of the Relationship Between Family History of Breast Cancer and Risk Perception and Impacts on Repetition of Mammography.

    Science.gov (United States)

    Khoshravesh, Sahar; Taymoori, Parvaneh; Roshani, Daem

    2016-01-01

    Since the mean age of breast cancer in women living in developing countries, compared with those in developed countries, is lower by about 10 years, repetition of mammography can play an important role in reducing morbidity and mortality. Hence, this study aimed to investigate the relationship between family history of breast cancer and risk perception and its impact on repetition of mammography. In this cross-sectional study, 1,507 women aged 50 years and older, referred to the mammography center of Regions 1 and 6 in Tehran, Iran, were enrolled. Data were collected using a self-report questionnaire and analyzed using SPSS and LISREL. According to our findings, knowledge about the time interval of mammography was found to have the highest correlation with repetition of mammography (r =0.4). Among the demographic variables, marital status (β= -0.1) and family history of breast cancer (β=0.1) had the most direct and significant impact on repetition of mammography (P mammography (P mammography, but the results did not prove any relationship with risk perception. Further studies are needed to assess the effect of risk perception and knowledge about time interval on the initiation and continuation of mammography.

  19. Cochain sequences and the Quillen category of a coclass family

    OpenAIRE

    Eick, Bettina; Green, David J

    2015-01-01

    We introduce the concept of an infinite cochain sequence and initiate a theory of homological algebra for them. We show how these sequences simplify and improve the construction of infinite coclass families (as introduced by Eick and Leedham-Green) and how they apply in proving that almost all groups in such a family have equivalent Quillen categories. We also include some examples of infinite families of p-groups from different coclass families that have equivalent Quillen categories.

  20. Rare variant detection using family-based sequencing analysis.

    Science.gov (United States)

    Peng, Gang; Fan, Yu; Palculict, Timothy B; Shen, Peidong; Ruteshouser, E Cristy; Chi, Aung-Kyaw; Davis, Ronald W; Huff, Vicki; Scharfe, Curt; Wang, Wenyi

    2013-03-05

    Next-generation sequencing is revolutionizing genomic analysis, but this analysis can be compromised by high rates of missing true variants. To develop a robust statistical method capable of identifying variants that would otherwise not be called, we conducted sequence data simulations and both whole-genome and targeted sequencing data analysis of 28 families. Our method (Family-Based Sequencing Program, FamSeq) integrates Mendelian transmission information and raw sequencing reads. Sequence analysis using FamSeq reduced the number of false negative variants by 14-33% as assessed by HapMap sample genotype confirmation. In a large family affected with Wilms tumor, 84% of variants uniquely identified by FamSeq were confirmed by Sanger sequencing. In children with early-onset neurodevelopmental disorders from 26 families, de novo variant calls in disease candidate genes were corrected by FamSeq as mendelian variants, and the number of uniquely identified variants in affected individuals increased proportionally as additional family members were included in the analysis. To gain insight into maximizing variant detection, we studied factors impacting actual improvements of family-based calling, including pedigree structure, allele frequency (common vs. rare variants), prior settings of minor allele frequency, sequence signal-to-noise ratio, and coverage depth (∼20× to >200×). These data will help guide the design, analysis, and interpretation of family-based sequencing studies to improve the ability to identify new disease-associated genes.

  1. [Short interspersed repetitive sequences (SINEs) and their use as a phylogenetic tool].

    Science.gov (United States)

    Kramerov, D A; Vasetskiĭ, N S

    2009-01-01

    The data on one of the most common repetitive elements of eukaryotic genomes, short interspersed elements (SINEs), are reviewed. Their structure, origin, and functioning in the genome are discussed. The variation and abundance of these neutral genomic markers makes them a convenient and reliable tool for phylogenetic analysis. The main methods of such analysis are presented, and the potential and limitations of this approach are discussed using specific examples.

  2. A novel class of small repetitive DNA sequences in Enterococcus faecalis.

    Science.gov (United States)

    Venditti, Rossella; De Gregorio, Eliana; Silvestro, Giustina; Bertocco, Tullia; Salza, Maria Francesca; Zarrilli, Raffaele; Di Nocera, Pier Paolo

    2007-06-01

    The structural organization of Enterococcus faecalis repeats (EFAR) is described, palindromic DNA sequences identified in the genome of the Enterococcus faecalis V583 strain by in silico analyses. EFAR are a novel type of miniature insertion sequences, which vary in size from 42 to 650 bp. Length heterogeneity results from the variable assembly of 16 different sequence types. Most elements measure 170 bp, and can fold into peculiar L-shaped structures resulting from the folding of two independent stem-loop structures (SLSs). Homologous chromosomal regions lacking or containing EFAR sequences were identified by PCR among 20 E. faecalis clinical isolates of different genotypes. Sequencing of a representative set of 'empty' sites revealed that 24-37 bp-long sequences, unrelated to each other but all able to fold into SLSs, functioned as targets for the integration of EFAR. In the process, most of the SLS had been deleted, but part of the targeted stems had been retained at EFAR termini.

  3. Phylogeny of Trypanosoma brucei and Trypanosoma evansi in naturally infected cattle in Nigeria by analysis of repetitive and ribosomal DNA sequences.

    Science.gov (United States)

    Takeet, Michael I; Peters, Sunday O; Fagbemi, Benjamin O; De Donato, Marcos; Takeet, Vivian O; Wheto, Mathew; Imumorin, Ikhide G

    2016-08-01

    In continuing efforts to better understand the genetics of bovine trypanosomosis, we assessed genetic diversity of Trypanosoma brucei and Trypanosoma evansi in naturally infected Nigerian cattle using repetitive DNA and internal transcribed spacer 1 of rDNA sequences and compared these sequences to species from other countries. The length of repetitive DNA sequences in both species ranged from 161 to 244 bp and 239 to 240 bp for T. brucei and T. evansi, respectively, while the ITS1 rDNA sequences length range from 299 to 364 bp. The mean GC content of ITS1 rDNA sequences was 33.57 %, and that of repetitive sequences were 39.9 and 31.1 % for T. brucei and T. evansi, respectively. Result from sequence alignment revealed both T. brucei and T. evansi repetitive DNA sequences to be more polymorphic than ITS1 rDNA sequences, with moderate points of deletion and insertions. T. brucei separated into two clades when subjected to phylogenetic analysis. T. evansi repetitive DNA sequences clustered tightly within the T. brucei clade while the ITS1 rDNA sequences of T. brucei were clearly separated from T. theileri and T. vivax individually used as outgroups. This study suggest that ITS1 rDNA sequences may not be suitable for phylogenetic differentiation of the Trypanozoon group and also suggest that T. evansi may be a phenotypic variant of T. brucei which may have potential implications in designing prevention and therapeutic strategies.

  4. Molecular cytogenetics of Alstroemeria: identification of parental genomes in interspecific hybrids and characterization of repetitive DNA families in constitutive heterochromatin.

    Science.gov (United States)

    Kuipers, A G; van Os, D P; de Jong, J H; Ramanna, M S

    1997-02-01

    The genus Alstroemeria consists of diploid (2n = 2x = 16) species originating mainly from Chile and Brazil. Most cultivars are triploid or tetraploid interspecific hybrids. C-banding of eight species revealed obvious differentiation of constitutive heterochromatin within the genus. The present study focused on the molecular (cyto)genetic background of this differentiation. Genomic slot-blot analysis demonstrated strong conservation of major parts of the genomes among six species. The chromosomes of A. aurea and A. ligtu, species with pronounced interstitial C-bands, were found to contain large amounts of highly repetitive and species-specific DNA. The variation in size, number and intensity of strongly probed bands of major repetitive DNA families observed in genomic Southern blots of Sau3A, HaeIII, and MseI digests indicated a strong correlation between variation in genomic DNA composition and different C-banding patterns among Alstroemeria species. Genomic in situ hybridization (GISH) revealed a clear distinction between parental chromosomes in the hybrids between Chilean and Brazilian species and also between Chilean species, as long as at least one of the parental species possessed prominent C-banding. Regarding the latter, discriminative hybridization resulted from highly repetitive species specific DNA in the heterochromatic chromosome regions of A. aurea and A. ligtu, and caused GISH banding patterns that coincided with the C-banding patterns.

  5. Regulatory sequence of cupin family gene

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Elizabeth; Teoh, Thomas

    2017-07-25

    This invention is in the field of plant biology and agriculture and relates to novel seed specific promoter regions. The present invention further provide methods of producing proteins and other products of interest and methods of controlling expression of nucleic acid sequences of interest using the seed specific promoter regions.

  6. Protein folds and families: sequence and structure alignments.

    Science.gov (United States)

    Holm, L; Sander, C

    1999-01-01

    Dali and HSSP are derived databases organizing protein space in the structurally known regions. We use an automatic structure alignment program (Dali) for the classification of all known 3D structures based on all-against-all comparison of 3D structures in the Protein Data Bank. The HSSP database associates 1D sequences with known 3D structures using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). As a result, the HSSP database not only provides aligned sequence families, but also implies secondary and tertiary structures covering 36% of all sequences in Swiss-Prot. The structure classification by Dali and the sequence families in HSSP can be browsed jointly from a web interface providing a rich network of links between neighbours in fold space, between domains and proteins, and between structures and sequences. In particular, this results in a database of explicit multiple alignments of protein families in the twilight zone of sequence similarity. The organization of protein structures and families provides a map of the currently known regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The databases are available from http://www.embl-ebi.ac.uk/dali/

  7. Another Family of Fibonacci-like Sequences

    NARCIS (Netherlands)

    Asveld, Peter R.J.

    1987-01-01

    We consider the family of difference equations $H_n = H_{n-1} + H_{n-2} + \\sum_{j=0}^k \\gamma n^{(j)}$ with $H_0 = H_1 = 1$, $n^{(j)} = n(n-1)(n-2)\\cdots(n-j+1)$ for $j\\geq1$ and $n^{(0)} = 1$. We express $H_n$ in terms of the Fibonacci numbers and in the parameters $\\gamma_1$, . . . , $\\gamma_k$.

  8. Another Family of Fibonacci-like Sequences

    NARCIS (Netherlands)

    Asveld, Peter R.J.

    1986-01-01

    We consider the family of difference equations $H_n = H_{n-1} + H_{n-2} + \\sum_{j=0}^k \\gamma n^{(j)}$ with $H_0 = H_1 = 1$, $n^{(j)} = n(n-1)(n-2)\\cdots(n-j+1)$ for $j\\geq1$ and $n^{(0)} = 1$. We express $H_n$ in terms of the Fibonacci numbers and in the parameters $\\gamma_1$, . . . , $\\gamma_k$.

  9. Lessons from whole-exome sequencing in MODYX families

    DEFF Research Database (Denmark)

    Dusatkova, Petra; Fang, Mingyan; Pruhova, Stepanka

    2014-01-01

    We report the first results from whole-exome sequencing performed in families with Maturity-Onset Diabetes of the Young without a known genetic cause of diabetes (MODYX). This next generation sequencing technique pointed out that routine testing of MODY needs constant awareness and regular re...

  10. Correlation study between the polymorphism of repetitive sequence in gene CAG of androgen receptor and the occurrence and progression of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lei Zhai; Xiao-Wei Qu; Liang Guo; Qian-He Ha

    2014-01-01

    Objective: To explore the relation between the polymorphism of repetitive sequence in gene CAG of androgen receptor (AR) and the susceptibility and clinical stages as well as pathological grading of prostate cancer among Han population. Method: Sixty-eight cases with prostate cancer hospitalized in Urinary Surgery Department from Feb. 2010 to Feb. 2012 and 60 healthy cases were chosen as research subjects. Methods of PCR and direct sequencing were adopted to detect DNA sequence of AR gene and the length of repetitive sequence in CAG. Results: The lengths of repetitive sequence in CAG of patients with prostate cancer and healthy people were (22.3±4.6) and (23.0±4.9), respectively showing no statistical significance. Comparing length (repetitive sequence of CAG)>22, those with that ﹤ 22 suffer a remarkably higher risk of prostate cancer (P﹤0.05). The number of repetitive sequence in CAG of patients at clinical stage C-D was less than that of patients at stage B, and the number of repetitive sequence in CAG of patients with poorly differentiated prostate cancer was also less than that of patients with moderately and highly differentiated prostate cancer. But there was no statistical significance int the difference (P>0.05); the proportion of patients with length ﹤22 at clinical stage C-D was much larger than that of patients at clinical stage B (P﹤0.05), and as the aggravation of pathological grading, the proportion of patients with the length ﹤22 was also remarkably increased and there was significant difference between patients with highly differentiated prostate cancer and those with poorly differentiated prostate cancer (P﹤0.05). Conclusions: There is correlation between the occurrence and development of prostate cancer in Han population and the polymorphism of repetitive sequence in gene CAG of androgen receptor. The less the number of repetitive sequence in CAG is, the higher the risk of prostate cancer will be and the more severe the clinical

  11. Pitfalls of mapping high throughput sequencing data to repetitive sequences: Piwi’s genomic targets still not identified

    Science.gov (United States)

    Marinov, Georgi K.; Wang, Jie; Handler, Dominik; Wold, Barbara J.; Weng, Zhiping; Hannon, Gregory J.; Aravin, Alexei A.; Zamore, Phillip D.; Brennecke, Julius; Toth, Katalin Fejes

    2015-01-01

    Huang et al. (2013) recently reported that chromatin immuno-precipitation followed by sequencing (ChIP-seq) reveals the genome-wide sites of occupancy by Piwi - a piRNA-guided Argonaute protein central to transposon silencing in Drosophila. Their study also reported that loss of Piwi causes widespread rewiring of transcriptional patterns as evidenced by changes in RNA polymerase II occupancy across the genome. Here we reanalyze their underlying deep sequencing data and report that the data do not support the author’s central conclusions. PMID:25805138

  12. Patterns of rDNA and telomeric sequences diversification: contribution to repetitive DNA organization in Phyllostomidae bats.

    Science.gov (United States)

    Calixto, Merilane da Silva; de Andrade, Izaquiel Santos; Cabral-de-Mello, Diogo Cavalcanti; Santos, Neide; Martins, Cesar; Loreto, Vilma; de Souza, Maria José

    2014-02-01

    Chromosomal organization and the evolution of genome architecture can be investigated by physical mapping of the genes for 45S and 5S ribosomal DNAs (rDNAs) and by the analysis of telomeric sequences. We studied 12 species of bats belonging to four subfamilies of the family Phyllostomidae in order to correlate patterns of distribution of heterochromatin and the multigene families for rDNA. The number of clusters for 45S gene ranged from one to three pairs, with exclusively location in autosomes, except for Carollia perspicillata that had in X chromosome. The 5S gene all the species studied had only one site located on an autosomal pair. In no species the 45S and 5S genes collocated. The fluorescence in situ hybridization (FISH) probe for telomeric sequences revealed fluorescence on all telomeres in all species, except in Carollia perspicillata. Non-telomeric sites in the pericentromeric region of the chromosomes were observed in most species, ranged from one to 12 pairs. Most interstitial telomeric sequences were coincident with heterochromatic regions. The results obtained in the present work indicate that different evolutionary mechanisms are acting in Phyllostomidae genome architecture, as well as the occurrence of Robertsonian fusion during the chromosomal evolution of bats without a loss of telomeric sequences. These data contribute to understanding the organization of multigene families and telomeric sequences on bat genome as well as the chromosomal evolutionary history of Phyllostomidae bats.

  13. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL, the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates.

  14. Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    Science.gov (United States)

    Bromley, Keith M.; Hacia, Joseph G.; Bromage, Timothy G.; Snead, Malcolm L.; Moradian-Oldak, Janet; Paine, Michael L.

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  15. Mutations detected in the repetitive sequences in the children of the atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Chiyoko; Kodaira, Mieko [Radiation Effects Research Foundation, Hiroshima (Japan)

    1994-03-01

    We have been examining genetic effects of radiation in the children of the atomic bomb survivors. In a pilot study, 50 exposed families with 64 children and 50 control families with 60 children were examined for trinucleotide repeat expansion mutations at 3 loci and mutations at 6 minisatellite loci. Average dose of the 51 exposed parents was 1.8 Sv. By examining 124 children of 100 families, 65 germ cells derived from exposed parents and 183 germ cells of non-exposed parents were examined. The trinucleotide repeat expansions in genes of certain human genetic diseases show remarkable variation both within the cells of a single individual and among affected members of a single family which have been interpreted as mitotic and meiotic instability. We examined the regions with triplet repeats in the FMR-1, AR and DM genes causative for fragile X syndrome, spinobulbar muscular atrophy and myotonic dystrophy. No mutations were detected in 177 regions derived from 65 germ cells of exposed parents and 443 regions from 183 germ cells of non-exposed parents. No effects on the instability of the triplet repeats in the germ cells derived from exposed or unexposed individuals were observed. In the examinations of the 6 minisatellite loci of Pc-1, {lambda}TM-18, ChdTC-15, p{lambda}g3, {lambda}MS-1, and CEB-1, we detected single mutations at each of the p{lambda}g3 and {lambda}MS-1, and 4 mutations at the CEB-1 locus which had occurred in the 65 gametes in the exposed parents. Thus, mutation rates per gamete at the p{lambda}g3, {lambda}MS-1 and CEB-1 were 1.5%, 1.5% and 6.2%. On the other hand, mutations in these 3 loci in the 183 gametes of non-exposed parents were 0, 11 and 11, that is, the mutation rates per gamete were 0%, 6.0% and 6.0%. No significant difference was observed in the mutation rate at each of the 3 loci between 2 groups of parents. These preliminary results suggest that A-bomb exposure seems not to affect the germline instability at these 3 loci. (J.P.N).

  16. Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA.

    Science.gov (United States)

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1997-10-01

    Fluorescence in situ hybridization (FISH) was used to localise two species-specific repetitive DNA sequences, A001-I and D32-13, and two highly conserved 25S and 5S rDNA sequences on the metaphase chromosomes of two species of Alstroemeria. The Chilean species, Alstroemeria aurea (2n = 16), has abundant constitutive heterochromatin, whereas the Brazilian species, Alstroemeria inodora, has hardly any heterochromatin. The A. aurea specific A001-I probe hybridized specifically to the C-band regions on all chromosomes. The FISH patterns on A. inodora chromosomes using species-specific probe D32-13 resembled the C-banding pattern and the A001-I pattern on A. aurea chromosomes. There were notable differences in number and distribution of rDNA sites between the two species. The 25S rDNA probe revealed 16 sites in A. aurea that closely colocalised with A001-I sites and 12 in A. inodora that were predominantly detected in the centromeric regions. FISH karyotypes of the two Alstroemeria species were constructed accordingly, enabling full identification of all individual chromosomes. These FISH karyotypes will be useful for monitoring the chromosomes of both Alstroemeria species in hybrids and backcross derivatives.

  17. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae).

    Science.gov (United States)

    Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas

    2013-07-01

    The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.

  18. Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene.

    Science.gov (United States)

    Dayal, Sandeep; Kiyama, Takae; Villinski, Jeffrey T; Zhang, Ning; Liang, Shuguang; Klein, William H

    2004-09-15

    The creation, preservation, and degeneration of cis-regulatory elements controlling developmental gene expression are fundamental genome-level evolutionary processes about which little is known. Here, we identify critical differences in cis-regulatory elements controlling the expression of the sea urchin aboral ectoderm-specific spec genes. We found multiple copies of a repetitive sequence element termed RSR in genomes of species within the Strongylocentrotidae family, but RSRs were not detected in genomes of species outside Strongylocentrotidae. spec genes in Strongylocentrotus purpuratus are invariably associated with RSRs, and the spec2a RSR functioned as a transcriptional enhancer and displayed greater activity than did spec1 or spec2c RSRs. Single-base pair differences at two cis-regulatory elements within the spec2a RSR increased the binding affinities of four transcription factors, SpCCAAT-binding factor at one element and SpOtx, SpGoosecoid, and SpGATA-E at another. The cis-regulatory elements to which these four factors bound were recent evolutionary acquisitions that acted to either activate or repress transcription, depending on the cell type. These elements were found in the spec2a RSR ortholog in Strongylocentrotus pallidus but not in RSR orthologs of Strongylocentrotus droebachiensis or Hemicentrotus pulcherrimus. Our results indicated that a dynamic pattern of cis-regulatory element evolution exists for spec genes despite their conserved aboral ectoderm expression.

  19. Unique Features of Germline Variation in Five Egyptian Familial Breast Cancer Families Revealed by Exome Sequencing

    Science.gov (United States)

    Kim, Yeong C.; Soliman, Amr S.; Cui, Jian; Ramadan, Mohamed; Hablas, Ahmed; Abouelhoda, Mohamed; Hussien, Nehal; Ahmed, Ola; Zekri, Abdel-Rahman Nabawy; Seifeldin, Ibrahim A.

    2017-01-01

    Genetic predisposition increases the risk of familial breast cancer. Recent studies indicate that genetic predisposition for familial breast cancer can be ethnic-specific. However, current knowledge of genetic predisposition for the disease is predominantly derived from Western populations. Using this existing information as the sole reference to judge the predisposition in non-Western populations is not adequate and can potentially lead to misdiagnosis. Efforts are required to collect genetic predisposition from non-Western populations. The Egyptian population has high genetic variations in reflecting its divergent ethnic origins, and incident rate of familial breast cancer in Egypt is also higher than the rate in many other populations. Using whole exome sequencing, we investigated genetic predisposition in five Egyptian familial breast cancer families. No pathogenic variants in BRCA1, BRCA2 and other classical breast cancer-predisposition genes were present in these five families. Comparison of the genetic variants with those in Caucasian familial breast cancer showed that variants in the Egyptian families were more variable and heterogeneous than the variants in Caucasian families. Multiple damaging variants in genes of different functional categories were identified either in a single family or shared between families. Our study demonstrates that genetic predisposition in Egyptian breast cancer families may differ from those in other disease populations, and supports a comprehensive screening of local disease families to determine the genetic predisposition in Egyptian familial breast cancer. PMID:28076423

  20. [Homologous Analysis Using Repetitive-sequence-based PCR Typing of Exfoliative Toxin-producing Staphylococcus aureus Isolated from Our Hospital].

    Science.gov (United States)

    Miyamoto, Hitoshi; Murakami, Shinobu; Nishimiya, Tatsuya; Suemori, Koichiro; Tauchi, Hisamichi

    2015-05-01

    We examined staphylococcal coagulase types and homologous analysis using the DiversiLab repetitive-sequence-based PCR system in exfoliative toxin (ET)-producing Staphylococcus aureus. Twenty-two isolates (17 methicillin-sensitive Staphylococcus aureus (MSSA) and 5 methicillin-resistant Staphylococcus aureus (MRSA) isolates) obtained in our hospital from January 2012 and December 2013 were used. Three groups were classified according to the coagulase types and serotypes of ET. The first group (4 MSSA) showed coagulase type I and ET-A, and the second group (3 MSSA and 2 MRSA) showed coagulase type I and ET-B. The third group (10 MSSA and 3 MRSA) showed coagulase type V and ET-B. An analysis by DiversiLab demonstrated that homology was high in both the first and second groups. The homogenousness was high among the third group isolates except for the ocular isolates. In our hospital, three important groups were present according to a coagulase type and an ET type, and the homology of ocular isolates could be different from other materials isolates.

  1. Genome Sequences of Three Phytopathogenic Species of the Magnaporthaceae Family of Fungi.

    Science.gov (United States)

    Okagaki, Laura H; Nunes, Cristiano C; Sailsbery, Joshua; Clay, Brent; Brown, Doug; John, Titus; Oh, Yeonyee; Young, Nelson; Fitzgerald, Michael; Haas, Brian J; Zeng, Qiandong; Young, Sarah; Adiconis, Xian; Fan, Lin; Levin, Joshua Z; Mitchell, Thomas K; Okubara, Patricia A; Farman, Mark L; Kohn, Linda M; Birren, Bruce; Ma, Li-Jun; Dean, Ralph A

    2015-09-28

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), take-all disease in wheat and other grasses (G. graminis), and summer patch disease in turf grasses (M. poae). Here, we present the finished genome sequence for M. oryzae and draft sequences for M. poae and G. graminis var. tritici. We used multiple technologies to sequence and annotate the genomes of M. oryzae, M. poae, and G. graminis var. tritici. The M. oryzae genome is now finished to seven chromosomes whereas M. poae and G. graminis var. tritici are sequenced to 40.0× and 25.0× coverage respectively. Gene models were developed by the use of multiple computational techniques and further supported by RNAseq data. In addition, we performed preliminary analysis of genome architecture and repetitive element DNA.

  2. Monitoring transmission routes of Listeria spp. in smoked salmon production with repetitive element sequence-based PCR techniques.

    Science.gov (United States)

    Zunabovic, M; Domig, K J; Pichler, I; Kneifel, W

    2012-03-01

    Various techniques have been used for tracing the transmission routes of Listeria species and for the assessment of hygiene standards in food processing plants. The potential of repetitive element sequence-based PCR (Rep-PCR) methods (GTG₅ and REPI + II) for the typing of Listeria isolates (n = 116), including Listeria monocytogenes (n = 46), was evaluated in a particular situation arising from the relocation of a company producing cold-smoked salmon. Pulsed-field gel electrophoresis (PFGE) using three restriction enzymes (ApaI, AscI, and SmaI) was used for comparison. Identical transmission scenarios among two companies could be identified by cluster analysis of L. monocytogenes isolates that were indistinguishable by both Rep-PCR and PFGE. The calculated diversity index (DI) indicates that Rep-PCR subtyping of Listeria species with primer sets GTG₅ and REPI + II has a lower discrimination power than does PFGE. When concatenated Rep-PCR cluster analysis was used, the DI increased from 0.934 (REPI + II) and 0.923 (GTG₅) to 0.956. The discrimination power of this method was similar to that of PFGE typing based on restriction enzyme Apa I (DI = 0.955). Listeria welshimeri may be useful as an indicator for monitoring smoked salmon processing environments. Rep-PCR meets the expectations of a reasonable, fast, and low-cost molecular subtyping method for the routine monitoring of Listeria species. The discriminatory power as characterized by the DI sufficiently quantifies the probability of unrelated isolates being characterized as different subtypes. Therefore, Rep-PCR typing based on two primer systems (GTG₅ and REPI + II) may be a useful tool for monitoring industrial hygiene.

  3. Management of familial cancer: sequencing, surveillance and society.

    Science.gov (United States)

    Samuel, Nardin; Villani, Anita; Fernandez, Conrad V; Malkin, David

    2014-12-01

    The clinical management of familial cancer begins with recognition of patterns of cancer occurrence suggestive of genetic susceptibility in a proband or pedigree, to enable subsequent investigation of the underlying DNA mutations. In this regard, next-generation sequencing of DNA continues to transform cancer diagnostics, by enabling screening for cancer-susceptibility genes in the context of known and emerging familial cancer syndromes. Increasingly, not only are candidate cancer genes sequenced, but also entire 'healthy' genomes are mapped in children with cancer and their family members. Although large-scale genomic analysis is considered intrinsic to the success of cancer research and discovery, a number of accompanying ethical and technical issues must be addressed before this approach can be adopted widely in personalized therapy. In this Perspectives article, we describe our views on how the emergence of new sequencing technologies and cancer surveillance strategies is altering the framework for the clinical management of hereditary cancer. Genetic counselling and disclosure issues are discussed, and strategies for approaching ethical dilemmas are proposed.

  4. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-01-01

    Automated repetitive polymerase chain reaction (PCR) (DiversiLab, bioMérieux, St. Laurent, Quebec, Canada) and single locus sequence typing of the Staphylococcus protein A (spa) gene with spa-type assignment by StaphType RIDOM software were compared to pulsed-field gel electrophoresis (PFGE) as the "gold standard" method for methicillin-resistant Staphylococcus aureus (MRSA) typing. Fifty-four MRSA isolates were typed by all methods: 10 of known PFGE CMRSA type and 44 clinical isolates. Correct assignment of CMRSA type or cluster occurred for 47 of 54 (87%) of the isolates when using a rep-PCR similarity index (SI) of ≥95%. Rep-PCR gave 7 discordant results [CMRSA1 (3), CMRSA2 (1), CMRSA4 (1), and CMRSA10 (2)], and some CMRSA clusters were not distinguished (CMRSA10/5/9, CMRSA 7/8, and CMRSA3/6). Several spa types occurred within a single PFGE or repetitive PCR types among the 19 different spa types found. spa type t037 was shared by CMRSA3 and CMRSA6 strains, and CMRSA9 and most CMRSA10 strains shared spa type t008. Time to results for PFGE, repetitive PCR, and spa typing was 3-4 days, 24 h, and 48 h, respectively. The annual costs of using spa or repetitive PCR were 2.4× and 1.9× higher, respectively, than PFGE but routine use of spa typing would lower annual labor costs by 0.10 full-time equivalents compared to PFGE. Repetitive PCR is a good method for rapid outbreak screening, but MRSA isolates that share the same repetitive PCR or PFGE patterns can be distinguished by spa typing. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. The Salmon Smai Family of Short Interspersed Repetitive Elements (Sines): Interspecific and Intraspecific Variation of the Insertion of Sines in the Genomes of Chum and Pink Salmon

    OpenAIRE

    Takasaki, N.; Yamaki, T.; Hamada, M.; Park, L; Okada, N

    1997-01-01

    The genomes of chum salmon and pink salmon contain a family of short interspersed repetitive elements (SINEs), designated the salmon SmaI family. It is restricted to these two species, a distribution that suggests that this SINE family might have been generated in their common ancestor. When insertions of the SmaI SINEs at 10 orthologous loci of these species were analyzed, however, it was found that there were no shared insertion sites between chum and pink salmon. Furthermore, at six loci w...

  6. Exome sequencing in a breast canner family without BRCA mutation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Myoung; Choi, Doo Ho; Park, Won; Huh, Seung Jae [Dept. of Radiation Oncology, amsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Ji Hun; Cho, Dae Yeon [LabGenomics Clinical Research Institute, LabGenomics, Seongnam (Korea, Republic of)

    2015-06-15

    We performed exome sequencing in a breast cancer family without BRCA mutations. A family that three sisters have a history of breast cancer was selected for analysis. There were no family members with breast cancer in the previous generation. Genetic testing for BRCA mutation was negative, even by the multiplex ligation-dependent probe amplification method. Two sisters with breast cancer were selected as affected members, while the mother of the sisters was a non-affected member. Whole exome sequencing was performed on the HiSeq 2000 platform with paired-end reads of 101 bp in the three members. We identified 19,436, 19,468, and 19,345 single-nucleotide polymorphisms (SNPs) in the coding regions. Among them, 8,759, 8,789, and 8,772 were non-synonymous SNPs, respectively. After filtering out 12,843 synonymous variations and 12,105 known variations with indels found in the dbSNP135 or 1000 Genomes Project database, we selected 73 variations in the samples from the affected sisters that did not occur in the sample from the unaffected mother. Using the Sorting Intolerant From Tolerant (SIFT), PolyPhen-2, and MutationTaster algorithms to predict amino acid substitutions, the XCR1, DLL1, TH, ACCS, SPPL3, CCNF, and SRL genes were risky among all three algorithms, while definite candidate genes could not be conclusively determined. Using exome sequencing, we found 7 variants for a breast cancer family without BRCA mutations. Genetic evidence of disease association should be confirmed by future studies.

  7. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA.

    Science.gov (United States)

    Silva, Duilio M Z A; Utsunomia, Ricardo; Pansonato-Alves, José C; Oliveira, Cláudio; Foresti, Fausto

    2015-01-01

    Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group. © 2015 S. Karger AG, Basel.

  8. Sequence-Independent Cloning and Post-Translational Modification of Repetitive Protein Polymers through Sortase and Sfp-Mediated Enzymatic Ligation.

    Science.gov (United States)

    Ott, Wolfgang; Nicolaus, Thomas; Gaub, Hermann E; Nash, Michael A

    2016-04-11

    Repetitive protein-based polymers are important for many applications in biotechnology and biomaterials development. Here we describe the sequential additive ligation of highly repetitive DNA sequences, their assembly into genes encoding protein-polymers with precisely tunable lengths and compositions, and their end-specific post-translational modification with organic dyes and fluorescent protein domains. Our new Golden Gate-based cloning approach relies on incorporation of only type IIS BsaI restriction enzyme recognition sites using PCR, which allowed us to install ybbR-peptide tags, Sortase c-tags, and cysteine residues onto either end of the repetitive gene polymers without leaving residual cloning scars. The assembled genes were expressed in Escherichia coli and purified using inverse transition cycling (ITC). Characterization by cloud point spectrophotometry, and denaturing polyacrylamide gel electrophoresis with fluorescence detection confirmed successful phosphopantetheinyl transferase (Sfp)-mediated post-translational N-terminal labeling of the protein-polymers with a coenzyme A-647 dye (CoA-647) and simultaneous sortase-mediated C-terminal labeling with a GFP domain containing an N-terminal GG-motif in a one-pot reaction. In a further demonstration, we installed an N-terminal cysteine residue into an elastin-like polypeptide (ELP) that was subsequently conjugated to a single chain poly(ethylene glycol)-maleimide (PEG-maleimide) synthetic polymer, noticeably shifting the ELP cloud point. The ability to straightforwardly assemble repetitive DNA sequences encoding ELPs of precisely tunable length and to post-translationally modify them specifically at the N- and C- termini provides a versatile platform for the design and production of multifunctional smart protein-polymeric materials.

  9. Clinical exome sequencing: results from 2819 samples reflecting 1000 families

    Science.gov (United States)

    Trujillano, Daniel; Bertoli-Avella, Aida M; Kumar Kandaswamy, Krishna; Weiss, Maximilian ER; Köster, Julia; Marais, Anett; Paknia, Omid; Schröder, Rolf; Garcia-Aznar, Jose Maria; Werber, Martin; Brandau, Oliver; Calvo del Castillo, Maria; Baldi, Caterina; Wessel, Karen; Kishore, Shivendra; Nahavandi, Nahid; Eyaid, Wafaa; Al Rifai, Muhammad Talal; Al-Rumayyan, Ahmed; Al-Twaijri, Waleed; Alothaim, Ali; Alhashem, Amal; Al-Sannaa, Nouriya; Al-Balwi, Mohammed; Alfadhel, Majid; Rolfs, Arndt; Abou Jamra, Rami

    2017-01-01

    We report our results of 1000 diagnostic WES cases based on 2819 sequenced samples from 54 countries with a wide phenotypic spectrum. Clinical information given by the requesting physicians was translated to HPO terms. WES processes were performed according to standardized settings. We identified the underlying pathogenic or likely pathogenic variants in 307 families (30.7%). In further 253 families (25.3%) a variant of unknown significance, possibly explaining the clinical symptoms of the index patient was identified. WES enabled timely diagnosing of genetic diseases, validation of causality of specific genetic disorders of PTPN23, KCTD3, SCN3A, PPOX, FRMPD4, and SCN1B, and setting dual diagnoses by detecting two causative variants in distinct genes in the same patient. We observed a better diagnostic yield in consanguineous families, in severe and in syndromic phenotypes. Our results suggest that WES has a better yield in patients that present with several symptoms, rather than an isolated abnormality. We also validate the clinical benefit of WES as an effective diagnostic tool, particularly in nonspecific or heterogeneous phenotypes. We recommend WES as a first-line diagnostic in all cases without a clear differential diagnosis, to facilitate personal medical care. PMID:27848944

  10. Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes.

    Science.gov (United States)

    Chapman, Nicola H; Nato, Alejandro Q; Bernier, Raphael; Ankenman, Katy; Sohi, Harkirat; Munson, Jeff; Patowary, Ashok; Archer, Marilyn; Blue, Elizabeth M; Webb, Sara Jane; Coon, Hilary; Raskind, Wendy H; Brkanac, Zoran; Wijsman, Ellen M

    2015-10-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders, characterized by impairment in communication and social interactions, and by repetitive behaviors. ASDs are highly heritable, and estimates of the number of risk loci range from hundreds to >1000. We considered 7 extended families (size 12-47 individuals), each with ≥3 individuals affected by ASD. All individuals were genotyped with dense SNP panels. A small subset of each family was typed with whole exome sequence (WES). We used a 3-step approach for variant identification. First, we used family-specific parametric linkage analysis of the SNP data to identify regions of interest. Second, we filtered variants in these regions based on frequency and function, obtaining exactly 200 candidates. Third, we compared two approaches to narrowing this list further. We used information from the SNP data to impute exome variant dosages into those without WES. We regressed affected status on variant allele dosage, using pedigree-based kinship matrices to account for relationships. The p value for the test of the null hypothesis that variant allele dosage is unrelated to phenotype was used to indicate strength of evidence supporting the variant. A cutoff of p = 0.05 gave 28 variants. As an alternative third filter, we required Mendelian inheritance in those with WES, resulting in 70 variants. The imputation- and association-based approach was effective. We identified four strong candidate genes for ASD (SEZ6L, HISPPD1, FEZF1, SAMD11), all of which have been previously implicated in other studies, or have a strong biological argument for their relevance.

  11. Graphical sequences of some family of induced subgraphs

    Directory of Open Access Journals (Sweden)

    Shariefuddin Pirzada

    2015-05-01

    Full Text Available The subdivision graph $S(G$ of a graph $G$ is the graph obtained by inserting a new vertex into every edge of $G$. The $S_{vertex}$ or $S_{ver}$ join of the graph $G_{1}$ with the graph $G_{2}$, denoted by $G_{1}\\dot{\\vee}G_{2}$, is obtained from $S(G_{1}$ and $G_{2}$ by joining all vertices of $G_{1}$ with all vertices of $G_{2}$. The $S_{edge}$ or $S_{ed}$ join of $G_{1}$ and $G_{2}$, denoted by $G_{1}\\bar{\\vee}G_{2}$, is obtained from $S(G_{1}$ and $G_{2}$ by joining all vertices of $S(G_{1}$ corresponding to the edges of $G_{1}$ with all vertices of $G_{2}$. In this paper, we obtain graphical sequences of the family of induced subgraphs of $S_{J} = G_{1}\\vee G_{2}$, $S_{ver} = G_{1}\\dot{\\vee}G_{2}$ and $S_{ed} = G_{1}\\bar{\\vee}G_{2}$. Also we prove that the graphic sequence of $S_{ed}$ is potentially $K_{4}-e$-graphical.

  12. Theoretical Bounds and Practical Constructions for Families of One—Coincidence Sequences in FHMA

    Institute of Scientific and Technical Information of China (English)

    MeiWenhua; YangYixian

    1995-01-01

    Theoretical bounds are given for the number of one-coincidence sequences in syn-chronous FHMA systems,and for the number and period of one-coincidence sequences in asyn-chronous FHMA systems.Several practical constructions for families of one-coincidencesequences are surveyed,and a new model for families of one-coincidence sequences is presented.

  13. Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): unusual accumulation of repetitive sequences on the X chromosome.

    Science.gov (United States)

    Cioffi, M B; Martins, C; Vicari, M R; Rebordinos, L; Bertollo, L A C

    2010-01-01

    The wolf fish Hoplias malabaricus (Erythrinidae) presents a high karyotypic diversity, with 7 karyomorphs identified. Karyomorph A is characterized by 2n = 42 chromosomes, without morphologically differentiated sex chromosomes. Karyomorph B also has 2n = 42 chromosomes for both sexes, but differs by a distinct heteromorphic XX/XY sex chromosome system. The cytogenetic mapping of 5 classes of repetitive DNA indicated similarities between both karyomorphs and the probable derivation of the XY chromosomes from pair No. 21 of karyomorph A. These chromosomes appear to be homeologous since the distribution of (GATA)(n) sequences, 18S rDNA and 5SHindIII-DNA sites supports their potential relatedness. Our data indicate that the differentiation of the long arms of the X chromosome occurred by accumulation of heterochromatin and 18S rDNA cistrons from the ancestral homomorphic pair No. 21 present in karyomorph A. These findings are further supported by the distribution of the Cot-1 DNA fraction. In addition, while the 18S rDNA cistrons were maintained and amplified on the X chromosomes, they were lost in the Y chromosome. The X chromosome was a clearly preferred site for the accumulation of DNA repeats, representing an unusual example of an X clustering more repetitive sequences than the Y during sex chromosome differentiation in fish.

  14. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates

    Directory of Open Access Journals (Sweden)

    Elif Çepni

    2012-01-01

    Full Text Available In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP-and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC sequences failed to produce clear banding patterns in this study.

  15. Sex determination of porcine embryos using a new developed duplex polymerase chain reaction procedure based on the amplification of repetitive sequences.

    Science.gov (United States)

    Torner, Eva; Bussalleu, Eva; Briz, M Dolors; Gutiérrez-Adán, Alfonso; Bonet, Sergi

    2013-01-01

    Polymerase chain reaction (PCR)-based assays have become increasingly prevalent for sexing embryos. The aim of the present study was to develop a suitable duplex PCR procedure based on the amplification of porcine repetitive sequences for sexing porcine tissues, embryos and single cells. Primers were designed targeting the X12696 Y chromosome-specific repeat sequence (SUSYa and SUSYb; sex-related primer sets), the multicopy porcine-specific mitochondrial 12S rRNA gene (SUS12S; control primer set) and the X51555 1 chromosome repeat sequence (SUS1; control primer set). The specificity of the primer sets was established and the technique was optimised by testing combinations of two specific primer sets (SUSYa/SUS12S; SUSYb/SUS12S), different primer concentrations, two sources of DNA polymerase, different melting temperatures and different numbers of amplification cycles using genomic DNA from porcine ovarian and testicular tissue. The optimised SUSYa/SUS12S- and SUSYb/SUS12S-based duplex PCR procedures were applied to porcine in vitro-produced (IVP) blastocysts, cell-stage embryos and oocytes. The SUSYb/SUS12S primer-based procedure successfully sexed porcine single cells and IVP cell-stage embryos (100% efficiency), as well as blastocysts (96.6% accuracy; 96.7% efficiency). This is the first report to demonstrate the applicability of these repetitive sequences for this purpose. In conclusion, the SUSYb/SUS12S primer-based duplex PCR procedure is highly reliable and sensitive for sexing porcine IVP embryos.

  16. The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Madan K

    2008-03-01

    Full Text Available Abstract Background A series of Rps (resistance to Pytophthora sojae genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean. Results Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region 1 was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus. Conclusion These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a

  17. A LARGE CLASS OF BINARY ZCZ SEQUENCE FAMILIES CONSTRUCTED BY PERIOD DOUBLING

    Institute of Scientific and Technical Information of China (English)

    Wang Jinsong; Qi Wenfeng

    2007-01-01

    In an Approximately Synchronized Code Division Multiple Access(AS-CDMA)communication svstem,a family with large number of Zero Correlation Zone(ZCZ)sequences is desired,which can satisfy the rapid increase of users.This paper presents a method to generate a(2L,2M,Z'cz)-ZCZ sequence family from an original(L,M,Zcz)-ZCZ sequence family,where Z'cz=Zcz if Zcz is even and Z'cz=Zcz-1 if Zcz is odd.This method can also recursively act on a ZCZ sequence family to construct a series of ZCZ sequence families with large sequence nutuber and zero correlation zone length identical to or one less than that of original ZCZ sequences.

  18. Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups

    NARCIS (Netherlands)

    Franca, PM; Gupta, JND; Mendes, AS; Moscato, P; Veltink, KJ

    2005-01-01

    This paper considers the problem of scheduling part families and jobs within each part family in a flowshop manufacturing cell with sequence dependent family setups times where it is desired to minimize the makespan while processing parts (jobs) in each family together. Two evolutionary algorithms-a

  19. Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups

    NARCIS (Netherlands)

    Franca, PM; Gupta, JND; Mendes, AS; Moscato, P; Veltink, KJ

    This paper considers the problem of scheduling part families and jobs within each part family in a flowshop manufacturing cell with sequence dependent family setups times where it is desired to minimize the makespan while processing parts (jobs) in each family together. Two evolutionary algorithms-a

  20. Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research.

    Science.gov (United States)

    Coates, Brad S; Sumerford, Douglas V; Hellmich, Richard L; Lewis, Leslie C

    2009-01-01

    The European corn borer, Ostrinia nubilalis, is a serious pest of food, fiber, and biofuel crops in Europe, North America, and Asia and a model system for insect olfaction and speciation. A bacterial artificial chromosome library constructed for O. nubilalis contains 36 864 clones with an estimated average insert size of >or=120 kb and genome coverage of 8.8-fold. Screening OnB1 clones comprising approximately 2.76 genome equivalents determined the physical position of 24 sequence tag site markers, including markers linked to ecologically important and Bacillus thuringiensis toxin resistance traits. OnB1 bacterial artificial chromosome end sequence reads (GenBank dbGSS accessions ET217010 to ET217273) showed homology to annotated genes or expressed sequence tags and identified repetitive genome elements, O. nubilalis miniature subterminal inverted repeat transposable elements (OnMITE01 and OnMITE02), and ezi-like long interspersed nuclear elements. Mobility of OnMITE01 was demonstrated by the presence or absence in O. nubilalis of introns at two different loci. A (GTCT)n tetranucleotide repeat at the 5' ends of OnMITE01 and OnMITE02 are evidence for transposon-mediated movement of lepidopteran microsatellite loci. The number of repetitive elements in lepidopteran genomes will affect genome assembly and marker development. Single-locus sequence tag site markers described here have downstream application for integration within linkage maps and comparative genomic studies.

  1. New Family of Spreading Sequences for Quasi-Synchronous CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    HU Fei; WEN Hong; CHEN Hua-wei

    2006-01-01

    Based on the generalized Chirp-like sequences,the product technique is extensively used to construct a new family of spreading sequences,and its correlation property is verified.The results show that among the proposed sequences,there are subclasses of sequences with a zero-correlation zone,which can be used in quasisynchronous-code division multiple access systems.

  2. Comparison of pulsed-field gel electrophoresis & repetitive sequence-based PCR methods for molecular epidemiological studies of Escherichia coli clinical isolates

    Directory of Open Access Journals (Sweden)

    Il Kwon Bae

    2014-01-01

    Full Text Available Background & objectives: PFGE, rep-PCR, and MLST are widely used to identify related bacterial isolates and determine epidemiologic associations during outbreaks. This study was performed to compare the ability of repetitive sequence-based PCR (rep-PCR and pulsed-field gel electrophoresis (PFGE to determine the genetic relationships among Escherichia coli isolates assigned to various sequence types (STs by two multilocus sequence typing (MLST schemes. Methods: A total of 41 extended-spectrum β-lactamase- (ESBL- and/or AmpC β-lactamase-producing E. coli clinical isolates were included in this study. MLST experiments were performed following the Achtman′s MLST scheme and the Whittam′s MLST scheme, respectively. Rep-PCR experiments were performed using the DiversiLab system. PFGE experiments were also performed. Results: A comparison of the two MLST methods demonstrated that these two schemes yielded compatible results. PFGE correctly segregated E. coli isolates belonging to different STs as different types, but did not group E. coli isolates belonging to the same ST in the same group. Rep-PCR accurately grouped E. coli isolates belonging to the same ST together, but this method demonstrated limited ability to discriminate between E. coli isolates belonging to different STs. Interpretation & conclusions: These results suggest that PFGE would be more effective when investigating outbreaks in a limited space, such as a specialty hospital or an intensive care unit, whereas rep-PCR should be used for nationwide or worldwide epidemiology studies.

  3. Complete mitochondrial genome of Ptychobarbus kaznakovi (Teleostei: Cypriniformes: Cyprinidae), and repetitive sequences in the D-loop.

    Science.gov (United States)

    Ma, Qingzhan; Wu, Bo; Li, Jiuxuan; Song, Zhaobin

    2016-05-01

    The complete mitochondrial DNA genome of Ptychobarbus kaznakovi was sequenced and characterized. The genome is 16,842 bp in length. Similar with most teleosts, it has two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one displacement loop (D-loop) region. Conserved sequence blocks, including ETAS, CSB-B, D, E, F, and CSB1-3, were identified in the D-loop, which is similar to other species in Cypriniformes. Nevertheless, a 55 bp tandem repeat array was also identified at 3' end of the D-loop, which is the first finding in Schizothoracinae. Phylogenetic analysis showed that the species of Ptychobarbus (P. dipogon and P. kaznakovi) formed a monophyletic group and represented close relationship to the species without scales in Schizothoracinae.

  4. Structural biology of disease-associated repetitive DNA sequences and protein-DNA complexes involved in DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Santhana Mariappan, S.V.; Chen, X.; Catasti, P.; Silks, L.A. III; Moyzis, R.K.; Bradbury, E.M.; Garcia, A.E.

    1997-07-01

    This project is aimed at formulating the sequence-structure-function correlations of various microsatellites in the human (and other eukaryotic) genomes. Here the authors have been able to develop and apply structure biology tools to understand the following: the molecular mechanism of length polymorphism microsatellites; the molecular mechanism by which the microsatellites in the noncoding regions alter the regulation of the associated gene; and finally, the molecular mechanism by which the expansion of these microsatellites impairs gene expression and causes the disease. Their multidisciplinary structural biology approach is quantitative and can be applied to all coding and noncoding DNA sequences associated with any gene. Both NIH and DOE are interested in developing quantitative tools for understanding the function of various human genes for prevention against diseases caused by genetic and environmental effects.

  5. Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur.

    Science.gov (United States)

    Ventura, M; Boniotto, M; Cardone, M F; Fulizio, L; Archidiacono, N; Rocchi, M; Crovella, S

    2001-09-19

    The karyotypes of Eulemur species exhibit a high degree of variation, as a consequence of the Robertsonian fusion and/or centromere fission. Centromeric and pericentromeric heterochromatin of eulemurs is constituted by highly repeated DNA sequences (including some telomeric TTAGGG repeats) which have so far been investigated and used for the study of the systematic relationships of the different species of the genus Eulemur. In our study, we have cloned a set of repetitive pericentromeric sequences of five Eulemur species: E. fulvus fulvus (EFU), E. mongoz (EMO), E. macaco (EMA), E. rubriventer (ERU), and E. coronatus (ECO). We have characterized these clones by sequence comparison and by comparative fluorescence in situ hybridization analysis in EMA and EFU. Our results showed a high degree of sequence similarity among Eulemur species, indicating a strong conservation, within the five species, of these pericentromeric highly repeated DNA sequences.

  6. A computational method for genotype calling in family-based sequencing data.

    Science.gov (United States)

    Chang, Lun-Ching; Li, Bingshan; Fang, Zhou; Vrieze, Scott; McGue, Matt; Iacono, William G; Tseng, George C; Chen, Wei

    2016-01-16

    As sequencing technologies can help researchers detect common and rare variants across the human genome in many individuals, it is known that jointly calling genotypes across multiple individuals based on linkage disequilibrium (LD) can facilitate the analysis of low to modest coverage sequence data. However, genotype-calling methods for family-based sequence data, particularly for complex families beyond parent-offspring trios, are still lacking. In this study, first, we proposed an algorithm that considers both linkage disequilibrium (LD) patterns and familial transmission in nuclear and multi-generational families while retaining the computational efficiency. Second, we extended our method to incorporate external reference panels to analyze family-based sequence data with a small sample size. In simulation studies, we show that modeling multiple offspring can dramatically increase genotype calling accuracy and reduce phasing and Mendelian errors, especially at low to modest coverage. In addition, we show that using external panels can greatly facilitate genotype calling of sequencing data with a small number of individuals. We applied our method to a whole genome sequencing study of 1339 individuals at ~10X coverage from the Minnesota Center for Twin and Family Research. The aggregated results show that our methods significantly outperform existing ones that ignore family constraints or LD information. We anticipate that our method will be useful for many ongoing family-based sequencing projects. We have implemented our methods efficiently in a C++ program FamLDCaller, which is available from http://www.pitt.edu/~wec47/famldcaller.html.

  7. Retroposition of the AFC family of SINEs (short interspersed repetitive elements) before and during the adaptive radiation of cichlid fishes in Lake Malawi and related inferences about phylogeny.

    Science.gov (United States)

    Takahashi, K; Nishida, M; Yuma, M; Okada, N

    2001-01-01

    Lake Malawi is home to more than 450 species of endemic cichlids, which provide a spectacular example of adaptive radiation. To clarify the phylogenetic relationships among these fish, we examined the presence and absence of SINEs (short interspersed repetitive elements) at orthologous loci. We identified six loci at which a SINE sequence had apparently been specifically inserted by retroposition in the common ancestor of all the investigated species of endemic cichlids in Lake Malawi. At another locus, unique sharing of a SINE sequence was evident among all the investigated species of endemic non-Mbuna cichlids with the exception of Rhamphochromis sp. The relationships were in good agreement with those deduced in previous studies with various different markers, demonstrating that the SINE method is useful for the elucidation of phylogenetic relationships among cichlids in Lake Malawi. We also characterized a locus that exhibited transspecies polymorphism with respect to the presence or absence of the SINE sequence among non-Mbuna species. This result suggests that incomplete lineage sorting and/or interspecific hybridization might have occurred or be occurring among the species in this group, which might potentially cause misinterpretation of phylogenetic data, in particular when a single-locus marker, such as a sequence in the mitochondrial DNA, is used for analysis.

  8. Variation in the nucleotide sequence of a prolamin gene family in wild rice.

    Science.gov (United States)

    Barbier, P; Ishihama, A

    1990-07-01

    Variation in the DNA sequence of the 10 kDa prolamin gene family within the wild rice species Oryza rufipogon was probed using the direct sequencing of PCR-amplified genes. A comparison of the nucleotide and deduced amino-acid sequences of eight Asian strains of O. rufipogon and one strain of the related African species O. longistaminata is presented.

  9. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus.

  10. Study of quasistationary and stationary states in the short-repetition-time sequences in the NQR of nitrogen.

    Science.gov (United States)

    Mikhaltsevitch, V T; Rudakov, T N

    2004-01-01

    Experimental and theoretical study of quasistationary and stationary states that are established in the quadrupolar spin system subjected to the steady-state sequences which consist of a chain of identical pulses and can be preceded by a preparatory pulse. We have obtained theoretical expressions for the magnetisation of the spin system that take into account off-resonance conditions during the effect of the pulses. Frequency dependencies of the NQR signal in the quasistationary and stationary states are shown for C3H6N6O6 (RDX) and NaNO2, and compared with theoretical results.

  11. Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA.

    Science.gov (United States)

    Serfaty, Dayane Martins Barbosa; Carvalho, Natália Dayane Moura; Gross, Maria Claudia; Gordo, Marcelo; Schneider, Carlos Henrique

    2017-06-20

    Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.

  12. Exome sequencing in a family segregating for celiac disease

    NARCIS (Netherlands)

    Szperl, A M; Ricaño-Ponce, I; Li, J K; Deelen, P; Kanterakis, A; Plagnol, V; van Dijk, Freerk; Westra, H J; Trynka, G; Mulder, C. J.; Swertz, M; Wijmenga, Cisca; Zheng, H C H

    Celiac disease is a multifactorial disorder caused by an unknown number of genetic factors interacting with an environmental factor. Hence, most patients are singletons and large families segregating with celiac disease are rare. We report on a three-generation family with six patients in which the

  13. Exome sequencing in a family segregating for celiac disease

    NARCIS (Netherlands)

    Szperl, A M; Ricaño-Ponce, I; Li, J K; Deelen, P; Kanterakis, A; Plagnol, V; van Dijk, Freerk; Westra, H J; Trynka, G; Mulder, C. J.; Swertz, M; Wijmenga, Cisca; Zheng, H C H

    2011-01-01

    Celiac disease is a multifactorial disorder caused by an unknown number of genetic factors interacting with an environmental factor. Hence, most patients are singletons and large families segregating with celiac disease are rare. We report on a three-generation family with six patients in which the

  14. IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates

    Directory of Open Access Journals (Sweden)

    Massung Robert F

    2007-10-01

    Full Text Available Abstract Background Coxiella burnetii contains the IS1111 transposase which is present 20 times in the Nine Mile phase I (9Mi/I genome. A single PCR primer that binds to each IS element, and primers specific to a region ~500-bp upstream of each of the 20 IS1111 elements were designed. The amplified products were characterized and used to develop a repetitive element PCR genotyping method. Results Isolates Nine Mile phase II, Nine Mile RSA 514, Nine Mile Baca, Scottish, Ohio, Australian QD, Henzerling phase I, Henzerling phase II, M44, KAV, PAV, Q238, Q195 and WAV were tested by PCR and compared to 9Mi/I. Sequencing was used to determine the exact differences in isolates which lacked specific IS elements or produced PCR products of differing size. From this data, an algorithm was created utilizing four primer pairs that allows for differentiation of unknown isolates into five genomic groups. Additional isolates (Priscilla Q177, Idaho Q, Qiyi, Poker Cat, Q229 and Q172 and nine veterinary samples were characterized using the algorithm which resulted in their placement into three distinct genomic groups. Conclusion Through this study significant differences, including missing elements and sequence alterations within and near IS element coding regions, were found between the isolates tested. Further, a method for differentiation of C. burnetii isolates into one of five genomic groups was created. This algorithm may ultimately help to determine the relatedness between known and unknown isolates of C. burnetii.

  15. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach.

    Science.gov (United States)

    Liu, J; Stanton, V P; Fujiwara, T M; Wang, J X; Rezonzew, R; Crumley, M J; Morgan, K; Gros, P; Housman, D; Schurr, E

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome.

  16. Investigation of genome sequences within the family Pasteurellaceae

    DEFF Research Database (Denmark)

    Angen, Øystein; Ussery, David

    . The homology between genomes ranged from 47.2% to 94.1%. The number of genes found increased steadily for each sequence added to the analysis and the pan-genome of all 20 sequences consisted of around 8500 genes. On the other hand, the number of genes found in all strains steadily decreased when adding...

  17. Molecular and cytogenetic analysis of the telomeric (TTAGGG)n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae).

    Science.gov (United States)

    Chew, Joyce S K; Oliveira, Claudio; Wright, Jonathan M; Dobson, Melanie J

    2002-03-01

    The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.

  18. Nucleotide sequence of the BamHI repetitive sequence, including the HindIII fundamental unit, as a possible mobile element from the Japanese monkey Macaca fuscata.

    Science.gov (United States)

    Prassolov, V S; Kuchino, Y; Nemoto, K; Nishimura, S

    1986-01-01

    Clustered repeat units produced by BamHI digestion of genomic DNA from the Japanese monkey Macaca fuscata [JMr(BamHI)] were sequenced by dideoxy DNA sequencing. The nucleotide sequences of several individual repeats showed that the BamHI repeat contains the 170-bp HindIII element as an integral part, and that it has more than 90% homology with the HindIII repeat element [AGMr(HindIII)] found in the genomic DNA of the African green monkey. In the JMr(BamHI) repeat unit, the 170-bp HindIII element is flanked by a 6-bp inverted repeat, which is part of a 22-bp direct repeat. This latter repeat of 22-bp asymmetrically overlaps the border between the internal AGMr(HindIII)-like region and adjacent regions of the JMr(BamHI) repeat. A similar structural feature of the BamHI repeat unit has been found in the genomic DNA of the baboon, but not in that of the African green monkey. These results show clearly that the BamHI repeat of the modern Japanese monkey originated as a result of insertion of an AGMr(HindIII) element into a certain site(s) of the genomic DNA of an ancestor of the modern Japanese monkey before Macaca-Cercocebus divergence.

  19. Diversity of Enterococcus faecalis Genotypes from Multiple Oral Sites Associated with Endodontic Failure Using Repetitive Sequence-based Polymerase Chain Reaction and Arbitrarily Primed Polymerase Chain Reaction.

    Science.gov (United States)

    Delboni, Maraísa G; Gomes, Brenda P F A; Francisco, Priscila A; Teixeira, Fabrício B; Drake, David

    2017-03-01

    The aim of this study was to evaluate the diversity and similarity of Enterococcus faecalis genotype isolates from multiple oral sites using repetitive sequence-based polymerase chain reaction and arbitrarily primed polymerase chain reaction (AP-PCR). Forty-two endodontically treated teeth with apical periodontitis were selected. A total of 126 microbial samples were collected from 3 different sites (saliva, pulp chamber, and root canals, all n = 42) during the nonsurgical retreatment procedures. After growth on m-Enterococcus agar, the colonies were isolated, characterized as gram-positive catalase negative cocci, and identified using an API 20 Strep kit (bioMérieux, Marcy-l'Etoile, France). Seventy-four colonies from 10 patients were confirmed as E. faecalis by polymerase chain reaction (16S ribosomal RNA). Repetitive sequence-based polymerase chain reactions using ERIC and AP-PCR using RW3A primers were performed in all 74 colonies. Fingerprints were analyzed and separated into genotypic groups based on the Dice coefficient percentage of similarity (82% or greater) as determined by ERIC reproducibility assays involving E. faecalis controls. Seven different E. faecalis genotypes (GTs) (GT1 = 27%, GT2 = 17.6%, GT3 = 1.3%, GT4 = 18.9%, GT5 = 9.5%, GT6 = 14.9%, and GT7 = 10.8%) were observed in different subjects and oral sites associated with endodontic failure. Remarkably, in 4 of 5 patients, the same GTs present in the infected root canals were also isolated from either the pulp chamber or the saliva samples. In particular, GT6 was detected in all 3 oral sites of patient 37. E. faecalis GTs isolated from saliva, the pulp chamber, and the root canal were similar using the Rep-PCR and AP-PCR methods. These findings suggest that coronal microleakage is a conceivable cause of endodontic failure. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs.

    Science.gov (United States)

    Mölleken, Katja; Schmidt, Eleni; Hegemann, Johannes H

    2010-11-01

    Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.

  1. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey.

    Science.gov (United States)

    Koc, A Nedret; Atalay, Mustafa A; Inci, Melek; Sariguzel, Fatma M; Sav, Hafize

    2017-05-01

    Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR. © 2017 Blackwell Verlag GmbH.

  2. Indole acetic acid production by fluorescent Pseudomonas spp. from the rhizosphere of Plectranthus amboinicus (Lour.) Spreng. and their variation in extragenic repetitive DNA sequences.

    Science.gov (United States)

    Sethia, Bedhya; Mustafa, Mariam; Manohar, Sneha; Patil, Savita V; Jayamohan, Nellickal Subramanian; Kumudini, Belur Satyan

    2015-06-01

    Fluorescent Pseudomonas (FP) is a heterogenous group of growth promoting rhizobacteria that regulate plant growth by releasing secondary metabolic compounds viz., indole acetic acid (IAA), siderophores, ammonia and hydrogen cyanide. In the present study, IAA producing FPs from the rhizosphere of Plectranthus amboinicus were characterized morphologically, biochemically and at the molecular level. Molecular identification of the isolates were carried out using Pseudomonas specific primers. The effect of varying time (24, 48, 72 and 96 h), Trp concentrations (100, 200, 300, 400 and 500 μg x ml(-1)), temperature (10, 26, 37 and 50 ± 2 degrees C) and pH (6, 7 and 8) on IAA production by 10 best isolates were studied. Results showed higher IAA production at 72 h incubation, at 300 μg x ml(-1) Trp concentration, temperature 26 ± 2 degrees C and pH 7. TLC with acidified ethyl acetate extract showed that the IAA produced has a similar Rf value to that of the standard IAA. Results of TLC were confirmed by HPLC analysis. Genetic diversity of the isolates was also studied using 40 RAPD and 4 Rep primers. Genetic diversity parameters such as dominance, Shannon index and Simpson index were calculated. Out of 40 RAPD primers tested, 9 (2 OP-D series and 7 OP-E series) were shortlisted for further analysis. Studies using RAPD, ERIC, BOX, REP and GTG5 primers revealed that isolates exhibit significant diversity in repetitive DNA sequences irrespective of the rhizosphere.

  3. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  4. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Rezonzew, R. [McGill Centre for the Study of Host Resistance, Montreal, Quebec (Canada)]|[McGill Univ., Montreal, Quebec (Canada); Stanton, V.P. Jr. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome. 81 refs., 8 figs., 3 tabs.

  5. Phased whole-genome genetic risk in a family quartet using a major allele reference sequence.

    Directory of Open Access Journals (Sweden)

    Frederick E Dewey

    2011-09-01

    Full Text Available Whole-genome sequencing harbors unprecedented potential for characterization of individual and family genetic variation. Here, we develop a novel synthetic human reference sequence that is ethnically concordant and use it for the analysis of genomes from a nuclear family with history of familial thrombophilia. We demonstrate that the use of the major allele reference sequence results in improved genotype accuracy for disease-associated variant loci. We infer recombination sites to the lowest median resolution demonstrated to date (< 1,000 base pairs. We use family inheritance state analysis to control sequencing error and inform family-wide haplotype phasing, allowing quantification of genome-wide compound heterozygosity. We develop a sequence-based methodology for Human Leukocyte Antigen typing that contributes to disease risk prediction. Finally, we advance methods for analysis of disease and pharmacogenomic risk across the coding and non-coding genome that incorporate phased variant data. We show these methods are capable of identifying multigenic risk for inherited thrombophilia and informing the appropriate pharmacological therapy. These ethnicity-specific, family-based approaches to interpretation of genetic variation are emblematic of the next generation of genetic risk assessment using whole-genome sequencing.

  6. The Role of Depressive Symptoms, Family Invalidation and Behavioral Impulsivity in the Occurrence and Repetition of Non-Suicidal Self-Injury in Chinese Adolescents: A 2-Year Follow-Up Study

    Science.gov (United States)

    You, Jianing; Leung, Freedom

    2012-01-01

    This study used zero-inflated poisson regression analysis to examine the role of depressive symptoms, family invalidation, and behavioral impulsivity in the occurrence and repetition of non-suicidal self-injury among Chinese community adolescents over a 2-year period. Participants, 4782 high school students, were assessed twice during the…

  7. Dual-System Families: Cash Assistance Sequences of Households Involved with Child Welfare.

    Science.gov (United States)

    Kang, JiYoung; Romich, Jennifer L; Hook, Jennifer L; Lee, JoAnn S; Marcenko, Maureen

    2016-01-01

    Dual-system families, those involved with the child welfare system and receiving public cash assistance, may be more vulnerable than families only connected to either of the two systems. This study advances our understanding of the heterogeneous and dynamic cash assistance histories of dual-system families in the post-welfare reform era. With merged administrative data from [state name removed] over the period 1998 to 2009, we use cluster analysis to group month-to-month sequences of cash assistance use among households over the 37-month period surrounding child removal. Close to two thirds of families who received any assistance either had a short spell of Temporary Assistance for Needy Families (TANF) or lost TANF. Smaller percentages had steady support. Families who lose assistance are less likely than average to reunify while those who connect to benefits are more likely, suggesting coordination between systems may serve dual-system families well.

  8. SeqHBase: a big data toolset for family based sequencing data analysis.

    Science.gov (United States)

    He, Min; Person, Thomas N; Hebbring, Scott J; Heinzen, Ethan; Ye, Zhan; Schrodi, Steven J; McPherson, Elizabeth W; Lin, Simon M; Peissig, Peggy L; Brilliant, Murray H; O'Rawe, Jason; Robison, Reid J; Lyon, Gholson J; Wang, Kai

    2015-04-01

    Whole-genome sequencing (WGS) and whole-exome sequencing (WES) technologies are increasingly used to identify disease-contributing mutations in human genomic studies. It can be a significant challenge to process such data, especially when a large family or cohort is sequenced. Our objective was to develop a big data toolset to efficiently manipulate genome-wide variants, functional annotations and coverage, together with conducting family based sequencing data analysis. Hadoop is a framework for reliable, scalable, distributed processing of large data sets using MapReduce programming models. Based on Hadoop and HBase, we developed SeqHBase, a big data-based toolset for analysing family based sequencing data to detect de novo, inherited homozygous, or compound heterozygous mutations that may contribute to disease manifestations. SeqHBase takes as input BAM files (for coverage at every site), variant call format (VCF) files (for variant calls) and functional annotations (for variant prioritisation). We applied SeqHBase to a 5-member nuclear family and a 10-member 3-generation family with WGS data, as well as a 4-member nuclear family with WES data. Analysis times were almost linearly scalable with number of data nodes. With 20 data nodes, SeqHBase took about 5 secs to analyse WES familial data and approximately 1 min to analyse WGS familial data. These results demonstrate SeqHBase's high efficiency and scalability, which is necessary as WGS and WES are rapidly becoming standard methods to study the genetics of familial disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes.

    Science.gov (United States)

    MacGregor, E A; Janecek, S; Svensson, B

    2001-03-09

    The hydrolases and transferases that constitute the alpha-amylase family are multidomain proteins, but each has a catalytic domain in the form of a (beta/alpha)(8)-barrel, with the active site being at the C-terminal end of the barrel beta-strands. Although the enzymes are believed to share the same catalytic acids and a common mechanism of action, they have been assigned to three separate families - 13, 70 and 77 - in the classification scheme for glycoside hydrolases and transferases that is based on amino acid sequence similarities. Each enzyme has one glutamic acid and two aspartic acid residues necessary for activity, while most enzymes of the family also contain two histidine residues critical for transition state stabilisation. These five residues occur in four short sequences conserved throughout the family, and within such sequences some key amino acid residues are related to enzyme specificity. A table is given showing motifs distinctive for each specificity as extracted from 316 sequences, which should aid in identifying the enzyme from primary structure information. Where appropriate, existing problems with identification of some enzymes of the family are pointed out. For enzymes of known three-dimensional structure, action is discussed in terms of molecular architecture. The sequence-specificity and structure-specificity relationships described may provide useful pointers for rational protein engineering.

  10. Two-Phase and Family-Based Designs for Next-Generation Sequencing Studies

    Directory of Open Access Journals (Sweden)

    Duncan C Thomas

    2013-12-01

    Full Text Available The cost of next-generation sequencing is now approaching that of early GWAS panels, but is still out of reach for large epidemiologic studies and the millions of rare variants expected poses challenges for distinguishing causal from non-causal variants. We review two types of designs for sequencing studies: two-phase designs for targeted follow-up of genomewide association studies using unrelated individuals; and family-based designs exploiting co-segregation for prioritizing variants and genes.Two-phase designs subsample subjects for sequencing from a larger case-control study jointly on the basis of their disease and carrier status; the discovered variants are then tested for association in the parent study. The analysis combines the full sequence data from the substudy with the more limited SNP data from the main study. We discuss various methods for selecting this subset of variants and describe the expected yield of true positive associations in the context of an on-going study of second breast cancers following radiotherapy.While the sharing of variants within families means that family-based designs are less efficient for discovery than sequencing unrelated individuals, the ability to exploit co-segregation of variants with disease within families helps distinguish causal from non-causal ones. Furthermore, by enriching for family history, the yield of causal variants can be improved and use of identity-by-descent information improves imputation of genotypes for other family members. We compare the relative efficiency of these designs with those using unrelated individuals for discovering and prioritizing variants or genes for testing association in larger studies. While associations can be tested with single variants, power is low for rare ones. Recent generalizations of burden or kernel tests for gene-level associations to family-based data are appealing. These approaches are illustrated in the context of a family-based study of

  11. Protein sequence alignment with family-specific amino acid similarity matrices

    Science.gov (United States)

    2011-01-01

    Background Alignment of amino acid sequences by means of dynamic programming is a cornerstone sequence comparison method. The quality of alignments produced by dynamic programming critically depends on the choice of the alignment scoring function. Therefore, for a specific alignment problem one needs a way of selecting the best performing scoring function. This work is focused on the issue of finding optimized protein family- and fold-specific scoring functions for global similarity matrix-based sequence alignment. Findings I utilize a comprehensive set of reference alignments obtained from structural superposition of homologous and analogous proteins to design a quantitative statistical framework for evaluating the performance of alignment scoring functions in global pairwise sequence alignment. This framework is applied to study how existing general-purpose amino acid similarity matrices perform on individual protein families and structural folds, and to compare them to family-specific and fold-specific matrices derived in this work. I describe an adaptive alignment procedure that automatically selects an appropriate similarity matrix and optimized gap penalties based on the properties of the sequences being aligned. Conclusions The results of this work indicate that using family-specific similarity matrices significantly improves the quality of the alignment of homologous sequences over the traditional sequence alignment based on a single general-purpose similarity matrix. However, using fold-specific similarity matrices can only marginally improve sequence alignment of proteins that share the same structural fold but do not share a common evolutionary origin. The family-specific matrices derived in this work and the optimized gap penalties are available at http://taurus.crc.albany.edu/fsm. PMID:21846354

  12. Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases.

    Science.gov (United States)

    Udaya Prakash, N A; Jayanthi, M; Sabarinathan, R; Kangueane, P; Mathew, Lazar; Sekar, K

    2010-05-01

    The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.

  13. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences.

    Science.gov (United States)

    Wagner, Andreas; de la Chaux, Nicole

    2008-11-01

    Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data.

  14. Triticum Mosaic Virus: A Distinct Member of the Family Potyviridae with an Unusually Long Leader Sequence

    Science.gov (United States)

    The complete genome sequence of Triticum mosaic virus (TriMV), a member in the family Potyviridae, has been determined to be 10,266 nucleotides excluding the 3’-polyadenylated tail. The genome encodes a large polyprotein of 3,112 amino acids with the ‘hall-mark proteins’ of potyviruses including a s...

  15. Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions.

    Science.gov (United States)

    Galián, José A; Rosato, Marcela; Rosselló, Josep A

    2014-03-01

    Multigene families have provided opportunities for evolutionary biologists to assess molecular evolution processes and phylogenetic reconstructions at deep and shallow systematic levels. However, the use of these markers is not free of technical and analytical challenges. Many evolutionary studies that used the nuclear 5S rDNA gene family rarely used contiguous 5S coding sequences due to the routine use of head-to-tail polymerase chain reaction primers that are anchored to the coding region. Moreover, the 5S coding sequences have been concatenated with independent, adjacent gene units in many studies, creating simulated chimeric genes as the raw data for evolutionary analysis. This practice is based on the tacitly assumed, but rarely tested, hypothesis that strict intra-locus concerted evolution processes are operating in 5S rDNA genes, without any empirical evidence as to whether it holds for the recovered data. The potential pitfalls of analysing the patterns of molecular evolution and reconstructing phylogenies based on these chimeric genes have not been assessed to date. Here, we compared the sequence integrity and phylogenetic behavior of entire versus concatenated 5S coding regions from a real data set obtained from closely related plant species (Medicago, Fabaceae). Our results suggest that within arrays sequence homogenization is partially operating in the 5S coding region, which is traditionally assumed to be highly conserved. Consequently, concatenating 5S genes increases haplotype diversity, generating novel chimeric genotypes that most likely do not exist within the genome. In addition, the patterns of gene evolution are distorted, leading to incorrect haplotype relationships in some evolutionary reconstructions.

  16. Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison

    Directory of Open Access Journals (Sweden)

    Davidson Eric H

    2005-03-01

    Full Text Available Abstract Background Comparative sequence analysis is an effective and increasingly common way to identify cis-regulatory regions in animal genomes. Results We describe three tools for comparative analysis of pairs of BAC-sized genomic regions. Paircomp is a tool that does windowed (ungapped comparisons of two sequences and reports all matches above a set threshold. FamilyRelationsII is a graphical viewer for comparisons that enables interactive exploration of several different kinds of comparisons. Cartwheel is a Web site and compute-cluster management system used to execute and store comparisons for display by FamilyRelationsII. These tools are specialized for the discovery of cis-regulatory regions in animal genomes. All tools and their source code are freely available at http://family.caltech.edu/. Conclusion These tools have been shown to effectively identify regulatory regions in echinoderms, mammals, and nematodes.

  17. ON THE POWER AND LIMITS OF SEQUENCE SIMILARITY BASED CLUSTERING OF PROTEINS INTO FAMILIES

    DEFF Research Database (Denmark)

    Wiwie, Christian; Röttger, Richard

    2017-01-01

    used the data to investigate the behavior of the tools' parameters underlining the diversity of the protein families. Furthermore, we trained regression models for predicting the expected performance of a clustering tool for an unknown data set and aimed to also suggest optimal parameters...... important to also unravel the proteomic repertoire of an organism. A classical computational approach for detecting protein families is a sequence-based similarity calculation coupled with a subsequent cluster analysis. In this work we have intensively analyzed various clustering tools on a large scale. We...... in an automated fashion. Our analysis demonstrates the benefits and limitations of the clustering of proteins with low sequence similarity indicating that each protein family requires its own distinct set of tools and parameters. All results, a tool prediction service, and additional supporting material is also...

  18. Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses.

    Science.gov (United States)

    Bourchany, Aurélie; Thauvin-Robinet, Christel; Lehalle, Daphné; Bruel, Ange-Line; Masurel-Paulet, Alice; Jean, Nolwenn; Nambot, Sophie; Willems, Marjorie; Lambert, Laetitia; El Chehadeh-Djebbar, Salima; Schaefer, Elise; Jaquette, Aurélia; St-Onge, Judith; Poe, Charlotte; Jouan, Thibaud; Chevarin, Martin; Callier, Patrick; Mosca-Boidron, Anne-Laure; Laurent, Nicole; Lefebvre, Mathilde; Huet, Frédéric; Houcinat, Nada; Moutton, Sébastien; Philippe, Christophe; Tran-Mau-Them, Frédéric; Vitobello, Antonio; Kuentz, Paul; Duffourd, Yannis; Rivière, Jean-Baptiste; Thevenon, Julien; Faivre, Laurence

    2017-08-12

    Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to improve turnaround times for sequencing results. WES was proposed to 29 patients with severe undiagnosed disorders with developmental abnormalities and faced with medical situations requiring rapid diagnosis. Each family gave consent. The extracted DNA was sequenced on a NextSeq500 (Illumina) instrument. Data were analyzed following standard procedures. Variants were interpreted using in-house software. Each rare variant affecting protein sequences with clinical relevance was tested for familial segregation. The diagnostic rate was 45% (13/29), with a mean turnaround time of 40 days from reception of the specimen to delivery of results to the referring physician. Besides permitting genetic counseling, the rapid diagnosis for positive families led to two pre-natal diagnoses and two inclusions in clinical trials. This pilot study demonstrated the feasibility of rapid diagnostic WES in our primary genetics center. It reduced the diagnostic odyssey and helped provide support to families. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Sequence analysis of candidate genes in two Roma families with severe tooth agenesis

    Directory of Open Access Journals (Sweden)

    Gabriková Dana

    2016-01-01

    Full Text Available Selective tooth agenesis is the most common congenital disorder affecting the formation of dentition in humans. Both its forms (hypodontia and more severe oligodontia can be found either in isolated form and they can be associated with systemic condition (syndromic tooth agenesis. In addition to previously known genes (PAX9, MSX1 and AXIN2 mutations in EDA, EDARADD and WNT10 gene were recently found to be involved in isolated forms of tooth agenesis. The objective of this study was to characterize the phenotype of affected members in two large families of Roma origin segregating severe isolated tooth agenesis with very variable phenotype and to perform mutation analysis of seven genes with aim to find causal mutation. 26 family members were clinically examined and coding regions of seven genes (MSX1, PAX9, AXIN2, EDA, EDAR, EDARADD and WNT10A were sequenced. With exclusion of third molars, average number of missing teeth was 8.2 ± 4.9 in family 1 and 7.1 ± 2.3 in family 2. The most frequently missing teeth were maxillary lateral incisors and first premolars and mandibular central incisors. Sequencing revealed four potentially damaging variants (g.Ala40Gly in MSX1, g.Ala240Pro in PAX9, g.Pro50Ser in AXIN2 and g.Met9Ile in EDARADD; however, none of them was present in all affected family members. Variable phenotype in both families examined in this study is in favour of heterogeneous genetic cause of tooth agenesis in these families: possible interaction of several defected genes, sequence variants in regulatory regions and additional environmental factors is assumed.

  20. FAMSA: Fast and accurate multiple sequence alignment of huge protein families

    Science.gov (United States)

    Deorowicz, Sebastian; Debudaj-Grabysz, Agnieszka; Gudyś, Adam

    2016-01-01

    Rapid development of modern sequencing platforms has contributed to the unprecedented growth of protein families databases. The abundance of sets containing hundreds of thousands of sequences is a formidable challenge for multiple sequence alignment algorithms. The article introduces FAMSA, a new progressive algorithm designed for fast and accurate alignment of thousands of protein sequences. Its features include the utilization of the longest common subsequence measure for determining pairwise similarities, a novel method of evaluating gap costs, and a new iterative refinement scheme. What matters is that its implementation is highly optimized and parallelized to make the most of modern computer platforms. Thanks to the above, quality indicators, i.e. sum-of-pairs and total-column scores, show FAMSA to be superior to competing algorithms, such as Clustal Omega or MAFFT for datasets exceeding a few thousand sequences. Quality does not compromise on time or memory requirements, which are an order of magnitude lower than those in the existing solutions. For example, a family of 415519 sequences was analyzed in less than two hours and required no more than 8 GB of RAM. FAMSA is available for free at http://sun.aei.polsl.pl/REFRESH/famsa. PMID:27670777

  1. Unexpected instability of family of repeats (FR, the critical cis-acting sequence required for EBV latent infection, in EBV-BAC systems.

    Directory of Open Access Journals (Sweden)

    Teru Kanda

    Full Text Available A group of repetitive sequences, known as the Family of Repeats (FR, is a critical cis-acting sequence required for EBV latent infection. The FR sequences are heterogeneous among EBV strains, and they are sometimes subject to partial deletion when subcloned in E. coli-based cloning vectors. However, the FR stability in EBV-BAC (bacterial artificial chromosome system has never been investigated. We found that the full length FR of the Akata strain EBV was not stably maintained in a BAC vector. By contrast, newly obtained BAC clones of the B95-8 strain of EBV stably maintained the full length FR during recombinant virus production and B-cell transformation. Investigation of primary DNA sequences of Akata-derived EBV-BAC clones indicates that the FR instability is most likely due to a putative secondary structure of the FR region. We conclude that the FR instability in EBV-BAC clones can be a pitfall in E. coli-mediated EBV genetics.

  2. Unexpected instability of family of repeats (FR), the critical cis-acting sequence required for EBV latent infection, in EBV-BAC systems.

    Science.gov (United States)

    Kanda, Teru; Shibata, Sachiko; Saito, Satoru; Murata, Takayuki; Isomura, Hiroki; Yoshiyama, Hironori; Takada, Kenzo; Tsurumi, Tatsuya

    2011-01-01

    A group of repetitive sequences, known as the Family of Repeats (FR), is a critical cis-acting sequence required for EBV latent infection. The FR sequences are heterogeneous among EBV strains, and they are sometimes subject to partial deletion when subcloned in E. coli-based cloning vectors. However, the FR stability in EBV-BAC (bacterial artificial chromosome) system has never been investigated. We found that the full length FR of the Akata strain EBV was not stably maintained in a BAC vector. By contrast, newly obtained BAC clones of the B95-8 strain of EBV stably maintained the full length FR during recombinant virus production and B-cell transformation. Investigation of primary DNA sequences of Akata-derived EBV-BAC clones indicates that the FR instability is most likely due to a putative secondary structure of the FR region. We conclude that the FR instability in EBV-BAC clones can be a pitfall in E. coli-mediated EBV genetics.

  3. Identification of genetic variations of a Chinese family with paramyotonia congenita via whole exome sequencing

    Directory of Open Access Journals (Sweden)

    Jinxin Li

    2015-06-01

    Full Text Available Paramyotonia congenita (PC is a rare autosomal dominant neuromuscular disorder characterized by juvenile onset and development of cold-induced myotonia after repeated activities. The disease is mostly caused by genetic mutations of the sodium channel, voltage-gated, type IV, alpha subunit (SCN4A gene. This study intended to systematically identify the causative genetic variations of a Chinese Han PC family. Seven members of this PC family, including four patients and three healthy controls, were selected for whole exome sequencing (WES using the Illumina HiSeq platform. Sequence variations were identified using the SoftGenetics program. The mutation R1448C of SCN4A was found to be the only causative mutation. This study applied WES technology to sequence multiple members of a large PC family and was the first to systematically confirm that the genetic change in SCN4A is the only causative variation in this PC family and the SCN4A mutation is sufficient to lead to PC.

  4. A framework for the detection of de novo mutations in family-based sequencing data

    Science.gov (United States)

    Francioli, Laurent C; Cretu-Stancu, Mircea; Garimella, Kiran V; Fromer, Menachem; Kloosterman, Wigard P; Wijmenga, Cisca; Investigator, Principal; Swertz, Morris A; van Duijn, Cornelia M; Boomsma, Dorret I; Slagboom, PEline; van Ommen, Gertjan B; de Bakker, Paul IW; Swertz, Morris A; Francioli, Laurent C; van Dijk, Freerk; Menelaou, Androniki; Neerincx, Pieter BT; Pulit, Sara L; Deelen, Patrick; Elbers, Clara C; Francesco Palamara, Pier; Pe'er, Itsik; Abdellaoui, Abdel; Kloosterman, Wigard P; van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen FJ; Stoneking, Mark; de Knijff, Peter; Kayser, Manfred; Veldink, Jan H; van den Berg, Leonard H; Byelas, Heorhiy; den Dunnen, Johan T; Dijkstra, Martijn; Amin, Najaf; van der Velde, K Joeri; Hottenga, Jouke Jan; van Setten, Jessica; van Leeuwen, Elisabeth M; Kanterakis, Alexandros; Kattenberg, Mathijs; Karssen, Lennart C; van Schaik, Barbera DC; Bot, Jan; Nijman, Isaäc J; Renkens, Ivo; van Enckevort, David; Mei, Hailiang; Koval, Vyacheslav; Estrada, Karol; Medina-Gomez, Carolina; Ye, Kai; Lameijer, Eric-Wubbo; Moed, Matthijs H; Hehir-Kwa, Jayne Y; Handsaker, Robert E; McCarroll, Steven A; Sunyaev, Shamil R; Polak, Paz; Vuzman, Dana; Sohail, Mashaal; Hormozdiari, Fereydoun; Marschall, Tobias; Schönhuth, Alexander; Guryev, Victor; de Bakker, Paul IW; Slagboom, P Eline; Beekman, Marian B; de Craen, Anton JM; Suchiman, H Eka D; Hofman, Albert; van Duijn, Cornelia M; Oostra, Ben; Isaacs, Aaron; Amin, Najaf; Rivadeneira, Fernando; Uitterlinden, André G; Boomsma, Dorret I; Willemsen, Gonneke; Platteel, Mathieu; Pitts, Steven J; Potluri, Shobha; Sundar, Purnima; Cox, David R; Li, Qibin; Li, Yingrui; Du, Yuanping; Chen, Ruoyan; Cao, Hongzhi; Li, Ning; Cao, Sujie; Wang, Jun; Bovenberg, Jasper A; Brandsma, Margreet; Samocha, Kaitlin E; Neale, Benjamin M; Daly, Mark J; Banks, Eric; DePristo, Mark A; de Bakker, Paul IW

    2017-01-01

    Germline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission (PBT) to identify de novo single nucleotide variants and short insertions and deletions (indels) from sequence data collected in parent-offspring trios. We compute the joint probability of the data given the genotype likelihoods in the individual family members, the known familial relationships and a prior probability for the mutation rate. Candidate de novo mutations (DNMs) are reported along with their posterior probability, providing a systematic way to prioritize them for validation. Our tool is integrated in the Genome Analysis Toolkit and can be used together with the ReadBackedPhasing module to infer the parental origin of DNMs based on phase-informative reads. Using simulated data, we show that PBT outperforms existing tools, especially in low coverage data and on the X chromosome. We further show that PBT displays high validation rates on empirical parent-offspring sequencing data for whole-exome data from 104 trios and X-chromosome data from 249 parent-offspring families. Finally, we demonstrate an association between father's age at conception and the number of DNMs in female offspring's X chromosome, consistent with previous literature reports. PMID:27876817

  5. A scheme for multiple sequence alignment optimization--an improvement based on family representative mechanics features.

    Science.gov (United States)

    Liu, Xin; Zhao, Ya-Pu

    2009-12-21

    As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue-residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue-residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (approximately 50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.

  6. Association studies using family pools of outcrossing crops based on allele-frequency estimates from DNA sequencing

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Jensen, Just; Asp, Torben

    2014-01-01

    effect from F2-family pools was verified and it was shown that the underestimation of the allele effect is correctly described. The optimal design for an association study when sequencing budget would be fixed is obtained using large sample size and lower sequence depth, and using higher SNP density...... types of family pools and is also directly applicable for association studies in polyploids....

  7. A methodological approach for designing and sequencing product families in Reconfigurable Disassembly Systems

    Directory of Open Access Journals (Sweden)

    Ignacio Eguia

    2011-10-01

    Full Text Available Purpose: A Reconfigurable Disassembly System (RDS represents a new paradigm of automated disassembly system that uses reconfigurable manufacturing technology for fast adaptation to changes in the quantity and mix of products to disassemble. This paper deals with a methodology for designing and sequencing product families in RDS. Design/methodology/approach: The methodology is developed in a two-phase approach, where products are first grouped into families and then families are sequenced through the RDS, computing the required machines and modules configuration for each family. Products are grouped into families based on their common features using a Hierarchical Clustering Algorithm. The optimal sequence of the product families is calculated using a Mixed-Integer Linear Programming model minimizing reconfigurability and operational costs. Findings: This paper is focused to enable reconfigurable manufacturing technologies to attain some degree of adaptability during disassembly automation design using modular machine tools. Research limitations/implications: The MILP model proposed for the second phase is similar to the well-known Travelling Salesman Problem (TSP and therefore its complexity grows exponentially with the number of products to disassemble. In real-world problems, which a higher number of products, it may be advisable to solve the model approximately with heuristics. Practical implications: The importance of industrial recycling and remanufacturing is growing due to increasing environmental and economic pressures. Disassembly is an important part of remanufacturing systems for reuse and recycling purposes. Automatic disassembly techniques have a growing number of applications in the area of electronics, aerospace, construction and industrial equipment. In this paper, a design and scheduling approach is proposed to apply in this area. Originality/value: This paper presents a new concept called Reconfigurable Disassembly System

  8. A primary sequence analysis of the ARGONAUTE protein family in plants.

    Directory of Open Access Journals (Sweden)

    Daniel Rodriguez-Leal

    2016-08-01

    Full Text Available Small RNA (sRNA-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  9. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    Science.gov (United States)

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  10. Complexity of rice Hsp100 gene family: lessons from rice genome sequence data

    Indian Academy of Sciences (India)

    Gaurav Batra; Vineeta Singh Chauhan; Amanjot Singh; Neelam K Sarkar; Anil Grover

    2007-04-01

    Elucidation of genome sequence provides an excellent platform to understand detailed complexity of the various gene families. Hsp100 is an important family of chaperones in diverse living systems. There are eight putative gene loci encoding for Hsp100 proteins in Arabidopsis genome. In rice, two full-length Hsp100 cDNAs have been isolated and sequenced so far. Analysis of rice genomic sequence by in silico approach showed that two isolated rice Hsp100 cDNAs correspond to Os05g44340 and Os02g32520 genes in the rice genome database. There appears to be three additional proteins (encoded by Os03g31300, Os04g32560 and Os04g33210 gene loci) that are variably homologous to Os05g44340 and Os02g32520 throughout the entire amino acid sequence. The above five rice Hsp100 genes show significant similarities in the signature sequences known to be conserved among Hsp100 proteins. While Os05g44340 encodes cytoplasmic Hsp100 protein, those encoded by the other four genes are predicted to have chloroplast transit peptides.

  11. Phylogenetic position of the family Orientocreadiidae within the superfamily Plagiorchioidea (Trematoda) based on partial 28S rDNA sequence.

    Science.gov (United States)

    Sokolov, S G; Shchenkov, S V

    2017-08-22

    Trematodes of the family Orientocreadiidae are mostly parasites of freshwater fishes. Here, the phylogenetic position of this family is inferred based on the partial 28S rDNA sequence from a representative of the genus Orientocreadium s. str.-О. pseudobagri Yamaguti, 1934. Sequences were analysed by maximum likelihood and Bayesian inference algorithms. Both approaches placed the Orientocreadiidae within a clade corresponding to the superfamily Plagiorchioidea and supported the family Leptophallidae as a sister taxon.

  12. Molecular Genetic Analysis of ICEF, an Integrative Conjugal Element That Is Present as a Repetitive Sequence in the Chromosome of Mycoplasma fermentans PG18

    Science.gov (United States)

    Calcutt, Michael J.; Lewis, Michelle S.; Wise, Kim S.

    2002-01-01

    Mycoplasma genomes contain compact gene sets that approach the minimal complement necessary for life and reflect multiple evolutionary instances of genomic reduction. Lateral gene transfer may play a critical role in shaping the mobile gene pool in these organisms, yet complex mobile elements have not been reported within this genus. We describe here a large (∼23-kb) genetic element with unique features that is present in four copies in the Mycoplasma fermentans PG18 chromosome, accounting for approximately 8% of the genome. These novel elements, designated ICEF (integrative conjugal elements of M. fermentans), resemble conjugative, self-transmissible integrating elements (constins) in that circular, nonreplicative extrachromosomal forms occur in which the left and right termini of the integrated element are juxtaposed and separated by a coupling sequence derived from direct repeats flanking chromosomal copies of ICEF as a result of target site duplication. ICEF contain multiple similarly oriented open reading frames (ORFs), of which some have homology to products of known conjugation genes but others have no known counterparts. Surprisingly, unlike other constins, ICEF lack homologs of known integrases, transposases, or recombinases, suggesting that a novel enzyme may be employed for integration-excision. Skewed distribution and varied sites of chromosomal integration among M. fermentans isolates suggest a role for ICEF in promoting genomic and phenotypic variation in this species. Identification of homologs of terminal ICEF ORFs in two additional mycoplasma species indicates that ICEF is the prototype member of a family of ICE-related elements that may be widespread among pathogenic mycoplasmas infecting diverse vertebrate hosts. PMID:12446643

  13. Varianish: Jamming with Pattern Repetition

    Directory of Open Access Journals (Sweden)

    Jort Band

    2014-10-01

    Full Text Available In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience: Musical pattern repetitions are found in live music and Varianish generates additional (musical output accordingly that adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the conceptual design, a demonstrator implementation of Varianish is presented and evaluated.

  14. Structural insights and ab initio sequencing within the DING proteins family

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Mikael, E-mail: mikael.elias@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Liebschner, Dorothee [CRM2, Nancy Université (France); Gotthard, Guillaume; Chabriere, Eric [AFMB, Université Aix-Marseille II (France)

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated.

  15. Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Sergio I Nemirovsky

    Full Text Available Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD. Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS for the diagnostic approach to ASD.We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6.We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.

  16. Detection of distant evolutionary relationships between protein families using theory of sequence profile-profile comparison

    Directory of Open Access Journals (Sweden)

    Venclovas Česlovas

    2010-02-01

    Full Text Available Abstract Background Detection of common evolutionary origin (homology is a primary means of inferring protein structure and function. At present, comparison of protein families represented as sequence profiles is arguably the most effective homology detection strategy. However, finding the best way to represent evolutionary information of a protein sequence family in the profile, to compare profiles and to estimate the biological significance of such comparisons, remains an active area of research. Results Here, we present a new homology detection method based on sequence profile-profile comparison. The method has a number of new features including position-dependent gap penalties and a global score system. Position-dependent gap penalties provide a more biologically relevant way to represent and align protein families as sequence profiles. The global score system enables an analytical solution of the statistical parameters needed to estimate the statistical significance of profile-profile similarities. The new method, together with other state-of-the-art profile-based methods (HHsearch, COMPASS and PSI-BLAST, is benchmarked in all-against-all comparison of a challenging set of SCOP domains that share at most 20% sequence identity. For benchmarking, we use a reference ("gold standard" free model-based evaluation framework. Evaluation results show that at the level of protein domains our method compares favorably to all other tested methods. We also provide examples of the new method outperforming structure-based similarity detection and alignment. The implementation of the new method both as a standalone software package and as a web server is available at http://www.ibt.lt/bioinformatics/coma. Conclusion Due to a number of developments, the new profile-profile comparison method shows an improved ability to match distantly related protein domains. Therefore, the method should be useful for annotation and homology modeling of uncharacterized

  17. Characterization and distribution of repetitive elements in association with genes in the human genome.

    Science.gov (United States)

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene

  18. Protein sequence evidence for monophyly of the carnivore families Procyonidae and Mustelidae.

    Science.gov (United States)

    de Jong, W W

    1986-05-01

    The amino acid sequence of the eye lens protein alpha-crystallin A of the ring-tailed cat, Bassariscus astutus, has been determined. The sequence of the Bassariscus alpha A chain, which is 173 residues long, was compared with the previously determined set of 41 mammalian alpha A sequences. Among the investigated carnivores (dog, cat, sloth bear, American mink, gray seal, and California sea lion) the Bassariscus alpha A sequence exclusively shares two amino acid replacements with the alpha A chain of the mink, Mustela vison: 7 His----Gln and 61 Ile----Val. The Mustela and Bassariscus alpha A sequences differ at only three positions and have no replacements in common with any of the other investigated carnivore alpha A chains. Furthermore, the replacement 7 His----Gln has only been found in three-toed sloth, whereas 61 Ile----Val occurs scattered in three other taxa: pig, rhinoceros, and prosimians. It thus is most parsimonious to join Bassariscus and Mustela--and consequently their respective families, Procyonidae and Mustelidae--as sister groups in the phylogenetic tree of mammalian alpha A sequences.

  19. A method to prioritize quantitative traits and individuals for sequencing in family-based studies.

    Directory of Open Access Journals (Sweden)

    Kaanan P Shah

    Full Text Available Owing to recent advances in DNA sequencing, it is now technically feasible to evaluate the contribution of rare variation to complex traits and diseases. However, it is still cost prohibitive to sequence the whole genome (or exome of all individuals in each study. For quantitative traits, one strategy to reduce cost is to sequence individuals in the tails of the trait distribution. However, the next challenge becomes how to prioritize traits and individuals for sequencing since individuals are often characterized for dozens of medically relevant traits. In this article, we describe a new method, the Rare Variant Kinship Test (RVKT, which leverages relationship information in family-based studies to identify quantitative traits that are likely influenced by rare variants. Conditional on nuclear families and extended pedigrees, we evaluate the power of the RVKT via simulation. Not unexpectedly, the power of our method depends strongly on effect size, and to a lesser extent, on the frequency of the rare variant and the number and type of relationships in the sample. As an illustration, we also apply our method to data from two genetic studies in the Old Order Amish, a founder population with extensive genealogical records. Remarkably, we implicate the presence of a rare variant that lowers fasting triglyceride levels in the Heredity and Phenotype Intervention (HAPI Heart study (p = 0.044, consistent with the presence of a previously identified null mutation in the APOC3 gene that lowers fasting triglyceride levels in HAPI Heart study participants.

  20. Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification.

    Science.gov (United States)

    Kohli, Rahul M; Maul, Robert W; Guminski, Amy F; McClure, Rhonda L; Gajula, Kiran S; Saribasak, Huseyin; McMahon, Moira A; Siliciano, Robert F; Gearhart, Patricia J; Stivers, James T

    2010-12-24

    Nucleic acid cytidine deaminases of the activation-induced deaminase (AID)/APOBEC family are critical players in active and innate immune responses, playing roles as target-directed, purposeful mutators. AID specifically deaminates the host immunoglobulin (Ig) locus to evolve antibody specificity, whereas its close relative, APOBEC3G (A3G), lethally mutates the genomes of retroviral pathogens such as HIV. Understanding the basis for the target-specific action of these enzymes is essential, as mistargeting poses significant risks, potentially promoting oncogenesis (AID) or fostering drug resistance (A3G). AID prefers to deaminate cytosine in WRC (W = A/T, R = A/G) motifs, whereas A3G favors deamination of CCC motifs. This specificity is largely dictated by a single, divergent protein loop in the enzyme family that recognizes the DNA sequence. Through grafting of this substrate-recognition loop, we have created enzyme variants of A3G and AID with altered local targeting to directly evaluate the role of sequence specificity on immune function. We find that grafted loops placed in the A3G scaffold all produced efficient restriction of HIV but that foreign loops in the AID scaffold compromised hypermutation and class switch recombination. Local targeting, therefore, appears alterable for innate defense against retroviruses by A3G but important for adaptive antibody maturation catalyzed by AID. Notably, AID targeting within the Ig locus is proportionally correlated to its in vitro ability to target WRC sequences rather than non-WRC sequences. Although other mechanisms may also contribute, our results suggest that local sequence targeting by AID/APOBEC3 enzymes represents an elegant example of co-evolution of enzyme specificity with its target DNA sequence.

  1. Evolution of the RH gene family in vertebrates revealed by brown hagfish (Eptatretus atami) genome sequences.

    Science.gov (United States)

    Suzuki, Akinori; Komata, Hidero; Iwashita, Shogo; Seto, Shotaro; Ikeya, Hironobu; Tabata, Mitsutoshi; Kitano, Takashi

    2017-02-01

    In vertebrates, there are four major genes in the RH (Rhesus) gene family, RH, RHAG, RHBG, and RHCG. These genes are thought to have been formed by the two rounds of whole-genome duplication (2R-WGD) in the common ancestor of all vertebrates. In our previous work, where we analyzed details of the gene duplications process of this gene family, three nucleotide sequences belonging to this family were identified in Far Eastern brook lamprey (Lethenteron reissneri), and the phylogenetic positions of the genes were determined. Lampreys, along with hagfishes, are cyclostomata (jawless fishes), which is a sister group of gnathostomata (jawed vertebrates). Although those results suggested that one gene was orthologous to the gnathostome RHCG genes, we did not identify clear orthologues for other genes. In this study, therefore, we identified three novel cDNA sequences that belong to the RH gene family using de novo transcriptome analysis of another cyclostome: the brown hagfish (Eptatretus atami). We also determined the nucleotide sequences for the RHBG and RHCG genes in a red stingray (Dasyatis akajei), which belongs to the cartilaginous fishes. The phylogenetic tree showed that two brown hagfish genes, which were probably duplicated in the cyclostome lineage, formed a cluster with the gnathostome RHAG genes, whereas another brown hagfish gene formed a cluster with the gnathostome RHCG genes. We estimated that the RH genes had a higher evolutionary rate than the RHAG, RHBG, and RHCG genes. Interestingly, in the RHBG genes, only the bird lineage showed a higher rate of nonsynonymous substitutions. It is likely that this higher rate was caused by a state of relaxed functional constraints rather than positive selection nor by pseudogenization.

  2. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    Science.gov (United States)

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  3. Complete mitochondrial genome sequence of a Hungarian red deer (Cervus elaphus hippelaphus) from high-throughput sequencing data and its phylogenetic position within the family Cervidae.

    Science.gov (United States)

    Frank, Krisztián; Barta, Endre; Bana, Nóra Á; Nagy, János; Horn, Péter; Orosz, László; Stéger, Viktor

    2016-06-01

    Recently, there has been considerable interest in genetic differentiation in the Cervidae family. A common tool used to determine genetic variation in different species, breeds and populations is mitochondrial DNA analysis, which can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We determined the complete mitochondrial genome of a Central European red deer, Cervus elaphus hippelaphus, from Hungary by a next generation sequencing technology. The mitochondrial genome is 16 354 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region, all of which are arranged similar as in other vertebrates. We made phylogenetic analyses with the new sequence and 76 available mitochondrial sequences of Cervidae, using Bos taurus mitochondrial sequence as outgroup. We used 'neighbor joining' and 'maximum likelihood' methods on whole mitochondrial genome sequences; the consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Cervinae and Capreolinae, and five tribes, Cervini, Muntiacini, Alceini, Odocoileini, and Capreolini. The evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; which method could be used broadly in phylogenetic evolutionary analysis of animal taxa.

  4. Large scale in silico identification of MYB family genes from wheat expressed sequence tags.

    Science.gov (United States)

    Cai, Hongsheng; Tian, Shan; Dong, Hansong

    2012-10-01

    The MYB proteins constitute one of the largest transcription factor families in plants. Much research has been performed to determine their structures, functions, and evolution, especially in the model plants, Arabidopsis, and rice. However, this transcription factor family has been much less studied in wheat (Triticum aestivum), for which no genome sequence is yet available. Despite this, expressed sequence tags are an important resource that permits opportunities for large scale gene identification. In this study, a total of 218 sequences from wheat were identified and confirmed to be putative MYB proteins, including 1RMYB, R2R3-type MYB, 3RMYB, and 4RMYB types. A total of 36 R2R3-type MYB genes with complete open reading frames were obtained. The putative orthologs were assigned in rice and Arabidopsis based on the phylogenetic tree. Tissue-specific expression pattern analyses confirmed the predicted orthologs, and this meant that gene information could be inferred from the Arabidopsis genes. Moreover, the motifs flanking the MYB domain were analyzed using the MEME web server. The distribution of motifs among wheat MYB proteins was investigated and this facilitated subfamily classification.

  5. Targeted capture sequencing in whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome

    Directory of Open Access Journals (Sweden)

    John eSyring

    2016-04-01

    Full Text Available Whitebark pine (Pinus albicaulis inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats – climate change, white pine blister rust, mountain pine beetle, and fire exclusion – and it is suffering significant mortality range-wide, prompting the tree to be listed as ‘globally endangered’ by the International Union for Conservation of Nature (IUCN and ‘endangered’ by the Canadian government. Conservation collections (in situ and ex situ are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 30+ GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp, and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits, targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect

  6. Improved detection of remote homologues using cascade PSI-BLAST: influence of neighbouring protein families on sequence coverage.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available BACKGROUND: Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST. METHODOLOGY/PRINCIPAL FINDINGS: We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ~100% and Mathew's correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families. CONCLUSIONS/SIGNIFICANCE: Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for

  7. Automatic discovery of cross-family sequence features associated with protein function

    Directory of Open Access Journals (Sweden)

    Krings Andrea

    2006-01-01

    Full Text Available Abstract Background Methods for predicting protein function directly from amino acid sequences are useful tools in the study of uncharacterised protein families and in comparative genomics. Until now, this problem has been approached using machine learning techniques that attempt to predict membership, or otherwise, to predefined functional categories or subcellular locations. A potential drawback of this approach is that the human-designated functional classes may not accurately reflect the underlying biology, and consequently important sequence-to-function relationships may be missed. Results We show that a self-supervised data mining approach is able to find relationships between sequence features and functional annotations. No preconceived ideas about functional categories are required, and the training data is simply a set of protein sequences and their UniProt/Swiss-Prot annotations. The main technical aspect of the approach is the co-evolution of amino acid-based regular expressions and keyword-based logical expressions with genetic programming. Our experiments on a strictly non-redundant set of eukaryotic proteins reveal that the strongest and most easily detected sequence-to-function relationships are concerned with targeting to various cellular compartments, which is an area already well studied both experimentally and computationally. Of more interest are a number of broad functional roles which can also be correlated with sequence features. These include inhibition, biosynthesis, transcription and defence against bacteria. Despite substantial overlaps between these functions and their corresponding cellular compartments, we find clear differences in the sequence motifs used to predict some of these functions. For example, the presence of polyglutamine repeats appears to be linked more strongly to the "transcription" function than to the general "nuclear" function/location. Conclusion We have developed a novel and useful approach for

  8. Sequencing of TGF-β pathway genes in familial cases of intracranial aneurysm

    Science.gov (United States)

    Santiago-Sim, Teresa; Mathew-Joseph, Sumy; Pannu, Hariyadarshi; Milewicz, Dianna M.; Seidman, Christine E.; Seidman, J.G.; Kim, Dong H.

    2009-01-01

    Background and Purpose Familial aggregation of intracranial aneurysms (IA) strongly suggests a genetic contribution to pathogenesis. However, genetic risk factors have yet to be defined. For families affected by aortic aneurysms, specific gene variants have been identified, many affecting the receptors to transforming growth factor-beta (TGF-β). In recent work, we found that aortic and intracranial aneurysms may share a common genetic basis in some families. We hypothesized, therefore, that mutations in TGF-β receptors might also play a role in IA pathogenesis. Methods To identify genetic variants in TGF-β and its receptors, TGFB1, TGFBR1, TGFBR2, ACVR1, TGFBR3 and ENG were directly sequenced in 44 unrelated patients with familial IA. Novel variants were confirmed by restriction digestion analyses, and allele frequencies were analyzed in cases versus individuals without known intracranial disease. Similarly, allele frequencies of a subset of known SNPs in each gene were also analyzed for association with IA. Results No mutations were found in TGFB1, TGFBR1, TGFBR2 or ACVR1. Novel variants identified in ENG (p.A60E) and TGFBR3 (p.W112R) were not detected in at least 892 reference chromosomes. ENG p.A60E showed significant association with familial IA in case-control studies (P = 0.0080). No association with IA could be found for any of the known polymorphisms tested. Conclusions Mutations in TGF-β receptor genes are not a major cause of IA. However, we identified rare variants in ENG and TGFBR3 that may be important for IA pathogenesis in a subset of families. PMID:19299629

  9. Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis

    Science.gov (United States)

    Salvi, Alessandro; Giacopuzzi, Edoardo; Bardellini, Elena; Amadori, Francesca; Ferrari, Lia; De Petro, Giuseppina; Borsani, Giuseppe; Majorana, Alessandra

    2016-01-01

    Dental agenesis is one of the most common congenital craniofacial abnormalities. Dental agenesis can be classified, relative to the number of missing teeth (excluding third molars), as hypodontia (1 to 5 missing teeth), oligodontia (6 or more missing teeth), or anodontia (lack of all teeth). Tooth agenesis may occur either in association with genetic syndromes, based on the presence of other inherited abnormalities, or as a non-syndromic trait, with both familiar and sporadic cases reported. In this study, we enrolled 16 individuals affected by tooth agenesis, prevalently hypodontia, and we carried out direct Sanger sequencing of paired box 9 (PAX9) and Msh homeobox 1 (MSX1) genes in 9 subjects. Since no mutations were identified, we performed whole exome sequencing (WES) in the members of 5 families to identify causative gene mutations either novel or previously described. Three individuals carried a known homozygous disease mutation in the Wnt family member 10A (WNT10A) gene (rs121908120). Interestingly, two of these individuals were siblings and also carried a heterozygous functional variant in EDAR-associated death domain (EDARADD) (rs114632254), another disease causing gene, generating a combination of genetic variants never described until now. The analysis of exome sequencing data in the members of other 3 families highlighted new candidate genes potentially involved in tooth agenesis and considered suitable for future studies. Overall, our study confirmed the major role played by WNT10A in tooth agenesis and the genetic heterogeneity of this disease. Moreover, as more genes are shown to be involved in tooth agenesis, WES analysis may be an effective approach to search for genetic variants in familiar or sporadic tooth agenesis, at least in more severe clinical manifestations. PMID:27665865

  10. MosaicFinder: identification of fused gene families in sequence similarity networks.

    Science.gov (United States)

    Jachiet, Pierre-Alain; Pogorelcnik, Romain; Berry, Anne; Lopez, Philippe; Bapteste, Eric

    2013-04-01

    Gene fusion is an important evolutionary process. It can yield valuable information to infer the interactions and functions of proteins. Fused genes have been identified as non-transitive patterns of similarity in triplets of genes. To be computationally tractable, this approach usually imposes an a priori distinction between a dataset in which fused genes are searched for, and a dataset that may have provided genetic material for fusion. This reduces the 'genetic space' in which fusion can be discovered, as only a subset of triplets of genes is investigated. Moreover, this approach may have a high-false-positive rate, and it does not identify gene families descending from a common fusion event. We represent similarities between sequences as a network. This leads to an efficient formulation of previous methods of fused gene identification, which we implemented in the Python program FusedTriplets. Furthermore, we propose a new characterization of families of fused genes, as clique minimal separators of the sequence similarity network. This well-studied graph topology provides a robust and fast method of detection, well suited for automatic analyses of big datasets. We implemented this method in the C++ program MosaicFinder, which additionally uses local alignments to discard false-positive candidates and indicates potential fusion points. The grouping into families will help distinguish sequencing or prediction errors from real biological fusions, and it will yield additional insight into the function and history of fused genes. FusedTriplets and MosaicFinder are published under the GPL license and are freely available with their source code at this address: http://sourceforge.net/projects/mosaicfinder. Supplementary data are available at Bioinformatics online.

  11. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing

    DEFF Research Database (Denmark)

    Aristidou, Constantia; Koufaris, Costas; Theodosiou, Athina

    2017-01-01

    Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged...

  12. Exome sequencing reveals VCP mutations as a cause of familial ALS

    Science.gov (United States)

    Johnson, Janel O.; Mandrioli, Jessica; Benatar, Michael; Abramzon, Yevgeniya; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Gibbs, J Raphael; Brunetti, Maura; Gronka, Susan; Wuu, Joanne; Ding, Jinhui; McCluskey, Leo; Martinez-Lage, Maria; Falcone, Dana; Hernandez, Dena G.; Arepalli, Sampath; Chong, Sean; Schymick, Jennifer C.; Rothstein, Jeffrey; Landi, Francesco; Wang, Michael; Calvo, Andrea; Mora, Gabriele; Sabatelli, Mario; Monsurrò, Maria Rosaria; Battistini, Stefania; Salvi, Fabrizio; Spataro, Rossella; Sola, Patrizia; Borghero, Giuseppe; Galassi, Giuliana; Scholz, Sonja W.; Taylor, J. Paul; Restagno, Gabriella; Chiò, Adriano; Traynor, Bryan J.

    2010-01-01

    Summary Using exome sequencing, we identified a p.R191Q amino acid change in the valosin-containing protein (VCP) gene in an Italian family with autosomal dominantly inherited amyotrophic lateral sclerosis (ALS). Mutations in VCP have previously been identified in families with Inclusion Body Myopathy, Paget’s disease and Frontotemporal Dementia (IBMPFD). Screening of VCP in a cohort of 210 familial ALS cases and 78 autopsy-proven ALS cases identified four additional mutations including a p.R155H mutation in a pathologically-proven case of ALS. VCP protein is essential for maturation of ubiquitin-containing autophagosomes, and mutant VCP toxicity is partially mediated through its effect on TDP-43 protein, a major constituent of ubiquitin inclusions that neuropathologically characterize ALS. Our data broaden the phenotype of IBMPFD to include motor neuron degeneration, suggest that VCP mutations may account for ~1–2% of familial ALS, and represent the first evidence directly implicating defects in the ubiquitination/protein degradation pathway in motor neuron degeneration. PMID:21145000

  13. Phylogenetic relationships among the family Ommastrephidae (Mollusca: Cephalopoda) inferred from two mitochondrial DNA gene sequences.

    Science.gov (United States)

    Wakabayashi, T; Suzuki, N; Sakai, M; Ichii, T; Chow, S

    2012-09-01

    Squids of the family Ommastrephidae are distributed worldwide, and the family includes many species of commercial importance. To investigate phylogenetic relationships among squid species of the family Ommastrephidae, partial nucleotide sequences of two mitochondrial gene loci (cytochrome c oxidase subunit I [1277bp] and 16S rRNA [443bp]) of 15 ommastrephid species and two outgroup species from the families Loliginidae and Enoploteuthidae were determined and used to construct parsimony and distance based phylogenetic trees. The molecular data provided several new phylogenetic inferences. The monophyletic status of three subfamilies (Illicinae, Todarodinae and Ommastrephinae) was well supported, although phylogenetic relationships between the subfamilies were not resolved. Inclusion of a problematic species, Ornithoteuthis volatilis, to Todarodinae was indicated. Within Todarodinae, the Japanese common squid Todarodes pacificus was observed to have much closer relationship to the species of the genus Nototodarus than to its congener (Todarodes filippovae). These results indicate that re-evaluation of several morphological key characters for ommastrephid taxonomy may be necessary.

  14. Analysis of unstable DNA sequence in FRM1 gene in Polish families with fragile X syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, Michal; Bal, Jerzy; Obersztyn, Ewa; Bocian, Ewa; Mazurczak, Tadeusz [Instytut Matki i Dziecka, Warsaw (Poland); Zygulska, Marta; Horst, Juergen [Institute of Human Genetics, Muenster (Germany); Deelen, Wout H.; Halley, Dicky J.J. [Erasmus Univ., Rotterdam (Netherlands)

    1996-12-31

    The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGC repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted. (author). 19 refs., 4 figs, 1 tab.

  15. Adaptive combination of P-values for family-based association testing with sequence data.

    Science.gov (United States)

    Lin, Wan-Yu

    2014-01-01

    Family-based study design will play a key role in identifying rare causal variants, because rare causal variants can be enriched in families with multiple affected subjects. Furthermore, different from population-based studies, family studies are robust to bias induced by population substructure. It is well known that rare causal variants are difficult to detect from single-locus tests. Therefore, burden tests and non-burden tests have been developed, by combining signals of multiple variants in a chromosomal region or a functional unit. This inevitably incorporates some neutral variants into the test statistics, which can dilute the power of statistical methods. To guard against the noise caused by neutral variants, we here propose an 'adaptive combination of P-values method' (abbreviated as 'ADA'). This method combines per-site P-values of variants that are more likely to be causal. Variants with large P-values (which are more likely to be neutral variants) are discarded from the combined statistic. In addition to performing extensive simulation studies, we applied these tests to the Genetic Analysis Workshop 17 data sets, where real sequence data were generated according to the 1000 Genomes Project. Compared with some existing methods, ADA is more robust to the inclusion of neutral variants. This is a merit especially when dichotomous traits are analyzed. However, there are some limitations for ADA. First, it is more computationally intensive. Second, pedigree structures and founders' sequence data are required for the permutation procedure. Third, unrelated controls cannot be included. We here show that, for family-based studies, the application of ADA is limited to dichotomous trait analyses with full pedigree information.

  16. Adaptive combination of P-values for family-based association testing with sequence data.

    Directory of Open Access Journals (Sweden)

    Wan-Yu Lin

    Full Text Available Family-based study design will play a key role in identifying rare causal variants, because rare causal variants can be enriched in families with multiple affected subjects. Furthermore, different from population-based studies, family studies are robust to bias induced by population substructure. It is well known that rare causal variants are difficult to detect from single-locus tests. Therefore, burden tests and non-burden tests have been developed, by combining signals of multiple variants in a chromosomal region or a functional unit. This inevitably incorporates some neutral variants into the test statistics, which can dilute the power of statistical methods. To guard against the noise caused by neutral variants, we here propose an 'adaptive combination of P-values method' (abbreviated as 'ADA'. This method combines per-site P-values of variants that are more likely to be causal. Variants with large P-values (which are more likely to be neutral variants are discarded from the combined statistic. In addition to performing extensive simulation studies, we applied these tests to the Genetic Analysis Workshop 17 data sets, where real sequence data were generated according to the 1000 Genomes Project. Compared with some existing methods, ADA is more robust to the inclusion of neutral variants. This is a merit especially when dichotomous traits are analyzed. However, there are some limitations for ADA. First, it is more computationally intensive. Second, pedigree structures and founders' sequence data are required for the permutation procedure. Third, unrelated controls cannot be included. We here show that, for family-based studies, the application of ADA is limited to dichotomous trait analyses with full pedigree information.

  17. Whole exome sequencing identifies recessive PKHD1 mutations in a Chinese twin family with Caroli disease.

    Directory of Open Access Journals (Sweden)

    Xiwei Hao

    Full Text Available BACKGROUND: Mutations in PKHD1 cause autosomal recessive Caroli disease, which is a rare congenital disorder involving cystic dilatation of the intrahepatic bile ducts. However, the mutational spectrum of PKHD1 and the phenotype-genotype correlations have not yet been fully established. METHODS: Whole exome sequencing (WES was performed on one twin sample with Caroli disease from a Chinese family from Shandong province. Routine Sanger sequencing was used to validate the WES and to carry out segregation studies. We also described the PKHD1 mutation associated with the genotype-phenotype of this twin. RESULTS: A combination of WES and Sanger sequencing revealed the genetic defect to be a novel compound heterozygous genotype in PKHD1, including the missense mutation c.2507 T>C, predicted to cause a valine to alanine substitution at codon 836 (c.2507T>C, p.Val836Ala, and the nonsense mutation c.2341C>T, which is predicted to result in an arginine to stop codon at codon 781 (c.2341C>T, p.Arg781*. This compound heterozygous genotype co-segregates with the Caroli disease-affected pedigree members, but is absent in 200 normal chromosomes. CONCLUSIONS: Our findings indicate exome sequencing can be useful in the diagnosis of Caroli disease patients and associate a compound heterozygous genotype in PKHD1 with Caroli disease, which further increases our understanding of the mutation spectrum of PKHD1 in association with Caroli disease.

  18. Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis.

    Science.gov (United States)

    Baschal, Erin E; Wethey, Cambria I; Swindle, Kandice; Baschal, Robin M; Gowan, Katherine; Tang, Nelson L S; Alvarado, David M; Haller, Gabe E; Dobbs, Matthew B; Taylor, Matthew R G; Gurnett, Christina A; Jones, Kenneth L; Miller, Nancy H

    2014-12-12

    Idiopathic scoliosis occurs in 3% of individuals and has an unknown etiology. The objective of this study was to identify rare variants that contribute to the etiology of idiopathic scoliosis by using exome sequencing in a multigenerational family with idiopathic scoliosis. Exome sequencing was completed for three members of this multigenerational family with idiopathic scoliosis, resulting in the identification of a variant in the HSPG2 gene as a potential contributor to the phenotype. The HSPG2 gene was sequenced in a separate cohort of 100 unrelated individuals affected with idiopathic scoliosis and also was examined in an independent idiopathic scoliosis population. The exome sequencing and subsequent bioinformatics filtering resulted in 16 potentially damaging and rare coding variants. One of these variants, p.Asn786Ser, is located in the HSPG2 gene. The variant p.Asn786Ser also is overrepresented in a larger cohort of idiopathic scoliosis cases compared with a control population (P = 0.024). Furthermore, we identified additional rare HSPG2 variants that are predicted to be damaging in two independent cohorts of individuals with idiopathic scoliosis. The HSPG2 gene encodes for a ubiquitous multifunctional protein within the extracellular matrix in which loss of function mutation are known to result in a musculoskeletal phenotype in both mouse and humans. Based on these results, we conclude that rare variants in the HSPG2 gene potentially contribute to the idiopathic scoliosis phenotype in a subset of patients with idiopathic scoliosis. Further studies must be completed to confirm the effect of the HSPG2 gene on the idiopathic scoliosis phenotype.

  19. A Theoretical Framework for Association Studies in F2 Family Pools Using Allele Frequencies from Genotyping-By-Sequencing

    DEFF Research Database (Denmark)

    Janss, Luc L; Ashraf, Bilal H; Greve-Pedersen, Morten

    a sequencing approach to obtain Single Nucleotide Polymorphisms (SNPs) frequencies is considered here. In this work we develop the theoretical framework to perform association studies using allele frequencies from such F2 family pools. We show that expected allele frequencies in the F2 families will have...

  20. Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome.

    Science.gov (United States)

    Tang, Xiaomin; Datema, Erwin; Guzman, Myriam Olortegui; de Boer, Jan M; van Eck, Herman J; Bachem, Christian W B; Visser, Richard G F; de Jong, Hans

    2014-12-01

    One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.

  1. Differential Diagnosis of Two Chinese Families with Dyschromatoses by Targeted Gene Sequencing

    Institute of Scientific and Technical Information of China (English)

    Jia-Wei Liu; Asan; Jun Sun; Sergio Vano-Galvan; Feng-Xia Liu; Xiu-Xiu Wei; Dong-Lai Ma

    2016-01-01

    Background: The dyschromatoses are a group of disorders characterized by simultaneous hyperpigmented macules together with hypopigmented macules.Dyschromatosis universalis hereditaria (DUH) and dyschromatosis symmetrica hereditaria are two major types.While clinical and histological presentations are similar in these two diseases, genetic diagnosis is critical in the differential diagnosis of these entities.Methods: Three patients initially diagnosed with DUH were included.The gene test was carried out by targeted gene sequencing.All mutations detected on ADAR1 and ABCB6 genes were analyzed according to the frequency in control database, the mutation types, and the published evidence to determine the pathogenicity.Results: Family pedigree and clinical presentations were reported in 3 patients from two Chinese families.All patients have prominent cutaneous dyschromatoses involving the whole body without systemic complications.Different pathogenic genes in these patients with similar phenotype were identified: One novel mutation on ADAR1 (c.1325C>G) and one recurrent mutation in ABCB6 (c.1270T>C), which successfully distinguished two diseases with the similar phenotype.Conclusion: Targeted gene sequencing is an effective tool for genetic diagnosis in pigmentary skin diseases.

  2. Repetitive maladaptive behavior: beyond repetition compulsion.

    Science.gov (United States)

    Bowins, Brad

    2010-09-01

    Maladaptive behavior that repeats, typically known as repetition compulsion, is one of the primary reasons that people seek psychotherapy. However, even with psychotherapeutic advances it continues to be extremely difficult to treat. Despite wishes and efforts to the contrary repetition compulsion does not actually achieve mastery, as evidenced by the problem rarely resolving without therapeutic intervention, and the difficulty involved in producing treatment gains. A new framework is proposed, whereby such behavior is divided into behavior of non-traumatic origin and traumatic origin with some overlap occurring. Repetitive maladaptive behavior of non-traumatic origin arises from an evolutionary-based process whereby patterns of behavior frequently displayed by caregivers and compatible with a child's temperament are acquired and repeated. It has a familiarity and ego-syntonic aspect that strongly motivates the person to retain the behavior. Repetitive maladaptive behavior of traumatic origin is characterized by defensive dissociation of the cognitive and emotional components of trauma, making it very difficult for the person to integrate the experience. The strong resistance of repetitive maladaptive behavior to change is based on the influence of both types on personality, and also factors specific to each. Psychotherapy, although very challenging at the best of times, can achieve the mastery wished and strived for, with the aid of several suggestions provided.

  3. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies.

    Science.gov (United States)

    May, Alex C W

    2002-12-01

    It is often possible to identify sequence motifs that characterize a protein family in terms of its fold and/or function from aligned protein sequences. Such motifs can be used to search for new family members. Partitioning of sequence alignments into regions of similar amino acid variability is usually done by hand. Here, I present a completely automatic method for this purpose: one that is guaranteed to produce globally optimal solutions at all levels of partition granularity. The method is used to compare the tempo of sequence diversity across reliable three-dimensional (3D) structure-based alignments of 209 protein families (HOMSTRAD) and that for 69 superfamilies (CAMPASS). (The mean alignment length for HOMSTRAD and CAMPASS are very similar.) Surprisingly, the optimal segmentation distributions for the closely related proteins and distantly related ones are found to be very similar. Also, optimal segmentation identifies an unusual protein superfamily. Finally, protein 3D structure clues from the tempo of sequence diversity across alignments are examined. The method is general, and could be applied to any area of comparative biological sequence and 3D structure analysis where the constraint of the inherent linear organization of the data imposes an ordering on the set of objects to be clustered.

  4. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences.

    Directory of Open Access Journals (Sweden)

    Andrew eCarroll

    2011-03-01

    Full Text Available The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized subfamilies and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair cellulose synthase function, and compare these sites to those observed in the closest cellulose synthase-like (Csl families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments.

  5. Multi-Locus Sequence Typing (MLST) and Repetitive Extragenic Palindromic Polymerase Chain Reaction (REP-PCR), characterization of shigella spp. over two decades in Tianjin China

    Science.gov (United States)

    Cao, Yang; Wei, Dianjun; kamara, Idrissa L; Chen, Wei

    2012-01-01

    To understand the change of the dominant serogroup of Shigella spp., their antimicrobial resistance over more than two decades in Tianjin, their phylogenetic similarity and to determine their evolutionary biology by using REP-PCR and MLST in order to study their epidemiological character. Multi-locus Sequence Typing was performed to determine their lineage and phylogenetic similarity. REP-PCR typing was used to study the homology of their genomic DNA. The isolated rate of group D Shigella in 2009 and 2010 had obviously increased. Antimicrobial susceptibility test results showed that the resistant rates of the 1981-1983 Shigella flexneri to tetracycline, streptomycin and chloramphenicol varied from 76.47 to 100%, they were all sensitive to other antibiotics. During 2009-2010, the resistance rates of the isolated Shigella flexneri to gentamicin, amikacin, third and fourth Generation Cephalosporins and quinolones had increased. MLST results produced five sequence types and two sequence type complexes. REP-PCR showed DNA band similarities between the 1981-1983 and 2009-2010 strains. The dominant serogroup of Shigella in Tianjin has changed from Shigella flexneri to Shigella sonnei. Increased drug resistance of Shigella flexneri is higher than Shigella sonnei because a great variety of antibiotics has been used. The MLST results showed that the 1981-1983 strains had the same sequence type with some of the 2009-2010 strains. Combination of MLST and REP-PCR produced better discriminatory power than using either method alone. PMID:23205184

  6. Exome sequencing of 75 individuals from multiply affected coeliac families and large scale resequencing follow up.

    Directory of Open Access Journals (Sweden)

    Vanisha Mistry

    Full Text Available Coeliac disease (CeD is a highly heritable common autoimmune disease involving chronic small intestinal inflammation in response to dietary wheat. The human leukocyte antigen (HLA region, and 40 newer regions identified by genome wide association studies (GWAS and dense fine mapping, account for ∼40% of the disease heritability. We hypothesized that in pedigrees with multiple individuals with CeD rare [minor allele frequency (MAF <0.5%] mutations of larger effect size (odds ratios of ∼2-5 might exist. We sequenced the exomes of 75 coeliac individuals of European ancestry from 55 multiply affected families. We selected interesting variants and genes for further follow up using a combination of: an assessment of shared variants between related subjects, a model-free linkage test, and gene burden tests for multiple, potentially causal, variants. We next performed highly multiplexed amplicon resequencing of all RefSeq exons from 24 candidate genes selected on the basis of the exome sequencing data in 2,248 unrelated coeliac cases and 2,230 controls. 1,335 variants with a 99.9% genotyping call rate were observed in 4,478 samples, of which 939 were present in coding regions of 24 genes (Ti/Tv 2.99. 91.7% of coding variants were rare (MAF <0.5% and 60% were novel. Gene burden tests performed on rare functional variants identified no significant associations (p<1×10(-3 in the resequenced candidate genes. Our strategy of sequencing multiply affected families with deep follow up of candidate genes has not identified any new CeD risk mutations.

  7. Detecting novel genetic mutations in Chinese Usher syndrome families using next-generation sequencing technology.

    Science.gov (United States)

    Qu, Ling-Hui; Jin, Xin; Xu, Hai-Wei; Li, Shi-Ying; Yin, Zheng-Qin

    2015-02-01

    Usher syndrome (USH) is the most common cause of combined blindness and deafness inherited in an autosomal recessive mode. Molecular diagnosis is of great significance in revealing the molecular pathogenesis and aiding the clinical diagnosis of this disease. However, molecular diagnosis remains a challenge due to high phenotypic and genetic heterogeneity in USH. This study explored an approach for detecting disease-causing genetic mutations in candidate genes in five index cases from unrelated USH families based on targeted next-generation sequencing (NGS) technology. Through systematic data analysis using an established bioinformatics pipeline and segregation analysis, 10 pathogenic mutations in the USH disease genes were identified in the five USH families. Six of these mutations were novel: c.4398G > A and EX38-49del in MYO7A, c.988_989delAT in USH1C, c.15104_15105delCA and c.6875_6876insG in USH2A. All novel variations segregated with the disease phenotypes in their respective families and were absent from ethnically matched control individuals. This study expanded the mutation spectrum of USH and revealed the genotype-phenotype relationships of the novel USH mutations in Chinese patients. Moreover, this study proved that targeted NGS is an accurate and effective method for detecting genetic mutations related to USH. The identification of pathogenic mutations is of great significance for elucidating the underlying pathophysiology of USH.

  8. Polyphyly of the fern family Tectariaceae sensu Ching: Insights from cpDNA sequence data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.

  9. Polyphyly of the fern family Tectariaceae sensu Ching: insights from cpDNA sequence data.

    Science.gov (United States)

    Liu, HongMei; Zhang, XianChun; Chen, ZhiDuan; Dong, ShiYong; Qiu, YinLong

    2007-12-01

    Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.

  10. A Novel COL4A5 Mutation Identified in a Chinese Han Family Using Exome Sequencing

    Directory of Open Access Journals (Sweden)

    Xiaofei Xiu

    2014-01-01

    Full Text Available Alport syndrome (AS is a monogenic disease of the basement membrane (BM, resulting in progressive renal failure due to glomerulonephropathy, variable sensorineural hearing loss, and ocular anomalies. It is caused by mutations in the collagen type IV alpha-3 gene (COL4A3, the collagen type IV alpha-4 gene (COL4A4, and the collagen type IV alpha-5 gene (COL4A5, which encodes type IV collagen α3, α4, and α5 chains, respectively. To explore the disease-related gene in a four-generation Chinese Han pedigree of AS, exome sequencing was conducted on the proband, and a novel deletion mutation c.499delC (p.Pro167Glnfs*36 in the COL4A5 gene was identified. This mutation, absent in 1,000 genomes project, HapMap, dbSNP132, YH1 databases, and 100 normal controls, cosegregated with patients in the family. Neither sensorineural hearing loss nor typical COL4A5-related ocular abnormalities (dot-and-fleck retinopathy, anterior lenticonus, and the rare posterior polymorphous corneal dystrophy were present in patients of this family. The phenotypes of patients in this AS family were characterized by early onset-age and rapidly developing into end-stage renal disease (ESRD. Our discovery broadens the mutation spectrum in the COL4A5 gene associated with AS, which may also shed new light on genetic counseling for AS.

  11. Analysis of the sequence of a dicot-infecting mastrevirus (family Geminiviridae) originating from Syria.

    Science.gov (United States)

    Mumtaz, Huma; Kumari, Safaa G; Mansoor, Shahid; Martin, Darren P; Briddon, Rob W

    2011-06-01

    Chickpea stunt disease (CSD) across southern Asia, the Middle East and North Africa is caused by a number of viruses that include single-stranded DNA viruses of the genus Mastrevirus (family Geminiviridae). Despite the importance of CSD in reducing chickpea and lentil production, until recently little was known of the nature of the pathogens causing the disease. Sequence characterisation of virus isolates from Sudan and Pakistan showed the viruses concerned to potentially be new mastrevirus species related to Bean yellow dwarf virus (BeYDV), a virus known to occur in both southern Africa and southern Asia. Here we have determined the complete nucleotide sequence of a mastrevirus associated with CSD in Syria. This virus represents a proposed new species, closely related to the recently characterised Chickpea chlorotic dwarf Sudan virus and Chickpea chlorotic dwarf Pakistan virus but with the highest sequence identity to BeYDV, for which we propose the name Chickpea chlorotic dwarf Syria virus. In addition the biological integrity of the clone was confirmed by infection of Nicotiana benthamiana plants using Agrobacterium-mediated inoculation.

  12. Genetic diagnosis of a Chinese multiple endocrine neoplasia type 2A family through whole genome sequencing

    Indian Academy of Sciences (India)

    ZHEN-FANG DU; PENG-FEI LI; JIAN-QIANG ZHAO; ZHI-LIE CAO; FENG LI; JU-MING MA; XIAO-PING QI

    2017-06-01

    Approximately 98% of patients with multiple endocrine neoplasia type 2A (MEN 2A) have an identifiable RETmutation. Prophylactic or early total thyroidectomy or pheochromocytoma/parathyroid removal in patients can bepreventative or curative and has become standard management. The general strategy for RET screening on familymembers at risk is to sequence the most commonly affected exons and, if negative, to extend sequencing to additionalexons. However, different families with MEN 2A due to the same RET mutation often have significant variability inthe clinical exhibition of disease and aggressiveness of the MTC, which implies additional genetic loci exsit beyondRET coding region. Whole genome sequencing (WGS) greatly expands the breadth of screening from genes associatedwith a particular disease to the whole genome and, potentially, all the information that the genome containsabout diseases or traits. This is presumably due to additive effect of disease modifying factors. In this study, weperformed WGS on a typical Chinese MEN 2A proband and identified the pathogenic RET p.C634R mutation. Wealso identified several neutral variants within RET and pheochromocytoma-related genes. Moreover, we found severalinteresting structural variants including genetic deletions (RSPO1, OVCH2 and AP3S1, etc.) and fusion transcripts(FSIP1-BAZ2A, etc.).

  13. Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan.

    Directory of Open Access Journals (Sweden)

    Maleeha Maria

    Full Text Available Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD.We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA, retinitis pigmentosa (RP, congenital stationary night blindness (CSNB, or cone dystrophy (CD. We employed genome-wide single nucleotide polymorphism (SNP array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.

  14. Molecular evolution of a family of resistance gene analogs of nucleotide-binding site sequences in Solanum lycopersicum.

    Science.gov (United States)

    Liao, Pei-Chun; Lin, Kuan-Hung; Ko, Chin-Ling; Hwang, Shih-Ying

    2011-10-01

    Nucleotide-binding site-leucine-rich repeats (NBS-LRR) gene families are one of the major plant resistance genes. Genomic NBS evolution was studied in many plant species for diverse arrays of NBS gene families. In this study, we focused on one family of NBS sequences in an attempt to understand how closely related NBS sequences evolved in the light of selection in domesticated plant species. A phylogenetic analysis revealed five major clades (A-E) and five subclades (A1-A5) within clade A of cloned NBS sequences. Positive selection was only detected in newly evolved NBS lineages in subclades of clade A. Positively selected codon sites were found among NBS sequences of clade A. A sliding-window analysis revealed that regions with Ka/Ks ratios of >1 were in the inter-motifs when paired clades were compared, but regions with Ka/Ks ratios of >1 were found across NBS sequences when subclades of clade A were compared. Our results based on a family of closely related NBS sequences showed that positive selection was first exerted on specific lineages across all NBS sequences after selective constraints. Subsequently, sequences with mutations in commonly conserved motifs were scrutinized by purifying selection. In the long term, conserved high frequency alleles in commonly conserved motifs and changes in inter-motifs were maintained in the investigated family of NBS sequences. Moreover, codons identified to be under positive selection in the inter-motifs were mainly located in regions involved in functions of ATP binding or hydrolysis.

  15. Grammatical Change through Repetition.

    Science.gov (United States)

    Arevart, Supot

    1989-01-01

    The effect of repetition on grammatical change in an unrehearsed talk is examined based on a case study of a single learner. It was found that repetition allows for accuracy monitoring in that errors committed in repeated contexts undergo correction. Implications for teaching are discussed. (23 references) (LB)

  16. The Negative Repetition Effect

    Science.gov (United States)

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  17. A Sequence of Escort Distributions and Generalizations of Expectations on q-Exponential Family

    Directory of Open Access Journals (Sweden)

    Hiroshi Matsuzoe

    2016-12-01

    Full Text Available In the theory of complex systems, long tailed probability distributions are often discussed. For such a probability distribution, a deformed expectation with respect to an escort distribution is more useful than the standard expectation. In this paper, by generalizing such escort distributions, a sequence of escort distributions is introduced. As a consequence, it is shown that deformed expectations with respect to sequential escort distributions effectively work for anomalous statistics. In particular, it is shown that a Fisher metric on a q-exponential family can be obtained from the escort expectation with respect to the second escort distribution, and a cubic form (or an Amari–Chentsov tensor field, equivalently is obtained from the escort expectation with respect to the third escort distribution.

  18. Maximal sequence length of exact match between members from a gene family during early evolution

    Institute of Scientific and Technical Information of China (English)

    WEN Xiao; GUO Xing-yi; FAN Long-jiang

    2005-01-01

    Mutation (substitution, deletion, insertion, etc.) in nucleotide acid causes the maximal sequence lengths of exact match (MALE) between paralogous members from a duplicate event to become shorter during evolution. In this work, MALE changes between members of 26 gene families from four representative species (Arabidopsis thaliana, Oryza sativa, Mus musculus and Homo sapiens) were investigated. Comparative study ofparalogous' MALE and amino acid substitution rate (dA<0.5)indicated that a close relationship existed between them. The results suggested that MALE could be a sound evolutionary scale for the divergent time for paralogous genes during their early evolution. A reference table between MALE and divergent time for the four species was set up, which would be useful widely, for large-scale genome alignment and comparison. As an example, detection of large-scale duplication events of rice genome based on the table was illustrated.

  19. Poly-infix operators and operator families

    OpenAIRE

    Bergstra, Jan A.; Ponse, Alban

    2015-01-01

    Poly-infix operators and operator families are introduced as an alternative for working modulo associativity and the corresponding bracket deletion convention. Poly-infix operators represent the basic intuition of repetitively connecting an ordered sequence of entities with the same connecting primitive.

  20. Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study.

    Science.gov (United States)

    Norsworthy, Penny J; Vandrovcova, Jana; Thomas, Ellen R A; Campbell, Archie; Kerr, Shona M; Biggs, Jennifer; Game, Laurence; Soutar, Anne K; Smith, Blair H; Dominiczak, Anna F; Porteous, David J; Morris, Andrew D; Scotland, Generation; Aitman, Timothy J

    2014-06-23

    Familial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia. We used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls. Pathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls. We demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis.

  1. A combined linkage and exome sequencing analysis for electrocardiogram parameters in the Erasmus Rucphen Family study

    Directory of Open Access Journals (Sweden)

    Claudia Tamar Silva

    2016-11-01

    Full Text Available Electrocardiogram (ECG measurements play a key role in the diagnosis and prediction of cardiac arrhythmias and sudden cardiac death. ECG parameters, such as the PR, QRS, and QT intervals, are known to be heritable and genome-wide association studies (GWAS of these phenotypes have been successful in identifying common variants; however, a large proportion of the genetic variability of these traits remains to be elucidated. The aim of this study was to discover loci potentially harboring rare variants utilizing variance component linkage analysis in 1547 individuals from a large family-based study, the Erasmus Rucphen Family Study (ERF. Linked regions were further explored using exome sequencing. Five suggestive linkage peaks were identified: two for QT interval (1q24, LOD = 2.63; 2q34, LOD = 2.05, one for QRS interval (1p35, LOD = 2.52 and two for PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29. Fine-mapping using exome sequence data identified a C > G missense variant (c.713C>G, p.Ser238Cys in the FCRL2 gene associated with QT (rs74608430; P = 2.8 ×10-4, minor allele frequency = 0.019. Heritability analysis demonstrated that the SNP explained 2.42% of the trait’s genetic variability in ERF (P = 0.02. Pathway analysis suggested that the gene is involved in cytosolic Ca2+ levels (P = 3.3 × 10-3 and AMPK stimulated fatty acid oxidation in muscle (P = 4.1 ×10-3. Look-ups in bioinformatics resources showed that expression of FCRL2 is associated with ARHGAP24 and SETBP1 expression. This finding was not replicated in the Rotterdam study. Combining the bioinformatics information with the association and linkage analyses, FCRL2 emerges as a strong candidate gene for QT interval.

  2. Fate of Aegilops speltoides-derived, repetitive DNA sequences in diploid Aegilops species, wheat-Aegilops amphiploids and derived chromosome addition lines.

    Science.gov (United States)

    Kumar, S; Friebe, B; Gill, B S

    2010-07-01

    The present study reports the cloning and characterization of an Aegilops speltoides-derived subtelomeric repeat, designated as pSp1B16. Clone pSp1B16 has 98% sequence homology with the previously isolated Ae. speltoides repeat Spelt1. The distribution of pSp1B16 and another Ae. speltoides repeat, pGc1R1, was analyzed in diploid Aegilops species, tetra- and hexaploid wheats, wheat-Aegilops amphiploids and derived chromosome addition lines by fluorescence in situ hybridization (FISH). Clones pSp1B16 and pGc1R1 revealed FISH sites in Ae. speltoides, Ae. sharonensis and Triticum timopheevii, whereas additional pGc1R1 FISH sites were observed in Ae. longissima and Ae. caudata. The pSp1B16 and pGc1R1 FISH patterns of the Aegilops chromosomes in the wheat-Aegilops amphiploids and chromosome addition lines are similar to those present in the Aegilops parent accession. We did not observe any evidence of pSp1B16 and pGc1R1 sequence elimination, which is in contrast to previous studies using similar hybrids and repeats. The presented data suggest that the genomic changes in synthetic amphiploids observed in previous studies might be caused by homoeologous recombination, which was suppressed in the amphiploid analyzed in this study.

  3. Genetic testing of Korean familial hypercholesterolemia using whole-exome sequencing.

    Directory of Open Access Journals (Sweden)

    Soo Min Han

    Full Text Available Familial hypercholesterolemia (FH is a genetic disorder with an increased risk of early-onset coronary artery disease. Although some clinically diagnosed FH cases are caused by mutations in LDLR, APOB, or PCSK9, mutation detection rates and profiles can vary across ethnic groups. In this study, we aimed to provide insight into the spectrum of FH-causing mutations in Koreans. Among 136 patients referred for FH, 69 who met Simon Broome criteria with definite family history were enrolled. By whole-exome sequencing (WES analysis, we confirmed that the 3 known FH-related genes accounted for genetic causes in 23 patients (33.3%. A substantial portion of the mutations (19 of 23 patients, 82.6% resulted from 17 mutations and 2 copy number deletions in LDLR gene. Two mutations each in the APOB and PCSK9 genes were verified. Of these anomalies, two frameshift deletions in LDLR and one mutation in PCSK9 were identified as novel causative mutations. In particular, one novel mutation and copy number deletion were validated by co-segregation in their relatives. This study confirmed the utility of genetic diagnosis of FH through WES.

  4. Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences

    Science.gov (United States)

    Cui, Zelin; Guo, Xiaokui; Dong, Ke; Zhang, Yan; Li, Qingtian; Zhu, Yongzhang; Zeng, Lingbing; Tang, Rong; Li, Li

    2017-01-01

    Staphylococcus phages of the Myoviridae family have a wide host range and potential applications in phage therapy. In this report, safety assessments of these phages were conducted based on their complete genome sequences. The complete genomes of Staphylococcus phages of the Myoviridae family were analyzed, and the Open Reading Frame (ORFs) were compared with a pool of virulence and antibiotic resistance genes using the BLAST algorithm. In addition, the lifestyle of the phages (virulent or temperate) was also confirmed using PHACTS. The results showed that all phages were lytic and did not contain resistance or virulence genes based on bioinformatic analyses, excluding the possibility that they could be vectors for the dissemination of these undesirable genes. These findings suggest that the phages are safe at the genome level. The SceD-like transglycosylase, which is a biomarker for vancomycin-intermediate strains, was widely distributed in the phage genomes. Approximately 70% of the ORFs encoded in the phage genomes have unknown functions; therefore, their roles in the antibiotic resistance and virulence of Staphylococcus aureus are still unknown and require consideration before use in phage therapy. PMID:28117392

  5. Complete genome sequence of a Megalocytivirus (family Iridoviridae associated with turbot mortality in China

    Directory of Open Access Journals (Sweden)

    Yang Bing

    2010-07-01

    Full Text Available Abstract Background Turbot reddish body iridovirus (TRBIV causes serious systemic diseases with high mortality in the cultured turbot, Scophthalmus maximus. We here sequenced and analyzed the complete genome of TRBIV, which was identified in Shandong province, China. Results The genome of TRBIV is a linear double-stranded DNA of 110,104 base pairs, comprising 55% G + C. Total 115 open reading frames were identified, encoding polypeptides ranging from 40 to 1168 amino acids. Amino acid sequences analysis revealed that 39 of the 115 potential gene products of TRBIV show significant homology to other iridovirus proteins. Phylogenetic analysis of conserved genes indicated that TRBIV is closely related to infectious spleen and kidney necrosis virus (ISKNV, rock bream iridovirus (RBIV, orange-spotted grouper iridovirus (OSGIV, and large yellow croaker iridovirus (LYCIV. The results indicated that TRBIV belongs to the genus Megalocytivirus (family Iridoviridae. Conclusions The determination of the genome of TRBIV will provide useful information for comparative study of Megalocytivirus and developing strategies to control outbreaks of TRBIV-induced disease.

  6. A hybrid distance measure for clustering expressed sequence tags originating from the same gene family.

    Directory of Open Access Journals (Sweden)

    Keng-Hoong Ng

    Full Text Available BACKGROUND: Clustering is a key step in the processing of Expressed Sequence Tags (ESTs. The primary goal of clustering is to put ESTs from the same transcript of a single gene into a unique cluster. Recent EST clustering algorithms mostly adopt the alignment-free distance measures, where they tend to yield acceptable clustering accuracies with reasonable computational time. Despite the fact that these clustering methods work satisfactorily on a majority of the EST datasets, they have a common weakness. They are prone to deliver unsatisfactory clustering results when dealing with ESTs from the genes derived from the same family. The root cause is the distance measures applied on them are not sensitive enough to separate these closely related genes. METHODOLOGY/PRINCIPAL FINDINGS: We propose a hybrid distance measure that combines the global and local features extracted from ESTs, with the aim to address the clustering problem faced by ESTs derived from the same gene family. The clustering process is implemented using the DBSCAN algorithm. We test the hybrid distance measure on the ten EST datasets, and the clustering results are compared with the two alignment-free EST clustering tools, i.e. wcd and PEACE. The clustering results indicate that the proposed hybrid distance measure performs relatively better (in terms of clustering accuracy than both EST clustering tools. CONCLUSIONS/SIGNIFICANCE: The clustering results provide support for the effectiveness of the proposed hybrid distance measure in solving the clustering problem for ESTs that originate from the same gene family. The improvement of clustering accuracies on the experimental datasets has supported the claim that the sensitivity of the hybrid distance measure is sufficient to solve the clustering problem.

  7. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  8. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing

    Science.gov (United States)

    Aristidou, Constantia; Koufaris, Costas; Theodosiou, Athina; Bak, Mads; Mehrjouy, Mana M.; Behjati, Farkhondeh; Tanteles, George; Christophidou-Anastasiadou, Violetta; Tommerup, Niels

    2017-01-01

    Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In

  9. 粪便Alu序列的检测在胰腺癌诊断中的价值%Value of detection of fecal Alu repetitive sequences in the diagnosis of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    任艳; 高军; 王小玮; 刘建强; 顾俊骏; 金晶; 龚燕芳; 李兆申

    2011-01-01

    目的 检测胰腺癌患者粪便Alu序列表达量,探讨其对胰腺癌的诊断价值.方法 收集41例胰腺癌、27例慢性胰腺炎及23例健康者的粪便样本,采用酚-氯仿方法抽提粪便中基因组DNA,应用实时定量PCR方法检测Alu重复序列的表达量.结果 胰腺癌、慢性胰腺炎、正常健康者粪便Alu重复序列表达量分别为(5.17±0.99)、(3.79 ±0.94)、(0.28±0.35) ng/g,三组间差异有统计学意义(P值均<0.05).通过接受者操作特征(ROC)曲线分析,胰腺癌的曲线下面积为74.8%,95%可信度为0.661~0.835,诊断胰腺癌的敏感性为75.6%,特异性为67.1%.结论 胰腺癌患者粪便Alu序列表达量显著增加,对胰腺癌的诊断可能有一定价值.%Objective To detect the Alu expression in the stool of patients with pancreatic cancer and investigate its value in the diagnosis of pancreatic cancer.Methods Stool samples were obtained from patients with pancreatic cancer (PC) ( n =41 ),chronic pancreatitis (CP) ( n =27 ) and healthy subjects ( n =23 ),the DNA was extracted from the stool and the expression of Alu repetitive sequences was subjected to quantitative analysis by the real-time PCR.Results The expressions of Alu repetitive sequences in PC,CP,and healthy subjects were (5.17 ± 0.99 ),( 3.79 ± 0.94),(0.28 ± 0.35 ) rig/g,and the difference among the three groups was statistically significant (P <0.05).The AUC of PC was 74.8% with the 95% CI 0.661 ~0.835,and the sensitivity,specificity was 75.6% and 67.1%,respectively.Conclusions Alu repetitive sequences are highly expressed in the stool of patients with pancreatic cancer,and it is of value in the diagnosis of pancreatic cancer.

  10. Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a β-thalassemia family

    DEFF Research Database (Denmark)

    Xu, Yanwen; Chen, Shengpei; Yin, Xuyang

    2015-01-01

    for a β-thalassemia-carrier couple to have a healthy second baby. We carried out sequencing for single blastomere cells and the family trio and further developed the analysis pipeline, including recovery of the missing alleles, removal of the majority of errors, and phasing of the embryonic genome...... leukocyte antigen matching tests. CONCLUSIONS: This retrospective study in a β-thalassemia family demonstrates a method for embryo genome recovery through single-cell sequencing, which permits detection of genetic variations in preimplantation genetic diagnosis. It shows the potential of single...

  11. Exome sequencing revealed PMM2 gene mutations in a French-Canadian family with congenital atrophy of the cerebellum

    OpenAIRE

    Noreau, Anne; Beauchemin, Philippe; Dionne-Laporte, Alexandre; ,; Dion, Patrick A.; Rouleau, Guy A.; Dupré, Nicolas

    2014-01-01

    Two affected and one unaffected siblings from a French-Canadian family were evaluated in our neurogenetic clinic. The oldest brother had intentional and postural hand tremor while his youngest sister presented mild ataxia, a similar hand tremor and global developmental delay. Brain MRIs of the two affected family members further revealed a significant cerebellar atrophy. For this study we conducted a whole exome sequencing (WES) investigation using genomic DNA prepared from the affected broth...

  12. Identification of a novel missense mutation of MIP in a Chinese family with congenital cataracts by target region capture sequencing

    OpenAIRE

    Jiang,Bo; chen, Yanhua; Baisheng XU; Hong, Nan; Liu, Rongrong; Qi, Ming; Shen, Liping

    2017-01-01

    Congenital cataract is both clinically diverse and genetically heterogeneous. To investigate the underlying genetic defect in three-generations of a Chinese family with autosomal dominant congenital cataracts, we recruited family members who underwent comprehensive ophthalmic examinations. A heterozygous missense mutation c.634G > C (p.G212R) substitution was identified in the MIP gene through target region capture sequencing. The prediction results of PolyPhen-2 and SIFT indicated that this ...

  13. Chromosomal distribution patterns of the (AC)10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena.

    Science.gov (United States)

    Fominaya, Araceli; Loarce, Yolanda; Montes, Alexander; Ferrer, Esther

    2017-03-01

    Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC)10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC)10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa 'Araceli' and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.

  14. The repetitive sequence genotype research of Helicobacter pylori with VacA+ or CagA+%VacA+和CagA+的幽门螺杆菌重复序列基因分型研究

    Institute of Scientific and Technical Information of China (English)

    李晓华; 黄赞松; 黄衍强; 周喜汉; 韦鹏涯; 岑朝; 黄小凤

    2013-01-01

    Objective To investigate the correlation between Helicobacter pylori ( Hp ) with VacA + or CagA + and repetitive sequence genotype. Methods The amplification of VacA and CagA gene fragments were conducted with PCR. Strains were genotyped with REP - PCR and further clustered with NTsys_2 software. Results The 26 VacA and CagA gene positive strains were divided into six genotype groups according to homology, both with 3,3,8,4,6,2 strains in each Hp group, respectively. Conclusion The VacA and CagA positive strains could be divided into six genotype groups, and the repetitive sequence genotype is not associated with VacA and CagA gene.%目的 探索VacA+和CagA+与幽门螺杆菌(Hp)重复序列基因分型的关系.方法 采用PCR方法确定VacA+或CagA+ Hp菌株,重复序列基因分型方法分别对26株VacA+和CagA+的菌株进行基因分型,并运用NTsys_2软件,根据相似性78%进行聚类分型.结果 VacA+和CagA+的26株Hp均被分为6个基因型,分别是Group Ⅰ、Group Ⅱ、Group Ⅲ、Group Ⅳ、Group Ⅴ和Group Ⅵ,且每类聚集的菌株数相同,分别是3、3、8、4、6、2株.结论 VacA+和CagA+的Hp可以分成6大类基因型,VacA+和CagA+与Hp重复序列基因分型无密切关系.

  15. Trialogue: Preparation, Repetition and...

    Science.gov (United States)

    Oberg, Antoinette; And Others

    1996-01-01

    This paper interrogates both curriculum theory and the limits and potentials of textual forms. A set of overlapping discourses (a trialogue) focuses on inquiring into the roles of obsession and repetition in creating deeply interpretive locations for understanding. (SM)

  16. Comprehensive Molecular Phylogeny of the Sub-Family Dipterocarpoideae (Dipterocarpaceae) Based on Chloroplast DNA Sequences

    National Research Council Canada - National Science Library

    Gamage, Dayananda Thawalama; Silva, Morley P. de; Inomata, Nobuyuki; Yamazaki, Tsuneyuki; Szmidt, Alfred E

    2006-01-01

    .... Although several previous studies addressed the phylogeny of the Dipterocarpaceae family, relationships among many of its genera from the Dipterocarpoideae sub-family are still not well understood...

  17. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches.

    Directory of Open Access Journals (Sweden)

    Elena Marmesat

    Full Text Available The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95, yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 63.76 ± 15.43, and revealed more alleles at a population level (13 vs 12. Finally, we could link each allele's amplification efficiency with the primer-mismatches in its flanking sequences and show that ultra-deep coverage offered by high-throughput technologies does not fully compensate for such biases, especially as real alleles may reach lower coverage than artefacts. Adopting either of the proposed amplification methods provides the opportunity to attain more complete allelic profiles at lower coverages, improving confidence over the downstream analyses and subsequent applications.

  18. Draft Genome Sequence of Dietzia alimentaria 72T, Belonging to the Family Dietziaceae, Isolated from a Traditional Korean Food

    Science.gov (United States)

    Kim, Jandi; Roh, Seong Woon; Bae, Jin-Woo

    2011-01-01

    Actinobacterial strain 72T, named Dietzia alimentaria, which belongs to the family Dietziaceae, was isolated from a traditional Korean food made from clams. The draft genome sequence of D. alimentaria 72T contains 3,352,817 bp, with a G+C content of 67.34%. PMID:22072646

  19. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Bräuner-Osborne, Hans

    2004-01-01

    with a significant homology to the human calcium-sensing receptor (CaR, 34% aa sequence identity), the taste receptor 1 (T1R1, 28%), and the metabotropic glutamate receptor 1 (mGluR1, 24%), places GPRC6A in family C of the GPCRs. Interestingly, GPRC6A bears the highest resemblance with an odorant goldfish 5...

  20. Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    2015-01-01

    Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1....

  1. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm.

    Directory of Open Access Journals (Sweden)

    Janice L Farlow

    Full Text Available Genetic risk factors for intracranial aneurysm (IA are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES in seven densely-affected families (45 individuals recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B was differentially expressed in aneurysmal samples (n=44 as compared to control samples (n=16 (false discovery rate adjusted p-value=0.023. We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.

  2. Sequencing analysis of SLX4/FANCP gene in Italian familial breast cancer cases.

    Directory of Open Access Journals (Sweden)

    Irene Catucci

    Full Text Available Breast cancer can be caused by germline mutations in several genes that are responsible for different hereditary cancer syndromes. Some of the genes causing the Fanconi anemia (FA syndrome, such as BRCA2, BRIP1, PALB2, and RAD51C, are associated with high or moderate risk of developing breast cancer. Very recently, SLX4 has been established as a new FA gene raising the question of its implication in breast cancer risk. This study aimed at answering this question sequencing the entire coding region of SLX4 in 526 familial breast cancer cases from Italy. We found 81 different germline variants and none of these were clearly pathogenic. The statistical power of our sample size allows concluding that in Italy the frequency of carriers of truncating mutations of SLX4 may not exceed 0.6%. Our results indicate that testing for SLX4 germline mutations is unlikely to be relevant for the identification of individuals at risk of breast cancer, at least in the Italian population.

  3. Use of competitive PCR to assay copy number of repetitive elements in banana.

    Science.gov (United States)

    Baurens, F C; Noyer, J L; Lanaud, C; Lagoda, P J

    1996-11-27

    Banana is one of the most important subtropical fruit crops. Genetic improvement by traditional breeding strategies is difficult and better knowledge of genomic structure is needed. Repeated sequences are powerful markers for genetic fingerprinting. The method proposed here to determine the copy number of nuclear repetitive elements is based on competitive reverse transcription-polymerase chain reaction and can also be used for quantifying cytosolic sequences. The reliability of this method was investigated on crude preparations of total DNA. Variations due to the heterogeneity of crude DNA extracts showed that a single locus reference is needed for accurate quantification. A mapped microsatellite locus was used to normalize copy number measurements. Copy number assay of repetitive elements using this method clearly distinguishes between the two banana subspecies investigated: Musa acuminata spp. banskii and M. acuminata spp. malaccensis. Two repetitive sequence families, pMaCIR1115 and pA9-26, were assayed that cover up to 1% of the M. acuminata genome. Their copy number varied up to six fold between the two subspecies. Furthermore, sequence quantification showed that mitochondrial genomes are present in crude leaf-extracted banana DNA at up to 40 copies per cell.

  4. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej

    2008-06-01

    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  5. Exome sequencing identifies DLG1 as a novel gene for potential susceptibility to Crohn's disease in a Chinese family study.

    Directory of Open Access Journals (Sweden)

    Shufang Xu

    Full Text Available BACKGROUND: Genetic variants make some contributions to inflammatory bowel disease (IBD, including Crohn's disease (CD and ulcerative colitis (UC. More than 100 susceptibility loci were identified in Western IBD studies, but susceptibility gene has not been found in Chinese IBD patients till now. Sequencing of individuals with an IBD family history is a powerful approach toward our understanding of the genetics and pathogenesis of IBD. The aim of this study, which focuses on a Han Chinese CD family, is to identify high-risk variants and potentially novel loci using whole exome sequencing technique. METHODS: Exome sequence data from 4 individuals belonging to a same family were analyzed using bioinformatics methods to narrow down the variants associated with CD. The potential risk genes were further analyzed by genotyping and Sanger sequencing in family members, additional 401 healthy controls (HC, 278 sporadic CD patients, 123 UC cases, a pair of monozygotic CD twins and another Chinese CD family. RESULTS: From the CD family in which the father and daughter were affected, we identified a novel single nucleotide variant (SNV c.374T>C (p.I125T in exon 4 of discs large homolog 1 (DLG1, a gene has been reported to play multiple roles in cell proliferation, T cell polarity and T cell receptor signaling. After genotyping among case and controls, a PLINK analysis showed the variant was of significance (PA (p.R278Q in exon 9 of DLG1. CONCLUSIONS: We have discovered novel genetic variants in the coding regions of DLG1 gene, the results support that DLG1 is a novel potential susceptibility gene for CD in Chinese patients.

  6. Tracking of intercalary DNA sequences integrated into tandem repeat arrays in rye Secale vavilovii

    Directory of Open Access Journals (Sweden)

    Magdalena Achrem

    2017-06-01

    Full Text Available The structure of repetitive sequences of the JNK block present in the pericentromeric region of the 2RL chromosome was studied in Secale vavilovii. Amplification of sequences present between the JNK sequences led to the identification of seven abnormal DNA fragments. Two of these fragments showed high similarity to the glutamate 5-kinase gene and putative alcohol dehydrogenase gene of trypanosomatid from the genus Leishmania, whose presence can be explained by horizontal gene transfer (HGT. Other fragments were similar to mitochondrial gene for ribosomal protein S4 in plants and to the glycoprotein (G gene of the IHNV virus. Presumably, they are pseudogenes inserted into the JNK heterochromatin region. Within this region, also fragments similar to the rye repetitive sequence and chromosome 3B in wheat were found. There is no known mechanism that would explain how foreign sequences were inserted into the block region of tandem repetitive sequences of the JNK family.

  7. Genome Sequence of Desulfurella amilsii Strain TR1 and Comparative Genomics of Desulfurellaceae Family.

    Science.gov (United States)

    Florentino, Anna P; Stams, Alfons J M; Sánchez-Andrea, Irene

    2017-01-01

    The acidotolerant sulfur reducer Desulfurella amilsii was isolated from sediments of Tinto River, an extremely acidic environment. Its ability to grow in a broad range of pH and to tolerate certain heavy metals offers potential for metal recovery processes. Here we report its high-quality draft genome sequence and compare it to the available genome sequences of other members of Desulfurellaceae family: D. acetivorans. D. multipotens, Hippea maritima. H. alviniae, H. medeae, and H. jasoniae. For most species, pairwise comparisons for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) revealed ANI values from 67.5 to 80% and DDH values from 12.9 to 24.2%. D. acetivorans and D. multipotens, however, surpassed the estimated thresholds of species definition for both DDH (98.6%) and ANI (88.1%). Therefore, they should be merged to a single species. Comparative analysis of Desulfurellaceae genomes revealed different gene content for sulfur respiration between Desulfurella and Hippea species. Sulfur reductase is only encoded in D. amilsii, in which it is suggested to play a role in sulfur respiration, especially at low pH. Polysulfide reductase is only encoded in Hippea species; it is likely that this genus uses polysulfide as electron acceptor. Genes encoding thiosulfate reductase are present in all the genomes, but dissimilatory sulfite reductase is only present in Desulfurella species. Thus, thiosulfate respiration via sulfite is only likely in this genus. Although sulfur disproportionation occurs in Desulfurella species, the molecular mechanism behind this process is not yet understood, hampering a genome prediction. The metabolism of acetate in Desulfurella species can occur via the acetyl-CoA synthetase or via acetate kinase in combination with phosphate acetyltransferase, while in Hippea species, it might occur via the acetate kinase. Large differences in gene sets involved in resistance to acidic conditions were not detected among the

  8. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    Science.gov (United States)

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D.

  9. Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Directory of Open Access Journals (Sweden)

    Kuraku Shigehiro

    2011-06-01

    Full Text Available Abstract Background In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA family, whose members are mostly single-exon. Results Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family. Conclusions Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution.

  10. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families.

    Science.gov (United States)

    De La Torre, Amanda R; Lin, Yao-Cheng; Van de Peer, Yves; Ingvarsson, Pär K

    2015-03-05

    The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.

  11. Characterization of CTX-M-producing Escherichia coli by repetitive sequence-based PCR and real-time PCR-based replicon typing of CTX-M-15 plasmids.

    Science.gov (United States)

    Önnberg, Anna; Söderquist, Bo; Persson, Katarina; Mölling, Paula

    2014-11-01

    The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is a major global concern. CTX-M is the dominating ESBL type worldwide, and CTX-M-15 is the most widespread CTX-M type. The dissemination of CTX-M appears to be in part due to global spread of the Escherichia coli clone O25b-ST131. However, the gene-encoding CTX-M is mainly located on mobile genetic elements, such as plasmids, that also promote the horizontal dissemination of the CTX-M genes. In this study, 152 CTX-M-producing E. coli isolated in 1999-2008 in Örebro County, Sweden, were typed using a commercial repetitive sequence-based PCR (the DiversiLab system), and the prevalence of ST131 was investigated by pabB PCR. Real-time PCR-based plasmid replicon typing was performed on 82 CTX-M-15-producing E. coli isolates. In general, the CTX-M-producing E. coli population was genetically diverse; however, ST131 was highly prevalent (27%), and the dominating clone in our area. The blaCTX -M-15 gene was mainly located on IncF plasmids (69%), but a relatively high proportion of IncI1 plasmids (29%) were also detected among E. coli with diverse rep-PCR patterns, indicating that horizontal transmission of IncI1 plasmids carrying blaCTX -M-15 may have occurred between different E. coli strains.

  12. ERIC-PCR技术对单增李斯特菌的溯源分析%Biotracing the source of Listeria monocytogenes strains by enterobacterial repetitive intergenic consensus sequence-based PCR

    Institute of Scientific and Technical Information of China (English)

    刘海泉; 朱颖; 姜文洁; 孙晓红; 吴启华; 潘迎捷; 赵勇

    2013-01-01

    Enterobacterial repetitive intergenic consensus sequence (ERIC )-PCR was used to genotype 17 strains of Listeria monocytogenes,which were isolated from pork samples of the three market,and we investigated the correlation between the genotype,regional distribution and prevalence among L monocytogenes strains. L monocytogenes ATCC 19115 was used as positive control. The result showed that 17 isolates were identified as six special genotypes,and genotype IV was the dominant one as the main pollution group,which were isolated from the third market. The strains isolated from the first and second market were genotype I and genotype IV .respcetively. The result suggested that ERIC-PCR was suitable to investigate the biotracing of L. monocytogenes and it was a more rapid,efficient,and accurate molecular typing method than traditional serotyping methods.%以质控菌株ATCC 19115为对照,采用ERIC-PCR方法对从三个市场猪肉样品分离到的17株单增李斯特菌(Listeria monocytogenes)进行了基因分型,探讨了单增李斯特菌基因型与区域分布及流行性的关联性.结果表明,17株单增李斯特菌菌株可分为六个主要基因类群,其中Ⅳ型菌株最多,为主要污染类群,而这些菌株来自于市场三;市场一和市场二分离到的菌株主要分别为Ⅰ型和Ⅳ型.因此,ERIC-PCR方法适用于对单增李斯特菌的溯源分析和流行病学调查,具有简单、方便、快捷、准确的特点.

  13. Analysis of repetitive DNA in chromosomes by flow cytometry.

    Science.gov (United States)

    Brind'Amour, Julie; Lansdorp, Peter M

    2011-06-01

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in Chinese hamster chromosomes and major satellite sequences in mouse chromosomes. Using CFF we also identified parental homologs of human chromosome 18 with different amounts of repetitive DNA.

  14. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2017-09-21

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  15. Whole Genome Sequencing of High-Risk Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition

    Science.gov (United States)

    2015-12-01

    Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition 5b. GRANT NUMBER W81XWH-13-1-0336 5c. PROGRAM ELEMENT NUMBER 6...An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 31:1536-1543. 14 Fu Y...Breast Cancer Predisposition PRINCIPAL INVESTIGATOR: Mary-Claire King, PhD CONTRACTING ORGANIZATION: University of Washington Seattle, WA, 98195

  16. Exome Sequencing in a Family with Luminal-Type Breast Cancer Underpinned by Variation in the Methylation Pathway

    Science.gov (United States)

    van der Merwe, Nicole; Peeters, Armand V.; Pienaar, Fredrieka M.; Bezuidenhout, Juanita; van Rensburg, Susan J.; Kotze, Maritha J.

    2017-01-01

    Panel-based next generation sequencing (NGS) is currently preferred over whole exome sequencing (WES) for diagnosis of familial breast cancer, due to interpretation challenges caused by variants of uncertain clinical significance (VUS). There is also no consensus on the selection criteria for WES. In this study, a pathology-supported genetic testing (PSGT) approach was used to select two BRCA1/2 mutation-negative breast cancer patients from the same family for WES. Homozygosity for the MTHFR 677 C>T mutation detected during this PSGT pre-screen step was considered insufficient to cause bilateral breast cancer in the index case and her daughter diagnosed with early-onset breast cancer ( 5%) in the folate pathway in all three affected family members is consistent with inheritance of the luminal-type breast cancer in the family. PSGT assisted with the decision to pursue extended genetic testing and facilitated clinical interpretation of WES aimed at reduction of recurrence risk. PMID:28241424

  17. Identification, sequencing and molecular analysis of Chp4, a novel chlamydiaphage of Chlamydophila abortus belonging to the family Microviridae.

    Science.gov (United States)

    Sait, Michelle; Livingstone, Morag; Graham, Rebecca; Inglis, Neil F; Wheelhouse, Nick; Longbottom, David

    2011-07-01

    Members of the family Microviridae have been identified in a number of chlamydial species infecting humans (phage CPAR39 in Chlamydophila pneumoniae), other mammals (φCPG1 in Chlamydophila caviae, Chp2 in Chlamydophila abortus and Chp3 in Chlamydophila pecorum) and birds (Chp1 in Chlamydophila psittaci). This study describes the identification and genome sequencing of Chp4, an icosahedral, 4530 bp, ssDNA phage in C. abortus. Chp4 is predicted to contain eight ORFs, six of which could be assigned putative functions based on sequence similarity to characterized bacteriophage. Gene order and content were highly conserved amongst chlamydiaphage, with the highest sequence variability occurring in the IN5 and INS variable regions of the VP1 major coat protein, which has been associated with host cell recognition and binding. Phylogenetic analysis of VP1 indicated that Chp4 is a member of the Chlamydiamicrovirus, and is most closely related to phage φCPG1 and CPAR39.

  18. Repetition priming from moving faces.

    Science.gov (United States)

    Lander, Karen; Bruce, Vicki

    2004-06-01

    Recent experiments have suggested that seeing a familiar face move provides additional dynamic information to the viewer, useful in the recognition of identity. In four experiments, repetition priming was used to investigate whether dynamic information is intrinsic to the underlying face representations. The results suggest that a moving image primes more effectively than a static image, even when the same static image is shown in the prime and the test phases (Experiment 1). Furthermore, when moving images are presented in the test phase (Experiment 2), there is an advantage for moving prime images. The most priming advantage is found with naturally moving faces, rather than with those shown in slow motion (Experiment 3). Finally, showing the same moving sequence at prime and test produced more priming than that found when different moving sequences were shown (Experiment 4). The results suggest that dynamic information is intrinsic to the face representations and that there is an advantage to viewing the same moving sequence at prime and test.

  19. Chromosomal Mapping of Repetitive DNAs in the Grasshopper Abracris flavolineata Reveal Possible Ancestry of the B Chromosome and H3 Histone Spreading.

    Directory of Open Access Journals (Sweden)

    Danilo Bueno

    Full Text Available Supernumerary chromosomes (B chromosomes occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes.

  20. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae.

    Science.gov (United States)

    Depierreux, Delphine; Vong, Minh; Nibert, Max L

    2016-06-02

    Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.

  1. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5’ upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile. PMID:28005945

  2. Establishing the baseline level of repetitive element expression in the human cortex

    National Research Council Canada - National Science Library

    Tyekucheva, Svitlana; Yolken, Robert H; McCombie, W Richard; Parla, Jennifer; Kramer, Melissa; Wheelan, Sarah J; Sabunciyan, Sarven

    2011-01-01

    .... Hence, we performed whole transcriptome sequencing to investigate the expression of repetitive elements in human frontal cortex using postmortem tissue obtained from the Stanley Medical Research Institute...

  3. Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia.

    Science.gov (United States)

    Al-Khateeb, Alyaa; Zahri, Mohd K; Mohamed, Mohd S; Sasongko, Teguh H; Ibrahim, Suhairi; Yusof, Zurkurnai; Zilfalil, Bin A

    2011-03-19

    Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements. A total of 29 gene sequence variants were reported in 117(76.0%) of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation), and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45). The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants. Twenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.

  4. Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Yusof Zurkurnai

    2011-03-01

    Full Text Available Abstract Background Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown. We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan. The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements. Results A total of 29 gene sequence variants were reported in 117(76.0% of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation, and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45. The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants. Conclusions Twenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.

  5. Identification of potential platelet alloantigens in the Equidae family by comparison of gene sequences encoding major platelet membrane glycoproteins.

    Science.gov (United States)

    Boudreaux, Mary K; Humphries, Drew M

    2013-12-01

    Platelet alloantigens in horses may play an important role in the development of neonatal alloimmune thrombocytopenia (NAIT). The objective of this study was to evaluate genes encoding major platelet glycoproteins within the Equidae family in an effort to identify potential alloantigens. DNA was isolated from blood samples obtained from Equidae family members, including a Holsteiner-Oldenburg cross, a Quarter horse, a donkey, and a Plains zebra (Equus burchelli). Gene sequences encoding equine platelet membrane glycoproteins IIb, IIIa (integrin subunits αIIb and β3), Ia (integrin subunit α2), and Ibα were determined using PCR. Gene sequences were compared to the equine genome available on GenBank. Polymorphisms that would be predicted to result in amino acid changes on platelet surfaces were documented and compared with known alloantigenic sites documented on human platelets. Amino acid differences were predicted based on nucleotide sequences for all 4 genes. Nine differences were documented for αIIb, 5 differences were documented for β3, 7 differences were documented for α2, and 16 differences were documented for Ibα outside the macroglycopeptide region. This study represents the first effort at identifying potential platelet alloantigens in members of the Equidae Family based on evaluation of gene sequences. The data obtained form the groundwork for identifying potential platelet alloantigens involved in transfusion reactions and neonatal alloimmune thrombocytopenia (NAIT). More work is required to determine whether the predicted amino acid differences documented in this study play a role in alloimmunity, and whether other polymorphisms not detected in this study are present that may result in alloimmunity. © 2013 American Society for Veterinary Clinical Pathology.

  6. Complete genome sequence and evolution analysis of Eimeria stiedai RNA virus 1, a novel member of the family Totiviridae.

    Science.gov (United States)

    Xin, Caiyan; Wu, Bin; Li, Jianhua; Gong, Pengtao; Yang, Ju; Li, He; Cai, Xuepeng; Zhang, Xichen

    2016-12-01

    Eimeria stiedai (E. stiedai) is a coccidian that infects the liver of the domestic rabbit and may cause severe hepatic coccidiosis. Virus-like particles in E. stiedai were discovered by Revets et al. However, the complete genome sequence of the E. stiedai virus has yet to be determined. A novel virus was isolated from E. stiedai in the present study. The complete genome sequence of the E. stiedai virus was 6219 bp in length and contained two open reading frames (ORFs) with a tetranucleotide overlap (AUGA). ORF1 (2400 bp) encoded a putative coat protein of 799 amino acids (86.471 kDa) that exhibited a high level of amino acid sequence similarity to that of Eimeria tenella (E. tenella) RNA virus 1 (EtRV1; 43 % identity, NC_026140), whereas ORF2 (3303 bp) encoded a putative RNA-dependent RNA polymerase (RdRp) of 1100 amino acids (118.850 kDa) that exhibited a high level of amino acid sequence similarity to that of the E. tenella RNA virus 1 (EtRV1; 51 % identity, NC_026140). Phylogenetic analysis revealed that the E. stiedai virus was a new member of the family Totiviridae. The sequence data provided sufficient information for classification of eimeriaviruses.

  7. Characterisation of IS153, an IS3-family insertion sequence isolated from Lactobacillus sanfranciscensis and its use for strain differentiation.

    Science.gov (United States)

    Ehrmann, M A; Vogel, R E

    2001-11-01

    An insertion sequence has been identified in the genome of Lactobacillus sanfranciscensis DSM 20451T as segment of 1351 nucleotides containing 37-bp imperfect terminal inverted repeats. The sequence of this element encodes two out of phase, overlapping open reading frames, orfA and orfB, from which three putative proteins are produced. OrfAB is a transframe protein produced by -1 translational frame shifting between orf A and orf B that is presumed to be the transposase. The large orfAB of this element encodes a 342 amino acid protein that displays similarities with transposases encoded by bacterial insertion sequences belonging to the IS3 family. In L. sanfranciscensis type strain DSM 20451T multiple truncated IS elements were identified. Inverse PCR was used to analyze target sites of four of these elements, but except of their highly AT rich character not any sequence specificity was identified so far. Moreover, no flanking direct repeats were identified. Multiple copies of IS153 were detected by hybridization in other strains of L. sanfranciscensis. Resulting hybridization patterns were shown to differentiate between organisms at strain level rather than a probe targeted against the 16S rDNA. With a PCR based approach IS153 or highly similar sequences were detected in L. acidophilus, L. casei, L. malefermentans, L. plantarum, L. hilgardii, L. collinoides L. farciminis L. sakei and L. salivarius, L. reuteri as well as in Enterococcus faecium, Pediococcus acidilactici and P. pentosaceus.

  8. Searching for a family of orphan sequences with SAMBA, a parallel hardware dedicated to biological applications.

    Science.gov (United States)

    Guerdoux-Jamet, P; Risler, J L

    1996-01-01

    A significant proportion of coding sequences or open reading frames discovered in the course of sequencing projects do not show any similarity with other sequences deposited with the protein databanks. In such cases the search for similarities must be performed with as many comparison algorithms as possible, so as to increase the chance of finding weak relationships. A specialised parallel hardware (SAMBA) implementing the Smith & Waterman algorithm has been developed at the 'Institut de Recherche en Informatique et Systèmes Aléatoìres' (IRISA). It makes it possible to scan protein databanks at a speed comparable with that of BLAST or FASTA. We report here a study performed with SAMBA on 814 orphan sequences from S cerevisiae and compare the results with those from BLAST and FASTA.

  9. Pierre Robin Sequence: A Familial, Clinical, and Pathoanatomical Record of an Affected Dachshund.

    Science.gov (United States)

    Moura, Enio; Wagner, José L; Cirio, Silvana M; Pimpão, Cláudia T

    2015-01-01

    This study describes a spontaneous case of Pierre Robin sequence in a nonhuman animal species. A miniature dachshund with micrognathia developed glossoptosis, respiratory distress, dysphagia, temporomandibular ankylosis, and a misaligned upper jaw. The severity of this condition resulted in death by obstructive apnea at the age of 8 mo. Dogs with Pierre Robin sequence can provide further knowledge and a greater understanding of this abnormality, leading to better management of affected individuals and improvement of therapeutic methods.

  10. Identification of a GJA3 mutation in a Chinese family with congenital nuclear cataract using exome sequencing.

    Science.gov (United States)

    Guo, Yi; Yuan, Lamei; Yi, Junhui; Xiao, Jingjing; Xu, Hongbo; Lv, Hongwei; Xiong, Wei; Zheng, Wen; Guan, Liping; Zhang, Jianguo; Xiang, Hong; Qi, Yong; Deng, Hao

    2013-08-01

    Congenital cataract, a clinically and genetically heterogeneous lens disorder is defined as any opacity of the lens presented from birth and is responsible for approximately 10% of worldwide childhood poor vision or blindness. To identify the genetic defect responsible for congenital nuclear cataract in a four-generation Chinese Han family, exome and direct Sanger sequencings were conducted and a missense variant c.139G>A (p.D47N) in the gap junction protein-alpha 3 gene (GJA3) was identified. The variant co-segregated with patients of the family and was not observed in unaffected family members or normal controls. The above findings indicated that the variant was a pathogenic mutation. The mutation p.D47N was found in the first extracellular loop (El) domain of GJA3 protein. Our data suggest that exome sequencing is a powerful tool to discover mutation(s) in cataract, a disorder with high genetic heterogeneity. Our findings may also provide new insights into the cause and diagnosis of congenital nuclear cataract and have implications for genetic counseling.

  11. Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase. A new family of fungal peroxidases.

    Science.gov (United States)

    Baunsgaard, L; Dalbøge, H; Houen, G; Rasmussen, E M; Welinder, K G

    1993-04-01

    Sequence analysis and cDNA cloning of Coprinus peroxidase (CIP) were undertaken to expand the understanding of the relationships of structure, function and molecular genetics of the secretory heme peroxidases from fungi and plants. Amino acid sequencing of Coprinus macrorhizus peroxidase, and cDNA sequencing of Coprinus cinereus peroxidase showed that the mature proteins are identical in amino acid sequence, 343 residues in size and preceded by a 20-residue signal peptide. Their likely identity to peroxidase from Arthromyces ramosus is discussed. CIP has an 8-residue, glycine-rich N-terminal extension blocked with a pyroglutamate residue which is absent in other fungal peroxidases. The presence of pyroglutamate, formed by cyclization of glutamine, and the finding of a minor fraction of a variant form lacking the N-terminal residue, indicate that signal peptidase cleavage is followed by further enzymic processing. CIP is 40-45% identical in amino-acid sequence to 11 lignin peroxidases from four fungal species, and 42-43% identical to the two known Mn-peroxidases. Like these white-rot fungal peroxidases, CIP has an additional segment of approximately 40 residues at the C-terminus which is absent in plant peroxidases. Although CIP is much more similar to horseradish peroxidase (HRP C) in substrate specificity, specific activity and pH optimum than to white-rot fungal peroxidases, the sequences of CIP and HRP C showed only 18% identity. Hence, CIP qualifies as the first member of a new family of fungal peroxidases. The nine invariant residues present in all plant, fungal and bacterial heme peroxidases are also found in CIP. The present data support the hypothesis that only one chromosomal CIP gene exists. In contrast, a large number of secretory plant and fungal peroxidases are expressed from several peroxidase gene clusters. Analyses of three batches of CIP protein and of 49 CIP clones revealed the existence of only two highly similar alleles indicating less

  12. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily.

    Science.gov (United States)

    Pereira-Leal, J B; Seabra, M C

    2000-08-25

    The Rab/Ypt/Sec4 family forms the largest branch of the Ras superfamily of GTPases, acting as essential regulators of vesicular transport pathways. We used the large amount of information in the databases to analyse the mammalian Rab family. We defined Rab-conserved sequences that we designate Rab family (RabF) motifs using the conserved PM and G motifs as "landmarks". The Rab-specific regions were used to identify new Rab proteins in the databases and suggest rules for nomenclature. Surprisingly, we find that RabF regions cluster in and around switch I and switch II regions, i.e. the regions that change conformation upon GDP or GTP binding. This finding suggests that specificity of Rab-effector interaction cannot be conferred solely through the switch regions as is usually inferred. Instead, we propose a model whereby an effector binds to RabF (switch) regions to discriminate between nucleotide-bound states and simultaneously to other regions that confer specificity to the interaction, possibly Rab subfamily (RabSF) specific regions that we also define here. We discuss structural and functional data that support this model and its general applicability to the Ras superfamily of proteins.

  13. Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa.

    Science.gov (United States)

    Mariotti, Beatrice; Navajas-Pérez, Rafael; Lozano, Rafael; Parker, John S; de la Herrán, Roberto; Rejón, Carmelo Ruiz; Rejón, Manuel Ruiz; Garrido-Ramos, Manuel; Jamilena, Manuel

    2006-02-01

    Rumex acetosa is characterized by a multiple chromosome system (2n = 12 + XX for females, and 2n = 12 + XY1Y2 for males), in which sex is determined by the ratio between the number of X chromosomes and autosome sets. For a better understanding of the molecular structure and evolution of plant sex chromosomes, we have generated a sex chromosome specific library of R. acetosa by microdissection. The screening of this library has allowed us to identify 5 repetitive DNA families that have been characterized in detail. One of these families, DOP-20, has shown no homology with other sequences in databases. Nevertheless, the putative proteins encoded by the other 4 families, DOP-8, DOP-47, DOP-60, and DOP-61, show homology with proteins from different plant retroelements, including poly proteins from Ty3-gypsy- and Ty1-copia-like long terminal repeat (LTR) retroelements, and reverse transcriptase from non-LTR retro elements. Results indicate that sequences from these 5 families are dispersed throughout the genome of both males and females, but no appreciable accumulation or differentiation of these types of sequences have been found in the Y chromosomes. These repetitive DNA sequences are more conserved in the genome of other dioecious species such as Rumex papillaris, Rumex intermedius, Rumex thyrsoides, Rumex hastatulus, and Rumex suffruticosus, than in the polygamous, gynodioecious, or hermaphrodite species Rumex induratus, Rumex lunaria, Rumex con glom er atus, Rumex crispus, and Rumex bucephalo phorus, which supports a single origin of dioecious species in this genus. The implication of these transposable elements in the origin and evolution of the heteromorphic sex chromosomes of R. acetosa is discussed.

  14. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  15. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis.

    Science.gov (United States)

    de la Haba, Rafael R; Arahal, David R; Márquez, M Carmen; Ventosa, Antonio

    2010-04-01

    A phylogenetic study of the family Halomonadaceae was carried out based on complete 16S rRNA and 23S rRNA gene sequences. Several 16S rRNA genes of type strains were resequenced, and 28 new sequences of the 23S rRNA gene were obtained. Currently, the family includes nine genera (Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola and Zymobacter). These genera are phylogenetically coherent except Halomonas, which is polyphyletic. This genus comprises two clearly distinguished clusters: group 1 includes Halomonas elongata (the type species) and the species Halomonas eurihalina, H. caseinilytica, H. halmophila, H. sabkhae, H. almeriensis, H. halophila, H. salina, H. organivorans, H. koreensis, H. maura and H. nitroreducens. Group 2 comprises the species Halomonas aquamarina, H. meridiana, H. axialensis, H. magadiensis, H. hydrothermalis, H. alkaliphila, H. venusta, H. boliviensis, H. neptunia, H. variabilis, H. sulfidaeris, H. subterranea, H. janggokensis, H. gomseomensis, H. arcis and H. subglaciescola. Halomonas salaria forms a cluster with Chromohalobacter salarius and the recently described genus Salinicola, and their taxonomic affiliation requires further study. More than 20 Halomonas species are phylogenetically not within the core constituted by the Halomonas sensu stricto cluster (group 1) or group 2 and, since their positions on the different phylogenetic trees are not stable, they cannot be recognized as additional groups either. In general, there is excellent agreement between the phylogenies based on the two rRNA gene sequences, but the 23S rRNA gene showed higher resolution in the differentiation of species of the family Halomonadaceae.

  16. Exome sequencing revealed PMM2 gene mutations in a French-Canadian family with congenital atrophy of the cerebellum.

    Science.gov (United States)

    Noreau, Anne; Beauchemin, Philippe; Dionne-Laporte, Alexandre; Dion, Patrick A; Rouleau, Guy A; Dupré, Nicolas

    2014-01-01

    Two affected and one unaffected siblings from a French-Canadian family were evaluated in our neurogenetic clinic. The oldest brother had intentional and postural hand tremor while his youngest sister presented mild ataxia, a similar hand tremor and global developmental delay. Brain MRIs of the two affected family members further revealed a significant cerebellar atrophy. For this study we conducted a whole exome sequencing (WES) investigation using genomic DNA prepared from the affected brother and sister, alongside DNA prepared from their unaffected mother, and identified two mutations previously reported to cause a rare disorder known as Congenital Disorder of Glycosylation, type Ia (CDG1A) (OMIM #212065). This study emphasizes how the diagnosis of patients presenting a mild tremor phenotype associated with cerebellar atrophy may benefit from WES in establishing genetic defects associated with their conditions.

  17. ILS Heuristics for the Single-Machine Scheduling Problem with Sequence-Dependent Family Setup Times to Minimize Total Tardiness

    Directory of Open Access Journals (Sweden)

    Vinícius Vilar Jacob

    2016-01-01

    Full Text Available This paper addresses a single-machine scheduling problem with sequence-dependent family setup times. In this problem the jobs are classified into families according to their similarity characteristics. Setup times are required on each occasion when the machine switches from processing jobs in one family to jobs in another family. The performance measure to be minimized is the total tardiness with respect to the given due dates of the jobs. The problem is classified as NP-hard in the ordinary sense. Since the computational complexity associated with the mathematical formulation of the problem makes it difficult for optimization solvers to deal with large-sized instances in reasonable solution time, efficient heuristic algorithms are needed to obtain near-optimal solutions. In this work we propose three heuristics based on the Iterated Local Search (ILS metaheuristic. The first heuristic is a basic ILS, the second uses a dynamic perturbation size, and the third uses a Path Relinking (PR technique as an intensification strategy. We carry out comprehensive computational and statistical experiments in order to analyze the performance of the proposed heuristics. The computational experiments show that the ILS heuristics outperform a genetic algorithm proposed in the literature. The ILS heuristic with dynamic perturbation size and PR intensification has a superior performance compared to other heuristics.

  18. Phenotype characterization and sequence analysis of BMP2 and BMP4 variants in two Mexican families with oligodontia.

    Science.gov (United States)

    Mu, Y; Xu, Z; Contreras, C I; McDaniel, J S; Donly, K J; Chen, S

    2012-11-28

    Both BMP2 and BMP4 are involved in tooth development. We examined phenotypes and BMP2 and BMP4 gene variations in two Mexican oligodontia families. Physical and oral examinations and panoramic radiographs were performed on affected and unaffected members in these two families. The affected members lacked six or more teeth. DNA sequencing was performed to detect BMP2 and BMP4 gene variations. Three single nucleotide polymorphisms (SNPs) in BMP2 and BMP4 genes were identified in the two families, including one synonymous and two missense SNPs: BMP2 c261A>G, pS87S, BMP2 c570A>T, pR190S, and BMP4 c455T>C, pV152A. Among the six affected patients, 67% carried "GG" or "AG" genotype in BMP2 c261A>G and four were "TT" or "AT" genotype in BMP2 c570A>T (pR190S). Polymorphism of BMP4 c455T>C resulted in amino acid changes of Val/Ala (pV152A). BMP2 c261A>G and BMP4 c455T>C affect mRNA stability. This was the first time that BMP2 and BMP4 SNPs were observed in Mexican oligodontia families.

  19. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes

    Institute of Scientific and Technical Information of China (English)

    LIU Nian; ZHU Yong; WEI ZongXian; CHEN Jie; WANG QingBiao; JIAN ShuGuang; ZHOU DangWei; SHI Jing; YANG Yong; ZHONG Yang

    2009-01-01

    Araucariaceae is one of the most primitive families of the living conifers,and its phylogenetic relationships and divergence times are critically important issues.The DNA sequences of 8 genes,i.e.,nuclear ribosomal 18S and 26S rRNA,chloroplast 16S rRNA,rbcL,mafK and rps4,and mitochondrial coxl and atp1,obtained from this study and GenBank were used for constructing the molecular phylogenetic trees of Araucariaceae,indicating that the phylogenetic relationships among the three genera of this family should be ((Wollemia,Agathis),Araucaria).On the basis of the fossil calibrations of Wollemia and the two tribes Araucaria and Eutacta of the genus Araucaria,the divergence time of Araucariaceae was estimated to be (308±53) million years ago,that is,the origin of the family was in the Late Carboniferous rather than Triassic as a traditional view.With the same gene combination,the divergence times of the genera Araucaria and Agathis were (246 ±47) and (61±5) Ma,respectively.Statistical analyses on the phylogenetic trees generated by using different genes and comparisons of thedivergence times estimated by using those genes suggested that the chloroplast mafK and rps4 genes are most suitable for investigating the phylogenetic relationships and divergence times of the family Araucariaceae.

  20. Genome sequence and description of Desnuesiella massiliensis gen. nov., sp. nov. a new member of family Clostridiaceae

    Directory of Open Access Journals (Sweden)

    L. Hadjadj

    2016-05-01

    Full Text Available Desnuesiella massiliensis, strain MT10T gen. nov., sp. nov. is a newly proposed genus within the family Clostridiaceae, isolated from the digestive microbiota of a child suffering from kwashiorkor. Desnuesiella massiliensis is a facultatively anaerobic, Gram-positive rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5 503 196-bp long genome (one chromosome but no plasmid contains 5227 protein-coding and 81 RNA genes, including 14 rRNA genes.

  1. Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    OpenAIRE

    Anas M. Alazami; Nisha Patel; Hanan E. Shamseldin; Shamsa Anazi; Mohammed S. Al-Dosari; Fatema Alzahrani; Hadia Hijazi; Muneera Alshammari; Mohammed A. Aldahmesh; Mustafa A. Salih; Eissa Faqeih; Amal Alhashem; Fahad A. Bashiri; Mohammed Al-Owain; Amal Y. Kentab

    2015-01-01

    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, M...

  2. The susceptibility gene screening in a Chinese high-altitude pulmonary edema family by whole-exome sequencing.

    Science.gov (United States)

    Yingzhong, Yang; Yaping, Wang; Jin, Xu; Rili, Ge

    2017-02-20

    High-altitude pulmonary edema (HAPE) is one of idiopathic mountain sicknesses that occur in healthy lowlanders when they quickly ascend to altitudes exceeding 2500 m above sea levels within 1-7 days. Growing evidence suggests that genetics plays an important role in the risk of HAPE. In this study, we recruited a Chinese HAPE family and screened genetic variations in the 7 family members (including 6 family members with a medical history of HAPE and the propositus's mother) by whole-exome sequencing. The results showed 18 genetic variations (9 SNVs and 9 Indels) were related to HAPE. Two SNV sites (CFHR4 (p.L85F) and OXER1 (p.R176C)) were predicted to be damaging and alter protein functions by SIFT, PolyPhen-2 and PROVEAN software. The biological function of OXER1 was highly related to the hypoxia-inducible factor pathway. Therefore, those two sites were identified as candidate pathological variations. Moreover, other SNVs (NMB p.S150P, APOB p.I4194T, EIF4ENIF1 p.Q763P) and Indels (KCNJ12 p.EE333-334E, ANKRD31 p.LMN251-253LN, OR2A14 p.HFFC175-178HFC) were also predicted to be damaging as well, which also might be considered as potential candidate pathological variations related to HAPE. Collectively we firstly screened the susceptibility genes in a Chinese HAPE family by whole-exome sequencing, which will provide new clues for further mechanistic studies of HAPE.

  3. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    DEFF Research Database (Denmark)

    Hu, H; Haas, S A; Chelly, J;

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes ...

  4. Genome sequences of three phytopathogenic species of the Magnaporthaceae family of fungi

    Science.gov (United States)

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), ...

  5. Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila

    DEFF Research Database (Denmark)

    Clifton, Bryan D.; Sanz, Pablo Librado; Yeh, Shu-Dan

    2017-01-01

    Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typical...

  6. Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology.

    Science.gov (United States)

    He, Jingxuan; Sundararajan, Anitha; Devitt, Nicholas P; Schilkey, Faye D; Ramaraj, Thiruvarangan; Melançon, Charles E

    2016-05-05

    Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters.

  7. Breakdown behavior of electronics at variable pulse repetition rates

    OpenAIRE

    Korte, S.; H. Garbe

    2006-01-01

    The breakdown behavior of electronics exposed to single transient electromagnetic pulses is subject of investigations for several years. State-of-the-art pulse generators additionally provide the possibility to generate pulse sequences with variable pulse repetition rate. In this article the influence of this repetition rate variation on the breakdown behavior of electronic systems is described. For this purpose microcontroller systems are examined during line-led exposure to pulses with repe...

  8. Phylogenetic relationships of South China Sea snappers (genus Lutjanus; family Lutjanidae) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Guo, Yusong; Wang, Zhongduo; Liu, Chuwu; Liu, Li; Liu, Yun

    2007-01-01

    Phylogenetic relationships of intra- and interspecies were elucidated based on complete cytochrome b (cyt b) and cytochrome c oxidase subunit II (COII) gene sequences from 12 recognized species of genus Lutjanus Bloch in the South China Sea (SCS). Using the combined data set of consensus cyt b and COII gene sequences, interspecific relationships for all 12 recognized species in SCS were consistent with Allen's morphology-based identifications, with strong correlation between the molecular and morphological characteristics. Monophyly of eight species (L. malabaricus, L. russellii, L. stellatus, L. bohar, L. johnii, L. sebae, L. fulvus, and L. fulviflamma) was strongly supported; however, the pairs L. vitta/L. ophuysenii and L. erythropterus/L. argentimaculatus were more similar than expected We inferred that L. malabaricus exists in SCS, and the introgression caused by hybridization is the reason for the unexpectedly high homogeneity.

  9. A global survey of CRM1-dependent nuclear export sequences in the human deubiquitinase family.

    Science.gov (United States)

    García-Santisteban, Iraia; Bañuelos, Sonia; Rodríguez, Jose A

    2012-01-01

    The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP-USP21 and, to a lesser extent, GFP-OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.

  10. Repetition in Waiting for Godot

    Institute of Scientific and Technical Information of China (English)

    李想; 魏妍

    2015-01-01

    Waiting for Godot is one of the most famous plays written by Samuel Barclay Beckett, and also is the founding work of“Theatre of the Absurd”. In the drama, repetitive phenomena shed light on the whole construction considerably. All the charac-ters were helpless and unthinking. Their dialogues were simple, nonsense and repetitive. Two scenes were cyclical. Repetition was used subtly in order to express the theme of the play, showing mental crisis after depravation of WWII.

  11. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Kaufman, Kenneth M; Linghu, Bolan; Szustakowski, Joseph D; Husami, Ammar; Yang, Fan; Zhang, Kejian; Filipovich, Alexandra H; Fall, Ndate; Harley, John B; Nirmala, N R; Grom, Alexei A

    2014-12-01

    Macrophage activation syndrome (MAS), a life-threatening complication of systemic juvenile idiopathic arthritis (JIA), resembles familial hemophagocytic lymphohistiocytosis (HLH), a constellation of autosomal-recessive immune disorders resulting from deficiency in cytolytic pathway proteins. We undertook this study to test our hypothesis that MAS predisposition in systemic JIA could be attributed to rare gene sequence variants affecting the cytotolytic pathway. Whole-exome sequencing was used in 14 patients with systemic JIA and MAS and in their parents to identify protein-altering single-nucleotide polymorphisms/indels in known HLH-associated genes. To discover new candidate genes, the entire whole-exome sequencing data were filtered to identify protein-altering, rare recessive homozygous, compound heterozygous, and de novo variants with the potential to affect the cytolytic pathway. Heterozygous protein-altering rare variants in the known genes (LYST,MUNC13-4, and STXBP2) were found in 5 of 14 patients with systemic JIA and MAS (35.7%). This was in contrast to only 4 variants in 4 of 29 patients with systemic JIA without MAS (13.8%). Homozygosity and compound heterozygosity analysis applied to the entire whole-exome sequencing data in systemic JIA/MAS revealed 3 recessive pairs in 3 genes and compound heterozygotes in 73 genes. We also identified 20 heterozygous rare protein-altering variants that occurred in at least 2 patients. Many of the identified genes encoded proteins with a role in actin and microtubule reorganization and vesicle-mediated transport. "Cellular assembly and organization" was the top cellular function category based on Ingenuity Pathways Analysis (P < 3.10 × 10(-5) ). Whole-exome sequencing performed in patients with systemic JIA and MAS identified rare protein-altering variants in known HLH-associated genes as well as in new candidate genes. Copyright © 2014 by the American College of Rheumatology.

  12. Amino acid sequence diversity within the family of antibodies bearing the major antiarsonate cross-reactive idiotype of the A strain mouse

    OpenAIRE

    1983-01-01

    VH region amino acid sequences are described for five A/J anti-p- azophenylarsonate (anti-Ars) hybridoma antibodies for which the VL region sequences have previously been determined, thus completing the V domain sequences of these molecules. These antibodies all belong to the family designated Ars-A which bears the major anti-arsonate cross- reactive idiotype (CRI) of the A strain mouse. However, they differ in the degree to which they express the CRI in standard competition radioimmunoassays...

  13. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  14. Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach.

    Science.gov (United States)

    Karageorgos, Ioannis; Mizzi, Clint; Giannopoulou, Efstathia; Pavlidis, Cristiana; Peters, Brock A; Zagoriti, Zoi; Stenson, Peter D; Mitropoulos, Konstantinos; Borg, Joseph; Kalofonos, Haralabos P; Drmanac, Radoje; Stubbs, Andrew; van der Spek, Peter; Cooper, David N; Katsila, Theodora; Patrinos, George P

    2015-06-20

    Cancer, like many common disorders, has a complex etiology, often with a strong genetic component and with multiple environmental factors contributing to susceptibility. A considerable number of genomic variants have been previously reported to be causative of, or associated with, an increased risk for various types of cancer. Here, we adopted a next-generation sequencing approach in 11 members of two families of Greek descent to identify all genomic variants with the potential to predispose family members to cancer. Cross-comparison with data from the Human Gene Mutation Database identified a total of 571 variants, from which 47 % were disease-associated polymorphisms, 26 % disease-associated polymorphisms with additional supporting functional evidence, 19 % functional polymorphisms with in vitro/laboratory or in vivo supporting evidence but no known disease association, 4 % putative disease-causing mutations but with some residual doubt as to their pathological significance, and 3 % disease-causing mutations. Subsequent analysis, focused on the latter variant class most likely to be involved in cancer predisposition, revealed two variants of prime interest, namely MSH2 c.2732T>A (p.L911R) and BRCA1 c.2955delC, the first of which is novel. KMT2D c.13895delC and c.1940C>A variants are additionally reported as incidental findings. The next-generation sequencing-based family genomics approach described herein has the potential to be applied to other types of complex genetic disorder in order to identify variants of potential pathological significance.

  15. Whole genome sequencing of an African American family highlights toll like receptor 6 variants in Kawasaki disease susceptibility

    Science.gov (United States)

    Veeraraghavan, Narayanan; Levy, Eric; Ribeiro dos Santos, Andre M.; Yang, Hai; Hibberd, Martin L.; Tremoulet, Adriana H.; Harismendy, Olivier; Ohno-Machado, Lucila; Burns, Jane C.

    2017-01-01

    Kawasaki disease (KD) is the most common acquired pediatric heart disease. We analyzed Whole Genome Sequences (WGS) from a 6-member African American family in which KD affected two of four children. We sought rare, potentially causative genotypes by sequentially applying the following WGS filters: sequence quality scores, inheritance model (recessive homozygous and compound heterozygous), predicted deleteriousness, allele frequency, genes in KD-associated pathways or with significant associations in published KD genome-wide association studies (GWAS), and with differential expression in KD blood transcriptomes. Biologically plausible genotypes were identified in twelve variants in six genes in the two affected children. The affected siblings were compound heterozygous for the rare variants p.Leu194Pro and p.Arg247Lys in Toll-like receptor 6 (TLR6), which affect TLR6 signaling. The affected children were also homozygous for three common, linked (r2 = 1) intronic single nucleotide variants (SNVs) in TLR6 (rs56245262, rs56083757 and rs7669329), that have previously shown association with KD in cohorts of European descent. Using transcriptome data from pre-treatment whole blood of KD subjects (n = 146), expression quantitative trait loci (eQTL) analyses were performed. Subjects homozygous for the intronic risk allele (A allele of TLR6 rs56245262) had differential expression of Interleukin-6 (IL-6) as a function of genotype (p = 0.0007) and a higher erythrocyte sedimentation rate at diagnosis. TLR6 plays an important role in pathogen-associated molecular pattern recognition, and sequence variations may affect binding affinities that in turn influence KD susceptibility. This integrative genomic approach illustrates how the analysis of WGS in multiplex families with a complex genetic disease allows examination of both the common disease–common variant and common disease–rare variant hypotheses. PMID:28151979

  16. Whole exome sequencing identifies a novel NRL mutation in a Chinese family with autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Gao, Meng; Zhang, Su; Liu, Chunjie; Qin, Yayun; Archacki, Stephen; Jin, Ling; Wang, Yong; Liu, Fei; Chen, Jiaxiang; Liu, Ying; Wang, Jiuxiang; Huang, Mi; Liao, Shengjie; Tang, Zhaohui; Guo, An Yuan; Jiang, Fagang; Liu, Mugen

    2016-01-01

    To investigate the genetic basis and its relationship to the clinical manifestations in a four generation Chinese family with autosomal dominant retinitis pigmentosa. Ophthalmologic examinations including fundus photography, fundus autofluorescence imaging, fundus fluorescein angiography, optical coherence tomography, and a best-corrected visual acuity test were performed to define the clinical features of the patients. We extracted the genomic DNA from peripheral blood samples. The proband's genomic DNA was submitted to the whole exome sequencing. Whole exome sequencing and the subsequent data analysis detected six candidate mutations in the proband of this pedigree. The novel c.146 C>T mutation in NRL was found to be the only mutation that co-segregated with the disease in this pedigree. This mutation resulted in a substitution of proline by a leucine at position 49 of NRL protein (p.P49L). Most importantly, the proline residue at position 49 of NRL is highly conserved from zebrafish to humans. The c.146 C>T mutation was not observed in 200 control individuals. What's more, we performed the luciferase activity assay to prove that this mutation we detected alters the NRL protein function. The c.146 C>T mutation in NRL gene causes autosomal dominant retinitis pigmentosa for this family. Our finding not only expands the mutation spectrum of NRL, but also demonstrates that whole-exome sequencing is a powerful strategy to detect causative genes and mutations in RP patients. This technique may provide a precise diagnosis for rare heterogeneous monogenic disorders such as RP.

  17. Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler

    Directory of Open Access Journals (Sweden)

    Haines Albert

    2010-07-01

    Full Text Available Abstract Background The rate of emergence of human pathogens is steadily increasing; most of these novel agents originate in wildlife. Bats, remarkably, are the natural reservoirs of many of the most pathogenic viruses in humans. There are two bat genome projects currently underway, a circumstance that promises to speed the discovery host factors important in the coevolution of bats with their viruses. These genomes, however, are not yet assembled and one of them will provide only low coverage, making the inference of most genes of immunological interest error-prone. Many more wildlife genome projects are underway and intend to provide only shallow coverage. Results We have developed a statistical method for the assembly of gene families from partial genomes. The method takes full advantage of the quality scores generated by base-calling software, incorporating them into a complete probabilistic error model, to overcome the limitation inherent in the inference of gene family members from partial sequence information. We validated the method by inferring the human IFNA genes from the genome trace archives, and used it to infer 61 type-I interferon genes, and single type-II interferon genes in the bats Pteropus vampyrus and Myotis lucifugus. We confirmed our inferences by direct cloning and sequencing of IFNA, IFNB, IFND, and IFNK in P. vampyrus, and by demonstrating transcription of some of the inferred genes by known interferon-inducing stimuli. Conclusion The statistical trace assembler described here provides a reliable method for extracting information from the many available and forthcoming partial or shallow genome sequencing projects, thereby facilitating the study of a wider variety of organisms with ecological and biomedical significance to humans than would otherwise be possible.

  18. The phylogenetic relationship of the family Lutjanidae based on analyses of AFLP and mitochondrial 12S rRNA sequences

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junbin; LIU Xin

    2006-01-01

    Fishes of the family Lutjanidae are commercially important in South China Sea. However,the phylogeny of Lutjanids is still unclear and there are many controversies over it. Herein, studies about the phylogeny of Lutjanids were performed based on Amplified Fragment Length Polymorphism (AFLP) analysis of genome DNA and sequence analysis of mitochondrial 12S rRNA gene, and 10 Lutjanidae species and 1 Lethrinidae species were employed.The topologies of minimum evolution (ME) trees based on the two analyses respectively were congruent except for positions of genera Pristipomoides and Caesio. The optimal substitution model TrN + G for DNA sequences of 12S rRNA genes in Lutjanids was obtained using MODELTEST 3.6 software and maximum likelihood (ML) analysis supports the topology displayed by the ME tree. The test of log-likelihood suggests that the use of molecular clock calibrations to estimate species divergence time appeared valid. Phylogenetic analyses using AFLP data and DNA sequences of mitochondrial 12S rRNA genes indicated the monophyly of Lutjanus genra. However, further studies are required to reveal the phylogenetic relationship among other genera. In addition, the results demonstrated that AFLP genetic marker was suitable for the phylogenetic analysis of Lutjanids.

  19. Whole-exome sequencing as a diagnostic tool in a family with episodic ataxia type 1.

    Science.gov (United States)

    Tacik, Pawel; Guthrie, Kimberly J; Strongosky, Audrey J; Broderick, Daniel F; Riegert-Johnson, Douglas L; Tang, Sha; El-Khechen, Dima; Parker, Alexander S; Ross, Owen A; Wszolek, Zbigniew K

    2015-03-01

    Complex neurologic phenotypes are inherently difficult to diagnose. Whole-exome sequencing (WES) is a new tool in the neurologist's diagnostic armamentarium. Whole-exome sequencing can be applied to investigate the "diagnostic odyssey" cases. These cases involve patients with rare diseases that likely have a genetic etiology but have failed to be diagnosed by clinical evaluation and targeted gene testing. We describe such a case, a 22-year-old man who had mild intellectual developmental disability and episodes of jerking ataxic movements that affected his whole body. He underwent numerous multidisciplinary and multicentric evaluations throughout his life that failed to establish a clear diagnosis. Following his visit to Mayo Clinic in Jacksonville, Florida, WES was applied for genetic determination of the unknown disorder in the proband and his biological parents and sister. Additional clinical evaluation, magnetic resonance neuroimaging, electromyography, and electroencephalography of the proband were performed to verify the phenotype after the WES results were available. To our knowledge, this is the first report of the application of WES to facilitate the diagnosis of episodic ataxia type 1. This case illustrates that WES supported by clinical data is a useful and time-saving tool in the evaluation of patients with rare and complex hereditary disorders. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. Understanding maximal repetitions in strings

    CERN Document Server

    Crochemore, Maxime

    2008-01-01

    The cornerstone of any algorithm computing all repetitions in a string of length n in O(n) time is the fact that the number of runs (or maximal repetitions) is O(n). We give a simple proof of this result. As a consequence of our approach, the stronger result concerning the linearity of the sum of exponents of all runs follows easily.

  1. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  2. Organization and sequence of the human P gene and identification of a new family of transport proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.T.; Fukai, K.; Spritz, R.A. [Univ. of Wisconsin School of Medicine, Madison, WI (United States)] [and others

    1995-03-20

    We have determined the structure, nucleotide sequence, and polymorphisms of the human P gene. Mutations of the P gene result in type H oculocutaneous albinism (OCA2) in humans and pink-eyed dilution (p) in mice. We find that the human P gene is quite large, consisting of 25 exons spanning 250 to 600 kb in chromosome segment 15q11-q13. The P polypeptide appears to define a novel family of small molecule transporters and may be involved in transport of tyrosine, the precursor to melanin synthesis, within the melanocyte. These results provide the basis for analyses of patients with OCA2 and may point toward eventual pharmacologic treatment of this and related disorders of pigmentation. 40 refs., 5 figs., 3 tabs.

  3. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae.

    Science.gov (United States)

    Song, Yu; Dong, Wenpan; Liu, Bing; Xu, Chao; Yao, Xin; Gao, Jie; Corlett, Richard T

    2015-01-01

    Machilus is a large (c. 100 sp.) genus of trees in the family Lauraceae, distributed in tropical and subtropical East Asia. Both molecular species identification and phylogenetic studies of this morphologically uniform genus have been constrained by insufficient variable sites among frequently used biomarkers. To better understand the mutation patterns in the chloroplast genome of Machilus, the complete plastomes of two species were sequenced. The plastomes of Machilus yunnanensis and M. balansae were 152, 622 and 152, 721 bp, respectively. Seven highly variable regions between the two Machilus species were identified and 297 mutation events, including one micro-inversion in the ccsA-ndhD region, 65 indels, and 231 substitutions, were accurately located. Thirty-six microsatellite sites were found for use in species identification and 95 single-nucleotide changes were identified in gene coding regions.

  4. Comparative Analysis of Complete Chloroplast Genome Sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae

    Directory of Open Access Journals (Sweden)

    Yu eSONG

    2015-08-01

    Full Text Available Machilus is a large (c. 100 spp. genus of trees in the family Lauraceae, distributed in tropical and subtropical East Asia. Both molecular species identification and phylogenetic studies of this morphologically uniform genus have been constrained by insufficient variable sites among frequently-used biomarkers. To better understand the mutation patterns in the chloroplast genome of Machilus, the complete plastomes of two species were sequenced. The plastomes of M. yunnanensis and M. balansae were 152, 622 bp and 152, 721 bp respectively. Seven highly variable regions between the two Machilus species and three of them between Machilus and Cinnamomum were identified and 297 mutation events, including one micro-inversion in the ccsA-ndhD region, 65 indels, and 231 substitutions, were accurately located. Thirty-six microsatellite sites were found for use in species identification and 95 single-nucleotide changes were identified in gene coding regions.

  5. Perceptual Repetition Blindness Effects

    Science.gov (United States)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  6. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-08-01

    Full Text Available Laccases are a class of multi-copper oxidases with industrial potential. In this study, eight laccases (Lac1–8 from Cerrena sp. strain HYB07, a white-rot fungus with high laccase yields, were analyzed. The laccases showed moderate identities to each other as well as with other fungal laccases and were predicted to have high redox potentials except for Lac6. Selected laccase isozymes were heterologously expressed in the yeast Pichia pastoris, and different enzymatic properties were observed. Transcription of the eight laccase genes was differentially regulated during submerged and solid state fermentation, as shown by quantitative real-time polymerase chain reaction and validated reference genes. During 6-day submerged fermentation, Lac7 and 2 were successively the predominantly expressed laccase gene, accounting for over 95% of all laccase transcripts. Interestingly, accompanying Lac7 downregulation, Lac2 transcription was drastically upregulated on days 3 and 5 to 9958-fold of the level on day 1. Consistent with high mRNA abundance, Lac2 and 7, but not other laccases, were identified in the fermentation broth by LC-MS/MS. In solid state fermentation, less dramatic differences in transcript abundance were observed, and Lac3, 7 and 8 were more highly expressed than other laccase genes. Elucidating the properties and expression profiles of the laccase gene family will facilitate understanding, production and commercialization of the fungal strain and its laccases.

  7. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae.

    Science.gov (United States)

    Huang, Ya-Yi; Cho, Shu-Ting; Haryono, Mindia; Kuo, Chih-Horng

    2017-01-01

    Common bermudagrass (Cynodon dactylon (L.) Pers.) belongs to the subfamily Chloridoideae of the Poaceae family, one of the most important plant families ecologically and economically. This grass has a long connection with human culture but its systematics is relatively understudied. In this study, we sequenced and investigated the chloroplast genome of common bermudagrass, which is 134,297 bp in length with two single copy regions (LSC: 79,732 bp; SSC: 12,521 bp) and a pair of inverted repeat (IR) regions (21,022 bp). The annotation contains a total of 128 predicted genes, including 82 protein-coding, 38 tRNA, and 8 rRNA genes. Additionally, our in silico analyses identified 10 sets of repeats longer than 20 bp and predicted the presence of 36 RNA editing sites. Overall, the chloroplast genome of common bermudagrass resembles those from other Poaceae lineages. Compared to most angiosperms, the accD gene and the introns of both clpP and rpoC1 genes are missing. Additionally, the ycf1, ycf2, ycf15, and ycf68 genes are pseudogenized and two genome rearrangements exist. Our phylogenetic analysis based on 47 chloroplast protein-coding genes supported the placement of common bermudagrass within Chloridoideae. Our phylogenetic character mapping based on the parsimony principle further indicated that the loss of the accD gene and clpP introns, the pseudogenization of four ycf genes, and the two rearrangements occurred only once after the most recent common ancestor of the Poaceae diverged from other monocots, which could explain the unusual long branch leading to the Poaceae when phylogeny is inferred based on chloroplast sequences.

  8. Sequence comparisons of odorant receptors among tortricid moths reveal different rates of molecular evolution among family members.

    Directory of Open Access Journals (Sweden)

    Colm Carraher

    Full Text Available In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2, and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants--methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception.

  9. Identification of a novel missense mutation of MIP in a Chinese family with congenital cataracts by target region capture sequencing

    Science.gov (United States)

    Jiang, Bo; chen, Yanhua; Xu, Baisheng; Hong, Nan; Liu, Rongrong; Qi, Ming; Shen, Liping

    2017-01-01

    Congenital cataract is both clinically diverse and genetically heterogeneous. To investigate the underlying genetic defect in three-generations of a Chinese family with autosomal dominant congenital cataracts, we recruited family members who underwent comprehensive ophthalmic examinations. A heterozygous missense mutation c.634G > C (p.G212R) substitution was identified in the MIP gene through target region capture sequencing. The prediction results of PolyPhen-2 and SIFT indicated that this mutation was likely to damage the structure and function of MIP. Confocal microscopy images showed that the intensity of the green fluorescent signal revealed much weaker signal from the mutant compared to the wild-type MIP. The expressed G212R-MIP was diminished and almost exclusively cytoplasmic in the HeLa cells; whereas the WT-MIP was stable dispersed throughout the cytoplasm, and it appeared to be in the membrane structure. Western blot analysis indicated that the protein expression level of the mutant form of MIP was remarkably reduced compared with that of the wild type, however, the mRNA levels of the wild-type and mutant cells were comparable. In conclusion, our study presented genetic and functional evidence for a novel MIP mutation of G212R, which leads to congenital progressive cortical punctate with or without Y suture. PMID:28059152

  10. Candida albicans Agglutinin-Like Sequence (Als Family Vignettes: a Review of Als Protein Structure and Function

    Directory of Open Access Journals (Sweden)

    Lois L. Hoyer

    2016-03-01

    Full Text Available Approximately two decades have passed since the description of the first gene in the Candida albicans ALS (agglutinin-like sequence family. Since that time, much has been learned about the composition of the family and the function of its encoded cell-surface glycoproteins. Solution of the structure of the Als adhesive domain provides the opportunity to evaluate the molecular basis for protein function. This review article is formatted as a series of fundamental questions and explores the diversity of the Als proteins, as well as their role in ligand binding, aggregative effects, and attachment to abiotic surfaces. Interaction of Als proteins with each other, their functional equivalence, and the effects of protein abundance on phenotypic conclusions are also examined. Structural features of Als proteins that may facilitate invasive function are considered. Conclusions that are firmly supported by the literature are presented while highlighting areas that require additional investigation to reveal basic features of the Als proteins, their relatedness to each other, and their roles in C. albicans biology.

  11. Exome sequencing of a colorectal cancer family reveals shared mutation pattern and predisposition circuitry along tumor pathways

    Directory of Open Access Journals (Sweden)

    Suleiman H Suleiman

    2015-09-01

    Full Text Available The molecular basis of cancer and cancer multiple phenotypes are not yet fully understood. Next Generation Sequencing promises new insight into the role of genetic interactions in shaping the complexity of cancer. Aiming to outline the differences in mutation patterns between familial colorectal cancer cases and controls we analyzed whole exomes of cancer tissues and control samples from an extended colorectal cancer pedigree, providing one of the first data sets of exome sequencing of cancer in an African population against a background of large effective size typically with excess of variants. Tumors showed hMSH2 loss of function SNV consistent with Lynch syndrome. Sets of genes harboring insertions-deletions in tumor tissues revealed, however, significant GO enrichment, a feature that was not seen in control samples, suggesting that ordered insertions-deletions are central to tumorigenesis in this type of cancer. Network analysis identified multiple hub genes of centrality. ELAVL1/HuR showed remarkable centrality, interacting specially with genes harboring non-synonymous SNVs thus reinforcing the proposition of targeted mutagenesis in cancer pathways. A likely explanation to such mutation pattern is DNA/RNA editing, suggested here by nucleotide transition-to-transversion ratio that significantly departed from expected values (p-value 5e-6. NFKB1 also showed significant centrality along with ELAVL1, raising the suspicion of viral etiology given the known interaction between oncogenic viruses and these proteins.

  12. Exome sequencing of a colorectal cancer family reveals shared mutation pattern and predisposition circuitry along tumor pathways.

    Science.gov (United States)

    Suleiman, Suleiman H; Koko, Mahmoud E; Nasir, Wafaa H; Elfateh, Ommnyiah; Elgizouli, Ubai K; Abdallah, Mohammed O E; Alfarouk, Khalid O; Hussain, Ayman; Faisal, Shima; Ibrahim, Fathelrahamn M A; Romano, Maurizio; Sultan, Ali; Banks, Lawrence; Newport, Melanie; Baralle, Francesco; Elhassan, Ahmed M; Mohamed, Hiba S; Ibrahim, Muntaser E

    2015-01-01

    The molecular basis of cancer and cancer multiple phenotypes are not yet fully understood. Next Generation Sequencing promises new insight into the role of genetic interactions in shaping the complexity of cancer. Aiming to outline the differences in mutation patterns between familial colorectal cancer cases and controls we analyzed whole exomes of cancer tissues and control samples from an extended colorectal cancer pedigree, providing one of the first data sets of exome sequencing of cancer in an African population against a background of large effective size typically with excess of variants. Tumors showed hMSH2 loss of function SNV consistent with Lynch syndrome. Sets of genes harboring insertions-deletions in tumor tissues revealed, however, significant GO enrichment, a feature that was not seen in control samples, suggesting that ordered insertions-deletions are central to tumorigenesis in this type of cancer. Network analysis identified multiple hub genes of centrality. ELAVL1/HuR showed remarkable centrality, interacting specially with genes harboring non-synonymous SNVs thus reinforcing the proposition of targeted mutagenesis in cancer pathways. A likely explanation to such mutation pattern is DNA/RNA editing, suggested here by nucleotide transition-to-transversion ratio that significantly departed from expected values (p-value 5e-6). NFKB1 also showed significant centrality along with ELAVL1, raising the suspicion of viral etiology given the known interaction between oncogenic viruses and these proteins.

  13. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing.

    Science.gov (United States)

    Bocak, L; Kundrata, R; Fernández, C Andújar; Vogler, A P

    2016-05-11

    The ongoing exploration of biodiversity and the implementation of new molecular tools continue to unveil hitherto unknown lineages. Here, we report the discovery of three species of neotenic beetles for which we propose the new family Iberobaeniidae. Complete mitochondrial genomes and rRNA genes recovered Iberobaeniidae as a deep branch in Elateroidea, as sister to Lycidae (net-winged beetles). Two species of the new genus Iberobaenia, Iberobaenia minuta sp. nov. and Iberobaenia lencinai sp. nov. were found in the adult stage. In a separate incidence, a related sequence was identified in bulk samples of soil invertebrates subjected to shotgun sequencing and mitogenome assembly, which was traced to a larval voucher specimen of a third species of Iberobaenia Iberobaenia shows characters shared with other elateroid neotenic lineages, including soft-bodiedness, the hypognathous head, reduced mouthparts with reduced labial palpomeres, and extremely small-bodied males without strengthening structures due to miniaturization. Molecular dating shows that Iberobaeniidae represents an ancient relict lineage originating in the Lower Jurassic, which possibly indicates a long history of neoteny, usually considered to be evolutionarily short-lived. The apparent endemism of Iberobaeniidae in the Mediterranean region highlights the importance of this biodiversity hotspot and the need for further species exploration even in the well-studied European continent.

  14. Longitudinal study of a heteroplasmic 3460 Leber hereditary optic neuropathy family by multiplexed primer-extension analysis and nucleotide sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.S.; Fahy, E. [Applied Genetics, San Diego, CA (United States); Bodis-Wollner, I. [State Univ. of New York College of Optometry, New York, NY (United States)] [and others

    1996-02-01

    Nucleotide-sequencing and multiplexed primer-extension assays have been used to quantitate the mutant-allele frequency in 14 maternal relatives, spanning three generations, from a family that is heteroplasmic for the primary Leber hereditary optic neuropathy (LHON) mutation at nucleotide 3460 of the mitochondrial genome. There was excellent agreement between the values that were obtained with the two different methods. The longitudinal study shows that the mutant-allele frequency was constant within individual family members over a sampling period of 3.5 years. Second, although there was an overall increase in the mutant-allele frequency in successive generations, segregation in the direction of the mutant allele was not invariant, and there was one instance in which there was a significant decrease in the frequency from parent to offspring. From these two sets of results, and from previous studies of heteroplasmic LHON families, we conclude that there is no evidence for a marked selective pressure that determines the replication, segregation, or transmission of primary LHON mutations to white blood cells and platelets. Instead, the mtDNA molecules are most likely to replicate and segregate under conditions of random drift at the cellular level. Finally, the pattern of transmission in this maternal lineage is compatible with a developmental bottleneck model in which the number of mitochondrial units of segregation in the female germ line is relatively small in relation to the number of mtDNA molecules within a cell. However, this is not an invariant pattern for humans, and simple models of mitochondrial gene transmission are inappropriate at the present time. 37 refs., 4 figs., 1 tab.

  15. Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences.

    Science.gov (United States)

    Pan, Hong-Chun; Zhou, Kai-Ya; Song, Da-Xiang; Qiu, Yang

    2004-03-01

    The family status of the genus Nephila, which belongs to Tetragnathidae currently but Araneidae formerly, was reexamined based on molecular phylogenetic analyses. In the present study, 12S and 18S rRNA gene fragments of eight species of spiders were amplified and sequenced. In addition, 3'-end partial cDNA of major ampullate spidroin-1 (MaSp1) gene of Argiope amoena was cloned and sequenced, and the 3'-end non-repetitive region's cDNA sequence of MaSp1 gene and the predicted amino acid sequence of C-terminal non-repetitive region of MaSp1 were aligned with some previously known sequences. The resulting phylogeny showed that Araneidae and Tetragnathidae are not a sister group in the superfamily Araneoidea, and the genus Nephila is closer to the genera of the family Araneidae rather than to those of Tetragnathidae. We suggest that the genus Nephila should be transferred back to Araneidae. Or the subfamily Nephilinae might be elevated to family level after it was redefined and redelimited. Furthermore, the study showed that 3'-end non-repetitive region's cDNA sequence of MaSp1 gene and C-terminal non-repetitive region's amino acid sequence of MaSp1 are useful molecular markers for phylogenetic analysis of spiders.

  16. The repetitive component of the sunflower genome

    Directory of Open Access Journals (Sweden)

    T. Giordani

    2014-08-01

    Full Text Available The sunflower (Helianthus annuus and species belonging to the genus Helianthus are emerging as a model species and genus for a number of studies on genome evolution. In this review, we report on the repetitive component of the H. annuus genome at the biochemical, molecular, cytological, and genomic levels. Recent work on sunflower genome composition is described, with emphasis on different types of repeat sequences, especially LTR-retrotransposons, of which we report on isolation, characterisation, cytological localisation, transcription, dynamics of proliferation, and comparative analyses within the genus Helianthus.

  17. Identification and analysis of serpin-family genes by homology and synteny across the 12 sequenced Drosophilid genomes

    Directory of Open Access Journals (Sweden)

    Micklem Gos

    2009-10-01

    Full Text Available Abstract Background The Drosophila melanogaster genome contains 29 serpin genes, 12 as single transcripts and 17 within 6 gene clusters. Many of these serpins have a conserved "hinge" motif characteristic of active proteinase inhibitors. However, a substantial proportion (42% lacks this motif and represents non-inhibitory serpin-fold proteins of unknown function. Currently, it is not known whether orthologous, inhibitory serpin genes retain the same target proteinase specificity within the Drosophilid lineage, nor whether they give rise to non-inhibitory serpin-fold proteins or other, more diverged, proteins. Results We collated 188 orthologues to the D. melanogaster serpins from the other 11 Drosophilid genomes and used synteny to find further family members, raising the total to 226, or 71% of the number of orthologues expected assuming complete conservation across all 12 Drosophilid species. In general the sequence constraints on the serpin-fold itself are loose. The critical Reactive Centre Loop (RCL sequence, including the target proteinase cleavage site, is strongly conserved in inhibitory serpins, although there are 3 exceptional sets of orthologues in which the evolutionary constraints are looser. Conversely, the RCL of non-inhibitory serpin orthologues is less conserved, with 3 exceptions that presumably bind to conserved partner molecules. We derive a consensus hinge motif, for Drosophilid inhibitory serpins, which differs somewhat from that of the vertebrate consensus. Three gene clusters appear to have originated in the melanogaster subgroup, Spn28D, Spn77B and Spn88E, each containing one inhibitory serpin orthologue that is present in all Drosophilids. In addition, the Spn100A transcript appears to represent a novel serpin-derived fold. Conclusion In general, inhibitory serpins rarely change their range of proteinase targets, except by a duplication/divergence mechanism. Non-inhibitory serpins appear to derive from inhibitory

  18. 重复序列PCR与多位点分型技术在热带假丝酵母菌基因分型中的比较%Comparative study on genotyping of Candida tropicalis by repetitive sequence-based PCR and multilocus sequence typing

    Institute of Scientific and Technical Information of China (English)

    江岑; 董丹凤; 俞焙秦; 彭奕冰

    2012-01-01

    目的 分析比较重复序列聚合酶链反应(REP-PCR)与多位点分型技术(MLST)在热带假丝酵母菌基因分型中的应用.方法 收集来自5个地区6家医院的147株热带假丝酵母菌,分别以Ca-21、Ca-22、Com-21两两组合为引物,选用最合适的引物对进行 REP-PCR后通过电泳获得REP-PCR型.在不同型别中各挑选3株采用MLST法扩增热带假丝酵母菌的6个管家基因,扩增片段测序后与数据库比对得到相应的序列型(sequence type,ST).结果 REP-PCR以Com21-Com21为引物对分型效果最好,REP-PCR与MLST分型结果一致.147株热带假丝酵母菌产生A~H共 8种REP-PCR型,分别对应MLST的ST146、新型1、ST136、ST127、ST177、ST169、新型2和ST117.结论 REP-PCR与MLST在热带假丝酵母菌的基因分型中分辨率相同,而REP-PCR更为方便迅速,可作为实验室大量菌株分型的首选方法.%Objective To compare repetitive sequence-based polymerase chain reaction ( REP-PCR ) and multilocus sequence typing ( MLST)in genotyping of Candida tropicalis. Methods REP-PCR was performed on 147 clinical isolates of Candida tropicalis collected from 6 hospitals of 5 provinces. Primer Ca-21, Ca-22 and Com-21 were used pairly to find the most suitable pair. Three isolates of Candida tropicalis from different REP-PCR types were tested by MLST. Six loci in housekeeping genes were sequenced after amplification, which were compared with the MLST database to obtain sequence type ( ST ). Results Eight REP-PCR types were found in 147 isolates of Candida tropicalis with primer Com21-Com21, which had the best genotyping effect. Type A-H were corresponding with ST146,NEW1, ST136,ST127,ST177,ST169,NEW2 and ST117 by MLST respectively. Conclusions REP-PCR offers a simple and rapid method for molecular typing, which has a similar discriminatory power with MLST. Therefore, REP-PCR can be the first choice in laboratory, especially for a large number of isolates.

  19. Genomic Organization of Repetitive DNA in Woodpeckers (Aves, Piciformes): Implications for Karyotype and ZW Sex Chromosome Differentiation.

    Science.gov (United States)

    de Oliveira, Thays Duarte; Kretschmer, Rafael; Bertocchi, Natasha Avila; Degrandi, Tiago Marafiga; de Oliveira, Edivaldo Herculano Corrêa; Cioffi, Marcelo de Bello; Garnero, Analía Del Valle; Gunski, Ricardo José

    2017-01-01

    Birds are characterized by a low proportion of repetitive DNA in their genome when compared to other vertebrates. Among birds, species belonging to Piciformes order, such as woodpeckers, show a relatively higher amount of these sequences. The aim of this study was to analyze the distribution of different classes of repetitive DNA-including microsatellites, telomere sequences and 18S rDNA-in the karyotype of three Picidae species (Aves, Piciformes)-Colaptes melanochloros (2n = 84), Colaptes campestris (2n = 84) and Melanerpes candidus (2n = 64)-by means of fluorescence in situ hybridization. Clusters of 18S rDNA were found in one microchromosome pair in each of the three species, coinciding to a region of (CGG)10 sequence accumulation. Interstitial telomeric sequences were found in some macrochromosomes pairs, indicating possible regions of fusions, which can be related to variation of diploid number in the family. Only one, from the 11 different microsatellite sequences used, did not produce any signals. Both species of genus Colaptes showed a similar distribution of microsatellite sequences, with some difference when compared to M. candidus. Microsatellites were found preferentially in the centromeric and telomeric regions of micro and macrochromosomes. However, some sequences produced patterns of interstitial bands in the Z chromosome, which corresponds to the largest element of the karyotype in all three species. This was not observed in the W chromosome of Colaptes melanochloros, which is heterochromatic in most of its length, but was not hybridized by any of the sequences used. These results highlight the importance of microsatellite sequences in differentiation of sex chromosomes, and the accumulation of these sequences is probably responsible for the enlargement of the Z chromosome.

  20. Genomic Organization of Repetitive DNA in Woodpeckers (Aves, Piciformes): Implications for Karyotype and ZW Sex Chromosome Differentiation

    Science.gov (United States)

    Kretschmer, Rafael; Bertocchi, Natasha Avila; Degrandi, Tiago Marafiga; de Oliveira, Edivaldo Herculano Corrêa; Cioffi, Marcelo de Bello; Garnero, Analía del Valle; Gunski, Ricardo José

    2017-01-01

    Birds are characterized by a low proportion of repetitive DNA in their genome when compared to other vertebrates. Among birds, species belonging to Piciformes order, such as woodpeckers, show a relatively higher amount of these sequences. The aim of this study was to analyze the distribution of different classes of repetitive DNA—including microsatellites, telomere sequences and 18S rDNA—in the karyotype of three Picidae species (Aves, Piciformes)—Colaptes melanochloros (2n = 84), Colaptes campestris (2n = 84) and Melanerpes candidus (2n = 64)–by means of fluorescence in situ hybridization. Clusters of 18S rDNA were found in one microchromosome pair in each of the three species, coinciding to a region of (CGG)10 sequence accumulation. Interstitial telomeric sequences were found in some macrochromosomes pairs, indicating possible regions of fusions, which can be related to variation of diploid number in the family. Only one, from the 11 different microsatellite sequences used, did not produce any signals. Both species of genus Colaptes showed a similar distribution of microsatellite sequences, with some difference when compared to M. candidus. Microsatellites were found preferentially in the centromeric and telomeric regions of micro and macrochromosomes. However, some sequences produced patterns of interstitial bands in the Z chromosome, which corresponds to the largest element of the karyotype in all three species. This was not observed in the W chromosome of Colaptes melanochloros, which is heterochromatic in most of its length, but was not hybridized by any of the sequences used. These results highlight the importance of microsatellite sequences in differentiation of sex chromosomes, and the accumulation of these sequences is probably responsible for the enlargement of the Z chromosome. PMID:28081238

  1. Transcriptional properties of BmX, a moderately repetitive silkworm gene that is an RNA polymerase III template.

    OpenAIRE

    1988-01-01

    We analyzed the transcriptional properties of a repetitive sequence element, BmX, that belongs to a large gene family (approximately 2 x 10(4) copies) in the genome of the Bombyx mori silkworm. We discovered BmX elements because of their ability to direct transcription by polymerase III in vitro and used them to test the generality of the properties of previously identified silkworm polymerase III control elements. We found that the signals that act in cis to control BmX transcription strongl...

  2. Structural analysis of the HLA-A/HLA-F subregion: Precise localization of two new multigene families closely associated with the HLA class I sequences

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L.; Carn, G.; Bouric, P. [CNRS, Rennes (France)] [and others

    1996-03-01

    Positional cloning strategies for the hemochromatosis gene have previously concentrated on a target area restricted to a maximum genomic expanse of 400 kb around the HLA-A and HLA-F loci. Recently, the candidate region has been extended to 2-3 Mb on the distal side of the MHC. In this study, 10 coding sequences [hemochromatosis candidate genes (HCG) I to X] were isolated by cDNA selection using YACs covering the HLA-A/HLA-F subregion. Two of these (HCG II and HCG IV) belong to multigene families, as well as other sequences already described in this region, i.e., P5, pMC 6.7, and HLA class I. Fingerprinting of the four YACSs overlapping the region was performed and allowed partial localization of the different multigene family sequences on each YAC without defining their exact positions. Fingerprinting on cosmids isolated from the ICRF chromosome 6-specific cosmid library allowed more precise localization of the redundant sequences in all of the multigene families and revealed their apparent organization in clusters. Further examination of these intertwined sequences demonstrated that this structural organization resulted from a succession of complex phenomena, including duplications and contractions. This study presents a precise description of the structural organization of the HLA-A/HLA-F region and a determination of the sequences involved in the megabase size polymorphism observed among the A3, A24, and A31 haplotypes. 29 refs., 2 figs., 2 tabs.

  3. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae

    Science.gov (United States)

    Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.

    1995-01-01

    Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.

  4. Analysis of a CGG sequence at the FMR-1 locus in fragile X families and in the general population

    Energy Technology Data Exchange (ETDEWEB)

    Snow, K.; Doud, L.K.; Thibodeau, S.N. (Mayo Clinic and Foundation, Rochester, MN (United States)); Hagerman, R. (Denver Children' s Hospital, CO (United States)); Pergolizzi, R.G.; Erster, S.H. (North Shore University Hospital, Manhasset, NY (United States))

    1993-12-01

    In this study, the authors have characterized a CGG repeat at the FMR-1 locus in more than 100 families (more than 500 individuals) presenting for fragile X testing and in 247 individuals from the general population. Both Southern blot and PCR-based assays were evaluated for their ability to detect premutations, full mutations, and variability in normal allele sizes. Among the Southern blot assays, the probes Ox1.09 or StB12.3 with a double restriction-enzyme digest were the most sensitive in detecting both small and large amplifications and, in addition, provided information on methylation of an adjacent CpG island. In the PCR-based assays, analysis of PCR products on denaturing DNA sequencing gels allowed the most accurate determination of CGG repeat number up to approximately 130 repeats. A combination of a Southern blot assay with a double digest and the PCR-sequencing-gel assay detected the spectrum of amplification-type mutations at the FMR-1 locus. In the patient population, a CGG repeat of 51 was the largest to be stably inherited, and a repeat of 57 was the smallest size of premutation to be unstably inherited. When premutations were transmitted by females, the size of repeat correlated with risk of expansion to a full mutation in the next generation. Full mutations (large repeats typically associated with an abnormal methylation pattern and mitotic instability) were associated with clinical and cytogenetic manifestations in males but not necessarily in females. In the control population, the CGG repeat changed from 13 to 61, but 94% of alleles had fewer than 40 repeats. The most frequent allele (34%) was a repeat of 30. One female had an allele (61 repeats) within a range consistent with fragile X premutations, while two other individuals each had a repeat of 52. This suggests that the frequency of unstable alleles in the general population may be [approximately]1%. 34 refs., 5 figs., 3 tabs.

  5. Evaluation of the Genetic Basis of Familial Aggregation of Pacemaker Implantation by a Large Next Generation Sequencing Panel.

    Directory of Open Access Journals (Sweden)

    Patrícia B S Celestino-Soper

    Full Text Available The etiology of conduction disturbances necessitating permanent pacemaker (PPM implantation is often unknown, although familial aggregation of PPM (faPPM suggests a possible genetic basis. We developed a pan-cardiovascular next generation sequencing (NGS panel to genetically characterize a selected cohort of faPPM.We designed and validated a custom NGS panel targeting the coding and splicing regions of 246 genes with involvement in cardiac pathogenicity. We enrolled 112 PPM patients and selected nine (8% with faPPM to be analyzed by NGS.Our NGS panel covers 95% of the intended target with an average of 229x read depth at a minimum of 15-fold depth, reaching a SNP true positive rate of 98%. The faPPM patients presented with isolated cardiac conduction disease (ICCD or sick sinus syndrome (SSS without overt structural heart disease or identifiable secondary etiology. Three patients (33.3% had heterozygous deleterious variants previously reported in autosomal dominant cardiac diseases including CCD: LDB3 (p.D117N and TRPM4 (p.G844D variants in patient 4; TRPM4 (p.G844D and ABCC9 (p.V734I variants in patient 6; and SCN5A (p.T220I and APOB (p.R3527Q variants in patient 7.FaPPM occurred in 8% of our PPM clinic population. The employment of massive parallel sequencing for a large selected panel of cardiovascular genes identified a high percentage (33.3% of the faPPM patients with deleterious variants previously reported in autosomal dominant cardiac diseases, suggesting that genetic variants may play a role in faPPM.

  6. Whole Exome Sequencing Reveals Overlap Between Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis and Familial Hemophagocytic Lymphohistiocytosis

    Science.gov (United States)

    Kaufman, Kenneth M.; Linghu, Bolan; Szustakowski, Joseph D.; Husami, Ammar; Yang, Fan; Zhang, Kejian; Filipovich, Alexandra; Fall, Ndate; Harley, John B.; Nirmala, N.R.; Grom, Alexei A.

    2015-01-01

    Objective Macrophage activation syndrome (MAS), a life-threatening complication of systemic Juvenile Idiopathic Arthritis (SJIA), resembles Familial Hemophagocytic Lymphohistiocytosis (FHLH), a constellation of autosomal recessive immune disorders resulting from deficiency in cytolytic pathway proteins. We hypothesized that MAS predisposition in SJIA could be attributed to rare gene sequence variants affecting the cytotolytic pathway. Methods Whole exome sequencing (WES) was used in 14 SJIA/MAS patients and their parents to identify protein altering SNPs/indels in the known HLH-associated genes. To discover new candidate genes, the entire WES data were filtered to identify protein altering, rare recessive homozygous, compound heterozygous, and de novo variants with the potential to affect the cytolytic pathway. Results Heterozygous protein-altering rare variants in the known genes (LYST, MUNC13-4, and STXBP2) were found in 5 of 14 SJIA/MAS patients (35.7%). This was in contrast to only 4 variants in 4 of 29 (13,7%) SJIA patients without MAS. Homozygosity and compound heterozygosity analysis applied to the entire WES data in SJIAMAS, revealed 3 recessive pairs in 3 genes, and 76 compound heterozygotes in 75 genes. We also identified 22 heterozygous rare protein altering variants that occurred in at least two patients. Many of the identified genes encode proteins with a role in actin and microtubule reorganization and vesicle-mediated transport. “Cellular assembly and organization” was the top cellular function category based on Ingenuity Pathways Analysis (p<3.10E-05). Conclusion WES performed in SJIA/MAS patients identified rare protein altering variants in the known HLH associated genes as well as new candidate genes. PMID:25047945

  7. Next-Generation Sequencing of Two Mitochondrial Genomes from Family Pompilidae (Hymenoptera: Vespoidea Reveal Novel Patterns of Gene Arrangement

    Directory of Open Access Journals (Sweden)

    Peng-Yan Chen

    2016-10-01

    Full Text Available Animal mitochondrial genomes have provided large and diverse datasets for evolutionary studies. Here, the first two representative mitochondrial genomes from the family Pompilidae (Hymenoptera: Vespoidea were determined using next-generation sequencing. The sequenced region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp. was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined. The secondary structure of tRNA genes and rRNA genes were predicted and compared with those of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species, trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea. In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered Formicidae. The genomes presented in this study have enriched the knowledge base of molecular markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic evolutionary processes and phylogeny of Hymenoptera.

  8. Grade repetition in primary school from teachers’ perspective

    Directory of Open Access Journals (Sweden)

    Malinić Dušica

    2011-01-01

    Full Text Available School underachievement is exhibited gradually, in different forms, while grade repetition figures as one of the most prominent forms of underachievement. In order to observe this phenomenon from different perspectives, we conducted a research aimed at identifying teacher attitudes towards grade repetition and grade repeaters in primary school, based on their perceptions of: (a the cause of grade repetition; (b the responsibility for grade repetition and (c grade repetition as an educational measure. The administered questionnaire was constructed for the purposes of the research, descriptive statistics was used, and data were obtained on the sample of 136 teachers from 31 primary schools from the territory of the City of Belgrade. The results point out to the conclusion that teachers perceive grade repetition as, first and foremost, the consequence of students’ lack of interest in school and learning and undisciplined behavior in class. By treating student underachievement mainly as a consequence of laziness, lack of motivation and insufficient effort, teachers transfer responsibility to others, assessing that the personal degree of responsibility for the underachievement of their students is very low. The responsibility for underachievement is perceived more as a problem of the student, his/her family, peer group, than as the problem of teachers themselves. The concluding part points out to certain teaching procedures and methods that have proved to be useful in the prevention of student underachievement.

  9. Exome Sequencing Identifies SMAD3 Mutations as a Cause of Familial Thoracic Aortic Aneurysm and Dissection with Intracranial and Other Arterial Aneurysms

    Science.gov (United States)

    Regalado, Ellen S.; Guo, Dong-chuan; Villamizar, Carlos; Avidan, Nili; Gilchrist, Dawna; McGillivray, Barbara; Clarke, Lorne; Bernier, Francois; Santos-Cortez, Regie L.; Leal, Suzanne M.; Bertoli-Avella, Aida M.; Shendure, Jay; Rieder, Mark J.; Nickerson, Deborah A; Milewicz, Dianna M.

    2014-01-01

    Rationale Thoracic aortic aneurysms leading to acute aortic dissections (TAAD) can be inherited in families in an autosomal dominant manner. As part of the spectrum of clinical heterogeneity of familial TAAD, we recently described families with multiple members that had TAAD and intracranial aneurysms or TAAD and intracranial and abdominal aortic aneurysms inherited in an autosomal dominant manner. Objective To identify the causative mutation in a large family with autosomal dominant inheritance of TAAD with intracranial and abdominal aortic aneurysms by performing exome sequencing of two distantly related individuals with TAAD and identifying shared rare variants. Methods and Results A novel frame shift mutation, p. N218fs (c.652delA), was identified in the SMAD3 gene and segregated with the vascular diseases in this family with a LOD score of 2.52. Sequencing of 181 probands with familial TAAD identified three additional SMAD3 mutations in 4 families, p.R279K (c.836G>A), p.E239K (c.715G>A), and p.A112V (c.235C>T) resulting in a combined LOD score of 5.21. These four mutations were notably absent in 2300 control exomes. SMAD3 mutations were recently described in patients with Aneurysms Osteoarthritis Syndrome and some of the features of this syndrome were identified in individuals in our cohort, but these features were notably absent in many SMAD3 mutation carriers. Conclusions SMAD3 mutations are responsible for 2% of familial TAAD. Mutations are found in families with TAAD alone, along with families with TAAD, intracranial aneurysms, aortic and bilateral iliac aneurysms segregating in an autosomal dominant manner. PMID:21778426

  10. Exome sequencing of germline DNA from non-BRCA1/2 familial breast cancer cases selected on the basis of aCGH tumor profiling.

    Directory of Open Access Journals (Sweden)

    Florentine S Hilbers

    Full Text Available The bulk of familial breast cancer risk (∼70% cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH. Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.

  11. Whole-Exome Sequencing Identifies Homozygous GPR161 Mutation in a Family with Pituitary Stalk Interruption Syndrome

    Science.gov (United States)

    Karaca, Ender; Buyukkaya, Ramazan; Pehlivan, Davut; Charng, Wu-Lin; Yaykasli, Kursat O.; Bayram, Yavuz; Gambin, Tomasz; Withers, Marjorie; Atik, Mehmed M.; Arslanoglu, Ilknur; Bolu, Semih; Erdin, Serkan; Buyukkaya, Ayla; Yaykasli, Emine; Jhangiani, Shalini N.; Muzny, Donna M.; Gibbs, Richard A.

    2015-01-01

    Context: Pituitary stalk interruption syndrome (PSIS) is a rare, congenital anomaly of the pituitary gland characterized by pituitary gland insufficiency, thin or discontinuous pituitary stalk, anterior pituitary hypoplasia, and ectopic positioning of the posterior pituitary gland (neurohypophysis). The clinical presentation of patients with PSIS varies from isolated growth hormone (GH) deficiency to combined pituitary insufficiency and accompanying extrapituitary findings. Mutations in HESX1, LHX4, OTX2, SOX3, and PROKR2 have been associated with PSIS in less than 5% of cases; thus, the underlying genetic etiology for the vast majority of cases remains to be determined. Objective: We applied whole-exome sequencing (WES) to a consanguineous family with two affected siblings who have pituitary gland insufficiency and radiographic findings of hypoplastic (thin) pituitary gland, empty sella, ectopic neurohypophysis, and interrupted pitiutary stalk—characteristic clinical diagnostic findings of PSIS. Design and Participants: WES was applied to two affected and one unaffected siblings. Results: WES of two affected and one unaffected sibling revealed a unique homozygous missense mutation in GPR161, which encodes the orphan G protein–coupled receptor 161, a protein responsible for transducing extracellular signals across the plasma membrane into the cell. Conclusion: Mutations of GPR161 may be implicated as a potential novel cause of PSIS. PMID:25322266

  12. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer's disease.

    Science.gov (United States)

    Lalli, M A; Bettcher, B M; Arcila, M L; Garcia, G; Guzman, C; Madrigal, L; Ramirez, L; Acosta-Uribe, J; Baena, A; Wojta, K J; Coppola, G; Fitch, R; de Both, M D; Huentelman, M J; Reiman, E M; Brunkow, M E; Glusman, G; Roach, J C; Kao, A W; Lopera, F; Kosik, K S

    2015-11-01

    We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer's disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer's disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0 ± 5.2 years compared with 41.1 ± 7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer's AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer's disease AAO and open potential avenues for therapy.

  13. Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    Directory of Open Access Journals (Sweden)

    Anas M. Alazami

    2015-01-01

    Full Text Available Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS. We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.

  14. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families.

    Science.gov (United States)

    Alazami, Anas M; Patel, Nisha; Shamseldin, Hanan E; Anazi, Shamsa; Al-Dosari, Mohammed S; Alzahrani, Fatema; Hijazi, Hadia; Alshammari, Muneera; Aldahmesh, Mohammed A; Salih, Mustafa A; Faqeih, Eissa; Alhashem, Amal; Bashiri, Fahad A; Al-Owain, Mohammed; Kentab, Amal Y; Sogaty, Sameera; Al Tala, Saeed; Temsah, Mohamad-Hani; Tulbah, Maha; Aljelaify, Rasha F; Alshahwan, Saad A; Seidahmed, Mohammed Zain; Alhadid, Adnan A; Aldhalaan, Hesham; AlQallaf, Fatema; Kurdi, Wesam; Alfadhel, Majid; Babay, Zainab; Alsogheer, Mohammad; Kaya, Namik; Al-Hassnan, Zuhair N; Abdel-Salam, Ghada M H; Al-Sannaa, Nouriya; Al Mutairi, Fuad; El Khashab, Heba Y; Bohlega, Saeed; Jia, Xiaofei; Nguyen, Henry C; Hammami, Rakad; Adly, Nouran; Mohamed, Jawahir Y; Abdulwahab, Firdous; Ibrahim, Niema; Naim, Ewa A; Al-Younes, Banan; Meyer, Brian F; Hashem, Mais; Shaheen, Ranad; Xiong, Yong; Abouelhoda, Mohamed; Aldeeri, Abdulrahman A; Monies, Dorota M; Alkuraya, Fowzan S

    2015-01-13

    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.

  15. Repetition in English Political Public Speaking

    Institute of Scientific and Technical Information of China (English)

    李红梅

    2010-01-01

    Repetition is frequently used in English political public speaking to make it easy to be remembered and powerful to move the feelings of the public. This paper is intended to analyze the functions of repetition and different levels of repetition to highlight the significance of repetition in English political public speaking and the ability of using it in practice.

  16. REPdenovo: Inferring De Novo Repeat Motifs from Short Sequence Reads.

    Directory of Open Access Journals (Sweden)

    Chong Chu

    Full Text Available Repeat elements are important components of eukaryotic genomes. One limitation in our understanding of repeat elements is that most analyses rely on reference genomes that are incomplete and often contain missing data in highly repetitive regions that are difficult to assemble. To overcome this problem we develop a new method, REPdenovo, which assembles repeat sequences directly from raw shotgun sequencing data. REPdenovo can construct various types of repeats that are highly repetitive and have low sequence divergence within copies. We show that REPdenovo is substantially better than existing methods both in terms of the number and the completeness of the repeat sequences that it recovers. The key advantage of REPdenovo is that it can reconstruct long repeats from sequence reads. We apply the method to human data and discover a number of potentially new repeats sequences that have been missed by previous repeat annotations. Many of these sequences are incorporated into various parasite genomes, possibly because the filtering process for host DNA involved in the sequencing of the parasite genomes failed to exclude the host derived repeat sequences. REPdenovo is a new powerful computational tool for annotating genomes and for addressing questions regarding the evolution of repeat families. The software tool, REPdenovo, is available for download at https://github.com/Reedwarbler/REPdenovo.

  17. Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification.

    Science.gov (United States)

    Becker, Kailey E; Thomas, Mary C; Martini, Samer; Shuipys, Tautvydas; Didorchuk, Volodymyr; Shanker, Rachyl M; Laten, Howard M

    2016-10-01

    Transposable elements (TEs) dominate the landscapes of most plant and animal genomes. Once considered junk DNA and genetic parasites, these interspersed, repetitive DNA elements are now known to play major roles in both genetic and epigenetic processes that sponsor genome variation and regulate gene expression. Knowledge of TE consensus sequences from elements in species whose genomes have not been sequenced is limited, and the individual TEs that are encountered in clones or short-reads rarely represent potentially canonical, let alone, functional representatives. In this study, we queried the Repbase database with eight BAC clones from white clover (Trifolium repens), identified a large number of candidate TEs, and used polymerase chain reaction and Sanger sequencing to create consensus sequences for three new TE families. The results show that TE family consensus sequences can be obtained experimentally in species for which just a single, full-length member of a TE family has been sequenced.

  18. Curious Repetitions in Magnetars

    Science.gov (United States)

    Archibald, Robert

    2016-07-01

    Magnetars, the slowly spinning branch of the pulsar family with extremely high inferred dipole magnetic fields, often display bizarre spin behaviour rarely seen in their more typical rotation-powered cousins. In this talk, I will tell a tale of two magnetars, 1E 1048.1-5937 and 4U 0142+61 -- both of which seem to be repeating themselves. 1E 1048.1-5937 has, three times, shown flux increases of a factor of ~3 which which decayed over hundreds of days, followed months later by unique order of magnitude torque oscillations. 4U 0142+61, on the other hand, has displayed only short-term, i.e. minutes long, flux increases. In 2006, and now again in 2014, 4U 0142+61 has had typical 1E-7 Hz spin-up glitches which then over-recover on a timescale of weeks, leading to a net spin-down event associated with these short-term flux increases. Both of these sources seem to display a coupling between their X-ray flux and spin-down, but at vastly different timescales. By comparing these repeating events, we will try to shed some new light on the physics driving these extreme objects.

  19. REPETITIVE CLUSTER-TILTED ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shunhua; Zhang Yuehui

    2012-01-01

    Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.

  20. Exome sequencing identifies a novel and a recurrent BBS1 mutation in Pakistani families with Bardet-Biedl syndrome

    NARCIS (Netherlands)

    Ajmal, M.; Khan, M.I.; Neveling, K.; Tayyab, A.; Jaffar, S.; Sadeque, A.; Ayub, H.; Abbasi, N.M.; Riaz, M.; Micheal, S.; Gilissen, C.F.H.A.; Ali, S.H.; Azam, M.; Collin, R.W.J.; Cremers, F.P.M.; Qamar, R.

    2013-01-01

    PURPOSE: To determine the genetic cause of Bardet-Biedl syndrome (BBS) in two consanguineous Pakistani families. METHODS: Clinical characterization of the affected individuals in both families was performed with ophthalmic examination, electroretinography, electrocardiography, and liver and renal

  1. Could the DiversiLab® semi-automated repetitive-sequence-based PCR be an acceptable technique for typing isolates of Pseudomonas aeruginosa? An answer from our experience and a review of the literature.

    Science.gov (United States)

    Brossier, Florence; Micaelo, Maïté; Luyt, Charles-Edouard; Lu, Qin; Chastre, Jean; Arbelot, Charlotte; Trouillet, Jean-Louis; Combes, Alain; Rouby, Jean-Jacques; Jarlier, Vincent; Aubry, Alexandra

    2015-12-01

    Recently the DiversiLab® (DL) system (bioMérieux) was developed as an automated platform that uses repetitive element polymerase chain reaction (rep-PCR) technology for standardized, reproducible DNA fingerprinting of bacteria. The purpose of this study was to evaluate the usefulness of DL rep-PCR for typing Pseudomonas aeruginosa isolates. The performance of DL rep-PCR was compared with that of pulsed-field gel electrophoresis (PFGE) in a prospective multicenter study of patients with ventilator-associated pneumonia due to P. aeruginosa, conducted in 3 intensive care units over a 31-month period. In total, 203 P. aeruginosa isolates from 66 patients, from whom at least 2 consecutive respiratory samples each were collected more than 48 h apart, were typed using DL rep-PCR. Forty isolates (corresponding to 20 patients) were also typed using PFGE of SpeI-digested DNA. The typeability was 100% with DL rep-PCR and 95% with PFGE. The discriminatory power was close for DL rep-PCR and for PFGE (Simpson's diversity indices of 0.901 and 0.947, respectively). Insufficient agreement between DL rep-PCR and PFGE typing results was observed for the 40 selected isolates (adjusted Rand coefficient of 0.419), mostly due to isolates of the same DL rep-PCR type but of different PFGE types (adjusted Wallace coefficients of 0.306 for DL rep-PCR with PFGE, and of 0.667 for PFGE with DL rep-PCR). Considered together with published data, DL rep-PCR results should be interpreted with caution for the investigation of outbreaks caused by P. aeruginosa and evaluated in conjunction with epidemiological data.

  2. Targeted Genes Sequencing Identified a Novel 15 bp Deletion on GJA8 in a Chinese Family with Autosomal Dominant Congenital Cataracts

    Institute of Scientific and Technical Information of China (English)

    Han-Yi Min; Peng-Peng Qiao; Asan; Zhi-Hui Yan; Hui-Feng Jiang; Ya-Ping Zhu; Hui-Qian Du

    2016-01-01

    Background:Congenital cataract (CC) is the leading cause of visual impairment or blindness in children worldwide.Because of highly genetic and clinical heterogeneity,a molecular diagnosis of the lens disease remains a challenge.Methods:In this study,we tested a three-generation Chinese family with autosomal dominant CCs by targeted sequencing of 45 CC genes on next generation sequencing and evaluated the pathogenicity of the detected mutation by protein structure,pedigree validation,and molecular dynamics (MD) simulation.Results:A novel 15 bp deletion on GJA8 (c.426_440delGCTGGAGGGGACCCT or p.143_147delLEGTL) was detected in the family.The deletion,concemed with an in-frame deletion of 5 amino acid residues in a highly evolutionarily conserved region within the cytoplasmic loop domain of the gap junction channel protein connexin 50 (Cx50),was in full cosegregation with the cataract phenotypes in the family but not found in 1100 control exomes.MD simulation revealed that the introduction of the deletion destabilized the Cx50 gap junction channel,indicating the deletion as a dominant-negative mutation.Conclusions:The above results support the pathogenic role of the 15 bp deletion on GJA8 in the Chinese family and demonstrate targeted genes sequencing as a resolution to molecular diagnosis of CCs.

  3. Ethnic differences in family trajectories of young adult women in the Netherlands: Timing and sequencing of events

    NARCIS (Netherlands)

    Kleinepier, T.; de Valk, H.A.G.

    2016-01-01

    Background: Despite extensive research on the family behavior of young adults, family dynamics of children of migrants remain largely unexplored. This is unfortunate as family transitions are strongly interlinked with transitions in other domains (e.g., education, work) and predictive for outcomes l

  4. Sequence and expression pattern of a novel human orphan G-protein-coupled receptor, GPRC5B, a family C receptor with a short amino-terminal domain

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    2000-01-01

    the receptors currently assigned to family C. However, our results strongly indicate that RAIG1 and GPRC5B form a new subgroup of family C characterized by short ATDs. GPRC5B mRNA is widely expressed in peripheral and central tissues with highest abundance in kidney, pancreas, and testis. This mRNA expression...... from an expressed sequence tag clone that contained the entire open reading frame of the transcript encoding a protein of 395 amino acids. Analysis of the protein sequence reveal that GPRC5B contains a signal peptide and seven transmembrane alpha-helices, which is a hallmark of G......-protein-coupled receptors (GPCRs). GPRC5B displays homology to retinoic acid-inducible gene 1 (RAIG1, 33% sequence identity) and to several family C (mGluR-like) GPCRs (20-25% sequence identity). Both RAIG1 and GPRC5B have short extracellular amino-terminal domains (ATDs) that contrast the very long ATDs characterizing...

  5. PCR-SSCP and sequence analysis of three Odontotermes spp. (order: isoptera; family: termitidae) on the basis of partial 16SrRNA gene.

    Science.gov (United States)

    Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh; Sobti, Ranbir Chander

    2009-10-01

    Partial 16S gene fragments were amplified by using specific primers in few species/populations of termites of the genus Odontotermes (Isoptera:Termitidae:Macrotermitinae), and the PCR products were subjected to SSCP analysis. Three haplotypes obtained were subjected to sequencing. The sequences obtained were characterized to see the frequencies of each nucleotide bases. High A + T content was observed. The inter-specific pairwise sequence divergence in Odontotermes spp. ranged from 0% to 4.8% across the entire 16S gene fragment. Identical sequences were found between two populations of O. horni. Individuals of different species having Type-I conformational pattern, i.e. O. obesus (-AI) and O. horni (-MI), as well as Type-II of O. obesus (-UII) and O. bhagwatii (-CHII) had no percent diversity. Phylogenetic trees drawn on the basis of distance Neighbour-joining method revealed clustering of individuals according to their genera and families.

  6. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart.

    Science.gov (United States)

    Kakimoto, Yu; Tanaka, Masayuki; Kamiguchi, Hiroshi; Hayashi, Hideki; Ochiai, Eriko; Osawa, Motoki

    2016-05-15

    Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes)

    Science.gov (United States)

    Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Villa, Mateo Andres; de Oliveira, Ezequiel Aguiar; Tanomtong, Alongklod; Yano, Cassia Fernanda; Supiwong, Weerayuth; Chaveerach, Arunrat

    2015-01-01

    Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes. PMID:26067030

  8. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes.

    Directory of Open Access Journals (Sweden)

    Marcelo de Bello Cioffi

    Full Text Available Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.

  9. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  10. ProfileGrids as a new visual representation of large multiple sequence alignments: a case study of the RecA protein family

    Directory of Open Access Journals (Sweden)

    Abajian Aaron C

    2008-12-01

    Full Text Available Abstract Background Multiple sequence alignments are a fundamental tool for the comparative analysis of proteins and nucleic acids. However, large data sets are no longer manageable for visualization and investigation using the traditional stacked sequence alignment representation. Results We introduce ProfileGrids that represent a multiple sequence alignment as a matrix color-coded according to the residue frequency occurring at each column position. JProfileGrid is a Java application for computing and analyzing ProfileGrids. A dynamic interaction with the alignment information is achieved by changing the ProfileGrid color scheme, by extracting sequence subsets at selected residues of interest, and by relating alignment information to residue physical properties. Conserved family motifs can be identified by the overlay of similarity plot calculations on a ProfileGrid. Figures suitable for publication can be generated from the saved spreadsheet output of the colored matrices as well as by the export of conservation information for use in the PyMOL molecular visualization program. We demonstrate the utility of ProfileGrids on 300 bacterial homologs of the RecA family – a universally conserved protein involved in DNA recombination and repair. Careful attention was paid to curating the collected RecA sequences since ProfileGrids allow the easy identification of rare residues in an alignment. We relate the RecA alignment sequence conservation to the following three topics: the recently identified DNA binding residues, the unexplored MAW motif, and a unique Bacillus subtilis RecA homolog sequence feature. Conclusion ProfileGrids allow large protein families to be visualized more effectively than the traditional stacked sequence alignment form. This new graphical representation facilitates the determination of the sequence conservation at residue positions of interest, enables the examination of structural patterns by using residue physical

  11. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species.

    Science.gov (United States)

    Gupta, R S

    1995-11-01

    The heat shock protein (Hsp) sequences, because of their ubiquity and high degree of conservation, provide useful models for phylogenetic analysis. In this paper I have carried out a global alignment of all available sequences (a total of 31) for the 90-kD heat shock protein (Hsp90) family. The minimum amino acid identity that is seen between presently known Hsp90 homologs is about 40% over the entire length, indicating that it is a highly conserved protein. Based on the alignment, a number of signature sequences that either are distinctive of the Hsp90 family or that distinguish between the cytosolic and the endoplasmic reticular forms of Hsp90 have been identified. Detailed phylogenetic analyses based on Hsp90 sequences reported here strongly indicate that the cytosolic and the endoplasmic reticulum (ER) resident forms of Hsp90 constitute paralogous gene families which arose by a gene duplication event that took place very early in the evolution of eukaryotic cells. A minimum of two additional gene duplication events, which took place at a later time, are required to explain the presence of two different forms of Hsp90 that are found in fungi and vertebrate species. In a consensus neighbor-joining bootstrap tree based on Hsp90 sequences, plants and animals species grouped together 989 times of 1,000 (a highly significant score), indicating a closer relationship between them as compared to fungi. A closer affiliation of plant and animal species was also observed in the maximum-parsimony tree, although the relationship was not significantly supported by this method. A survey of the recent literature on this subject indicates that depending on the protein sequence and the methods of phylogenetic analysis, the animal species are indicated as closer relatives to either plants or fungi with significant statistical support for both topologies. Thus the relationship among the animal, plant, and fungi kingdoms remains an unresolved issue at the present time.

  12. Maturity-onset diabetes of the young type 5 in a family with diabetes and mild kidney disease diagnosed by whole exome sequencing.

    Science.gov (United States)

    Wentworth, J M; Lukic, V; Bahlo, M; Finlay, M; Nguyen, C; Morahan, G; Harrison, L C

    2014-11-01

    Exome sequencing is being increasingly used to identify disease-associated gene mutations. We used whole exome sequencing to determine the genetic basis of a syndrome of diabetes and renal disease affecting a mother and her son. We identified a mutation in the hepatocyte nuclear factor 1-b (HNF1B) gene that encoded a methionine to valine amino acid change (M160V) in the HNF1B protein. This leads us to the previously unappreciated diagnosis of maturity-onset diabetes of the young type 5 and provided a basis for genetic counselling of other family members. © 2014 The Authors; Internal Medicine Journal © 2014 Royal Australasian College of Physicians.

  13. The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat.

    OpenAIRE

    Varnum, B C; Ma, Q F; T. H. Chi; Fletcher, B.; Herschman, H.R.

    1991-01-01

    The TIS11 primary response gene is rapidly and transiently induced by both 12-O-tetradecanoylphorbol-13-acetate and growth factors. The predicted TIS11 protein contains a 6-amino-acid repeat, YKTELC. We cloned two additional cDNAs, TIS11b and TIS11d, that contain the YKTELC sequence. TIS11, TIS11b, and TIS11d proteins share a 67-amino-acid region of sequence similarity that includes the YKTELC repeat and two cysteine-histidine containing repeats. TIS11 gene family members are not coordinately...

  14. Genetic typing of vibrio parahaemolyticus with enterobacterial repetitive intergenic consensus (ERIC) sequences%副溶血性弧菌肠道细菌基因间重复序列基因分型研究

    Institute of Scientific and Technical Information of China (English)

    宋启发; 叶硕; 徐景野; 章丹阳

    2013-01-01

    目的 检测副溶血性弧菌热稳定溶血素(TDH)基因(tdh),并采用肠道细菌基因间重复序列(Enterobacterial Repetitive Intergenic Consensus-PCR,ERIC-PCR)基因分型技术对tdh阳性和阴性菌株进行聚类分析.方法 PCR法扩增79株分离自患者和海产品中的副溶血性弧菌tdh基因.ERIC-PCR分型PCR产物中某一特定大小片段存在标记为1,否则标记为0,形成二进制独特矩阵,定义为一个基因型,用聚类分析软件NTsys 2.10e对所有菌株、tdh阳性组和阴性组进行聚类分析.结果 患者组、海产品组中分离菌株tdh阳性率分别为87.8% (43/49)和3.3% (1/30),患者中所分离的副溶血性弧菌tdh阳性率明显高于环境中所分离的(x2=19.11,P<0.01).79例菌株可获得产物长度160 bp、360 bp、420 bp、500 bp、680 bp、800 bp、950 bp、1 100 bp、1 350 bp、1 550 bp、1 800 bp、2 100 bp和2400 bp共13种大小不同的PCR产物片段,所有菌株根据扩增片段分布可分为17类,有3个明显族.结论 ERIC-PCR聚类分析结果表明,我国分离的副溶血性弧菌具有较高基因多态性,tdh阴性组离散度高于tdh阳性组.

  15. Repetition suppression and repetition priming are processing outcomes.

    Science.gov (United States)

    Wig, Gagan S

    2012-01-01

    Abstract There is considerable evidence that repetition suppression (RS) is a cortical signature of previous exposure to the environment. In many instances RS in specific brain regions is accompanied by improvements in specific behavioral measures; both observations are outcomes of repeated processing. In understanding the mechanism by which brain changes give rise to behavioral changes, it is important to consider what aspect of the environment a given brain area or set of areas processes, and how this might be expressed behaviorally.

  16. Sarcocystis neurona merozoites express a family of immunogenic surface antigens that are orthologues of the Toxoplasma gondii surface antigens (SAGs) and SAG-related sequences.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-02-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).

  17. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    2011-03-01

    Full Text Available Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095, a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia.

  18. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    2011-03-01

    Full Text Available Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095, a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia.

  19. Cohesive Function of Lexical Repetition in Text

    Institute of Scientific and Technical Information of China (English)

    张莉; 卢沛沛

    2013-01-01

    Lexical repetition is the most direct form of lexical cohesion,which is the central device for making texts hang together. Although repetition is the most direct way to emphasize,it performs the cohesive effect more apparently.

  20. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2015-01-01

    Full Text Available Background. Retinitis pigmentosa (RP is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS. Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  1. Draft Genome Sequence of Tokyovirus, a Member of the Family Marseilleviridae Isolated from the Arakawa River of Tokyo, Japan

    Science.gov (United States)

    2016-01-01

    Members of the Marseilleviridae family are large DNA viruses with icosahedral particles that infect Acanthamoeba cells. This report presents a new Marseilleviridae family member discovered in a water/soil sample from a river in Tokyo, named Tokyovirus, with genome size of 370 to 380 kb. PMID:27284144

  2. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression

    Science.gov (United States)

    Thomas, Shelia D.; Rouchka, Eric C.; Miller, Donald M.

    2016-01-01

    G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common

  3. Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification.

    Science.gov (United States)

    Ghatani, Sudeep; Shylla, Jollin Andrea; Roy, Bishnupada; Tandon, Veena

    2014-09-15

    Amphistomiasis, a neglected trematode infectious disease of ruminants, is caused by numerous species of amphistomes belonging to six families under the Superfamily Paramphistomoidea. In the present study, four frequently used DNA markers, viz. nuclear ribosomal 28S (D1-D3 regions), 18S and ITS2 and mitochondrial COI genes, as well as sequence motifs from these genes were evaluated for their utility in species characterization of members of the amphistomes' Family Gastrothylacidae commonly prevailing in Northeast India. In sequence and phylogenetic analyses the COI gene turned out to be the most useful marker in identifying the gastrothylacid species, with the exception of Gastrothylax crumenifer, which showed a high degree of intraspecific variations among its isolates. The sequence analysis data also showed the ITS2 region to be effective for interspecies characterization, though the 28S and 18S genes were found unsuitable for the purpose. On the other hand, sequence motif analysis data revealed the motifs from the COI gene to be highly conserved and specific for their target species which allowed accurate in silico identification of the gastrothylacid species irrespective of their intraspecific differences. We propose the use of COI motifs generated in the study as a potential tool for identification of these species.

  4. Molecular characterization of a cytokinin-inducible periwinkle protein showing sequence homology with pathogenesis-related proteins and the Bet v 1 allergen family.

    Science.gov (United States)

    Carpin, S; Laffer, S; Schoentgen, F; Valenta, R; Chénieux, J C; Rideau, M; Hamdi, S

    1998-03-01

    Cytokinin treatment of periwinkle callus cultures increased the accumulation of a protein, designated T1, in two-dimensional separated protein extracts. The first 30 NH2-terminal amino acids were determined by Edman degradation and showed significant sequence homology with intracellular pathogenesis-related (IPR) plant proteins and the Bet v 1 allergen family. The deduced amino acid sequence of cDNAs coding for T1, isolated by RT-PCR and 5' RACE-PCR, exhibited an average sequence identity of 40% with both IPR and Bet v 1-related allergens. T1 and all related proteins contained a p-loop motif typically found in nucleotide-binding proteins as the most conserved sequence feature. Northern blot analysis showed that cytokinin treatment of periwinkle callus induced T1 transcripts, whereas addition of 2,4-dichlorophenoxyacetic acid inhibited this accumulation. Hybridization of genomic periwinkle DNA with the T1 cDNA suggested that the protein is encoded by a single-copy gene. Immunoblot studies with a panel of Bet v 1-specific antibodies and sera from Bet v 1 allergic individuals identified T1 as a protein that is immunologically distinct from the Bet v 1 allergen family and has no allergenic properties.

  5. Characterization of a DNA sequence family in the Prader-Willi/Angelman syndrome chromosome region in 15q11-q13

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, B.; Knoblauch, H.; Buiting, K.; Horsthemke, B. (Universitaetsklinikum Essen (Germany))

    1993-04-01

    IR4-3R (D15S11) is an anonymous DNA sequence from human chromosome 15. Using YAC cloning and restriction enzyme analysis, the authors have found that IR4-3R detects five related DNA sequences, which are spread over 700 kb within the Prader-Willi/Angelman syndrome chromosome region in 15q11-q 13. The RsaI and StyI polymorphisms, which were described previously, are associated with the most proximal copy of IR4-3R and are in strong linkage disequilibrium. IR4-3R represents the third DNA sequence family that has been identified in 15q11-q13. 14 refs., 2 figs., 1 tab.

  6. Family migration and mobility sequences in the United States: Spatial mobility in the context of the life course

    Directory of Open Access Journals (Sweden)

    Suzanne Davies Withers

    2007-12-01

    Full Text Available Significant changes in family composition in the past quarter-century raise important questions about life-course outcomes embedded in these family changes, especially in relation to the migratory and mobility patterns of individuals and families. The classic distinction between long-distance/employment and short-distance/housing-related moves may be eroding. Patterns of movement appear much less dichotomous and more diverse as family structures become more diverse. Using the Panel Study of Income Dynamics this study shows that the previous research, which suggested relatively simple links between long-distance and short-distance moves, is an over-simplification. Moreover, there is much more unintended movement at both migratory and mobility scales suggesting the economic models of employment migration may be missing important family dynamics in the migration mobility process.

  7. The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae

    Directory of Open Access Journals (Sweden)

    Brooke A. Ring

    2010-07-01

    Full Text Available The Iridoviridae family are large viruses (~120-200 nm that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs for frog virus 3 to 212,482 bases encoding 211 ORFs for Chilo iridescent virus. The family Iridoviridae is currently subdivided into five genera: Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus. Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish. With such a diverse array of hosts, there is great diversity in gene content between different genera. To understand the origin of iridoviruses, we explored the phylogenetic relationship between individual iridoviruses and defined the core-set of genes shared by all members of the family. In order to further explore the evolutionary relationship between the Iridoviridae family repetitive sequences were identified and compared. Each genome was found to contain a set of unique repetitive sequences that could be used in future virus identification. Repeats common to more than one virus were also identified and changes in copy number between these repeats may provide a simple method to differentiate between very closely related virus strains. The results of this paper will be useful in identifying new iridoviruses and determining their relationship to other members of the family.

  8. A remote but significant sequence homology between glycoside hydrolase clan GH-H and glycoside hydrolase family GH 31

    DEFF Research Database (Denmark)

    Janecek, S.; Svensson, Birte; MacGregor, E.A.

    2007-01-01

    , however, proposed for clan GH-H with GH31. A sequence alignment, based on the idea that residues equivalent in the primordial catalytic GH-H/GH31 (β/α)8-barrel may not be found in the present-day GH-H and GH31 structures at strictly equivalent positions, shows remote sequence homologies covering β3, β4, β...

  9. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family

    Directory of Open Access Journals (Sweden)

    Eskandari Sepehr

    2007-10-01

    Full Text Available Abstract Background Efforts to predict functional sites from globular proteins is increasingly common; however, the most successful of these methods generally require structural insight. Unfortunately, despite several recent technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently, sequence-based methods represent an important alternative to illuminate functional roles. In this report, we critically examine the ability of several computational methods to provide functional insight within two specific areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the presence of a recently solved structure and a vast amount of experimental mutagenesis data, the neurotransmitter/Na+ symporter (NSS family is an ideal model system to assess the quality of our predictions. Results The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods. The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs, two methods that identify subfamily-specific positions, and three different conservation scores. A canonical set of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of functional site predictions qualitatively clusters along the proposed transport pathway, further

  10. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.

    Directory of Open Access Journals (Sweden)

    Camillia Bouchon

    Full Text Available The repeated presentation of stimuli typically attenuates neural responses (repetition suppression or, less commonly, increases them (repetition enhancement when stimuli are highly complex, degraded or presented under noisy conditions. In adult functional neuroimaging research, these repetition effects are considered as neural correlates of habituation. The development and respective functional significance of these effects in infancy remain largely unknown.This study investigates repetition effects in newborns using functional near-infrared spectroscopy, and specifically the role of stimulus complexity in evoking a repetition enhancement vs. a repetition suppression response, following up on Gervain et al. (2008. In that study, abstract rule-learning was found at birth in cortical areas specific to speech processing, as evidenced by a left-lateralized repetition enhancement of the hemodynamic response to highly variable speech sequences conforming to a repetition-based ABB artificial grammar, but not to a random ABC grammar.Here, the same paradigm was used to investigate how simpler stimuli (12 different sequences per condition as opposed to 140, and simpler presentation conditions (blocked rather than interleaved would influence repetition effects at birth.Results revealed that the two grammars elicited different dynamics in the two hemispheres. In left fronto-temporal areas, we reproduce the early perceptual discrimination of the two grammars, with ABB giving rise to a greater response at the beginning of the experiment than ABC. In addition, the ABC grammar evoked a repetition enhancement effect over time, whereas a stable response was found for the ABB grammar. Right fronto-temporal areas showed neither initial discrimination, nor change over time to either pattern.Taken together with Gervain et al. (2008, this is the first evidence that manipulating methodological factors influences the presence or absence of neural repetition enhancement

  11. The Repetitive Sequence of Secale cereale Applied on Detection of Exogenous Chromosome of Wheat%黑麦重复序列在检测小麦品种中外源染色体的应用

    Institute of Scientific and Technical Information of China (English)

    刘春燕; 闫红飞; 杨文香; 孟庆芳; 刘大群

    2011-01-01

    A pair of PCR primers pSc20ht23/24 was designed based on sequence pSc20H.2 amplified by RAPD primer OPH20 in rye. The primers were used to amplify wheat leaf rust resistance near isogonic lines of TcLr45,derived fiom rye, and its susceptible background Thatcher. In addition, 42 wheat leaf mst resistance near isogonic lines and 103 wheat varieties were detected with the primers. A specific band size about 750 bp was amplified in TcLr45 by the primers pSc20ht23/24, and there were no bands amplified in Thatcher. This specific band was cloned and sequenced, the full length is 734 bp. The result fiom testing 42 wheat leaf rust resistance near isogonic lines showed that TcLr26 amplified the same size segment as TcLr45, but there was no amplification in TcLr25 derived fiom rye. The same size specific band was amplified in the Chinese Spring-Imperial addition lines fiom 1R to 7R except 5R addition line. All of the 13 wheat varieties of 1B/1R rye translocation line were amplified the same band as TcLr45 and TcLr26, and 16 of 90 wheat landraces amplified this band too. The results fiom pedigree analysis indicated that 6 of 16 varieties had the genetic background of rye, this SCAR marker can be used for detecting exogenous chromosome of rye except 5R in wheat.%本研究根据RAPD引物OPH20在黑麦中扩增出的特异序列pSc20H.2设计一对PCR引物pSc20ht-23/24,以来源于黑麦的小麦抗叶锈近等基因系材料TcLr45及感病对照Thatcher为亲本进行PCR扩增.并对42个小麦抗叶锈近等基因系及103个小麦品种材料进行检测.引物pSc20ht23/24在TcLr45中扩增出一条约750 bp的条带,而在Thatcher中无扩增条带.对该特异片段回收、克隆测序为734 bp.42个小麦抗叶锈近等基因系检测在TcLr26中扩增出与TcLr45相同的条带,而在同样来源于黑麦的小麦抗叶锈近等基因系TcLr25中未扩增出该条带:中国春-Imperial黑麦附加系1R-7R中除5R外均扩增出该条带;13个1B/1R易位系小

  12. 植物着丝粒区串联重复序列的研究进展%Research Progress of Tandem Repetitive Sequence in the Centromere of Plant

    Institute of Scientific and Technical Information of China (English)

    郝薇薇; 周岩

    2013-01-01

      着丝粒是细胞染色体的重要结构组成,控制姊妹染色单体的结合、动粒的组装和纺锤丝的附着,确保真核生物细胞在有丝分裂和减数分裂过程中染色体的正常分离及遗传信息的稳定传递。植物着丝粒DNA序列主要由反转录转座子和串联重复序列构成。串联重复序列在着丝粒功能实现和基因组进化过程中起重要作用。随着测序技术的成熟,近年来对串联重复序列的研究取得了很大的进展。综述了植物串联重复序列结构、分析方法及在进化中的作用,以期为相关研究提供参考。%Centromeres are the important domains of chromosomes that are responsible for sister chromatid cohesion, kinetochore assembly and spindle attachment, and are essential for proper chromosome segregation during mitosis and meiosis. Satellite DNA and retrotransposons are the most abundant DNA elements found in plant centromere regions. Centromeric tandem repeat play an important role in the centromere function and genome evolution. The study of centromeric tandem repeats got great progress for the development of sequencing technology. This paper introduces the development of centromeric tandem repeat of plants.

  13. Whole Exome Sequencing Reveals Homozygous Mutations in RAI1, OTOF, and SLC26A4 Genes Associated with Nonsyndromic Hearing Loss in Altaian Families (South Siberia)

    Science.gov (United States)

    Karafet, Tatiana M.; Morozov, Igor V.; Mikhalskaia, Valeriia Yu.; Zytsar, Marina V.; Bondar, Alexander A.

    2016-01-01

    Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies. PMID:27082237

  14. Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms.

    Science.gov (United States)

    Mehrotra, Shweta; Goel, Shailendra; Raina, Soom Nath; Rajpal, Vijay Rani

    2014-08-01

    The analysis of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of plant nuclear DNA. In the present study, we analyzed the nature of pCtKpnI-I and pCtKpnI-II tandem repeated sequences, reported earlier in Carthamus tinctorius. Interestingly, homolog of pCtKpnI-I repeat sequence was also found to be present in widely divergent families of angiosperms. pCtKpnI-I showed high sequence similarity but low copy number among various taxa of different families of angiosperms analyzed. In comparison, pCtKpnI-II was specific to the genus Carthamus and was not present in any other taxa analyzed. The molecular structure of pCtKpnI-I was analyzed in various unrelated taxa of angiosperms to decipher the evolutionary conserved nature of the sequence and its possible functional role.

  15. Targeted next generation sequencing reveals a novel intragenic deletion of the TPO gene in a family with intellectual disability

    NARCIS (Netherlands)

    Iqbal, Z.; Neveling, K.; Razzaq, A.; Shahzad, M.; Zahoor, M.Y.; Qasim, M.; Gilissen, C.; Wieskamp, N.; Kwint, M.P.; Gijsen, S.; Brouwer, A.P. de; Veltman, J.A.; Riazuddin, S.; Bokhoven, J.H.L.M. van

    2012-01-01

    BACKGROUNDS AND AIMS: Next generation sequencing (NGS) approaches have revolutionized the identification of mutations underlying genetic disorders. This technology is particularly useful for the identification of mutations in known and new genes for conditions with extensive genetic heterogeneity. I

  16. Exome Sequencing Identifies a Missense Variant in EFEMP1 Co-Segregating in a Family with Autosomal Dominant Primary Open-Angle Glaucoma.

    Directory of Open Access Journals (Sweden)

    Donna S Mackay

    Full Text Available Primary open-angle glaucoma (POAG is a clinically important and genetically heterogeneous cause of progressive vision loss as a result of retinal ganglion cell death. Here we have utilized trio-based, whole-exome sequencing to identify the genetic defect underlying an autosomal dominant form of adult-onset POAG segregating in an African-American family. Exome sequencing identified a novel missense variant (c.418C>T, p.Arg140Trp in exon-5 of the gene coding for epidermal growth factor (EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1 that co-segregated with disease in the family. Linkage and haplotype analyses with microsatellite markers indicated that the disease interval overlapped a known POAG locus (GLC1H on chromosome 2p. The p.Arg140Trp substitution was predicted in silico to have damaging effects on protein function and transient expression studies in cultured cells revealed that the Trp140-mutant protein exhibited increased intracellular accumulation compared with wild-type EFEMP1. In situ hybridization of the mouse eye with oligonucleotide probes detected the highest levels of EFEMP1 transcripts in the ciliary body, cornea, inner nuclear layer of the retina, and the optic nerve head. The recent finding that a common variant near EFEMP1 was associated with optic nerve-head morphology supports the possibility that the EFEMP1 variant identified in this POAG family may be pathogenic.

  17. SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity.

    Science.gov (United States)

    Li, Ying Hong; Xu, Jing Yu; Tao, Lin; Li, Xiao Feng; Li, Shuang; Zeng, Xian; Chen, Shang Ying; Zhang, Peng; Qin, Chu; Zhang, Cheng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong

    2016-01-01

    Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional families from protein sequences irrespective of similarity, which complemented those similarity-based and other methods in predicting diverse classes of proteins including the distantly-related proteins and homologous proteins of different functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1) expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors protein representation, (3) improved predictive performances due to the use of more enriched training datasets and more variety of protein descriptors, (4) newly integrated BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families that were similar in sequence to a query protein, and (5) newly added batch submission option for supporting the classification of multiple proteins. Moreover, 2 more machine learning approaches, K nearest neighbor and probabilistic neural networks, were added for facilitating collective assessment of protein functions by multiple methods. SVM-Prot can be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.

  18. De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis

    Institute of Scientific and Technical Information of China (English)

    SONG Lipu; WANG Xumin; YU Jun; WU Shuangxiu; SUN Jing; WANG Liang; LIU Tao; CHI Shan; LIU Cui; LI Xingang; YIN Jinlong

    2014-01-01

    Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gi-gartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which pro-duce different types of carrageenans, beta (β)-carrageenan, kappa (κ)-carrageenan and iota (ι)-carrageenan. So far the carrageenan biosynthesis pathway is not fully understood and few information is about the So-lieriaceae genome and transcriptome sequence. Here, we performed the de novo transcriptome sequencing, assembly, functional annotation and comparative analysis of these three commercial-valuable species using an Illumina short-sequencing platform Hiseq 2000 and bioinformatic software. Furthermore, we compared the different expression of some unigenes involved in some pathways relevant to carrageenan biosynthe-sis. We finally found 861 different expressed KEGG orthologs which contained a glycolysis/gluconeogenesis pathway (21 orthologs), carbon fixation in photosynthetic organisms (16 orthologs), galactose metabolism (5 orthologs), and fructose and mannose metabolism (9 orthologs) which are parts of the carbohydrate me-tabolism. We also found 8 different expressed KEGG orthologs for sulfur metabolism which might be impor-tantly related to biosynthesis of different types of carrageenans. The results presented in this study provided valuable resources for functional genomics annotation and investigation of mechanisms underlying the biosynthesis of carrageenan in Family Solieriaceae.

  19. Exome sequencing identifies a novel frameshift mutation of MYO6 as the cause of autosomal dominant nonsyndromic hearing loss in a Chinese family.

    Science.gov (United States)

    Cheng, Jing; Zhou, Xueya; Lu, Yu; Chen, Jing; Han, Bing; Zhu, Yuhua; Liu, Liyang; Choy, Kwong-Wai; Han, Dongyi; Sham, Pak C; Zhang, Michael Q; Zhang, Xuegong; Yuan, Huijun

    2014-11-01

    Autosomal dominant types of nonsyndromic hearing loss (ADNSHL) are typically postlingual in onset and progressive. High genetic heterogeneity, late onset age, and possible confounding due to nongenetic factors hinder the timely molecular diagnoses for most patients. In this study, exome sequencing was applied to investigate a large Chinese family segregating ADNSHL in which we initially failed to find strong evidence of linkage to any locus by whole-genome linkage analysis. Two affected family members were selected for sequencing. We identified two novel mutations disrupting known ADNSHL genes and shared by the sequenced samples: c.328C>A in COCH (DFNA9) resulting in a p.Q110K substitution and a deletion c. 2814_2815delAA in MYO6 (DFNA22) causing a frameshift alteration p.R939Tfs*2. The pathogenicity of novel coding variants in ADNSHL genes was carefully evaluated by analysis of co-segregation with phenotype in the pedigree and in light of established genotype-phenotype correlations. The frameshift deletion in MYO6 was confirmed as the causative variant for this pedigree, whereas the missense mutation in COCH had no clinical significance. The results allowed us to retrospectively identify the phenocopy in one patient that contributed to the negative finding in the linkage scan. Our clinical data also supported the emerging genotype-phenotype correlation for DFNA22.

  20. Circuit considerations for repetitive railguns

    Energy Technology Data Exchange (ETDEWEB)

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  1. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    Directory of Open Access Journals (Sweden)

    Walker Angela M

    2009-04-01

    Full Text Available Abstract Background The Pregnancy-associated glycoproteins (PAGs belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence differences between family members, there are clear distinctions in their spatio-temporal distribution and in their relative level of expression. In this report, 1 we performed an in silico analysis of the bovine genome to further characterize the PAG gene family, 2 we scrutinized proximal promoter sequences of the PAG genes to evaluate the evolution pressures operating on them and to identify putative regulatory regions, 3 we determined relative transcript abundance of selected PAGs during pregnancy and, 4 we performed preliminary characterization of the putative regulatory elements for one of the candidate PAGs, bovine (bo PAG-2. Results From our analysis of the bovine genome, we identified 18 distinct PAG genes and 14 pseudogenes. We observed that the first 500 base pairs upstream of the translational start site contained multiple regions that are conserved among all boPAGs. However, a preponderance of conserved regions, that harbor recognition sites for putative transcriptional factors (TFs, were found to be unique to the modern boPAG grouping, but not the ancient boPAGs. We gathered evidence by means of Q-PCR and screening of EST databases to show that boPAG-2 is the most abundant of all boPAG transcripts. Finally, we provided preliminary evidence for the role of ETS- and DDVL-related TFs in the regulation of the boPAG-2 gene. Conclusion PAGs represent a relatively large gene family in the bovine genome. The proximal promoter regions of these genes display differences in putative TF binding sites, likely contributing to observed

  2. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.

    Science.gov (United States)

    He, Shunping; Mayden, Richard L; Wang, Xuzheng; Wang, Wei; Tang, Kevin L; Chen, Wei-Jen; Chen, Yiyu

    2008-03-01

    The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis

  3. Repetitive Daily Blindness with Hemiplegic Migraine and SCN1A Mutations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-05-01

    Full Text Available Two novel SCN1A mutations are identified in two unrelated families with familial hemiplegic migraine and a unique phenotype of elicited repetitive daily blindness, in a report from Hopital Lariboisiere, and other centers in Paris, France, and Geneva, Switzerland.

  4. Extensive sequence turnover of the signal peptides of members of the GDF/BMP family: exploring their evolutionary landscape

    Directory of Open Access Journals (Sweden)

    Veitia Reiner A

    2009-07-01

    Full Text Available Abstract We show that the predicted signal peptide (SP sequences of the secreted factors GDF9, BMP15 and AMH are well conserved in mammals but dramatic divergence is noticed for more distant orthologs. Interestingly, bioinformatic predictions show that the divergent protein segments do encode SPs. Thus, such SPs have undergone extensive sequence turnover with full preservation of functionality. This can be explained by a pervasive accumulation of neutral and compensatory mutations. An exploration of the potential evolutionary landscape of some SPs is presented. Some of these signal sequences highlight an apparent paradox: they are encoded, by definition, by orthologous DNA segments but they are, given their striking divergence, examples of what can be called functional convergence. Reviewers: This article was reviewed by Fyodor Kondrashov and Eugene V. Koonin.

  5. Generation and analysis of networks with a prescribed degree sequence and subgraph family: Higher-order structure matters

    CERN Document Server

    Ritchie, Martin; Kiss, Istvan Z

    2015-01-01

    Designing algorithms that generate networks with a given degree sequence while varying both subgraph composition and distribution of subgraphs around nodes is an important but challenging research problem. Current algorithms lack control of key network parameters, the ability to specify to what subgraphs a node belongs to, come at a considerable complexity cost or, critically, sample from a limited ensemble of networks. To enable controlled investigations of the impact and role of subgraphs, especially for epidemics, neuronal activity or complex contagion, it is essential that the generation process be versatile and the generated networks as diverse as possible. In this paper, we present two new network generation algorithms that use subgraphs as building blocks to construct networks preserving a given degree sequence. Additionally, these algorithms provide control over clustering both at node and global level. In both cases, we show that, despite being constrained by a degree sequence and global clustering, ...

  6. The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Directory of Open Access Journals (Sweden)

    Scott Christopher J

    2010-04-01

    Full Text Available Abstract Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A. Subsequently we have identified a number of human family members and shown that one of these (DUB-3 is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

  7. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis

    Directory of Open Access Journals (Sweden)

    Lipkin Alexey

    2007-05-01

    Full Text Available Abstract Background the use of specific but partially degenerate primers for nucleic acid hybridisations and PCRs amplification of known or unknown gene families was first reported well over a decade ago and the technique has been used widely since then. Results here we report a novel and successful selection strategy for the design of hybrid partially degenerate primers for use with RT-PCR and RACE-PCR for the identification of unknown gene families. The technique (named PaBaLiS has proven very effective as it allowed us to identify and clone a large group of mRNAs encoding neurotoxin-like polypeptide pools from the venom of Agelena orientalis species of spider. Our approach differs radically from the generally accepted CODEHOP principle first reported in 1998. Most importantly, our method has proven very efficient by performing better than an independently generated high throughput EST cloning programme. Our method yielded nearly 130 non-identical sequences from Agelena orientalis, whilst the EST cloning technique yielded only 48 non-identical sequences from 2100 clones obtained from the same Agelena material. In addition to the primer design approach reported here, which is almost universally applicable to any PCR cloning application, our results also indicate that venom of Agelena orientalis spider contains a much larger family of related toxin-like sequences than previously thought. Conclusion with upwards of 100,000 species of spider thought to exist, and a propensity for producing diverse peptide pools, many more peptides of pharmacological importance await discovery. We envisage that some of these peptides and their recombinant derivatives will provide a new range of tools for neuroscience research and could also facilitate the development of a new generation of analgesic drugs and insecticides.

  8. High quality draft genome sequence and description of Occidentia massiliensis gen. nov., sp. nov., a new member of the family Rickettsiaceae.

    Science.gov (United States)

    Mediannikov, Oleg; Nguyen, Thi-Thien; Bell-Sakyi, Lesley; Padmanabhan, Roshan; Fournier, Pierre-Edouard; Raoult, Didier

    2014-01-01

    The family Rickettsiaceae currently includes two genera: Orientia that contains one species, Orientia tsutsugamushi, and Rickettsia that contains 28 species. Occidentia massiliensis gen. nov., sp. nov. strain OS118(T) is the type strain of O. massiliensis gen. nov., sp. nov., the type species of the new genus Occidentia gen. nov. within the family Rickettsiaceae. This strain, whose genome is described here, was isolated in France from the soft tick Ornithodoros sonrai collected in Senegal. O. massiliensis is an aerobic, rod-shaped, Gram-negative, obligate intracellular bacillus that may be cultivated in BME/CTVM2 cells. Here we describe the features of O. massiliensis, together with the complete genomic sequencing and annotation. The 1,469,252 bp long genome (1 chromosome but no plasmid) contains 1,670 protein-coding and 41 RNA genes, including one rRNA operon.

  9. Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gracia-Aznarez

    Full Text Available The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10 diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.

  10. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families

    Directory of Open Access Journals (Sweden)

    Quistgaard Esben M

    2009-07-01

    Full Text Available Abstract Background The Asp-box is a short sequence and structure motif that folds as a well-defined β-hairpin. It is present in different folds, but occurs most prominently as repeats in β-propellers. Asp-box β-propellers are known to be characteristically irregular and to occur in many medically important proteins, most of which are glycosidase enzymes, but they are otherwise not well characterized and are only rarely treated as a distinct β-propeller family. We have analyzed the sequence, structure, function and occurrence of the Asp-box and s-Asp-box -a related shorter variant, and provide a comprehensive classification and computational analysis of the Asp-box β-propeller family. Results We find that all conserved residues of the Asp-box support its structure, whereas the residues in variable positions are generally used for other purposes. The Asp-box clearly has a structural role in β-propellers and is highly unlikely to be involved in ligand binding. Sequence analysis of the Asp-box β-propeller family reveals it to be very widespread especially in bacteria and suggests a wide functional range. Disregarding the Asp-boxes, sequence conservation of the propeller blades is very low, but a distinct pattern of residues with specific properties have been identified. Interestingly, Asp-boxes are occasionally found very close to other propeller-associated repeats in extensive mixed-motif stretches, which strongly suggests the existence of a novel class of hybrid β-propellers. Structural analysis reveals that the top and bottom faces of Asp-box β-propellers have striking and consistently different loop properties; the bottom is structurally conserved whereas the top shows great structural variation. Interestingly, only the top face is used for functional purposes in known structures. A structural analysis of the 10-bladed β-propeller fold, which has so far only been observed in the Asp-box family, reveals that the inner strands of the

  11. Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci

    Science.gov (United States)

    Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci...

  12. Some Characterizations for a Family of Nonexpansive Mappings and Convergence of a Generated Sequence to Their Common Fixed Point

    Directory of Open Access Journals (Sweden)

    Kazuhide Nakajo

    2010-01-01

    Full Text Available Motivated by the method of Xu (2006 and Matsushita and Takahashi (2008, we characterize the set of all common fixed points of a family of nonexpansive mappings by the notion of Mosco convergence and prove strong convergence theorems for nonexpansive mappings and semigroups in a uniformly convex Banach space.

  13. Novel pathogenic variant (c.3178G>A) in the SMC1A gene in a family with Cornelia de Lange syndrome identified by exome sequencing.

    Science.gov (United States)

    Jang, Mi Ae; Lee, Chang Woo; Kim, Jin Kyung; Ki, Chang Seok

    2015-11-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous congenital anomaly. Mutations in the NIPBL gene account for a half of the affected individuals. We describe a family with CdLS carrying a novel pathogenic variant of the SMC1A gene identified by exome sequencing. The proband was a 3-yr-old boy presenting with a developmental delay. He had distinctive facial features without major structural anomalies and tested negative for the NIPBL gene. His younger sister, mother, and maternal grandmother presented with mild mental retardation. By exome sequencing of the proband, a novel SMC1A variant, c.3178G>A, was identified, which was expected to cause an amino acid substitution (p.Glu1060Lys) in the highly conserved coiled-coil domain of the SMC1A protein. Sanger sequencing confirmed that the three female relatives with mental retardation also carry this variant. Our results reveal that SMC1A gene defects are associated with milder phenotypes of CdLS. Furthermore, we showed that exome sequencing could be a useful tool to identify pathogenic variants in patients with CdLS.

  14. Sequence diversity of the nucleoprotein gene of iris yellow spot virus (genus Tospovirus, family Bunyaviridae) isolates from the western region of the United States.

    Science.gov (United States)

    Pappu, H R; du Toit, L J; Schwartz, H F; Mohan, S K

    2006-05-01

    Iris yellow spot virus (IYSV), a tentative virus species in the genus Tospovirus and family Bunyaviridae, is considered a rapidly emerging threat to onion production in the western United States (US). The present study was undertaken to determine the sequence diversity of IYSV isolates from infected onion plants grown in California, Colorado, Idaho, Oregon, Utah and Washington. Using primers derived from the small RNA of IYSV, the complete sequence of the nucleoprotein (NP) gene of each isolate was determined and the sequences compared. In addition, a shallot isolate of IYSV from Washington was included in the study. The US isolates of IYSV shared a high degree of sequence identity (95 to 99%) with one another and to previously reported isolates. Phylogenetic analyses showed that with the exception of one isolate from central Oregon and one isolate from California, all the onion and shallot isolates from the western US clustered together. This cluster also included onion and lisianthus isolates from Japan. A second distinct cluster consisted of isolates from Australia (onion), Brazil (onion), Israel (lisianthus), Japan (alstroemeria), The Netherlands (iris) and Slovenia (leek). The IYSV isolates evaluated in this study appear to represent two distinct groups, one of which largely represents isolates from the western US. Understanding of the population structure of IYSV would potentially provide insights into the molecular epidemiology of this virus.

  15. Complete mitochondrial DNA sequence of the endangered frog Odorrana ishikawae (family Ranidae) and unexpected diversity of mt gene arrangements in ranids.

    Science.gov (United States)

    Kurabayashi, Atsushi; Yoshikawa, Natsuhiko; Sato, Naoki; Hayashi, Yoko; Oumi, Shohei; Fujii, Tamotsu; Sumida, Masayuki

    2010-08-01

    We determined the complete nucleotide sequence of the mitochondrial (mt) genome of an endangered Japanese frog, Odorrana ishikawae (family Ranidae). We also sequenced partial mt genomes of three other Odorrana and six ranid species to survey the diversity of genomic organizations and elucidate the phylogenetic problems remaining in this frog family. The O. ishikawae mt genome contained the 37 mt genes and single control region (CR) typically found in vertebrate mtDNAs, but the region of Light-strand replication origin (OL) was triplicated in this species. Four protein-encoding genes (atp6, nd2, nd3, and nd5) were found to have high sequence divergence and to be usable for population genetics studies on this endangered species. Among the surveyed ranids, only two species (Rana and Lithobates) manifested the typical neobatrachian-type mt gene arrangement. In contrast, relatively large gene rearrangements were found in Amolops, Babina, and Staurois species; and translocations of single tRNA genes (trns) were observed in Glandirana and Odorrana species. Though the inter-generic and interspecific relationships of ranid taxa remain to be elucidated based on 12S and 16S rrn sequence data, some of the derived mt gene orders were found to have synapomorphic features useful for solving problematic ranid phylogenies. The tandem duplication and random loss (TDRL) model, the traditional model for mt gene rearrangement, failed to easily explain several of the mt gene rearrangements observed here. Indeed, the recent recombination-based gene rearrangement models seemed to be more suitable for this purpose. The high frequency of gene translocations involving a specific trn block (trnH-trnS1) and several single tRNA genes suggest that there may be a retrotranslocation in ranid mt genomes.

  16. Investigating the Molecular Basis of Retinal Degeneration in a Familial Cohort of Pakistani Decent by Exome Sequencing.

    Directory of Open Access Journals (Sweden)

    Bruno Maranhao

    Full Text Available To define the molecular basis of retinal degeneration in consanguineous Pakistani pedigrees with early onset retinal degeneration.A cohort of 277 individuals representing 26 pedigrees from the Punjab province of Pakistan was analyzed. Exomes were captured with commercial kits and sequenced on an Illumina HiSeq 2500. Candidate variants were identified using standard tools and analyzed using exomeSuite to detect all potentially pathogenic changes in genes implicated in retinal degeneration. Segregation analysis was performed by dideoxy sequencing and novel variants were additionally investigated for their presence in ethnicity-matched controls.We identified a total of nine causal mutations, including six novel variants in RPE65, LCA5, USH2A, CNGB1, FAM161A, CERKL and GUCY2D as the underlying cause of inherited retinal degenerations in 13 of 26 pedigrees. In addition to the causal variants, a total of 200 variants each observed in five or more unrelated pedigrees investigated in this study that were absent from the dbSNP, HapMap, 1000 Genomes, NHLBI ESP6500, and ExAC databases were identified, suggesting that they are common in, and unique to the Pakistani population.We identified causal mutations associated with retinal degeneration in nearly half of the pedigrees investigated in this study through next generation whole exome sequencing. All novel variants detected in this study through exome sequencing have been cataloged providing a reference database of variants common in, and unique to the Pakistani population.

  17. Genome sequence of a novel multiple antibiotic resistant member of Erysipelotrichaceae family isolated from a swine manure storage pit

    Science.gov (United States)

    The swine gastro intestinal (GI) tract and stored manure may serve as reservoirs of antibiotic resistance genes as well as sources of novel bacteria. We report the draft genome sequence of “Cottaibacterium suis” strain MTC7, a novel antibiotic resistant bacterium. The strain was isolated from a swin...

  18. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families.

    Science.gov (United States)

    Borriello, Roberto; Bianciotto, Valeria; Orgiazzi, Alberto; Lumini, Erica; Bergero, Roberta

    2014-06-01

    Arbuscular Mycorrhizal Fungi (AMF) are well known for their ecological importance and their positive influence on plants. The genetics and phylogeny of this group of fungi have long been debated. Nuclear markers are the main tools used for phylogenetic analyses, but they have sometimes proved difficult to use because of their extreme variability. Therefore, the attention of researchers has been moving towards other genomic markers, in particular those from the mitochondrial DNA. In this study, 46 sequences of different AMF isolates belonging to two main clades Gigasporaceae and Glomeraceae have been obtained from the mitochondrial gene coding for the Cytochrome c Oxidase I (COI), representing the largest dataset to date of AMF COI sequences. A very low level of divergence was recorded in the COI sequences from the Gigasporaceae, which could reflect either a slow rate of evolution or a more recent evolutionary divergence of this group. On the other hand, the COI sequence divergence between Gigasporaceae and Glomeraceae was high, with synonymous divergence reaching saturated levels. This work also showed the difficulty in developing valuable mitochondrial markers able to effectively distinguish all Glomeromycota species, especially those belonging to Gigasporaceae, yet it represents a first step towards the development of a full mtDNA-based dataset which can be used for further phylogenetic investigations of this fungal phylum.

  19. Stimulus-Category and Response-Repetition Effects in Task Switching: An Evaluation of Four Explanations

    Science.gov (United States)

    Druey, Michel D.

    2014-01-01

    In many task-switch studies, task sequence and response sequence interact: Response repetitions produce benefits when the task repeats but produce costs when the task switches. Four different theoretical frameworks have been proposed to explain these effects: a reconfiguration-based account, association-learning models, an episodic-retrieval…

  20. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control workin...

  1. Cloning,sequencing and prokaryotic expression of cDNAs for antifreeze protein family from Beetle Tenebrio molitor

    Institute of Scientific and Technical Information of China (English)

    Zhongyuan LIU; Yun WANG; Guodong LU; Xianlei WANG; Fuchun ZHANG; Ji MA

    2008-01-01

    Partial cDNA sequences coding for antifreeze proteins in Tenebrio molitor were obtained by RT-PCR.Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze protein genes published in GenBank.The recombinant pGEX-4T-l-tmafp-XJ430 was introduced into E.coli BL21 to induce a GST fusion protein by IPTG.SDS-PAGE analysis for the fusion protein shows a band of 38 kDa.pCDNA3- tmafp-XJ430 was injected into mice to generate antiserum which was later detected by indirect ELISA.The titer of the antibody was 1:2000.Western blot-ting analysis shows that the antiserum was specifically against the antifreeze protein.Our results laid the founda-tion for further studies on the properties and functions of insect antifreeze proteins.

  2. [Repetition and fear of dying].

    Science.gov (United States)

    Lerner, B D

    1995-03-01

    In this paper a revision is made of the qualifications of Repetition (R) in Freuds work, i.e. its being at the service of the Pleasure Principle and, beyond it, the binding of free energy due to trauma. Freud intends to explain with this last concept the "fort-da" and the traumatic dreams (obsessively reiterated self-reproaches may be added to them). The main thesis of this work is that R. is not only a defense against the recollection of the ominous past (as in the metaphorical deaths of abandonment and desertion) but also a way of maintaining life and identify fighting against the inescapable omninous future (known but yet experienced), i.e. our own death. Some forms of R. like habits, identificatory behaviors and sometimes even magic, are geared to serve the life instinct. A literary illustration shows this desperate fight.

  3. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  4. Hfqs in Bacillus anthracis: Role of protein sequence variation in the structure and function of proteins in the Hfq family.

    Science.gov (United States)

    Vrentas, Catherine; Ghirlando, Rodolfo; Keefer, Andrea; Hu, Zonglin; Tomczak, Aurelie; Gittis, Apostolos G; Murthi, Athulaprabha; Garboczi, David N; Gottesman, Susan; Leppla, Stephen H

    2015-11-01

    Hfq proteins in Gram-negative bacteria play important roles in bacterial physiology and virulence, mediated by binding of the Hfq hexamer to small RNAs and/or mRNAs to post-transcriptionally regulate gene expression. However, the physiological role of Hfqs in Gram-positive bacteria is less clear. Bacillus anthracis, the causative agent of anthrax, uniquely expresses three distinct Hfq proteins, two from the chromosome (Hfq1, Hfq2) and one from its pXO1 virulence plasmid (Hfq3). The protein sequences of Hfq1 and 3 are evolutionarily distinct from those of Hfq2 and of Hfqs found in other Bacilli. Here, the quaternary structure of each B. anthracis Hfq protein, as produced heterologously in Escherichia coli, was characterized. While Hfq2 adopts the expected hexamer structure, Hfq1 does not form similarly stable hexamers in vitro. The impact on the monomer-hexamer equilibrium of varying Hfq C-terminal tail length and other sequence differences among the Hfqs was examined, and a sequence region of the Hfq proteins that was involved in hexamer formation was identified. It was found that, in addition to the distinct higher-order structures of the Hfq homologs, they give rise to different phenotypes. Hfq1 has a disruptive effect on the function of E. coli Hfq in vivo, while Hfq3 expression at high levels is toxic to E. coli but also partially complements Hfq function in E. coli. These results set the stage for future studies of the roles of these proteins in B. anthracis physiology and for the identification of sequence determinants of phenotypic complementation.

  5. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    Directory of Open Access Journals (Sweden)

    Daniele Salvi

    Full Text Available The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML and Bayesian (BA methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA and coalescent based (BA approaches and consistently supported three main clades: (i Crassostrea, (ii Saccostrea, and (iii an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea, Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea and Ostreinae (including Ostreinae and Lophinae taxa are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  6. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    Science.gov (United States)

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  7. Candidate gene sequencing of SLC11A2 and TMPRSS6 in a family with severe anaemia: common SNPs, rare haplotypes, no causative mutation.

    Directory of Open Access Journals (Sweden)

    Anita Kloss-Brandstätter

    Full Text Available BACKGROUND: Iron-refractory iron deficiency anaemia (IRIDA is a rare disorder which was linked to mutations in two genes (SLC11A2 and TMPRSS6. Common polymorphisms within these genes were associated with serum iron levels. We identified a family of Serbian origin with asymptomatic non-consanguineous parents with three of four children presenting with IRIDA not responding to oral but to intravenous iron supplementation. After excluding all known causes responsible for iron deficiency anaemia we searched for mutations in SLC11A2 and TMPRSS6 that could explain the severe anaemia in these children. METHODOLOGY/RESULTS: We sequenced the exons and exon-intron boundaries of SLC11A2 and TMPRSS6 in all six family members. Thereby, we found seven known and fairly common SNPs, but no new mutation. We then genotyped these seven SNPs in the population-based SAPHIR study (n = 1,726 and performed genetic association analysis on iron and ferritin levels. Only two SNPs, which were top-hits from recent GWAS on iron and ferritin, exhibited an effect on iron and ferritin levels in SAPHIR. Six SAPHIR participants carrying the same TMPRSS6 genotypes and haplotype-pairs as one anaemic son showed lower ferritin and iron levels than the average. One individual exhibiting the joint SLC11A2/TMPRSS6 profile of the anaemic son had iron and ferritin levels lying below the 5(th percentile of the population's iron and ferritin level distribution. We then checked the genotype constellations in the Nijmegen Biomedical Study (n = 1,832, but the profile of the anaemic son did not occur in this population. CONCLUSIONS: We cannot exclude a gene-gene interaction between SLC11A2 and TMPRSS6, but we can also not confirm it. As in this case candidate gene sequencing did not reveal causative rare mutations, the samples will be subjected to whole exome sequencing.

  8. Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature.

    Science.gov (United States)

    Narumi, Yoko; Nishina, Sachiko; Tokimitsu, Motoharu; Aoki, Yoko; Kosaki, Rika; Wakui, Keiko; Azuma, Noriyuki; Murata, Toshinori; Takada, Fumio; Fukushima, Yoshimitsu; Kosho, Tomoki

    2014-05-01

    Congenital cataracts are the most important cause of severe visual impairment in infants. Genetic factors contribute to the disease development and 29 genes are known to cause congenital cataracts. Identifying the genetic cause of congenital cataracts can be difficult because of genetic heterogeneity. V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF) encodes a basic region/leucine zipper transcription factor that plays a key role as a regulator of embryonic lens fiber cell development. MAF mutations have been reported to cause juvenile-onset pulverulent cataract, microcornea, iris coloboma, and other anterior segment dysgenesis. We report on six patients in a family who have congenital cataracts were identified MAF mutation by whole exome sequencing (WES). The heterozygous MAF mutation Q303L detected in the present family occurs in a well conserved glutamine residue at the basic region of the DNA-binding domain. All affected members showed congenital cataracts. Three of the six members showed microcornea and one showed iris coloboma. Congenital cataracts with MAF mutation exhibited phenotypically variable cataracts within the family. Review of the patients with MAF mutations supports the notion that congenital cataracts caused by MAF mutations could be accompanied by microcornea and/or iris coloboma. WES is a useful tool for detecting disease-causing mutations in patients with genetically heterogeneous conditions.

  9. Development of a repetitive compact torus injector

    Science.gov (United States)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  10. Resistance to change of operant variation and repetition.

    Science.gov (United States)

    Doughty, A H; Lattal, K A

    2001-09-01

    A multiple chained schedule was used to compare the relative resistance to change of variable and fixed four-peck response sequences in pigeons. In one terminal link, a response sequence produced food only if it occurred infrequently relative to 15 other response sequences (vary). In the other terminal link, a single response sequence produced food (repeat). Identical variable-interval schedules operated in the initial links. During baseline, lower response rates generally occurred in the vary initial link, and similar response and reinforcement rates occurred in each terminal link. Resistance of responding to prefeeding and three rates of response-independent food delivered during the intercomponent intervals then was compared between components. During each disruption condition, initial- and terminal-link response rates generally were more resistant in the vary component than in the repeat component. During the response-independent food conditions, terminal-link response rates were more resistant than initial-link response rates in each component, but this did not occur during prefeeding. Variation (in vary) and repetition (in repeat) both decreased during the response-independent food conditions in the respective components, but with relatively greater disruption in repeat. These results extend earlier findings demonstrating that operant variation is more resistant to disruption than is operant repetition and suggest that theories of response strength, such as behavioral momentum theory, must consider factors other than reinforcement rate. The implications of the results for understanding operant response classes are discussed.

  11. Deciphering the biology of Mycobacterium tuberculosis from thecomplete genome sequence

    DEFF Research Database (Denmark)

    Cole, S.T.; Krogh, Anders Stærmose

    1998-01-01

    Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding....... tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation....

  12. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families

    Directory of Open Access Journals (Sweden)

    Pichette Roxane

    2006-09-01

    Full Text Available Abstract Background Ataxia telangiectasia-mutated and Rad3-related (ATR is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition. Methods ATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD, haplotype analyses, and tagging SNP (tSNP identification. Expression analyses were carried out using real-time PCR. Results The complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue. Conclusion Although no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association

  13. Localization and trafficking of an isoform of the AtPRA1 family to the Golgi apparatus depend on both N- and C-terminal sequence motifs.

    Science.gov (United States)

    Jung, Chan Jin; Lee, Myoung Hui; Min, Myung Ki; Hwang, Inhwan

    2011-02-01

    Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.

  14. Targeted sequencing identifies a novel SH2D1A pathogenic variant in a Chinese family: Carrier screening and prenatal genetic testing

    Science.gov (United States)

    Chen, Yi-Yao; Li, Shu-Yuan; Zhang, Lan-Lan; Shen, Ying-Hua; Chang, Chun-Xin; Xiang, Yu-Qian; Huang, He-Feng; Xu, Chen-Ming

    2017-01-01

    X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immunodeficiency characterized by a clinical triad consisting of severe EBV-induced hemophagocytic lymphohistiocytosis, B-cell lymphoma, and dysgammaglobulinemia. Mutations in SH2D1A gene have been revealed as the cause of XLP1. In this study, a pregnant woman with recurrence history of birthing immunodeficiency was screened for pathogenic variant because the proband sample was unavailable. We aimed to clarify the genetic diagnosis and provide prenatal testing for the family. Next-generation sequencing (NGS)-based multigene panel was used in carrier screening of the pregnant woman. Variants of immunodeficiency related genes were analyzed and prioritized. Candidate variant was verified by using Sanger sequencing. The possible influence of the identified variant was evaluated through RNA assay. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal testing. We identified a novel de novo frameshift SH2D1A pathogenic variant (c.251_255delTTTCA) in the pregnant carrier. Peripheral blood RNA assay indicated that the mutant transcript could escape nonsense-mediated mRNA decay (NMD) and might encode a C-terminal truncated protein. Information of the variant led to success prenatal diagnosis of the fetus. In conclusion, our study clarified the genetic diagnosis and altered disease prevention for a pregnant carrier of XLP1. PMID:28231257

  15. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).

    Science.gov (United States)

    Do, Hoang Dang Khoa; Kim, Jung Sung; Kim, Joo-Hwan

    2013-11-10

    The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a

  16. LINE-1 repetitive DNA probes for species-specific cloning from Mus spretus and Mus domesticus genomes.

    Science.gov (United States)

    Rikke, B A; Hardies, S C

    1991-12-01

    Mus domesticus and Mus spretus mice are closely related subspecies. For genetic investigations involving hybrid mice, we have developed a set of species-specific oligonucleotide probes based on the detection of LINE-1 sequence differences. LINE-1 is a repetitive DNA family whose many members are interspersed among the genes. In this study, library screening experiments were used to fully characterize the species specificity of four M. domesticus LINE-1 probes and three M. spretus LINE-1 probes. It was found that the nucleotide differences detected by the probes define large, species-specific subfamilies. We show that collaborative use of such probes can be employed to selectively detect thousands of species-specific library clones. Consequently, these probes could be exploited to monitor and access almost any given species-specific region of interest within hybrid genomes.

  17. Chromosomal mapping of repetitive DNAs in Gobionellus oceanicus and G. stomatus (Gobiidae; Perciformes): A shared XX/XY system and an unusual distribution of 5S rDNA sites on the Y chromosome.

    Science.gov (United States)

    Lima-Filho, Paulo A; Amorim, Karlla D J; Cioffi, Marcelo B; Bertollo, Luiz A C; Molina, Wagner F

    2014-01-01

    With nearly 2,000 species, Gobiidae is the most specious family of the vertebrates. This high level of speciation is accompanied by conspicuous karyotypic modifications, where the role of repetitive sequences remains largely unknown. This study analyzed the karyotype of 2 species of the genus Gobionellus and mapped 18S and 5S ribosomal RNA genes and (CA)15 microsatellite sequences onto their chromosomes. G. oceanicus (2n = 56; ♂ 12 metacentrics (m) + 4 submetacentrics (sm) + 1 subtelocentric (st) + 39 acrocentrics (a); ♀ 12m + 4sm + 2st + 38a) and G. stomatus (2n = 56; ♂ 20m + 14sm + 1st + 21a; ♀ 20m + 14sm + 2st + 20a) possess the highest diploid chromosome number among the Gobiidae and have different karyotypes. Both species share an XX/XY sex chromosome system with a large subtelocentric X and a small acrocentric Y chromosome which is rich in (CA)15 sequences and bears 5S rRNA sites. Although coding and noncoding repetitive DNA sequences may be involved in the genesis or differentiation of the sex chromosomes, the exclusive presence of 5S rDNA sites on the Y, but not on the X chromosome of both species, represents a novelty in fishes. In summary, the karyotypic differences, as well as new data on the sex chromosome systems in these 2 Gobiidae species, confirm the high chromosomal dynamism observed in this family.

  18. Comparing repetition-based melody segmentation models

    NARCIS (Netherlands)

    Rodríguez López, M.E.; de Haas, Bas; Volk, Anja

    2014-01-01

    This paper reports on a comparative study of computational melody segmentation models based on repetition detection. For the comparison we implemented five repetition-based segmentation models, and subsequently evaluated their capacity to automatically find melodic phrase boundaries in a corpus of 2

  19. Task Repetition and Second Language Speech Processing

    Science.gov (United States)

    Lambert, Craig; Kormos, Judit; Minn, Danny

    2017-01-01

    This study examines the relationship between the repetition of oral monologue tasks and immediate gains in L2 fluency. It considers the effect of aural-oral task repetition on speech rate, frequency of clause-final and midclause filled pauses, and overt self-repairs across different task types and proficiency levels and relates these findings to…

  20. Repetitions: A Cross-Cultural Study.

    Science.gov (United States)

    Murata, Kumiko

    1995-01-01

    This study investigated how repetition is used in conversation among native speakers of British English, native speakers of Japanese, and Japanese speakers of English. Five interactional functions of repetition (interruption-orientated, solidarity, silence-avoidance, hesitation, and reformulation) were identified, as well as the cultural factors…

  1. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Members of the homeodomain-leucine zipper (HD-Zip gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.. METHODS AND FINDINGS: In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55 were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR. All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. CONCLUSIONS: Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development.

  2. Text Mining: (Asynchronous Sequences

    Directory of Open Access Journals (Sweden)

    Sheema Khan

    2014-12-01

    Full Text Available In this paper we tried to correlate text sequences those provides common topics for semantic clues. We propose a two step method for asynchronous text mining. Step one check for the common topics in the sequences and isolates these with their timestamps. Step two takes the topic and tries to give the timestamp of the text document. After multiple repetitions of step two, we could give optimum result.

  3. Digital repetitive control under varying frequency conditions

    CERN Document Server

    Ramos, Germán A; Olm, Josep M

    2013-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area. Repetitive Control has proven to be an efficient way to face this topic. However, in some applications the frequency of the reference/disturbance signal is time-varying or uncertain. This causes an important performance degradation in the standard Repetitive Control scheme. This book presents some solutions to apply Repetitive Control in varying frequency conditions without loosing steady-state performance. It also includes a complete theoretical development and experimental results in two representative systems. The presented solutions are organized in two complementary branches: varying sampling period Repetitive Control and High Order Repetitive Control. The first approach allows dealing with large range frequency variations while the second allows dealing with small range frequency variations. The book also presents applications of the described techniques to a Roto-magnet plant and...

  4. A study of methicillin - resistant staphylococcus aureus(MRSA) in a burn unit with repetitive - DNA - sequence- based PCR fingerprinting%烧伤病房耐甲氧西林金黄色葡萄球菌的DNA重复序列PCR研究

    Institute of Scientific and Technical Information of China (English)

    李洁; 徐秀华; 曾海涛

    2001-01-01

    目的研究烧伤病房耐甲氧西林金黄色葡萄球菌( methicillin - resistant Staphylococcus aureus,MRSA)的分布及传播,探讨烧伤病房医院感染的预防、监测及控制工作。方法采集烧伤患者的创面、鼻前庭,工作人员手、鼻前庭,陪护家属的手、鼻前庭及烧伤科病房各种环境表面共504份标本,从中分离到MRSA 58株,对苯唑西林敏感的金黄色葡萄球菌43株,并对所分离的MRSA菌株的基因组DNA进行重复序列PCR检测。结果 53.7%(22/41)的患者创面分离出MRSA,其中5例鼻前庭分离出MRSA;19名工作人员中,3人手分离出MRSA,工作人员鼻前庭未分离到MRSA;43例患者陪护家属中有9人手上分离出MRSA,2人鼻前庭分离出MRSA;193份环境标本共分离MRSA 13株。通过MRSA细菌基因组DNA重复序列PCR分析,发现部分患者创面之间及创面与工作人员、陪护和环境之间存在MRSA同源株。结论 (1)MRSA在烧伤科分布广,其中不乏同源株;(2)基因组DNA重复序列PCR分析,显示烧伤病室存在两例患者之间的交叉感染,MRSA在烧伤病房的传染源为患者,传播途径与陪护及工作人员的手污染有关;(3)MRSA的广泛存在,携带率高,手与环境的污染,是MRSA爆发感染的潜在危险。%bjective To investigate the distribution and spread of MRSA in a burn ward, so as to explore the measures of the prevention,surveillance and control of hospital infection in a burn ward. Methods Five hundred and four specimens were isolated from the wounds and nasal vestibules of burn patients ,the hands and nasal vestibules of medical staffs and lay attendants and the surfaces of various equipments. From these specimens,58 strains of MRSA and 43 methicillin- sensitive staphylococcus aureus (MSSA) were isolated. The genome DNA of isolated MRSA strains was analyzed by repetitive DNA - sequence- based PCR analysis. Results MRSA strains were isolated from the burn wounds

  5. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites.

    Science.gov (United States)

    Chaw, Shu-Miaw; Shih, Arthur Chun-Chieh; Wang, Daryi; Wu, Yu-Wei; Liu, Shu-Mei; Chou, The-Yuan

    2008-03-01

    The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.

  6. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family geminiviridae implicated in grapevine redleaf disease by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sudarsana Poojari

    Full Text Available A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L. cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s associated with this emerging disease, designated as grapevine redleaf disease (GRD. High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV, and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms.

  7. Sequence-based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families.

    Directory of Open Access Journals (Sweden)

    Janine Maimanakos

    2016-08-01

    Full Text Available Arylmalonate-Decarboxylases (AMDases, EC 4.1.1.76 are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta- and Gammaproteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the TTT family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99% of the (R-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes.

  8. The report of sequence analysis on familial Mediterranean fever gene (MEFV) in South-eastern Mediterranean region (Kahramanmaraş) of Turkey.

    Science.gov (United States)

    Kilinc, Metin; Ganiyusufoglu, Eda; Sager, Hatice; Celik, Ahmet; Olgar, Seref; Cetin, Gozde Yildirim; Davutoglu, Mehmet; Altunoren, Orcun

    2016-01-01

    Familial Mediterranean fever (FMF) is defined as an inherited and autosomal recessive disease. Many researches have been done about this subject, and we believe that it should be necessary to focus on phenotype-genotype correlation, especially novel mutation types. We aim to announce the results of FMF sequence analysis in Kahramanmaras/Turkey. The number of participants is 380 males and 451 females who clinically diagnosed as FMF subjects of different age groups. Genomic sequences of exons 2 and 10 and in some cases exon 3 of the MEFV gene were scanned for mutations by sequence analyzer. The most common mutation identified in 230 (57.07 %) patients is heterozygous. The frequencies of mutation types in heterozygous subjects are R202Q (39.13 %), E148Q (18.70 %), M680I (16.52 %), M694V (13.91 %), and V726A (4.78 %), respectively. The most striking point among the compound heterozygous subjects is R202Q/M694V mutation type found at the highest rate (32 subjects). Fever and peritonitis are the most frequent signs of homozygous M694V and combine heterozygous mutations. Interestingly, the rate of homozygous mutation types (M694V/M694V+ R202Q/R202Q) is 96.70 % among all compound homozygous mutation types. The most frequent rate of homozygous patients is M680I mutation types (68.42 % in all homozygous mutation types). Two novel mutations were found in this study: N206K (p.Asn206Lys) and S208T (p.Ser208Tyr). Our findings in this study on the FMF sequence analysis are different from the results obtained from the other regions of Turkey.

  9. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families

    Science.gov (United States)

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K.; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R.

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  10. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    Directory of Open Access Journals (Sweden)

    Porth Ilga

    2011-12-01

    Full Text Available Abstract Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree, gene expression levels (for 428 phenylpropanoid-related genes and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca. Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs and expression QTL (eQTL hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the

  11. Strategies for Using Repetition as a Powerful Teaching Tool

    Science.gov (United States)

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  12. Strategies for Using Repetition as a Powerful Teaching Tool

    Science.gov (United States)

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  13. 羊种布氏杆菌基因外重复回文序列经Toll样受体9诱导IFN-α表达的研究%The effects of repetitive extragenic palindromic sequences from Brucella melitensis DNA on the toll-like receptor 9-mediated interferon-α production

    Institute of Scientific and Technical Information of China (English)

    白丽云; 张雅娴; 王占黎; 王英; 于慧

    2015-01-01

    Objective To screen the repetitive extragenic palindromic sequences with activation of toll-like receptor 9(TLR9) activity from Brucella melitensis DNA,providing new ideas and new targets for prevention and treatment of brucellosis.Methods Bioinformatics methods were used to detect repetitive extragenic palindromic(REP) sequences from Brucella melitensis DNA.The studied REPs were selected and synthesized.RAW264.7 was cultured and transfected with REPs mediated by lipofectamine 3000.Additionally,TLR9-siRNA was used to downregulate TLR9 expression.The content of interferon-α(IFN-α) in the supernatant was then measured by ELISA.Results A total of 2 200 REP sequences in Brucella melitensis DNA were identified.Twelve REP sequences were synthesized for further detecting of the TLR9 agonistic activity.IFN-α expression in RAW264.7 treated with M2,M3,M4,M5,M6,M7,M9,M12 were (26.944 ± 1.868),(46.461 ± 2.562),(34.980 ± 2.055),(43.016 ± 2.162),(62.533 ± 4.031),(67.125 ± 5.069),(18.908 ± 1.633),(39.572 ± 2.465) pg/ml respectively,which significantly increased when compared with the negative control group [(12.594 ± 1.338) pg/ml,t =10.817,20.295,15.812,20.724,20.365,18.016,5.180,16.660,all P < 0.05].Additionally,TLR9-siRNA can significantly decrease the levels of IFN-α in RAW264.7 treated with M6.Conclusion REP sequences presented in Brucella melitensis DNA are able to induce IFN-α expression through TLR9,which can be helpful for the understanding of pathogenesis and immunity of Brucella melitensis.%目的 筛选具有活化Toll样受体9(TLR9)活性的羊种布氏杆菌DNA中基因外重复回文序列(REPs),检测其经TLR9诱导的干扰素-α(IFN-α)表达,为羊种布氏杆菌病的防治提供新思路.方法 针对羊种布氏杆菌Brucella melitensis NI基因组序列,利用生物信息学技术识别其REPs后,合成序列.将合成的天然骨架脱氧寡核苷酸(ODNs)转染小鼠单核巨噬细胞株RAW264.7,酶联免疫吸附测定法(ELISA)检测IFN

  14. High quality draft genome sequence of Meganema perideroedes str. Gr1(T) and a proposal for its reclassification to the family Meganemaceae fam. nov.

    Science.gov (United States)

    McIlroy, Simon J; Lapidus, Alla; Thomsen, Trine R; Han, James; Haynes, Matthew; Lobos, Elizabeth; Huntemann, Marcel; Pati, Amrita; Ivanova, Natalia N; Markowitz, Victor; Verbarg, Susanne; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos; Nielsen, Per H

    2015-01-01

    Meganema perideroedes Gr1(T) is a filamentous bacterium isolated from an activated sludge wastewater treatment plant where it is implicated in poor sludge settleability (bulking). M. perideroedes is the sole described species of the genus Meganema and of the proposed novel family "Meganemaceae". Here we describe the features of the type strain Gr1(T) along with its annotated genome sequence. The 3,409,949 bp long draft genome consists of 22 scaffolds with 3,033 protein-coding and 59 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes KMG project. Notably, genome annotation indicated the potential for facultative methylotrophy. However, the ability to utilize methanol as a carbon source could not be empirically demonstrated for the type strain or for in situ Meganema spp. strains.

  15. A founder synonymous COL7A1 mutation in three Danish families with dominant dystrophic epidermolysis bullosa pruriginosa identifies exonic regulatory sequences required for exon 87 splicing

    DEFF Research Database (Denmark)

    Covaciu, C; Grosso, F; Pisaneschi, E

    2011-01-01

    a previously unrecognized translationally silent exonic COL7A1 mutation that results in skipping of exon 87 and is associated with DDEB-Pr phenotypes in several members of three apparently unrelated Danish families. A haplotype segregation study suggested a common ancestor in these kindred. Functional splicing...... shoulders. DEB-Pr is caused by either dominant (DDEB-Pr) or recessive mutations in the COL7A1 gene encoding type VII collagen (COLVII). The full spectrum of COL7A1 mutations in DEB-Pr remains elusive and the genotype-phenotype correlation is largely incomplete. Here, we report and functionally characterize...... analysis of the mutant exon by a COL7A1 minigene construct and computational prediction for splicing regulatory cis-sequences prove that the mutation alters the activity of an exonic splicing enhancer (ESE) critical for exon inclusion. These findings substantiate for the first time the involvement...

  16. Individualization, opportunity and jeopardy in American women's work and family lives: a multi-state sequence analysis.

    Science.gov (United States)

    Worts, Diana; Sacker, Amanda; McMunn, Anne; McDonough, Peggy

    2013-12-01

    Life course sociologists are increasingly concerned with how the general character of biographies is transformed over historical time--and with what this means for individual life chances. The individualization thesis, which contends that contemporary biographies are less predictable, less orderly and less collectively determined than were those lived before the middle of the 20th century, suggests that life courses have become both more internally dynamic and more diverse across individuals. Whether these changes reflect expanding opportunities or increasing jeopardy is a matter of some debate. We examine these questions using data on the employment, marital and parental histories, over the ages of 25-49, for five birth cohorts of American women (N=7150). Our results show that biographical change has been characterized more by growing differences between women than by increasing complexity within individual women's lives. Whether the mounting diversity of work and family life paths reflects, on balance, expanding opportunities or increasing jeopardy depends very much on the social advantages and disadvantages women possessed as they entered their prime working and childrearing years.

  17. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins

    Science.gov (United States)

    Tang, Nicholas C.; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  18. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins.

    Science.gov (United States)

    Tang, Nicholas C; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  19. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao

    2009-01-01

    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  20. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  1. Integration of sequence data from a Consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene.

    Directory of Open Access Journals (Sweden)

    Yukinori Okada

    Full Text Available Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA. Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1, might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry and also in unrelated individuals from the general population (European ancestry. Through identity-by-descent (IBD mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009. We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2 × 10(-6. Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry, and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT. Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted.

  2. Precision markedly attenuates repetitive lift capacity.

    Science.gov (United States)

    Collier, Brooke R; Holland, Laura; McGhee, Deirdre; Sampson, John A; Bell, Alison; Stapley, Paul J; Groeller, Herbert

    2014-01-01

    This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.

  3. Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae

    Science.gov (United States)

    Ardisson-Araújo, Daniel M. P.; Lima, Rayane Nunes; Melo, Fernando L.; Clem, Rollie J.; Huang, Ning; Báo, Sônia Nair; Sosa-Gómez, Daniel R.; Ribeiro, Bergmann M.

    2016-01-01

    The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation. PMID:27273152

  4. Genomic Characterization for Parasitic Weeds of the Genus Striga by Sample Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Matt C. Estep

    2012-03-01

    Full Text Available Generation of ∼2200 Sanger sequence reads or ∼10,000 454 reads for seven Lour. DNA samples (five species allowed identification of the highly repetitive DNA content in these genomes. The 14 most abundant repeats in these species were identified and partially assembled. Annotation indicated that they represent nine long terminal repeat (LTR retrotransposon families, three tandem satellite repeats, one long interspersed element (LINE retroelement, and one DNA transposon. All of these repeats are most closely related to repetitive elements in other closely related plants and are not products of horizontal transfer from their host species. These repeats were differentially abundant in each species, with the LTR retrotransposons and satellite repeats most responsible for variation in genome size. Each species had some repetitive elements that were more abundant and some less abundant than the other species examined, indicating that no single element or any unilateral growth or decrease trend in genome behavior was responsible for variation in genome size and composition. Genome sizes were determined by flow sorting, and the values of 615 Mb [ (L. Kuntze], 1330 Mb [ (Willd. Vatke], 1425 Mb [ (Delile Benth.] and 2460 Mb ( Benth. suggest a ploidy series, a prediction supported by repetitive DNA sequence analysis. Phylogenetic analysis using six chloroplast loci indicated the ancestral relationships of the five most agriculturally important species, with the unexpected result that the one parasite of dicotyledonous plants ( was found to be more closely related to some of the grass parasites than many of the grass parasites are to each other.

  5. Novel PSEN1 mutations (H214N and R220P) associated with familial Alzheimer's disease identified by targeted exome sequencing.

    Science.gov (United States)

    Piccoli, Elena; Rossi, Giacomina; Rossi, Tommaso; Pelliccioni, Giuseppe; D'Amato, Ilaria; Tagliavini, Fabrizio; Di Fede, Giuseppe

    2016-04-01

    Autosomal dominant Alzheimer's disease (AD) is caused by mutations in amyloid precursor protein, presenilin 1 (PSEN1), and presenilin 2 genes and is mostly associated with early-onset form of AD (EOAD), whereas very few mutations were also found in late-onset AD (LOAD) cases. Because of the clinical overlapping between AD and other degenerative dementias such as frontotemporal dementias, a wide-spectrum genetic analysis should be envisaged in the differential diagnosis of this group of disorders. We used next-generation sequencing techniques to analyze 10 genes involved in dementia on a cohort of 20 EOAD and 20 LOAD cases. We found 5 rare coding variants (frequency <1%). PSEN1 H214N mutation, identified in a case of familial EOAD and PSEN1 R220P, found in a case of familial LOAD, are predicted to be pathogenic. These findings confirm the contribution of PSEN1 genetic variants also to LOAD, underlining the need of extending the genetic screening of presenilin mutations to LOAD patients. Two variants in microtubule-associated protein tau and 1 in progranulin appeared to be benign polymorphisms, showing no major contribution of these genes to AD.

  6. Molecular characterization of recombinant T1, a non-allergenic periwinkle (Catharanthus roseus) protein, with sequence similarity to the Bet v 1 plant allergen family.

    Science.gov (United States)

    Laffer, Sylvia; Hamdi, Said; Lupinek, Christian; Sperr, Wolfgang R; Valent, Peter; Verdino, Petra; Keller, Walter; Grote, Monika; Hoffmann-Sommergruber, Karin; Scheiner, Otto; Kraft, Dietrich; Rideau, Marc; Valenta, Rudolf

    2003-07-01

    More than 25% of the population suffer from Type I allergy, an IgE-mediated hypersensitivity disease. Allergens with homology to the major birch ( Betula verrucosa ) pollen allergen, Bet v 1, belong to the most potent elicitors of IgE-mediated allergies. T1, a cytokinin-inducible cytoplasmic periwinkle ( Catharanthus roseus ) protein, with significant sequence similarity to members of the Bet v 1 plant allergen family, was expressed in Escherichia coli. Recombinant T1 (rT1) did not react with IgE antibodies from allergic patients, and failed to induce basophil histamine release and immediate-type skin reactions in Bet v 1-allergic patients. Antibodies raised against purified rT1 could be used for in situ localization of natural T1 by immunogold electron microscopy, but did not cross-react with most of the Bet v 1-related allergens. CD analysis showed significant differences regarding secondary structure and thermal denaturation behaviour between rT1 and recombinant Bet v 1, suggesting that these structural differences are responsible for the different allergenicity of the proteins. T1 represents a non-allergenic member of the Bet v 1 family that may be used to study structural requirements of allergenicity and to engineer hypo-allergenic plants by replacing Bet v 1-related allergens for primary prevention of allergy.

  7. Avocado cellulase: nucleotide sequence of a putative full-length cDNA clone and evidence for a small gene family.

    Science.gov (United States)

    Tucker, M L; Durbin, M L; Clegg, M T; Lewis, L N

    1987-05-01

    A cDNA library was prepared from ripe avocado fruit (Persea americana Mill. cv. Hass) and screened for clones hybridizing to a 600 bp cDNA clone (pAV5) coding for avocado fruit cellulase. This screening led to the isolation of a clone (pAV363) containing a 2021 nucleotide transcribed sequence and an approximately 150 nucleotide poly(A) tail. Hybridization of pAV363 to a northern blot shows that the length of the homologous message is approximately 2.2 kb. The nucleotide sequence of this putative full-length mRNA clone contains an open reading frame of 1482 nucleotides which codes for a polypeptide of 54.1 kD. The deduced amino acid composition compares favorably with the amino acid composition of native avocado cellulase determined by amino acid analysis. Southern blot analysis of Hind III and Eco RI endonuclease digested genomic DNA indicates a small family of cellulase genes.

  8. Complete Genome Sequencing and Phylogenetic Analysis of a Getah Virus Strain (Genus Alphavirus, Family Togaviridae) Isolated from Culex tritaeniorhynchus Mosquitoes in Nagasaki, Japan in 2012.

    Science.gov (United States)

    Kobayashi, Daisuke; Isawa, Haruhiko; Ejiri, Hiroko; Sasaki, Toshinori; Sunahara, Toshihiko; Futami, Kyoko; Tsuda, Yoshio; Katayama, Yukie; Mizutani, Tetsuya; Minakawa, Noboru; Ohta, Nobuo; Sawabe, Kyoko

    2016-12-01

    Getah virus (GETV; genus Alphavirus, family Togaviridae) is a mosquito-borne virus known to cause disease in horses and pigs. In 2014, for the first time in ∼30 years, a sudden GETV outbreak occurred among racehorses in Ibaraki, Japan. Two years before this outbreak, we obtained multiple GETV isolates from Culex tritaeniorhynchus mosquitoes collected in Nagasaki, Japan and determined the whole genome sequence of GETV isolate 12IH26. Our phylogenetic analysis of GETV strains revealed that the isolate 12IH26 forms a robust clade with the epidemic strains 14-I-605-C1 and 14-I-605-C2 isolated from horses in the 2014 outbreak in Ibaraki. Furthermore, the complete genomic sequence of the isolate 12IH26 was 99.9% identical to those of the 2014 epidemic strains in Ibaraki. Phylogenetic analysis also showed that the recent Japanese GETV strains, including the isolate 12IH26, are closely related to the Chinese and South Korean strains rather than the previous Japanese strains, suggesting that GETV strains may be transported from overseas into Japan through long-distance migration of the infected mosquitoes or migratory birds.

  9. Determination and characterization of IS4Bsu1-insertion loci and identification of a new insertion sequence element of the IS256 family in a natto starter.

    Science.gov (United States)

    Kimura, Keitarou; Itoh, Yoshifumi

    2007-10-01

    The insertion sequence IS4Bsu1 frequently causes Bacillus subtilis starters for the production of Japanese fermented soybean pasts (natto) to lose the ability to produce poly-gamma-glutamate, the viscous material characteristic of natto. Bacillus subtilis NAFM5, a derivative of a natto starter, has six IS4Bsu1 copies on its chromosome. In this study, we determined all six insertion loci of the insertion sequence (IS). One was located in the coding region of yktD, a putative gene involved in polyketide synthesis. Four were located in non-coding regions between iolR and iolA, between tuaA and lytC, between rapI and orf1 (a potential gene of unknown function), and between ynaE and orf3 (a putative gene similar to thiF), and one resided in an intergenic region between divergent possible orf4 and orf5 genes of unknown function. Here we describe the structural features of these loci and discuss the effects of the IS4Bsu1 insertions on the functions of the target gene and the expression of the downstream genes. In addition, we found that strain NAFM5 and commercial natto starters possess eight to 10 loci of another IS of the IS256 family (designated IS256Bsu1) on their chromosomes. IS256Bus1 appeared active in transposition, potentially causing phenotypic alterations in natto starters like those induced by IS4Bsu1.

  10. GRIN3B missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders.

    Science.gov (United States)

    Hornig, Tobias; Grüning, Björn; Kundu, Kousik; Houwaart, Torsten; Backofen, Rolf; Biber, Knut; Normann, Claus

    2017-01-30

    Glutamate is the most important excitatory neurotransmitter in the brain. The N-methyl-D-aspartate (NMDA) receptor is a glutamate-gated ionotropic cation channel that is composed of several subunits and modulated by a glycine binding site. Many forms of synaptic plasticity depend on the influx of calcium ions through NMDA receptors, and NMDA receptor dysfunction has been linked to a number of neuropsychiatric disorders, including schizophrenia. Whole-exome sequencing was performed in a family with a strong history of psychotic disorders over three generations. We used an iterative strategy to obtain condense and meaningful variants. In this highly affected family, we found a frameshift mutation (rs10666583) in the GRIN3B gene, which codes for the GluN3B subunit of the NMDA receptor in all family members with a psychotic disorder, but not in the healthy relatives. Matsuno et al., also reported this null variant as a risk factor for schizophrenia in 2015. In a broader sample of 22 patients with psychosis, the allele frequency of the rs10666583 mutation variant was increased compared to those of healthy population samples and unaffected relatives. Compared to the 1000 Genomes Project population, we found a significant increase of this variant with a large effect size among patients. The amino acid shift degrades the S1/S2 glycine binding domain of the dominant modulatory GluN3B subunit of the NMDA receptor, which subsequently affects the permeability of the channel pore to calcium ions. A decreased glycine affinity for the GluN3B subunit might cause impaired functional capability of the NMDA receptor and could be an important risk factor for the pathogenesis of psychotic disorders.

  11. Data partitions, Bayesian analysis and phylogeny of the zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Tamás Petkovits

    Full Text Available Although the fungal order Mortierellales constitutes one of the largest classical groups of Zygomycota, its phylogeny is poorly understood and no modern taxonomic revision is currently available. In the present study, 90 type and reference strains were used to infer a comprehensive phylogeny of Mortierellales from the sequence data of the complete ITS region and the LSU and SSU genes with a special attention to the monophyly of the genus Mortierella. Out of 15 alternative partitioning strategies compared on the basis of Bayes factors, the one with the highest number of partitions was found optimal (with mixture models yielding the best likelihood and tree length values, implying a higher complexity of evolutionary patterns in the ribosomal genes than generally recognized. Modeling the ITS1, 5.8S, and ITS2, loci separately improved model fit significantly as compared to treating all as one and the same partition. Further, within-partition mixture models suggests that not only the SSU, LSU and ITS regions evolve under qualitatively and/or quantitatively different constraints, but that significant heterogeneity can be found within these loci also. The phylogenetic analysis indicated that the genus Mortierella is paraphyletic with respect to the genera Dissophora, Gamsiella and Lobosporangium and the resulting phylogeny contradict previous, morphology-based sectional classification of Mortierella. Based on tree structure and phenotypic traits, we recognize 12 major clades, for which we attempt to summarize phenotypic similarities. M. longicollis is closely related to the outgroup taxon Rhizopus oryzae, suggesting that it belongs to the Mucorales. Our results demonstrate that traits used in previous classifications of the Mortierellales are highly homoplastic and that the Mortierellales is in a need of a reclassification, where new, phylogenetically informative phenotypic traits should be identified, with molecular phylogenies playing a decisive role.

  12. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  13. Understanding communicative actions: a repetitive TMS study.

    Science.gov (United States)

    Stolk, Arjen; Noordzij, Matthijs L; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan

    2014-02-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs left MT+, i.e., a contiguous homotopic task-relevant region) and tasks (a communicative task vs a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Epithelial topography for repetitive tooth formation

    Directory of Open Access Journals (Sweden)

    Marcia Gaete

    2015-12-01

    Full Text Available During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells.

  15. Repetitive Bibliographical Information in Relational Databases.

    Science.gov (United States)

    Brooks, Terrence A.

    1988-01-01

    Proposes a solution to the problem of loading repetitive bibliographic information in a microcomputer-based relational database management system. The alternative design described is based on a representational redundancy design and normalization theory. (12 references) (Author/CLB)

  16. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... on the shoulder Epicondylitis: elbow soreness often called "tennis elbow" Ganglion cyst: swelling or lump in the wrist ... Bones, Muscles, and Joints Carpal Tunnel Syndrome Medial Epicondylitis Repetitive Stress Injuries Contact Us Print Resources Send ...

  17. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria Industrial The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This the...

  18. New Evidence for the Theory of Chromosome Organization by Repetitive Elements (CORE).

    Science.gov (United States)

    Tang, Shao-Jun

    2017-02-20

    Repetitive DNA elements were proposed to coordinate chromatin folding and interaction in chromosomes by their intrinsic homology-based clustering ability. A recent analysis of the data sets from chromosome-conformation-capture experiments confirms the spatial clustering of DNA repeats of the same family in the nuclear space, and thus provides strong new support for the CORE theory.

  19. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  20. Self-organization of repetitive spike patterns in developing neuronal networks in vitro.

    Science.gov (United States)

    Sun, Jyh-Jang; Kilb, Werner; Luhmann, Heiko J

    2010-10-01

    The appearance of spontaneous correlated activity is a fundamental feature of developing neuronal networks in vivo and in vitro. To elucidate whether the ontogeny of correlated activity is paralleled by the appearance of specific spike patterns we used a template-matching algorithm to detect repetitive spike patterns in multi-electrode array recordings from cultures of dissociated mouse neocortical neurons between 6 and 15 days in vitro (div). These experiments demonstrated that the number of spiking neurons increased significantly between 6 and 15 div, while a significantly synchronized network activity appeared at 9 div and became the main discharge pattern in the subsequent div. Repetitive spike patterns with a low complexity were first observed at 8 div. The number of repetitive spike patterns in each dataset as well as their complexity and recurrence increased during development in vitro. The number of links between neurons implicated in repetitive spike patterns, as well as their strength, showed a gradual increase during development. About 8% of the spike sequences contributed to more than one repetitive spike patterns and were classified as core patterns. These results demonstrate for the first time that defined neuronal assemblies, as represented by repetitive spike patterns, appear quite early during development in vitro, around the time synchronized network burst become the dominant network pattern. In summary, these findings suggest that dissociated neurons can self-organize into complex neuronal networks that allow reliable flow and processing of neuronal information already during early phases of development.

  1. Characterization and phylogenetic analysis of -gliadin gene sequences reveals significant genomic divergence in Triticeae species

    Indian Academy of Sciences (India)

    Guang-Rong Li; Tao Lang; En-Nian Yang; Cheng Liu; Zu-Jun Yang

    2014-12-01

    Although the unique properties of wheat -gliadin gene family are well characterized, little is known about the evolution and genomic divergence of -gliadin gene family within the Triticeae. We isolated a total of 203 -gliadin gene sequences from 11 representative diploid and polyploid Triticeae species, and found 108 sequences putatively functional. Our results indicate that -gliadin genes may have possibly originated from wild Secale species, where the sequences contain the shortest repetitive domains and display minimum variation. A miniature inverted-repeat transposable element insertion is reported for the first time in -gliadin gene sequence of Thinopyrum intermedium in this study, indicating that the transposable element might have contributed to the diversification of -gliadin genes family among Triticeae genomes. The phylogenetic analyses revealed that the -gliadin gene sequences of Dasypyrum, Australopyrum, Lophopyrum, Eremopyrum and Pseudoroengeria species have amplified several times. A search for four typical toxic epitopes for celiac disease within the Triticeae -gliadin gene sequences showed that the -gliadins of wild Secale, Australopyrum and Agropyron genomes lack all four epitopes, while other Triticeae species have accumulated these epitopes, suggesting that the evolution of these toxic epitopes sequences occurred during the course of speciation, domestication or polyploidization of Triticeae.

  2. The Prevalence and Phenomenology of Repetitive Behavior in Genetic Syndromes

    Science.gov (United States)

    Moss, Joanna; Oliver, Chris; Arron, Kate; Burbidge, Cheryl; Berg, Katy

    2009-01-01

    We investigated the prevalence and phenomenology of repetitive behavior in genetic syndromes to detail profiles of behavior. The Repetitive Behaviour Questionnaire (RBQ) provides fine-grained identification of repetitive behaviors. The RBQ was employed to examine repetitive behavior in Angelman (N = 104), Cornelia de Lange (N = 101), Cri-du-Chat…

  3. A New IS4 Family Insertion Sequence, IS4Bsu1, Responsible for Genetic Instability of Poly-γ-Glutamic Acid Production in Bacillus subtilis

    Science.gov (United States)

    Nagai, Toshiro; Phan Tran, Lam-Son; Inatsu, Yasuhiro; Itoh, Yoshifumi

    2000-01-01

    Certain Bacillus subtilis strains, such as B. subtilis (natto) starter strains for the manufacture of natto (fermented soybeans), produce capsular poly-γ-glutamate (γPGA). In B. subtilis (natto), γPGA synthesis is controlled by the ComP-ComA two-component regulatory system and thereby induced at the beginning of the stationary growth phase. We have found a new insertion sequence (IS), designated IS4Bsu1, in the comP gene of a spontaneous γPGA-negative mutant of B. subtilis (natto) NAF4. IS4Bsu1 (1,406 bp), the first IS discovered in B. subtilis, encodes a putative transposase (Tpase) with a predicted Mr of 34,895 (374 residues) which displays similarity to the Tpases of IS4 family members. Southern blot analyses have identified 6 to 11 copies of IS4Bsu1, among which 6 copies were at the same loci, in the chromosomes of B. subtilis (natto) strains, including NAF4, three commercial starters, and another three γPGA-producing B. subtilis (natto) strains. All of the eight spontaneous γPGA− mutants, which were derived from five independent NAF4 cultures, had a new additional IS4Bsu1 copy in comP at six different positions within 600 bp of the 5′-terminal region. The target sites of IS4Bsu1 were determined to be AT-rich 9-bp sequences by sequencing the flanking regions of IS4Bsu1 in mutant comP genes. These results indicate that IS4Bsu1 transposes by the replicative mechanism, in contrast to other IS4 members that use the conservative mechanism, and that most, if not all, of spontaneous γPGA− mutants appear to have resulted from the insertion of IS4Bsu1 exclusively into comP. The presence of insertion hot spots in comP, which is essential for γPGA synthesis, as well as high transposition activity, would account for the high frequency of spontaneous γPGA− mutation by IS4Bsu1 in B. subtilis (natto). PMID:10762236

  4. A new IS4 family insertion sequence, IS4Bsu1, responsible for genetic instability of poly-gamma-glutamic acid production in Bacillus subtilis.

    Science.gov (United States)

    Nagai, T; Tran, L S; Inatsu, Y; Itoh, Y

    2000-05-01

    Certain Bacillus subtilis strains, such as B. subtilis (natto) starter strains for the manufacture of natto (fermented soybeans), produce capsular poly-gamma-glutamate (gammaPGA). In B. subtilis (natto), gammaPGA synthesis is controlled by the ComP-ComA two-component regulatory system and thereby induced at the beginning of the stationary growth phase. We have found a new insertion sequence (IS), designated IS4Bsu1, in the comP gene of a spontaneous gammaPGA-negative mutant of B. subtilis (natto) NAF4. IS4Bsu1 (1,406 bp), the first IS discovered in B. subtilis, encodes a putative transposase (Tpase) with a predicted M(r) of 34,895 (374 residues) which displays similarity to the Tpases of IS4 family members. Southern blot analyses have identified 6 to 11 copies of IS4Bsu1, among which 6 copies were at the same loci, in the chromosomes of B. subtilis (natto) strains, including NAF4, three commercial starters, and another three gammaPGA-producing B. subtilis (natto) strains. All of the eight spontaneous gammaPGA(-) mutants, which were derived from five independent NAF4 cultures, had a new additional IS4Bsu1 copy in comP at six different positions within 600 bp of the 5'-terminal region. The target sites of IS4Bsu1 were determined to be AT-rich 9-bp sequences by sequencing the flanking regions of IS4Bsu1 in mutant comP genes. These results indicate that IS4Bsu1 transposes by the replicative mechanism, in contrast to other IS4 members that use the conservative mechanism, and that most, if not all, of spontaneous gammaPGA(-) mutants appear to have resulted from the insertion of IS4Bsu1 exclusively into comP. The presence of insertion hot spots in comP, which is essential for gammaPGA synthesis, as well as high transposition activity, would account for the high frequency of spontaneous gammaPGA(-) mutation by IS4Bsu1 in B. subtilis (natto).

  5. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria.

    Directory of Open Access Journals (Sweden)

    Frederic Bertels

    2011-06-01

    Full Text Available Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII of repetitive extragenic palindromic (REP sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs, combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT-containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA.

  6. Repetition suppression in auditory-motor regions to pitch and temporal structure in music.

    Science.gov (United States)

    Brown, Rachel M; Chen, Joyce L; Hollinger, Avrum; Penhune, Virginia B; Palmer, Caroline; Zatorre, Robert J

    2013-02-01

    Music performance requires control of two sequential structures: the ordering of pitches and the temporal intervals between successive pitches. Whether pitch and temporal structures are processed as separate or integrated features remains unclear. A repetition suppression paradigm compared neural and behavioral correlates of mapping pitch sequences and temporal sequences to motor movements in music performance. Fourteen pianists listened to and performed novel melodies on an MR-compatible piano keyboard during fMRI scanning. The pitch or temporal patterns in the melodies either changed or repeated (remained the same) across consecutive trials. We expected decreased neural response to the patterns (pitch or temporal) that repeated across trials relative to patterns that changed. Pitch and temporal accuracy were high, and pitch accuracy improved when either pitch or temporal sequences repeated over trials. Repetition of either pitch or temporal sequences was associated with linear BOLD decrease in frontal-parietal brain regions including dorsal and ventral premotor cortex, pre-SMA, and superior parietal cortex. Pitch sequence repetition (in contrast to temporal sequence repetition) was associated with linear BOLD decrease in the intraparietal sulcus (IPS) while pianists listened to melodies they were about to perform. Decreased BOLD response in IPS also predicted increase in pitch accuracy only when pitch sequences repeated. Thus, behavioral performance and neural response in sensorimotor mapping networks were sensitive to both pitch and temporal structure, suggesting that pitch and temporal structure are largely integrated in auditory-motor transformations. IPS may be involved in transforming pitch sequences into spatial coordinates for accurate piano performance.

  7. Likelihood methods and classical burster repetition

    CERN Document Server

    Graziani, C; Graziani, Carlo; Lamb, Donald Q

    1995-01-01

    We develop a likelihood methodology which can be used to search for evidence of burst repetition in the BATSE catalog, and to study the properties of the repetition signal. We use a simplified model of burst repetition in which a number N_{\\rm r} of sources which repeat a fixed number of times N_{\\rm rep} are superposed upon a number N_{\\rm nr} of non-repeating sources. The instrument exposure is explicitly taken into account. By computing the likelihood for the data, we construct a probability distribution in parameter space that may be used to infer the probability that a repetition signal is present, and to estimate the values of the repetition parameters. The likelihood function contains contributions from all the bursts, irrespective of the size of their positional errors --- the more uncertain a burst's position is, the less constraining is its contribution. Thus this approach makes maximal use of the data, and avoids the ambiguities of sample selection associated with data cuts on error circle size. We...

  8. Hammerhead-mediated processing of satellite pDo500 family transcripts from Dolichopoda cave crickets.

    Science.gov (United States)

    Rojas, A A; Vazquez-Tello, A; Ferbeyre, G; Venanzetti, F; Bachmann, L; Paquin, B; Sbordoni, V; Cedergren, R

    2000-10-15

    This work reports the discovery and functional characterization of catalytically active hammerhead motifs within satellite DNA of the pDo500 family from several DOLICHOPODA: cave cricket species. We show that in vitro transcribed RNA of some members of this satellite DNA family do self-cleave in vitro. This self-cleavage activity is correlated with the efficient in vivo processing of long primary transcripts into monomer-sized RNA. The high sequence conservation of the satellite pDo500 DNA family among genetically isolated DOLICHOPODA: schiavazzii populations, as well as other DOLICHOPODA: species, along with the fact that satellite members are actively transcribed in vivo suggests that the hammerhead-encoding satellite transcripts are under selective pressure, perhaps because they fulfil an important physiological role or function. Remarkably, this is the third example of hammerhead ribozyme structures associated with transcribed repetitive DNA sequences from animals. The possibility that such an association may not be purely coincidental is discussed.

  9. The Hebb Repetition Effect as a Laboratory Analogue of Language Acquisition: Learning Three Lists at No Cost.

    Science.gov (United States)

    Saint-Aubin, Jean; Guérard, Katherine

    2017-07-20

    The Hebb repetition effect (i.e., the enhanced recall performance for a sequence of items that is repeated during a serial recall experiment) is considered an experimental analogue to language learning. However, although language learning occurs in a context in which multiple verbal sequences are repeated concurrently, the effect of increasing the number of repeated sequences in the Hebb repetition paradigm has received little attention, and previous studies have used tasks that depart considerably from the natural language learning experience